Heat Transfer (MSE)

Lecturer (assistant)
Duration2 SWS
TermSommersemester 2023
Position within curriculaSee TUMonline

Objectives

It is the goal of the course “Heat Transfer” that students become acquainted with the fundamental concepts and tools of heat transfer.

Description

Introduction to the mechanisms of heat transfer Fundamentals of heat conduction • Fourier’s law of heat conduction • Fourier’s differential equation • Boundary conditions of in time and space Steady-state heat conduction •Simple geometries (plane wall, cylinder, spherical shell) •Péclet equation (plane wall, cylinder, spherical shell) • Two-dimensional steady-state heat conduction (shape factors) Convective heat transfer and Nußelt number • Physical phenomena of the fluid in convective heat transfer •Correlations for the Nußelt number in configurations of interest Free convection • Free, laminar convection on an isothermal wall • Boussinesq approximation of the boundary layer equations • Characteristic numbers of free convection • Correlations for free convection Thermal radiation • Black bodies • Diffusive emitters • Kirchhoff’s law • Heat transfer by thermal radiation • Spectral dependencies of thermal radiation Heat exchanger • Dimensionless numbers • Characteristic of use • Log mean temperature difference Transient heat conduction • Lumped capacitance method • Dimensionless numbers of Biot and Fourier Characteristic numbers and similitude • Analysis of dimensions and Buckingham Pi theorem • Design of experiments • Representation of experimental results • Reynold’s analogy

Prerequisites

Thermodynamics, fluid and structural mechanics

Teaching and learning methods

In this lecture, the course contents are taught on the basis of class lectures and presentations. Concepts and basic relationships are presented and taught in exercises based on real-world applications and calculation examples. The presentation slides of the lecture, the exercises with corresponding sample solutions and a questionnaire for independent processing are available on the TUM learning platform Moodle. Individual issues can be discussed afterwards the lecture with the lecturer or within the assistants’ office hours (by appointment).

Examination

Written exam, additives permitted (notes, books, formulary).

Recommended literature

1. Baehr, H.D. ; Stephan, K.: Wärme-und Stoffübertragung, Springer Verlag, Berlin, Heidelberg, New York, 1994 2. Eckert, E.R.G. ; Drake, R.M.: Analysis of Heat and Mass Transfer, McGraw - Hill Book Co., New York, 1959 3. Gebhart, B.: Heat Transfer, McGraw - Hill Book Co., New York, 1961 4. Grigull, U. ; Sandner, H.: Wärmeleitung, Springer Verlag, Berlin, Heidelberg, New York, 1979 5. Gröber, H. ; Erk, S. ; Grigull, U.: Die Grundgesetze der Wärmeübertragung, 3. Aufl., 3. Neudruck (Reprint) Springer Verlag, Berlin, Heidelberg, New York, 1981 6. Incropera, F.P. ; DeWitt, D.P.: Introduction to Heat Transfer, 2nd edition, John Wiley & sons, New York, 1990 7. Jakob, M.: Heat Transfer, Vol. 1, 2 8th printing, J. Wiley and Sons, New York, 1962 8. McAdams, W.H.: Heat Transmission, 3rd edition, McGraw - Hill Book Co., New York, 1954 9. Mayinger, F.: Strömung und Wärmeübergang in Gas-Flüssigkeitsgemischen, Springer Verlag, Wien, NewYork, 1982 10. Mills, A.F.: Heat and Mass Transfer, Irwin , 1995 11. Siegel, R. ; Howell, J.R. ; Lorengel, J.: Wärmeübertragung durch Strahlung, Teil I: Grundlagen und Materialeigenschaften, Springer Verlag, Berlin, Heidelberg, New York, 1988