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1 Introduction

Thermo-acoustic instabilities are of concern in a wide field of applications

mostly linked to combustion. Striking examples can be found in rocket

engines [9, 10]. The introduction of lean premix combustion systems in gas

turbines has moved the topic into the focus of research again (e.g., [37]). Not

only large scale systems but even small devices such as car heating units

can be affected by this problem. Consequences of thermo-acoustic instabil-

ities can vary from spurious noise emissions over violation of performance

specifications and environmental requirements to structural failure of the

device. Therefore, the prediction of thermo-acoustic instabilities in an early

stage of the design process is essential. It can prevent the occurrence of such

undesired effects and, by this, avoid expensive and time-consuming trou-

bleshooting and redesign processes. Likely, with increasing demand for lean

premix combustion systems also in more critical configurations (as might be

the case for aircraft gas turbines in the future), more powerful methods for

the prediction of thermo-acoustic instabilities are required and desired.

G. Moore predicted in 1965: “The complexity for minimum component

costs has increased at a rate of roughly a factor of two per year [...]. Certainly

over the short term this rate can be expected to continue, if not to increase.

Over the longer term, the rate of increase is a bit more uncertain, although

there is no reason to believe it will not remain nearly constant for at least 10

years”. [58] This statement, known as Moore’s law, has proved to be true for

the last 40 years. Figure 1.1 illustrates this effect. This increasing power makes

new methods for computational evaluation affordable. These also offer new

possibilities for the prediction of such instabilities. In this context, Large Eddy

Simulations (LES) have become a recent focus of research. LES still require

huge cluster resources when the simulation is applied to real geometries.

But within a few years, the increasing computational power will make LES

1



Introduction

1970 1975 1980 1985 1990 1995 2000 2005
10

3

10
4

10
5

10
6

10
7

10
8

10
9

Year

N
o.

 o
f T

ra
ns

is
to

rs

Itanium II (9MB)

Intel 4004

Pentium

Figure 1.1: Visualisation of Moore’s law with a selection of microprocessors.

Data from www.intel.com, “Moore’s Law 40th Anniversary” press

kit.

common for engineering purposes.

The prediction of thermo-acoustic instabilities comprises a wide field of

physical effects i.e. acoustics, turbulence, combustion and their mutual

interactions. All these effects cover an extremely wide range of local and

temporal scales. Figure 1.2 illustrates this. As a consequence, the simulation

10-4 10-3 10-2 10-1 100 101
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temporal scale [s]

reaction zone

turbulent eddies

fuel jets

flame

combustor

wave length

chemical time scales
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saturation/growth 
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Figure 1.2: Visualisation of the different local and temporal scales involved in

thermo-acoustic problems.

of a thermo-acoustic problem in one single simulation is computationally

expensive, because the smallest scales of the most critical effect dictate the

2



resolution for all other scales and effects.

Concepts of “divide and conquer” have been widely used to keep the compu-

tational effort reasonable. They use simple, quick codes for the calculation

of the acoustics and often combine these with parametric models for the

dynamics of the flame. The complex interactions are strongly simplified here.

LES is capable of simulating turbulence-acoustic interaction as well as

more detailed combustion processes, which are both important for thermo-

acoustic instabilities. Yet these interactions are usually localized and large

parts of thermo-acoustic systems can still be described by simple methods

such as 1D acoustic equations. Therefore, the application of LES is promising

for those parts of the system that involve complex interactions. Additionally,

it is still desirable to find a way to combine LES with more simple methods in

order to gain speed and flexibility.

Polifke and Kopitz have developed such an approach, and some validation

has been done on a Rijke tube and a duct system [46]. The present work can

be seen in continuation of and addition to the thesis of Jan Kopitz [44].

Starting from Kopitz’ work, a more powerful interface between LES and

the Network model is implemented and validated. This interface consists

of a new, non-reflecting boundary condition for LES. Then, the approach

is applied for the first time to a test case involving laminar combustion. A

second test case involving turbulent combustion then demonstrates the limit

of the approach. The thesis starts with a repetition of the basic physical and

numerical concepts used and gives an overview over methods used in fluid

mechanics and a more detailed insight into the theory of the prediction of

thermo-acoustic instabilities. In the subsequent chapters, the tools which

were implemented into the LES solver AVBP are presented. The two different

cases, a laminar and a turbulent premix burner, are used to demonstrate the

capabilities and the limits of the method. These limits are discussed and their

theoretical background is examined.
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2 Basic Equations

This chapter gives a brief overview over the basic concepts in fluid mechanics,

involving acoustics and combustion. Numerical methods that are of impor-

tance for the simulation of acoustics and turbulent flow are presented. A short

subsection treats system identification.

2.1 Basic Equations of Fluid Mechanics

In this thesis, different approaches for the description of fluid mechanics and

acoustics are used. They range from computationally high demanding tran-

sient simulations to low order models in the frequency domain. All these mod-

els can be derived from the same set of equations, which are then simplified to

different degrees. The most basic equations and their simplifications are pre-

sented in the following.

Historically, two conceptually different approaches have been developed for

the description of fluid motion. While the so called Euler description uses a

fixed control volume and monitors the fluid passing through, the Lagrangian

description tracks a particle of the fluid on its way through space. In CFD,

where the spatial discretization is usually done by the computational grid, the

Euler description is more common and therefore will be used in this section.

The relevant equations can be found in most books on fluid mechanics. For

this section, mostly Noll [63], Ehrenfried [13] and the handbook of the code

employed, AVBP [2], are used.
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Basic Equations

2.1.1 The Conservation of Mass

The conservation of mass can be derived by considering the mass-fluxes enter-

ing and leaving an infinitely small volume element. In the absence of a source

of mass, the equation of the conservation of mass can be written as follows:

∂ρ

∂t
+
∂
(

ρui

)

∂xi
= 0. (2.1)

In the context of reactive flows a formulation of the conservation of mass for

n species is desirable. In this case a species source term or sink term Sk is

likely to be present due to the reaction. In contrast to the total mass balance, a

diffusion term has to be included here, since species fractions may be spatially

non-uniform. Defining the mass fraction of the species k :

Yk =
ρk

n∑

i=1
ρk

, (2.2)

∂
(

ρYk

)

∂t
+
∂
(

ρujYk

)

∂xj
=

∂

∂xj

[

ρDk
Mk

M

∂Xk

∂xj
−YkV c

i

]

+Si, (2.3)

where the first term on the right hand side accounts for diffusion, with Xk be-

ing the molar fraction of species k , Mk the molar weight of species k and Dk

being the diffusion coefficient for species k . The term V c
i is defined as

V c
i =

n∑

k=1

Dk

Mk

M

∂Xk

∂xi
(2.4)

and ensures global mass conservation after introduction of the diffusion law

[2].

2.1.2 The Compressible Navier-Stokes Equations

The Navier-Stokes equations are named after the French mathematician and

physician Claude Louis Marie Henri Navier (1785-1836) and the Irish mathe-

matician and physician Sir George Gabriel Stokes (1819-1903). The equations

can be derived from a balance of momenta at a fluid element. Furthermore,

6



2.1 Basic Equations of Fluid Mechanics

a non-negligible friction and a Newton type fluid with the viscosity µ as well

as volume forces Vi are assumed. A shear stress tensor τij can be defined to

simplify the equation:

∂
(

ρui

)

∂t
+
∂
(

ρujui

)

∂xj
=−

∂p

∂xi
+

∂

∂xj

[

η

(
∂ui

∂xj
+
∂uj

∂xi
−

2

3
δij

∂uk

∂xk

)]

+ρVi, (2.5)

∂
(

ρui

)

∂t
+
∂
(

ρujui

)

∂xj
=−

∂p

∂xi
+

∂

∂xj
τij +ρVi. (2.6)

2.1.3 The Conservation of Energy

In the case of reactive flow, a balance of the internal energy of the fluid has to

be established, because substantial changes in the distribution of the energy

take place. The total energy of a fluid is the combination of internal energy

(eint) and kinetic energies (u2/2), E = eint +u2/2. The specific internal energy

per unit volume can be expressed as [6]

eint =h −
p

ρ
=

∫T

T0

cpd T −
p

ρ
. (2.7)

Assuming a source of chemical energy and radiation energy ST the equation

of energy becomes [2]:

∂
(

ρE
)

∂t
+
∂
(

ρujE
)

∂xj
=−

∂

∂xj

[

ui

(

pδij −τij

)

+qj

]

+ST, (2.8)

where

qj =−λ
∂T

∂xi
−ρ

N∑

k=1

(

Dk
Mk

M

∂Xk

∂xi
−YkV c

i

)

hs,k (2.9)

expresses the heat conduction. The second term evolves due to species diffu-

sion and is not further explained here. Non-reactive flows at low Mach num-

bers often have a negligible change in internal energy and therefore the equa-

tion for the conservation of energy can be neglected in these cases.
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Basic Equations

2.1.4 The Navier-Stokes System of Equations

The equations for the conservation of mass, momentum and energy all follow

the same general form of the transport equation [2]:

∂~w

∂t
+∇~F = ~S , (2.10)

where w denotes the conservative variables (~w =
(

ρu1,ρu2,ρu3,ρE ,ρ
)T

),
~F the fluxes and ~S the source terms.

Some authors [69] name this set of transport equations the Navier-Stokes sys-

tem of equations or just the Navier-Stokes equations, which may lead to con-

fusion with 2.1.2.

2.1.5 The Euler Equations

The Navier-Stokes equations are the basis for the Computational Fluid Dy-

namics (CFD) part of this work. When it comes to purely acoustic equations,

further simplifications of these equations can be performed. These simplified

equations will play an important role in the low order modeling described in

2.7. The first step for this are the Euler equations.

The term Euler equation can, similarly to Navier-Stokes equation, either de-

note only the equation of conservation of momentum or the entire system of

equations describing the behavior of a fluid. The Euler equations are a sim-

plification of the Navier-Stokes equations assuming a non-viscous flow and

absence of volume forces. Therefore the viscous terms in equation 2.6 and the

shear terms in 2.8 can be eliminated and the equations of the conservation of

mass, momentum and energy reduce to:

∂ρ

∂t
+
∂
(

ρui

)

∂xi
= 0, (2.11)

∂
(

ρui

)

∂t
+
∂
(

ρujui

)

∂xj
=−

∂p

∂xi
, (2.12)

∂
(

ρE
)

∂t
+
∂
(

ρujE
)

∂xj
=−

∂

∂xj

(

uiP +qj

)

+ST. (2.13)
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2.2 Basic Equations of Acoustics

2.2 Basic Equations of Acoustics

The Euler equations still include full flow information, e.g. transient flow and

locally non-constant flow. When it comes to acoustics, such mean flow effects

are often of low interest and can be simplified or neglected.

2.2.1 The Acoustic Wave Equation

The acoustic wave equation can be derived from the Euler equation (for mass

and momentum) and an equation of state coupling pressure and density (p =
p(ρ)) [13]. This is done by dividing the quantities into a mean value (e.g. p̄) and

a perturbation (e.g.. p ′). We do not consider turbulent effects here. Hence:

p = p̄ +p ′, (2.14)

ρ = ρ̄+ρ′. (2.15)

And assuming no mean flow ūi = 0:

ui = ūi +u′
i =u′

i. (2.16)

Neglecting higher order perturbation terms (e.g. p ′u′
i) one obtains for the lin-

earized conservation of mass and momentum (linearized Euler):

∂ρ′

∂t
+ ρ̄

∂u′
i

∂xi
= 0, (2.17)

ρ̄
∂u′

i

∂t
=−

∂p ′

∂xi
. (2.18)

Using now a relation between pressure and density, i.e. an equation of state,

and expanding it using a Taylor series

p(ρ) = p(ρ0)+ (ρ−ρ0)
d p

dρ
(ρ0)+ ..., (2.19)

we get a relation between p ′ and ρ′:

p ′ = ρ′d p

dρ
. (2.20)
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The term
d p

dρ
is defined as

d p

dρ
= c2 with c being the speed of sound. In the case

of an ideal gas one obtains c =
p

RT . So the last equation can be rewritten:

p ′ = ρ′c2. (2.21)

Now if one performs a time derivative of the linearized conservation of mass

(2.17) and calculates the divergence of the linearized Euler equation (2.18),

∂2ρ′

∂t 2
+ ρ̄

1

∂xi

∂u′
i

∂t
= 0, (2.22)

ρ̄
1

∂xi

∂u′
i

∂t
=−

1

∂xi

∂p ′

∂xi
, (2.23)

and finally subtracts the two equations and uses equation 2.21, one obtains

the wave equation:

1

c2

∂2p ′

∂t 2
−
∂2p ′

∂x2
i

= 0. (2.24)

In the presence of mean flow, this equation is no longer valid. Nevertheless,

for a uniform mean flow the equation can be applied by using it for a moving

coordinate system (xm and tm) and transferring it into a stationary one (xs and

ts):

xs =xm + ūt , (2.25)

xm =xs − ūt , (2.26)

ts =tm. (2.27)

This implies for the derivatives:

∂

∂xm
= ∂

∂xs
, (2.28)

∂

∂tm
=

∂

∂ts
+ ū

∂

∂xs
. (2.29)

Inserting this into the wave equation results in the convective wave equation

for uniform flow (in the stationary coordinate system):

1

c2

(
∂

∂t
+ ū

∂

∂x

)2

p ′−
∂2p ′

∂x2
i

= 0. (2.30)
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2.2.2 The Helmholtz Equation

The Helmholtz equation corresponds to the wave equation in frequency do-

main. Assuming a harmonic pressure signal at an angular frequency ω= 2π f

of the form

p ′ = p̂ ′e iωt , (2.31)

the time derivatives of the pressure are:

∂p ′

∂t
= iωp̂e iωt , (2.32)

∂2p ′

∂t 2
=−ω2p̂e iωt . (2.33)

Introducing this into equation 2.24 and defining a wave number k =ω/c0 one

obtains the Helmholtz equation:

k2p ′+
∂2p ′

∂x2
i

= 0. (2.34)

2.2.3 Characteristic Waves

Characteristic waves are of interest, because they represent a simple solution

for the wave equation in one dimension. Therefore, they are frequently used in

low order modeling, e.g. in the models presented in section 2.7. For 1D cases,

such as ducts and other elongated systems, equation 2.24 becomes

1

c2
0

∂2p ′

∂t 2
−
∂2p ′

∂x2
= 0, (2.35)

with x being the longitudinal axis. The solution of this equation can be ex-

pressed as a superposition of two waves (f and g) travelling in positive and

negative x-direction, respectively:

p ′ = ρc (f(t −x/c0)+g(t +x/c0)) . (2.36)

In the frequency domain, these waves can be expressed using an exponential

approach:

f= f̂0e i (ωt−kx), (2.37)

11
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g= ĝ0e i (ωt+kx). (2.38)

f and g are sometimes referred to as characteristic waves or Rieman Invariants.

[72]. The wave number k is defined as follows:

k =
ω

c
. (2.39)

If mean flow is present, the conventional wave equation is no longer valid. Still,

similarly to the wave equation, for uniform mean flow, the solution can be

transformed. This again is done using a moving reference system (xm and tm)

and transferring it into a stationary one (xs and ts):

xs =xm + ūt , (2.40)

xm =xs − ūt , (2.41)

ts =tm. (2.42)

Time is not affected by the choice of the coordinate system. The pressure also

does not depend on the choice of the coordinate system:

p ′
s(xs, t )= p ′

m(xm, t )= p ′
m(xs − ūt , t ). (2.43)

Using the relation between p, f and g, equation 2.36, one obtains:

p ′(xs, t ) = ρc

(

f(t −
xs

c0+ ū
+g(t +

xs

c0− ū

)

. (2.44)

The wave numbers k are then defined differently for the upstream (k−) and

downstream (k+) traveling wave:

k+ =
ω

c + ū
, (2.45)

k− =
ω

c − ū
. (2.46)

Inserting this into equations 2.37 and 2.38, one obtains a valid solution for the

1D wave equation in uniform flow.

2.3 Turbulence

Turbulence is an important aspect in technical problems. In the context of

thermo-acoustics, turbulence-flame interaction is of particular interest. Tur-

bulence also is one of the major challenges when it comes to the numerical

12



2.3 Turbulence

simulation of fluid dynamics as will be demonstrated in section 2.4. Therefore,

basic properties of turbulent flows are presented in this section.

In turbulent flow the inertial forces dominate over viscous forces. Therefore,

in contrast to the laminar structure of flow dominated by viscous effects, tur-

bulent flow is characterized by a fluctuation of the local properties of the

flow [72]. Hence, the flow quantities (e.g. u) can be divided into a mean (ū)

and a fluctuating (ũ) part:

u = ū + ũ. (2.47)

The ratio of inertial and viscous forces can be described using the Reynolds

number,

Re =
u · l

ν
, (2.48)

where l and u denote characteristic length and velocity and ν the kinematic

viscosity. If the Reynolds number exceeds a certain critical Reynolds number

Recrit, which depends on the flow configuration and usually is e.g., in the case

of duct flow, Recrit = 2000, the flow becomes turbulent. Turbulent structures

have a large spectrum of sizes. The largest structures have a size imposed by

external factors (le), mostly the geometry, while the size of the smallest tur-

bulent structures is determined by internal fluid properties (li). The energy is

transferred from larger to smaller structures until viscous effects become pre-

dominant and the energy dissipates from the smallest structures. Richardson

described this phenomenon already in 1922 as “big whirls have little whirls

that feed on their velocity, and little whirls have lesser whirls and so on to vis-

cosity” [86].

The mean rate of dissipation of energy per unit of mass and time can be esti-

mated by

ǫ=
1

2
ν

∑
(
∂ui

∂xi
+
∂uj

∂xj

)2

. (2.49)

According to Kolmogorov [39–41], the largest scales are independent of the

Reynolds number. Therefore, they are not affected by viscous phenomena. In

contrast, smaller scales are dominated by the viscous effects and turbulence
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becomes locally isotropic. The smallest scale, also denoted Kolmogorov Scale,

can be estimated with

li =
(
ν3

ǫ

) 1
4

. (2.50)

The different scales can be considered as different frequencies in the wave

number spectrum. Assuming a constant rate of dissipation and production, it

is possible to derive a relation for the energy contained in every scale (k):

E(k) =Cǫ
2
3 k− 5

3 . (2.51)

This is Kolmogorov’s famous law for the −5
3 decay for the turbulent kinetic en-

ergy. The typical spectrum of turbulent kinetic energy is represented in figure

2.1

Figure 2.1: Representation of the turbulent energy Spectrum.

2.4 Modelling strategies for Fluid Mechanics

The analytical solution of the Navier-Stokes set of equations 2.10 is only possi-

ble for a few simple cases. If a solution for these equations is desired in more
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complex geometries, a numerical approximation has to be performed. For rep-

resenting the flow on a numerical grid, a certain degree of resolution has to be

achieved. This degree, corresponding to the fineness of the grid used for the

computation, depends on the smallest structures, which occur in the flow. If

no further modeling is done, the finest structures in the flow have the size of

the Kolmogorov Scale li (see equation 2.50).

Three main different approaches for the modeling of turbulent flows can be

distinguished. They differ in their level of modeling and in their demand for

computational power. Reynolds Averaged Navier-Stokes Method (RANS) has

the highest level of modeling and therefore the lowest demand for computa-

tional power. An intermediate level of modeling and computational demand

is needed for Large Eddy Simulation (LES). Lastly, Direct Numerical Simula-

tion (DNS) requires no modeling of turbulent effects and, therefore, has the

highest computational demand. The level of modeling and the level of resolu-

tion are represented in figure 2.2. The latter two methods are described in the

following subsections.

Figure 2.2: Representation of the modeling and resolution of the different

kinds of numerical simulations over the turbulent energy spec-

trum. kc denotes the cutoff frequency of the LES calculation. Fig-

ure as in [72].
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2.4.1 Direct Numerical Simulation (DNS)

DNS is the straightforward simulation of the Navier-Stokes equations and is

therefore briefly explained here, as first class of numerical simulation. DNS

does not use any kind of modeling for the turbulence. Therefore it can be ap-

plied if the grid used for the simulation is fine enough to resolve all fluid mo-

tion scales. As the smallest scale li correlates to viscosity and velocity gradient

with equation (2.50),

li =
(
ν3

ǫ

) 1
4

, (2.52)

a dependency of the Reynolds number can be established:

l

li
= l

(
ν3

ǫ

)− 1
4

≈ Re
3
4 . (2.53)

So the number of grid points required for a DNS in three dimensions scales

with
(

1
li

)3
= Re

9
4 . Assuming now a linear dependency (which is the case for ex-

plicit solvers) between time step and grid spacing, the computational effort

for a given problem in time and space correlates with Re3. Hence, direct nu-

merical simulation is only feasible for small Reynolds numbers. However, the

increasing power available in computing makes DNS possible for larger prob-

lems.

2.4.2 Large Eddy Simulation (LES)

In LES, as the name implies, the large scales of turbulence are simulated, while

the smaller scales have to be modeled. Therefore, the grid can be coarser com-

pared to DNS which saves computational power. On the other hand, resolv-

ing the large eddies is an essential difference compared to Reynolds Averaged

Navier-Stokes calculation (RANS): In RANS all turbulent scales are modeled.

For the treatment of thermo-acoustic problems, LES has the big advantage

that by resolving turbulent scales, it permits the explicit calculation of interac-

tions between turbulence and flame. Hence, LES can be seen as a promising
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2.4 Modelling strategies for Fluid Mechanics

compromise between DNS and RANS both in resolution and computational

effort.

In order to only resolve the large scales, the flow field has to be filtered by

the simulation in the sense of a low pass filter. Usual filters are box, Gauss

or Fourier cutoff functions. Hence, we know that LES commits an error by

filtering the Navier-Stokes equation. Therefore, it is possible to account for

this error. This is done by introducing a so called “sub grid model”, which

aims to take into account the effect of the scales that fall below the size of

the grid. Computationally, LES is a compromise between resolution and com-

putational demand.

Equations

A filtering operation consists of applying a filter kernel G to a quantity φ:

〈φ〉 =G ⋆φ=
∞∫

−∞

∞∫

−∞

φ(ξ, t ′)G(x −ξ, t − t ′)d t ′d 3ξ. (2.54)

Applying the filtering (denoted by 〈〉) to the Navier-Stokes equations (2.10) re-

sults in:

∂
(

ρ〈ui〉
)

∂t
+
∂
(

ρ〈ujui〉
)

∂xj
=−

∂〈p〉
∂xj

+
∂

∂xj
〈τij〉. (2.55)

The second term on the left hand side cannot be resolved directly. If one as-

sumes that the term 〈ujui〉 must be expressed by filtered quantities 〈ui〉〈uj〉,
it is possible to use the Leonard decomposition by expanding 〈ujui〉. Using

u = 〈u〉+ ù leads to following expression (where ù here denotes the part not

resolved by the filter ) [91]:

〈uiuj〉−〈ui〉〈uj〉 = 〈〈ui〉〈uj〉〉−〈ui〉〈uj〉
︸ ︷︷ ︸

Lij

+〈ùi〈uj〉〉+〈〈ui〉ùj〉
︸ ︷︷ ︸

Cij

+〈ùiùj〉
︸ ︷︷ ︸

Rij

. (2.56)

This term can be considered as a subgrid scale viscous term τ⋆ij :

τ⋆ij = 〈uiuj〉−〈ui〉〈uj〉 = Lij +Cij +Rij. (2.57)

Where according to [6]
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• Rij denotes the Reynolds Stress Tensor which describes the interaction

between small scales transferring energy from small to large scales

(“backscatter”),

• Cij denotes the Cross Stress Tensor which describes the interaction be-

tween large and small scales,

• Lij denotes the Leonard Stress Tensor which describes the interaction be-

tween resolved scales transferring energy to the small scales (“outscat-

ter”).

This term τ⋆ij has to be modeled in order to close equation 2.55 which then

takes the form

∂
(

ρ〈ui〉
)

∂t
+
∂
(

ρ〈uj〉〈ui〉
)

∂xj
=−

∂〈p〉
∂xj

+
∂

∂xj

[

〈τij〉+τ⋆ij

]

. (2.58)

Different approaches have been developed for approximating τ⋆ij . An overview

is given e.g. in [6] or [91]. In the following, two models are described which are

both implemented in the LES solver used in the context of this thesis, AVBP.

The Smagorinsky Model

One of the most commonly used models for the unresolved terms was devel-

oped by Smagorinsky [100] in 1963. Smagorinsky introduces a subgrid scale

viscosity, which depends on the filtered deformation tensor 〈D ij〉,

νsgs =
(

Csδ̄
)2 (

2〈D ij〉〈D ij〉
)1/2

, (2.59)

with

〈D ij〉 =
1

2

(
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

)

(2.60)

This expression can be calculated directly from the flow field. The Smagorin-

sky constant Ck can be estimated to be Cs = 0.18 [59]
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The WALE Model

This is the subgrid scale model used in the simulations presented in this thesis.

It has been chosen because the Smagorinsky Model exhibits some disadvan-

tages:

• The near wall properties are not correct: in real flow turbulent fluctua-

tions are damped, while the Smagorinsky model proposes an eddy vis-

cosity which is non-zero.

• The energy dissipation in eddies also is not properly accounted for in the

Smagorinsky model. [59].

Nicoud and Ducros have proposed a formulation to overcome these problems

[59]. It regards not only on the irrotational strain rate, but also on the rotational

one. It is based on the “traceless symmetric part of the square of the velocity

gradient tensor” [59],

Sij =
1

2

(

〈g ij〉2 +〈g ji〉2
)

−
1

3
δij〈gkk〉2. (2.61)

Defining

〈Ωij〉 =
1

2

(
∂〈ui〉
∂xj

−
∂〈uj〉
∂xi

)

, (2.62)

the tensor can be rewritten:

Sij = 〈D ik〉〈Dkj〉+〈Ωik〉〈Ωkj〉−
1

3
δij(〈Dmn〉〈Dmn〉−〈Ωmn〉〈Ωmn〉) (2.63)

The desired near wall behavior now imposes the exponents and the form of

the denominator of the final formulation of the turbulent viscosity: [59]

νsgs =
(

Csδ̄
)2 (SijSij)

3/2

(〈D ij〉〈D ij〉)5/2(SijSij)5/4
. (2.64)

A separate section (section 4.2) is dedicated to boundary conditions used for

the LES simulations in this thesis.
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2.5 Combustion

In the field of thermo-acoustics, the simulation of heat release and hence

of combustion is an important task. The basic phenomena occurring during

combustion processes are described in this section as is the numerical treat-

ment in simulations.

Combustion is an exothermic chemical reaction between a fuel and an ox-

idant resulting in the production of heat or light or both. Turns [107] e.g.

defines combustion as a “rapid oxidation generating heat or both light and

heat...”. About 90% of the energy used worldwide is provided by combustion

processes [111].

In a combustion process, the reactants, which are chemically on a high energy

level, react and form products, which are on a chemically lower and therefore

more stable level of energy. The difference of energy is released in the form

of radiation, which corresponds to the “heat and light” mentioned above. The

energy available qc through the chemical reaction can be quantified by the

standard enthalpy of formation ∆Hf:

qc =∆Hf,educt −∆Hf,prod. (2.65)

Knowing the rate of generation of species k , Sk, the energy source term, ST,

can be written as [2]

ST =−
n∑

k=1

Sk∆Hf,k. (2.66)

The standard enthalpy of formation quantifies the energy contained in the

chemical bond with reference to a standard level for the elements.

The chemical reaction in the case of an alkane hydrocarbon fuel CnH2n+2 has

the form

CnH2n+2 + (3n +1)/2O2 → nCO2 + (n +1)H2O. (2.67)

The amount of 2n + 1 oxygen molecules is the minimum amount of oxygen

required for complete combustion and named stoichometric amount. An ex-

cess or lack of oxygen can be characterized by the equivalence ratio φ or the

air excess ratio λ= 1
φ

. The equivalence ratio is defined

φ=
mstoic

m
, (2.68)
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where m denotes the amount of fuel available and mstoic the stoichometric

amount of fuel. This energy and the heat capacity of the products permits the

adiabatic flame temperature to be defined as follows:

Tadiab =
qc ·Yfuel

cp
+T0. (2.69)

For simplicity reasons, cp is assumed not to be temperature dependent here.

For temperature dependent cp, the adiabatic flame temperature can be deter-

mined from the following equation:

h(Tadiab)−h(T0) = q ·Yfuel. (2.70)

AVBP e.g. uses tabled values for the enthalpy permitting the solution of this

equation.

The reaction rate ω̇ of the reaction process is often modeled using an Arrhe-

nius type temperature and species dependency,

ω̇= AYFYO exp

(
Ta

T

)

, (2.71)

where A and Ta are model constants and YF and YO fuel and oxidizer mass

fractions, respectively. Depending on the state of the flow and on the mixture

of the reactants, different regimes of combustion can be distinguished. The

flow can be either laminar or turbulent. Hence, laminar and turbulent com-

bustion can be defined. The reactants can either be separate (non-premixed),

partially premixed1 or perfectly premixed. If non-gaseous fuels are used, addi-

tional phenomena like droplet formation and evaporation have to be consid-

ered. This work focuses on gaseous fuel and therefore droplet formation and

evaporation is not discussed further. The reader is referred to standard work

like [107, 112].

2.5.1 Non-Premixed Combustion

In the case of non-premixed combustion the reactants mix during the com-

bustion process in the combustion zone. Depending on the flow, turbulent

1According to the statistical properties of the partially premixed combustion a further distinction is possible.
See e.g.. [12] for further information
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and laminar non-premixed combustion can be distinguished. The latter is of-

ten referred to as laminar diffusion flames. In non-premixed combustion the

mixing of the reactants is a crucial element when the global kinetics of the sys-

tem have to be described. Therefore, the flame and its position are particularly

sensitive to influences of the flow field which brings fuel and oxygen together.

Due to the importance of the mixing process often an infinitely fast chemistry

is assumed when modeling laminar diffusion flames. This assumption implies

that fuel and oxygen react immediately when mixing occurs. In this way, the

combustion problem is reduced basically to the mixing problem.

2.5.2 Premixed Combustion

Here, a flame front propagates through the mixture of fresh (meaning un-

burnt) reactants. The surface of the flame front and the flame speed determine

the overall reaction rate. For hydrocarbon fuels, the flame front has a thickness

δ0
L of the order of 0.1 mm and a flame speed s0

L of the order of 0.5 m/s. In the

presence of turbulence, the flame front can be deformed or wrinkled by the

eddies leading to a bigger surface of the flame front and higher combustion

rates. Therefore, a turbulent flame speed sT can be defined as the velocity that

has to be imposed at the inlet of a turbulent domain (of volume V ) of constant

cross section A in order to keep the flame stationary:

Aρ1Y 1
F st =−

∫

V

ω̇FdV ; (2.72)

Y 1
F and ρ1 denote the fuel mass fraction and the density of the unburnt mix-

ture. The ratio between laminar and turbulent flame speed corresponds to the

area gain of the flame front caused by the wrinkling,

st

sl
=

ST

S
. (2.73)

Hence, it is possible to describe the influence of turbulence defining a wrin-

kling factor Ξ as

Ξ=
AT

A
. (2.74)
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Increasing turbulence will increase the wrinkling and therefore increase the

turbulent burning velocity. However, one has to keep in mind that with in-

creasing turbulent velocity fluctuation quenching effects may dominate the

behavior.

2.6 Numerical Simulation of Combustion

The simulation of combustion is challenging because of the coupling between

combustion and turbulence and the occurrence of extreme gradients due to

the typically thin reaction zone. The type of modeling of the reaction mecha-

nism depends essentially on the type of simulation and the treatment of turbu-

lence. RANS approaches solve the mean quantities of the flow field; therefore

RANS combustion models will only provide a mean reaction zone and turbu-

lence influences have to be included explicitly into the modeling. In contrast,

DNS resolves the fully turbulent flow field and therefore the influences on the

reaction. The grid is fine enough, so that the thin reaction zone with its steep

gradients can be resolved. The major drawback is the high computational re-

quirement, which restricts the application of DNS. Again, LES presents the in-

termediate solution, where large scale transient effects and large scale turbu-

lence are resolved. The effects of small scale turbulence have to be accounted

for separately. A second problem of combustion modeling in LES is the thin

reaction zone, which usually can not be represented sufficiently on the grid.

2.6.1 Thickened Flame Model

The thickened flame model by Colin et al. [7] is an approach based on a global

reaction scheme to model the species transformation during the reaction. The

main idea of the model is to increase the diffusion transport in a way such that

the reaction zone thickens up and, hence, can be represented on the numeri-

cal grid. In a second step, the reaction rate is reduced in order to compensate

the effects of the diffusion. Butler et al. [64] have proposed an approach to ar-

tificially thicken the flame front in this way. The flame speed s0
L and the flame
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thickness δ0
L can be expressed as

s0
L =

√

DthB , (2.75)

δ0
L ∝

Dth

s0
L

=
√

Dth

B
, (2.76)

where Dth represents the thermal diffusivity and B the pre-exponential factor.

If the thermal diffusivity is increased by a factor F and at the same time the

pre-exponential factor is reduced by the same factor, the laminar flame speed

is preserved and the thickness is increased by this factor F . This procedure

affects the ratio between turbulent and chemical time scale, the Damköhler

number Da, and, hence, the reaction of the flame to turbulence:

Dathickened =
Da

F
. (2.77)

This implies that the flame is more insensitive to small scale turbulent mo-

tions. The reaction on eddies which are smaller than the thickened flame

thickness vanishes and the reaction on eddies bigger than the thickened flame

thickness may be modified. An efficiency function E is introduced in order to

compensate for this effect [1,7]. This function is based on the wrinkling factor

of unthickened ( 0) and thickened ( 1) flame:

E =
Ξ(δ0

l )

Ξ(δ1
l )

=
1+αΓ(∆e/δ0

l ,u′
∆t

/s0
l )

1+αΓ(∆e/δ1
l ,u′

∆t
/s0

l
)
, (2.78)

where the term Γ denotes the ratio between effective strain rate aT,S and the

subgrid scale turbulent velocity per filter cutoff length u t
∆e

/∆e. This term is

fitted using the approximation

Γ

(

∆e

δ1
l

,
u′
∆e

s0
l

)

≈ 0.75exp

[

−
1.2

(u′
∆e

/s0
l )0.3

](
∆e

δ1

)2/3

. (2.79)

α denotes a model constant, which can be estimated by

α=β
2ln(2)

3cms(Re1/2 −1)
, (2.80)

where β is a constant in the order of unity and cms = 0.28. [7].

24



2.7 Network Models for Quasi 1-D Acoustics

2.7 Network Models for Quasi 1-D Acoustics

Acoustics are a problem of fluid mechanics. Therefore, the tools presented for

the simulation of fluid mechanics can in principle be applied to acoustics. As

long as they include compressible effects, which is the case in the framework

of this thesis, the acoustic phenomena should be reproduced correctly. Nev-

ertheless, in confined geometries, as typical in thermo-acoustic phenomena,

typical acoustic length scales are considerably larger than those of classical

fluid mechanics: While the acoustic wavelength is usually of the order of mag-

nitude of the size of the domain, e.g. eddies are considerably smaller. For pure

acoustics, the influence of the classical fluid mechanic effects is often not

taken into account, especially for low Reynolds and Mach numbers. Hence,

the numerical simulation of the full equations of fluid mechanics for pure

acoustic phenomena is not necessary. Additionally, the numerical schemes

used in this context are often dissipative for better convergence, acoustics in

contrast requires non-dissipative schemes.

Field methods for acoustics based on the wave equation or other simplifica-

tions of the basic equations of fluid dynamics are a common way for the com-

putation of acoustics. Simulation environments like the commercial package

Comsol®, or codes like Piano by Deutsches Zentrum für Luft- und Raumfahrt

and AVSP by Cerfacs are examples of such approaches. These methods still

need additional modeling if flame interaction or acoustic losses have to be

taken into account.

Often, the acoustic phenomena can be reduced to 1-D phenomena. In that

case, even simpler low order models can be used, so called network mod-

els. These are described in the following subsections including the equations

for specific elements. For this work the network-tool TaX, based on Matlab

Simulink, is mostly used.

2.7.1 Set-Up

The basic idea of network models is to reduce the acoustic system to a net-

work of elements. These elements represent typical effects on acoustic waves
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as they occur e.g. in ducts or area changes. So, the system is represented as an

assembly of simple elements, which all have a certain influence on the acous-

tic waves and which are connected via nodes. The elements connect two (or

sometimes more) of these nodes and affect the acoustic quantities p̂ ′/ρc and

û′ or f̂ and ĝ at the nodes in a certain way. They represent (mostly) four-ports

because they connect two ingoing and two outgoing waves. This connection

is realized using a transfer matrix, which quantifies the change in the acoustic

quantities at the corresponding nodes of the network [5, 49, 73],
(
f̂j

ĝj

)

=
(
T11 T12

T21 T22

)(
f̂i

ĝi

)

. (2.81)

This can be transformed into an equation of the following form:

(
A11 A12 A13 A14

A21 A22 A23 A24

)








f̂i

ĝi

f̂j

ĝj







= 0. (2.82)

The transfer matrix can be equivalently transformed into a scattering matrix

(see e.g. Appendix of [27]). In the scattering notation, waves leaving the

element, fj and gi, are expressed as functions of waves entering the element, fi

and gj. Therefore, in this notation, transmission and reflection properties can

be conveniently seen:

(
f̂j

ĝi

)

=
(
S11 S12

S21 S22

)(
f̂i

ĝj

)

. (2.83)

Boundary conditions at the ends of the network close the system. In this way,

a linear algebraic system of equations can be set up,













A11 A12 0 0 · · · 0 0

A21 A22 A23 A24 · · · 0 0

A31 A32 A33 A34 · · · 0 0

0 0 A43 A44 · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · An,n-1 An,n



























f̂1

ĝ1

f̂2

ĝ2
...

f̂n

ĝn















= 0. (2.84)
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2.7.2 Examples of Elements

Transfer Matrix of a Duct The transfer matrix of a simple duct with mean flow

can be described by the phase shift of the characteristic waves. A wave f travel-

ing downstream and a wave g traveling upstream in a mean flow of velocity ū

in a duct of length l with constant cross section and constant temperature are

affected in the following way:

(
e−i k+l 0 −1 0

0 e i k−l 0 −1

)








f̂i

ĝi

f̂j

ĝj







= 0. (2.85)

The wave-numbers are k+ =ω/(c + ū) and k− =ω/(c − ū) [44].

Transfer Matrix of a compact Area change We consider an area change from a cross

section Si upstream to Sj downstream of the element. The element is consid-

ered to be compact, i.e. much shorter than the wave length of the acoustic

waves. Two equations, the Bernoulli and the mass conservation are used: ac-

cording to [108] the unsteady Bernoulli equation can be written:

∂

∂xi

(
∂φ

∂t
+

u2

2
+

γ

γ−1

p

ρ

)

= 0. (2.86)

This equation is integrated over the length of the element from xi to xj. In a

compact element density can be assumed to be constant. Hence, the term for

the velocity potential φ can be written:

∂

∂t

∫x j

xi

∂φ

∂ξ
dξ=

∂

∂t

∫x j

xi

udξ≈
∂

∂t
ui

∫x j

xi

Ai

A(ξ)
dξ. (2.87)

Defining now an extended length

lext =
∫x j

xi

Ai

A(ξ)
dξ, (2.88)

the expression for the velocity for harmonic perturbations becomes :

∂

∂t
ui

∫x j

xi

Ai

A(ξ)
dξ= iωlextu

′
i (2.89)
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For the spatial integration, the second and the third term in equation 2.86 can

be evaluated at the borders xi and xj. Combined with the last equation, one

obtains:

iωlextu
′
i +

u(xj)
2

2
+

p(xj)

ρ
−

u(xi)
2

2
−

p(xi)

ρ
= 0. (2.90)

A loss coefficient ζ is introduced to account for acoustic losses and the equa-

tion is linearized. Dropping terms of first order in Mach number O (M) and

second order in Helmholtz number O (kl )2 and dividing by c results in:

p ′(xj)

ρc
=

p ′(xi)

ρc
− i klextu

′
i −ζMu′

i. (2.91)

The mass conservation for the element of volume V , inlet area Ai and outlet

area Aj is:

d

d t

∫x j

xi

ρ(ξ)A(ξ)dξ+ρ(xi)u(xi)Ai −ρ(xj)u(xj)Aj = 0. (2.92)

Introducing Ar ed =
∫xj

xi

A(ξ)
Aj

, linearization and the assumption that ρ′ is con-

stant leads to:

i klredAj

p ′(xj)

ρc
+u′(xj)+M

p ′(xj)

ρc
Aj −u′(xi)+M

p ′(xi)

ρc
Ai =O (kl )2 . (2.93)

Neglecting terms of O (M) and O (kl )2 results in:

u′
j Aj = u′

i Ai + i klredAj

p ′
j

ρc
. (2.94)

Equations 2.91 and 2.94 form the transfer matrix for the area change. It is writ-

ten here in p ′-u′ notation but can be equivalentely transferred into f-g nota-

tion:

(

1 −i kleff−ζM −1 0

i klred
Ai
Aj

0 −1

)








û′
i

p̂i/(ρc)

û′
j

p̂j/(ρc)







= 0. (2.95)

The quantity leff has been introduced, because an end correction lec,i/j is usu-

ally necessary. This end correction accounts for the additional “virtual” length

which originates from the piston-like movement of the gas in the volume:

leff = lext + lec,i + lec,j. (2.96)

28



2.7 Network Models for Quasi 1-D Acoustics

Transfer Matrix of a Flame The dynamic response of a flame to a flow pertur-

bation is often characterized using a so called Flame Transfer Function (FTF)

F (ω). This complex function relates the relative heat release fluctuation to the

relative velocity fluctuation:

F (ω)=
Q̇ ′/ ¯̇Q

u′/ū
. (2.97)

In this way, the response of the flame to acoustic velocity fluctuations can be

expressed. The transfer matrix of a flame can be derived using the linearized

Rankine Huguenot equations (see e.g. [44]). The basic equations are

p ′
i −p ′

j − ρ̄iū
2
i

(
Tj

Ti
−1

)(

u′
i

ūi
+

Q̇ ′

¯̇Q

)

= 0, (2.98)

u′
i −u′

j +
(

Tj

Ti
−1

)

ūi

(

Q̇ ′

¯̇Q
−

p ′
i

p̄i

)

= 0, (2.99)

where i denotes the cold and j the hot side. Using the FTF the heat release fluc-

tuation can be expressed by a velocity fluctuation. For flexibility reasons the

velocity fluctuations used for the FTF will be taken from a different location k .

Therefore, this element will be a 6-port instead of a 4-port. Using

ū = Mc , (2.100)

c2 = κ
p

ρ
, (2.101)

n =
Tj

Ti
−1, (2.102)

the transfer matrix is written as

(

1−nMi 1+nMi −ρjcj

ρici
−ρjcj

ρici
−nMi

Mici
Mkck

F (ω) nMi
Mici
Mkck

F (ω)

1−nMiκ −1−nMiκ −1 +1 n
Mici
Mkck

F (ω) −n
Mici
Mkck

F (ω)

)













f̂i

ĝi

f̂j

ĝj

f̂k

ĝk













= 0.

(2.103)
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Stokes Layer Dominated Duct In thin ducts, the viscous sublayer can have sig-

nificant influence on the acoustic behavior, as it leads to acoustic losses. For

single ducts, a variety of models has been proposed. Early theories have been

developed by Helmholtz [25] and Kirchhoff who accounted for thermal ef-

fects [38, 106]. Here, a Kirchhoff model is used, as proposed by Noiray for this

application (e.g. [60]) inspired by Melling [55] in a simplified version for short

lengths l ,

(
e−i (k++ζs)l 0 −1 0

0 e−i (k−+ζs)l 0 −1

)








f̂i

ĝi

f̂j

ĝj







= 0. (2.104)

The damping coefficient ζs takes the viscous losses into account:

ζs = (1+ i )

p
2ων

2rhc

(

1+
γ−1

Pr 0.5

)

. (2.105)

More sophisticated models have been developed by various authors. Tijde-

man [106] gives an overview.

Boundary Conditions The boundary conditions for network models are formed

by a 2-port. Introducing a reflection coefficient R̂ defined as the ratio between

the complex amplitudes of the wave entering the domain and the one leaving

the domain, an inlet can be expressed by

(

−1 R̂
)
(
f̂i

ĝi

)

= 0 (2.106)

and an outlet by
(

R̂ −1
)
(
f̂i

ĝi

)

= 0. (2.107)

Unknown Elements The analytical derivation of the transfer behavior of ele-

ments is not always possible. Nevertheless, identification of such elements

from experiments or numerical simulations often is possible and has been per-

formed by various authors [16, 27]. Common methods in this context are the
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determination of flame transfer functions or transfer matrices. For the latter,

usually an excitation is imposed on the experimental or numerical set-up for

the element subsequently on both sides, and the system response is recorded.

In general, the system is considered as a black box whose response or re-

sponses to one or more input signals are detected. Section 2.8 gives a brief in-

troduction to correlation based methods of system identification, which then

can be used to calculate the system behavior.

2.8 System Identification

In the context of this work, system identification is applied to identify the

complex ratio F (ω) between acoustic signal and response in the frequency do-

main. These techniques are well known in the field of communication tech-

nology [80]. A method based on the Unit Impulse Response (UIR) and the

Wiener-Hopf equation is applied here. In contrast to the Fourier transforma-

tion method, this method provides data not only at discrete points in the fre-

quency spectrum, but continuously from the lower frequency limit (1/(N ·∆t ))

to the higher frequency limit(1/∆t ) by an approximating function. Examples

of the usage of this method can be found in [16,22,23,28,47,48, 80]. The basic

problem in this method is the identification of the UIR vector. The UIR vector

h of a length L relates a time discrete signal,

~s = [s1, s2, ..., sN], (2.108)

and a time discrete response,

~r = [r1,r2, ...,rN], (2.109)

both over N time steps in the following way [80]:

ri =
∞∑

k=0

hksi-k for i = L, ..., N , (2.110)

for N →∞; and approximately (̃ )

r̃i =
L∑

k=0

h̃ksi-k for i = L, ..., N , (2.111)
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for finite N and L. For the calculation of the UIR vector, the Wiener-Hopf equa-

tion is used:

Γ~h =~c, (2.112)

where Γ is the auto-correlation matrix and ~c the cross-correlation vector. Us-

ing now the definitions of auto-correlation and cross-correlation for finite N

and M = N −L+1 in this context,

c̃i =
1

M

N∑

l=L

sl-irl for i = 0, ...,L, (2.113)

Γ̃ij =
1

M

N∑

l=L

sl-isl-j for i , j = 0, ...,L, (2.114)

the UIR-vector can be calculated using the inverted Wiener-Hopf equation,

~̃h = Γ̃
−1~̃c , (2.115)

using standard mathematical methods. The last step is now the calculation of

the transfer function F (ω),

F (ω)=
r̂ (ω)

ŝ(ω)
, (2.116)

where r̂ is the response and ŝ is the signal in frequency domain. This is done

using z-transformation,

Z (h̃) =
L∑

k=0

h̃(k)z−k , (2.117)

and with z = e iω∆t the approximate transfer function can be calculated:

F̃ (ω) =Z (h̃) =
L∑

k=0

h̃(i )z−iω∆tk . (2.118)

In contrast to FFT methods, this method can compensate noise to some ex-

tent, because correlation is used. In this case, though, it is required that noise

and signal are uncorrelated.
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3 Thermo-Acoustic Stability

Thermo-acoustic instabilities evolve due to a self amplifying interaction be-

tween flow field and heat release. One of the earliest observations of a thermo-

acoustic instability is the Rijke tube, described by P. L. Rijke in 1859 [88]. Rijke

did observe the phenomenon, however, he could not offer the right explana-

tion. In 1878 Lord Rayleigh explained this phenomenon [85] and from this ex-

planation the Rayleigh criterion can be formulated: A thermo-acoustic system

may be unstable if more heat is released in the moment of higher pressure.

This can be formulated for Q̇ ′(t ) being the acoustically originated heat release

fluctuation and p ′(t ) being the acoustic pressure fluctuation:
∫t0+2π/ω

t0

Q̇ ′(t )p ′(t )d t > 0. (3.1)

In a more general formulation, the left hand side of equation 3.1 must not

only be greater than 0 but greater than the acoustic losses in the system. The

equation implies that a fluctuation of the heat release Q̇ ′ depending on the

fluctuations of the flow field is a requirement for the occurrence of thermo-

acoustic instabilities [3]. These fluctuations of the heat release can be caused

by the flow field via different mechanisms [44]:

• Direct influence on the flame or heat transfer [11, 85],

• Fluctuations of the fuel supply [37, 52, 98],

• Entropy waves [78],

• Periodic vortex shedding [71],

• Shock waves [54].

The heat release fluctuation then causes a fluctuation in thermal expansion

which again produces an acoustic wave, which then can once again cause heat
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release fluctuations and create a self excited instability. From equation 3.1 it

can be deduced how important the phase between pressure fluctuation and

heat release fluctuation is for thermo-acoustic effects. Therefore, methods for

the prediction of thermo-acoustic instabilities rely essentially on the correct

prediction of the time relations between those two fluctuations. The underly-

ing mechanism for the flow-field heat-release coupling is the key to the pre-

diction of thermo-acoustic instability. Pankiewitz [66] illustrates the common

instability mechanisms as shown in figure 3.1

Figure 3.1: Main mechanisms leading to thermo-acoustic instability, from

[66].

3.1 Established Methods for Thermo-Acoustic Stability Anal-

ysis

In the field of the prediction of thermo-acoustic stability, several different

methods of modeling and different ways of evaluation of stability can be dis-

tinguished. Figure 3.2 shows possible combinations of methods for modeling

and prediction.
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u(t)

Nyquist

Det(A)

CFD Low Order CAA

Figure 3.2: Matrix of different methods of modeling (columns) and different

methods for the determination of the stability (lines). Dots show

the possibility of combination of methods for modeling and pre-

diction.

In the following, the different methods of prediction (rows in figure 3.2) are

discussed.

3.1.1 Transient Calculation

In the time domain, a common approach is to model the system, impose an

initial perturbation (if required), and run the simulation until the growth of

a mode can be observed [24, 68, 101, 114]. The modeling can be done using

either CAA or CFD methods. The big advantage of this method is the possibil-

ity of using it with methods of a low level of modeling, e.g. CFD. This results

in a good reproduction of different interactions, e.g. between turbulence and

acoustics. Major disadvantages arise from the high computational effort for

one transient solver run especially in the case of CFD. Additionally, special

solver requirements for the calculation of acoustics can be present concern-

ing numerical damping and stability as well as boundary conditions. Primarily

unstable modes or modes with low damping can be found using this method,

and only the most unstable mode will be dominant. Therefore, this method

permits stability to be evaluated, but does not offer a comprehensive overview

over the eigenfrequencies.

The range of frequencies covered by transient calculation depends on the time

step for the high frequency limit and the simulated physical time for the low

frequency limit.
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3.1.2 Nyquist Methods

Nyquist Methods (or Open Loop Gain Methods) work in the frequency domain

and are a graphical tool to evaluate stability which only requires information

from real (and not imaginary) frequencies. They are well known from control

theory and serve to determine both stable and unstable eigenmodes. Due to

their crucial importance for this work, they are described in detail in the next

section (section 3.2).

3.1.3 Determination of Eigenvalues

This method is widely used with low order acoustic models, e.g. network mod-

els, or with CAA applications. The determination of eigenvalues usually re-

quires a formulation in the frequency domain and has been used frequently

to determine the eigenfrequencies and eigenmodes of thermo-acoustic sys-

tems [66]. It will be demonstrated here using network models. Let us consider

a system matrix:













A11 A12 0 0 · · · 0 0

A21 A22 A23 A24 · · · 0 0

A31 A32 A33 A34 · · · 0 0

0 0 A43 A44 · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · An,n−1 An,n



























f̂1

ĝ1

f̂2

ĝ2
...

f̂n

ĝn















= 0. (3.2)

This is a linear system of equations. Consequently, if the system has full rank,

there is only one solution. In the case of a homogeneous system of equations,

this solution is 0 for all unknowns. However, the coefficients Ai j of this system

depend on the frequency. Hence, it is possible that for certain frequencies the

system does not have full rank. In this case, the determinant of the system ma-

trix is 0 and the system has one (or more) degrees of freedom. One (or more)

unknowns can now be arbitrarily set, i.e. the amplitude of the oscillation can

be chosen.
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The corresponding frequency is an eigenfrequency and the solution an eigen-

mode. The eigenfrequency is in general complex, ω ∈ C. Hence, in order to

obtain the eigenfrequencies, one can try to find the roots of the determinant

of the system matrix. Obviously, this can only be done if all coefficients are

known as a function of the complex frequency. But this is not necessarily the

case for experimentally or numerically determined coefficients. Another draw-

back of this method is the low speed of the iterative algorithms often used

for finding the roots and the uncertainty as to whether the algorithm has suc-

ceeded in finding all roots. The numerical effort for the determination of eigen-

values depends on the size of the system matrix and in this context on the com-

plexity of the modeling approach used. Low order models are much quicker in

this context than e.g. acoustic FE calculations.

3.2 Stability Analysis using the Open Loop Gain

3.2.1 Basic Concepts in Control Theory

Control theory is a wide and complex subject and discussing it in detail would

go beyond the scope of this thesis. This section shall give a brief overview over

some important aspects of control theory. For further details the interested

reader is referred to works such as [31] or [20] which also serve as the basis for

this section. In control theory a system can be described by transfer functions

which model the change of the quantity which is subject to the control. These

transfer functions are usually defined in the Laplace transformed form of the

signal in the time domain,

F (s)=L( f (t )) =
∫∞

−∞
e−st f (t )d t , (3.3)

where s = σ+ iω. Some important properties of the Laplace transformation

are:
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a · f (t )+b · g (t ) → a ·F (s)+b ·G(s), (3.4)

( f ∗ g )(t ) → F (s) ·G(s), (3.5)

f ′(t ) → s ·F (s), (3.6)

where ∗ denotes a convolution. A simple system for control theory represent-

ing a closed loop is shown in fig 3.3.

Figure 3.3: Sketch of a closed control loop.

The Closed Loop Transfer Function (CLTF), H(s), of this system can be calcu-

lated easily and has the form

H(s) =
y(s)

x(s)
=

G(s)

1+G(s)
. (3.7)

This system becomes unstable, i.e. infinite, when 1 +G(s) = 0 or G(s) = −1.

In classical control theory, for typical systems the behavior (G(s)) can be de-

scribed by polynomial functions in the Laplace domain, i.e. P, D, I elements.

For these systems, criteria like the Routh Hurwitz criterion impose conditions

for the coefficients of the polynomials, which allow the system to be exam-

ined for stability. Finding the roots of the CLTF for more complex systems may

prove to be nontrivial. Therefore, different methods have been developed, e.g.

methods relying on Bode plots and Nyquist curves. The latter are an impor-

tant subject of this thesis and therefore shall be explained here in more detail.

The Nyquist stability criterion refers to the open loop transfer function (OLTF).

This means that the stability of the closed loop is evaluated by regarding the

open loop. The corresponding open loop for figure 3.3 is represented in figure

3.4.

The OLTF, F (s), of this system is then defined:

F (s) =
y(s)

x(s)
=G(s). (3.8)
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Figure 3.4: Sketch of an open control loop.

By comparing the CLTF and the OLTF, the point F (s) = −1 can be identified

as the location of the roots of the closed loop. The Nyquist stability criterion

refers to this point. The frequency response locus (F (s)) is plotted in the com-

plex plane for real frequencies and the location of the point −1 is compared to

this curve. Depending on the properties of F (s) different formulations of the

Nyquist criterion can be applied:

1. The specialized Nyquist criterion:

Provided that

• all roots of the OLTF F (s) have a negative real part and

• lim
ω→∞

F (iω)= 0,

the system is considered asymptotically stable if the response locus does

not encircle the critical point −1 [20].

2. The general Nyquist criterion:

The following restrictions have to be considered:

• The OLTF does not exhibit roots on the imaginary axis (s = iω)

• lim
ω→∞

F (iω)= 0

Defining now P as the number of unstable roots of the OLTF, N as the

number of unstable roots of the CLTP and U as the number of encir-

clements of the critical point −1, the system is stable if U = P [20].

3.2.2 Application to Thermo-Acoustic Cases

Historically, Baade [3] described an evaluation of the thermo-acoustic stability

based on phase and amplitude curves of the impedances of the system, i.e. a
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Bode Diagram. Deuker [11] also proposed the use of such a Nyquist-like crite-

rion on a Bode diagram for thermo-acoustic cases and network models. How-

ever, these stability criteria are both too simplified because they only consider

the gain at phase 0° (which corresponds to 180° in this case due to the minus

convention in the feedback). Baade compares the phase angle of 0° with the

location of the acoustic eigenfrequencies of the chamber. Deuker considers

the gain at the frequency of the 0° phase. If the gain is equal or greater than 1,

the oscillation is considered unstable. This corresponds to the “Barkhausen”-

Stability criterion, which “is simple, intuitive, and wrong” [53]. The explana-

tion for this is given in subsection 3.2.3.

Polifke et al. [79] have proposed the introduction of a so called diagnostic two

port, or diagnostic dummy, as an additional element for the effective imple-

mentation of an open control loop into network models (see figures 3.5 and

3.6). They also introduced the generalized Nyquist criterion (see 3.2.3). Analo-

gously to [31] or [56], they discuss the Nyquist criterion with respect to a con-

formal mapping and also consider Bode rules.

Figure 3.5: The diagnostic two port.

Figure 3.6: A network model opened using the diagnostic two port.

Sattelmayer and Polifke [93] performed a stability analysis for a combustion

chamber and discovered substantial shortcomings and mispredictions when

the Nyquist criterion is wrongly applied in the form of the “Barkhausen”

stability criterion. Later [94], they validated the generalized Nyquist criterion.
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3.2 Stability Analysis using the Open Loop Gain

They also introduced a method to determine the growth rates from polyno-

mial interpolation. Kopitz and Polifke [46] proposed a simplified method to

determine the growth rate from the scaled minimum distance of the Open

Loop Gain Curve and the critical point. For more details on this, please refer

to the next section (3.2.3). A summary of this is given by Kopitz [44, 46].

It would be straightforward to apply the conventional Nyquist criterion to

thermo-acoustic cases, but there are some particularities of such systems

which require modifications on the criterion. These are described in the fol-

lowing section:.

As described in section 2.7 previously, most thermo-acoustic systems can be

described in terms of low order network models (see fig 3.7).

f1

g
1

f2

g
2

fn

g
n

Figure 3.7: Sketch of a network model.

The result of this description is an equation of the form






A1,1(ω) · · · A1,2n(ω)
... . . . ...

A2n,1(ω) · · · A2n,2n(ω)




 ·






f̂1
...

ĝn




= 0. (3.9)

This concept corresponds to a classical closed control loop as shown in figure

3.8 for a Fourier transformed signal. The application of a Fourier transforma-

tion instead of a Laplace transformation does not have any influence because

of the similar properties of both transformations.

The transfer behavior can be expressed by

y(ω)

x(ω)
=

G(ω)

G(ω)+1
. (3.10)

Traditional concepts intend to find the eigenvalues of equation 3.9 in order

to determine the eigenfrequencies. This iterative procedure, however, is only
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Figure 3.8: Sketch of a closed control loop in the frequency domain.

possible if all components of the matrix can be described in the complex wave

plane. This is the case for most analytical descriptions, but in the case of exper-

imentally determined transfer functions the response is only known for real

frequencies. The Open Loop Gain (OLG) method is a tool adapted from con-

trol theory which only requires real frequency input to perform a stability anal-

ysis. This method is also named the Nyquist method here due to its similarities

to the classical Nyquist criterion. As the name already implies, the feedback

loop is opened for this method. This is demonstrated in figure 3.9. On one of

the open ends generated this way, a unity amplitude is applied, while on the

other end the complex frequency response is recorded.

Figure 3.9: Sketch of an open control loop.

By opening the feedback of the system for the OLTF, the originally homoge-

neous system now becomes an inhomogeneous system with two additional

degrees of freedom which can be solved for each frequency. But, compared to

classical systems known from control theory, there are major differences.

First, typical acoustic systems can not be described by polynomials, but rather

by trigonometric functions or complex exponential functions. Thus, these sys-

tems have an infinite amount of poles. Hence, the criteria above are not appli-

cable, because the location of an infinite amount of roots would be required.

Additionally, one of the basic requirements for the application of the Nyquist

criterion, lim
ω→∞

F (iω)= 0, is not fulfilled for most acoustic systems.

Therefore, in the following section, a different “derivation” of the Nyquist cri-

terion is presented.
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3.2 Stability Analysis using the Open Loop Gain

3.2.3 Generalized Nyquist Criterion

3.2.3.1 Mathematical Justification

As mentioned in the paragraph above, different requirements for the Nyquist

criterion are not fulfilled by acoustic systems. Therefore, the application of the

Nyquist criterion is not possible in its original form. Polifke et al. [79] as well as

Sattelmayer and Polifke [93, 94] have proposed a different formulation of the

Nyquist criterion for the thermo-acoustic case.

As described in [31, 56] and applied by Polifke et al. [79] the open loop gain is

considered a conformal mapping of the complex frequency domain. A map-

ping f : U → C for U being an open subset of the complex plane C is defined

conformal if and only if f ′ 6= 0 on U . Conformal mapping locally preserves

the angle and therefore the handedness. The mapping performed by the OLTF

projects all roots of equation 3.10 on the point -1. Calculating the OLTF-curve

(Nyquist curve) for real frequencies means projecting the positive real axis on

the Nyquist curve.

• Hence, if a root is located on the upper half plane (and therefore is stable)

which is to the left of the real axis (looking in the positive direction) it

must also be to the left of the OLTF curve (looking in the direction of the

increasing frequency) and vice versa.

This is shown in figure 3.10. Limitations to this generalized Nyquist criterion

are discussed in subsection 5.

3.2.3.2 Prediction of Eigenfrequencies and Growth Rates

The classical Nyquist criterion does not involve the prediction of the eigenfre-

quency or the growth rate, it only permits stability to be determined. In order

to determine the eigenfrequencies from an open loop curve, Sattelmayer and

Polifke [93,94] propose to seek the minimum of the distance between the open

loop curve and the critical point -1 and define the frequency of this point as

the eigenfrequency. This is done in analogy to the frequency domain, where
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Figure 3.10: Visualisation of the mapping of the Open Loop.

the distance between the real axis and the eigenfrequency is minimal just at

the frequency corresponding to the real part of the eigenfrequency. If the dis-

tance between the real axis and the eigenfrequency is large, i.e. the growth

rate has a large magnitude, this minimum of the distance is less pronounced

and therefore much more sensitive to errors (see figure 3.11). Sources of such

errors are discussed in section 5. Hence, the prediction of eigenfrequencies

with the Nyquist method is losing precision for highly stable or highly unsta-

ble eigenfrequencies.

For the determination of the growth rate, Sattelmayer and Polifke propose a

polynomial fit of the OLTF. If this fit is accurate in the real direction it is also

accurate in the complex direction. This follows from the identity theorem [84].

Therefore, it is possible to use the polynomial approximation for finding the

complex eigenfrequency. Two major assumptions have been made for this ap-

proach:

• The open loop mapping is conformal in the vicinity of the corresponding

frequency and the corresponding eigenfrequency.

• The mapping is distance conserving, (∂ f /∂z = const).

The first item permits location of the roots to be concluded from the Nyquist

curve. The second item is necessary for the assumption that the (real) eigen-

frequency which is at the shortest distance from the root on the complex fre-
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Figure 3.11: Influence of the growth-rate of the eigenfrequencies, f ∗
1 for high

growth rate, f ∗
2 for low growth rate (above). Schematic evolution

of the distance for the two distances (below).
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quency plane also is at the shortest distance on the open loop curve. A con-

formal mapping is not necessarily distance conserving. This can for example

be seen on Mercator-projected (conformal) geographic maps where the east-

west distances are massively stretched close to the geographic poles (see figure

3.12). Hence, the minimal distance between the open loop curve and the criti-

Figure 3.12: Distance stretching for two distances (red, blue) on a Mercator

mapping.

cal point −1 can only be an initial guess for the location of the eigenfrequency.

This initial guess should be reasonably close to the real eigenfrequency as long

as there are no rapid changes in the derivative of the mapping function. There-

fore, the curvature and the speed of the rotation should be moderate.

As already described in Jacobs [31], Polifke and Sattelmayer [93, 94] propose

an iterative search for the eigenfrequency using the polynomial approxima-

tion. This search could be used for the exact (in the sense of the approxima-

tion) determination of both growth rate and eigenfrequency. Kopitz and Po-

lifke [46], as mentioned above, propose a simplification and predict the growth

rate from the scaled minimum distance of the Open Loop Gain Curve and the

critical point.

3.3 CNN Method

The main components of the this method are CFD, Network models and

Nyquist. Therefore, it has been named “CNN” approach. [44] It represents a

hybrid approach which is not covered directly by the aforementioned meth-

ods. It consists of a combination of different elements from those methods.
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3.3 CNN Method

The CNN method has been proposed and investigated by Kopitz [44, 46]

for simple geometries and will be further studied in this work. References

[44,46,74,75,77] represent most of the information available for this approach.

A summary is provided in this section. Figure 3.13 illustrates where this ap-

proach is located compared to the aforementioned techniques.

u(t)

Nyquist

Det(A)

CFD Low Order CAA

Figure 3.13: Matrix of different methods of modeling (horizontal) and differ-

ent methods for the determination of the stability (vertical). Dots

show the possibility of combination of method for modeling and

prediction. The dashed ellipse highlights the location of the CNN

method.

3.3.1 Motivation

An overview over established models for the prediction of thermo-acoustic sta-

bility has been given in section 3.1. Two substantially different methods can be

identified there. Transient calculation on the one hand and modeling in the

frequency domain followed by analysis either by finding the eigenvalues or

applying Nyquist methods on the other hand. The most important advantage

of the former method is surely the fact that all important effects are simulated

in one single calculation and therefore most interactions are regarded. Apart

from the huge amount of computational power required to simulate a possi-

bly long time for the evolution of the mode, only rather unstable modes can be

detected and only the most unstable mode can develop [24, 68, 101, 114]. Ad-

ditionally, changes in the set-up or operating conditions require a new, com-

putationally expensive calculation. Possibly a time consuming re-meshing is

also required.
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The latter methods have the advantage that they often rely on simple models,

which allow quick evaluations. Their disadvantage is mostly the substancial

simplification. For example, heat release has to be included using simplified

models or experimental data. Moreover, effects of acoustically non-compact

heat release are analytically hard to describe and mean flow effects in tur-

bulent flow nearly impossible to estimate when CFD is not used. Due to the

separation of acoustic calculation and mean flow calculation, interactions be-

tween these effects can not be represented properly. Therefore, especially net-

work models can only give a strongly simplified image of the configuration,

when complex geometries and flow configurations are involved.

Combinations of CFD and low order modeling have already been described

by several authors (e.g. [21–23,113]). Mostly, they use CFD to obtain unknown

quantities for the low order modeling, often flame transfer functions. Also the

acoustic transfer behavior of geometrically complex systems can be obtained

using CFD. In both cases methods of system identification are used (see sec-

tion 2.8). For pure flame transfer functions, often a single input - single output

identification is sufficient, while for acoustic transfer properties, multiple in-

put - multiple output identification is required. Still, the big advantage of tran-

sient CFD, the good reproduction of interactions, is hardly exploited and CFD

results are mostly reduced to parameters for a semi-analytical model, e.g. for

the heat release fluctuation in the case of flame transfer functions.

Kopitz and Polifke [44,46,74,75,77] have developed a different approach which

should overcome the disadvantages of CFD and low order modeling, while

preserving the advantages of the single methods. The approach is capable of

taking advantage of the interactions taking place in the CFD domain while us-

ing a single input - single output identification. At the same time it still permits

quick changes in the configuration without an expensive new CFD calculation.

The next section provides a description of this approach.

3.3.2 Description

The basic concept of the approach is to divide the system into two domains.

One is calculated using LES and the other using network models. In order to

use the advantages of the LES, the parts of the system that involve complex in-
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teractions like flames, swirl generators or high turbulence should be included

in the LES domain. Simple parts, for which accurate low order descriptions

are known, like air or fuel supply systems, should be included in the network

domain. Figure 3.14 shows such a configuration. It should be mentioned here

that LES is performed in the time domain, while the network models work in

the frequency domain.

Figure 3.14: The hybrid approach illustrated for the example of a small burner

The LES domain includes not only one part but necessarily also one physical

termination of the system. The boundary condition at the interface to the net-

work model is formed by a non-reflecting boundary condition. This boundary

condition also provides the possibility of imposing an acoustic excitation (see

chapter 4.2). A transient calculation of the LES domain is performed, imposing

an excitation (of a wave, e.g. f) using either various frequencies or white noise,

on the interface and recording the response (e.g. g). Using now tools from sys-

tem identification, e.g. a Fast Fourier Transformation or a correlation based

identification (see section 2.8), a frequency dependent complex reflection co-

efficient representing the acoustic properties of the system can be determined.

The LES domain is reduced to a black box whose response to an acoustic exci-

tation of different frequencies is recorded. The response of the LES domain is

called Part Loop Transfer Function (PLTF) in this work. The PLTF corresponds

to a frequency dependent complex reflection coefficient. This reflection co-

efficient is used in the network model to account for the LES domain. The

stability of the system is now evaluated using open loop gain methods which

are described in section 3.2. This is necessary, because no analytical model is

present in the network model to describe the LES domain, but only data for

real frequencies representing the answer of the “black box”, i.e. the LES do-

main. To summarize, some major advantages for this method are expected:
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• Parameter studies can be easily carried out using the same LES results,

as long as the variations are part of the network domain. The low com-

putational requirements of the network model permit nearly immediate

results for variations.

• Complex interactions simulated in the LES are represented adequately in

the network model.

• The system identification is reduced to a single input - single output sys-

tem, minimizing identification problems

3.3.3 Application

Two validation cases have been calculated by Kopitz, a Rijke tube and a duct

system [44,46]. In both cases, the CNN method was able to predict the system’s

stability properties with good accuracy. This means that the method has been

validated in a cold case and a hot case, but without combustion. Both cases are

laminar. Consequently, in this thesis, the complexity of the cases is increased:

first a laminar premix burner is examined and later a turbulent premix burner.

In general, the new method is intended for any case that requires parameter

studies and involves acoustic elements that cannot be modeled easily in low

order approaches.
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AVBP is a solver for the compressible Navier-Stokes equations. Either DNS or

LES methods can be applied. AVBP provides the possibility of solving flow in-

cluding multiple species and permits the simulation of combustion as well

as further features like two phase flow. AVBP was developed by Cerfacs in

Toulouse. Numerous citations are available for AVBP; for a general overview,

Cerfacs recommends [95].

Since AVBP simulates compressible flow, it captures acoustics within the flow.

This property is used for the CNN method. Nevertheless, different modifica-

tions have been incorporated into AVBP in order to provide an optimized in-

terface between the CFD domain, i.e. AVBP and the low order modeling. This

interface requires two items:

• a possibility to extract 1D acoustic data,

• a non-reflecting termination.

The first item is straightforward to understand, since the acoustic data from

the LES have to be transferred into the network model. The second item is

required, because at the interface the acoustic waves should be unaffected by

the end of the LES domain as they enter the network domain then. This as

well as the incorporation of these features into the solver are described in the

following sections.
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4.1 Acoustic Data Extraction for Planar Waves

4.1.1 Motivation

The approach presented in this thesis uses LES to simulate the impact of cer-

tain effects on planar wave fronts. LES operates in the time domain, while

the second part of the approach, the network model, uses the frequency do-

main [44]. Therefore, it is necessary to effectively transfer data from planar

wave fronts from the time domain into the frequency domain. For this trans-

fer, depending on the desired frequency range, a certain amount of data at a

certain sampling frequency is required. The Nyquist-Shannon theorem,

fsample > 2( fmax − fmin), (4.1)

and the condition for the lowest frequency,

fmin = 1/tsample, (4.2)

where tsample = n/ fsample for n data points in time, determines this amount.

A single solution file of an LES has several hundred megabytes for a grid of

around 10 million cells. Keeping these facts in mind, it is obvious that extract-

ing the acoustic information from full solution files at a reasonable sampling

rate will require a huge amount of disk space. Additionally, for the extraction

of data from planar wave fronts at certain points of the domain, not the entire

solution field is required, but only data from a plane parallel to the wave front.

Therefore, surface average values at the single planes (ū′ and p̄ ′) are sufficient

to describe the wave front:

ū′ =
1

S

∫

S

(u − ū)d S (4.3)

p̄ ′ =
1

S

∫

S

(

p − p̄
)

d S. (4.4)

This does not affect the detection of the acoustic quantities, since for waves

traveling in a direction perpendicular to the boundary condition, the wave
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fronts are planar and parallel to the planes. In the case of turbulent compress-

ible flow, the extraction of the acoustic information might be difficult due to

the turbulent fluctuations (̃ ) in the flow which are superposed to the acoustic

fluctuations (′). This can be expressed by

p = p̄ +p ′+ p̃ → p − p̄ = p ′+ p̃ , (4.5)

u = ū +u′+ ũ → u − ū = u′+ ũ. (4.6)

The definition of the planes has the advantage that turbulent fluctuations van-

ish for the most part, because they are randomly distributed over the cross

section and cancel out in the averaging process. In the case of strong com-

pressible effects, the averaging process may not be sufficient for eliminating

the effect of turbulence. Kopitz et al. [45] have proposed a method to overcome

this problem: “Characteristics Based Filtering” (CBF). In a first step, the CBF

method proposes to define a multitude of monitor planes in the flow, whose

orientation is parallel to the impinging wave front. The monitor planes are sit-

uated within a distance of the actual point for the identification of the acous-

tic quantities. In a second step, the different propagation speeds of turbulence

(ū) and acoustics (c̄) are utilized in order to separate the two phenomena. The

average values of the planes are stored over a certain period of time and at

each instant of time the values of all monitor planes are summed up and av-

eraged (〈u′〉 and 〈p ′〉), whereby the speed of the propagation of the acoustic

wave (c ±u) is taken into account: a “time-lagged-average” is generated. This

is done by adding up the values from the time instances, at which the acoustic

wave is in the same phase at the different planes:

〈p ′〉 =
1

n

n∑

1

p̄ ′
(

x −∆xn, t −
∆xn

c ±u

)

, (4.7)

〈u′〉 =
1

n

n∑

1

ū′
(

x −∆xn, t −
∆xn

c ±u

)

. (4.8)

The speed of sound has to be known for this procedure. The idea behind

this procedure is that the acoustic quantities are retained, while the turbu-
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lent quantities are averaged out because they are uncorrelated. The method

is similar to the Multi Microphone Method used e.g. by Fischer et al. [15] or

Paschereit et al. [67] in experiments.

To conclude, there is a demand for a tool which permits arbitrary monitor

planes to be defined in the domain and data to be extracted from those planes

during the solver run independently from the generation of the usual solution

files.

4.1.2 Definition of Monitor Planes

The requirement of arbitrary monitor planes demands a possibility to define

planes that is independent from the grid structure, like internal boundaries

and existing cell faces. The mesh is assumed to be constant during the sim-

ulation. This implies that no moving mesh approaches can be used with the

tool described here. In a preprocessing step, planes are defined and in a linear

interpolation, the tool calculates the nodes of the mesh which contribute to

the data on the plane as well as the corresponding interpolation factors. The

algorithm for the calculations is presented here briefly, the text corresponds

to parts of an internal report for Cerfacs [32].

The planes can be calculated for most common 3D elements. Anyway, to sim-

plify the calculation the tool internally decomposes any element into tetrahe-

dron elements, which permit a completely linear calculation. For linear func-

Figure 4.1: Decomposition of a prism element into tetrahedron elements.

tions f (x) = ax +b, which are now defined on every tetrahedron element (el)

by the values of its nodes, one can calculate for a plane through the element:
∫

Sel

f (x)d S =
∫

Sel

(ax +b)d S = a

∫

Sel

xd S +
∫

Sel

bd S (4.9)
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which means: ∫

Sel

f (x)d S = A f
(

xcgr

)

(4.10)

with (cgr) meaning center of gravity.

So the problem basically reduces to an equation similar to the calculation of

the center of gravity of the plane surface through each element.

Figure 4.2: Decomposition of the intersection and calculation of the contribu-

tion.

∫

Sel

(ax +b)d S = S
(

axcgr+b
)

(4.11)

This is done by decomposing each surface of intersection of the plane with an

element into triangles (tri). And for a triangle (with vertices 123) the calculation

is easy, as

xcgr =
∑

i=1,2,3

1

3
xi . (4.12)

So the integral reduces to
∫

Stri

(ax +b)d S = Stri

∑

i=1,2,3

1

3
(axi +b) = Stri

∑

i=1,2,3

1

3
f (xi ). (4.13)

The contribution of each vertex of the triangle i is therefore

Stri =
1

3
f (xi ). (4.14)

A vertex (1) of the triangle is generally situated between two nodes (F,G) of the

mesh. Using the properties of the linear field, we know that

f (x1) =
|xG −x1|
|xG −xF |

f (xF )+
|x1−xF |
|xG −xF |

f (xG) . (4.15)
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So finally the contribution α of one node (F) to the plane can be calculated by

summing up all contributions to the triangles,

α=
∑

el

∑

tr i

|xG −x1|
|xG −xF |

1

3
Atri. (4.16)

4.1.3 Plane Data Acquisition

The list of nodes and contributions is read by AVBP. The list is partitioned and

sent to the slave processes. These calculate the integrals over the planes simply

by taking the desired values at the n nodes given by the list, multiplying them

with the corresponding factor and summing them up. The slaves join their

data via Message Passing Interface (MPI) and build up the total plane integral

in this manner: ∫

Stot

f (x)d S =
∑

i=1...n

αi fi . (4.17)

In this way, the data of the planes is available independent of the complete

solution and can both be written to a file or used internally.

4.2 Time Domain Impedance Boundary Condition

4.2.1 Motivation

In CFD- simulations involving acoustics, the boundary conditions have to ful-

fill a double role. They have to present adequate properties for both the mean

flow and the acoustic field [33]. This is not necessarily the case for standard

boundary conditions - a simple example may illustrate this: a fixed pressure

outlet boundary condition presents an acoustically fully reflecting boundary

condition [90], which may not be correct.

In the surroundings of LES and DNS, non-reflecting boundary conditions

are of importance to permit the fluctuations generated by the flow field to

leave the domain. This is of special importance for low dissipative numerical
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schemes, where acoustics are not damped by the numerical treatment. Other-

wise, slow convergence or undesired interactions between flow, combustion

and acoustics may be the consequence [70].

For the explicit simulation of acoustical phenomena within the numerical sim-

ulation of the flow field, complex impedances may have to be incorporated

into the boundary conditions in order to have a well described and physically

consistent setup for the acoustic field [65].

With respect to non-reflecting boundary conditions, two different formula-

tions for non-reflecting boundary conditions can be distinguished [83]: global

and local methods. While global methods transform the governing equations,

local ones achieve their properties by locally regarding the flow field at the

boundary condition [83]. In terms of local formulations sponge layers or per-

fectly matched layer approaches intend to absorb acoustic perturbations in

a layer located at the boundary. A brief overview over sponge layer, perfectly

matched layer and related methods is given in [26] or [8]. A different formula-

tion for non-reflecting boundary conditions can be made in terms of the per-

turbations or characteristics [83]. The method has been developed for the lin-

earized Euler equations, see e.g. [90], and adapted for DNS and LES purposes.

[70, 83]. The method is referred to as Navier Stokes Characteristic Boundary

Conditions (NSCBCs). This kind of boundary condition is the standard for the

LES solver AVBP [2]. Modifications on this approach have been performed by

Prosser and Schlüter [83]. A drawback of this type of boundary condition is

the fact that for practical simulations the boundary condition cannot be set to

100% non-reflecting because it loses the ability to control the mean pressure

(outlet) or velocity (inlet) [82]. Therefore, a modified formulation has been pro-

posed using both pressure and velocity information to overcome this limita-

tion [82, 109]. Based on this and the characteristics based filtering [45], a time

domain impedance boundary condition has been formulated [33]. This ap-

proach will be discussed in the following subsections. These subsections are

strongly based on Huber et al. and Kaess et al. [29, 33].
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4.2.2 Navier-Stokes Characteristic Boundary Conditions

The bases for the boundary condition presented here are the Navier-Stokes

Characteristic Boundary Conditions (NSCBCs). In this section only outlet

boundary conditions will be discussed; similar considerations can be made

for inlet boundary conditions. In the form applied in this context the bound-

ary conditions were developed by Poinsot and Lele [70]. Thompson [105] has

demonstrated a way to obtain the set of characteristic waves Li from the

primitive variables. For such a set of variables Engquist and Majda [14] have

proposed non-reflecting boundary conditions. These approaches have been

used and combined with a linear relaxation term proposed by Rudy and Strik-

werda [90] to form a well posed boundary condition. Determining the charac-

teristics proves to be difficult for viscous systems [70]. Therefore Poinsot and

Lele [70] suggest to use a locally inviscid system of equations, the “local asso-

ciated one-dimensional inviscid” (LODI) approach. The viscous contribution

is added later and the wave amplitudes are calculated using

L1 = (u1 − c1)

(
∂p

∂x1
−ρc

∂u1

∂x1

)

, (4.18)

L2 =u1

(

c2 ∂ρ

∂x1
−

∂p

∂x1

)

, (4.19)

L3 =u1
∂u2

∂x1
, (4.20)

L4 =u1
∂u3

∂x1
, (4.21)

L5 = (u1 + c1)

(
∂p

∂x1
+ρc

∂u1

∂x1

)

. (4.22)

The first and the last equation correspond to acoustic waves, while the mid-

dle ones correspond to convective waves. Using the characteristic waves, the

derivative of the pressure can, for example, be expressed as

∂p

∂t
=−

1

2
(L5 +L1) . (4.23)

Hence, a conventional pressure outlet could be formulated as

L1 =−L5. (4.24)

58



4.2 Time Domain Impedance Boundary Condition

Using the characteristic properties L, an for upstream traveling wave, a non

reflecting outlet could be written easily using

L1 = 0. (4.25)

This strictly non-reflecting outlet boundary condition is not well posed, be-

cause such a formulation does not have the ability to preserve the mean pres-

sure. Therefore, Poinsot and Lele use the aforementioned relaxation term by

Rudy and Strikwerda [90], which introduces a pressure dependency into the

equation.

L1 =K
(

p −p∞
)

(4.26)

Here, a coupling parameter K is used to connect the ingoing wave L1 with the

pressure drift p −p∞. A coupling parameter of K = 0 would again lead to the

perfectly non-reflecting, but ill posed boundary condition. A high K increases

the pressure correction and at the same time the reflection and can lead to

instability. The reflection coefficient R = ĝ

f̂
can be calculated to be [82]

R =
−1

2iω
K

+1
. (4.27)

For K →∞, the reflection coefficient becomes R=−1, while for K → 0 it tends

towards R = 0. So, K has to be chosen as a compromise between reflection

and mean pressure control. [33] The reaction of this boundary condition to

mean pressure fluctuations can be assessed by calculating a relaxation time,

the characteristic time which is needed to correct the mean pressure drift.

Combining equations 4.23 and 4.26 one obtains

∂p

∂t
=−

1

2
K∆p (4.28)

⇒∆p(t ) ∼ e− 2
K t . (4.29)

This implies a time constant of

τ= 2/K (4.30)

for the mean pressure correction.
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4.2.3 Plane Wave Masking

Polifke et al. have proposed a modified formulation which is non-reflecting

while still providing mean pressure control [35, 82, 109]. The idea is based on

the linear superposition of different effects in pressure and velocity fluctua-

tions. The pressure p and the total velocity u are the combination of mean (̄ ),

turbulent (̃ ) and acoustic ( ′) contributions:

p = p̄ + p̃ +p ′ (4.31)

u = ū + ũ +u′ (4.32)

Distinguishing between those three contributions can prove to be difficult

[45]. For acoustic contributions, there is a relationship between p ′ and u′ and

the characteristic waves. Let f be a downstream travelling wave and g be an

upstream travelling wave, then

f=
1

2

(
p ′

ρc
+u′

)

(4.33)

g=
1

2

(
p ′

ρc
−u′

)

. (4.34)

Comparing this to the characteristics L1 and L5, one can see that the relation-

ship between the two wave formulations is the partial time derivative:

L1 ∼ 2ρc
∂g

∂t
. (4.35)

Close to a non-reflecting boundary condition, g becomes g= 0. Therefore, the

acoustic pressure contribution p ′ can be calculated as

p ′ = ρc(f+g)

= ρcf

= ρc
1

2

(
p ′

ρc
+u′

)

.

(4.36)

This coupling of pressure and velocity permits acoustic and mean pressure

fluctuations to be distinguished. The disadvantage is that both pressure and

velocity information are needed. Hence, as the boundary condition should
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4.2 Time Domain Impedance Boundary Condition

keep the mean pressure constant but not react on acoustic waves, the acous-

tic pressure has to be subtracted from the pressure difference term. In that

case, only the pure mean pressure drift is corrected and the acoustic waves

are masked. Due to the application of a cross section average for the acoustic

values, only plane waves can be masked this way [33]:

L1 = K

(

p −ρc
1

2

(
p ′

ρc
+u′

)

−p∞

)

. (4.37)

Polifke et al. and Kaess et al. have demonstrated the effectiveness of this ap-

proach [33, 35, 81, 109]. Theoretically, the reflection coefficient of this bound-

ary condition to planar wave fronts is zero. Practically, it is very low, around

1% [33,35], independent of the coupling parameter K . The mean pressure cor-

rection is in fact affected by this modification. Assuming a non-acoustic pres-

sure drift ∆p, equation 4.37 yields

L1 = K

(

∆p −ρc
1

2

(
∆p

ρc
+0

))

=
K

2
∆p. (4.38)

Therefore, the relaxation time for this case can be calculated using equations

4.23 and 4.26:

∂p

∂t
=−

1

4
K∆p (4.39)

⇒∆p(t ) ∼ e− 4
K t . (4.40)

The time constant is τ = 4/K and has increased by a factor of two compared

to the non-modified boundary. This implies that for a stable numerical set

up, the coupling coefficient K for the modified formulation has to be doubled.

Non-planar components of acoustic waves are not compensated by this mod-

ified boundary condition and are reflected according to the non-modified

boundary term L1, equation 4.26. Therefore, K should not be set too high,

although the reflection of the modified boundary condition to planar waves

does not depend on K . Otherwise, non-planar components, which always are

present in turbulent full 3D LES, might cause significant reflections. The au-

thor has observed an influence of the coupling coefficient K on high order

modes. High K s promote the occurrence of these modes.
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4.2.4 Imposing External Excitation

The boundary condition for the context of this work has to provide the possi-

bility of imposing an excitation and at the same time be non-reflecting. These

at first glance contrary targets can be achieved with further modifications

to the term presented in equation 4.37. The standard implementation of the

Poinsot Lele boundary condition in AVBP offers the possibility of imposing a

sinusoidal signal. The method presented here is similar, straightforward and

works for random excitations. Imposing a signal means adding a signal to the

wave L1 produced by the non-reflecting formulation, equation 4.37. If the sig-

nal is formulated in terms of f and g, we denote g0 as the desired excitation,

which can be chosen arbitrarily. The assumption g = 0, which was valid for

the purely non-reflecting boundary condition, is not valid here anymore. The

g-term in equation 4.37 has to be considered in the boundary formulation as

well as the relationship between L and g, equation 4.35. Then, the boundary

term becomes:

L1 =K

(

p −ρc

(
1

2

(
p ′

ρc
+u′

)

+g0

)

−p∞

)

+2ρc
∂g0

∂t
. (4.41)

Any signal g0 can be imposed in this way, provided its derivative is known. For

the implementation of the excitation done in this work, the excitation signal

is given in the form of a discrete time series. This series contains the value of

g0 for each time step. The time derivative is then calculated using a simple

numerical derivative between two time steps.

4.2.5 Time Domain Impedance Boundary Condition

This subsection describes an additional feature, which has been incorporated

into the boundary formulation, but is not used in the framework of this the-

sis. Nevertheless, it is described here to complete the section on the boundary

condition.

Up to now, the boundary condition has been non-reflecting and permits exci-

tation. Now, the boundary condition shall present a user-defined impedance

of equivalently reflection coefficient. Impedance (Z ) and reflection coeffi-
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cient (R) are defined as follows, both are frequency dependent (R(ω),Z (ω)):

R̂(ω) =
ĝ(ω)

f̂(ω)
, (4.42)

Ẑ (ω) =
p ′(ω)

u′(ω)
. (4.43)

They represent different mathematical formulations to express the reflection

properties and can be converted mutually:

Z = ρc
1+R

1−R
. (4.44)

Hence, for the boundary condition, a reflected signal can be present which

fulfills

g=Rf. (4.45)

For the wave masking procedure, subsection 4.2.3, the ingoing wave f has been

determined and therefore is available. In the previous section it was shown

that arbitrary excitations can be imposed by the boundary condition. As a

consequence, it is no problem to create a reflection, which is just an excita-

tion calculated as a function of f. A fully reflecting boundary condition would

simply record f and impose this value as g0. In a time domain impedance

boundary condition the response of the boundary is not trivial to calculate.

Mostly, a frequency dependent reflection coefficient has to be modeled but

the boundary condition works in the time domain. This could be done by an

inverse Fourier transformation, but this involves a convolution integral which

is computationally expensive [29]. Many authors use analytical descriptions

for the impedance or reflection coefficient which can be transformed analyt-

ically [18, 68, 87] but this is generally not possible. Therefore, the problem for

the boundary condition is the effective calculation of the correct response sig-

nal g0. This kind of problem is known from signal processing and radio tech-

nology. Z -transform has been used by Sullivan [102] to solve this issue. Appli-

cation to acoustics has been done among others by Özyörük and Long [65],

and recently by Huber et al. [29] and Kaess et al. [33]. Although the impedance

and the reflection coefficient carry the same information and can be easily

transformed vice versa, there is a difference in terms of signal processing. The
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formulation in terms of characteristics used for the reflection coefficient is

likely to be causal. This implies that the reflected quantity only depends on

the past of the incoming quantity. This is not necessarily the case for the for-

mulation in terms of p ′ and u′, which is used for the impedance, because both

p ′ and u′ carry information on both the incoming and the reflected waves [17].

Causality is a requirement for the formulation of the boundary conditions.

When causality is assumed but is not present, instability will occur [19]. The

approach for the creation of the artificial response follows the work of Huber

et al. [29] and has been described in Kaess et al. [33]. The reflection coefficient,

defined

R̂(ω) =
ĝ(ω)

f̂(ω)
(4.46)

in the frequency domain, can be transformed into the time domain using in-

verse Fourier transformation. Assuming a causal system, this yields

g(t ) =R(t )∗ f(t )

=
∞∫

0

R(τ)f(t −τ)dτ,
(4.47)

where R(t ) denotes the inverse Fourier transform of R(ω). As mentioned

above, the evaluation of this integral is numerically expensive and therefore

not suitable for an effective calculation. Following Sullivan [102] and Özyörük

and Long [65] an inverse z-transform is applied instead. The transform is de-

fined

Z (x(i )) = X (z) =
∞∑

i=−∞
x(i )z−i (4.48)

and has beneficial properties concerning convolution integrals. The z-

transform of a convolution is

Z (R(t )∗ f(t )) = R(z)g(z). (4.49)

Another interesting property is the time-shift property:

Z (x(i −k))= z−k X (z). (4.50)
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The discrete Fourier transform is a special case of the z-transform for z = iωt

[57]. This illustrates that an approximate representation of the reflection coef-

ficient R in the z-domain is equivalent to an approximation in the frequency

domain. For this approximation a function of the type

R(z) =
a0+a1z−1 +a2z−2 + ...+anz−n

1− (b1z−1 +b2z−2 + ...+bmz−m)
(4.51)

is used. A sufficient amount of coefficients a and b has to be fitted to

approximate the reflection coefficient in frequency domain. An inverse z-

transformation then takes advantage of the time-shift property and results in

g(z) =Rf(z), (4.52)

g(t )−b1g(t −∆t )− ...−bmg(t −m∆t ) =
a0f(t )+a1f(t −∆t )+ ...+anf(t −n∆t ), (4.53)

g(t ) = a0f(t )+a1f(t −∆t )+ ...+anf(t −n∆t )+
b1g(t −∆t )+ ...+bmg(t −m∆t ). (4.54)

The response is calculated as a weighted sum over the ingoing and outgoing

waves over a limited amount of previous time steps. This procedure only re-

quires a small amount of computational power and therefore does not signif-

icantly slow down the calculation. The procedure works for a fixed time step.

The amount of coefficients necessary to reproduce the reflection coefficient

can be estimated by considering the fact that the ingoing signal history has to

be included in the calculation as long as it contributes to the outgoing signal.

Hence, if the reflection coefficient incorporates a characteristic time lag of tl ag ,

the amount of coefficients n will roughly be

n =
tl ag

∆t
, (4.55)

where ∆t is the time step of the computation. Still, the poles of this approxima-

tion function have to lie in the upper complex ω-plane to ensure causality and

therefore numerical stability. An unconditionally stable filter is achieved for

m = 0, because this approximation does not have poles. Different filters have

been set up and tested in different configurations by Kaess et al. [33] using this

implementation. The results are promising and demonstrate the potential of

this approach.
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In the second test case, described in section 6.2, substantial difficulties arise

in the application of the CNN method. Therefore, a section treating OLTF’s

that do not permit a reliable stability prediction is included here. It constitutes

important experience and considerations gained during the calculation of the

test cases. Unexpected behavior of Nyquist curves also has been reported by

other users of such methods [96].

5.1 Requirements for the Location of the Cut

The application of the Nyquist method should open the unstable/stable acous-

tic feedback loop. It should thereby prevent the occurrence of the eigenmode

in the simulation of the open system, while permitting its occurrence in the

closed system to be predicted. In other words, the cut has to be located in a

way that interrupts the feedback of the instability.

In contrast to simple control loops, general acoustic systems have multiple

feedback lines. In terms of network models this means that feedback occurs

at any element whose scattering matrix has elements 6= 0 on the reflecting po-

sitions (S12 and S21). This does not necessarily imply the occurrence of an

eigenfrequency on this feedback line, but it should be kept in mind.

Network models are not necessarily linear (in the sense of their topography).

As the name implies, they are rather a network than a chain of elements. Lo-

cating the cut inside the network may not provide the desired effect of the

interruption of the feedback because of the existence of side branches, which

might still provide closed loops. The location of a cut, i.e. a Nyquist-dummy,

would likely modify the acoustic properties of the system, but not prevent the

eigenfrequencies.

To summarize the requirements: the open system must not have feedback
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lines or eigenmodes left, otherwise the Nyquist method will, at least in the

corresponding frequencies, fail. Unfortunately, the shape of the eigenmodes

is likely not to be known a priori. If the cut of the system does not inter-

sect the feedback of the instability, the system of equations describing the

opened thermo-acoustic configuration will be close to a singularity at the cor-

responding frequency. This implies that the matrix will be badly conditioned

and mathematically hard to handle, and simplified models may deliver bad re-

sults. These items lead to highly fluctuating results close to the eigenfrequency,

which may be seen in the Nyquist plots.

5.2 Indicators

As mentioned above, the condition that has to be fulfilled for conformal map-

ping is a non-zero derivative. According to Betz [4], the mapping properties

can also be local. So, if the mapping is conformal in the vicinity of the eigen-

frequency and between the real axis and the eigenfrequency, the generalized

Nyquist criterion is valid. If the derivative of the mapping function is zero or

tends towards infinity in the vicinity of a eigenfrequency, an interpretation

from the Nyquist plot is impossible. The difficulty now is to draw conclusions

concerning the properties of the mapping in the complex plane (ω ∈ C) from

the information which is present only for real frequencies (ω ∈R).

For this purpose we assume that the mapping function is, on a subset Ω of the

complex plane C, locally analytic, i.e. that

lim
z → 0

f (z +∆z)− f (z)

∆z
∃,∀ z ∈Ω. (5.1)

In this case the limit is independent of the choice of z. Hence, the derivative

of the mapping function along the the real frequency axis, ∂ f

∂z
, is relatively easy

to extract from the Nyquist curve and independent of the choice of z (z ∈R or

z ∈C):

∂ f

∂z
≈

f (z +∆z)− f (z)

∆z
. (5.2)

For constant frequency stepping in the Nyquist curve (∆z =ωn+1−ωn = const),

the derivative is therefore proportional to the distance between the image
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points of two frequencies. This is mostly the case, since the Nyquist curve is

usually generated by a for-loop over frequency. Hence, observing the images,

i.e. the location on the Nyquist curve of two adjacent frequencies, is equivalent

to observing a numerical derivative:

∂ f

∂z
∼ f (z +∆z)− f (z). (5.3)

The derivative of the mapping function carries some information about the

properties of the mapping:

• The magnitude of the derivative corresponds to the scale of the mapping.

• The argument of the mapping function corresponds to the angle of rota-

tion of the mapping.

It is now possible to draw a conclusion from the derivative of the Nyquist curve

to the mapping properties in vicinity of the curve if there are no rapid changes

in the derivative. If there are rapid changes, the interpretation of the curve

presents severe problems. Using a Taylor expansion of the derivative ∂ f

∂z
,

∂ f

∂z
(z) =

∂ f

∂z
(z0)+

∂2 f

∂z2
(z0)(z − z0)+R(z), (5.4)

there is an estimation for R(z) which represents the possible error:

R(z) =
∂3 f

∂z3
(ζ)

(z − z0)

2!
, (5.5)

where ζ is between z and z0. The fact that the mapping function is usually of

the type ex implies that
∣
∣
∣
∂3 f

∂z3

∣
∣
∣ becomes large, when

∣
∣
∣
∂ f

∂z

∣
∣
∣ is large. Hence, a large

magnitude of the mapping function means that the vicinity, i.e. the interval

where a prediction of the mapping is meaningful, becomes small. Therefore,

the interpretation of the Nyquist curve is error prone near frequencies, where

• a change of the sense of rotation of the Nyquist plot (The derivative might

have changed sign),

• small or vanishing distance between the image of two adjacent frequen-

cies on the Nyquist curve (the derivative tends to zero),
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• huge distances between the image of two adjacent frequencies on the

Nyquist curve (the derivative tends to infinity),

• extremely small loops in the Nyquist curve (often comes along with the

aforementioned item)

occur. A different location of the “cut” may help here, or an alternative cut

which provides valid information at the frequencies affected can be applied.

5.3 Example 1: Duct System with Area Change

This example illustrates the effect of increasingly decoupled systems, i.e., a sys-

tem where parts can have independent eigenmodes in an increasing way. The

system is a simple duct - area change - duct system, with two open ends. Two

sections, section 1 before the area change and section 2 after the area change,

are distinguished. Four different indices are defined for variables at certain po-

sitions of the system: i at the inlet, u at the upstream side of the area change, d

at its downstream side and o at the outlet.The area ratio α= A2
A1

is varied from

moderate to extreme values: α= 1,1/4,1/8,1/32.

The reflection coefficient R of the area change for section two can be obtained

using the scattering matrix. For an area ratio of α = 1/8 the reflection coeffi-

cient is R ≈−0.7778 for both frequencies of 2ω0 and 4ω0.

Now, the reflection coefficient at the open end at section 2 (right) is set to

R =−1/0.7778. Hence, for an area ratio of α= 1/8, a neutral (zero growth rate)

eigenmode of 2ω0 and 4ω0 can be expected in section 2. The open end in sec-

tion 1 (left) is damping, the reflection coefficient is arbitrarily set to R =−0.9.

This configuration is examined twice: once with the cut positioned in section

1 and once with the cut positioned in section 2.

The total length of the duct is L = 0.85 m with the area change in the middle.

No mean flow and no losses are present and c = 343 m/s. The λ/2-eigenmode

of the entire duct and its harmonics have frequencies of f ∗ = 204 Hz,408 Hz, ...,

denoted 2π f ∗ =ω∗ =ω0,2ω0, ... here.

By increasing the area ratio, section 1 will exhibit properties which should

more and more move towards a λ/4-system, while section 2 should develop
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towards a λ/2-system. This means that section 2 will have eigenfrequencies of

ω∗ = 2ω0,4ω0, ..., whereas section 1 will have ω∗ =ω0,3ω0, ....

Figure 5.1 illustrates the aforementioned items.

Section 1 Section 2

λ/2 with L

L

λ/2 with L/2λ/4 with L/2
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Figure 5.1: Illustration of the development of an area change with increasing

area ratio.

For α= 1/8, the following configuration appears at the eigenfrequency of sec-

tion 2 in the equations for area change and open end at section 2. The duct

of section 2 is not taken into account, which does not affect the validity of the

following considerations (index 1 denotes section 1, index 2 section 2):

fd = Afu +Bgd (5.6)

fd =Bgd (5.7)

From these equations follows that fu = 0. But if the cut is applied in section

one, fu 6= 0, because it is forced by the Nyquist dummy. Hence, the system is ill

posed when section two is in a neutral eigenfrequency. Close to the eigenfre-

quency, fd and gd take large values.

Figures 5.2, 5.3 show the mapping scale for the aforementioned configuration.

They exhibit the properties that are expected from this simple model: Two
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peaks, (one with Re(ω) = 2ω0 and one with Re(ω) = 4ω0) move towards the

real axis. For α = 1/8 the peaks are situated right on the real frequency axis,

which is used for Nyquist methods. The corresponding Nyquist curve in figure

5.4 shows massively deformed loops. These loops correspond to to the eigen-

frequencies of section 2 observed with the cut located in section 1. When the

area ratio is increased further, the loops even change direction. For even larger

area ratios the loops degenerate to little bumps in the curve (not shown).

More properties of the system can be shown using a simple model for section

2:

• The area change is modeled using the scattering notation:

fd = Afu +Bgd , (5.8)

gu =C fu +Dgd . (5.9)

• The open end and the duct at section 2 can be combined to one equation:

fd = E · e i ωc 2 L
2 gd . (5.10)

From these equations, the response gu/fu of section 2 can be calculated to be:

gu

fu

=C −
AD

B −E · e i ωc 2 L
2

. (5.11)

The following items can be observed:

• For E · e i ω
c 2 L

2 = B , which here is the case for α = 1/8 and ω∗ = 2ω0,4ω0, ...,

the response goes to infinity. This confirms the first considerations in this

example.

• For small transmission coefficients A and D , the reflection coefficient C

of the area change for section 1 dominates the response.

The effect of the decreasing transmission coefficients A and D can be seen as

the decreasing radius of the smaller loop in figure 5.4 for the cut in section

2. For the cut in section 1, this effect is superposed by the singularity for α =
1/8. In general the mapping scale, figures 5.2 and 5.3, exhibits peaks at the
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eigenfrequency of the section 2, when section 1 is cut and vice versa. Hence,

a prediction of eigenfrequencies located in the section which is not cut by the

Nyquist dummy may be impossible. This is especially the case, when parts of

the system develop eigenmodes independently of the cut or if the system is

strongly decoupled, e.g., as shown here, by area changes with a pronounced

area ratio.

Cut in section 1 Cut in section 2
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4ω0

ω0

2ω0

3ω0

4ω0

ω0

2ω0

3ω0

4ω0

ω0

2ω0

3ω0

4ω0
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Cut in section 1 Cut in section 2
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Figure 5.2: Magnitude of the derivative of the mapping function vs. the com-

plex frequency of a duct - area change - duct system for different

area ratios α. Left column: cut in section 1, right column: cut in

section 2.
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Figure 5.3: Magnitude of the derivative of the mapping function over the fre-

quency (ω ∈ R) of a duct - area change - duct system for different

area ratios α. Left column: cut in section 1, right column: cut in

section 2. Corresponds to the black line in fig 5.2.
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Figure 5.4: OLTF for a duct - area change - duct system for different area ra-

tios. Left column: cut in section 1, right column: cut in section 2.

Arrows indicate the sense of rotation of the curves with increasing

frequency, the black “x” denotes the critical point.
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5.4 Example 2: Acoustic Network with Bifurcation

Here, a system is constructed where a mode can develop in single parts of

the system while not affecting other parts. The type of the mode determines,

which parts of the system are affected. This case is formed by a duct of length

L = 0.5 m with an open end. On the other side is a bifurcation, which connects

the duct to two other ducts having half the cross sectional area A, both the

same length L = 0.35 m and a closed end. The speed of sound is c = 343 m/s in

the whole domain. The transfer matrix for the ideal bifurcation element can

be expressed by the following equations,

pi = p j (5.12)

pi = pk (5.13)

Si ui = S j u j +Skuk . (5.14)

Figure 5.5 shows the set-up of the network model. Two different locations for

the cut for the Nyquist curve are chosen, one in the main branch of L = 0.5 m

and one in one side branch of L = 0.35 m.

Figure 5.5: Sketch of the network model of the bifurcation.

The first eigenfrequency between the two 0.35 m branches is of special inter-

est here and therefore denoted ω0.

The eigenfrequencies of the two calculations are summarized in table 5.1. Two

frequencies are not detected when the cut is applied in the main branch com-

pared to the side branch: ω∗ = ω0 and ω∗ = 3ω0. These two frequencies cor-

respond to the λ/2 and 3λ/2 eigenmode of the 0.7 m duct. This implies that

these frequencies belong to the mode between the two side branches.
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ω∗/ω0 for cut in side branch 0.35 1 1.35 2 2.82 3 3.94
ω∗/ω0 for cut in main branch 0.35 - 1.35 2 2.82 - 3.94

Table 5.1: Eigenfrequencies ω∗/ω0 determined with the Nyquist methods for

two different locations of the cut

The two modes share the property that they have vanishing pressure fluc-

tuation at the bifurcation point. In contrast, the 2λ/2 mode has a pressure-

maximum there and hence couples with the main branch. Therefore, it can be

also detected in the main branch. A frequency of ω∗ = 2ω0, which would corre-

spond to the expected frequencies, is detected by both configurations. Figure

5.6 illustrates this.

Figure 5.6: Sketch of the eigenmodes in the side branches.

As in the first example, the Nyquist method is only capable of predicting those

modes that are localized in areas, where the cut is applied. In contrast to the

first example, the decoupling here is so well pronounced, that the Nyquist

curves do not even show any anomalies around the missed eigenfrequencies.

Of course, this example is even more academic than the one before, but shows

80



5.5 Conclusions and Recommendations

very well the effect of placing the cut at the wrong place.

5.5 Conclusions and Recommendations

The last two examples have shown the limitations of the CNN method. In has

become obvious that the location of the cut is of crucial importance for this

method. Therefore, before using Nyquist methods, one should carefully exam-

ine the system for the type and location of the eigenmodes and place the cut

at a position where it intersects the modes. The example in 5.4 has shown that

modes that develop in parts of the system, which are not affected by the cut,

are not necessarily visible in the Nyquist curve.

In case the Nyquist curves exhibit singularities, one can take advantage of the

knowledge of the frequency, where the singularity occurs in order to find the

corresponding mode.

Indicators for singularities have been addressed in 5.2. In general, strongly

branched systems, as well as systems exhibiting strong area changes or other

decoupling elements, should be handled with care. Another conclusion which

can be drawn from these examples is the fact that introducing non-reflecting

terminations, either artificially, e.g. from the cut of the Nyquist method, or nat-

urally (see 6.1), does not prevent systems from developing instabilities.

Hence, instabilities can occur even when non reflecting terminations are

present and instabilities do not necessarily affect the entire system, but may

be present only in locally limited parts.
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6 Application

In the following chapter, the CNN method is applied to two test cases. The

first test case is a laminar premix perforated plate burner, the second one a

turbulent premix swirl burner.

6.1 Laminar Test Case: The Matrix Burner

6.1.1 Geometry and Thermo-Acoustic Properties

After Kopitz et al. [46], who applied the CNN method to a Rijke tube, a more

challenging configuration for the validation of the CNN method is a laminar

multi flame burner examined by group EM2C at Ecole Centrale Paris [60–62].

Results for the CNN method were generated at the CTR Summer Program

2008; there is a comprehensive description in the proceedings [36], which is

the basis for this chapter. More consideration can be found in [34]. The geom-

etry of the burner is sketched in Figure 6.1. The burner consists of a plenum

Figure 6.1: Scheme of the laminar premix burner from Ecole Central Paris.
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of diameter D = 0.2 m which is closed by a piston on the upstream end and

whose length L is therefore variable (L = 0.09...0.85 m). The downstream end

of the plenum is formed by a perforated plate of thickness l . Noiray et al. ex-

amined different plates, but for the application here, we restrict ourselves to a

plate having 420 holes of 2 mm diameter, l = 30 mm and, hence, an aperture

ratio of 0.34. 420 small conical flames are formed and stabilized on the down-

stream side of the perforated plate, which is not further confined. The burner

is operated using a methane-air mixture of equivalence ratio φ = 0.85 and a

mass flow of ṁ = 5.4 g/s. Depending on the length of the plenum, unstable

eigenmodes of different frequencies develop for some parameter configura-

tions, other configurations are stable. The eigenmodes correspond to the first

quarter-wave-eigenmodes of the plenum. The stability map is shown in figure

6.2.

For the CNN approach, the geometry is divided into a CFD and a network
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Figure 6.2: Stability map of the laminar premix burner experimentally deter-

mined by Noiray et al. [60], plot from [36]. The present configura-

tion uses plate 4.

domain. The CFD domain comprises a part of the perforation and the flame,

while the network domain contains the plenum and the inflow to the perfo-

rated plate. This set up permits the CFD to be used for the flame-acoustics

interaction, while the flexible network model is used for the various lengths
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6.1 Laminar Test Case: The Matrix Burner

of the plenum. The separation into network and CFD domain is sketched in

figure 6.3

Figure 6.3: Decomposition of the burner into CFD and network domain.

6.1.2 Analysis with Network Model Based on Measured FTF

Prior to the application of the CNN method, the configuration is examined

using a pure network model approach. Noiray et al. have presented consider-

ations about the modelling in the work mentioned above, a summary can be

found in [60]. The modelling used here can be found in detail in [36] and [34].

Here, a brief overview is given. Assuming a constant pressure and incorporat-

ing the effect of the area change at the end of the perforated plate, the flame

can be modeled similarly to the equation for the flame in 2.7 using the follow-

ing equation:

(
ρi ci ρi ci ρ j c j ρ j c j

Ai −Ai A j (1+nF T F ) −A j (1+nF T F )

)








fi

gi

f j

g j







= 0. (6.1)
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The FTF measured by Noiray et al. [60,62] (see figure 6.4) is approximated with

a model involving two time lags [50, 97],

F T F = (1+a)e (−iωτ1−ω2σ2
1/2) −ae (−iωτ2−ω2σ2

2/2), (6.2)

with a = 0.906, τ1 = 0.912 ms, τ2 = 1.22 ms, σ1 = 0.334 ms and σ2 = 0.817 ms.

Figure 6.5 shows the network model of the laminar premix burner. The out-
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Figure 6.4: FTF of the laminar premix burner, left amplitude, right phase. Solid

+: measurement ( [60], Fig. 4.5, φ = 0.86, ṁ = 5.4 g/s). Dashed x:

approximation using equation 6.2.

let boundary is non-reflecting, the area change involves acoustic losses. The

length of the plenum can be easily varied by changing the length of the simple

duct. The cut for the Nyquist curve is located within the perforated plate. A lo-

cation inside the plenum yields similar results (not shown). Obviously, a loca-

tion of the cut between flame and non-reflecting outlet would result in a zero

response for all frequencies. For simplicity reasons, the eigenfrequencies ob-

Figure 6.5: Network model of the laminar premix burner for TaX, based on

Matlab Simulink.

tained here represent the minimum distance between curve and critical point.

This criterion can easily be evaluated numerically. No polynomial fit or scaling
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6.1 Laminar Test Case: The Matrix Burner

correction is applied. Due to a considerable error in the prediction of stabil-

ity, acoustic losses at the area change have been introduced and adapted, so

the stability properties match the experiment (ζ= 54). The plausibility of this

value is discussed further in 6.1.3.3. Similar results can be obtained by chang-

ing the reflection coefficient at the inlet to values as low as R̂ ≈ 0.2. This value

is too far from the estimated value to be considered the only source for the

missing damping. If the damping is not adapted, the distance between critical

point and Nyquist curve becomes very large. This leads to large insecurities in

the prediction of the eigenfrequency. This problem is known in this case and

will be discussed later. The results are plotted in figure 6.6.
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Figure 6.6: Stability map of the laminar premix burner using a network model

with estimated parameters for the acoustic losses. Black +: pre-

dicted unstable, black o: predicted stable, blue x: experimentally

unstable, grey lines: λ/4-modes.

In general, an application of the CNN method for this case seems to be feasible

and no major problems are expected.
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6.1.3 Analysis with CNN Approach

6.1.3.1 Mesh

One single flame is simulated in the CFD using symmetry boundary condi-

tions, which corresponds to the assumption of an infinite array of flames. De-

spite its small physical size, the domain has around 470,000 cells due to the re-

quirement to resolve flow and flame properly. The mesh is structured, which

is not a necessary requirement for the solver, but permits a very controlled

meshing process in this basic geometry. Due to the great amount of cells and

the small physical size, the simulation is resolved on DNS level and a 1-step

global mechanism for the reaction can be used without any artificial thicken-

ing. For the frequency range of interest, no significant numerical dissipation

is expected due to the fine grid. Figure 6.7 shows the concept of the mesh. The

Figure 6.7: Mesh for the CFD simulation of the laminar premix burner.

downstream end of the domain is formed by a non-reflecting outlet boundary

condition, which simulates the free field for the unconfined flames. It shall be

mentioned here that this burner presents an example where an instability can

develop even with a non-reflecting boundary on one side. Here, the non re-

flecting part is not introduced by the cut of the CNN method, but is physical

due to the free field. Nevertheless, the instability is not prevented even by the

missing feedback directly on one side of the flame. This confirms the discus-

sion in 5.

Figure 6.8 shows an axial slice through the domain with a contour plot of

the reaction rate indicating the position of the flame. The walls are set to
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6.1 Laminar Test Case: The Matrix Burner

Figure 6.8: Axial slice of the CFD domain, contour plot showing the reaction

rate. Plot similar to [34].

isothermal no-slip walls at 350K. Excitation is imposed at the upstream end,

a non-reflecting velocity inlet boundary condition. A parabolic velocity pro-

file is imposed for the mean flow. The excitation signal is a pseudo random

binary noise, which has been low pass filtered. This signal is imposed in a

block profile. After initialisation 1,200,000 iterations at a time step of 3.5·10−8s

are calculated on 80 cores of HLRB II at LRZ computing centre, Munich. Post-

processing is done using a correlation based algorithm, see 2.8. See [36] for

details about the configuration.

6.1.3.2 Acoustic Properties of the CFD Domain

The numerical configuration was checked for singularities (“resonant ampli-

fication”) and no substantial problems are expected [36]. Using the data, es-

pecially the FTF available from the experiments of Noiray et al., a preliminary

check of the expected part loop transfer function, i.e. the acoustic response of

the CFD model (including the flame), was set up using the TaX network tool.

Figure 6.9 shows the corresponding configuration.

The part loop transfer function obtained using this model is shown in figure

6.10 and does not exhibit properties that suggest strong singularities.

Figure 6.11 shows the results for the transfer function of the CFD domain.

A good agreement with the expected behaviour (see figure 6.10) can be ob-

served.
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Figure 6.9: Network configuration for the preliminary check of the acoustic

properties of the CFD domain of the laminar premix burner, using

TaX, based on Matlab Simulink
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Figure 6.10: TaX network result for the expected part loop transfer function of

the CFD model of the laminar premix burner.
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Figure 6.11: Part loop transfer function of the CFD domain of the laminar pre-

mix burner, right diagram: amplitude, left diagram: phase.
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6.1 Laminar Test Case: The Matrix Burner

6.1.3.3 Network Domain

The network domain is formed by the piston (closed end, equation 2.106),

the plenum (simple duct, equation 2.85), the inflow to the plate (area change,

equation 2.95) and the perforation (duct with viscous effects, equation 2.104).

Figure 6.12 shows the network model in TaX. The Nyquist Dummy is modi-

fied to incorporate the results from the CFD. Acoustic losses at the inflow of

Figure 6.12: Network model of the network-part of the laminar premix burner.

the perforation have been determined using CFD. The domain was identical

to the configuration described above, but the flow direction was reversed, no

combustion was active and statistically independent excitation was imposed

at both sides. Postprocessing yields an effective length of leff = 7.64 · 10−4 m

and a loss coefficient of ζ= 6.

Literature ( [30], p.404) offers values of ζ ≈ 10 for long thick perforates. How-

ever, these values for perforates are given for Reynolds numbers of Re > 105,

while in the present configuration Re ≈ 1000. Additionally, the values have to

be corrected, because they refer to the upstream velocity, and the model used

here to the velocity in the perforate. Therefore, the value has to be corrected

with the square of the velocity and, hence, with the aperture ratio 1/0.342 The

value is therefore ζ≈ 1, which is much lower than the value obtained by post-

processing the CFD results. For low Reynolds numbers as it is the case here,

values for porous layers may apply. According to [30], p.414, loss coefficients

of O(ζ) = 10 can be estimated for Re ≈ 1000 and grains with diameters of less

than 10 mm. These also have to be corrected, and in the notation used here,

again a value of ζ≈ 1 is obtained.

6.1.3.4 Results

The combination of CFD result and network model permits both eigenfre-

quencies and stability to be determined. Additionally, by regarding the dis-
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tance between Nyquist curve and critical point, the growth rate can be esti-

mated. The stability map of the burner configuration using these parameters

is plotted in figure 6.13. The model remarkably over-predicts the unstable ar-
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Figure 6.13: Stability map of the laminar premix burner using the estimated

parameters for the acoustic losses, from [36]. Black +: predicted

unstable, black o: predicted stable, blue x: experimentally unsta-

ble, grey lines: λ/4-modes.

eas. The flame transfer function obtained using the simulation [34, 36] does

not exhibit remarkable differences compared to the one obtained experimen-

tally by Noiray [60] which could explain this discrepancy. The frequencies are

well predicted at the same time. Therefore, the overestimation of the instabili-

ties is likely to be explained by the suboptimal modeling of the acoustic losses.

Possible reasons for this are given in the discussion. Using adjusted acoustic

losses at the area change (ζ = 42) which are significantly higher than the esti-

mated ones, the zones of instability are reproduced with good agreement (see

figure 6.14). The value of ζ = 42 is high compared to the value of 6 obtained

numerically and the value for perforates or porous media according to [30].

Again, as for the analysis with Network model, a reflection coefficient of R̂ ≈
0.2 would lead to the same stability properties as the increase of the losses at

the perforation. In both cases, the losses have to be increased by half an order

of magnitude.
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Figure 6.14: Stability map of the laminar premix burner using the adjusted pa-

rameters for the acoustic losses, from [36]. Blue +: predicted un-

stable, blue o: predicted stable, black x: experimentally unstable,

grey lines: λ/4-modes.

6.1.4 Conclusion

The eigenfrequencies are well reproduced, while there is a considerable er-

ror in the estimation of the acoustic damping and therefore in the stability-

instability distinction and in the growth rates. Several reasons may explain this

observation:

• Simulating only one flame with symmetry conditions neglects losses of

the outer flames, where part of the acoustic energy is lost to the side.

• In the simulation the mean velocity is imposed with a parabolic profile,

which is physical. The acoustic excitation in the simulation does not ex-

hibit any special profile, but a pure block profile. This is probably not cor-

rect, as there are considerable effects of the Stokes boundary layer in the

duct. This might affect the shape of the wave front reaching the flame.

There is no possibility implemented in the boundary conditions to ac-

count for a profile in the excitation signal.
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• The low order models of the viscous duct and the losses at the area

change may not be accurate. There may be a difference between a sin-

gle hole and a perforated plate. The values in Idelchik [30] for perforated

plates do not include cases with small Reynolds numbers.

• There might be losses at the piston which is considered perfectly reflect-

ing here, but in reality includes the inflow devices. Analyses with network

models show that the reflection coefficient would have to be as low as

R̂ ≈ 0.2 to be responsible for the deviation in stability alone.

It was not possible to identify a clear reason for the erroneous results. A com-

bination of losses mainly at the perforation and due to non-perfect reflection

at the inlet is most likely the cause.

Nevertheless, there is no indication for the assumption that the errors are due

to bad mapping in the Nyquist curve. The discrepancies in the damping are

therefore part of the uncertainties present in the modeling and are not due to

defects in the CNN approach itself or the Nyquist stability analysis.

6.2 Turbulent Test Case: The BRS Burner

The validation of the method presented in this work shall be done using a

premix swirl burner. At the Lehrstuhl für Thermodynamik the “Beschaufel-

ter RingSpalt” (BRS) burner (an axial vane swirler in a conduit of annular

cross section) has been thoroughly investigated experimentally and numeri-

cally using RANS. The burner is designed for the investigation of the influence

of swirl fluctuations on combustion and therefore has variable swirler posi-

tions. As the influences of the swirler position are not the focus of the present

work, the swirler position is fixed for the cases studied here. The burner has

thermo-acoustic stability properties which make it an interesting subject for

the CNN method: It can be fitted with combustion chambers of two different

lengths. For the short combustion chamber, the burner is stable. When the

long combustion chamber is mounted, it exhibits instability for several oper-

ating points. This dependency on the length of the combustion chamber is
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6.2 Turbulent Test Case: The BRS Burner

well suited for the application of the CNN method, since the flame and all el-

ements upstream of the flame are not affected by the change of the length of

the combustion chamber. Details about stability and geometry are given in

the following sections.

The approach presented in this thesis should be able to capture the influ-

ence of geometrical modification which can be easily modeled by network

elements. Therefore, two configurations are compared here which differ in

the length of the combustion chamber. This permits the expensive LES of the

upstream part of the burner and the flame to be used to evaluate the stabil-

ity of two configurations. The partitioning is sketched in figure 6.15. Different

LES Calculations are only required for different operating points, but not for

the geometrical modification. Due to the good experiences obtained with the

Figure 6.15: Partitioning of the BRS burner test rig into CFD and Network do-

main.

CNN method in the first example, the laminar perforated plate burner, the

BRS burner example was directly examined using the CNN method.
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6.2.1 Geometry

The burner consists of a plenum of 169.4 mm length and 200 mm diameter,

an axial swirler of 30 mm length located within a duct of 180 mm length and

a diameter of 40 mm containing a lance of 16 mm diameter. This is followed

by the combustion chamber, which has a square cross section of 90 mm edge

length and a length of 300 mm in the short configuration and 700 mm in the

long configuration. Hence, there are area ratios of α = 29.9 and α = 1/(7.7) at

inlet and outlet of the swirler tube respectively.

Figure 6.16 shows the swirler module from two different angles. The entire

configuration for the short combustion chamber is shown in figure 6.17.

Figure 6.16: Swirler module of the BRS burner photographed from two differ-

ent angles. Flow direction from right to left

The inflow to the plenum is realized through a sinter metal plate, which corre-

sponds to a hard velocity inlet. The outlet at the end of the combustion cham-

ber is covered by a plate having 6 holes of 20 mm diameter arranged in a circle.

The acoustic properties of the plate have been measured in experiments.

6.2.2 Stability

The stability properties of the BRS burner have been evaluated in experiments

by Komarek [42, 43] for 30 kW, 50 kW and 70 kW power and air ratios λ of 1.1,

96



6.2 Turbulent Test Case: The BRS Burner

Figure 6.17: Sketch of the BRS burner test rig.

λ= 1.1 λ= 1.3 λ= 1.5

P = 70 kW unstable stable stable
P = 50 kW unstable unstable stable
P = 30 kW unstable unstable unstable

Table 6.1: Stability map for the long combustion chamber.

1.3 and 1.5 for both short and long combustion chamber. The stability maps

for long and short combustion chamber are shown in tables 6.1 and 6.2.

The frequencies of the dominating unstable frequency are given in table 6.3.

Growth rates are not available due to the difficulty to measure them properly.

The following configurations are chosen for validation of the CNN method:

P = 70 kW, λ = 1.3; P = 70 kW, λ = 1.1 and P = 50 kW, λ = 1.3. The reason for

this choice is the good quality of experimental data for the two 70 kW cases.

λ= 1.1 λ= 1.3 λ= 1.5

P = 70 kW stable stable stable
P = 50 kW stable stable stable
P = 30 kW stable stable stable

Table 6.2: Stability map for the short combustion chamber.
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λ= 1.1 λ= 1.3 λ= 1.5

P = 70 kW 145.775 stable stable
P = 50 kW 137.5 141.925 stable
P = 30 kW 107.25 101.275 94.7

Table 6.3: Stability map for the long combustion chamber, frequency of the

unstable modes in [Hz].

The 50 kW case has advantages because the CFD simulation can be initialized

well from the λ= 1.3, P = 70 kW case. In two of the validation cases, the stabil-

ity depends on the length of the combustion chamber.

6.2.3 Analysis with CNN Approach

6.2.3.1 Domain and Mesh

The entire Geometry of the BRS test rig has been described in section 6.2.1.

The computational domain covers the plenum, the swirler and a 200 mm

section of the combustion chamber. The length of 200 mm is a compromise

between providing sufficient space for the flame and saving computational

power. The meshes were generated using the commercial software “Gambit”

by Ansys Inc., Canonsburg, PA, USA, and the CFD-Solver used is “AVBP” by

Cerfacs, Toulouse, France. After test runs with different meshes, both full and

quarter meshes in sample calculations, the following findings have influenced

the choice of the final mesh:

• Quarter meshes exploiting periodicity exhibit two disadvantages:

1. The turbulent full 3D flow field is reduced to a 90° periodic problem.

In this way parts of the advantages of LES calculations are lost. Espe-

cially turbulent 3D effects are affected.

2. Numerical issues have been observed on the edges of the periodic-

ity which quickly can lead to divergence. Strong effects have been

observed on the rotational axis itself and the corner point between

periodicity, wall and outlet.
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6.2 Turbulent Test Case: The BRS Burner

• Structured meshes exhibit the following disadvantages:

1. The ordered structure of the grid cells helps non-physical high order

modes to develop.

2. Checkerboard patterns can develop easily in the pressure and veloc-

ity fields.

3. The development of jet-like structures on the boundary conditions

can be favored.

4. Local mesh refinement is difficult to realize.

Therefore, the final mesh used for the LES calculations is a full 3D unstruc-

tured mesh. It is locally refined along the walls, the swirler and the flame. The

smallest cells are governed by resolution requirements on the front edge of

the swirler blade, which is 1 mm thick, and by resolution in the flame front. A

thickening factor of the thickened flame model of less than 10 was required.

Larger thickening factors caused an elongation of the flame along the walls

of the combustion chamber, displacing the heat release zone. Smaller cells

were not used in order to avoid too small time steps. The resulting mesh has

≈ 10·106 tetrahedral cells; using this mesh a time-step of 1.5·10−7s can be used

in the hot case, keeping the CFL number smaller than 1. The mesh is shown in

figures 6.18 and 6.19.

The numerical scheme cannot be chosen freely because of the implementa-

tion of the boundary conditions. A 1-step temporal scheme is required for

the excitation and possible filters in the boundary condition. Further devel-

opment on the boundary conditions would be necessary to overcome this lim-

itation.

For acoustic calculations, often schemes of high order in space are used. Here,

schemes of second order in space and first order in time are employed. There-

fore, the properties of the mesh for acoustic waves have been evaluated using

test cases. Both the finest and the coarsest parts of the mesh show less than

1% loss in the amplitude of the acoustic waves. The test was conducted us-

ing a 0.5 m domain with the corresponding mesh at cold conditions (293 K,

101,325 Pa). An excitation of the highest frequency of interest, 1000 Hz, was

imposed at the inlet and the recorded amplitudes at the inlet and the non-

reflecting outlet have been compared. The parameters have been chosen to
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cover the worst case scenario which in this case is the lowest spacial resolu-

tion of an acoustic wave on the mesh.

Figure 6.18: Axial cut through the mesh of the BRS burner with a detail of the

mesh around the entrance to the combustion chamber showing

the local refinement.

6.2.3.2 Boundary Conditions

The application of the CNN approach for the determination of thermo-

acoustic stability requires careful choice of the boundary conditions. An

overview over all boundary conditions applied can be seen in figure 6.20. The

single patches are described below.

Outlet Boundary Condition The simulation suffers from a high order mode

which develops over the course of ≈ 8 · 105 time steps (at 1.5 · 10−7s) in the

combustion chamber. The mode develops on the diagonal of the cross section

of the combustion chamber at a frequency which suggests an acoustic origin.

Such mode has not been observed in the experiments.
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6.2 Turbulent Test Case: The BRS Burner

Figure 6.19: Location of the flame by contours of the reaction-rate in the area

of the detail of the mesh visible in figure 6.18.

Figure 6.20: Overview of the boundary patches used for the numerical simu-

lation of the BRS burner.
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The non-reflecting boundary conditions described in section 4.2, which are

used here, are only non-reflecting for the planar contributions of the acous-

tic signal. Non-planar contributions as they occur with the diagonal mode

are partly reflected. Therefore, in order to suppress the mode the outlet has

been divided into four zones, so each zone can react locally on the diagonal

mode. In combination with a low coupling parameter, this suppresses the oc-

currence of the high order modes long enough to obtain an undisturbed time

series for post-processing. Each of the four zones has its own set of three mon-

itor planes forming a small characteristics based filter (see figure 6.21). The

planes are defined only in the quadrant which corresponds to the boundary

condition. Post-processing shows that the signals obtained at the four outlet

patches indeed are not identical. This is due to flow field asymmetries and

small asymmetries in the acoustics. The division of the outlet into four zones

should eliminate parts of the effect caused by these asymmetries. The excita-

tion is imposed synchronously at all outlets. The center part of the outlet is

formed by a small velocity inlet which imposes a zero velocity and prevents

fluid from flowing back into the domain. This inlet is non-reflecting and exci-

tation is imposed in phase with the outlets. The monitor-planes for this inlet

are located at the same distance as the ones for the outlets but cover the en-

tire cross subsection (see figure 6.21). It is assumed that asymmetries do not

have an influence on the small center zone. Hence, although the outlet is di-

vided into five zones, acoustically it acts as one non-reflecting patch imposing

planar waves.

Inlet boundary Condition The inlet boundary condition is a characteristic mass-

flux boundary condition. In the test rig, the inlet is formed by a sinter-metal

plate. This plate is expected to be nearly fully reflecting. Therefore, a high cou-

pling parameter is assigned to the inlet, providing a minimum of 99% reflec-

tion over the frequency band of interest (50−1000 Hz). The velocity is imposed

using a flat profile with a linear decay to the walls on the 5 mm next to the walls.

This ensures the correct mass flow along with the no-slip walls.
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6.2 Turbulent Test Case: The BRS Burner

Figure 6.21: Location of the monitor planes for the center patch (zero velocity

inlet) and one outlet boundary patch (lower left).

Wall boundary conditions The walls are divided into three patches: the combus-

tion chamber including some millimeters of the swirler-duct and the tip sub-

section of the lance are modeled using a standard no-slip isothermal wall. The

temperature is set to 600 K which is an estimated value [42]. No temperature

measurement was performed on the walls during the experiments, but there

was visual access to the interior of the combustion chamber. Since no glowing

of the metal inside the combustion chamber was observed during the experi-

ments, the temperature has been set to a level below the glow temperature.

The isothermal wall has an important impact on the shape of the flame. Fig-

ure 6.19 shows that the flame is burning more intensely on the inner shear

layer, next to the lance. The outer shear layer shows little chemical reaction.

This corresponds to observations made in the experiments and is caused by

quenching mechanisms next to the relatively cold wall. If an adiabatic wall

is used here, both shear layers react with comparable intensity, which is not

physical. Komarek and Tay have done extensive studies on this topic [43, 104].

The rest of the walls are all located in cold areas of the burner and therefore an

adiabatic no-slip wall is used.

6.2.3.3 Numerical Parameters

AVBP offers different temporal and spacial discretization schemes. According

to the user manual different combinations of these schemes are possible, but
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not random combinations. The implementation of the boundary condition

and the excitation are most stable on a single-step, explicit temporal scheme.

Therefore, the single step Lax Wendroff scheme has been chosen. This scheme

offers second order precision in time and space. As mentioned above, the grid

is fine enough to not cause dissipation on acoustic waves in the range of in-

terest. No substantial curtailment in the precision of the flow field is expected

from the quite low order of the numerical scheme, as long as the resolution

of the grid is reasonably fine. The time step is 1.5 · 10−7s and is kept fixed to

facilitate the acoustic excitation and the post-processing. Data for the post-

processing are extracted every 10 iterations at 17 monitor planes. 15 of these

are located close to the outlet, as described above in the corresponding sec-

tion, one is located at the inlet and another one close to the swirler. The Wale

LES subgrid scale model is used, which is described in section 2.4.2. A viscos-

ity mask that increases linearly towards the outlet is applied at the last 50 mm

of the walls of the combustion chamber. The outlet patch itself also has a vis-

cosity mask of 0.2. No influence on the acoustic field is visible and the acoustic

data are extracted far enough away from the outlet patch. A thickened flame

model with a fixed thickening factor of 5 is used for the simulation of the com-

bustion. The parameters have been adjusted vs a 1-Step Arrhenius formula-

tion in a 1-D simulation. The most relevant input files are printed in the ap-

pendix. Computation is performed on the HLRB II supercomputer of the Leib-

niz Rechenzentrum (LRZ) in Garching which is Nr. 44 in the Top 500 super-

computer list of November 20081. For a typical productive run, 128-256 CPUs

are used. The code yields about 400,000 iterations in 48h on 256 CPUs.

Mean LES results for all configurations are summarized in section 8.1. In gen-

eral it can be stated that the time averaged LES flow fields and flame shapes

agree well with the experimental data.

6.2.3.4 Acoustic Excitation Signal for the LES Calculation

The acoustic excitation is essential to obtain the flame transfer function F (ω)

or in our case the part loop transfer function (PLTF). The signal used has to ful-

fill certain requirements in order to permit good results. The first requirement

1www.top500.org
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6.2 Turbulent Test Case: The BRS Burner

is a limited frequency content, so that the signal can be transmitted without

substantial dissipation on the grid. The WHI post-processor implemented for

system identification uses correlation analysis to obtain the transfer function.

This implies that a continuous spectrum, i.e. noise, can be used as excitation.

Conventional FFT would suffer from the low energy content in each frequency

in this case. Due to the correlation approach, the WHI is less sensitive to this

limitation but rather needs signals with strong correlation properties. Experi-

ments on different signals show that a high level of significant changes in the

signal, i.e. rapid changes of the signal amplitude, facilitates the correlation and

yields better auto-correlation results. Therefore, a pseudo random binary sig-

nal (pbrs) is chosen for the excitation. The signal is low pass filtered, which

is necessary for the following two reasons. First, the grid can only transmit

signals up to a certain frequency. Second, a self excited high order mode in

the simulation, which occurs at frequencies of f ≈ 5000 Hz, has to be avoided.

Therefore, the signal should not contain those frequencies. The signal used

has vanishing frequency content above 2500 Hz. In order to preserve the shape

of the signal during the filtering process, the maximum frequency of the bi-

nary changes is limited and the signal is filtered afterwards. The beginning

part of a typical excitation signal is shown in figure 6.22. A longer series can

be seen in figure 6.24. In conclusion, the signal is a compromise between fre-
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Figure 6.22: Typical shape of a filtered pbrs, the first time steps have been set

to 0 before filtering to avoid filter artifacts.

quency content and a pronounced auto-correlation. The spectrum and auto-
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correlation matrix of the signal in figure 6.22 are shown in figure 6.23.

0 1000 2000 3000 4000 5000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Frequency (Hz)

|Y
(f

)|

Figure 6.23: Single sided amplitude spectrum (left) and auto-correlation ma-

trix (right) of the filtered pbrs in figure 6.22.

6.2.3.5 Acoustic Results from the LES Calculation

The aim of the LES calculation is the determination of the part loop trans-

fer function, i.e. the acoustic behavior of the LES domain. Here, this goal is

achieved using correlation based system identification (see section 2.8) with a

time series of at least 800,000 iterations of 1.5 ·10−7s. Figure 6.24 shows a typi-

cal time series of ingoing and outgoing waves. Different WHI parameters have

been evaluated but no configuration was found that yields reasonable results

for the LES data. The results of the WHI postprocessing of typical LES results

depend strongly on the length of the unit impulse response vector and for the

amplitude barley exhibit any trend. Solely the phase shows a typical evolution

around a linear decay. A typical WHI postprocessing result of such a time se-

ries is depicted in figure 6.25. These PLTFs are combined with a network model

for the missing part of the combustion chamber and the impedance of the

plate at the outlet of the combustion chamber. The impedances of this plate

have been measured by Komarek [42] for different operating points, see figure

6.26. In the network model, the values of P = 50 kW, λ = 1.3 can be adapted

assuming a Strouhal similarity. Figure 6.27 shows a typical Nyquist curve ob-

tained in this way. The curve not does neither predict the unstable behavior
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Figure 6.24: Time series of acoustic excitation (top) and response (down) for

the LES simulation of the turbulent premix burner at P = 70 kW,

λ= 1.3
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Figure 6.25: Part loop transfer function of the turbulent premix burner for

P = 50 kW, λ = 1.3, obtained from the LES data using WHI post-

processing. Left: amplitude ratio, right: phase.
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Figure 6.26: Reflection coefficient of the outlet of the BRS burner, left ampli-

tude, right phase. dash-dot + : p = 70 kW, λ = 1.3; dashed ∆ :

p = 70 kW, λ= 1.1.

nor does it show a significant approximation of the critical point for frequen-

cies of f ≈ 150 Hz where instability was observed in the experiment. Hence,
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Figure 6.27: Nyquist curve of the turbulent premix burner for P = 50 kW, λ =
1.3 obtained from the LES data using WHI postprocessing for the

long combustion chamber.

the application of the CNN method to the BRS burner fails.
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6.2 Turbulent Test Case: The BRS Burner

6.2.4 Analysis of the Problems of the CNN Method

The problems that occurred when the CNN method was applied to the BRS

burner require a deeper analysis of this case. This analysis is conducted in this

section.

6.2.4.1 Estimated Acoustic Properties of the LES Domain

Similarly to the laminar test case for the perforated plate burner of ECP, the

acoustic properties of the LES Domain will be estimated from a network setup.

FTF’s have been determined by Komarek [42] for the power levels and equiva-

lence ratios mentioned above (see figure 6.28). Mind that due to experimental

limitations, the values are only reliable below 500 Hz. At higher frequencies,

they rather show the trend. Huber has numerically determined the transfer
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Figure 6.28: FTF of the BRS burner, left amplitude, right phase. dash-dot + :

p = 70 kW, λ = 1.3; solid o : p = 50 kW, λ = 1.3; dashed ∆ : p =
70 kW, λ= 1.1.

function of the BRS swirl generator, see [27] for more details. All other ele-

ments can be modeled using the equations given in section 2.7. The variables

used for the single elements are extracted from the mean solution field (see

section 8.1) of the simulation at the locations sketched in figure 6.29. Tables

6.4, 6.5 and 6.6 summarize the values.

A network model for P = 50 kW, λ= 1.3 will be treated here in detail, all other
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Figure 6.29: Location of the extraction points for the values for the network

model (not to scale).

[m] z =−0.275 z =−0.1 z = 0.025 z=0.05 z=0.1 z=0.15 z=0.199

ρ [kg/m3] 1.152 1.144 0.306 0.227 0.200 0.214 0.227
c [m/s] 349.6 350.1 701.8 801.1 862.1 835.5 818.1

w [m/s] 0.763 22.2 5.02 12.4 18.0 17.4 16.3

Table 6.4: Mean values at indicated positions for P = 70 kW, λ= 1.1.

[m] z =−0.275 z =−0.1 z = 0.025 z = 0.05 z = 0.1 z = 0.15 z = 0.199

ρ [kg/m3] 1.179 1.173 0.345 0.271 0.224 0.230 0.244
c [m/s] 350.6 350.5 662.8 745.2 821.1 810.4 793.1

w [m/s] 0.880 26.1 6.01 11.4 19.0 19.4 18.4

Table 6.5: Mean values at indicated positions for P = 70 kW, λ= 1.3.

[m] z =−0.275 z =−0.1 z = 0.025 z = 0.05 z = 0.1 z = 0.15 z = 0.199

ρ [kg/m3] 1.171 1.167 0.341 0.267 0.226 0.239 0.253
c [m/s] 250.2 350.1 670.0 750.0 817.4 797.1 778.8

w [m/s] 0.635 18.9 4.06 8.44 13.8 13.6 12.8

Table 6.6: Mean values at indicated positions for P = 50 kW, λ= 1.3.
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6.2 Turbulent Test Case: The BRS Burner

configurations can be set up similarly and yield corresponding results. The

network model for the estimation of the acoustic properties of the BRS burner

is sketched in figure 6.35.

Figure 6.30: TaX network configuration for the estimation of the acoustic be-

havior of the LES domain of the turbulent premix burner

The result of the evaluation depends significantly on the loss coefficients at

the two area changes. Since there is no data available for them, they repre-

sent an important uncertainty. Loss coefficients of ζ1 = 1.358 and ζ2 = 96 esti-

mated with the pressure data from the mean flow calculation have been cho-

sen. These values are within the range given in the literature [30], when the

different reference velocities are taken into account. Part loop transfer func-

tions for the three configurations are shown in figures 6.31, 6.32 and 6.33. The

loss coefficients refer to the downstream velocity of the area change.
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Figure 6.31: Part loop transfer function of the turbulent premix burner for P =
70 kW, λ = 1.1, estimated with TaX. Left: amplitude ratio, right:

phase.

111



Application

100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

Frequency (Hz)

A
m

pl
itu

de
 r

at
io

100 200 300 400 500 600 700 800
−pi

−pi/2

0

pi/2

pi

Frequency (Hz)

P
ha

se

Figure 6.32: Part loop transfer function of the turbulent premix burner for P =
70 kW, λ = 1.3, estimated with TaX. Left: amplitude ratio, right:

phase.
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Figure 6.33: Part loop transfer function of the turbulent premix burner for P =
50 kW, λ = 1.3, estimated with TaX. Left: amplitude ratio, right:

phase.
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The pure acoustic properties of the domain can be seen in figure 6.34, where

in contrast to the figures above, the flame model is removed. All other compo-

nents are identical. The peaks in the amplitude vanish and the phase exhibits

a nearly linear decay. The linear decay corresponds to a time delay for a wave

traveling from the outlet to the burner mouth and back.
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Figure 6.34: Part loop transfer function of the turbulent premix burner for the

mass flow rate of P = 50 kW,λ= 1.3 without flame, estimated with

TaX. Left: amplitude ratio, right: phase.

6.2.4.2 Analysis of the Acoustic Response of the LES

Comparing the expected PLTF with the one obtained in the LES exhibits some

interesting facts: The PLTF, obtained using LES (figure 6.25) differs substan-

cially from the estimated PLTF (figure 6.33). Especially around f = 200 Hz in

the LES hardy any correlation between signal and response is present, the

PLTF approaches zero. This is not the case in the estimated PLTF. The phase

of the PLTF of the LES shows a decay which is more similar to the estimated

value without flame model (figure 6.34) than with the expected behavior.

In the temporal evolution of the response signal of the LES calculation (figure

6.24), a low frequency perturbation can be seen, which is growing and decay-

ing. The frequencies of these oscillations are summarized in table 6.7 for the

different power and equivalence ratios which were examined . The table shows

also that there is a proportionality between mass flow rate and frequency.
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case P = 50 kW, λ= 1.3 P = 70 kW, λ= 1.3 P = 70 kW, λ= 1.1

f [Hz] 130 165 160
ρ ·u [kg/s/m2] 2.25 3.08 2.82

f ,/(ρ, ·u) [kg/s2/m2] 56 55 57

Table 6.7: Frequency of maximum amplitude in the acoustic response, mass

flow rate before the flame in the LES Calculation of the turbulent

premix burner and proportionality between frequency and mass

flow rate for the three operation points.

These frequencies do not coincide with the maximum of the PLTF obtained us-

ing WHI postprocessing (figure 6.25). This implies that the flame dynamics are

not dominated by the acoustic excitation. The fact that the phase corresponds

to the estimated phase without flame model supports this assumption. The

flame could be self excited within the LES domain.

The fact that there is a proportionality between mass flow rate and frequency

(see table 6.7) suggests that inertial effects are involved in the generation of the

instability in the LES. Additionally, the frequency of f ≈ 150 Hz in the simula-

tion is of the order of magnitude that would be expected for typical convective

phenomena (density is not considered here),

f ≈
ū

lchar

=
18.9 m/s

0.1 m
= 189 Hz, (6.3)

where ū is the mean axial velocity in the swirler for P = 50 kW, λ= 1.3 and lchar

corresponds approximately to the distance between swirler and flame. Keller,

according to [76], obtains a similar frequency estimation when considering

an oscillating rotating fluid bulk in between swirler and burner mouth. Hence,

the main instability mechanism in this burner in the simulation could be of

non-acoustic origin, but convection or inertia driven. Taking into account the

experimentally observed frequencies of the instabilities, table 6.3, this consid-

eration proves to be partly reasonable also for the experiment:

P ↑→ ū ↑→ f ↑ . (6.4)

The experiment therefore might exhibit the same phenomenon as the LES

and exhibit an instability driven by convection.
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The assumption of a non-acoustic origin of the instability is supported by a

numerical examination of the BRS using Comsol. A model of the hot burner

having the long chamber including realistic temperature and density fields

but no flame exhibited eigenfrequencies in the range of 500 Hz, which is far

away from the observed ones. There was also an eigenfrequency in the range

of 50 Hz, but this is likely to be a numeric artifact. [110]

The fact that the length of the combustion chamber determines stability still

does not fit this assumption, but a tuning or detuning of the system by the

length of the chamber might be the reason.

The amplitude of the FTF which was experimentally determined (see figure

6.28) still exhibits its maximum around the frequencies of the instabilities.

But, monochromatic, i.e., single frequency siren excitation, signals are used

when FTFs are determined experimentally. These signals have stronger energy

content in the single frequency and are applied over a long time. Therefore,

they may favor the triggering of hydrodynamic effects.

In contrast, the time series obtained in the LES is rather short and poly-

chromatic. Therefore, establishing a causal link as would be required for

the WHI is nearly impossible. Possibly, a triggering of the hydrodynamic

mechanism with the acoustic mechanism would occur for longer excitation

or monochromatic excitation. On the other hand, a series of calculations

using monochromatic excitation would exceed the computational resources

which are available and make the approach impracticable.

6.2.4.3 Analysis with Network Model

The BRS is examined using a conventional network model in combination

with a diagnostic dummy. The aim of this analysis is to determine if the po-

sition of the diagnostic dummy, i.e. the cut, plays a role in the problems that

have occurred when the CNN method was applied to the BRS burner. How-

ever, in the CNN method, the location of the cut is determined by the interface

between LES and Network domain. In the present configuration the advan-

tages of the CNN method can only be utilized, when the interface is located

downstream of the flame, as it has been done. In this way, it is possible to use
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the network model for the two different lengths of the combustion chamber.

At the same time, the complex interactions between swirl, combustion and

acoustics in the flame can be modelled in the LES domain.

Nevertheless, it is of interest if other configurations would have obtained bet-

ter results. The complete network model of the BRS burner is similar to the

model for the estimation of the acoustic properties. Only the impedance, i.e.

the reflection coefficient of the plate at the outlet (figure 6.26) of the com-

bustion chamber, has to be added. The corresponding TaX network model is

shown in figure 6.30. The following different locations for the Nyquist dummy

Figure 6.35: TaX network configuration for the estimation of the acoustic be-

havior of the turbulent premix burner

have been evaluated:

• downstream of the flame (as in the CNN method),

• in the plenum,

• between swirler and burner mouth (the connection between flame ele-

ment and velocity fluctuation in the swirler duct is changed and velocity

information is extracted right downstream of the diagnostic dummy)

The corresponding Nyquist plots for both 300 mm and 700 mm combustion-

chamber length are shown in figures 6.36, 6.37 and 6.38. The following items

can be observed:

• For the cut located downstream of the flame (figure 6.36), an interpreta-

tion is hardly possible. Approximations to the critical point can be ob-

served for f ≈ 270 Hz in case of the short combustion chamber and for

f ≈ 490 Hz in the case of the long combustion chamber. In the frequency

range of 150 Hz the Nyquist curve never circles the critical point in a way

that the critical point is located to the right of the Nyquist curve. Hence,
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Figure 6.36: Nyquist plot of the turbulent premix burner for short (left) and

long (right) combustion chamber for a location of the Nyquist

Dummy downstram of the flame. Black arrows indicate the sense

of rotation, blue arrows depict certain frequencies.
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Figure 6.37: Nyquist plot of the turbulent premix burner for short (left) and

long (right) combustion chamber for a location of the Nyquist

Dummy in the plenum. Black arrows indicate the sense of rota-

tion.
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Figure 6.38: Nyquist plot of the turbulent premix burner for short (left) and

long (right) combustion chamber for a location of the Nyquist

Dummy between swirler and burner mouth. Black arrows indi-

cate the sense of rotation.

no indications for the instability, which is present in the experiment, can

be seen.

• If the cut is located in the plenum (figure 6.37), the short configura-

tion does not exhibit indicators for instability. The long configuration

shows an unconventional loop having an inverted sense of rotation for

f ≈ 490 Hz. The curve has the basic shape of half a circle. This circle cor-

responds to the acoustic eigenfrequency of the plenum. Due to the pro-

nounced area changes between plenum and swirler, a strong reflection is

present at the area change. Therefore, the acoustics of the plenum domi-

nate the Nyquist curve.

• If the cut is placed between swirler and burner mouth, the most signifi-

cant approximations to the critical point are at f ≈ 270 Hz for the short

and f ≈ 270 Hz for the long configuration. Both of them are stable.

The location of the cut does significantly change the Nyquist curve. However,

none of the three positions resulted in meaningful Nyquist curves for stability

evaluation.
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6.2.5 Conclusion

The results for the BRS burner do not deliver the data necessary for a stability

examination using the CNN method.

The evolution of the phase compared to the preliminary examination of the

pure combustion chamber (figure 6.34) implies that a correlation between the

effect of the flame and the acoustic excitation barely exists. Hence, the insta-

bility mechanism for this case is likely not captured using the CNN method.

The result of the LES calculation does not deliver the information necessary

for this method. A possible reason for this is that the instability is not purely

acoustically driven. Additionally, the feedback line of the instability seems to

be located upstream of the flame, where it is not captured by the cut.

Therefore, the CNN method is not able to capture the effect and predict the

instability. However, for a definite explanation further experiments would be

required. A different setup for the LES is neither likely to solve the problem

nor is it expedient here, since the main argument for the application of the

CNN approach was the possibility to account for different lengths of the com-

bustion chamber. This is only possible with the present setup. Therefore, the

CNN method fails for this example.
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7 Summary and Discussion

The CNN approach for the determination of thermo-acoustic stability using

LES simulations and network models has been evaluated in this work theoret-

ically and practically. The theoretical part has demonstrated the potential and

the limitations of this method and Nyquist methods in general to acoustic and

thermo-acoustic problems.

Two test cases have been calculated:

• A laminar premix burner with a plenum of variable length.

• A turbulent premix burner operated at different operating points and two

combustion chambers of different lengths.

Both cases exhibit instabilities at certain parameters. Although both cases

seem to be suitable for the application of the CNN method, the application

is only successful in the first case. In this first case, the eigenfrequencies are

well predicted, only the growth rates are insecure due to unknown acoustic

losses.

In the second case, the application of the CNN method to the problem fails.

The reason for this failure are evaluated and it can be concluded that the most

likely cause is a convective and not acoustic origin of the instability.

Due to the difficulties which occurred, the theoretical background of the ap-

plication of Nyquist methods to thermo-acoustic cases have been pointed out.

The assumption that Nyquist models could be used without any restrictions

for thermo-acoustic cases is not thoroughly valid:

• The location of the cut plays an essential role.

• Badly placed cuts generate Nyquist curves, which cannot be interpreted

in a reliable manner.
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• A position between burner mouth and flame is favorable, because

thermo-acoustic modes are likely to be localized here.

In pure network models, the location of the cut, i.e. diagnostic dummy, can

mostly be changed quickly to meet these requirements. Reasons for the re-

quirements of the location of the cut and the consequences for the Nyquist

curve have been found in the theory of conformal mapping which is the math-

ematical origin of the Nyquist criterion.

The CNN method has the same restrictions as general Nyquist methods. Addi-

tionally, the position of the cut is imposed by the interface between CFD and

network domain. The favorable position between burner mouth and flame is

not applicable here, both will mostly be part of the CFD domain.

In the course of this work boundary conditions for acoustic applications in

LES have been developed as well as acoustic data extraction tools for LES. Both

have already been applied successfully in different applications [16, 51, 103]

For future applications, better signal processing tools for data post-processing

should be developed, since WHI methods have exhibited limitations for noisy

applications.

To summarize, it can be stated, that the field of application of CNN method

is more limited than originally expected [46]. It is sensitive to the location of

the cut and at the same time the cut often cannot be placed in the optimum

position. Therefore, it is not suitable for a quick and unprepared evaluation.

The application is limited to cases where the location of the mode is favorable,

i.e. the mode is located where the system is cut.
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8 Appendices

8.1 Appendix A: BRS LES Mean Results

The highly instationary nature of LES requires a large amount of time steps

to compare simulation and experiment. Experimental results have been ob-

tained in terms of mean flow and mean reaction fields. In order to compare

simulation and experiment in a meaningful way, a mean solution over 200,000

iterations has been calculated. The averaged flow field of this is well enough

converged to permit a comparison.

8.1.1 Flow Field

Experimental data of the flow field of the burner has been provided by my

colleague Thomas Komarek. This data includes Particle Induced Velocimetry

(PIV) measurements of the hot burner. A mean flow field of 1000 PIV data sets

and the mean LES flow field are compared in figure 8.1 for P = 70 kW and λ=
1.3, figure 8.2 for P = 50 kW andλ= 1.3 and figure 8.3 for P = 70 kW andλ= 1.1.

In general, the flow field is well reproduced in the LES. It can be seen from

these figures that the main difference is a shorter and stronger center recircu-

lation zone in the LES case. The velocity profiles for axial distances of 30, 50,

70 and 90 mm from the burner mouth are shown in figure 8.4 for P = 70 kW,

λ = 1.3, in figure 8.5 for P = 50 kW, λ = 1.3 and in figure 8.6 for P = 70 kW,

λ = 1.7. Here, a good agreement of the location and amplitude of the max-

imum axial velocity is visible, while, as mentioned before, the recirculation

zone is stronger and shorter in the LES case. The differences between LES

and experiment are within the range that other authors have experienced with
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Figure 8.1: Mean axial flow field of the experiment (left) and the LES (right)

using the same color scale for the axial velocity. The flow field is

taken from a center plane, P = 70 kW, λ= 1.3.
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Figure 8.2: Mean axial flow field of the experiment (left) and the LES (right)

using the same color scale for the axial velocity. The flow field is

taken from a center plane, P = 50 kW, λ= 1.3.
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Figure 8.3: Mean axial flow field of the experiment (left) and the LES (right)

using the same color scale for the axial velocity. The flow field is

taken from a center plane, P = 70 kW, λ= 1.1.

AVBP [89, 92, 99].

8.1.2 Reaction Zone

In contrast to flow data, reaction rates and zones are difficult to obtain from ex-

periments. For the BRS burner OH* chemiluminescence has been used in the

experiments. In the numerical simulation, the heat release rate can be directly

determined. In contrast to PIV measurements, where particles are tracked in a

light sheet, chemiluminescence methods yield data, which is integrated over

the depth along the line of sight. In order to permit a valid comparison be-

tween experiment and simulation, the data from the simulation has been in-

tegrated over the depth of the domain [43, 104]. Figures 8.7 and 8.8 show the

reaction zones for experiment and LES. Since the values are of different origin,

no color scale is given, the color varies linearly between 0 and the maximum

value. The general shape of the flame proves to be well reproduced. The cold

walls in the combustion chamber in combination with the thickened flame

combustion model indeed prevent the outer shear layer from burning. Only

little heat release can be observed there. Especially in the RANS context, com-

bustion models often fail in reproducing this correctly [43, 104]. Differences

between experiment and LES can be observed in the center part, where the
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Figure 8.4: Radial flow field profile at an axial distance of 30, 50 (top left

and right), 70 and 90 mm (bottom left and right) from the burner

mouth. LES (red, dashed) and experimental (blue, solid) data for

the flow field taken from a center plane, P = 70 kW, λ= 1.3.
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Figure 8.5: Radial flow field profile at an axial distance of 30, 50 (top left

and right), 70 and 90 mm (bottom left and right) from the burner

mouth. LES (red, dashed) and experimental (blue, solid) data for

the flow field taken from a center plane, P = 50 kW, λ= 1.3.
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Figure 8.6: Radial flow field profile at an axial distance of 30, 50 (top left

and right), 70 and 90 mm (bottom left and right) from the burner

mouth. LES (red, dashed) and experimental (blue, solid) data for

the flow field taken from a center plane, P = 70 kW, λ= 1.1.
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Figure 8.7: Mean reaction zone of the experiment (left) and the LES (right).

OH* chemiluminescence is used for the experiment, the LES re-

sults shows the heat release rate. Color map is identical for both

images. P = 70 kW, λ= 1.3.
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Figure 8.8: Mean reaction zone of the experiment (left) and the LES (right).

OH* chemiluminescence is used for the experiment, the LES re-

sults shows the heat release rate. Color map is identical for both

images. P = 50 kW, λ= 1.3.
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Figure 8.9: Mean reaction zone of the experiment (left) and the LES (right).

OH* chemiluminescence is used for the experiment, the LES re-

sults shows the heat release rate. Color map is identical for both

images. P = 70 kW, λ= 1.1.

LES shows less activity, and close to the walls, where the LES reaction zone

thickens up slightly and also shows a slight offset to downstream. The less pro-

nounced reaction in the center part may cause longer flames. This would in-

crease the acceleration of the gas towards the center line in the downstream

part and, hence, be reason for the stronger recirculation zone. The stronger

reaction at the sides may also be responsible for the slightly broader velocity

peaks of the LES in figures 8.4 , 8.5 and 8.6. The thickened reaction zone may

be due to the combustion model. The axial distribution of the heat release for

both experiment and LES can be seen in figures 8.10, 8.11 and 8.12. The re-

sults prove that the axial distribution of the reaction zone is well reproduced

and the peak of the chemical activity is at the right position in the LES. This is

essential for a correct time delay in the acoustic response.
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Figure 8.10: Axial distribution of the heat release zone, normalized by maxi-

mum value. Heat release for LES (red, dashed) and OH* chemilu-

minescence for the experiment (blue, solid). P = 70 kW, λ= 1.3.
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Figure 8.11: Axial distribution of the heat release zone, normalized by maxi-

mum value. Heat release for LES (red, dashed) and OH* chemilu-

minescence for the experiment (blue, solid). P = 50 kW, λ= 1.3.
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Figure 8.12: Axial distribution of the heat release zone, normalized by maxi-

mum value. Heat release for LES (red, dashed) and OH* chemilu-

minescence for the experiment (blue, solid). P = 70 kW, λ= 1.1.
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8.2 Appendix B: BRS LES Input Files

8.2.1 run.dat

’../MESH/mesh_sec_out’ ! Mesh file

’../MESH/mesh_sec_out.asciiBound’ ! Ascii Boundary file

’../MESH/mesh_sec_out.asciiBound_tpf’ ! Ascii_tpf Boundary file

’../MESH/mesh_sec_out.solutBound’ ! Boundary solution file

’./SOLUT_TIME/BRS_full_unstr_50_13_5spec_av_0100000.h5’

’./SOLUT_TIME/BRS_full_unstr_50_13_5spec_av’

’./TEMP_TIME/’ ! temporal evolution directory

1.0 ! Reference length | scales coordinates X by X/reflen

100000 ! Number of iterations

100 ! Number of elements per group (typically of order 100)

1 ! Preprocessor: skip (0), use (1) & write (2) & stop (3)

1 ! Interactive details of convergence (1) or not (0)

10 ! Prints convergence every x iterations

1 ! Stores solution in separate files (1) or not (0)

10000 ! Stores solution every x iterations

1 ! Euler (0) or Navier-Stokes (1) calculation

0 ! Store additional info (1) All (2) Sensors or (0) not

3 ! Chemistry

2 ! LES

0 ! TPF

31 ! Artificial viscosity

2 ! Steady state (0) or unsteady (1) calculation

1.5e-7

1 0 0 0 0 ! Scheme specification

1 ! Number of Runge-Kutta stages

145



Appendices

1.0d0 1.0d0 1.0d0 ! Runge-Kutta coefficients

0.7d0 ! CFL parameter for complete update

0.05d0 ! 4th order artificial viscosity coeff.

0.1d0 ! 2nd order artificial viscosity coeff.

0.10d0 ! Fr viscous time-step
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8.2.2 .asciiBound

Syntax for the TDIBC-patches (1-5 here):

• parameters 1-1 as usual

• Identifier number (<1) links patch to bndy_param.dat and plane defini-

tion

• flag for reference value averaging:

– 0: moving average as defined in record_planes.dat and cut-

planes.choices

– 1: used fixed pressure as reference, defined in paramter line 10

– 2: used fixed velocity as reference, defined in paramter line 11

– 3: used fixed pressure and velocity as reference, defined in paramter

lines 10 and 11

• lines 6-9 as 4-7 (for inlet, for outlet only one line) in usual Boundary Con-

ditions

• reference pressure

• reference velocity

Grid processing by hip version 1.16.5 ’Hirondelle’.

9 boundary patches.

---------------------------------------------

Patch: 1

outlet_block

INLET_RELAX_WAVEID

1

1

1

-6

0
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100000

100000

100000

100000

101300

0

---------------------------------------------

Patch: 2

outlet-x-y

OUTLET_RELAX_WAVEID

1

1

1

-2

0

30000

101300

0

---------------------------------------------

Patch: 3

outlet+x-y

OUTLET_RELAX_WAVEID

1

1

1

-3

0

30000

101300

0

---------------------------------------------

Patch: 4

outlet+x+y

OUTLET_RELAX_WAVEID
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1

1

1

-4

0

30000

101300

0

---------------------------------------------

Patch: 5

outlet-x+y

OUTLET_RELAX_WAVEID

1

1

1

-5

0

30000

101300

0

---------------------------------------------

Patch: 6

velocity-inlet-11

INLET_RELAX_RHOUVW_T_Y

1

1

1

88000

88000

88000

88000

---------------------------------------------

Patch: 7

wall_chamber
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WALL_NOSLIP_ISOT

1

---------------------------------------------

Patch: 8

wall_lance

WALL_NOSLIP_ISOT

1

---------------------------------------------

Patch: 9

wall_rest

WALL_NOSLIP_ADIAB
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λ= 1.3 λ= 1.1

sl 2.723651E-01 3.513237E-01
δ0 5.391695E-04 4.616703E-04

Table 8.1: Parameters for the combustion model

8.2.3 input_chem.dat

5.0d0 ! fthick - flamme thickening

0 ! No clipping (0), clipping (1)

1.0d-3 ! Stability criterion for chemical reactions

2.723651E-01 ! sl - laminar flame speed

5.391695E-04 ! delta0 - laminar flame thickness

0.0095d0 ! constant of the efficiency function

10.0d-3 ! Integral length scale

1.013d5 ! Reference pressure for reaction rate

0.5d0 ! Coefficient for activation temperature

293.d0 ! Cold gas temperature for omega0

1.960737E+03 ! Hot gas temperature

4.0 ! mass stoechiometric ratio

2.69d-06 ! omega0

1 ! reference reaction for the dynamic thickening

sl and δ0 for different air ratios are given in table 8.1.
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8.2.4 bndy_param.dat

The bndy_param.dat is the control file for the time domain impedance bound-

ary condition (TDIBC), This bndy_param.dat does not include excitation, this

would not be printable, since it includes several million numbers. Syntax:

• First line: Numer of TDIBCs

• a block of seven lines for each TDIBC

– Identifier Nymber (< 0) links the TDIBC to the patch in the .ascii-

Bound

– number m of items in line 5 of the block

– number n of items in line 6 of the block

– number o of items in line 7 of the block

– coefficients b1 b2 ... bm for TDIBC

– coefficients a0 a1 ... an−1 for TDIBC

– signal s1 s2 ... so−1 imposed as excitation (m/s at inlet, Pa at outlet)

5

-6

2

2

2

0.0 0.0

0.0 0.0

0.0 0.0

-2

2

2

2

0.0 0.0

0.0 0.0

0.0 0.0
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-3

2

2

2

0.0 0.0

0.0 0.0

0.0 0.0

-4

2

2

2

0.0 0.0

0.0 0.0

0.0 0.0

-5

2

2

2

0.0 0.0

0.0 0.0

0.0 0.0

8.2.5 cutplanes.choices

This file controls the tool (cutplanes) which performes the calculation of the

monitor planes and generates the file record_planes.dat, which is needed by

AVBP

’./mesh_sec_out.coor’ ! Coor file

’./mesh_sec_out.conn’ ! Conn file

-0.1 ! Averaging time

17 ! Number of monitor planes

-1 ! Identifier of 1st plane

0.0 0.0 -0.3494 ! Point for distance calculation
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0.0 0.0 -0.3493 ! Point for plane definition for 1st plane

0.0 0.0 -1.0 ! normal for plane definition for 1st plane

0 0 ! additional limits code (0 0: entire plane)

-2 ! Identifier of 2nd plane

0.0 0.0 0.2 ! Point for distance calculation for 2nd plane

0.0 0.0 0.195 ! Point for plane definition for 2nd plane

0.0 0.0 1.0 ! normal for plane definition for 2nd plane

2 4 ! restriction to a 2=polygon with 4=4 vertices

0.0 0.0 0.0 ! 1st vertex (counter clockwise)

-0.05 0.0 0.0 ! 2nd vertex (counter clockwise)

-0.05 -0.05 0.0 ! 3rd vertex (counter clockwise)

0.0 -0.05 0.0 ! 4th vertex (counter clockwise)

-2 ! Identifier of 3rd plane

0.0 0.0 0.2 ! Point for distance calculation for 3rd plane

0.0 0.0 0.185

0.0 0.0 1.0

2 4

0.0 0.0 0.0

-0.05 0.0 0.0

-0.05 -0.05 0.0

0.0 -0.05 0.0

-2 ! Identifier of 4th plane

0.0 0.0 0.2

0.0 0.0 0.175

0.0 0.0 1.0

2 4

0.0 0.0 0.0

-0.05 0.0 0.0

-0.05 -0.05 0.0

0.0 -0.05 0.0

-3 ! Identifier of 5th plane

0.0 0.0 0.2

0.0 0.0 0.195

0.0 0.0 1.0
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2 4

0.0 0.0 0.0

0.0 -0.05 0.0

0.05 -0.05 0.0

0.05 0.0 0.0

-3 ! Identifier of 6th plane

0.0 0.0 0.2

0.0 0.0 0.185

0.0 0.0 1.0

2 4

0.0 0.0 0.0

0.0 -0.05 0.0

0.05 -0.05 0.0

0.05 0.0 0.0

-3 ! Identifier of 7th plane

0.0 0.0 0.2

0.0 0.0 0.175

0.0 0.0 1.0

2 4

0.0 0.0 0.0

0.0 -0.05 0.0

0.05 -0.05 0.0

0.05 0.0 0.0

-4 ! Identifier of 8th plane

0.0 0.0 0.2

0.0 0.0 0.195

0.0 0.0 1.0

2 4

0.0 0.0 0.0

0.05 0.0 0.0

0.05 0.05 0.0

0.0 0.05 0.0

-4 ! Identifier of 9th plane

0.0 0.0 0.2
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0.0 0.0 0.185

0.0 0.0 1.0

2 4

0.0 0.0 0.0

0.05 0.0 0.0

0.05 0.05 0.0

0.0 0.05 0.0

-4 ! Identifier of 10th plane

0.0 0.0 0.2

0.0 0.0 0.175

0.0 0.0 1.0

2 4

0.0 0.0 0.0

0.05 0.0 0.0

0.05 0.05 0.0

0.0 0.05 0.0

-5 ! Identifier of 11th plane

0.0 0.0 0.2

0.0 0.0 0.195

0.0 0.0 1.0

2 4

0.0 0.0 0.0

0.0 0.05 0.0

-0.05 0.05 0.0

-0.05 0.0 0.0

-5 ! Identifier of 12th plane

0.0 0.0 0.2

0.0 0.0 0.185

0.0 0.0 1.0

2 4

0.0 0.0 0.0

0.0 0.05 0.0

-0.05 0.05 0.0

-0.05 0.0 0.0
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-5 ! Identifier of 13th plane

0.0 0.0 0.2

0.0 0.0 0.175

0.0 0.0 1.0

2 4

0.0 0.0 0.0

0.0 0.05 0.0

-0.05 0.05 0.0

-0.05 0.0 0.0

-6 ! Identifier of 14th plane

0.0 0.0 0.2

0.0 0.0 0.195

0.0 0.0 1.0

0 0

-6 ! Identifier of 15th plane

0.0 0.0 0.2

0.0 0.0 0.185

0.0 0.0 1.0

0 0

-6 ! Identifier of 16th plane

0.0 0.0 0.2

0.0 0.0 0.175

0.0 0.0 1.0

0 0

-10 ! Identifier of 17th plane

0.0 0.0 0.0

0.0 0.0 -0.01

0.0 0.0 1.0

0 0
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