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und thermoakustischen Grenzschichtphänomenen als wissenschaftlich
besonders interessanter Aspekt heraus. Ihre Formulierung und Vali-
dierung gegen numerische und experimentelle Daten stellen den Kern
dieser Doktorarbeit dar.

Um dieses Thema umfassend in dieser Promotion münden zu lassen, war
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Kurzfassung

Der weltweit steigende Energiebedarf und die strikter werdenden An-
forderungen an die bei der Aufbereitung entstehenden Emissionen
eröffnet die Nachfrage nach alternativen Ansätzen der Energiewand-
lung. Der Phasenversatz akustischer Schwankungsgrößen im Ein-
flußbereich der thermischen und viskosen akustischen Grenzschicht er-
laubt eine effiziente, teils reversible Umwandlung von Wärme in akustis-
che Energie. Das Zusammenspiel mit den geringen treibenden Tem-
peraturgefällen, die für diesen Prozess notwendig sind, führt zu einem
gesteigerten Interesse, diesen Effekt kommerziell nutzbar zu machen.
Die Wechselwirkung der zugrunde liegenden Mechanismen mit einer
Grundströmung sind bis heute aber nur teilweise verstanden. Deshalb
fokussieren sich bisherige Forschungen auf das Gebiet undurchströmter
thermoakustischer Anlagen. Viele Technologien, für die ein Einsatz
solcher Wandler denkbar wäre, gehen jedoch mit eben solchen Grund-
strömungen einher. Deshalb setzt sich diese Arbeit zum Ziel, für ein
tieferes Verständnis der Interaktion zwischen mittlerem Strömungsfeld
und thermoakustischer Energiewandlung zu sorgen. Ein eigens ana-
lytisch hergeleitetes, quasi eindimensionales Modell erlaubt eine Vorher-
sage des akustischen Übertragungsverhaltens. Die Validierung dieses
Modells und der, zur Schließung des Gleichungssystems enthaltenen
Modellierungsansätze erfolgt gegen generierte Vergleichsdaten aus CFD
Simulationen und experimentellen Messungen. Die Ergebnisse dieser
Arbeit ermöglichen einen tieferen Einblick in die thermoakustische En-
ergiewandlung unter dem Einfluss mittlerer Strömung. Das validierte
Vorhersagemodell erleichtert die Bestimmung optimaler Bedingungen
für zukünftige durchströmte thermoakustische Anwendungen.





Abstract

The rising global demand for energy coinciding with increasingly strin-
gent requirements for emissions, opens the field for alternative energy
conversion processes. The phase lag of acoustic fluctuating quantities
in the vicinity of the thermal and viscous acoustic boundary layer facili-
tates an efficient transformation of heat to acoustic power and vice versa.
As the involved mechanisms come along with low thermal driving ra-
tios, there is an increased interest in utilizing this effect in commercial
applications. The interaction of this thermoacoustic conversion mecha-
nism with mean flow is barely understood and hence no proper model-
ing approaches exist. Thus, the research activity is mostly restricted to
thermoacoustic apparatuses operating in quiescent environment. Many
technologies with a conceivable application of such converters are inher-
ently employing mean flow. This thesis aims at providing a deeper un-
derstanding of the interaction of thermoacoustic boundary layer effects
and mean flow. A quasi one-dimensional predictive model is derived an-
alytically. This model is validated against both CFD data and experimen-
tal measurement accomplished in this study. Generating a deeper insight
into the interaction of thermoacoustic energy conversion and providing
an improved low-order modeling tool, this thesis facilitates the identifi-
cation of an optimum combination of thermoacoustic energy conversion
and mean flow conditions.
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1 Introduction

Energy has been a perennial topic since the beginning of the industrial
revolution in the 18th century. From that time on its worldwide demand
has risen steadily. Today, especially emerging markets and developing
countries insist on a rising amount of resources for domestic and indus-
trial use. This trend will lead to increasing environmental problems that
have to be faced. The industrial nations tackle this problem by forcing
their industry to reduce their CO2 equivalent by self-dictated restrictions.
Consequently, the interest in efficient energy conversion has been a cur-
rent topic in research activity in the recent decades. Traditional energy
conversion techniques have been exploited up to their efficiency limits.
Hence, the investigation of less common methods becomes more and
more interesting for special applications like waste heat recovery or ef-
ficient cooling.

Thermoacoustic (TA) boundary layer interaction causes energy conver-
sion effects that can be exploited in both power generation and thermal
management. This type of energy conversion combines positive aspects,
such as theoretical high efficiency and low maintenance costs because of
the absence of moving parts and low minimum driving levels. These
promising issues have pushed the research activity in TAs over almost
three decades. They have yielded, among other innovations, analytical
descriptions of the effect. However, the performance of the technology
achieved in practice is still far from the theoretical potential. Additional
research effort is needed to improve the applicability of this form of en-
ergy conversion.

Existing analytical formalisms that describe this mechanism are based
on simplifications and hence do not account for several technically in-
evitable effects. One of the most restricting assumptions is ignoring the
mean flow impact on acoustic transport inside TA regenerators. The goal
of this study is to expand the understanding of the influence of mean
flow on TA boundary layer interaction, focusing on the transmission and

1



1 Introduction

back scattering of acoustic waves in components experiencing such con-
ditions. Analytical considerations yield a fast quasi one-dimensional pre-
diction tool for future technical applications. This approach is validated
against numerical and experimental results obtained for a generic prob-
lem.

The research field of thermoacoustics focuses on effects that originate
from thermal and acoustic background. The most common topic is the
investigation of the energy feedback between acoustics and heat release
in systems containing enclosed flames. Apart from this undesired ef-
fect this thesis treats a research topic that handles a deliberate coupling
of thermal and acoustic mechanisms. In modern literature this effect is
more and more referred to as “the thermoacoustic (TA) effect” [77, 115, 174],
which causes a transformation from acoustic power into steady state heat
flux in the vicinity of rigid walls or vice versa.
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Figure 1.1: Operating types of TA applications: If the change in fluid parcel temper-
ature over its displacement is larger than the temperature change in the solid part
of a stack a) heat is transported against the natural gradient. This situation is called
a TA refrigerator or heat pump. If the situation is contrary b) the oscillation of the
fluid parcel is amplified. Such applications are known as TA engines.
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The most simple TA apparatus consists of a module of two heat exchang-
ers adjacent to a porous media – so called stacks or regenerators – which
are located near the closed end of a wide duct. The two sketches dis-
played in the top part of Figure 1.1 depict the energy transport for both
configurations. If heat Q̇ is pumped from a cold region to a hot reservoir
(Fig. 1.1a), acoustic power Ẇ has to be fed into the system. Depending on
the application, apparatuses employing this kind of energy conversion
are distinguished as TA “refrigerators” or “heat pumps” [60]. If the TA
energy conversion process is reverted (Fig. 1.1b), a part of Q̇ being trans-
ported from the hot to the cold reservoir is converted into Ẇ. As acoustic
power is generated, such systems are referred to as “TA engines” and
“prime movers”.

An intuitive explanation of the TA effect can be given by an idealized con-
sideration of a fluid volume parcel oscillating inside a part of the porous
media, which for simplicity is modeled as a channel of constant height.
Acoustic perturbations in gases at stagnant conditions usually lead to re-
versible, isentropic changes of thermodynamic state. In wide ducts the
adiabatic compression and expansion of a fluid parcel cause an oscilla-
tory displacement in axial direction, which coincides with an acoustic
temperature fluctuation T1. With decreasing duct diameter this fluctua-
tion is affected by the local temperature of the solid wall. In the vicinity
of the wall the temperature undergoes a cycle, which is sketched by the
green ellipses in the lower part of Figure 1.1. When traveling towards
larger x-values, the compression due to the increasing acoustic pressure
p1 causes an increase in T1. If the local temperature of the wall is lower
than the actual fluid parcel value, heat is transfered to the wall, which is
rejected when the parcel travels in negative x-direction. Hence the fluid
transports a certain amount of heat in the direction opposite to the axial
temperature gradient of the wall. Using parts of the acoustic power of
the fluid, heat is pumped from a cold to a hot reservoir. This is shown
in the top part of Figure 1.1a. The effect is reversed when the mean tem-
perature gradient ∂T0/∂x is steeper than the gradient experienced by the
fluid parcel. In the configuration displayed in Figure 1.1b a part of the
heat flux is converted into acoustic power, which may lead to an acoustic
instability.
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1 Introduction

If mean flow affects the oscillation of the volume parcel, the thermody-
namic cycle it undergoes is no more closed. As long as the displacement
caused by the mean velocity u0 is much smaller than the oscillatory coun-
terpart, the system still performs at similar conditions. When u0 > u1 is
reached not only the mean field conditions change, but also the changes
of state cannot be described by the idealized consideration presented
above. Furthermore, the analytical models which are derived for stag-
nant mean flow conditions are no more valid. Thus these models have to
be adapted to non-zero mean flow conditions.

1.1 Thermoacoustic Applications

The theoretically high conversion efficiency of such processes produced
a large variety of ideas for its possible technical applications. However,
the technical efficiencies achieved so far are not at all competitive with
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Figure 1.2: Applicability of mean flow thermoacoustics in future TA applications.
The figure of the thermoacoustic iceberg is based on the sketch of Altenborkum [8]
and extended to TA engine applications. The green dots denote potential applica-
bility of mean flow affected thermoacoustics and hence the quasi one-dimensional
models developed in this thesis.
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1.1 Thermoacoustic Applications

established energy conversion processes of heat engines and cooling de-
vices. This ongoing challenge led to an analogy presented in 2008 [8]. It
visualizes the commercial applicability of existing and future TA applica-
tions by comparing the research field to an iceberg of which only a small
part is lifted above the surface. In Figure 1.2 Altenborkum’s [8] sketch1 is
expanded for applications using the TA effect in engine operation mode.
The “water surface” separates the commercially provided applications
from ideas for technical devices and research activities. Using the iceberg
analogy, it has to be stated that most of the research field is below the wa-
ter level. Besides special refrigeration applications only small-scale liq-
uefaction concepts like the QDrive cryocooler [33] depicted in Figure 1.3
are established, because of the advantage of avoiding solidification prob-
lems by the absence of moving parts. Other technical devices are either
not competitive to current applied technologies in the corresponding ac-
tivity field or in an early stage of development.

The arrangement of the items depicted in Figure 1.2 is also a part of the
iceberg analogy. Items located at greater “depths” are expected to need
longer time spans of development before being ready for the market. The
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Figure 1.3: The QDrive Cryocooler: One of the few established products applying
TA energy conversion technology [33]. It reaches up to 50 K cooling temperature.

1 This is secondary literature: Altenborkum [8] gives reference to the original source of his figure. As the
citation is incomplete, this original publication could not be found. He refers to Clever Fellows Innovation
Consortium, 2003.
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1 Introduction

yellow arrays give an idea of the evolution steps that have to be processed
before certain devices could reach their break-through.

For example the generation of acoustic power from a biomass combustor
with the aim of developing a stove with a stand-alone source for electrical
power is an ongoing project [34, 119]. If the production costs per appara-
tus are reduced by half, the project denoted as SCORE [162] is ripe for the
market. The same accounts for waste heat recovery systems which have
already been mounted as prototypes to small industrial applications [43].

On the bottom of the iceberg medical scanners are listed. The application
of TA tomography [98] is an alternative to technologies using ultrasonic
sound. Although the mathematical theory is fully provided [99], further
research activity is needed to make this technology competitive to exist-
ing technologies. Further as TA liquefaction plays a certain role in this
technology, a stable medium-scale liquefaction should be established on
the market first. Therefore, TA tomography is far away from being used
commercially.

The huge discrepancy between the number of commercially established
and theoretically conceivable TA devices shows the long way TA research
still has to go. The wide range of the applicability of the TA technology
provides space for promising niche applications.

One area investigated only in a cursory manner is the application of
TA energy conversion in combination with mean flow. Existing ideas
mainly focus on stagnant mean flow conditions. In many applications
the large oscillations at operating conditions cause undesired streaming
effects which limit the efficiency of many devices. Some of the topics
listed in Figure 1.2 are related to mean flow effects. The green dots in-
dicate fields of research where non-stagnant conditions may either occur
or can even be used beneficially. TA mixture separation only works if
the products can be transported towards the separation device. Thus a
certain mean flow inside such applications occurs necessarily. Car air-
conditioning and exhaust gas heat recovery are also linked to convection
dominated energy flux. Under certain circumstances, a direct coupling
of the gas stream with TA energy conversion in the latter example may
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1.2 Thermodynamic Cycles of Thermoacoustic Energy Conversion

lead to an extra conversion of heat and hence an increase in efficiency of
the device.

A further conceivable application is the recovery of heat at very low ex-
ergy levels. The recuperation from waste heat is often restricted by global
design parameters of higher priority. Sometimes huge losses are tolerated
as long as the energy is at least partially recovered. Especially if the driv-
ing temperature difference reaches low values the residual heat is hard
to recover economically by common techniques. This also accounts for
almost all existing technical and experimental TA setups that deal with
fluids at rest, because of the indirect heat supply. If the TA energy con-
version process could be established directly inside the mean flow dom-
inated enthalpy flux, this direct heating might lead to an economically
interesting application.

Empirical experiences show that mean flow affects the TA energy con-
version in a negative way. The ”blow-off” of the necessary temperature
gradient and turbulence effects can even kill the desired energy transfor-
mation effect. Due to the lack of experimental data, numerical investi-
gation and consequently analytical modeling of mean flow affected con-
figurations, the prediction of the impact of mean flow on the TA energy
conversion is rather inaccurate. Mean flow effects are not fully taken into
account in the low-order models used for the design of TA devices. This
thesis provides information about the acoustic transfer at non-zero mean
flow conditions obtained from both fields numerical simulations and ex-
perimental measurements. It further demonstrates the derivation of an
improved semi-analytical low-order model to predict the operating con-
ditions of such processes. These findings form a scientific basis for future
technical TA applications including mean flow.

1.2 Thermodynamic Cycles of Thermoacoustic Energy

Conversion

So far, using Figure 1.1, the basic mechanism of TA energy conversion
was explained. Following this consideration allows for a differentia-
tion of TA applications in apparatuses consuming or generating acoustic
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Figure 1.4: a) Standing vs. b) traveling wave conditions. In contrast to synchronized
oscillations of p1 and u1 at traveling wave conditions, standing waves are character-
ized by a phase shift of ±π

2 .

power. This section provides a more detailed explanation by considering
the idealized thermodynamic cycles of the volume parcel followed in the
lower part of Figure 1.1. The separation into engines and prime movers
of devices generating acoustic power originates from the idealized cycle
they are considered to operate at.

The spatial distribution of the p1(x) and u1(x) depicted in Figure 1.4a
is typical for TA engines. This situation denoted as standing wave con-
ditions is characterized by a phase shift of ±π

2 of the complex-valued
acoustic pressure p1 and velocity u1 fluctuations. The thermodynamic
cycle that accounts for devices exposed to standing wave conditions is
approximated by a Joule cycle [207]. Apart from the difference in heat
addition – heat transfer vs. internal heat release – gas turbine engines are
approximated by a similar thermodynamic cycle2 [120]. These standing
wave conditions describe a physical limit the real acoustic field inside a
TA device never experiences.

The opposite limit in terms of acoustic conditions is described by trav-
eling wave conditions. Figure 1.4b displays the in-phase spatial propa-
gation of p1(x) and u1(x) inside a TA device. The thermodynamic cy-
cle caused by such acoustic conditions is idealized by a Stirling cycle
[31, 207]. This is the reason why TA prime movers are often denoted by

2 Strictly speaking this thermodynamic cycle is called Brayton cycle [121].
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1.2 Thermodynamic Cycles of Thermoacoustic Energy Conversion

TA Stirling engines. Sometimes such devices are also called “traveling
wave engines”.

Neither of these two operating conditions are reached in TA applications.
As they form the limit conditions an oscillating which a volume parcel
experiences, investigating it under these two idealized conditions leads
to a deeper qualitative insight to TA energy conversion. In the next two
sections we follow such a parcel located in the region marked by the blue
line in Figure 1.4 for both limit conditions. In order to make the investi-
gation more intuitive, the changes of displacement, acoustic pressure p1

and acoustic velocity u1 of the parcel are idealized by square wave sig-
nals. Here we focus on acoustic power generation, i.e. TA engine and
heat pump applications. The same ideas can be applied to the consid-
eration of acoustic power consumption. If so, the inverse temperature
differences to the wall cause a change in the direction of the fluxes of
heat and power.

1.2.1 Standing Wave Thermoacoustics
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Figure 1.5: p − V diagrams of a standing wave fluid element near a non-isothermal
wall. a) Far away from the wall the element experiences isentropic compression and
expansion. b) For very small distances the parcel is thermally coupled to the wall
and thus is subject to isothermal changes of state. c) For non-perfect thermal contact
a phase delay causes isobaric heating and cooling.
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As shown in the introduction, the interaction between the fluid and the
solid wall is crucial for TA energy conversion. The length scales charac-
terizing this problem are the viscous acoustic penetration depth

δν =

√

2ν

ω
(1.1)

and thermal acoustic penetration depth

δK =

√

2K

ωcp̺0
. (1.2)

Both quantities scale with the inverse square root of angular frequency
ω and the material properties of the fluid. The viscous acoustic penetra-
tion depth δν depends on the kinematic viscosity ν. The fraction of ther-
mal conductivity K and the product of specific capacity of heat cp and
mean density ̺0 is denoted as thermal diffusivity and forms the equiv-
alent for the thermal penetration depth δK. Here, we consider the ratio
of the distance y between the volume parcel and the wall to the ther-
mal penetration depth δK as the measure allowing for a classification into
three different situations:

y ≫ δK: General acoustics deals with parcels that are not affected by the
wall. Due to the poor contact to the wall, the isentropic change
of state of the parcel is not affected by the solid temperature. The
blue line(s) in the p − v diagram presented in Figure 1.5a depicts
all acoustic states such a parcel experiences. As no area is enclosed
by the changes of state, acoustic energy is neither consumed nor
generated.

y ≪ δK: The fluid parcel is in perfect thermal contact to the wall. Hence,
the compression it experiences when being displaced towards
higher acoustic pressure at larger x-values leads to a simultane-
ous heating. The hotter solid wall passes heat to the fluid parcel
at lower temperature. When the parcel travels in the opposite di-
rection, it is cooled while it expands to the lower acoustic pressure
at its original position. Figure 1.5a displays the thermodynamic
states of such a parcel in terms of a red line (T). Again, they form
a line which is insufficient for energy conversion. Like parcels the
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1.2 Thermodynamic Cycles of Thermoacoustic Energy Conversion

first situation, this change of state is not restricted to the region
near the blue line depicted in Figure 1.4a.

y ≈ δK: The thermal contact of the fluid volume to the corresponding
wall location is imperfect. This causes a time delay between the ex-
pansion/compression and the addition/subtraction of heat by the
solid wall. If a parcel located right of the blue line in Figure 1.4a is
exposed to a positive axial mean temperature gradient, the pres-
sure fluctuation is larger than the velocity counterpart. This leads
to small but non-negligible axial movements of the parcel that
are in phase with the pressure oscillation. During one oscilla-
tion period it experiences a four step process that is displayed in
Figure 1.5. Additionally the location, volume and temperature of
the parcel is visualized in the left column of Figure 1.6:

1. The parcel is compressed (A → B) while being displaced to-
wards higher pressure.

2. If acoustic power is generated, the hot wall at this location
heats (δQ1 > 0) the parcel (B → C). In addition the change in
volume does work at the system (δW1 < 0).

3. Next, the parcel expands while being displaced towards its
original position (C → D).

4. Finally it is cooled (D → A) to its original state (δQ1 < 0)
while work is freed δW2 < 0.

This thermodynamic cycle is known as Joule cycle [207]. As the imperfect
thermal contact is crucial for the energy conversion process, TA devices
operating with this cycle use porous media with hydraulic radii R larger
than the thermal penetration depth δK.

1.2.2 Traveling Wave Thermoacoustics

The characteristic thermodynamic cycle a traveling wave engines is op-
erating with is shown in Figure 1.7. Additionally the parcel with perfect
thermal wall contact δK ≪ y is sketched on the right column of Figure 1.6.
In contrast to the phase shift of π/2 between acoustic pressure and veloc-
ity in a standing wave application, the acoustic variables oscillate simul-
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δQ1 δQ1
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Figure 1.6: Idealized thermodynamic states of a volume parcel inside a stack of a
standing wave (left) and a traveling wave engine (right). If heat pumps are consid-
ered, the input and output of power and heat fluxes in step 2. and 4. are reversed.

taneously. Hence, the thermodynamic cycle does not depend on its axial
location. As the velocity is per definition the time derivative of the par-
cel displacement, the compression/expansion process is decoupled from
the movement of the parcel. This phase shift of the acoustic quantities
changes the cycle the parcel undergoes:

1. As the parcel does not move when the acoustic pressure rises, it is
compressed (A → B) under isothermal conditions (T) while doing
work on the parcel (δW1 > 0).

2. Due to the perfect thermal contact to the wall, the parcel is displaced
at constant volume, following the temperature of the solid wall. This
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1.2 Thermodynamic Cycles of Thermoacoustic Energy Conversion

isochoric change of state causes an input of heat (δQ1 > 0) into the
parcel.

3. In the maximum positive deflection, the parcel expands (C → D)
keeping the temperature of the wall. Mechanic power (δW2 < 0) is
freed by the fluid volume.

4. When it travels back to the negative point of deflection (D → A)
leads to a heat release (δQ1 < 0) into the wall.

1 This clockwise Stirling like process of a traveling wave engine acts ide-
ally with Carnot’s efficiency

ξStirling = 1 − Tcold

Thot
. (1.3)

As TA prime movers do not require an imperfect wall contact, they typ-
ically operate at R ≪ δK. In comparison to this theoretically high effi-
ciency, the standing wave Joule cycle yields a lower performance

ξJou < ξStirling. (1.4)

For both cases, standing and traveling wave, the acoustic displacement
is small with respect to the geometrical length of the wall. However,
even if a single parcel transports heat or acoustic power over a very small
distance, the train of adjacent elements shifts this small amount of energy
along the entire range of the temperature gradient. Analogous to water
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Figure 1.7: p −V diagram of a traveling wave fluid element in the vicinity of a solid
wall with imposed temperature gradient. The thermodynamic cycle of a parcel with
perfect wall contact is considered to be of the Stirling type.
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buckets being passed from person to person to bridge the distance from
a well to the scene of fire, this effect is referred to as bucket-brigading.

These idealized considerations are only valid for stagnant flow condi-
tions. As soon as mean flow is present, the fluid parcel does not return
to the initial condition after one loop. In his Ph. D. thesis [158], Reid
provides an improved idealized condition for moderate mean flow con-
dition. If the mean velocity increases to small values, the original ellipses
in Figure 1.1 degenerate toward spirals that propagate along the mean
flow gradient. Only as long as the mean velocity u0 is that low, it affects
the mean flow field and does not interfere directly with acoustic propaga-
tion. While isobaric heat exchange in the standing wave cycle seems to be
quite unaffected by this effect, the expansion and compression process in
the traveling wave configuration are no longer isothermal. Therefore, the
thermodynamic cycle of the latter is expected to be affected more strongly
by mean flow effects.

Using the model of Reid, the impact of mean flow is accounted for by
solving a convection/diffusion equation for the cross-sectionally aver-
aged mean flow temperature 〈T0〉(x). A solution for such a problem with
constant material properties has an exponential shape. With increasing
Peclet number Pe of the mean flow field, the narrow geometry consists
of a larger region at approximately uniform temperature. Here, the ther-
moacoustic energy conversion is clearly in the heat pumping regime. The
rest of the duct is dominated by large mean temperature gradients. As
these gradients ∂T0(x)/∂x lead to higher acoustic power production, this
part annihilates at least a part of the first conversion from power to heat.
The integral impact of this combination on the acoustic propagation has
not been investigated so far.

In technical applications the temperature profile is not fixed by boundary
conditions of the first kind. Thus using similar heat exchangers, parts of
the steep profile are shifted inside the heat exchanger and do not cause
TA interaction. Furthermore, mean flow leads to the formation of shear
layers. They especially form at the in- and outlet of the duct and are
not accounted for in the scope of this thesis. These shear layers inter-
act with acoustic propagation in a dissipative way. The impact of mean
flow inside the duct is partially accounted for in later investigations in

14



1.3 Thermoacoustic Stacks and Regenerators

this thesis. It will be shown that the transversal mean velocity profile
plays a minor role for the acoustic propagation in the cases. Summariz-
ing the ideas of possible mean flow impact on TA energy conversion, no
benefiting effect can be identified. Technical applications also could not
generate conditions that improve the basic mechanism. Wherever mean
flow occurs, the efficiency of the device is reduced.

1.3 Thermoacoustic Stacks and Regenerators

The simplified explanation of the TA energy conversion presented in the
last sections reveals the main requirement for the technical segment of
TA energy conversion. Both traveling and standing wave conversion cy-

300

Figure 1.8: Pictures of some stacks and regenerator components [21, 140, 153, 163].
Mesh screens, slab plates, rectangular and circular pores of metal or ceramic mate-
rial are most commonly used.
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cles are characterized by the thermal acoustic boundary layer thickness.
The hydraulic radius R of the selected component has to be at least of
a similar order of magnitude as δK. As this geometric restriction leads
to small amounts of power per pore, an efficient application of the effect
implies a parallel utilization of such components. A wide variety of ma-
terials and forms were proposed by different authors; some are shown
in Figure 1.8. Thermally low charged devices often operate with bun-
dles of plastic pipes or packages of equally spaced plates [16]. Most of
the applications use a slab-shaped pore geometry or other simple shapes
such as bundles of circular [184] or rectangular pipes [158]. Besides these
regular shaped geometries, arbitrary porous media with similar average
pore diameters also support the TA effect and can even be modeled ana-
lytically [105]. Due to their wider thermal stability, copper [71], stainless
steel [15] or ceramic based [212] devices are utilized in applications with
high temperature differences. As long as the Lautrec number

La =
Rh

δK
, (1.5)

i.e. the ratio of hydraulic to acoustic length scale, is of the order of unity
or smaller, the pore shape can be chosen arbitrarily. For example, steel
wool [2] and even rice [129] were used for the energy conversion.

TA standing wave devices typically operate with porous media with
1 < La < 10. In the literature they are denoted as stacks, as their first
prototypes consisted of stacks of parallel plates. As explained in the pre-
vious section, the fluid outside the thermal boundary layer of traveling
wave applications does not contribute to the energy conversion. There-
fore a Lautrec number of La < 1 is required for this operation mode. The
idealized Stirling cycle suggests a direct comparison to the homonymous
type piston engines. Thus, the heat conversion unit is called regenerator.
Nevertheless these various denominations describe the same component
and, depending on the operating frequency and the acoustic state, even
identical components are referred to by different wordings. In this work
the acoustic scattering behavior of these components is investigated. This
means the transmitted and back scattered components are related to the
incident acoustic waves. In general this is a frequency dependent prob-
lem. As this thesis does not distinguish frequency ranges, regenerator
and stack are used as synonyms here.
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1.4 Thesis Overview

The knowledge about thermoacoustic energy conversion in mean flow af-
fected pores, investigated only fleetingly so far, is improved by providing
data sets and analytical prediction tools for this combination. The con-
version performance of mean flow affected devices in all hitherto inves-
tigated configurations always decreased with increasing Mach number.
High Peclet numbers Pe cause an reduction of the axial temperature gra-
dient inside the regenerators. The change in mean temperature is shifted
towards the heat exchanger. No driving mean temperature gradient in
the pore establishes and the TA energy conversion breaks down. High
pore Reynolds numbers Re lead to turbulent perturbations and there-
with distortion or deterioration of both acoustic boundary layers. Thus,
researchers with the focus on constructing high efficient devices, which
are particularly based on TA energy conversion, always concentrate on
suppressing turbulent effects. Designing economically reasonable appli-
cations operating in this regime requires a detailed knowledge of the in-
teraction of the TA effect and non-stagnant mean conditions. Improving
this understanding demands a universal approach. Thus, the thesis is
structured in an analytical, numerical and experimental investigation of
one generic reference configuration.

Chapter 2 briefly reviews the literature published on TA boundary layer
interaction. Starting from its discovery, the analytical, numerical and ex-
perimental developments are presented. It focuses on publications which
either contribute to the general understanding of TAs or provide infor-
mation on mean flow affected devices. The problem considered in this
thesis is presented based on the investigation techniques applied.

The investigations processed in the main part of this thesis demand some
theoretical background. These include the basics of fluid dynamics, ther-
modynamics and acoustics. Their fundamental equations are provided
in Chapter 3. The theory of the latter topic is treated in detail. The de-
scription of technical components in terms of acoustic multi-ports, their
transmission behavior and instability potentiality (IP), a newly derived
acoustic power balance criterion, is explained by simple configurations.
The chapter finally presents the derivation of a Green’s function (GF) for
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a form of ordinary differential equation that is encountered in subsequent
chapters.

The interaction of thermoacoustic energy conversion and mean flow is
treated theoretically in Chapter 4. The scope of this chapter is to provide
a quasi one-dimensional set of differential equations that describe such
configurations with higher accuracy than previous methods. The new ap-
proach extends the formulation found by Peter in’t panhuis [82] using the
same derivation strategy. At first, the fluid transport equations account-
ing for viscous friction and thermal diffusion are non-dimensionalized
using characteristic parameters from boundary layer theory. In a sec-
ond step the resulting equations experience a series expansion in terms
of acoustic Mach number. The first order set of equations is simplified
by assuming this quantity to be of the order of the ratio of dimensions
of the pore considered. Applying the method of separation of variables
to these equations, the GF presented in Chapter 3 allows for an analyti-
cal solution for the transversal components of the acoustic quantities. The
cross-sectionally averaged3 form of the set of equations strongly depends
on two closure assumptions that have to be found during the derivation.
For the purpose of keeping the resulting system of equations short, two
different approaches are selected. These final equations are implemented
in a numerical tool, which is later used to compute linear scattering ma-
trices for given mean field configurations of the TA stack. The description
of the implementation is followed by a discussion of closure assumptions
of higher complexity.

For validating the scattering matrix results of the one-dimensional tool, a
multi-dimensional numerical approach is carried out in Chapter 5. Com-
putational fluid dynamics (CFD) is used to describe the TAs inside regen-
erators affected by mean flow. The accuracy of CFD simulations scales
with the precision of the geometric model and the exactness of resolution
of the dominating effects. Consequently, resolving all scales dominat-
ing the problem leads to a highly accurate prediction of the flow field
inside the domain. As CFD is hosted in the time domain, system iden-
tification (SI) methods are needed for post processing. The theory of the

3 The application of the words “mean” and “average” are strictly distinguished: All parameters denoted
as mean parameters are constant in time, while averaging refers to computed spatial (mostly cross-
sectional) averaging of a quantity.
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technique used in this work is laid out in Section 5.1. Using this so-called
CFD/SI method, the scattering behavior in the observed frequency range
can be predicted in a single simulation run. The results of this method
enable a direct validation of the scattering matrices predicted by the one-
dimensional tool.

Numerical and semi-analytical results are always based on modeling as-
sumptions. In general only experimental results are assumed to be valid
within the accuracy of measurement errors. For this purpose an experi-
mental test rig was set up for generating reference data. In Chapter 6 its
setup components and the measurement techniques applied are demon-
strated. The multi-microphone technique, an improvement of the two-
source location method of Munjal and Doige [123], delivers the acoustic
scattering behavior for the thermoacoustic core, a regenerator flanked by
two heat exchangers. The use of recursive methods allows the determi-
nation of the acoustic scattering matrices of the TA stack.

Chapter 7 discusses the predicted acoustic scattering behavior of the
generic stack for stagnant mean flow conditions. The chapter considers
the acoustic scattering predicted by all three approaches. The frequency
dependent scattering matrix values are further compared against a net-
work model that approaches a stack pore by two viscous ducts enclosing
a discrete temperature change. This simple model matches the scattering
behavior in the high frequency regime. Whenever the thermoacoustic
energy conversion is active, it deviates from the real matrix values and
hence provides an insight into the impact of the TA effect to the scatter-
ing behavior of the stack. An implementation of the computed scattering
matrices into a network stability analysis tool facilitates a comparison
with experimentally investigated TA engine operating conditions. The
modeled growth rate as well as the mode shape are investigated. Finally
a parameter variation yields information about an optimum stack con-
figuration in terms of IP. Applying this criterion facilitates the determi-
nation of the limit amplification or attenuation of the observed acoustic
two-port.

The impact of mean flow on the acoustic scattering behavior is discussed
in Chapter 8. The good qualitative agreement of the experimental and
CFD/SI data forms a base for validation of the one-dimensional predic-
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tion models. The improvements of the newly derived over their prede-
cessors are demonstrated. The chapter finally discusses the influence of
different closure assumptions.

The thesis concludes with a brief outlook on the applicability of TA de-
vices affected by mean flow and their importance is classified in the field
of thermoacoustics.
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2 Investigations of the Thermoacoustic Effect

The discovery of thermoacoustics dates back more than 200 years. The
report of Higgins [69] on “singing flames“gave birth to TA research.
He observed the occurrence of unstable acoustic modes when hydrogen
flames were located in certain regions in open pipes. Rijke [161] replaced
the flames by a wire framed mesh and showed that in this case the TA
phenomenon is linked to convection dominated energy conversion pro-
cesses. Although Sondhauss [182] is considered to be the first investi-
gator of spontaneous acoustic sounds emitted during the glass blowing
process, Pinaud [139] and Carl Marx [112] tried to capture its physics to
some extent. Their publications even refer to investigations carried out at
the beginning of the 18th century, which mainly focus on musical aspects
of the construction of a thermal organ pipe. While Pinaud related the
spontaneous loud emission of tones to local condensation phenomena,
Marx, discovered a certain dependency on the glass pipe diameter and
the location of heating. In contrast to his predecessors, Sondhauss [182]
was the first to provide technical data. Moreover, he investigated a corre-
lation of the axial temperature gradient with the observed sound levels.
This publication led to an immense amount of publications over the last
two centuries. They approach the problem of understanding these mech-
anisms from three different directions. The experimental observations
published for various configurations provide the data to validate the in-
vestigations carried out with numerical simulations. The third type of
publications provides simplified analytical models that lead to a better
understanding of the basic mechanisms. The literature referenced here
is also presented in three parts. At first, the history of analytical mod-
eling is reviewed. The second section treats the most important experi-
mental contributions, before Section 2.3 gives a brief overview over the
milestones achieved by numerical simulations of the thermoacoustic ef-
fect. For detailed information the reader is referred to review articles
[25, 52, 53], the resource letter of Garrett [60], the book of Swift [187] and
the literature discussed therein.
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Finally, Section 2.4 discusses the generic reference setup, which is used
for the existing one-dimensional analytical models as well as for the new
model developed in Chapter 4.

2.1 Analytical Modeling

Rayleigh [157] himself claimed that his general criterion for the occur-
rence of any TA oscillation – an in-phase oscillation of pressure and heat
release fluctuation – is fulfilled for the process described by Sondhauss
[182], because “(...) the adjustment of air takes time, and thus the temperature
(...) deviates from that of neighbouring parts. (...) From this it follows, that at
the phase of greatest condensation heat is received by the air, and at the phase of
greatest rarefaction, heat is given up from it, and thus there is the tendency to
maintain the vibrations.“ However, he provided no analytical description
for this phenomenon. Kirchhoff [92] was the first to consider the impact
of thermal diffusion on acoustic propagation. He found that like vis-
cous friction, this damping mechanism affects the propagation of acous-
tic waves in terms of shifting the wave number from the real axis into the
complex plane. Almost one century later Kramers [96] published a pro-
found mathematical model to describe thermally damped and driven os-
cillations in terms of acoustic pressure p1 and cross-sectionally averaged
velocity 〈u1〉. Like his predecessor, he considered an idealized pipe. His
approach was the first attempt to completely describe thermo-viscous
boundary layer interaction, but he could not explain the acoustic am-
plification in the presence of mean temperature gradients ∂T0/∂x. A few
years later, Clement and Gaffner [37] derived a similar model, which was
based on observed oscillations in cryogenic devices.

In the following decades, Merkli and Thomann [115] and especially Rott
refined Kramers model in a series of publications [164–171]. Using the
method of separation of variables, he found analytical solutions hν(y)
for the transversal (y-dependent) profile of the acoustic velocity u1 in
the linearized axial momentum equation including viscous frictions and
hK(y) of the temperature fluctuation T1 in the energy transport equation
including thermal diffusion. For the description of circular pipes, he
incorporated these solutions into the one-dimensional ODEs describing
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2.1 Analytical Modeling

the axial acoustic propagation of p1 and the transversally averaged form
of the acoustic velocity 〈u1〉. Furthermore, the second-order analysis of
enthalpy flux revealed a correlation of the mean temperature distribu-
tion to acoustic quantities. Applying a harmonic ansatz, his observations
yielded a system of ordinary differential equations (ODEs) in frequency
domain. These ODEs are formulated in terms of acoustic pressure p1,
transversally averaged velocity oscillation 〈u1〉, mean parameters and
two functions fν,K = 〈hν,K〉 accounting for the cross-sectionally averaged
impact of viscous friction (index ν) and thermal diffusion (index K).

Wheatley and his successors [187, 206, 207] established the idea to ap-
ply Rott’s model to one pore located in the center of the TA regenerator
(see Fig. 1.8). In this region, the transversal boundaries of the pore are
approximately symmetric, which makes Rott’s formulations applicable.
They further improved the understanding of the TA effect by providing
several analytical explanations. Amongst others, Olson and Swift [130]
presented a non-dimensional set of parameters for TA problems. Besides
explaining the effects by the application of the acoustic compactness as-
sumptions, Swift also established the standard formulation for the TA
transport ODEs

∂p1

∂x
=− iω

ρ

1 − fν
︸ ︷︷ ︸

A12

〈u1〉, (2.1a)

∂〈u1〉
∂x

=− iω

γp

(

1 +
(γ − 1) fK

(1 − ǫS)

)

︸ ︷︷ ︸

A21

p1 (2.1b)

+
( fK − fν)β

(1 − fν) (1 − ǫS) (1 − Pr)

∂T

∂x
︸ ︷︷ ︸

A22

〈u1〉

for zero mean velocity conditions [187]1. They are traditionally used
in the design process of standard TA devices. The thermal and vis-
cous boundary layer contribution is captured by the transversally aver-
aged Rott functions fK, fν. Those functions originally were provided for
distinct cross-sectional geometries (circular, rectangular, parallel plates,

1 For reasons of comparability, the denominations Aij of the right hand side terms are similar to the
naming of the system matrix elements in Equation (4.63).
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etc.), before Arnott et al. [9] derived a general solution for these quanti-
ties for arbitrarily shaped cross-sections. The system of Equations (2.1)
includes the contribution of viscous dissipation as well as thermal dif-
fusivity and the TA interaction. The viscous dissipation is taken into
account by the viscous Rott function fν in A12 of the acoustic pressure
transport Equation (2.1a) originating from the linearized axial momen-
tum equation. Thermal diffusivity scales the energy transport (Eq. (2.1b))
in terms of p1 and the thermal Rott function fK in A21. The third term A22

is controlled by a combination of the Rott functions. The compressibil-
ity β and the mean temperature gradient also affect the TA interaction.
The influence of thermal oscillations inside the solid region was added
by Swift’s student Ward [189] using the scaling parameter ǫS, a product
of the ratio of thermal diffusivities and geometrical functions.

The attempt of Reid and Swift [159] to take mean flow into account has al-
ready been introduced in Section 1.2.2. They considered the mean veloc-
ity to be of second order. Thus terms containing u0 do not appear in the
linearized system of equations. To account for the changes in axial mean
temperature distribution, their steady state enthalpy equation includes
second-order energy fluxes and thus is affected by the mean flow veloc-
ity. As stated in the previous section, Peter in’t panhuis [80–82] derived
Swifts system of TA transport Equations (2.1) form a dimensionless set of
Navier-Stokes equations by applying Green’s function (GF) techniques.
This technique is also the base for the improved modeling derived in
Chapter 4, where mean flow impact of zeroth order is incorporated.

The recent review of Bamman et al. [22] shows that the system of
Equations (2.1) is still state of the art for the prediction of mean flow con-
tribution in TA devices. Further considerations of mean flow effects, for
example by Backhaus and Swift [18, 19, 131, 186, 188], only considered
second-order effects in terms of different types of acoustic streaming. As
existing TA analysis does not incorporate mean flow, technical TA design
approaches do not attempt to exploit possible benefits from mean flow.
This may be restricted to the low predicting accuracy of the acoustics
inside a mean flow affected device by the existing models. A more accu-
rate modeling may open the research field for technical TA applications
affected by mean flow.

24



2.2 Experimental Milestones

2.2 Experimental Milestones

In 1918, Knipp [93] extended the measurements of Sondhauss [182] and
presented the first quantitative results of his device. Although incapable
to explain the phenomenon, he was the first to state that this effect could
be used to provide a constant source of sound. Three decades later, Taco-
nis [190] discovered similar sound occurrences in the pipe system of cryo-
genic coolers. Although often named after its discoverer, Taconis oscil-
lations are based on the same acoustic thermo-viscous boundary layer
effects as those of the Sondhauss type.

The idea of technically exploiting TA energy conversion dates back fifty
years. Carter [30] was the first who suggested to transform the acoustic
energy obtained from a TA engine into electricity. For this purpose, his
Ph. D. student Feldman [51] extensively studied the pressure distribu-
tion in several experimental standing wave setups and different working
fluids. The first standing wave heat pump prototype was proposed by
Merkli and Thomann [115]. They reached temperature differences of up
to 30 K in an air filled 100 Hz resonance tube and pressure amplitudes of
2000 Pa. Hofler’s [206] pressurized and helium filled refrigerator was one
of the first to use a TA stack. He measured a mean temperature difference
of up to 50 K over his 5 cm long stack.

Due to the higher complexity, traveling wave based applications ap-
peared later. In 1979, Ceperley [31] proposed the first traveling wave
engine. It was capable of producing a ratio of acoustic power input to
output of 1.16 by applying a temperature difference of 60 K.

In the beginning of this century, Backhaus and Swift[17] published a
small review of existing TA devices. The refrigerator of Reid [158] is
of big interest in the scope of this thesis. The setup of his experiment
is displayed in Figure 2.1. It facilitates the replacement of some heat ex-
changers by applying a mean gas flow and thus convective transport of
enthalpy. He experimentally demonstrated that the net performance of
his engine could be improved by this substitution. Reid restricted his
measurements to very low Pe numbers. Nevertheless, the comparison
to the model data obtained by applying Equations (2.1) reveal deviations
of more than 15% in the computed heat loads. Unfortunately, the pre-
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Figure 2.1: Redrawn sketch of Reid’s [159] refrigerator: The torus shaped traveling
wave application is capable of including mean velocity. The incoming enthalpy flow
replaces the energy supply from the upstream heat exchangers.

sented acoustic data are not very extensive. Based on this work, Weiland
[205] constructed a combustion driven thermoacoustic engine with mean
flow in some parts of the engine. He achieved less than 20% of thermal
to acoustic energy conversion efficiency for a temperature difference of
more than 1000 K. The lumped capacity model he introduced predicted
the spacial profile of the acoustic pressure with more than 10% deviation
to the experimentally determined values. Like Reid, he also assumed
his flow of combustion reactants through the regenerator to be of second
order, which may be a reason for these deviations.

The experimental investigation of the acoustic power distribution is
mostly restricted to operating conditions of the complete TA device.
Fusco et al. [59] presented power measurements based on the two sen-
sor method for one operating frequency. Bailliet et al. [20] published
coupled laser doppler anemometry and microphone measurements that
also yielded the acoustic power flux for their setup. In 1998, Adeff et
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al. [5] investigated stacks made of reticulated vitreous carbon 2 applying
Fusco’s technique. One year later Petrulescu et al. [138] experimentally
determined the working compressibilities of a circular pore with good
agreement to analytically modeled data.

The acoustic scattering caused by TA components is rarely considered
in literature. Only Guedra et al. [66] published very recently acoustic
transfer measurement data of a complete thermoacoustic core that is the re-
generators flanked by two heat exchangers, a thermal relaxation tube and
an additional cold heat exchanger to maintain the outlets at cold condi-
tions. They aimed to theoretically derive a criterion leading to instability
in different applications with the same mounted TA core. The investi-
gated frequency ranges from 50 to 200 Hz. In acoustic boundary layer
theory the Womersley number

Wo =
R

δν
, (2.2)

that is the ratio of hydraulic radius R to viscous boundary layer thickness
δν is taken to be the dimensionless number representing the impact of
frequency. Substitution into Equation (1.1) leads to a square root scaling
of the frequency to this dimensionless number. Thus, Guedra et al. [66]
investigate a very small range of 1

6 . Wo . 1
2 .

2.3 Numerical Developments

The immense increase in computational resources over the last decades
caused a flood of publications treating full and partial numerical simula-
tions of TA devices.

The numerical prediction of TA phenomena started in 1994 with the
one-dimensional computational tool developed by Swift’s student Ward
[203]. This tool works on a coupled system of acoustic network elements
and components describing the regenerators in terms of Rott’s equations
for one sample pore. Applying a shooting method [154] for some op-
timization parameters, the operating conditions of a TA device can be

2 Reticulated Vitreous Carbon or RVC is a foam of glassy carbon, which consists of completely repeatable,
regular, and uniform cells. It is a rigid, highly porous and permeable structure.
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predicted. An updated version of the tool3 is used for validation of the
model presented in Chapter 4, which is common for state of the art pub-
lications [32]. Although the Reverse Polish Notation and the numeri-
cal methods applied are outdated, no other one-dimensional approach is
competitive to this tool. It is still the choice of most scientists for the first
stage of designing TA devices [1].

Up to now, the computational costs for resolving all relevant length scales
that are geometry, acoustics and boundary layers, are too high for simu-
lating a full TA device. Therefore, particular components of the engine
are considered, the regenerator and heat exchangers are modeled or the
dimensions are reduced. Nijeholt et al. [128] for example performed a
full CFD simulation of a traveling wave engine describing the regenera-
tor in terms of porous media. Hiereche et al. [70] considered the onset of
a TA engine numerically. Typically, this onset, defined as the initial desta-
bilization of a TA device if a critical temperature gradient is exceeded, is
often discussed in experimental investigations [137]. Hiereche and his
co-authors compared the onset of a of a quasi one-dimensional model to
a two-dimensional finite volume based simulation of a single stack pore
flanked by two idealized heat exchangers. The attached resonator tubes
were described by impedance boundary conditions located at a certain
distance away of the core elements. The same approach was used by
Blanc et al. [26, 113] to investigate their TA refrigerator components.
Worlikar and Knio [210, 211] described the thermoacoustics inside one
pore by a finite difference approach of a linearized dimensionless system
of equations.

The first full 2D-CFD simulation of a very simple TA engine was per-
formed in 2007 by Yu et al. [215]. They managed to resolve all scales
with less than one million cells. The timestep of their simulation was far
beyond the critical acoustic Courant-Friedrichs-Lewis (CFL) number

CFL =
c∆t

∆y
(2.3)

of unity. Nevertheless, their computational results were quite accurate.
The group of Zink investigated the influence of different resonators in a
two dimensionally resolved simple TA engine [219] and demonstrated

3 DeltaEC, Version 6.2, 2008 [202]
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the capability of simulating TA cooling with a commercial CFD code
[220]. For the latter, they performed their simulations at a super com-
puter. The time step used was orders of magnitudes smaller than the
time step of Yu [215]. It was still too high (CFL&10) to capture all acous-
tic effects.

2.4 Generic Reference Problem

Previous sections demonstrated the necessity of significant computa-
tional capacities for the complete description of TA apparatuses. Es-
pecially in the early design stages, one-dimensional considerations are
preferred because of their reduced computational costs. The multi-
dimensional fluid flow problem inside the TA pore has to be approxi-
mated for such purposes. In this regard, the author follows the approach
of Swift and his successors to consider a central pore of the TA stack for
the derivation of the quasi one-dimensional model derived in Chapter 4.
An extrapolation from the results obtained for one single pore to a device
consisting of an arrangement of multiple pores is a good approximation
for most thermoacoustic stacks and regenerators. For comparability, the
multi-dimensional simulations carried out for validation in this thesis are
based on the same geometry. Thus, their model is presented before dis-
cussing the methods of investigation.

Common devices utilizing TA energy conversion mechanisms, like those
displayed in Figure 1.8, consist of porous media of different form. A typ-
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Figure 2.2: Sketch of the investigated problem: The acoustics in a stacked slab pore,
that is a narrow channel of length L and constant hydraulic radius R = H are illus-
trated. The pore is subjected to a laminar mean flow from the cold upstream to the
hot downstream end.
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ical, rather regular form of porosity is a combination of narrow channels,
that is a stack of parallel plates. In this study, one of the channels of such
a TA stack with imposed mean flow and preliminarily determined tem-
perature profiles is considered. The geometry of this problem is depicted
in Figure 2.2. As the problem is symmetric, only half a pore and the
corresponding half of a solid plate have to be considered. The inlet and
outlet planes of the domain are located at the ends of the solid medium.
In this generic configuration, the impact of gravity is ignored as well as
entrance or streaming effects. The air flow inside the domain of length L
and hydraulic radius R = H is assumed to be laminar [18].

The solid component with a thickness of 2RS is of cordierite with preset
constant material properties. The origin of the Cartesian coordinate sys-
tem is located at the cold – or upstream (index u) – end of the channel.
The opposite hot end at x = L is also denoted as the downstream (d) end
of the pore. The reference values at the cold end of the slab pore are fixed
to standard ambient temperature and pressure (SATP [124]).

The propagation of acoustic waves inside the domain under investiga-
tion are considered in terms of acoustic pressure p1 and transversally
averaged velocity 〈u1〉. The incoming and outgoing values are further
described in terms of characteristic wave amplitudes F,G. For further
details, please refer to Section 3.2.3.

Literature on thermoacoustics [18, 131, 158, 167, 187] indicates an impact
of second-order acoustics on the mean parameter distribution inside nar-
row geometries. Both fields have to be considered using a hybrid ap-
proach, which is sequentially solving for the mean and the acoustic field
quantities. The acoustic feedback correlates with the product of ampli-
tudes of the acoustic pressure p1 and velocity u1. Taking these effects
into account in the hybrid approach implies an iterative solution of the
mean field and its acoustic pendant. To avoid this procedure, the thesis
is mainly restricted to the low amplitude regime with prescribed fixed
mean parameters, although the methods presented are not a priori re-
stricted to this limitation. The cross-sectionally averaged – including the
fluid and solid part– mean temperature profile 〈T0〉(x) is determined by
the mean flow conditions and the temperatures upstream Tu and down-
stream Td of the pore. Figure 2.3 illustrates transversally averaged mean
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Figure 2.3: Cross-sectionally averaged mean temperature profiles 〈T0〉(x) (includ-
ing the solid temperature) inside a narrow pore. Depending on the mean flow
velocity profile u0(x), the temperature distribution is linear (black) or exponential
shaped.

temperature profiles 〈T0〉(x) for three different flow conditions. If heat
conduction inside the solid and fluid media dominates (e.g. u0 = 0), the
cross-sectionally averaged temperature gradient ∂〈T0〉/∂x is nearly con-
stant. Otherwise, if the Peclet number

Pe =
̺0cpu0L

K
(2.4)

is not negligible (u0 6= 0), the temperature profile follows a mixed con-
vection/ diffusion transport equation.

Assuming temperature independent thermophysical properties allows
for an analytical solution of the transversally averaged problem. Given
two temperature boundary conditions leads to quasi exponential axial
temperature profiles 〈T0(x)〉 (a more detailed consideration is presented
in Section 4.3). Depending on the direction of the flow, the curve is ei-
ther convex (blue crosses) for positive velocity or concave (red circles) if
for the counter directed case. The mathematical formulations for these
correlations read

∂2T0(x)

∂x2
> 0 for u0 > 0 (2.5)

∂2T0(x)

∂x2
< 0 for u0 < 0. (2.6)
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The real shape of the curve is always determined from a steady state
solution with non-constant thermophysical properties, leading to small
deviations from the depicted profiles.
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3 Theoretical Background

This chapter gives an introduction to the theoretical background of the
analytical models used throughout this thesis. The first section provides
different forms of basic equations of fluid dynamics. Starting from the
most general formulations of high complexity, they are simplified to ac-
count for special conditions. The description of the aeroacoustic trans-
port in isentropic conditions is one of these cases. This thesis concen-
trates on (thermo-)acoustic problems. The corresponding equations are
discussed in detail in Section 3.2. These formulations form the funda-
mentals for acoustic network modeling. An efficiency criterion based
on acoustic two-ports is introduced, whic facilitates a comparison of dif-
ferent configurations. The chapter concludes with a review of the GF
method, which yields a model reduction in Chapter 4.

3.1 Basic Equations of Fluiddynamics

As stated in Section 1.4, this thesis deals with different approaches of
fluidmechanics and acoustics to describe the physics in TA regenerators
and its surrounding parts. The most complex approach used here is the
finite volume based CFD technique applied in Chapter 5. The basic equa-
tions discretized by this technique as well as the one-dimensional lin-
earized transport equations derived in Chapter 4 are based on the same
set of conservation equations describing continuous fluid flow. The re-
sulting formalisms arise from different simplifications and discretization
methods. As the problem considered does not include any chemical re-
actions, heat addition or energy production by thermal or nuclear ra-
diation, no source terms need to be considered. Many thermoacoustic
apparatuses experience streaming effects which are initiated by inhomo-
geneities caused by gravity. As these effects are beyond the scope of this
thesis, gravity effects are also neglected. Nevertheless, the correspond-
ing equations include a general volume force term b. These equations
are part of many textbooks, in which various notations are used. In this
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thesis, the notation of Landau and Lifshitz [103] in combination with the
Einstein summation convention (see e.g. Kundu et al. [100]) is used.

3.1.1 Conservation of Mass

The conservation of mass

D̺

Dt
= −̺

∂ui

∂xi
(3.1)

describes the coupling of fluid density ̺ to flow velocity ui while be-
ing transported through the domain. Here DΨ

Dt stands for the substantial
derivative of the transported variable Ψ. If incompressibility is assumed,
the pressure dependency of ̺ = ̺(p) is neglected.

3.1.2 Navier-Stokes Equations

Considering the specific momentum conservation of a Newtonian fluid
element [103] and simplifying the resulting equation by substituting
Equation (3.1) yields

̺
Dui

Dt
= − ∂p

∂xi
+

∂τij

∂xj
+ ̺bi, (3.2)

where the stress tensor τij represents the viscous shear forces. The flow

is either driven by a pressure gradient ∂p
∂xi

or a volume force bi. In the
absence of magnetic fields, gravity effects and chemical reactions, this
force term vanishes.

The stress tensor for Newtonian fluids can be expressed in terms of bulk
kinematic viscosity µ and volume viscosity ζ by

τij = µ

(
∂uj

∂xi
+

∂ui

∂xj

)

+ ζδji
∂uk

∂xk
, (3.3)

where ζ is negligible for incompressible and weakly compressible fluids
and can usually be neglected for small expansion processes [44]. The
combination of Equation (3.3) and Equation (3.2) are denominated as
Navier-Stokes equations (NSE).1
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3.1.3 Euler Equations

In the absence of shear layers that is in free stream flows or if compress-
ibility effects dominate the flow field, viscous effects are often neglected.
Within this assumption, the NSEs (Eq. (3.2)) simplify to

̺
Dui

Dt
= − ∂p

∂xi
+ ̺bi. (3.4)

The literature refers to this set of equations as the Euler equations. These
equations govern the field of aerodynamics. For example, their irrational
form is the basis for the computation of potential flows [218].

3.1.4 Energy Conservation

The first law of thermodynamics states that energy can neither be pro-
duced nor destroyed. In other words, the rate of change of the sum of
internal and kinetic energy equals the sum of work done and the heat
flux q addition to a material volume. Substituting Fourier’s law

qi = K
∂T

∂xi
(3.5)

and the Newtonian stress tensor (Eq. (3.3)) yields an energy equation in
terms of internal energy, temperature T, density ̺ and velocity ui. Rewrit-
ing the internal energy in terms of enthalpy and applying some thermo-
dynamic relations [120] yields a temperature T transport equation

̺cp
DT

Dt
= βT

Dp

Dt
+

∂

∂x

(

K
∂T

∂x

)

+
∂

∂xj

(
uiτij

)
. (3.6)

When the Euler formalism (Eq. (3.4)) is used for describing the momen-
tum transport, the viscous and heat conductive terms in this transport
equation are also neglected.

1 Some authors, especially gas dynamics scientists, include the full set of continuity equation, momentum
and energy conservation for Newtonian fluids into the denotation of Navier-Stokes equations. The same
also accounts for the Euler Equation (3.4).
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3.1.5 Closure by Gas Laws

The number of transported variables (̺, p, T, ui) is larger than the num-
ber of transport equations ((3.1), (3.2) and (3.6)). Consequently, a further
equation is needed for problem closure. Typically a pressure-density-
entropy relation is used. In case of gaseous fluids, these formulations are
denoted as gas law. The consideration of generic fluids in the region of
standard conditions allows the application of the simplest – ideal gas –
approximation, which relates the fluid density in terms of

p = ̺RT. (3.7)

R denotes the specific gas constant of the medium. For low tempera-
ture applications, or under conditions in which phase changes may occur,
more accurate real gas formulations are recommended.

As first estimations, constant basic thermophysical properties are as-
sumed. For more accurate results, the thermal conductivity K and dy-
namic viscosity µ have to be adapted. The changes in mean temperature
over the regenerators and pressurization cause changes in orders of mag-
nitudes of those two decisive parameters. These dependencies have to be
taken into account, either by modeling or interpolating their values.

The Sutherland formula [24] is applied to describe the temperature de-
pendency of these quantities in many CFD codes. It is mainly used to
scale the temperature dependency relative to a reference temperature Tref

µ = µref
Tref + C

T + C

(
T

Tref

) 3
2

(3.8)

for the dynamic viscosity. K is also found in the same manner. An al-
ternative choice is the polynomial description of the properties, which
mostly accounts for a certain range of pressure and temperature. In con-
trast to these methods, the data from measurement tables yield a very
accurate approximation of the real values. Standard data are available
from the National Institute of Standards and Technology (NIST) [124] or
the VDI Atlas [201].
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3.2 Acoustic Theory

The interdisciplinary science of acoustics deals with the propagation of
sound and vibrations in any media. This section mainly focuses on the
propagation of sound waves in compressible media. The first modern
works on acoustics stem from Helmholtz [68] and Rayleigh, whose ”The-
ory of Sound” [157] is still one of the most common books in the field of
aeroacoustics.

This section is divided into two main parts. At first, the basic equations
of wave propagation are outlined. Additional assumptions lead to aeroa-
coustic standard formulations for the mathematical description of sound.
The second part considers the so-called acoustic two-ports and network
models which allow for simplified investigations of complex acoustic
systems. Here the notation mainly follows Rienstra and Hirschberg [160]
and Munjal [122].

3.2.1 Linearized Euler Equations

Sound, that is the propagation of a pressure wave through any medium,
is commonly described as a frictionless form of fluid motion. The pres-
sure wave amplitude |p1| is assumed to be small compared to the mean
pressure. So are the relative motions |u1| ≪ c of a gas parcel and thus
viscous losses can be neglected.

The assumption of small variations from their mean quantities allows the
application of linearization techniques to Equations (3.1), (3.4) and any
formulation of energy conservation (e.g. Eq. (3.6)). The formulation for
such an expansion in A reads

Ψ(xi, t) = Ψ0(xi, t) + AΨ1(xi, t) + A2Ψ2(xi, t) + ... A ≪ 1. (3.9)

The dimensionless form of the basic system of equations suggests to re-

late the terms by the acoustic Mach number Ma = u1
c ≈ O

(
p1
p0

)

, which is

a valid expansion for Ma ≪ 1 [81]. The mean component (index 0) of the
asymptotic expansion of any quantity Ψ in terms of A is assumed to be
constant in time, i.e. Ψ0(xi, t) ≡ Ψ0(xi). Therefore, the zeroth-order terms
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have to separately fulfill the expanded set of equations. For Maa ≪ 1, this
also accounts for all collections in the different orders of Maa.

For characteristic Mach numbers

Ma =
u0

c
(3.10)

lower than 0.2 and in the absence of shear layers, entropy waves etc.,
mean velocity contributions play a minor role in the resulting first-order
set of equations. This approach leads to

∂̺1

∂t
+ u1,i

∂̺0

∂xi
= −̺0

∂u1,i

∂xi
(3.11a)

̺0
∂u1,i

∂t
= −∂p1

∂xi
(3.11b)

for the linearized mass (3.1) and momentum conservation (3.4).

3.2.2 Isentropic Acoustics – The Wave Equation

If the fluid is considered to be isothermal, the second term on the left
hand side of Equation (3.11a) vanishes. The equation of state for an ideal
gas states that the pressure is a pure function of entropy s and density ̺.
A Taylor expansion for isentropic conditions yields

p(xi, t) = p0 +
∂p

∂̺

∣
∣
∣
∣

s

̺1 +O(̺1). (3.12)

Within the ideal gas assumption (Eq. (3.7)), the speed of sound c defined
as the square root of this isentropic variation of pressure with density

c2 =
∂p

∂̺

∣
∣
∣
∣

s

(3.13)

reduces to

c =
√

γRT. (3.14)

Here γ stands for the specific heat ratio (or isentropic exponent).
Substituting this simplification into the linearized mass conservation
(Eq. (3.11a)) directly yields

∂p1

∂t
= −̺0c2 ∂u1,i

∂xi
. (3.15)
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Differentiating Equation (3.15) with respect to time t and computing the
gradient of Equation (3.11b) in space cause an elimination of the acoustic
velocity terms. Doing so directly yields the standard wave equation

∂2 p1

∂t2
− c2 ∂2 p1

∂x2
i

= 0. (3.16)

3.2.3 Characteristic Wave Amplitudes

For one-dimensional acoustics, the special form of the linear operator on
the pressure fluctuation can be factorized to

[
∂

∂t
− c

∂

∂xi

] [
∂

∂t
+ c

∂

∂xi

]

p1 = 0. (3.17)

The general solution of this equation

p1 = ̺0c [f(x − ct) + g(x + ct)] (3.18a)

in terms of Riemann Invariants2 describes the transport of any shape of
perturbation along the characteristics x = ±ct in time and space. In
a more extensive derivation, the contribution of mean velocity, which
is neglected in the presented form, results in a similar equation where
±(c ± u0,i) replaces the prefactor ±c of the operators in Equation (3.17).

The same derivation as above used for the acoustic velocity directly
yields

u1 = f(x − ct)− g(x + ct). (3.18b)

For harmonic waves in isentropic fluid, the solution of these equations
yields

f(x − ct) = Feiω(t− x
c ) (3.19a)

g(x + ct) = Geiω(t+ x
c ), (3.19b)

with F and G denoting the characteristic wave amplitudes. As long as
isentropic acoustics are considered, these quantities are constant. For pla-
nar waves the change of the complex-valued functions is described by
the argument of the exponential function containing the parameters of
angular frequency ω, time t and the ratio of space x to the characteristic
transport velocity c.

2 This notation indicates that both solutions propagate independently and do not interfere.
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3.2.4 Network Modeling and Acoustic Two-Ports

Network theory was first developed in electrical engineering for the de-
scription of electrical transmission circuits. An analogy between the fre-
quency domain description of such systems and the gray box approach
[122] for complex acoustic systems can be drawn. The idea of model-
ing combustion driven thermoacoustic systems using a one-dimensional
network was introduced by Bohn and Deucker [28]. In the beginning,
TA stability analysis mainly focused on predicting combustion instabili-
ties of academic configurations [45, 46]. Most geometry and even com-
bustion dominated problems are modeled based on analytical consid-
erations. Poinsot and Veynante [141] provide a good overview for the
analytical description of the acoustic transfer of laminar and turbulent
flames and academic configurations for combustion engines. More so-
phisticated burner configurations are displayed using general models
that contain control parameters. As these parameters sometimes are
not based on physics, they often have to be determined using experi-
mental [135, 178, 179] or numerical [87, 180] methods. During the last
two decades these models were expanded from the investigation of aca-
demic single burner configurations [114] to annular combustion cham-
bers [50, 149, 183]. Irrespective of the complexity of the system, generat-
ing a representative network model of all those configurations requires
splitting up the system into compact acoustic elements. These so-called
multi-ports describe the transformation of acoustic parameters from side
to side. The assembly of these complex-valued linear combinations of
input variables leads to a prediction of stability. For example, the pre-
dicted sign of the complex eigenfrequencies of the system defines the
corresponding eigenmode to be stable or unstable.

In contrast to models based on the frequency domain, newer develop-
ments use time domain low-order network models [64, 177]. They even
facilitate predictions of limit cycle oscillations and modal interactions.

Also the frequency based one-dimensional integration tool DeltaEC uses
acoustic two-ports for the description of some aeroacoustic elements.
Straight ducts and discrete area changes, for example, are described us-
ing standard network model elements. In contrast to stability predic-
tion tools, DeltaEC was designed to compute the spatial distribution of
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3.2 Acoustic Theory

limit cycle oscillations in thermoacoustic applications. The inclusion of
nonlinearities and damping effects facilitates a forecast of the operating
conditions of such systems. The constraints of linear stability analysis
of acoustic networks neglect such factors. Still, the information obtained
about the growth rate can be used for a comparison of different configu-
rations. The exponential growth rate of an unstable mode scales with the
energy fed into the system. Hence, the acoustic power generation can be
optimized by a comparison of the imaginary part of the unstable eigen-
frequencies. The stability analysis allows a wider parameter variation
while consuming little computational costs. The results obtained for the
linear regime have to be investigated by a single frequency investigation
of promising system configurations. Hence, it is advisable to combine
both methods to find an optimized configuration of the planned device.

In some cases, detailed considerations of acoustic two-ports that dom-
inate the network already enable a first estimate of the system perfor-
mance. As will be demonstrated in Section 3.2.5, a quantitative predic-
tion of the growth rate of simple thermoacoustic engines can be found
by considering the transmission and reflection behavior of the crucial el-
ements, i.e. the stack.

Figure 3.1 sketches a typical acoustic two-port in its black-box representa-
tion. The in- and output parameters denoted in terms of p1, u1 or charac-
teristic wave amplitudes F and G are either arranged such that the trans-
port is predicted from one port (1) to the other (2) or, in a causal formu-
lation, the output is a combination of transmitted and reflected incident
waves. Due to the identity of the parameter spaces, all formulations can
be mapped. The coefficients of matrix entries are based on simplified an-

21
F1

G1

F2

G2

p1

u1

p2

u2Acoustic Two-Port

Figure 3.1: The black-box model of an acoustic two-port. In network theory, the
acoustic transport between two ends of an acoustic element are often approached
by a linear black-box model.

41



3 Theoretical Background

alytical considerations as well as numerical and experimental measure-
ments.

Using combinations of such acoustic two-ports, more complex problems
can be approximated to achieve a first estimate of their acoustic trans-
fer behavior. For example, a combustor geometry may be discretized by
a combination of analytically modeled ducts, area discontinuities and a
two-port description of the flame obtained numerically or experimentally
[28]. Applying the same technique, a thermoacoustic regenerator may be
modeled by the set of acoustic two-ports displayed in Figure 3.2. The
area changes (AC) represent the ends of the porous material. In these po-
sitions, the acoustics experience a change of the cross-sectional area that
scales with the porosity

φ =
AF

AF + AS
(3.20)

of the TA regenerator. The inner two viscous ducts (Duct) mainly con-
tribute to phase shifting of the waves traveling through the regenerator.
The center element, a temperature discontinuity (TC) accounts for the
discrepancy of the hot and cold resonator temperatures. The analytical
two-port approaches of these components are a simplistic representation
and will be presented in this section. In comparison to the numerical and
experimental data demonstrated later, the resulting scattering behavior
of this set serves as a limit approximation.

3.2.4.1 Acoustic Two-Port Theory

The description of acoustic transmission in terms of two-port elements
holds in both states, the acoustic transport variables p1, u1 and the char-

300

Duct AC Duct TC Duct AC Duct

Figure 3.2: An example of a simple network model approach for a TA regenera-
tor. The acoustics are approximated by five two-port elements accounting for the
porosity, the spatial transport and the experienced temperature change.
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3.2 Acoustic Theory

acteristic wave space F, G. This section provides the relations between
the different notations.

Transfer Matrices

The port to port transmission formulation through a black box element
is generally referred to as transfer matrix T. Scaling the acoustic pressure
p1with the specific acoustic impedance ̺0c leads to non-dimensional ma-
trix entries in

(
p1

̺0c

u1

)

2

=

[

T11 T12

T21 T22

](
p1
̺0c

u1

)

1

= Tpu

(
p1
̺0c

u1

)

1

. (3.21)

In general, the complex-valued coefficients in Tpu are functions of fre-
quency f and problem-dependent parameters. This formulation is often
used, because of its plausibility. It allows a direct identification of charac-
teristic parameters in analytical models for some network elements. The
transfer matrix of a flame in a burner for example is often approximated
using Rankine-Hugoniot relations [141]. Some terms of these equations
scale with characteristic mean temperature ratios or the Mach number of
the mean flow.

The formulation of Equation (3.21) in the characteristic wave amplitude
space

(

F

G

)

2

=

[

T11 T12

T21 T22

](

F

G

)

1

= TFG

(

F

G

)

1

(3.22)

is mostly used to display short analytical formulations, for example for
ducts and channels. Introducing the conversion matrix

Ω =
1

2

[

1 1

1 −1

]

, (3.23)

it directly couples with the transfer matrix in pu notation by

TFG = ΩTpuΩ
−1. (3.24)

One advantage of these notations is their simple mathematical coupling.
The matrix product of the series of acoustic elements is equivalent to
the transport through the technical components represented by these el-
ements.
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Scattering Matrices

If the observer’s interests focuses on the impact of the incoming waves on
the output of the acoustic element, a scattering matrix notation directly
yields this causality. While the diagonal elements t12, t21 in

(

F2

G1

)

=

[

t12 r11

r22 t21

](

F1

G2

)

= S

(

F1

G2

)

(3.25)

describe the transmission of waves, the off-diagonal elements rii display
the contribution of the reflections to the outgoing wave.

Except for the case of vanishing wave transmission in negative coordi-
nate direction, S is directly related to the characteristic wave space trans-
fer matrix TFG. Rearranging the matrix components in terms of

S =
1

T22

[

T11T22 − T12T21 T12

−T21 1

]

, (3.26)

yields a scattering matrix formulation.

3.2.4.2 Analytical Two-Port Models

The last section provided the basic correlations for acoustic network
modeling. This section discusses the three analytical approaches, which
are applied in the remainder of this thesis.

Thermo-Viscous Ducts

Formulating the one-dimensional characteristic wave propagation under
isentropic conditions (Eqs. (3.19)) in terms of scattering matrices, the in-
dependence of solutions F and G directly yields

(

F

G

)

2

=

[

exp (−ik+x) 0

0 exp (ik−x)

](

F

G

)

1

. (3.27)

Here the wave numbers k± are defined by ω
c±u . The sign notation is cho-

sen, such that waves traveling in positive flow direction from x1 to x2 are

44



3.2 Acoustic Theory

denoted by +. In duct acoustics, losses in pipes are generally not negligi-
ble. The damping influence is mostly taken into account by manipulating
the wave number with an additional complex-valued term d that scales
the k± in terms of

k± = d
ω

c ± u
. (3.28)

As damping strongly depends on the geometric conditions, a wide vari-
ety of approaches can be found in literature [122, 197]. Preliminary exper-
imental investigations by Alemela [7] and Neunert [127] at the Lehrstuhl
für Thermodynamik at TU München revealed good results with the ap-
plication of Kirchhoff’s [92] formulation. Using Neunert’s [127] formula-
tion and an expected roughness coefficient of unity, the damping coeffi-
cient

d = 1 +
(1 − i)√

2 Sh

(

1 +
γ − 1√

Pr

)

(3.29)

is a function of the Womersley number, Wo, the Prandtl number, Pr and
the Shear number, Sh combining the material properties of the fluid. The
nature of this damping model causes a generation of complex-valued k±,
which lead to an exponential decrease of the characteristic wave ampli-
tudes while traveling through the duct.

Non-Constant Cross-Sectional Areas

Technical applications of duct acoustics exhibit non-constant cross-
sectional areas. Provided that the assumption of acoustic compactness
holds, i.e. as long as the acoustic wave length

λ =
c

f
(3.30)

is much larger than the geometric length scale, the change in cross-
sectional area is considered as an abrupt change in A. If this assumption
is too restrictive, for example for continuously varying cross-sections, a
distributed area change can be approximated by a discretized series of
ducts and area changes [143].

Such area changes often generate acoustic losses by mean flow interac-
tion, for example in the shear layers occurring in the region mean flow
expansion. Such losses are hard to handle qualitatively. Most of them
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scale with Mach number, Ma and are even apparent for Ma ∼ 0.1. Only
if mean flow follows potential flow descriptions, here Ma . 0.01, these
effects are negligible. These conditions are assumed to be valid in the
problems considered. Other dissipative effects that are generally taken
into account revealed no influence in the network representation applied
later. These terms are neglected for the derivation of the transfer matrix
TAC of a discrete change in cross-sectional area.

The transfer matrix of a discrete area change is based on the integral
conservation of acoustic mass and momentum (Eqs. (3.11)). The latter
states that the pressure fluctuation p1 is unaffected by the change in cross-
section. For constant acoustic mass flux, the acoustic velocity ratio is re-
ciprocally proportional to the area ratio α, that is

u1,2 =
A1

A2
u1,1 = αu1,1. (3.31)

Expressing these relations in terms of transfer matrix notation leads to

(
p1

̺0c

u1

)

2

=

[

1 0

0 α

](
p1

̺0c

u1

)

1

. (3.32)

Changes in Mean Temperature

Technical applications often deal with non-constant mean temperature
conditions. Here, we deal with non-reactive mean flow conditions that
are free from internal heat release as they occur in the tail pipe of com-
bustors. For modeling the acoustics in these regions, the changes in mean
temperature have to be taken into account [126].

Due to the lack of analytical solutions of the linearized Euler
Equations (3.11), the temperature profile is discretized in the same way as
continuous variations of the cross-section are approached. Using the lin-
earized Rankine-Hugoniot relations [141] to describe each discrete tem-
perature change leads to a linear relation between the acoustic pressure
and velocity upstream (index u) and downstream (index d) of tempera-
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ture discontinuity. According to the derivation of Chu [36] the acoustic
quantities are related by

(
p1

̺0c

)

d

=
̺0,ucu

̺0,dcd

(
p1

̺0c

)

u

−

̺0,ucu

̺0,dcd

(
T0,d

T0,u
− 1

)

Mauu0,u

(
Q̇1

Q̇0

+
u1,u

u0,u

)

, (3.33)

u1,d = u1,u +

(
T0,d

T0,u
− 1

)

u0,u

(
Q̇1

Q̇0

+
p1,u

p0,u

)

. (3.34)

In the absence of heat release Q̇ and assuming small mean flow velocities,
the second terms on the right hand side of Equations (3.33) and (3.34)
vanish.

Using the equation of state for an ideal gas (3.7) , the prefactor of the first
term in Equations (3.33) is rewritten in terms of mean temperature

̺0,ucu

̺0,dcd
=

√

T0,d

T0,u
= Θ. (3.35)

Substituting Θ into Equation (3.33) and rewriting the linearized Rankine-
Hugoniot relations in matrix notation yields

(
p1

̺0c

u1

)

d

=

[

Θ 0

0 1

](
p1

̺0c

u1

)

u

. (3.36)

Modeling continuous mean temperature variations by a combination of
Equation (3.36) and Equation (3.27) lead to an accurate approach for the
description of acoustic transfer in wide geometries. Based on the idea
stated by Ffowcs and Dowling [47], Neunert et al. [126] demonstrated
that acoustic measurements inside an exhaust gas tract with strongly
varying mean temperature can be accurately approximated using the ap-
proach of a series of isothermal ducts and temperature changes.

3.2.5 Instability Potentiality of an Acoustic Two-Port

Generally acoustic two-ports are used in network models to approximate
the acoustics inside a technical device. The interaction of the acoustic
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elements plays a crucial role when an accurate prediction of the stability
of the system is sought. The local investigation of the acoustic powers
P of distinct elements facilitates the determination of possible reason for
unstable eigenfrequencies of the system. It is defined by

P =
1

2
ARe [p1u∗

1 ] , (3.37)

i.e. the product of the cross-sectional area and the flux of acoustic energy.
Here, the asterisk denotes the complex conjugate.

This approach was carried out by Aurégan and Starobinsky [13]. In 1999
they presented the “acoustical energy dissipation/production potential-
ity“ concept. In aeroacoustics this formalism was successfully applied
to estimate the ”whistling potentiality“ of several aeroacoustic duct ele-
ments [89, 102, 194]. The acoustic power P at each port is separated into
right- (P+) and leftwards (P−) traveling energy fluxes which are depicted
in Figure 3.3. The whistling potentiality relates the outgoing acoustic en-
ergy fluxes P−

1 + P+
2 of an acoustic multi-port to its ingoing equivalents

P+
1 + P−

2 using the acoustic scattering matrix formulation. The acoustic
states at the ports, which define this power ratio η, are functions of the
incoming characteristic wave amplitudes and, computed by the scatter-
ing matrix, their outgoing counterparts. Determining the worst and best
case power ratios and the corresponding acoustic states at the ports leads
to an estimation of the “instability potentiality” (IP) of the acoustic ele-
ment considered. This terminology was introduced by Polifke [145], who
transformed the acoustic exergy and mass velocity based formulation of
Aurégan and Starobinski into the standard characteristic wave amplitude
form and computed the IP of a premix swirl burner [61]. This thesis uses

21
P+

1

P+
1

P−
2

P−
2

P1 P2Acoustic Element

Figure 3.3: The black-box model of an acoustic two-port. In network theory, the
acoustic transport between two ends of an acoustic element are often approached
by a linear black-box model.
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the formalism to demonstrate the influence of certain parameters on the
limit power ratios of TA stacks. The corresponding acoustic states are
not considered. A deeper investigation of the relevance of these quan-
tities for TA applications can be found in Holzinger et al. [73]. As the
characteristic wave formalism is used in this thesis, the main derivation
steps of IP are briefly repeated in this section maintaining the notation of
Polifke [145].

Using the characteristic waves, the acoustic sound power at the port of
an acoustic element defined by Equation (3.37) reads

P =
1

2
̺0cA (FF∗ −GG∗) . (3.38)

Defining the variable

χ =

√

̺cA

2
, (3.39)

and inserting

P+ = χF, P− = χG, (3.40)

enables an interpretation of the terms in brackets in Equation (3.38) as the
sum of incoming and outgoing acoustic fluxes at this port. Summing up
the sound powers of all ports yields the net production Π of an acoustic
multi-port. Defining the input and output vector of a two-port system as

r =

(

P+
1

P−
2

)

, z =

(

P−
1

P+
2

)

, (3.41)

this quantity Π reads
Π = r

�

r − z
�

z. (3.42)

Next, the order of output wave amplitudes of the scattering matrix nota-
tion is changed, such that

Ŝ =

[

r11 t12

t21 r22

]

. (3.43)

A multiplication of Ŝ by

V =

[

χ1 0

0 χ2

]

(3.44)
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from the left hand side and its inverse from the right-hand side yields

Π = z
�

(
(VŜV−1)�VŜV−1

)

︸ ︷︷ ︸

U

z − z
�

z. (3.45)

The eigenvalues λi of the system matrix U correlate the amplification of
the acoustic power production in terms of their eigenvectors ǫi by

z
�Uz =

2

∑
i=1

λi|ǫi|2. (3.46)

They stand for two relations of incoming waves, that are normal in this
space. Given these values and the scattering matrix of the two-port also
defines outgoing characteristic wave amplitudes. If the acoustic state
matches one of these conditions, the other eigenvalue has no contribution
to the acoustic power ratio. Furthermore, the eigenvalues λi correspond
to the minimum as well as maximum possible ratio of outgoing versus
incident acoustic power for any state vector a defined by

η =
Pout

Pin
=

a
�Ua

||a||22
. (3.47)

The amplification or attenuation caused by the acoustic element is a di-
rect result of the scattering behavior and the acoustic state applied. When
the power ratio η exceeds unity the component causes acoustic amplifi-
cation. Values lower than one, indicate a damping of the acoustic wave
by this element.

The solid lines in Figure 3.4 display maximum eigenvalues of the acous-
tic two-ports presented so far for a frequency range of 1 to 500 Hz. The
dashed lines indicate the minimum IP of these elements. Air, treated as
ideal gas at standard conditions is used as transport medium. The con-
sidered damped duct is 0.05 m wide and 10 m long, the applied mean
velocity corresponds to Ma = 0.5. The area ratio and temperature ratio
both have a fixed value of Θ = α = 1.5.

The eigenvalues of a discrete change in temperature depicted in red are
both neutral, which means all eigenvalues are unity. Considering the
derivation of the applied model, zero acoustic energy change was postu-
lated. This means that any change in mean temperature can either inher-
ently cause or suppress an acoustic instability3.
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Figure 3.4: The instability potentiality of the acoustic two-ports described in the
Section 3.2.4.2: a duct (L = 10m, dh =0.05m,u0 = 0.5c), an area change (α = 1.5)
and a temperature discontinuity (Θ = 1.5). All elements are not active because their
maximum eigenvalue does not exceed unity.

Although energy conservation is not directly considered in the derivation
of area changes (black lines & circles), these two-ports do not alter the
acoustic energy content. Taking into account the damping effects in the
description of discrete area changes, which are neglected here results in
a decrease of λmin below unity4.

If both eigenvalues are less than unity, the element shifts from an acous-
tically neutral to passive behavior, because of energy dissipation. The
investigated viscous duct is such a passive element. The damping effects
due to viscous wall friction inside ducts scale with frequency. Moreover,
the damping coefficient d scales with the inverse of the acoustic transport
velocity c ± u0. The resident time of the wave traveling in the opposite
direction of the mean flow velocity is larger than the one of the wave be-
ing transported with c + u0. The wave experiences more cycles, which
are each damped exponentially. Hence, the eigenvalues of the duct (blue
lines & triangles), decay with different slope.

3 The reader should be aware that the element still influences the reflection and transmission of F and G

and thus contributes to the input control of other potentially unstable parts of the system.
4 Combined area changes are generally capable of causing λmax > 1. Thus, for example orifices and side

branches have a certain ”whistling potentiality”.
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The resonators and most of the thermoacoustic core components allow a
network description in terms of the three two-ports considered. In classic
thermoacoustic engines the stack or regenerator (and for certain configu-
rations the heat exchangers) is the only expected acoustic amplifier. The
instability potentiality of these acoustic elements is a qualitative indica-
tion for the amount of acoustic power generated by the complete device.

3.2.6 Analytical Solutions Obtained by the Green’s Function Method

Special conditions allow for a partial simplification of the acoustic equa-
tions (NSE and EE) by substituting analytical solutions. In general, these
formulations are derived from solving inhomogeneous linear differential
equations. One of the most powerful tools to produce such solutions is
the application of the Green’s function (GF) method. Its advantage com-
pared to most other techniques is that once the solution for the differen-
tial operator is obtained, the influence of any right-hand side term can
be obtained by a convolution process. Besides finding analytical solu-
tions for acoustic problems, it is applied in various other scientific fields:
potential theory [90] and heat conduction [38] problems are investigated
as well as differential equations describing quantum physics [49]. Here,
this method is used to reduce the linearized NSEs derived in Chapter 4
from a multi-dimensional problem into a set of quasi one-dimensional
ordinary differential equations describing the acoustic transport through
a TA regenerator.

The characteristic GF G(y|ŷ) of a problem describes the response of the
system to a Dirac impulse δ(y − ŷ), i.e. a unit impulse located at ŷ. Due
to the nature of this special right-hand side inhomogeneity, the convo-
lution of G(y|ŷ) with any other kind of inhomogeneity b(y) yields the
corresponding response of the field.

In mathematical terms, the GF is the solution of the linear differential
operator L(y) acting on a certain domain y ∈ [ymin, ymax] following

L(y)G(y|ŷ) = δ(y − ŷ). (3.48)
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If the same operator L(y) is acting on ϑ(y) in combination with any ar-
bitrary inhomogeneity b(y), the solution of ϑ(y) can be easily found by

ϑ(y) =

ymax∫

ymin

G(y|ŷ)b(ŷ) dŷ. (3.49)

There are different ways for obtaining the GF for a certain L. Various
methods are provided in textbooks [38, 41, 48], but their presentation is
beyond the scope of this thesis. As the derivation process does not always
lead to analytical formulations and sometimes is very cumbersome, the
GFs determined are also listed in the references provided.

In Chapter 4, this thesis treats problems with a differential operator of the
form

L [ϑ(y)] =

[

1 − 1

α2

∂2

∂y2

]

ϑ(y). (3.50)

Here, the complex-valued parameter α is constant in y. With this assump-
tion, the corresponding GF reads

G(y|ŷ) = −α H(y − ŷ) sinh(α(y − ŷ)) + C1(ŷ)e
αy + C2(ŷ)e

−αy. (3.51)

Here, H(y− ŷ) denotes the Heaviside function. The integration constants
Ci are determined by the required boundary conditions (BC). Including
BCs of first kind (Dirichlet)

ϑ(yj) = gj (3.52)

and second kind (Neumann)

∂ϑ

∂y

∣
∣
∣
∣

yk

= hk, (3.53)

the solution for ϑ(y) reduces to [38]

ϑ(y) =

ŷ=L
∫

ŷ=0

G(y|ŷ)b(ŷ) dŷ +
1

α2 ∑
j

gjG(y|ŷj)−
1

α2 ∑
k

hk
∂G(y|ŷ)

∂ŷ

∣
∣
∣
∣

ŷ=yk

.

(3.54)
The first term describes the impact of the inhomogeneity. The contri-
butions of all BC types scale with α−2. In the investigated problem, the
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field is fixed by a Dirichlet condition at the solid/fluid interface. The
center of the pore displayed in Figure 2.2 is represented by a symmetry
plane. With this BC at yk = 0, hk becomes zero and the third term in
Equation (3.54), accounting for Neumann conditions, vanishes.
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4 Inclusion of Mean Flow in Quasi One-
dimensional Thermoacoustic Transport Equa-
tions

In this chapter, the one-dimensional TA modeling equations used hith-
erto are extended by explicitly considering mean flow. The existing
system of ODEs have been derived by various authors applying dif-
ferent mathematical techniques. The traditional methods used by Rott
[164, 165] or Swift [187] are restricted to the zero mean flow assump-
tions. Starting from the most general equations describing fluid flow –
the Navier-Stokes Equations – , Peter in’t panhuis [82] applies a series of
general mathematical methods, which allow for different approximations
in the intermediate steps. The schematic sketch of Figure 4.1 displays his
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Figure 4.1: Derivation adapted from Peter in’t panhuis [82]. In contrast to his pro-
cedure, the mean velocity u0 inside the pore is not neglected a priori.
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4 Inclusion of Mean Flow in Quasi 1D Thermoacoustic Transport Equations

general procedure. After a problem specific non-dimensionalization (I)
of the NSE, he applies a simplified asymptotic expansion (II) to the di-
mensionless NSEs by assuming u0 being a quantity of second order in
Ma. In the third step an analytical solution for the mean field quantities
is found. Substituting the temporally constant mean field values (III a))
to the linearized NSEs (LNSEs) leads to a set of TA perturbation equa-
tions (TAPEs). A transversal integration and averaging of these ODEs
by applying GF methods allows for substituting (IV)) all acoustic quan-
tities except pressure p1 and the cross-sectionally averaged velocity 〈u1〉
in the TAPEs. This leads to a description of the acoustic propagation in
a one-dimensional model in terms of p1 and the cross-sectional average
of the velocity fluctuation 〈u1〉. This model is denoted as TA transport
equations (TATEs).

The derivation presented here follows the same procedure. Section 4.1
repeats the non-dimensionalization step I of the derivation without dif-
fering from the former process. The formalism of the asymptotic expan-
sion discussed in Section 4.2 is also similar to step II in Figure 4.1. How-
ever, the mean flow assumption is not invoked, which leads to differ-
ent mean field equations and additional terms in the LNSEs containing
explicit mean flow contribution, which are presented in Section 4.3 and
Section 4.4. In the following, Section 4.5 provides a description of the
way to an analytical formulation similar to the existing TA equations. For
finding a solution, these changes require the introduction of modeling ap-
proximations that are discussed in Section 4.5.2. These simplifications are
applied in step III b) of the derivation. Using these closure assumptions
enables the application of the GF technique to cross-sectionally average
the TAPEs IV). In combination with the substitution, these processes are
shown in detail in Section 4.5.3, following the process applied by in’t pan-
huis [82]. This procedure leads to one-dimensional TA transport equa-
tions (TATEs) containing contributions of mean flow velocity u0.

These TATEs describe the acoustic transmission through a narrow pore
in the presence of a temperature gradient and mean flow. Using this set
of equations, a numerical tool is implemented that facilitates the one-
dimensional computation of scattering matrices of TA stacks affected
by mean flow. Before the implementation of this tool is discussed in
Section 4.6, the impact of the optional simplifications, which were intro-
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4.1 Dimensionless Two-Dimensional Navier-Stokes Equations

duced in the modeling approaches is demonstrated and more accurate
assumptions are incorporated in Section 4.5.4.

4.1 Dimensionless Two-Dimensional Navier-Stokes

Equations

This section treats step I of the derivation, the non-dimensionalization of
the general fluid transport equations. Due to the fact that the acoustic
thermo-viscous boundary layer plays the most important role in generat-
ing the phase lag necessary for energy conversion in the TA effect, ther-
mal diffusion and friction have to be considered in the modeling equa-
tions [170]. Thus, the NSE (Eqs. (3.2)) in combination with the conserva-
tion of mass (Eq. (3.1)) and the energy equation formulated in terms of
Equation (3.6) are the basis of the derivation model.

A dimensionless consideration of the problem yields direct insight into
the main parameter combinations controlling the transport behavior.
Based on the Buckingham Π theorem [29], Olson and Swift [130] derived
a dimensionless set quantifying the influence of the TA effect. As mean
flow is neglected in their considerations, we follow Peter in’t panhuis et
al. [81], where the set of equations is first non-dimensionalized and then
the terms containing mean flow contribution are neglected.

The system of equations is formulated in Cartesian coordinates x, y, z.
As the problem considered is two-dimensional, the governing equa-
tions, that is mass continuity (Eq. (3.1)), NSEs (Eqs. (3.2)) and the energy
Equation (3.6), are reduced to their two-dimensional form in space. Body
forces, especially buoyancy effects, are neglected in this approach. Nev-
ertheless, if convective effects dominate the mean flow field, these terms
should be considered carefully.

The set of parameters describing the problem are

t, x = (x, y)T , v = (u, v)T , ̺, p, T, β, K, cp, τ, µ, ζ (4.1)

for the fluid domain and

KS, cS, ̺S (4.2)

57



4 Inclusion of Mean Flow in Quasi 1D Thermoacoustic Transport Equations

for the solid domain. Those quantities are non-dimensionalized by the
set of reference parameters

L, R, cref, Kref, ̺ref, cp,ref, µref, ζref, KS,ref, cS,ref and ̺S,ref. (4.3)

As the boundary layers play a crucial role in the investigated geome-
tries, we follow the non-dimensionalization technique from boundary-
layer theory [175] and scale transversal and viscous components by a
second geometrical length scale, that is the pore radius R. Introducing
the ratio of (geometric ) dimensions

ε =
R

L
, (4.4)

the dimensionless parameters (˜) are defined by

x = L x̃ y = R ỹ t =
L

cref
t̃ u = cref ũ v = εcref ṽ

̺ = ̺ref ˜̺ p = ̺refc
2
ref p̃ T =

c2
ref

cp,ref
T̃ c = cref c̃ β =

cp,ref

c2
ref

β̃

K = Kref K̃ cp = cp,ref c̃p τ =
µref cref

R
τ̃ µ = µref µ̃ ζ = ζref ζ̃. (4.5)

As shown in Section 1.2, the non-isentropic changes of thermodynamic
state in the acoustic boundary layers cause the phase shifts necessary for
the occurrence of the thermoacoustic effect. Their characteristic length
scales δ, that is the viscous δν, δζ and the thermal δK, δS boundary layer
thicknesses are defined by

δν =

√

2µref

ω ̺ref
, δζ =

√

2ζref

ω ̺ref
,

δK =

√

2Kref

ω ̺ref cp,ref
and δS =

√

2KS

ω ̺S cS
. (4.6)

Comparing these quantities to the pore height R and the pore length L
are typical dimensionless parameters for similarity considerations of TA
devices. Using these parameters leads to the typical set of dimension-
less numbers displayed in Table 4.1. Note that the Lautrec number La is
related to the Womersley number Wo by the Prandtl number, that is

Pr ≡ µrefcp,ref

Kref
=

δ2
ν

δ2
K

=
La2

Wo2
. (4.7)
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4.1 Dimensionless Two-Dimensional Navier-Stokes Equations

Symbol Formula Description

γ
cp

cv
heat capacity ratio

ε R
L ratio of dimensions

φ R
R+RS

porosity

σ KS
Kref

thermal conductivities ratio

κ ω L
c Helmholtz number

Ma u
c Mach number

La R
δK

fluid Lautrec number

LaS
R
δS

stack Lautrec number

Wo R
δν

Womersley number based on δν

Woζ
R
δζ

Womersley number based on δζ

Table 4.1: Dimensionless numbers of narrow pores

The Strouhal number Sr, which is often used in duct acoustics, is identical
to

Sr ≡ ω R

U
=

κε

Ma
. (4.8)

For ease of presentation, all thermophysical properties are considered to
be constant for the presented set of equations. Nevertheless, in the im-
plemented application this simplification is not applied and the data are
taken from tabulated values [201]. Furthermore, the tildes denoting non-
dimensional parameters are removed.

Applying the non-dimensional set of reference quantities given in
Table 4.1 to the governing equations (Eq. (3.1), Eqs. (3.2) and Eq. (3.6))
and the equation of state (Eq. (3.7)) yields

D̺

Dt
= −̺

(
∂u

∂x
+

∂v

∂y

)

, (4.9a)

̺
Du

Dt
= −∂p

∂x
+

κ

Wo2

∂2u

∂y2
(4.9b)

+ ε

[

κ

Wo2
ζ

(
∂2v

∂y2
+

∂2u

∂x∂y

)

+
3κ

Wo2

∂2u

∂x∂y

]

+ A1

(
O
(
ε2
))

,
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0 = −∂p

∂y
+ ε

κ

Wo2

∂2u

∂y2
+ A2

(
O
(
ε2
))

, (4.9c)

̺
DT

Dt
= β T

Dp

Dt
+

κ

2La2

∂2T

∂y2
+

κ

Wo2

∂u

∂y

2

+ A3

(
O
(
ε2
))

, (4.9d)

p =
γ − 1

γ
T ̺. (4.9e)

In this formulation, the transversal momentum equation (Eq. (4.9c)) was
divided by ε2 in order to obtain terms of order zero in ε.

Choosing an alternative coordinate system (x, yS) at the center of the
solid part (see Fig. 2.2) and RS as transversal parameter of non-
dimensionalization, the porosity vanishes in the energy equation of the
solid:

̺S
∂T

∂t
=

κ

2La2
S

∂2T

∂y2
S

+ A4

(
O
(
ε2
))

. (4.9f)

Here, the terms Ai

(
O
(
ε2
))

contain higher-order contributions of the ra-
tio of pore dimensions. In the following section, these quantities are ne-
glected. Please refer to Section A.1 for further information on these terms.

The transversal boundary conditions for the geometric setup with con-
stant pore cross-section are non-dimensionalized in the same way as the
governing equations. For the velocity and temperature field they read

u(x, y = ±1) = 0, (4.10a)

v(x, y = ±1) = 0, (4.10b)

T(x, y = ±1) = TS(x, yS = ±1), (4.10c)

∂T

∂y

∣
∣
∣
∣

y=±1

= σ
∂TS

∂yS

∣
∣
∣
∣

yS=±1

, (4.10d)

∂TS

∂yS

∣
∣
∣
∣

yS=0

= 0. (4.10e)

4.2 Asymptotic Expansion

As stated in Section 3.2.1, carrying out an asymptotic expansion of the
basic set of equations assuming mean properties constant in time lead
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4.2 Asymptotic Expansion

to the set of governing equations describing acoustic wave propagation.
This technique is applied out in step II of the derivation depicted in
Fig. 4.1. Different expansion techniques can be found in literature. The
linearization techniques applied in most TA publications are rather re-
strictive [187], decomposing all transported scalars in terms of

Ψ(x, y, t) = Ψ0(x) +Re
[
Ψ1 (x, y) eiωt

]
+ ... . (4.11)

This formulation only accounts for the values acquired during the mea-
surement of acoustic quantities. Additionally, not considering the imagi-
nary components in the resulting equations prohibits a stability analysis
of any problem considered. The harmonic ansatz eiωt in time separates
acoustic oscillations from turbulent fluctuations. As the laminar regime
is treated, the latter magnitudes are estimated to be orders of magnitudes
smaller than the acoustic counterpart.

Moreover, the expansion of the velocity vector v has no mean contribu-
tion. Most authors justify this assumption by trying to suppress mean
flow without providing any physical justification. In the present work,
this limitation is removed by adopting a different approach. The zeroth-
order quantity of v is only a function of the axial coordinate x. As long
as mean flow is neglected, this approach is valid for inner pores with
a mean temperature field that is not affected by multi-dimensional heat
conduction effects due to heat transfer to the periphery.

The non-dimensionalization entails a transformation of the harmonic
oscillation in time into the Helmholtz number (κ) space. The general
asymptotic expansion similar to Equation (3.9) then reads for an arbitrary
variable, i.e. the transport variables p, u, v, T, ̺, but also the thermophys-
ical properties of the solid and fluid region

Ψ(x, y, t) = Ψ0(x, y) + Maa Ψ1(x, y)eiκt

+ Maa
2 (Ψ2,0(x, y) + Ψ2,1(x, y)e2iκt) +O(Maa

3). (4.12)

The first term scaling with Maa
2 (index 0,2) is constant in time. It results

from the squared exponent of the complex valued frequency.

Thermophysical properties of fluids and solids are often assumed to be
constant. If this approach is too inaccurate for the considered problem,
these quantities are computed as smooth functions of temperature and
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4 Inclusion of Mean Flow in Quasi 1D Thermoacoustic Transport Equations

pressure (Section 3.1.5). As their relative change is always smaller than
the change in the corresponding primary variables, all thermophysical
property contributions other than zeroth order are negligible. Thus, they
are considered as pure functions of the mean quantities, which in partic-
ular leads to

β =
1

T0(x, y)
(4.13)

for the compressibility β of the gas.

In the present derivation, the asymptotic expansion is simplified further
by assuming

Ψ0(x, y, t) = 〈Ψ0〉. (4.14)

The angle brackets of the right hand side term indicate a transversal av-
erage over the channel height H

〈Ψ〉 = 2

H

H/2∫

0

Ψ(x, y) dy. (4.15)

This renders the mean quantities independent of the y-direction, which is
only valid for zero mean flow conditions. All preceding one-dimensional
models from Reid’s [158, 187] and in’t panhuis [80], which consider the
impact of mean flow follow the same approach for the mean flow quan-
tities they take into account. The assumption of only considering mean
parameters to be cross-sectionally constant is per se not physical and thus
a modeling approach, which is necessary to keep the resulting system of
equations of the order of Maa manageable. Only if certain conditions of
comparably negligible mean flow boundary layers arise in the problem,
the error impact of the modeling approach is small.

The choice of this assumption causes the intermediate steps of the deriva-
tion to be enhanced by one single parameter 〈u0〉(x) compared to the
derivation of in’t panhuis [80]. mean velocity must be justified by phys-
ical considerations: A comparison between the laminar velocity profiles
inside a channel and the acoustic profiles of Rott’s solution (Eqs. (2.1))
yields some insight into the interaction of acoustics and mean flow in
the thermoacoustic boundary layers. The mean velocity profiles u0(x, y)

62



4.2 Asymptotic Expansion

 

 

0
0

0
0

0
0

1

1

1

1

1

1

0.5

0.5

0.5

0.5

1.5

1.5

0.5

0.5

1.5

Wo = 0.1

Wo = 1

Wo = 10

parabolic u0

constant u0

|Hν − Pr HK| [−]|HK| [−]

|Hν| [−]

y
[−

]

y
[−

]
y
[−

]

Figure 4.2: The three spatial contributions to the acoustic parameters under zero
mean conditions for air and Wo = 0.1, 1, 10 and two different mean flow profiles.

(solid lines) and 〈u0〉(x) (dashed lines) are depicted in Figure 4.2 by thick
curves. The analytical solution of a Poiseuille flow inside a channel reads

u0(x, y) = 〈u0〉(x)
3

2

(

1 − 2y

H

)2

. (4.16)

The spatially resolved thermoacoustic equations implying stagnant mean
flow contain three terms which change in y-direction [187]:

1. Viscous dissipation due to wall friction scales with Hν in the conser-
vation of axial momentum1.

1 Strictly speaking, the viscous contribution is described by the term scaling with 1 − Hν. The same
accounts for thermal diffusion.
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4 Inclusion of Mean Flow in Quasi 1D Thermoacoustic Transport Equations

2. Thermal diffusion HK to the walls is taken into account in the en-
ergy equation. Using a dimensionless transversal coordinate y, those
terms read

Hν = 1 − Cosh ((1 + i)Wo y)

Cosh ((1 + i)Wo)

HK = 1 − Cosh ((1 + i)La y)

Cosh ((1 + i)La)
(4.17)

in dimensionless form. Their absolute values are displayed in the
left plots of Figure 4.2 by thin lines.

3. The TA conversion term also depends on these functions in terms of

Hν − Pr HK, (4.18)

which has a similar shape.

For low Wo the corresponding profiles are almost parabolic. Higher Wo
lead to a narrower non-constant region near the wall and a quasi-constant
profile near the center line. A product of these terms with a constant
mean velocity field 〈u0〉(x) enhances the near wall contribution com-
pared to the more physical parabolic profile. The acoustic boundary layer
effects are thus overestimated for such combinations. These products are
additional terms that are smaller than the existing terms in the laminar,
low Ma regime. However, the reader should keep in mind that the ap-
proximation of constant mean velocity u0(x, y) = 〈u0〉(x) overestimates
these contributions.

The transversal profile of the mean temperature T0 for Poiseuille condi-
tions is also parabolic. In contrast to the mean velocity u0 its value does
not become zero at the solid interface. Thus, the mismatch obtained in
terms containing the product of T0 and the transversal acoustic profiles
is smaller. Furthermore, the influence of axial temperature changes onto
the generic problem is orders of magnitude larger than the changes in
cross-sectional contribution.
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4.2 Asymptotic Expansion

4.2.1 Narrow Pore and Linear Acoustics Assumption

The full system of Equations (4.9) is a general formulation affected by the
geometrical ratio of dimensions of the pore

ε =
R

L
. (4.19)

If ε ≈ 1 and friction or thermal diffusion terms are of similar order, the
full system of equations needs to be considered. In contrast, in narrow
pores with ε ≪ 1 as they occur in TA regenerators, these terms become
negligible.

Acoustic quantities are generally of the order of [160]

Maa ≈
p1

p0
. 0.05. (4.20)

Thus, the terms scaling with either ε or Maa have a similar contribution
in the expanded system of equations. Here, we follow Peter in’t panhuis
[80], assuming

Maa ∼ ε2, (4.21)

which accounts for a low ratio of ε and linear acoustics. This approach
yields a combined influence of geometric and acoustic streaming ef-
fects in one system of equations of higher order, where combinations of
c0Maa

n + c1Maa
n−1ε + ... + cmMaa

n−mεm + ...cnεn balance. Findings based
on this system provide information about the impact of both parameters.

Applying Equation (4.21) and Equation (4.20) to the asymptotically ex-
panded system of governing Equations ((4.9a)-(4.9e)), the system is sep-
arated in groups of terms scaling with the order of Maa. As the zeroth-
order group is time invariant and we consider the linear acoustic regime,
the mean parameters have to fulfill the corresponding set of equations.
Applying the same argument to the first-order terms directly yields a
linearized system of equations describing the spatial and temporal evo-
lution of acoustic parameters.
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4.3 Determination of Mean Field Quantities

The mean flow field is a set of temporally constant values providing back-
ground information for the acoustic transport equations. It is the result
of step II of this derivation, the asymptotic expansion. With the chosen
asymptotic expansion (3.9) and (4.14) , all transversal derivative terms
become zero and the full system of equations describing mean transport
processes reads

〈u0〉
∂〈̺0〉

∂x
= −〈̺0〉

∂〈u0〉
∂x

, (4.22a)

〈̺0〉〈u0〉
∂〈u0〉

∂x
= −∂〈p0〉

∂x
, (4.22b)

〈̺0〉〈u0〉
∂〈T0〉

∂x
= β 〈T0〉〈u0〉

∂〈p0〉
∂x

, (4.22c)

〈p0〉 =
γ − 1

γ
〈T0〉 〈̺0〉. (4.22d)

The form of this system of equations is especially attributed to the cross-
sectional means approach of (4.14). The cross-sectional average is only
exact, if it is carried out for each term of the equations, e.g. the first term

of (4.22a) should read 〈u0
∂̺0
∂x 〉. Thus, Equation (4.22a) only accounts for

conditions of u0(x, y) = u0(x) or ̺0(x, y) = ̺0(x). The problems consid-
ered here are always related to wall interaction. Unless the mean flow
velocity becomes zero, the contact condition leads to cross-sectional vari-
ations in u0. Equation (4.9c) directly yields a constant pressure distribu-
tion in this direction, hence

〈p0(x, y)〉 = p0(x). (4.23)

Thus, the ideal gas law (Eq. (4.9e)) states, that cross-sectional shape of
̺0(x, y) is a function of the transversal mean temperature profile. Com-
paring the spatial changes in these two quantities, the axial variation al-
ways exceeds the transversal changes. Hence, this approach may be valid
under certain conditions.

Under these assumptions, the transversal velocity component 〈v0〉 van-
ishes, because the flow field is confined by the stack walls.
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An integral consideration of Equation (4.9a) states that the mass flux at
the reference position is conserved and thus,

〈u0(x)̺0〉(x) = 〈u0〉(0)〈̺0〉(0) = Ma (4.24)

is exact, if the inlet quantities have block profile. The profile of the mean
density scales with the inverse of the cross-sectional temperature varia-
tion. The ratio of

Rλ

̺refcp,refcrefMa
(4.25)

scales the variation of the magnitude of this profile. In common thermoa-
coustic devices this quantity is very small. Thus, assuming

̺0 ≈ 〈̺0〉 (4.26)

is a good approximation as well as expecting the mean temperature to
be transversally constant with respect to its variation in axial direction.
The form of the axial momentum equation (Eq. (4.22b)) is totally inap-
propriate for the computation of the axial pressure gradient, which is the
driving force for the mean flow. In the conditions observed, a shear stress
rather than inertia balances the pressure gradient. Hence, neglecting the
left hand side of Equation (4.9b), it states that

∂p0(x)

∂x
≃ κ

Wo2

∂2u0

∂y2
=

1

Recε

∂2u0

∂y2
. (4.27)

Here, the Reynolds number

Rec =
cR

ν
(4.28)

is computed using the speed of sound. Moderate ratios of dimensions
1 ≫ ε ≫ 1

Rec
cause small pressure gradients. Further, computing the sec-

ond transversal derivative of the dimensionless form of Equation (4.16)
leads to

∂2u0

∂y2
=

3

2
u0. (4.29)

Hence, if the first condition coincides with low Mach numbers, this term
has a smaller contribution than other terms that scale with mean flow
and thus may be neglected.
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Although the transversal mean temperature dependency is neglected, the
averaged mean temperature distribution 〈T0〉(x) includes the impact of
the different thermal conductivities inside solid material and the fluid.
These two quantities are replaced by a mean conductivity 〈K〉

〈K〉 = (1 − φ) KS,ref + φKref, (4.30)

in a one-dimensional energy transport equation in terms of the mean
temperature 〈T0〉(x). Merging this approach into the conductive term
of the temperature transport equation in dimensional form reads

cp̺u
d〈T0〉

dx
=

d

dx

[

〈K〉d〈T0〉
dx

]

. (4.31)

Introducing the Peclet number

Pe =
cp,ref̺refcrefL

〈K〉ref
, (4.32)

the dimensionless form of this equation reads

cpMa Pe
d〈T0〉

dx
=

d

dx

( 〈K〉
〈K〉ref

d〈T0〉
dx

)

. (4.33)

Material properties are solely functions of the mean temperature 〈T0〉 at
constant pressure p0. In this thesis, the axial temperature profile is de-
termined in terms of upstream and downstream Dirichlet BCs T(x =
0) = Tu and T(x = L) = Td. Applying the parameters of non-
dimensionalization from Equation (4.5), the mean temperature 〈T0〉 pro-
file is fixed by the boundary values

〈T〉|0 =
1

γ − 1
(4.34a)

〈T〉|1 =
Td

(γ − 1) Tu
. (4.34b)

If constant thermophysical properties are assumed an analytical solu-
tion for this differential equation can be found. Inserting the boundary
conditions leads to

〈T〉0(x) =

[(
Td
Tu
− 1
)

ePex) +
(

ePe − Td
Tu

)]

(γ − 1)
(

1 + ePe
) . (4.35)
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Assuming small changes in the thermophysical properties leads to small
variations from this profile.

If the transversal temperature profile is not assumed to be constant,
Equation (4.33) still accounts for the averaged mean temperature. Never-
theless, under some assumptions an analytical solution can be obtained.
The solution of a Poiseuille flow that is a fully developed incompress-
ible flow through a channel with walls of constant temperature yields a
parabolic cylinder solution [79] (see also Eq. (4.16)). If the thermal pene-
tration depth is larger than the hydraulic radius of the pore, this profile
can be used as an approximation for transversal profile of u0(x, y) and
T0(x, y) inside the compressible flow with axially varying wall tempera-
tures.

4.4 Linearized Navier-Stokes Equations

Substituting the results obtained for the mean parameters into the lin-
earized NSEs (Eqs. (4.9)) yields a simplified system of equations. Fur-
ther, applying the harmonic approach Ψ1(x, y, t) = Ψ1(x, y)eiκt to the
time derivatives ∂Ψ1

∂t , enables a transformation of the system of equations
into frequency space:

̺1 =
γ

c2
p1 −

̺

T
T1 (4.36a)

(

iκ + ∂u
∂x

)

̺1 + u∂̺1
∂x = −̺

(
∂v1

∂y
+

∂u1

∂x

)

− ∂̺

∂x
u1 (4.36b)

̺
(

iκ + ∂u
∂x

)

u1 + u̺ ∂u1
∂x

︸ ︷︷ ︸

Λ1

= −∂p1

∂x
+

κµ

Wo2

∂2u1

∂y2
(4.36c)

0 = −∂p1

∂y
(4.36d)

iκcp̺T1 + u̺cp
∂T1
∂x

︸ ︷︷ ︸

Λ2

= −cp
∂T

∂x
̺u1 − cp

∂T
∂x

u̺1 (4.36e)

+ iκp1 + Tu∂p1
∂x +

κK

2La2

∂2T1

∂y2
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− u
T

∂p
∂x

T1 − ∂p
∂x

u1

iκcS̺S TS,1 =
κKS

2La2
S

∂2TS,1

∂y2
. (4.36f)

In the following, this system of equations is referred to as the thermoa-
coustic perturbation equations (TAPEs). Here and from now on, the in-
dex Ψ0 as well as the spatial averaging 〈Ψ〉 symbol is dropped for all
mean quantities.

The gray boxed terms in Equations (4.36) (explicitly) include contribu-
tions from mean velocity u. They have not been considered in previous
studies [80, 170, 187]. All these terms describe the explicit impact of a
transversally averaged mean flow onto the acoustic fields inside a nar-
row pore. If those gray boxed terms are dropped from Equations (4.36),
the system of equations of Peter in’t panhuis et al. [82] is recovered.

4.5 One-Dimensional Thermoacoustic Transport

This section treats the steps denoted by III b) and IV in the sketch of the
derivation displayed in Figure 4.1. They treat the cross-sectional aver-
aging process and substitution of parts of the equations obtained, which
lead to the TATEs, i.e. one-dimensional transport equations in p1 and u1.

An analytical solution for the set of acoustic transport Equations (4.36) is
not known. Thus, further simplifications and closure assumptions are in-
troduced in order to develop an analytical description of the y-dependent
components in the set of Equations (4.36) by following the sequence of
steps listed in Table 4.2. Averaging these equations over the cross-section
yields a one-dimensional description of the axial transport of all acous-
tic variables. Eliminating v1, T1, TS,1 and ̺1 from this set of equations
leads to a set of ODEs in terms of p1, u1 describing the averaged acous-
tic transport through a narrow geometry affected by mean flow u(x) and
non-constant temperature field T(x).
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Step Equations Methods Applied Result

1 (4.36d) Transversal Integration p1(x, y) = p1(x)

2 (4.36c) a) Modeling of Λ1

b) Green’s Function
Method
c) Transversal Integration

∂p1
∂x = A11(x)u1(x)

3
(4.36e)

& (4.36f)

a) Modeling of Λ2

b) Green’s Function
Method
c) Boundary Coupling
d) Transversal Integration

T1(x) = f (u1(x), p1(x))

4 (4.36a) a) Transversal Integration
b) Substituting

̺1(x) = f (u1(x), p1(x))

5 (4.36b) a) Transversal Integration
b) Substituting

v1(x) = 0
∂u1
∂x =

A21(x)u1(x) + A12(x)p1(x)

6 Combination of Step 2 & 5 d
dx

(

p1

〈u1〉

)

= A(x)

(

p1

〈u1〉

)

Table 4.2: Overview of the segregated mathematical steps applied to the TAPEs that
lead to a system of ODEs (TATEs) in terms of p1 and u1 .

4.5.1 Simplification Approaches

Determining the order of magnitude of the nine gray-boxed terms in the
TAPEs (Eqs. (4.36)) is not trivial. Some terms scale with ̺u, which is
the reference Mach number (see Eq. (4.24)). Their contribution should be
retained if a high accuracy in the predicted results is required.

Both terms in the third line of Equation (4.36e) scale with the mean pres-
sure gradient. Following Equation (4.27) the pressure gradient is propor-
tional to Ma

Recε
, which is small in the cases considered here. The first term,

which is a function of T1, even scales with Ma2 is very small for Ma ≪ 1.
The second term scales with the acoustic velocity and also plays a minor
role under the conditions met in the reference problem. Both are omitted
in the further derivation but still allow for following the same derivation
procedure presented here.
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4 Inclusion of Mean Flow in Quasi 1D Thermoacoustic Transport Equations

4.5.2 Closure Assumptions

For the solution steps (2 & 3) listed in Table 4.2, two closure assumptions
need to be found. This section discusses the nature of these assumptions
and suggests modeling approaches, which are applied in the later deriva-
tion.

The derivation of Peter in’t panhuis et al. [80] involves the application
of the GF method on the axial momentum Equation (4.36c) to find an
analytical solution for the transversal profile of the velocity oscillation
u1(x, y). Proceeding in the same manner implies finding a GF for the
differential operator

Lν = ̺

(

iκ +
∂u

∂x

)

+ Ma
∂

∂x
︸ ︷︷ ︸

Λ1

− κµ

Wo2

∂2

∂y2
. (4.37)

In contrast to the derivation for stagnant flow conditions, this differen-
tial operator Lν contains a x-derivative term denoted by Λ1. Thus, the
operator is no exclusive operator in the transversal direction. No proper
analytical GF can be found for this operator. For finding an analytical
one-dimensional description of the TA transport through the pore, a clo-
sure assumption has to be made by modeling this term.

The same technique applied to Equation (4.36d) is used to solve the en-
ergy equations (Eqs. (4.36e) and (4.36f)). Again, the first of those two
equations contains an axial derivative term Λ2 that is part of the differen-
tial operator

Lk =

[

iκcp̺+Ma cp
∂

∂x
︸ ︷︷ ︸

Λ2

− κK

2La2

∂2

∂y2

]

, (4.38)

acting on the fluid temperature oscillation T1. Due to the similarity of
those terms, the second necessary closure assumption should be chosen
in accordance with the modeling of Λ1.

The modeling of Λi has to fulfill certain requirements:

• The assumed model should be as physical as possible.
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Term Character Model

MI MII

∂u1
∂x Λ1 0 ∂〈u1〉

∂x

∣
∣
∣
u0=0

∂T1
∂x Λ2 0 ∂〈T1〉

∂x

∣
∣
∣
u0=0

Table 4.3: Overview over the modeled terms. Choosing different closure assump-
tions leads to different results in the one-dimensional transport equations (MI, MII).

• The basic shape of the GF for the Li considered should not be dom-
inated by the modeled term. Thus, if parts of the model contribute
to LiΨ1, they should be formulated in terms of Ψ1 and its second

transversal derivative ∂2Ψ1

∂y2 .

• Such model terms do not have to be constant in y but their mathe-
matical formulation should lead to an analytical GF.

• The y-profile of the source terms has to be known before
Equation (3.54) can be applied to find an analytical solution. There-
fore, the transversal evolution of all contributions that do not include
the sought variable Ψ should be given.

With these restrictions, two different basic assumptions can be found to
model the closure terms in a first step:

MI: As the terms Λi scale with Ma, their contribution can be neglected
and both terms vanish. This approach keeps the resulting system of
equations short. However, this approach is not consistent, because
other mean flow terms in Equation (4.36) also scale with Ma.

MII: The analytical solution for stagnant mean conditions is known. As
this thesis deals with laminar mean flow conditions, the low velocity
limit is described by these equations. The accuracy of this approach
is estimated to decrease in the same way as the first approach. This
initial approach is simplified here, such that only a transversally av-
eraged version of the terms is applied.

Iteratively substituting the results of these approaches may lead to more
accurate results unless an intermediate solution does not fulfill the re-
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4 Inclusion of Mean Flow in Quasi 1D Thermoacoustic Transport Equations

quirements stated before. The mathematical formulation for the terms Λi

of these two models are gathered in Table 4.3.

Using these closure assumptions, an analytical solution may be obtained
from Equations (4.36). To keep the derivation more general, the terms
are not explicitly substituted, but replaced by two placeholders Λi in the
derivation in the next section.

4.5.3 Spatial Averaging of the TAPEs

Here, the cross-sectional averaging of the system of Equations (4.36) is
treated. Due to the huge amount of terms that occur in this process, the
pertinent terminology is briefly explained. The blackboard bold capital
letters (e.g. E) indicate the equation into which the replacement character
is introduced. The overbar (Φ) marks the terms stemming from transver-
sally averaged equations. The indices refer to different issues. They ei-
ther indicate the corresponding prefactors the term multiplies with (e.g.
p1) or stand for specially included parameters. The latter are for example
the cross-sectional impact functions Fν, FK or the modeled closure terms
(Λi). Table 4.4 lists the abbreviations and indices and offers a reference
to the corresponding equations. All terms are defined and related to the
corresponding equations in Section A.2. The cross-sectional averaging of
the parameter u1, T1 and ̺1 is processed by applying Equation (4.15) to
the analytical definition obtained for the quantities.

A brief look at the transversal momentum conservation (Eq. (4.36d)) re-
veals that not only the mean pressure field is constant over the cross-
section of the channel, but also the acoustic pressure p1(x, y) = p1(x)
(step 1 in Tab. 4.2).

Merging the closure assumptions of the last section into the y-momentum
Equation (4.36c) and using the differential operator of Equation (4.37)
facilitates rewriting the acoustic velocity problem as

Lν [u1] = XΛ1
+ Xp′1

∂p1

∂x
, (4.39)

u1

∣
∣
±1

= 0. (4.40)
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Char. Eq. Description Ind. Description

E (4.36e) Energy conservation p1 Acoustic pressure

G (4.36a) Gas law p′1 Axial derivative of p1

G (4.36a) Averaged gas law u1 Acoustic velocity

k (4.36b) Intermediate averaged u′
1 Axial derivative of u1

continuity T1 Acoustic temperature

K (4.36b) Averaged continuity ̺1 Acoustic density

T (4.36e) Solution of energy ̺′1 Axial derivative of ̺1

(4.36f) conservations εS Containing εS (Eq. (4.56))

X (4.36c) Axial momentum Fν Transversal viscous part

conservation FK Transversal thermal part

Λ1 (4.36c) Closure assumption 1 Λ1 Containing modeled term 1

Λ2 (4.36e) Closure assumption 2 Λ2 Containing modeled term 2

Table 4.4: Left: replacement characters. Right: indexing. These replacement charac-
ters facilitate the readability of the resulting system of equations.

Here α2
ν in the differential operator Lν [u1] (see Eq. (3.50)) standing for

̺

(

iκ +
∂u

∂x

)
Wo2

κµ
. (4.41)

This formulation implies that the closure assumption for Λ1 has no con-
tribution in terms of u1 and its transversal derivatives, which is valid
for both model approaches and their first iterative solutions. Arnott
et al. [9] obtained a solution for this problem by applying the GF of
Equation (3.51) to the general solution (Eq. (3.54)) with a constant inho-
mogeneity term and a value of zero for the Dirichlet BCs. Introducing
the Arnott function

Fj(y) = 1 − cosh(αj y)

cosh(αj)
, (4.42)

the solution of the transversal component reads

u1 = Fν

(

XΛ1
+ Xp′1

∂p1

∂x

)

. (4.43)

Averaging in y-direction yields

〈u1〉 = (1 − fν)XΛ1
+ (1 − fν)Xp′1︸ ︷︷ ︸

A12

∂p1

∂x
. (4.44)
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The lowercase f j stands for the Rott function

f j = 1 − 〈Fj〉 =
tanh

(
αj

)

αj
. (4.45)

The latter formulation already occured in a general form in the
Equations (2.1) of Rott [170]. The stagnant mean flow equivalent of
Equation (4.44) is given by Equation (2.1a), and the corresponding term
is consequently denoted by A12. Depending on the chosen modeling for
Λ1, XΛ1

has contributions for both A11 and A12 of the later system matrix
A(x) (see Eq. (4.63)). Hence, after finishing step 2 of Table 4.2 the first
ODE of the new set of TATEs including explicit mean flow u contribution
is obtained. Furthermore, the transversal profile of p1 and u1 is described
in terms of analytical expressions.

In step 3 of Table 4.2 a formulation for the fluid temperature oscillation
T1 and its solid counterpart T1,S is sought. The density oscillation ̺1 in
the energy Equation (4.36e) is eliminated by applying the equation of
state (Eq. (4.36a)). Again, the closure assumption for Λ2 is considered to
have no contributions in terms of temperature oscillations. With these
assumptions, the differential operator LK for Equation (4.36e) is similar
to the one of Equation (4.36d).

Together with the solid energy Equation (4.36f), which is identical to
the derivation for negligible mean flow, the transversally constant coeffi-
cients read

α2
K =

[

̺cp

(

−iκ +
u

T

∂T

∂x

)]
2La2

κK
(4.46)

α2
S = icS̺S

2La2
S

KS
. (4.47)
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Introducing the corresponding differential operators LK, LS in
Eqs. (4.36e), (4.36f) in combination with their coupling conditions yields

LK [T1] = EΛ2
+ EΛ1,Fν Fν (4.48)

+
(
Ep1

+ Ep1,Fν Fν

)
p1 +

(

Ep′1
+ Ep′1,Fν

Fν

) ∂p1

∂x
LS [T1,S] = 0 (4.49)

T1

∣
∣

y=±1
= T1,S

∣
∣

yS=±1
= Tb (4.50)

∂T1

∂y

∣
∣
∣
∣

y=±1

= σ
∂T1,S

∂y

∣
∣
∣
∣

yS=±1

. (4.51)

The solution of the differential equations with symmetry conditions at
y = 0 and y = 1 + 2RS

H
leads to formulations of the temperature oscilla-

tions T1, T1,S containing the coupling wall boundary temperature Tb

T1 = EΛ2
FK + EΛ1,Fν FK,ν +

(
Ep1

FK + Ep1,Fν FK,ν

)
p1 (4.52)

+
(

Ep′1
FK + Ep′1,Fν

FK,ν

) ∂p1

∂x
+ (1 − FK) Tb

T1,S = (1 − FS) Tb. (4.53)

This wall temperature Tb and the solid temperature fluctuation T1,S can
be replaced by substituting Equation (4.52) and Equation (4.53) in the
coupling conditions (Eqs. (4.50), (4.51)). The constant term reveals again
thermal Arnott functions, which only differ in the factor αK,S. The mixed
term

FK,ν =
−FK +PrFν

−1 +Pr
(4.54)

expresses the convolution of the GF and the viscous Arnott function.

Here, the square ratio of the operator constants
α2

K

α2
ν

is designated by Pr

with respect to the zero mean flow solution of in’t panhuis [80], where
this ratio reduces to the Prandtl number Pr of the fluid.
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Next, the Neumann condition (4.51) can be used to find

Tb

EǫS

= PrEΛ2
+ EΛ1,Fν

(
fK,ν

fK
− 1

)

(4.55)

+

[

PrEp1
+ Ep1,Fν

(
fK,ν

fK
− 1

)]

p1

+

[

PrEp′1
+ Ep′1,Fν

(
fK,ν

fK
− 1

)]
∂p1

∂x
,

whereas the substitutions EǫS
and ǫS are

EǫS
=

ǫS

Pr (1 + ǫS)
(4.56)

ǫS =
KPr fK

KS Pr fS
. (4.57)

Substituting Equation (4.55) into Equation (4.53) and introducing new
variables T, E (see Sec. A.2) finally yields the expression for the temper-
ature fluctuation

T1 = TΛ1
+ TΛ2FK

FK + EΛ1,Fν FK,ν (4.58)

+
(
Tp1

+ Tp1,FK
FK + Ep1,Fν FK,ν

)
p1

+
(

Tp′1
+ Tp′1,FK

FK + Ep′1,Fν
FK,ν

) ∂p1

∂x

in terms of acoustic pressure p1 and its first derivative ∂p1
∂x .

In the fourth step, the spatially resolved as well as the averaged solu-
tion are both now merged with corresponding form of the acoustic ideal
gas law (Eq. (4.36a)) to compute the density fluctuation ̺1 and its spatial
average

̺1 = (TΛ1
+ TΛ2FK

FK + EΛ1,Fν FK,ν)GT1
(4.59)

+
[
Gp1

+
(
Tp1

+ Tp1,FK
FK + Ep1,Fν FK,ν

)
GT1

]
p1

+
(

Tp′1
+ Tp′1,FK

FK + Ep′1,Fν
FK,ν

)

GT1

∂p1

∂x

〈̺1〉 = GΛ1,Λ2
+ Gp1

p1 + Gp′1

∂p1

∂x
. (4.60)

The cross-sectional average of the transversal acoustic component v1 van-
ishes in the integral form of the continuity of mass (Eq. (4.36b)).
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Substituting the density and its axial derivative and replacing ∂p1/∂x in

∂ 〈u1〉
∂x

= KΛ1,Λ2
+ Kp1

p1 + Kp′1

∂p1

∂x
+ Ku1

〈u1〉 (4.61)

by Equation (4.44) (step 6) finally leads to the second TATE

∂ 〈u1〉
∂x

= KΛ1,Λ2
−

Kp′1
XΛ1

Xp′1

+ Kp1

︸ ︷︷ ︸

A21

p1 +

[

Ku1
+

Kp′1

(1 − fν)Xp′1

]

︸ ︷︷ ︸

A22

〈u1〉 .

(4.62)

It describes the axial propagation of the acoustic variables p1, u1. Again,
its stagnant mean flow equivalent formulation is given by Equation (2.1b)
in Section 2.1. As in the first TATE (Eq. (4.44)), the corresponding matrix
entries are marked by A21 and A22. Here, first two terms show the impact
of both closure terms Λ1,2. Assuming a description of those two modeling
approaches in terms of u1 and p1, the system of ODEs reads

d

dx

(

p1

〈u1〉

)

= A(x)

(

p1

〈u1〉

)

. (4.63)

All three quasi one-dimensional models investigated in Chapters 7 and 8
can be drawn from this system of equations. Assuming zero contribution
of mean flow (IMP), all gray-boxed terms in the TAPEs (Eqs. (4.36)) van-
ish. If the terms Λ1,2 are neglected (MI), all terms indexed correspond-
ingly do not contribute to the system. Finally, for MII contributions of
these terms occur in various steps of the derivation process, such that
they affect all the four matrix entries in Equation (4.63).

4.5.4 Achieving High Modeling Accuracy

The derivation presented in the last section contains some simplifications
that are not imperative for achieving an analytical system of differential
equations. A more general version always leads to more complex results.
Moreover, dropping two or more of these simplifications leads – espe-
cially due to the convolution of the right-hand side terms in steps 2 & 3 –
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to a combination of these terms that cause an immense increase in com-
plexity of some of the resulting terms. Thus, in the following sections,
ideas for improving the physical description of the transport equations
are presented separately. The reader should be aware of the possibility of
combining some of the improvements.

4.5.4.1 Parabolic Mean Distribution

As stated in Section 4.3, an analytical solution of a laminar profile of a
compressible fluid through a channel with non-isothermal walls is not
known. Thus, a quadratic isothermal transversal profile is assumed for
the mean velocity. Keeping the averaged value 〈u0〉(x) as scaling param-
eter, the mean velocity follows Equation (4.16). Applying this approach
into the mass conservation (Eq. (4.9a)) yields a similar profile for mean
density and temperature. Following the arguments of Section 4.2, this
variation is less drastic and can be neglected in a first approach. Ap-
plying this mean distribution only to the right-hand side terms is not
consistent.

If the parabolic shape of the mean velocity is only taken into account for
inhomogeneities on the right-hand side of Equations (4.36c) and (4.36e),
these terms are not constant. Hence their convolution with the original
GF yields

1∫

0

(1 − ŷ2)G(y, ŷ)dŷ =

+

(

α2
j − 2

)

sinh(yαj) + 4 sinh((1 + y)αj) +
(

α2
j − 2

)

sinh((2 + y)αj))

4α2
j cosh(αj) sinh(αj)

+
(2 +

(
y2 − 1

)
α2

j − 2 cosh(αj − yαj) + 2αj sinh(αj − yαj))

α2
j

H(−1 + y)

−

(

2 +
(
y2 − 1

)
α2

j +
(

α2
j − 2

)

cosh(yαj)
)

α2
j

H(y). (4.64)

This expression including the Heaviside function H(y) does not simplify
significantly by applying the cross-sectional averaging. This expansion
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increases the number of terms and computational costs by a factor of
two.

The velocity profile also couples with the density fluctuation in the con-
servation of mass (Eq. (4.36b)). Thus, especially the pressure trans-
port equation equivalent of Equation (4.62) is affected by changes in the
transversal mean velocity profile u(y).

Nevertheless, if u is a function of the y-direction, the problem specific GF
changes as well. Applying a coordinate transformation, the differential
operator of the axial momentum Equation (4.36c) reads

[
(
C − y2

)
− ∂2

∂y2

]

u1(x, y). (4.65)

C represents a constant consisting of various terms. The solution of such
a system of equations is an integral combination of Gamma functions
Γ(y) and Weber W(y) functions with complex-valued arguments of dif-
ferent magnitudes. Due to this integral form, deriving these equations
goes beyond the scope of this thesis and is not presented here.

In general, integral solutions increase the computational effort compared
to the determination of one of the hyperbolic functions of the solutions
in Section 4.5.

Furthermore, the interaction of hydraulic and thermal y-profile, which
leads to FK,ν in Equation (4.52), has an extra parabolic contribution term.
It originates from the substituted conservation of mass (Eq. (4.36b)). The
convolution results in an equation that is too large to display in this con-
text.

Summarizing, taking additionally the transversal density and tempera-
ture evolution into account leads to an enormous complexity in the sys-
tem.

4.5.4.2 Spatially Distributed Modeling Terms

In Section 4.5.2, MII was simplified by substituting the averaged form of
the stagnant mean solution instead of the y-dependent form. Originally,
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the right-hand side term replaced by Λ1 is a function of αj,q, the L term
of Equation (3.50) scaling the Arnott function and the y-coordinate.

Introducing the inhomogeneity

b(ŷ) = 1 − cosh
(
αj,qŷ

)

cosh
(

1αj,q

) (4.66)

in Equation (3.54) and averaging in cross-sectional direction yields

1∫

0

1∫

0

b(ŷ)G(y, ŷ)dŷdy = (4.67)

1

2(1 + exp
(
αj

)
)(1 + exp(2αj))αj,qαj(−αj,q + αj)(αj,q + αj)

[

(exp
(
αj

)
− 1)(1 + exp(2αj))αj,qα2

j sinh−1 (αj,q

)

+ αj,q

[

(1 + exp(2αj))α
2
j (1 + 2αj + exp

(
αj

)
(−1 + 2αj))

− α2
j,q

(
3 + 2αj + exp(2αj)

[
1 + 2αj + 4(−1 + αj) cosh

(
αj

)
− 2 sinh

(
αj

)])]

− 2(1 + exp
(
αj

)
)(1 + exp(2αj))α

3
j tanh

(
αj,q

)

]

.

Compared to the resulting transport equation stemming from the mo-
mentum Equation (4.36c) using MI or MII, respectively, leads to an enor-
mous increase in terms. These again have to be considered in the con-
volution of the right-hand side terms of the energy Equation (4.36e). As
this integration is straightforward, the solution can be sought, but the
computational costs increase immensely. This improvement in analytical
description further comes along with a higher complexity of the system
of equations, which are prone to implementation errors and numerical
accuracy.

A comparison to two-dimensional computations might still yield advan-
tages for the computing time of the one dimensional set, but the complex-
ity of the system implies a high error rate for the implementation and a
low accuracy due to numerical errors occurring because of the numerous
terms.
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4.6 Numerical Implementation of the TATEs

Nowadays, the validation and verification of the system of equations de-
rived is processed numerically. The TATEs are passed to the numerical
tool Mathematica®2. In a preliminary step, the equations were counter-
checked for zero mean flow conditions by comparison to spatial distribu-
tion results produced with DeltaEC. In a second step, the computation of
the scattering behavior was implemented. The structure of this program
and the necessary theoretical considerations are presented in this section.

4.6.1 General Solution Technique

The linear transfer behavior of any (acoustic) two-port can be obtained
from two given independent sets of transport variables (a, b) at both
sides. Due to the presented algebraic relations between transfer and scat-
tering matrices, any of these notations can be chosen. Here the computa-
tion of the scattering matrix is shown.

Integrating Equation (3.25) for both states in one system of equations and
multiplying both sides by the input signal matrix yields

[

F2a F2b

G1a G1b

] [

F1a F1b

G2a G2b

]−1

=

[

t12 r11

r22 t21

]

. (4.68)

Solving this system for the unknown parts at the right-hand side directly
yields the matrix entries. In general, all of the terms are complex-valued
and frequency dependent. The latter implies performing this procedure
for each investigated frequency.

As the TATEs are ODEs of first-order and linear in the acoustic variables,
the transfer behavior is also linear a priori. Thus creating a set of inde-
pendent acoustic states is trivial3. As the solution of the ODE is unique,
choosing two different conditions at one reference position and integrat-
ing over the element leads to two independent states. Shifting the phase
of the acoustic perturbations in a transmission-affected system avoids the

2 Mathematica V8, see [209]
3 It is also feasible to determine the linear portion of nonlinear transfer systems by increasing the number

of independent states and applying optimization algorithms to the overdetermined system.
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problem of a determinant of the input signal matrix to become zero which
might occur for randomly chosen conditions. Therefore the conditions
at x = 0 are determined as follows. The amplitudes of acoustic pres-
sure |p1|a/b/̺c and velocity |u1|a/b are set to unity. In order to cause the
states to be independent, their relative phases are set to φa(u1, p1) = 0
and φb(u1, p1) = π respectively.

4.6.2 Implementation

Before the TATEs can be solved numerically, the mean temperature dis-
tribution is computed from equation (4.33) for given reference tempera-
tures at the hot and cold end using a shooting method [154]. For com-
putational reasons, the solution is interpolated with second-order accu-
racy from stored tabulated data. As can be seen from Appendix A.2, the
highest-order derivative of the mean temperature is ∂2T0/∂x2, which jus-
tifies this approach.

Within a given mean temperature distribution, the TATE system is inte-
grated from the cold reference end to the hot side of the pore. A standard
Adams-Bashforth [154] integration scheme with an accuracy of 10−12 is
used in combination of a maximum step size of 10−6, which revealed
parameter-independent results for the test cases presented in the follow-
ing.

4.7 Advantages and Drawbacks of Mean Flow Inclusion

The system of equations derived in this chapter contains formulations
that explicitly contain mean flow in terms of 〈u0〉. Such a set is denoted
explicit in contrast to the Equations (2.1) of Rott [170] and Swift [187].
These TATEs of the IMP model are only affected by a mean flow con-
trolled temperature profile T0(x) = f (〈u0〉(x)) and thus couple implicitly
with 〈u0〉(x).
As stated in Section 2.1, these implicit equations are physical for stagnant
mean flow conditions in narrow pore geometries [80]. The Rott func-
tions for various geometries have been derived [187] and even arbitrary
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shapes are conceivable [105]. Some of these findings may be adapted to
the system of transport equations derived. As closure terms are used in
the derivation of the TATEs, the system of equations is an approximation
of the actual physics. The validity of a direct adaption of the Rott func-
tions for geometries other than the 2D channel by adjusting the α value
of the differential operator is yet to be proven. However, the small dif-
ferences in the shape of the Rott functions [187] and especially in their
instability potentiality [72] facilitate a comparison of the results obtained
for different pore geometries with good accuracy.

The accuracy of the explicit TATEs (Eqs. (4.63)) for the basic closure as-
sumptions is partially demonstrated in Chapter 8. Especially the im-
provement over the implicit Equations (2.1) is clearly visible from the
investigated cases. Nevertheless, future investigations are needed to con-
firm these observations for other cases.

Due to the numerous additional terms of the explicit TATEs (Eqs. (4.63)),
the computational costs for the prediction of the scattering behavior in-
creases with every iteration for the closure assumption. Tests showed
that the computational time for one single evolution of the acoustic pres-
sure and velocity was almost tripled for MI and fifteen times larger for
MII. Using high-order interpolation and tabulated values for the prefac-
tors of the TATEs (Eqs. (4.63)), for the computation of scattering matrices,
should reduce this additional effort.

The complexity of the TATEs makes a physical interpretation of the differ-
ent terms harder. In the implicit equations, the influence of viscous dissi-
pation, thermal diffusion and the interaction leading to energy transfer is
still visible. This is not true for the explicit TATEs. The convective terms,
i.e. terms that have mean flow contribution, mix the latter two compo-
nents and yield less physical insight. This effect is not based on the mod-
eling approaches, but on the physics of the problem. Hence modeling
the closure terms implies a cautious validation of the approaches. These
considerations demonstrate that these explicit TATEs (Eqs. (4.63)) should
be used with care. Improved accuracy requires increased computational
costs. Finding a reasonable balance depends on the problem considered
and demanded error limits.
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5 CFD/SI - Time Domain Analysis of Thermoa-
coustic Scattering

Determining the frequency response of a certain acoustic problem setup
using a combination of transient CFD simulations and system identifi-
cation (SI) methods is a central issue of various research activities at the
Lehrstuhl für Thermodynamik at the TU München [57, 63, 75, 88, 95, 192,
200]. The basic technique, which originates from system theory and sig-
nal processing, was adapted to acoustic SISO1 problems by Polifke et al.
[146] and Gentemann et al. [62]. The idea is to reconstruct the frequency-
dependent transfer function by determining the unit impulse response
from the time series of the in- and output signals. During the last decade,
this method was expanded to MISO2 systems [75, 88, 150]. Moreover, the
input signal generation was optimized in terms of SI requirements, like
ergodicity, entropy and energy content [57, 75].

The signal generation and SI are created for linear time-invariant systems
that are described by a black-box model. Thus its application is decou-
pled from the type of the so-called identification experiment [107], which
can be of experimental, numerical or analytical nature. Due to this flexi-
bility, various numerical simulation tools may be applied to produce the
responses of the investigated problems.

As the problem discussed is set up in the laminar flow regime, the impact
of turbulent noise is negligible. All sources of error are induced by the
combination of the numerical tools applied. The existing pre- and post-
processing tools provide accurate results for such cases. The CFD/SI tool
created by Huber [75] could be applied with minor changes. Only the
main ideas of the SI process are repeated here. Interested readers are
referred to the literature for a deeper insight into the method. Digital
signal processing literature [107, 110, 116, 132] provides further informa-

1 SISO – Single Input Single Output.
2 MIMO – Multiple Input Multiple Output.
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tion about time domain methods. Applications to acoustic problems are
discussed in books about this special topic [67, 74].

Figure 5.1 illustrates the CFD/SI method, which is structured in two
parts. This structure is retained in the remainder of this chapter, whereas
the latter part is presented in a general form first. The accuracy of SI is
highly related to the characteristic properties of the investigated time se-
ries that are mandatory for the applicability of the Wiener-Hopf Inversion
(WHI). Thus the chosen details of the signal generation process are also
discussed. The identification experiment in terms of a two-dimensional
CFD simulation of a slab pore is detailed in the second section. There,
the case setup, boundary and initial conditions are discussed. Finally, the
post-processing methods applied to generate the SI signals are presented.

0.2

1. CFD
Simulation

2. SI Method

Extraction Planes

cold

Broadband Excitation & Non-reflecting BC

hot

G

F

u0

L

Time Series
Cross-Correlation~c
Auto-Correlation Γ

Impulse
Response

Frequency
Response

z-Transformation

Wiener-Hopf-Inversion

~r,~s F(ω)Γ,~c ~h

Figure 5.1: CFD/SI method schematics: The top part illustrates the identification
experiment, i.e a CFD simulation excited by transient acoustic signals. The lower
part presents the idea of the SI method. The signal correlations are formulated for
obtaining the impulse response of the system, i.e. the time domain equivalent of the
transfer function of the system.

88



5.1 System Identification

5.1 System Identification

In general, if the suppression of unstable eigenmodes is possible inside
an identification experiment – in this case the CFD simulation of a TA
stack – predicting its scattering behavior for a single frequency is straight-
forward. The single frequency based technique described in Section 4.6
directly yields one set of scattering matrix coefficients. In mean flow
affected CFD simulations, pressure and velocity conditions are usually
fixed at different locations [142]. The two-source location method is pre-
ferred for such investigations. Forcing a sinusoidal excitation at the up-
stream velocity BC for generating one state and driving the pressure at
the downstream end to yield a second state allows a direct application
of Equation (4.68). The computational cost for this process scales linearly
with the number of frequencies considered. Thus SI methods are used to
recover the complete frequency response from one single simulation run
in the time domain.

The CFD/SI method is restricted to linear time-invariant systems (LTI)
[155]. A system is linear if the principle of superposition [107] can be
applied. The time invariance of a system states that the output of the
system does not depend on the actual time [155].

More background information of the CFD/SI method is presented in de-
tail in various Ph. D. thesis (e.g. [75, 192]). Only the main equations of
the process sketched in the second part of Figure 5.1 are given in the fol-
lowing. As stated in Section 3.2.4.1, the chosen scattering matrix notation
is causal, which further simplifies the theory. In the first step of the SI
process denoted by WHI, the time series obtained are stored in terms of
signals~s and responses~r. In a second step, the auto-correlation matrix Γ

of the input signals and the cross-correlation vector ~c of the in- and out-
put signals [74] are generated. Solving the Wiener-Hopf equation [208]

~h = Γ
−1
~c. (5.1)

yields the unit impulse response (UIR) vector~h of the approximated sys-
tem. This UIR, the output of the system to a Dirac delta impulse, is the
time domain equivalent of the frequency response F(ω), which is ob-

tained by a z-transformation of~h [110, 116].
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As the WHI equation is the quintessence of the SI method, its functional-
ity is considered in more detail. It approximates the discrete problem as
an output error black-box model [155], i.e.

ri =
∞

∑
k=0

hksi−k + ei. (5.2)

The first term denotes the response of the system without noise. The
second accounts for noise e imposed on the response signals. Neglecting

contributions of large time scales, the length of~h reduces and it becomes
a finite impulse response (FIR).

The size of ~h is determined by two time lags τ. The discretized time
step has to be considerably smaller than the minimum expected time lag
τmin. Usually, the time step applied in CFD simulations is controlled by
even smaller time scales, for example turbulence, CFL-number, etc. For
resolving this mismatch between these time scales, a reduction factor m
is introduced, which accounts for the discrepancy of expected minimum
time lag and temporal resolution. The maximum time lag considered
limits the length of the FIR. Using this resolution, the length K = mL of
a discretized FIR has to be chosen such that at least the largest expected
time lag τmax can be captured by the FIR. The Wiener Filter has noise
suppressing characteristics [63] that are reduced with increasing t(K) ≫
τmax. Thus, the filter length mL has to be determined iteratively to find
an optimum balance between noise suppression and system modeling.

The idea of the WHI method is to find a linear least squares optimum of
the error-affected black-box model by minimizing the cost function

V(~h) =
N

∑
i=L+1

e2
i (5.3)

in terms of

min
h

(

V(~h)
)

. (5.4)

For given ~s and~r, this problem has an analytical solution. Finding the
root of its first derivative with respect to hj yields the optimum UIR.
Substituting Equation (5.2) into the right hand side directly yields the
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Wiener-Hopf Equation (5.1). There, the sums of signals and responses
are formulated in terms of cross-correlation vector~c

ci =
1

N − mL + 1

N

∑
k=L

r(k)s(k − mi + 1) (5.5)

with i = 1, 2, 3, ..., K

and auto-correlation matrix Γ

Γij =
1

N − mL + 1

N

∑
k=L

s(k − mi + 1)s(k − mj + 1) (5.6)

with i, j = 1, 2, 3, ..., K.

This equation, also denoted as Wiener Filter [67], yields the linear least
squares estimator for the FIR.

The solution method applied to Equation (5.1) has a certain impact on the
resulting FIR. If iterative solvers are used, the noise content in the filter is
partially suppressed by tolerating a certain residual value. This is equiv-
alent to introducing a regression factor in this equation that accounts for
a certain amount of errors. Thus a LSQR method [133] with a standard
residual of 10−11 is applied to solve Equation (5.1).

The LSQR method is designed for sparse matrices. Applying this tech-
nique in the matrix inversion in Equation (5.1) makes a good decorrela-
tion of the input signals~s a crucial requirement to the signals. Here, the
diagonal structure of the auto-correlation matrix is maximized by opti-
mization of the reduction factor m. Considering each m-th signal data
point only in Equation (5.6) causes a reduction in the off-diagonal contri-
butions.

A second way of obtaining an optimized auto-correlation matrix relies on
a good choice of the excitation signals. Thus, in MIMO systems, a good
decorrelation of the input signals and a fast decorrelation of the signal
itself accelerate the solution procedure. The auto-correlation matrix of a
white noise signal reduces to the unity matrix I [116]. For a finite signal
length N the frequency content is not constant. The identification of the
corresponding transfer functions values might yield insufficient results.

An optimum signal is a trade off between this requirement and physical
considerations. On the one hand, a high signal to noise ratio ensures a
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good reconstruction quality. This implies the requirement for high signal
amplitudes. On the other hand, the signals should stay in the linear limit,
i.e.

p1 ≪ p0, (5.7a)

u1 ≪
p0

̺0c0
, (5.7b)

̺1 ≪
p0

c2
0

. (5.7c)

The pressure limit is given by nature while the other limits are derived
from isentropic considerations that account for most acoustic problems
[163]. These limits lead to maximum signal amplitude.

Huber [75] established quality measurements to determine the capabili-
ties of amplitude limited signals used in the CFD/SI. He showed that a
discrete random binary signal (DRBS) has higher quality measures than
white noise and superimposed sinus overlays with comparable maxi-
mum amplitudes. DRBSs are defined as

xn = X sign(rand − 0.5), (5.8)

which yields ±X, a value limited by Equations (5.7), for every time step.
A low-pass filtering of this signal, which reduces the frequency content
to a range of interest, yields increased spectral densities [75]. Such a pre-
filter can be exploited because the limited spatial resolution of a numer-
ical simulation and dissipative effects [67] in acoustic simulations in the
time domain themselves act as low-pass filter. Additionally, the TA effect
operates in the low frequency regime, which is not affected by these low-
pass filters. In combination with standard low-pass filters preliminary
clocking period [107] techniques can be used to keep the signal constant
for a certain amount of time after changing the sign of the signal.

5.2 CFD Simulation

In the last decade many different CFD codes were used in combination
with the CFD/SI method. For this thesis, the open source code Open-
FOAM3 designed and implemented in its first stage by Jasak et al. [84]

3 Version 2.1.x, August 2012
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is used. The advantages of this code compared to a commercial tool are
the free accessibility to the source code written in C++. It allows quick
adaptations by object inheritance in the modular structured code. The
growing community contributes to further developments of basic CFD
solvers for classic fluid flow problems. This is the reason that bugs and
errors are consequently resolved. This makes the application of Open-
FOAM competitive to commercial simulation software for academic in-
vestigations. Nevertheless, no publications related to the simulation of
acoustic phenomena using OpenFOAM are known to the author.

The results shown in Chapters 7 and 8 are generated using the standard
compressible solver rhoPimpleFoam, a segregated solver using the PISO
looping technique proposed by Issa [83]. Due to the better stability prop-
erties and the reduction of computational costs, this solver was preferred
over the corresponding conjugate heat transfer solver. Preliminary tests
revealed that for the observed circumstances the influence of the thermal
oscillations inside the pore solid is negligible4. Test simulations carried
out using standard turbulence models demonstrated that turbulent struc-
tures are negligible in the entire domain. Hence, the impact of turbulence
modeling vanishes in the problems considered.

The incorporation of the influence of the solid on the mean temperature
and velocity field is described in the following section, before the special
BCs of this problem are explained in Section 5.2.3. Finally, Section 5.2.5
explains the post-processing methods applied.

5.2.1 Case Setup

The simulation domain displayed in Figure 5.2 corresponds to the
setup described in Section 2.4. As the CFD code cannot handle two-
dimensional problems, the z-direction of the computational domain is
discretized by one cell. The total length scales are 0.5 mm in y-direction,
which is equal to the pore width and 150 mm in x-direction. This length
of approximately three times the stack length is prescribed to enable a re-
formation of plane wave acoustics. Only plane waves are detected by the

4 Comparing the thermal diffusivities of air and celor yields a ratio much lower than unity. Thus εS in
Equation (4.57) almost vanishes and so does the influence of the solid oscillation (see also Eq. (2.1b)).
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Figure 5.2: Domain of the CFD simulation: The two-dimensional region is 0.5 mm
high and 150 mm wide. The top background color shows the axial mean velocity
field while the bottom colors represent the mean temperatures.

filtering techniques applied at the non-reflecting BCs, which is treated in
detail in the next section.

For a better overview, the axial dimension in Figure 5.2 is scaled by a fac-
tor of 0.02 with respect to the other coordinates. The background color
of the top figure corresponds to the axial mean velocity u0 for the max-
imum Ma considered. The two dotted lines indicate the location of the
exit planes of the stack with a geometric length of 52 mm.

The bottom figure is colored in blue to red, indicating the mean temper-
ature field of a case dominated by axial heat conduction. The regions,
which are almost uni-colored are referred to as the “Hot” and “Cold
Channel”, while the pore region is denoted as “Stack”. The transver-
sal temperature profile is not identifiable from the uniformly color plot
of the temperature, because it deviates less than 1 K from the center to
the wall of the channel. Therefore, characteristic profiles Θ(y) are visual-
ized by black lines along the stack. These curves all consist of a constant
part near the center of the pore and a parabolic-like profile in the wall
region. Although the L/D ratio far exceeds the thermal entry length [79],
this profile has not reached the center line, because the thermal penetra-
tion velocity is of the same order as the convective scale and thus the
increased temperature at the wall does not affect the profile across the
complete channel width before it is convected out of the Stack.

The upstream end of the computational domain of all the three
parts – “Cold Channel – Stack – Hot Channel” – is considered as a
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“SymmetryPlane”, which is physical for laminar and turbulent simula-
tions using unsteady Reynolds averaged Navier-Stokes (URANS) equa-
tions. Due to the different nature of both Channels and the intermediate
Stack, the opposite boundary is split into three parts: the “StackWall” is
a no-slip wall with fixed temperature values, while the “ColdSlipWall”
and “HotSlipWall” are adiabatic no-slip walls. The “Inlet” and “Outlet”
are especially designed boundaries, see Section 5.2.3.

The Stack is resolved into cells that have a constant cell width ∆x =
10−4m. The cell height decays linearly in the positive y-direction. This
results in a mesh size of 520 × 20 cells for this region. Using this cell size
and an acoustic CFL-number less than unity (Eq. (2.3)) yields a simula-
tion time step of ∆t = 1.25 × 10−7 s. As the inflow and outflow condi-
tions of the stack are multidimensional problems, a certain part of the
Channels has to be resolved sufficiently (Figure 5.3) to capture the flow
field in the vicinity of the inlet stagnation point. Furthermore, the flow
field downstream of the stack has to be resolved up to the point where
transversal differences in the flow field are negligible. Due to convection,
the latter effect, which is of the order of [104]

Ld

R
≈ 0.1 Re, (5.9)

extends over a wider region than the first. For the maximum velocity
considered here this approximation leads to

Ld / 4 × 10−3 m. (5.10)

16 H 12 H

0.
5

H

intermediatecoarse fine

Figure 5.3: Zone of mesh refinement: the mesh is symmetric with respect to the
center plane of the stack.
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Figure 5.4: Measure of non-uniformity of a propagating wave front: In worst case
conditions, the radially propagating wave front has a deviation of the maximum x-
value at one side and the minimum x-value on te other symmetry plane. The ratio
of this deviation to the distance to the distortions origin is defined as the measure of
non-uniformity e.

Moreover, the re-formation of plane waves has to be taken into account.
A geometrical estimate [85] yields a correlation for the measure of non-
uniformity e. Consider a perturbation formed at the lower wall of the
downstream end being transported radially in all directions. The infor-
mation traveling along the pore axis reaches a certain position Lac at the
instant the characteristic wave reflects at the wall. The difference between
both x-components related to Lac characterizes the measure of acoustic
non-uniformity e. Geometrical considerations directly result in

Lac =
H

√

1 − (1 − e)2
. (5.11)

For a deviation of 0.5%, this yields a ratio of Lac/H ≈ 10, which is al-
most equal to the hydrodynamic mean estimate. To capture these effects
fully, the fine mesh resolution is continued for 12H into the Cold and
Hot Channel, before a subsequent reduction in transversal direction is
performed over 16H. In this intermediate region, the axial cell width is
stretched by a factor of 1.05 to a 20 times larger axial width. This leads to
a cell size of 2 mm × 0.5 mm in the coarse mesh that is spread across the
main part of the Channels.
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5.2.2 Material Properties

The material properties of the fluid are chosen according to the investi-
gated problem. The operating fluid is air, which is considered as an ideal
gas. All material properties are considered to be constant except for the
viscosity and the thermal conductivity. In contrast to the approach of in-
terpolating tabulated values, the latter parameters are computed using
the Sutherland approach (Eq. (3.8)). Choosing the latter speeds up the
numerical simulation by a factor of ten. The mean temperatures arising
in the simulation revealed deviations in the computed acoustic quantities
below 1%, which justifies a discrepancy to the one-dimensional modeling
presented in Chapter 4.

5.2.3 Boundary Conditions

As discussed in Section 5.1, an increase in the decorrelation of the input
signals decreases the computational costs and improves the results ob-
tained from the SI procedure. Furthermore, potentially unstable acoustic
modes inside the domain require an acoustic energy sink to prevent the
CFD simulation from developping a self-excited instability. Here, BCs
that permit a (partial) transmission of acoustic waves to the outside of
the domain are preferred to other methods (see the review paper of Colo-
nius and Lele [39]).

PWM
Technique

Lowpass
Filter

Input
Signal

Figure 5.5: Sketch of boundary filtering: at first the PWM method filters out acous-
tic oscillations, before the PT1 filter behavior of the adapted LODI relations acts
as lowpass filter. Finally, the input signal is superimposed to the actual boundary
value.
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The signal treatment at these BCs is sketched in Figure 5.5. Kreiss
[97] proposed the so-called “local associated one-dimensional inviscid”
(LODI) relations. This set of equations is a simplified version of the
one-dimensional linearized equations of motion discussed in Section 3.1.
Thompson [195, 196] used these LODI relations as an estimate of the
waves entering and leaving the domain in the computation of BCs for
inviscid flow problems. Based on his formulation Poinsot and Lele [142]
derived a similar set for the application in compressible CFD simula-
tions. These “Navier-Stokes based characteristic boundary conditions”
(NSCBC), which suppress the reflections normal to the boundary, were
further expanded by different authors [108, 213, 214] to additionally ap-
ply for transversal directions and species transport.

Here, a less sophisticated version was implemented. As the objective of
this study was to investigate laminar flow problems coupled with acous-
tics, no problems that arise from combustion [141] or turbulence have to
be taken into account. The distances from the Stack end to the inlet and
outlet boundary is very large. In combination with the chosen symmetry
conditions at the boundaries normal to the y-direction reduce possibly
transported vorticity waves to a minimum. Moreover, the interaction be-
tween acoustic and vorticity waves is restricted to high Mach numbers.
Still, small perturbations may approach the Outlet. Close investigations
of the Hot Channel revealed negligible non-acoustic oscillations. Hence,
the relevant fluctuations that approach the boundaries are assumed to
propagate in isentropic conditions. This implies that only the reflectivity
of the acoustic quantities of velocity and pressure have to be considered.
General considerations lead to the conclusion that a well-posed set of
BCs for a subsonic compressible flow problem consists of a pressure BC
at the outlet and Dirichlet conditions for the velocity at the inlet of the do-
main [142]. To ensure this well-posedness, Rudy and Strickwerda [172]
expanded the LODI relations by a relaxation term, such that the reflectiv-
ity of these BCs is not fully non-reflective [176, 181], especially in the low
frequency range.

Polifke et al. [152] suggested an additional filter technique that improves
the lowpass characteristic of the existing BCs based on filtering acoustic
waves [148]. Kopitz et al. [94] developed such a characteristics based
filter to extract the acoustic characteristic wave amplitudes at certain
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monitor planes near the non-reflective boundary. An instantaneous area
averaging yields the acoustic quantities by the application of a simple
moving average technique in time [91]. These data are shifted by the
characteristic acoustic time scale to the instant at which they arise at the
boundary. Averaging over the monitor planes leads to a good estimate
of the boundary normal acoustic quantity. Subtracting this value from
its instant field value reduces the quantity, which has to be relaxed by its
acoustic component. This process is referred to as “plane wave masking”
and is explained in detail by Polifke et al. [152]. The combination of these
two techniques was first applied by Kaess et al. [86] to form an acoustic
impedance BC, which he demonstrated to be very accurate [88].

The last two steps sketched in Figure 5.5 describe the signal generation at
the boundaries. An additional forcing term in the BCs facilitates the gen-
eration of characteristic wave amplitudes [88] traveling into the domain.
Here, this method is used to insert the time line of the input signals at
the corresponding BCs. Preliminary tests revealed a good agreement of
desired and generated input signals for the chosen geometry.

5.2.4 Initial Conditions

The mean field quantities provide the steady state background informa-
tion for the acoustic propagation mechanisms. As temperature and ve-
locity directly couple with the TATEs (Eq. (4.36)), this information has to
be adapted for all observed cases, i.e. changes in terms of Pe and Ma. In
particular the non-constant temperature at the “StackWall” boundary has
to be determined in a preliminary process to account for the mean heat
conduction in the non-resolved solid domain. Starting with an approx-
imate solution obtained from Equation (4.33), a conjugate heat transfer
problem was solved by an iterative application of a finite element tech-
nique5 on a computational domain containing the full fluid and solid part
of one observed regenerator pore and its axial vicinity. The reference val-
ues at the cold inlet are fixed. For comparability, an averaged fluid Outlet
temperature is sought. This condition is verified by adapting the temper-
ature value at the hot end of the solid regenerator wall. It is found using
a gradient-based method, allowing for a deviation of less than 1 K from
5 Conjugate Heat Transfer Toolbox, Comsol 6.2 [40].
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the required outlet value. The interface values inside the pore geome-
try of the solution are passed to the CFD solver using an overlay of a
quadratic and an exponential fitting function for the temperature values
of the StackWall.

The temperature of the fluid inside the pore is also initialized applying
the corresponding BC values from the FE solution, whilst the Cold and
Hot Channel are set to constant values. After computing the density
values for the entire domain from the equation of state (Eq. (3.7)), the
velocity field is also adapted according to an integral mass continuity
(Eq. (3.1)) consideration in these regions. The inner region of the Stack is
further manipulated assuming a quadratic profile with a mean velocity
correlating with the temperature via Equation (3.1).

As these initial field values are only approximations, a further steady
state computation is carried out before the transient solver is executed.
Unfortunately, this steady state solution cannot be used as starting point
for the CFD/SI simulation, because OpenFOAM reacts sensitively to a
switch of solvers. Furthermore, the use of moving average methods for
the determination of the acoustic quantities by the PWM technique ne-
cessitates to find a steady state which slightly deviates from the non-
transient conditions. Thus, the simulation is run for at least a Stack flow
through time before the acoustic excitation signals are switched on.

5.2.5 Post-Processing Methods and WHI Settings

The CFD simulations are run for a total computational time of 0.7 s.
The signals and responses in terms of characteristic wave amplitudes
are directly computed using the CFD solver and a sampling rate of
8.75 × 10−7 s. Thereby, the data from PWM planes and additionally de-
fined monitor planes are used. A comparison of the computed signals
revealed a lossless propagation of the plane characteristic waves through
the intermediate and coarse mesh region of the Hot and Cold Channel.
In order to eliminate numerical errors, the data of the monitor planes are
mapped to the geometric ends of the Stack. The ends of these manipu-
lated data is cut by 1ms from the beginning of recorded acoustic excita-
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tion before they are passed to the WHI tool to improve the independence
of transients.

The preliminary data manipulation results in signal lengths of N ≈
80000. All signals are pre-filtered using a low-pass filter with a cut of
frequency of 100 Hz. A close investigation of the WHI filter length and
the reduction factor yielded optimum parameters of L = 100 and m = 25,
which are applied to all simulation cases considered.
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6 Experimental Determination of Thermoa-
coustic Effects

The credibility of numerically acquired results is always dependent upon
modeling assumptions. Different approaches of modeling a complex
problem lead to increased reliability, but only experimental data support
their validity. As stated in Section 2.2, for the investigated TA problem,
no data are available in literature (to the author’s knowledge).

Experimentally determining the acoustic fields under non-isentropic con-
ditions is challenging. The characteristic wave amplitudes F and G can-
not be measured by a direct method. Acoustic velocity fluctuations u1 are
computed from optical methods using LDA [20] or PIV [3, 23] methods.
The coupling of the acoustic pressure p1 to temperature T1 and density
̺1 fluctuations by the linearized equation of state (4.36a) requires simul-
taneous investigation of these two quantities. p1 cannot be determined
directly in spatially resolved form. If possible, T1 and ̺1 have to be cap-
tured for finding spatially resolved relations in terms of u1, p1. In addi-
tion, providing optical access to the region of interest is often challenging.
Furthermore, generating simultaneous measurement data for different
fields is cost-intensive and time demanding. Thus, this approach is out
of the scope of this study.

Many acoustic investigation methods rely on approximating the acoustic
field with analytical formulations which are fitted to local probe values.
Investigating directed velocity fluctuations u1 is straightforward by using
constant temperature anemometry [76]. Dynamic pressure probes use
piezoelectric sensor technology or classic capacitive microphones. Here,
the latter are chosen for the construction of the cross-sectionally averaged
acoustic state vectors providing reference data for the scattering behavior.

For the purpose of generating these data by applying the multi micro-
phone method (MMM), an experimental apparatus is designed and set
up. Its modular design further facilitates operating the test rig in a TA
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standing wave engine configuration. The acoustic power produced in-
side the regenerator is not absorbed by any load. The driving effects
inside the system are solely balanced by dissipative effects. For the pur-
pose of separating the device from a heat pumping apparatus, it is still
referred to as an “engine”. The self-excited oscillations occurring thereby
provide a qualitative demonstration of TA energy conversion using the
regenerators. Moreover, a validation of the scattering matrix entries for
one operating frequency by the time-dependent pressure data is possible.

The first two parts of this chapter discuss the theoretical background of
the measurement technique applied and provide the link to theoretical
information that can be drawn from the different measurements. The
chapter concludes with a presentation of the design of the experimental
apparatus in Section 6.3.

6.1 Multi Microphone Method

The MMM is a standard technique in duct-acoustics to determine the
acoustic scattering behavior of acoustic multi-ports. In general, the ap-
plication of the experimental MMM results in complex-valued transfer
or scattering matrices. The idea is to determine the characteristic wave
amplitudes at the ports of the investigated acoustic element by finding
the optimum of an overdetermined system of equations that is estimated
to fit the spatial profile of the acoustic pressure outside the element. This
technique is a derivate of the two-source location method in reference
to Section 4.6. The idea is to establish two independent acoustic states,
which provide the information yielding the transfer matrix components
of the considered acoustic two-port. In contrast to the application of this
technique in the one-dimensional tool presented in Section 4.6, the up-
and downstream values of p1 and u1 at the reference planes of the mod-
eled element are not provided directly. They have to be found by re-
constructing them from the measured data at the probing locations. The
reconstruction is based on the mean temperature and velocity field in the
measurement ducts, which has to be modeled.
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6.1 Multi Microphone Method

6.1.1 Two Microphone Method and its Development

In 1979, To and Doige [198, 199] invented the two-load method, which
was the first method to obtain transfer matrices experimentally. They
demonstrated its capability for six geometries consisting of pipes, ex-
pansion and contraction chambers. The experimental setup was driven
upstream of the measurement positions. Two independent states were
created by applying a variable load at the opposite end of the measure-
ment setup, which manipulated the acoustic impedance at the down-
stream end of their test rig. The pressure data were acquired using one
microphone located at two varying positions inside each measurement
channel.

In collaboration with Lung, Doige [109] further developed this method
by applying the four-microphone two-load method. This reduced the
minimum number of necessary measurements by a factor of two. The
one-source two-load method, which theoretically always leads to inde-
pendence of both states, reveals problems for certain frequencies because
the two loads are not sufficiently different from each other for all frequen-
cies observed.

Munjal and Doige [123] overcame this challenge by introducing a sec-
ond acoustic source on the opposite side of the experiment. Based on
this method, various geometries and configurations were investigated
[126, 127, 134, 147]. Åbom and Bodén [4, 27] investigated the impact of
measurement errors and derived limit spacings of the pressure sensors.
Polifke and Paschereit [134, 147] proposed to increase the number of mi-
crophones to reduce the error content of the analytically described fields.
At the Lehrstuhl für Thermodynamik of TU München this idea was im-
plemented by Fischer [56] to investigate the acoustic transfer matrix of a
swirl burner. The same method was also used by the group of Paschereit
and Schueller to validate the analytical modeling of the acoustic transfer
of different turbulent premixed burner configurations [135, 178, 179].

Minimizing the data error by applying a least squares fit method to
the now overdetermined system improved the confidence of results
by reducing the impact of measurement error of each pressure probe.
Neunertf [126, 127] addressed the reconstruction error for thermally af-
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fected measurements. He transformed the functional spatial expression
of the estimated pressure profile to a chain of acoustic two-ports describ-
ing the wave characteristics between the measurement positions. By this
method, he expanded the applicability of the MMM to arbitrary mea-
surement regions with given acoustic transmission behavior. The latter
methodology is applied to the current configuration, which is presented
in the next section.

6.1.2 Multi Microphone Method in Non-Isentropic Conditions

The measurement setup is sketched in Figure 6.1. The goal of the MMM
is to determine the scattering matrix for the acoustic black-box element
based on the approximated spatial profile of the acoustic pressure p1.
Here, the investigated black-box two-port represents the thermoacoustic
core, i.e. the combination of the TA stack and its adjacent heat exchang-
ers. As stated before, generating two independent acoustic states yields a
linear system of equations in terms of Equation (4.68) or its equivalent in
pu-notation. The reference locations xu,d,ref are defined by the upstream
and downstream location of the interface between the acoustic two-port
and the test rig. In many configurations, a direct access to the acous-
tic quantities at these locations is not realizable. Furthermore, the re-

xu,1 xu,2 xu,i xu,N xd,1 xd,2 xd,j xd,M

u0

TA core
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Figure 6.1: Sketch of the MMM applied to the present configuration. The investi-
gated TA core is connected to an ambient duct at the upstream side and a hot duct
with varying mean temperature at the downstream port. If mean flow is applied it
flows from the ambient “Upstream Duct” to the heated “Downstream Duct”. Both
ducts are supplied with a speaker and various microphone probes in order to gen-
erate and determine two acoustic states at the reference positions xu,d,ref.
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formation of plane waves discussed in Section 5.2.1 is not completed at
these locations and local samples may contain transversal contributions.
Therefore, the probes are located at distances xu,d,k several hydraulic di-
ameters away from the reference planes. This displacement of the probes
necessitates a reconstruction of the reference state vectors by analytically
approximating a certain spatial characteristic of the acoustic wave trans-
mission. As long as the isentropic condition (3.13) holds and taking into
account the phase shift due to acoustic propagation (see Eq. (3.19)), prob-
ing of p1 and u1 at the same position is equivalent to acquiring the data
of two quantities at different locations. Fitting the approximated acoustic
transmission to the data obtained from further locations yields an op-
timized pressure profile. Multiple microphone adapters are inserted in
the upstream and downstream1 duct to reconstruct the acoustic state at
the reference planes xu,d,ref. The ambient upstream duct contains N = 5
ports located at xu,i, of which at most four are supplied with pressure sen-
sors. The non-isothermal downstream duct also provides M = 4 prob-
ing locations that are all in use. Two loudspeakers located at the ends
of those two ducts excite the system. Alternately driving these sources
at the investigated frequencies yields two independent states. For these
states, the acoustic properties at the reference positions have to be deter-
mined. The inactive loudspeaker at the non-excited side of the consid-
ered element has a positive impact on the reconstruction of the reference
acoustic data, as it absorbs acoustic energy from the system. This leads
to low reflection coefficients and small characteristic wave amplitudes of
the reflected wave. No standing wave patterns with small local acoustic
pressure amplitudes and piecewise constant phases can evolve in such
configurations. Obtaining almost constant pressure amplitude profiles
and continuous variations in phase in x-direction increases the accuracy
of the measured signal. Especially a detectable change in phase between
the pressure probes other than a multiple of π leads to robust results for
the MMM.

1 The denomination is similar to all previous chapters. “Upstream” is similar to the part at ambient
conditions. “Downstream” indicates all components at a high temperature level. Mean flow is always
directed from upstream to downstream conditions. Hence, speaking of “after the stack” also refers to
the hot downstream part.
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6.1.2.1 Approximating the Ambient Duct Acoustics

At first, the reconstruction of the acoustic state at the ambient reference
position xu,ref is explained. The spatial plane wave profile inside the up-
stream duct, in between two microphone adapters (i, i + 1), is deter-
mined by the transfer matrix

(
p1

̺0c

u1

)

u,i+1

= Ti,i+1

(
p1

̺0c

u1

)

u,i

. (6.1)

The upstream reference plane, which is defined for reasons of compa-
rability, does not coincide with any microphone position. The acoustic
transfer between this location and the first microphone position is taken
into account by Tref,1, denoting a simple duct element D characterized
by the distance of the probes (Eq. (3.27)). Using these two matrix defi-
nitions T, any measured acoustic pressure data at microphone position i
correlates to the reference value by

(
p1
̺0c

u1

)

u,ref

= Tref,1

N

∏
i=1

Tk,k+1

(
p1
̺0c

u1

)

u,i

. (6.2)

Using Equation (3.22), the transformation of these equations into the
characteristic wave space yields

(

F

G

)

u,ref

= ΩTref,1

N

∏
i=1

Tk,k+1Ω
−1

︸ ︷︷ ︸

M−1
i

(

F

G

)

u,i

. (6.3)

Finally, summing up the corresponding characteristic wave amplitudes
Fi, Gi and applying Equation (3.18a) yields

p1(xu,i)

̺0(xu,i)c(xu,i)
= Fu,ref (m11,i + m21,i) +Gu,ref (m21,i + m22,i) , (6.4)

where

Mi =

[

m11,i m21,i

m21,i m22,i

]

. (6.5)

For more than two microphone measurements the resulting
Equations (6.4) describe an overdetermined system for the unknown
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variables Fu,ref, Gu,ref. Applying a Levenberg-Marquart Least-Squares fit
method [154] yields an optimum solution by minimizing the microphone
errors in terms of either phase and amplitude or real and imaginary part
of the complex-valued Fu,ref and Gu,ref.

6.1.2.2 Approximating the Non-Isothermal Duct Acoustics

In contrast to the ambient upstream part, the mean temperature T(x)
inside the hot duct decays from the heat exchanger towards the down-
stream end because of thermal losses through the insulated duct walls.
Determining the matrix coefficients m for such non-isothermal mean con-
ditions requires a more detailed consideration of the acoustic propaga-
tion in the measurement region. At first, the mean parameter field that
serves as background information has to be considered. Here, in the ab-
sence of changes in cross-section and low Ma conditions, the determina-
tion of the mean temperature field is crucial for the analytical description
of acoustic propagation from the reference plane xd,ref to the microphones
located at xd,j. As shown in Appendix B.1, a detailed investigation of
characteristic parameters allows a one-dimensional, cross-sectionally av-
eraged description of the mean temperature distribution T(x).

Due to different heat loss conditions, the estimated temperature distri-
bution presented in Appendix B.1 is split into a linear and an exponen-
tially decaying zone. The heat load-dependent temperature distribution
is based on measured data from up to six distinct positions (Sec. 6.3),
which the model parameters are fitted to. The continuous function T(x)
is discretized using a predefined temperature step ∆T. In his thesis Ne-
unert [127] shows that depending on the shape of T0(x), a finer discretiza-
tion of the profile improves the resulting fitting error of the determined
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Figure 6.2: Network representation of the hot downstream measurement duct as a
product of viscous duct and discrete temperature change elements.
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characteristic wave amplitudes from up to 20% (modeling the temper-
ature changes by one discrete step) to about 1%. This discretization en-
ables expressing the transfer matrices similar to Equation (6.1) in terms of
a combination of viscous duct D (Eq. (3.27)) and temperature change TC

(Eq. (3.36)) elements. This expression is abbreviated by the Π-symbols in
Figure 6.2.

The distances between predefined temperature changes ∆T correspond
to the lengths lk of the intermediate viscous ducts Dk between each tem-
perature change TCk. Depending on the number of temperature changes
K the transfer matrix between two positions j, j + 1 becomes

Tj+1,j =
K

∏
k=1

DkTCk. (6.6)

Using this formulation and forcing a pseudo temperature change (Θ = 1)
located at the microphone position permits the application of the set of
Equations (6.4) in a similar way for the downstream measurement part.
Hence, Fd,ref and Gd,ref can be approximated2.

A typical result for this type of fitting method is displayed in Figure 6.3
for an Upstream excitation at a frequency of 140 Hz. The black crosses de-
note the measured pressure amplitudes. The phase values are provided
as circles. Mean flow is directed from left to right. The hot Downstream
Duct is much shorter than the cold Upstream Duct. The fitted pressure
amplitude |p1| – depicted by the solid blue and red line – is normalized
by the Upstream Duct value at the reference plane p1(xu,ref). For plotting
purposes, the axial distribution in Figure 6.3 is resolved using intermedi-
ate duct elements of a fixed length of 10 mm.

In both fitting regions |p1| varies for ±15% from their average value of
approximately 1.2. The minimum values are very high and no pres-
sure nodes (|p1| ≪ 1) occur. These values coincide with an almost con-
stantly inclining phase value (dashed lines), representing a situation of
a wave traveling against the positive mean flow direction. These condi-
tions are typically met in downstream excited measurement situations.
The combination of the non-driven speaker and its adjacent parts lead to

2 The reader should be aware that the axial coordinates used in both regions point into opposite directions.
The computation and accumulation of the transfer matrices should be processed carefully.
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Figure 6.3: Typical pressure fit for the MMM at an excitation frequency of 140 Hz
with four microphones at each side of the investigated acoustic element. Crosses
and solid lines denote the experimental and analytically approximated magnitude
of pressure p1. Phases of p1 are denoted by circles and dashed lines respectively.
Blue lines indicate the Upstream Duct, red lines the hot Downstream Duct. The
black dashed line indicates both reference planes.

a small reflection coefficient. This non-zero, frequency-dependent coef-
ficient causes a reflected wave which slightly modulates the pressure in
phase and magnitude.

Comparing the measured data to the fit, the phases match better than the
amplitude values. This phenomenon is always found, if the fitting is car-
ried out for the real and imaginary part of the set of Equations (6.4). The
larger discrepancies in the magnitude values are observed for all mea-
surement conditions. Using four microphones leads to a good reliability
of the data fit for most investigated frequencies.

6.1.3 Reconstruction from TA Core Data

In Chapters 4 and 5, the acoustic transmission of the regenerator was con-
sidered analytically and numerically without the adjacent heat exchang-
ers. This is not possible in the experimental setup. The mean temperature
is maintained by the heat exchangers. Thus, a direct investigation of the
scattering behavior of the TA stack is impossible. An indirect method
has to be applied, in which the heat exchangers are reconstructed from
separate measurement campaigns. The reconstruction is illustrated in
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TM,S = TCHX × TS × THHX
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Figure 6.4: Reconstruction of the scattering matrix of a stack (blue) from the mea-
sured data (green). At first, the scattering matrices of the heat exchangers (red) have
to be determined. Separate measurements and an assumed network model facilitate
an approximation of the cold heat exchanger at ambient conditions. This measure-
ment is fitted by a network model. Using this approach, the same procedure leads
to a model for the hot heat exchanger. Finally the scattering matrix of the stack is
determined from the measured transfer matrix and two heat exchanger models.

Figure 6.4. The output of the MMM is a transfer matrix TM,S. It describes
the acoustic behavior of all three components, i.e. the regenerator and
its adjacent heat exchangers (TCHX/HHX). These scattering matrices have
to be determined separately (TM,C/H) while keeping the operating condi-
tions similar. Here it is assumed that the interaction of these components
can be separated. Using this approach, an accurate determination of the
periphery of the regenerator leads to a comparable result for the scatter-
ing behavior of the stack. Some of the neglected issues are mentioned
concisely:

• Any hydrodynamic interaction at the interface of any components is
suppressed. For example, the inlet temperature of the hot HX is not
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changed by direct thermal contact with the stack. Further, the for-
mation of streaming vortices might also be retarded by an adjacent
component.

• The increased blockage due to geometrical changes of the free sur-
faces at the contact plane is assumed to have no effect. Imagine a
stack of plates at perfect contact to a matrix of squared ducts with the
same porosity and hydraulic diameter. No theoretical area change
occurs, but the flow field is changed by the displacement due to the
face areas of the solid separating the ducts.

• Variations in mean conditions due to the enhanced heat conduction
by the solid contact are small. For example, the axial temperature
profile inside the heater is equal for both configurations – the stack
mounted and unmounted in contact to the heater. This assumption
is supported by high thermal resistance due to the non-planar sur-
faces of the adjacent components.

These assumptions imply that the heat input from the heat exchangers
into the solid stack material is constant over the cross-section of the re-
generator.

At first the scattering matrix TCHX of the cold heat exchanger is deter-
mined. Its acoustic transmission at ambient conditions is investigated
leading to the experimental data TM,C. These data have to be corrected by
a representation of the components between the heat exchanger and the
downstream reference plane. Here a network model consisting of ducts
and area changes of geometrical equivalence to reality is chosen. Invert-
ing the network model transfer matrix leads to the reconstructed TCHX of
the cold heat exchanger. The matrix inversion in the computation of the
transfer matrix of the stack

TS = TCHX
−1TM,STHHX

−1 (6.7)

are highly susceptible to numerical issues. Thus, a more robust approach
is preferred: the scattering matrix is modeled in terms of a combination
of acoustic two-port elements, optimized such that the optimization pa-
rameters represent the reality and describe the acoustic transmission as
accurately as possible. This network representation is provided in detail
in Appendix B.2.
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The network model of TColdHX is also used for the determination of
THotHX. This matrix is computed from a MMM measurement of both
heat exchangers mounted without the stack (TM,H). Using the similar
procedure as for TColdHX the transfer matrix of the hot heat exchanger is
determined. The final network representation of this component is also
given in Appendix B.2.

6.2 Mode Shape, Onset and Limit Cycles of TA Engines

So far, the chapter dealt with the experimental determination of acoustic
scattering matrices. For demonstrating the energy conversion from heat
to acoustic power, the modular design of the test rig facilitates operating
it in a thermoacoustic standing wave engine mode. The calibrated mi-
crophones are expected to deliver absolute pressure data with a standard
deviation of approximately 5%. The pressure record of the operating TA
engine enables a quantitative comparison to other test rigs. Another idea
is to provide a validation case to the scattering matrices determined so far
for one operating frequency. The mode shape at operating conditions as
well as the growth rate at the onset yield data that are reproducible with
a predicted scattering matrix of the TA regenerator. For completeness,
the limit cycle of the thermoacoustic engine is briefly presented.

When the acoustic power amplification exceeds the dissipative losses and
the Rayleigh criterion [157] is fulfilled for a certain eigenfrequency, the
system becomes unstable. This so-called onset of instability is discussed
in many TA publications (e.g. [12, 35, 66, 212, 217]). Figure 6.5 shows
the experimentally determined onset of a TA standing wave engine from
Penelet et al. [136] for different mean temperature gradients ∂T

∂x across
the stack. The amplification of an unstable mode is characterized by the
growth rate α, which is the imaginary part of the frequency. In contrast
to thermoacoustic instabilities caused by combustion, in which the cycle
increment [75, 144] defined by

CI = exp

(

−α

f

)

− 1 (6.8)

can reach factors of unity or higher [151, 192], the cycle increment in
TA engines is comparatively small. For the two dashed and dot-dashed
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Figure 6.5: Typical onset of a TA engine (adapted from [136]). An increase in
∆T0/∆x leads to higher growth rates and limit cycle amplitudes.

cases, the limit cycle is reached after approximately 60 s, which corre-
sponds to almost 1000 periods at the operating frequency of f ≈ 150 Hz.
The CI of the high temperature gradient conditions causes a steep incline
for the first 30 s before saturation effects occur. In Section 7.2.2, these val-
ues are compared to the data from experiments.

One-dimensional network models investigating acoustic stability prob-
lems predict the complex-valued eigenfrequencies of a modeled system.
The scattering behavior of TA stacks is implemented into such a tool.
The model results for the first eigenfrequency of the complete modeled
TA apparatus allow for a quantitative comparison to the cycle increment
obtained experimentally.

6.3 Experimental Setup

This chapter presents the technical realization of the experimental test rig
which applies the discussed methodology. Both setup conditions treated
so far are considered: the apparatus operating as a standing wave TA en-
gine with stagnant mean velocity3 and the modified setup for mean flow
affected MMM measurements are presented. Both configurations have
common components. At first the TA engine and its parts are described,

3 This restriction arises from the technical incorporation of mean flow into the system. The damping
inside the air supply causes too high damping ratios to obtain unstable modes.
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before the additional modules mounted for determining the scattering
behavior are explained.

6.3.1 TA Engine Setup

T

T

T

T

M

M

M

M

M

M

M

M

Stack
HX

Water

xu

xd

Lw

Cold
Resonator

Hot
Resonator

External
Heater

End Plate

End Plate

Reference

Plane u

Reference

Plane d

~g

(a)

Num. Dist. [m] Standard Mic

Upstream

1 0.0475

2 0.9845 A

3 1.3485 B

4 1.5525 D

5 2.2475 F

Downstream

6 0.0475 H

7 0.1225 L

8 0.1965 C

9 0.4915 M

Num. Dist. [m] TC Type

Upstream

1 0.0475 N

2 2.2475 N

Downstream

3 47.5 N

4 0.1965 N

5 0.4065 K

6 0.6875 K

Water Cooling

7 in J

8 out J

(b)

Figure 6.6: TA engine setup: figure (a) displays a sketch of the apparatus configura-
tion. T and M mark thermocouple and microphone positions. Table (b) contains the
distances of those measurement tools with respect to their reference planes at xu,d.

Figure 6.6a displays a sketch of the apparatus in TA engine mode. To
avoid any buoyancy effects inside the acoustic measuring object caused
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by imperfect cross-sectional mean temperature distribution, the setup is
positioned upright with the hot end on top of the cold parts. The test
rig consists of two resonators denoted as hot and cold and the TA core
defined in the last chapter. The cold and hot resonators are made of a
quadratic steel duct with a free surface area of 0.0025 m2 and a wall thick-
ness of 0.01 m. All parts, if not mentioned separately, are made of steel
using norm parts whenever possible.

6.3.1.1 Resonators and End Plates

The hot duct is 0.24 m in length and contains microphone adapters (M),
which can optionally be replaced by M24 screws. The relative distance
of these adapters to the reference planes are displayed together with the
thermocouple locations in Table 6.6b. The adapters are designed such
that a water cooled microphone probe from Fischer [55] is placed near the
wall of the duct. The shielded N-type thermocouple tips with 2 mm di-
ameter are centered inside the duct. To minimize thermal losses, the duct
is wrapped in two layers of insulation: A solid high temperature insula-
tion4 of 2 cm thickness shields the resonator inside a mineral wool layer
of 6 cm that is coated with aluminum foil. Transversal thermal losses
through the duct walls are minimized by an external electric resistance
heater, capable of producing up to 500 W thermal power. This causes a
linear axial temperature decay for xd . x8 controlled by the inner heater
on the one end and the losses at the end plate on the other end.

This mineral wool insulated cap with an inner duct length of 0.05 m is
identical to the upstream end and flanged to the hot downstream res-
onator, such that reflections are minimized at the resonator contact plane.
One central hole drilled into the top end plate facilitates the insertion of a
thermocouple with variable axial position inside the duct. Furthermore,
twelve M2 tapped holes allow the hot air to leave the setup in the subse-
quent experiments including mean flow.

The cold resonator with a total length of 2.3 m, which is maintained at
ambient temperature, contains two control thermocouples of N type. In
all measurements, the average temperature deviation does not exceed

4 PROMAFORM-1260 [156].
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1 K. The operation frequency is variable, because the resonator can be
partially filled with colorized water. Using such a fluid facilitates the de-
termination of the surface level inside an opaque hose mounted to the
upstream end of the resonator. A change in the level of the water column
causes a variation of operating conditions. The operating conditions pre-
sented in Section 7.2 correspond to a fixed water level of Lw = 1.1 m.

6.3.1.2 Heat Exchangers

The basis of the cold heat exchanger displayed in Figure 6.7b is a com-
mercial lamellar, water cooled heat exchanger5 with an average plate dis-
tance of 1.4 mm. The cooling fins made of copper are 0.25 mm thick. The
originally circular cross-section of D = 100 mm was filled with an alu-
minum based two-component epoxy to maintain the inner cross-section
of 25 cm2 and inside squared shape of the regenerator. Two supply pipes
of D = 10 mm cross the remaining area. They cause smooth changes in

700

Pin
Foil

Comb Frames

(a)

Aluminum Epoxy

Heat Exchanger

Free Surface

(b)

Figure 6.7: The hot (a) and cold (b) heat exchanger. The electrically supplied heater
is handmade and consists of a 0.1 mm thick foil, which is bended over stainless steel
pins. The cold heat exchanger is a partially epoxy filled standard lamellar liquid-gas
heat exchanger.

5 Lytron 6105 [111].
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cross-sectional area in the center of the remaining 30 plates with a length
30 mm.

The plates of the hand made, electrically supplied heater on top of the
regenerator consist of an approximately 1.5 m × 20 mm × 0.1 mm stain-
less steel foil6. This foil is depicted in brown color in Figure 6.7a. It is
wrapped around 1 mm stainless steel wire (red) at each turn. Three high
temperature resistive ceramic combs maintain a quasi equidistant cross-
sectional spacing of the foils. The stainless steel pins and ceramic combs
are embedded in two ceramic main frames. Due to the frames, the free
surface expands to a square section with 0.055 m edge length. External
tests showed that the heater is capable of producing up to 800 W ther-
mal power. The network model representation of both heat exchangers
is given in Appendix B.2.

6.3.1.3 Regenerator

The regenerator and the heater are framed inside a specially designed ce-
ramic duct to avoid electrical short circuits between the resonator ducts
and the electric heater. This duct is colorized in pink in Figure 6.6a. It is
fixed together with the cold heat exchanger between three steel flanges.
The part located near the heater is machined such that the heating foils

Texture

Figure 6.8: Picture of the regenerator. The cordierite ceramic consists of quadratic
shaped pores with a hydraulic diameter of approximately 0.8 mm.

6 High nickel alloy 8000210.
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6 Experimental Determination of Thermoacoustic Effects

are – under ideal conditions – in direct contact to the pore ends. The
quadratic regenerator with a total length of 52 mm and a width of 55 mm
consists of a catalyts celor® substrate [42]. The material properties of this
quadratic pore shaped substrate are similar to those of cordierite. A cell
density 900 cpsi and a wall thickness of about 6.35 × 10−4 m yield a poros-
ity (Eq. (3.20)) of φ = 0.8 and a hydraulic radius of y0 ≈ 0.48 mm for the
substrate. The latter value is computed assuming ideal straight quadratic
pore channels, despite the fact that such substrates have rough walls to
increase the catalytic contact area.

6.3.2 Multi-Microphone-Method Setup

For the MMM measurement campaigns all components of the appara-
tus operating in TA engine mode are used. Thus, the hot and cold res-
onators and the intermediate TA core are only partially displayed in the
MMM setup sketched in Figure 6.9. Only additional parts are completely
shown.

The hot resonator is elongated by a 0.24 m long, rock wool insulated duct
containing an extra microphone adapter located at x9. Using this exten-
sion, the MMM can be processed with four microphones in both the data
acquisition sections. The axial temperature distribution is expected to de-
cay exponentially in this region (App. B.1). Thus, the 0.24 m long T-joint
that couples the loudspeaker side branch into the system is at a lower
temperature level than the first three microphones. The 80 W speaker is
additionally shielded by a small portion of cooled air transporting the
heated gas to the main duct and through the opened bore holes – in this
configuration – in the upper end plate.

The upstream loud speaker is similarly connected to the (empty) ambient
resonator duct. The air cooling the speaker and the fluid entering the
apparatus from the bottom end plate via twelve mounted hoses of dh =
1 mm is controlled by two flow meters with a limited mass flow rate of
≈ 3.2 g s−1 at ambient conditions, which is higher than the investigated
operating points of ṁ . 1.8 g s−1. The small long hoses cause strong
damping inside the air supply. Thus, the average flow field inside the
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T

T

T

T

M

M

M

TA Engine Setup

Cold
Air

Hot
Air

Speaker
Cooling

Cold
Resonator

Hot
Resonator

Intermediate
Duct

Speaker
T-Joint

Speaker
T-Joint

Loudspeaker

Loudspeaker

End Plate

End Plate

Figure 6.9: Sketch of the MMM setup. Those parts of the apparatus that are also
used in the TA engine setup are omitted. Both resonators are supplied by a speaker
that is mounted in combination with a T-joint. For data acquisition purposes, the hot
resonator is elongated by an isolated duct. In case of mean flow, the flow direction
points from the bottom to the top.

measurement setup is almost decoupled from the air supply upstream of
the feeding hoses.

6.3.3 Measurement Processs

The thermocouples controlling the temperature distribution inside the
setup are connected to a cold-junction compensated external data ana-
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lyzer7 reading all temperature values using a sampling rate of ∆t = 1 s.
As soon as the collected parameters vary less than 5 K min−1, the state is
assumed to be steady. The deviation of the stack outlet temperature to
the value of the first thermocouple behind the heater is lower than 5 K
for the downstream stack temperature range of up to 500 K.

The analysis is conducted over a frequency range of 5 Hz to 600 Hz in
constant steps of 5 Hz. The speakers drive the acoustic field inside the
setup for a minimum of 3 times the data acquisition period at each fre-
quency. The excitation amplitude is controlled by a preliminary equal-
izing loop, whereas the maximum measured pressure magnitude ob-
tained for each frequency is calibrated to 30 ± 5 Pa. Due to the mid
range characteristics of the speakers, especially the lowest frequencies
of 5 Hz ≤ f ≤ 25 Hz can not be maintained at this level. Each data ac-
quisition loop is followed by an idle time of several seconds to ensure
undisturbed initial conditions.

The signals obtained from the pressure sensors – here capacitive micro-
phones [65] are used – are amplified to 1 mV Pa−1 before they are read
out by a sequential AD interface card at a sampling rate of 8000 s−1, lead-
ing to a temporal resolution of more than 12 points for the maximum
investigated frequency of 600 Hz.

The time series are band pass filtered and transformed to frequency space
using an FFT-algorithm. The peak frequency data detected in the fre-
quency band of ±5 Hz around the current frequency of excitation are
stored for later post-processing. A calibration process similar to Fischer
[55] compensates the impact of the sequential data acquisition delay.

6.3.3.1 Quality Estimations

Åbom and Bodén [4, 27], demonstrated that the achieved measurement
quality is sensitive to various issues. As shown by Fischer [55], all param-
eters influencing the data fitting process are crucial for obtaining accurate
results. This section discusses the preliminary quality predictions for the
measurement method. Estimations from literature as well as considera-
tions of problem-dependent error impacts are presented.
7 Agilent 34970A [6].
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The intended analytical temperature distribution based on up to 4 local
sensors seems to be a rough estimate. The profile affects the acoustic
transport in two ways: some parts of the characteristic waves are re-
flected with the factor Θ−1

2 at the approximated temperature changes, and
the actual k± (Eq. (3.28)) inside the duct is modified by the temperature-
dependent speed of sound. Both, the reflection error and the error in

transport speed scale with ±
√

∆T
T

. This leads to an error impact of less

than 1% in the final computation of the scattering matrices.

Due to the direct impact on the fitting process, the MMM results are more
sensitive to the acquired pressure data. The accuracy of these values de-
pends on the signal to noise ratio, the microphone accuracy, the data ac-
quisition system and the quality of the calibration coefficients.

The first and second errors can be reduced by repeatedly varying the mi-
crophone positions [123] and averaging over several measurement cam-
paigns. The calibration causes constant offset errors that sum up during
the averaging process. As the calibration relies on the accuracy of the
reference microphone8, the complete data set depends on the accuracy of
this pressure sensor and the reproducibility of its data. The latter strongly
depends on the observed frequency. Measurements obtained from other
applications revealed that data below 100 Hz [55] have to be considered
carefully because the error exceeds a reliable range.

Due to the questionable reliability of the data, a cautious consideration
of the statistics of the fitting process is necessary. Translating determined
deviations from the fitting in characteristic wave space into the scattering
matrix notation is not straightforward. The dimensional error quantities
of the least square fit method are not directly comparable to the error
in transmission prediction. Also, a non-dimensionalization by normaliz-
ing the quantities with the computed characteristic wave amplitudes, or
reference pressures, only leads to comparable results for traveling wave
conditions. Such conditions occur if highly absorbing conditions at the
opposite side of the acting speaker are generated. Processing all error
quantities and their combinations from the fitting procedure to the final
scattering matrix notation is very time consuming and increase the re-

8 Here microphone M is chosen.
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quired active storage. Thus, a different approach is used to determine a
quality measure for the scattering matrix obtained experimentally. This
method is inspired by the bootstrapping technique [14] applied to the
CFD/SI method by Foeller [57] and Tay [192]. It uses random parts of
signals to find confidence intervals for the results. In contrast to the boot-
strapping technique, the data is considered in the frequency domain. Fur-
ther, all possible data sets and no random selection is used. The idea
is to fit the mode shape to a reduced number of pressure sensors by
sequentially removing some microphone data columns from the fitting
process. A stochastic analysis of all resulting reference wave amplitudes
leads to a complex-valued variation in the determined scattering matrix
coefficients. Summing up over all possible combinations leads to a mean
value, which is identical to the fit achieved by taking all data into ac-
count. Moreover, statistical data like standard deviation and maximum
error are computed from these results. As these data are dimensionless,
their magnitude is a comparable measure for the accuracy of the data.
These values are plotted in terms of error bars in the experimentally de-
termined scattering matrices presented in Section 7.1.4.3.
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7 Thermoacoustic Interaction in Zero Mean
Flow Conditions

This thesis uses and cross-validates three different methods to investigate
the TA effect. The cross-sectionally averaged scattering behavior is con-
sidered experimentally, semi-analytically and by the application of multi-
dimensional CFD simulations. The methods used are validated for stag-
nant mean flow conditions and the accuracy of the different approaches
is discussed in Section 7.1. The application of the predicted scattering be-
havior is used in the second section to show the predictability of typical
operating conditions of the experimental setup in the TA engine mode.
An investigation of the instability potentiality of the reference test case
concludes the present chapter. Due to its low computational costs, the
one-dimensional model approach derived in Chapter 4 facilitates a pa-
rameter variation in terms of this potentiality. The IP of deviating mean
parameter provides an insight into the capabilities for different configu-
rations.

7.1 Scattering Behavior of Thermoacoustic Stacks

This section presents the scattering matrices obtained by experimental
data (EXP), one-dimensional numerical modeling (IMP, MI and MII)
and CFD/SI methods (CFD), respectively. For improved clarity in pre-
senting the data graphically, the results of these three different ap-
proaches are displayed separately in Sections 7.1.1 and 7.1.3. Further-
more, in Section 7.1.2 it is shown that the results correspond to the pre-
dictions of a simplistic analytical model in the limit of high frequencies.
Finally, an error analysis of the methods applied is performed.
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Figure 7.1: Scattering matrix obtained from one-dimensional models and CFD data.
The data overlap in a wide region. The gain of the transmission coefficients is shown
in solid lines for the CFD data and as filled markers for the one-dimensional mod-
els. The reflected characteristic wave components dominate the matrix. The phase
values, illustrated with dashed lines and empty symbols match well in all four ele-
ments.

7.1.1 One-Dimensional Models and CFD/SI Data

In the following, the results of the one-dimensional models (MI, MII)
from Chapter 4 are compared to the solutions obtained by the implicit
model IMP of Peter in’t panhuis et al. [80]. The two models includ-
ing mean flow are both based on the TATEs (Eqs. (4.36)) and differ in
their closure assumptions for the terms denoted by Λi. MI neglects these
terms, while MII approaches them in terms of an cross-sectional average
of the solution for stagnant mean flow. Considering zero mean flow re-
duces the TATEs (Eqs. (4.36)) to the basic set of equations for the IMP

model. Hence this section will show a correct implementation with re-
spect to the implicit model. Furthermore, the CFD data (Chap. 5) of the
reference case (Section 2.4) with vanishing mean flow are used for valida-
tion. Figure 7.1 depicts the magnitude (gain) values of the models IMP,
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7.1 Scattering Behavior of Thermoacoustic Stacks

MI and MII with filled symbols. The gain obtained from the CFD/SI
method is displayed by a green solid curve. All these values scale with
the left-hand side vertical axis of the four plots in Figure 7.1. The blank
symbols represent the phase values of the model data, scaling with the
right-hand side vertical axis. The color and shape are the same as for
its magnitude value. The dashed line describes the phase values of the
CFD. For reasons of generality, all data are plotted versus the Womers-
ley number Wo of the reference (cold) side. As stated in Section 4.2, Wo is
proportional to the hydraulic radius and the square root of the frequency.
The transformation from this space into the Lautrec number La space is
linear (Eq. (4.7)) and provides similar insight.

The gain and phase values of the transmission coefficients tud, tdu as
well as the reflection coefficients ruu, rdd displayed in Figure 7.1 match
very well. As expected, all one-dimensional modeling approaches pre-
dict identical scattering values. Both phases Φ(tud) and Φ(tdu) of CFD

and these models completely overlap in the displayed range. This also
accounts for the phase of the characteristic wave reflected at the cold up-
stream side. Only the reflected hot wave phase Φ(rdd) deviates percep-
tibly for Wo > 6, but is acceptable because of the corresponding gain
value.

Concerning the magnitude values of the scattering matrix coefficients,
two observations can be made:

• In contrast to the one-dimensional models, the CFD solution for
higher frequencies contains wiggles. These are artificial products
of the SI [58] (also Fig. 7.4). Considering the one-dimensional model
of Rott [170], these wiggles are not reproducible by the steady de-
caying Rott functions (Eqs. (7.8)) displayed in Swift’s textbook [187].
Approximating this region by a polynomial least-square fit should
result in an accurate match with the one-dimensional model data.

• At low frequencies (Wo < 1), the CFD solution tends to underes-
timate the TA interaction. The transmission coefficients are closer
to unity and the corresponding characteristic wave is amplified less
with a maximum gain deviation of 0.02 in the low Wo limit of tud.
The low frequency region of the reflection coefficients experiences a
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7 Thermoacoustic Interaction in Zero Mean Flow Conditions

similar tendency with respect to a value around 0.1. The simulated
signal length of 0.7 s (Sec. 5.2.5) contains an insufficient amount of
information about low frequencies. The limit frequency from sam-
pling theory [155] fsamp = T−1 states that Womersley number values
of Wo / 0.2 cannot be resolved by the system identification. As the
accuracy of the SI decreases even before this value is reached, the
data in the region of Wo < 1 also start to deviate from reality. SI
tests on varying time series of the signal revealed that the changes
in the scattering matrix which is related to the TA effect evolve with
increasing signal length. The hump in the range of Wo . 5 rises
linearly with the simulation time. This results in a square root con-
vergence in the Womersley space. Thus, and due to the predictable
tendency, the improvement in the resulting scattering matrix data by
using longer time signals has to be balanced by rising computational
costs.

Altogether, both methods match very well. This leads to a certain relia-
bility of the accuracy of the results obtained. Furthermore the existence
of implementation bugs in the components of the one-dimensional tool
that are not affected by mean flow is excluded. As the one-dimensional
models are considered to be exact, and due to the immense reduction
in computational costs, the parameter variation for stagnant mean flow
conditions in Section 7.3.1 is investigated using the one-dimensional for-
mulation of Chapter 4. If mean flow occurs, the CFD solution is the least
error-prone and the most reliable. It is selected as the reference solution
whenever parallel plate configurations are investigated.

7.1.2 Analytical Limits

The reliability of results is often demonstrated in terms of limit value in-
vestigations. If an effect is known to converge to a defined value, reach-
ing these values with the models used corroborates the correctness of the
approach. Hence, Figure 7.2 compares the scattering matrix results ob-
tained from the CFD data to the matrix values computed from the rudi-
mentary network model presented in Figure 3.2 of Section 3.2.4. The lat-
ter is incapable of reproducing the TA effect. This network representation
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Figure 7.2: Scattering matrix of the TA regenerator vs. a simple model approach
(D-TC-D). The latter consists of the network representation displayed in Figure 3.2:
two discrete area changes combined with a hot and a cold viscous duct on the up-
stream and downstream end of a temperature step.

is from now on referred to as D-TC-D model. It serves as a validation
model in the high frequency limit, where the impact of acoustic bound-
ary layers is negligible. The TA regenerator scattering matrix converges
asymptotically to the data of this model. It consists of two area changes
at both ends modeling the area change due to the porosity Φ = 0.951. The
TA pore itself is modeled by a hot and cold viscous duct at in- and outlet
temperature. These ducts are connected by a temperature change at the
center of the pore. As thermo-viscous interaction is not modeled – for
example by a time lag model2 – the TA amplification cannot be captured.

The phases in the zero frequency limits are considered first. The transmis-
sion coefficients Φ(tud), Φ(tdu) are dominated by the time lag τ caused

1 These area changes are symmetric to the center of the stack and not part of the model. Hence, they do
not affect the scattering matrix.

2 Typical delay models, like the n-τ models as used by Kopitz [95] are not applicable here, because the
delay is not dominated by a frequency independent, for example convective, time scale.
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7 Thermoacoustic Interaction in Zero Mean Flow Conditions

by the propagation through the stack. For such waves the low frequency
limit of the phase tends to zero because

lim
Wo → 0

Φ = lim
f → 0

2π f τ = 0. (7.1)

The phases of the reflection coefficients do not correlate to a time lag and
thus do not necessarily approach zero. The discrete temperature change
at the center of the resonator , i.e. x = 26 mm, causes a phase shift of π
for the hot reflected wave rdd. The cold reflected wave ruu does not un-
dergo this phase shift. In contrast, the CFD results, as well as all other
data obtained, display a phase shift in ruu. This is the typical behavior of
an area change. As the TA effect is strong in this region, a blocking by the
viscous boundary layer and an additional phase shift in the rdd element
by the thermal wall interaction might be the reasons for this discrepancy.
However, no physical or mathematical explanation can be given. This
difference in Φ(rdd) vanishes with increasing frequency. The simple ap-
proach is a valid limit for the right end of the horizontal axis of all phase
coefficients in Figure 3.2.

The amplitude values of this model are governed by the discrete temper-
ature change. Using Equation (3.36), a change in mean temperature T0

from 300 K to 450 K leads to scattering matrix values of

STC =

[

1.101 0.101

−0.101 0.899

]

. (7.2)

The two coefficients of reflection, i.e. the off-diagonal entries in the scat-
tering matrix, show an absolute value of the order of 0.1. The wave trans-
mitted from upstream to downstream increases by approximately 10% in
amplitude, while the wave transmitted from downstream is reduced by
this amount. As shown in Figure 3.4 the acoustic power balance of this
element stays neutral.

The magnitude values of the reflection coefficients of both approaches
vary little. The greater deviations between D-TC-D and CFD data in
the hot reflection coefficient rdd with increasing Womersley numbers arise
from the choice of temperature-independent thermophysical gas param-
eters (µ, K) for the simple model. The gain of the transmission coefficient
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7.1 Scattering Behavior of Thermoacoustic Stacks

tud is also slightly affected by this effect. It almost converges to the simpli-
fied solution when the thermo-viscous boundary layer interaction, but is
reduced to a too low value for Wo > 8. For lower amplitudes both trans-
mission coefficients deviate from the D-TC-D model. The differences
indicate that a characteristic wave, which is transmitted from the cold to
the hot part (tud), is amplified by the TA effect, while its counterpart (tdu)
is damped when traveling against a positive temperature gradient. As
this effect is larger for low Wo, a TA apparatus should maintain the first
characteristic wave, while suppressing the latter to avoid the elimination
of acoustic energy. These operating conditions are typical for traveling
wave engines.

7.1.3 Comparison with Experimental Results

 

 

 

 

00

00

0
0

0
0

0
0

0
0

11

11

1

1

1

1

1

1

1

1

22

22

22

22

33

33

33

33

44

44

44

44

55

55

55

55

0.20.2

0.2

0.40.4

0.4
0.5

0.60.6

0.6

0.80.8

0.8

1.5

Wo [−]Wo [−]

Wo [−]Wo [−]

|t u
d
|[
−
]

Φ
(t

u
d
)
[r

ad
]

|t d
u
|[
−
]

Φ
(t

d
u
)
[r

ad
]

|r d
d
|[
−
]

Φ
(r

d
d
)
[r

ad
]

|r u
u
|[
−
]

Φ
(r

u
u
)
[r

ad
]

ππ

ππ

π
2

π
2

π
2

π
2

00

00

-π
2-π

2

-π
2-π

2

-π-π

-π-π

|IMP|

Φ(IMP)

|Exp|

Φ(Exp)

Figure 7.3: Experimental data vs. combined IMP data for qudratic shaped pores
and reconstructed heat exchangers. Despite the deviation from the predicted data,
similar trends are clearly visible. The measurement error in the low frequency range
impedes an identification of the TA hump in this region.
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7 Thermoacoustic Interaction in Zero Mean Flow Conditions

Although detailed accurate numerical simulations usually describe the
physics with high reliability, experimental data are considered to be most
credible. Figure 7.3 depicts the data obtained for the complete TA core by
the MMM presented in Section 6.1. The filled dots designate the mea-
sured gain values, while the blank circles describe the phase. These data
are compared to the IMP results. These are manipulated using the re-
constructed scattering matrices of the heat exchangers (Sec. 6.1.3). Here,
the IMP results are obtained by inserting the proper Rott functions for
quadratic shaped pores. While CFD and IMP of slab stacks match well
for zero mean flow, choosing the latter reduces the error impact induced
by differences in cross-sectional geometry.

The measured phase of the transmission coefficients match very well for
a wide region. This is due to the corresponding delay being governed
by the timescale of the wave traveling through the media without any
interference. The high frequency data are also in good agreement with
the reference data. Contrarily there is a huge mismatch for the scatter-
ing matrix coefficients for Wo . 2. In comparison to the IMP data, the
experimental setup experiences a certain blocking that increases for low
frequencies. Parts of the characteristic waves are reflected and thus in-
crease the contribution of |r| while the transmission coefficient gains |t|
are reduced. This frequency dependent reflectivity is not accounted for
by analytical models of discrete area or temperature changes. Thus it can
not be reproduced in the reconstruction model of the heat exchangers.
Swift [187] discusses the impact of wall roughness on the TA boundary
layer interaction. He observes that especially for rough walls the im-
pact of viscous dissipation and, in a similar manner, thermal diffusion
increases. This effect can also be attributed to a partial blocking of the
regenerator pores leading to a stronger reflection at low frequencies. A
second reason for these contrary tendencies is due to the applied pres-
sure sensors. As stated in Section 6.3.3.1, the capacitive signal conversion
technique is sensitive to frequency. Low frequency data are affected by
non-statistical errors. This low Wo region is expected to be influenced by
unidentified impacts and measurement errors. They impede a quantita-
tive comparison to the data obtained numerically.

Nevertheless, the phase of the reflection coefficient Φ(ruu), which does
not coincide with the D-TC-D model discussed in the last chapter, occurs
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7.1 Scattering Behavior of Thermoacoustic Stacks

in a similar manner. Furthermore, the TA amplification in |tud| is still
visible. In the next chapter, the author focuses on tendencies that the
effects experience when experimental data is affected by mean flow. Only
these tendencies are taken into consideration.

7.1.4 Accuracy of Applied Methods

In the last chapter, three different methods for obtaining the scattering
matrix of a TA regenerator were compared. Regardless of the good qual-
itative agreement, these results have to be verified and validated because
of the lack of comparable data in the published literature. Thus, this
chapter discusses model and measurement errors as well as the accuracy
of the techniques applied.

In contrast to the domains considered with the numerical tools, the ex-
perimental setup investigates the real physical TA regenerator. Thus er-
rors stemming from inadequate model assumptions of the regenerator
do not affect this measurement. However, the modeling approaches of
the MMM procedure, the approximated geometry and its thermal field
nevertheless induce a certain potential of model error.

The numerically investigated domains on the other hand are simplified
with respect to the technical device. No inlet/outlet interference like the
formation of jets at the expansion or streaming effects are considered.
Also the assumed axial mean temperature profile inside the regenera-
tor is independent of losses to the exterior. In contrast to the approx-
imated data of the one-dimensional models, all mean data is available
from the CFD simulation. Some error impact is related to the geomet-
ric restriction of the investigated computational domain. As stated in
Section 2.4, the influence of the openings and multi-dimensional effects
are not captured by the two-dimensional consideration of a single pore.
Furthermore, buoyancy is a priori neglected. As the error impact of the
approaches arises from different sources, a quantitative comparison is
impossible. Determining the error impact of elements of the methods ap-
plied and thereby obtaining a certain credibility of the acquired data is
the only way of supporting the cross-validation and verifying the choice
of the reference method.
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7 Thermoacoustic Interaction in Zero Mean Flow Conditions

7.1.4.1 Quasi One-dimensional Modeling

The quasi-one-dimensional model of Rott [170] was shown to be exact for
long pores and for stagnant mean conditions by in’t panhuis et al. [81].
Following the derivation of Chapter 4 and neglecting u for a pore with
vanishing ratio of length scales ε, the resulting mathematical description
of the acoustic transport is exact for ideal conditions. As long as the mean
flow is a quantity of second order and the pore is not affected by any
losses, which are not considered here, the modeling approach described
in this thesis is still valid. For stagnant mean flow conditions, all errors
in scattering matrix data are related to the numerical discretization and
provided thermophysical material data. The high accurate integration
scheme in combination with a step size of 10−5 yields a very precise re-
sult. Thus, the tabulated data, which are stored with a precision of 10−4,
induce the largest errors of similar magnitude into the equations.

Due to the restrictive assumptions mentioned, this high accuracy is only
valid for the stagnant mean flow case. As soon as ṁ > 0, the error,
which clearly stems from false closure assumptions, increases. Quanti-
fying the accuracy is restricted to a comparison to data obtained by other
approaches.

7.1.4.2 CFD and SI

The CFD simulation reveals a good agreement with the IMP model (see
Figure 7.1). As the configuration considered exactly matches the BCs of
the 1D problem, the modeling error is supposed to be of the same or-
der of magnitude. Entrance effects and inlet/outlet area changes are also
not considered. Moreover, the temperature variation at the interface to
the solid material is not taken into account. As a laminar mean flow
regime is considered, the impact of turbulent noise is negligible. Because
the complete stack height in the experiment is two orders larger than
the hydraulic pore radius (Sec. 6.3.1.3) and the conductivity of the fluid
and the solid regenerator component are small in the experiment, inho-
mogeneities due to losses to the exterior play a minor role. Thus, these
assumptions can be considered to introduce negligible error.
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The accuracy of the SI tool (Sec. 5.1) depends on the signal quality, the
noise level and the choice of identification parameters. As TA amplifi-
cation is dominated by the gain of the transmission coefficient tud, this
parameter is validated separately in Figure 7.4. Here, the transmission
coefficient obtained by the method described in Chapter 5 (green) is com-
pared to the quasi one-dimensional solution (red) and a result obtained
by the so-called NaiSI method (black) [57]3. This method is based on time
domain methods and regularization techniques [10]. The latter accounts
for the error content in the data and thus yields a more precise solution
for a similar set of signals and responses.

The discrepancy of the results obtained is very low for the investigated
stagnant mean conditions. The wiggles occurring in the WHI prediction
are completely smoothed by the regularization technique in the NaiSI
data. The phase values stick to the WHI results. They indicate a reduc-
tion in transport velocity. This is a possible indicator for numerical dis-
persion in the CFD code [78]. This phase error does not affect the low Wo
region. Here, slight deviations can be seen. Finally, the estimated lack
of amplitude of the WHI for low frequencies is slightly improved by the
NaiSI method. The predicted values are closer to the magnitudes of the

3 NaiSi stands for “Novel and improved System identification”. The development of this method was the
scope of an ongoing research activity at the Chair of Thermodynamics at TU München. The tool was
not available during the data generation process.
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7 Thermoacoustic Interaction in Zero Mean Flow Conditions

1D values. However, as the time series is still too short, they cannot reach
this limit.

Summarizing, the WHI deviations in magnitude are up to 2% in the re-
gion of the wiggles. The accuracy in the low frequency range is restricted
by the length of the investigated time series. All discrepancies result
from the SI errors and discretization errors4 in the CFD simulation. These
discrepancies are not related to mean flow and in combination with the
qualitative agreement to the experimental data. The choice of the WHI
solution as reference data is justified.

7.1.4.3 Impacts of Measurement Error and Credibility of Experimental Data

The experimental data show larger deviations than other methods. Thus,
the impact of possible errors is investigated in more detail.

Reconstruction Faults

The models applied and optimized for the consideration of the adjacent
heat exchangers and geometrical changes inside the TA core are not per-
fect. The parameters listed in Appendix B.2 allow only an approximate
reconstruction of the acoustic scattering behavior of the heat exchang-
ers. The assumed mean temperature profile T0(x) is computed using
four measurement nodes. Moreover, as the error margins of numerical
data are of the same order as for the experimentally acquired data of the
TA core, some effects may not be captured. If these are physical, but
not identifiable, their impact on the overall measured scattering behav-
ior cannot be taken into account. The dominant decay and rise of the
magnitude values of the scattering matrix data detected for Wo < 2 in
Figure 7.3 is one of the three possibly uncaptured phenomena, which
might be physical. A higher real viscous and thermal damping inside
the narrow geometries of the TA core could, on the one hand, cause a
stronger decay in the transmission coefficients |t|. On the other hand,
it would affect both transmission coefficients in the same way for zero

4 In this context the discretization errors refer to the chosen discretization schemes and the numerical
dispersion related to the solution techniques applied. Resolution errors from too coarse meshing or
time stepping are expected to play a less significant role.
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7.1 Scattering Behavior of Thermoacoustic Stacks

mean velocity. This also accounts for the qualitative impact of losses due
to area changes. A further physical effect, which is not taken into account,
is the strong reflection at low frequencies discussed in Section 7.1.3. No
acoustic element description is known to the author that predicts this
phenomenon and can be incorporated into the network representation of
the reconstruction process.

Data Acquisition

The measurement chain for the MMM includes microphones, signal am-
plifiers, an analog/digital interface and numerous cables and connectors.
All these components contribute a certain error to the system. Åbom and
Bodén [4] showed that the MMM is sensible to the accuracy of the mea-
surement instrumentation as well as to the location of data acquisition.
For the two-microphone method, they required a relative microphone
distance s of

0.1 < s
π(1 − Ma2)ω

c
< 0.8, (7.3)

which is violated by a factor of up to approximately three. Here, the use
of more than two microphones for the pressure fit balances this potential
error source.

Especially the wiring connections and the pressure sensors are error
prone. These potentially systematic but unrepeatable errors can lead to
non-physical results notwithstanding a change of microphone orderings
and repeating the experiment [193]. Figure 7.5 depicts the relative ampli-
tude and phase deviation of six (out of eight) microphones from the fitted
pressure profiles over Womersley number for a) upstream and b) down-
stream excitation. Each value displays the error of the microphone with
respect to the fitting through three microphones at each side, which are
exemplarily depicted for a frequency of 140 Hz in Figure 6.3. These val-
ues are non-dimensionalized by the acoustic pressure fit quantity that is
computed for the ends of the TA core. Choosing a different set of micro-
phones will lead to very similar results. The expected random deviation
for a stochastic amplitude and phase error only occurs for Womersley
numbers of Wo > 3. These values are larger than the rest. These errors
are balanced by the averaging procedure described in Section 6.3.3.1. In
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Figure 7.5: Microphone deviations from fit profiles for a) upstream and b) down-
stream excitation. Some sensors reveal non-statistical deviations in the Wo < 3
region.
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7.1 Scattering Behavior of Thermoacoustic Stacks

contrast to this, almost all microphones display a clear trend to overes-
timate (or respectively underestimate) the magnitude and phase when
they fall below a certain frequency. Microphones B and L, for exam-
ple, always record higher values than predicted by the fitted profile for
Wo < 3. This tendency of a consistent over- or underestimation can also
be observed for the phase at low frequencies. The deviation is neither
linked to the position of the active speaker nor to the microphone loca-
tion. This trend in both quantities – gain and phase – is expressed in
terms of systematic errors in the scattering matrices that are not balanced
by any averaging process. As the origin could not be identified by a vari-
ation of the microphones and is not reproducible, the author expects this
deviation to be part of the data acquisition system.

As discussed so far, an interpretation of the impact of the systematic error
on the scattering behavior is very difficult. Taking the microphone errors
into account by weighing them in different variations does not lead to
quantitative conclusions considering their impact on the predicted scat-
tering matrix value. Hence, the method of predicting the scattering ma-
trix values with varying combinations of microphone data (Sec. 6.3.3) is
chosen. It is the only method to at least provide a qualitative estimate of
the accuracy of the results obtained in terms of scattering matrix values.
Using this method allows to determine statistical data as maximum error
and standard deviation, which are considered in the next section.

Measurement Errors

Figures 7.6 and 7.7 display the maximum error and standard deviation
[91] of the measured zero mean flow scattering matrix. The eye-catching
discrepancy of the low frequency magnitudes (blue lines) supports the
statement that the accuracy of microphone measurements below 100 Hz5

is not satisfactory. Except for some frequencies the amplitude error de-
creases with increasing Wo. These exceptions are not restricted to fluid-
dynamic eigenfrequencies of the system. Observations during the mea-
surement campaigns revealed that these deviations in the maximum er-
ror and the standard deviation displayed in Figure 7.7 correspond to a
resonance frequency of the complete setup. For these frequencies the ex-
5 Wo < 1.64 in the present configuration.
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Figure 7.6: Maximum error of measurements for the TA core obtained by succes-
sively omitting one microphone in each measurement duct. The magnitude error in
the low frequency range is attributed to the microphone errors and the low excita-
tion amplitudes of the speakers.

ternal sound level increases far above the standard value and loose parts
mounted at the exterior of the apparatus begin to vibrate.

As expected from the good qualitative overlap with the numerical data,
the phase error (green curves) of the transmission coefficients is small.
This is attributed to the fact that the phase of a wave traveling through a
dissipative duct is almost unaffected by errors of the estimated damping
coefficient d than its magnitude value (Eq. (3.28)). The errors decrease
with increasing changes in amplitude. This is due to the ratio of the mea-
surement error to the actual acoustic pressure magnitude. The complex-
valued error quantitiy is constant while the excitation is limited by the
speakers. At low frequencies, the used forcing elements were not capa-
ble of generating the demanded power level of 50dB. Thus, in this region
the error ratio increases. As the error ratio impact can be split up for the
characteristic wave amplitude, this effect also explains the comparatively
higher error values in the off-diagonal coefficients. The higher error for
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Figure 7.7: Standard deviation of experimental data. Compared to the maximum
error, the standard deviation is relative small. This indicates that most parts of the
error content is statistical which leads to an acceptable performance of the measure-
ment method.

the phase values of ruu and rdd is related to the smaller contribution of the
reflected waves with respect to the recorded noise.

Altogether, the observed error margins are acceptable for comparing the
experimental and numerical results in a qualitative manner. The high fre-
quency regime even allows for a quantitative validation of the numerical
data. When the frequencies reach low values (Wo / 1.6), the experi-
mental data have to be interpreted with caution because of the large er-
rors. Furthermore, tests on other geometries (not presented here) showed
that even though they seem to reach values higher than 20%, the average
trends remain always comparable.
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7 Thermoacoustic Interaction in Zero Mean Flow Conditions

7.1.4.4 Minor Sources of Errors

The analysis of the methods applied showed a good reliability of the data
obtained by all the three methods. This comparability is further influ-
enced by minor discrepancies. Determining the real contribution of these
differences is beyond the scope of this thesis. They are presented as pos-
sible sources of error in this section.

The test rig is operating at atmospheric conditions. Consequently, every-
day fluctuations in atmospheric conditions, for example humidity take
effect on the system’s acoustic measurement hardware. Moreover, due
to design reasons, the microphones are not accurately fixed in their po-
sitions. The positioning may change slightly during the measurement
campaign. The power supply of the electric heaters is controlled manu-
ally. This leads to a power input accuracy lower than 98%. The error of
control thermocouples, which are used to maintain a certain temperature
distribution, is of the order of 1 K. Although the approximated temper-
ature profile (App. B.1) has been validated empirically, the lack of infor-
mation about the real multi-dimensional mean temperature field inside
the measurement duct causes a certain uncertainty. The temperature of
the mains water, which is used to maintain the upstream duct at ambi-
ent conditions, changes in time. Deviations of up to 5 K were observed
during the measurement campaigns. Finally, it has to be stated that the
combination of acoustic oscillations and hot temperatures causes a fast
material aging of the internal heater and its surrounding components.
Especially the ceramic parts are subjected to deterioration at every mea-
surement campaign. This leads to a change in geometrical conditions as
well as losses due to imperfect sealing.

The CFD simulation is also subjected to errors. The open source code
OpenFOAM used in the present thesis has rarely been used for aeroa-
coustic simulations [117, 118, 191]. There is no publication available treat-
ing acoustic propagation under non-isothermal conditions. Thus, its ac-
curacy has only been tested to some extent. Kunzer [101] investigated
different discretization schemes for incompressible solvers. These were
tested in the thesis of Stich. He solved generic compressible test cases
by using a PISO looped solver. Altogether, the investigation revealed
much higher numerical diffusivity than other codes [58]. The use of the
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7.2 Thermoacoustic Engine Operation Mode

segregated solver is also expected to induce a certain relative time lag of
pressure, velocity and temperature oscillation. Also, the computation of
the thermophysical properties causes small discrepancies to experimen-
tal and one-dimensional data. Finally, although the temperature profiles
were sufficiently resolved, the investigation of higher Pe cases is lim-
ited by the mesh resolution. In this case, local refinement will not only
cause an increasing number of degrees of freedom, but also a necessity of
reducing the time step to maintain an acoustic CFL-number lower than
unity.

The one-dimensional numerical tool is expected to be the least error-
prone. The usage of a fine discretization and a higher-order integration
scheme only induces small errors. The highest numerical errors occur
for low frequencies [72]. The computation of the matrix coefficients of A

(Eq. (4.63)) for every step causes an error accumulation, which leads to
unphysical results. A preliminary computation of these components in
combination with interpolation at the current position circumvents this
problem.

7.2 Thermoacoustic Engine Operation Mode

Two states of the TA engine setup facilitate a validation of the scattering
matrices obtained. The cycle increment [75, 192] in the linear onset of
the engine is comparable to the data obtained from the eigenfrequency
analysis of a network model. The limit cycle delivers qualitative infor-
mation about the ratio of losses, higher-order modes and damping inside
the system. Moreover, the reconstructed mode shape of the first eigen-
mode allows a comparison of the reference plane data to the predicted
values obtained by numerical and experimental techniques. All the time-
dependent data presented in this chapter refer to the signal depicted in
Figure 7.8. The measurement data for this plot are obtained for one TA
engine operation point (Lw = 1.1 m). An average temperature differ-
ence of approximately 100 K was preset over the stack by controlling the
power supply of the inner heater.

The onset was produced by dismounting a plug at a central position in
the cold channel, such that all instabilities break down. As soon as all

143



7 Thermoacoustic Interaction in Zero Mean Flow Conditions

0

0 5 10 15

500

1000

1500

2000

-500

-1000

-1500

Time t[s]

P
re

ss
u

re
p

[P
a]

Time t
T [−]

P
re

ss
u

re
p

1
[P

a
]

Limit Cycle

Onset

exp(αt)

Figure 7.8: The onset and limit cycle of the TA engine setup for a water level of
1.1 m. Peak amplitudes of 2 kPa are reached at a temperature difference of 100 K.

fluctuations die out, the plug is mounted and the unstable mode evolves
again until the limit cycle is reached. The first seven seconds displayed in
Figure 7.8 are considered as the onset region, where linear TAs dominate
the acoustic amplification and nonlinear effects do not affect mean con-
ditions. The blue curve displayed inside the graph depicts two periods
of the limit cycle region. It is reached after approximately 12 s.

7.2.1 Mode shape of the First Eigenmode

The mode shape of a certain geometry defines the spatial distribution
of the frequency-filtered acoustic pressure and velocity. This distri-
bution is obtained applying the reconstruction technique described in
Section 6.1.2. Both ends of the standing wave engine are closed. This
demands a λ/2-mode for the first eigenfrequency of the setup. Further-
more, solid walls postulate u1|x=0,L = 0, which coincides with a vanishing
acoustic pressure gradient at these locations for Ma = 0. The state vec-
tors resulting at the reference planes xu,d,ref provide one set of outgoing
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7.2 Thermoacoustic Engine Operation Mode

characteristic wave amplitudes that has to match to those computed from
the product of the predicted scattering matrix and the incoming waves.
Under optimum conditions, the scattering matrix even allows a coupled
mode shape solution for the complete setup. These criteria are investi-
gated in detail and discussed here.

The black curves in the magnitude (top) and phase (bottom) plot of
Figure 7.9 show the reconstructed mode shape of the first eigenfrequency
obtained for the configuration described in Section 6.3.1. The curve fit-
ting with respect to the microphone data (red circles) was processed such
that the cold and hot sides were treated separately using the optimiza-
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tion method described in Section 6.1.1. The curves in the TA core region
are linear interpolations and no computed intermediate values. The blue
curves describe the confidence intervals of 95% for the magnitude curve
and a ±5◦ discrepancy to the dashed phase plot. All five microphone
measurements (red circles) are within this range. These microphones are
not located near the pressure antinode of the profile. The measured pres-
sure data has high amplitude values and hence, the reconstructed mode
shape is not affected by the standing wave pattern. Due to the use of
two microphones at the cold side, the fitting problem (Eq. (6.4)) with two
complex-valued degrees of freedom is not overdetermined. Thus, this
part of the curves coincides with the measurement values. The micro-
phones are known to predict the most accurate results for ambient condi-
tions, which also provide the most reliable mean quantity data. Detailed
tests revealed that these measurements can lead to errors of 2 − 3%. The
hot curve fit was obtained using a measurement based linear temperature
distribution according to

T0(x) = 400 K − 50 K
xd

Ld
(7.4)

and a temperature stepping of 1 K for each discrete change in mean tem-
perature. Due to the increased number of microphones, the problem be-
comes overdetermined. The fitting to the less accurate mean temperature
data in the downstream (0.8 < x/Lengine < 1) lead to clearly visible devi-
ations.

As both ends of the engine are completely sealed, a typical λ/2 mode
shape is expected with both ends having a zero gradient in |p1|. More-
over, the pressure at these locations is expected to oscillate with a phase
difference of π. The upstream pressure gradient at x = 0 almost reaches
zero. This indicates that: a) the fit is in good accordance to the measure-
ment data in the frequency range below the cut-on frequency of transver-
sal modes and b) the water column in the duct causes a hard wall reflec-
tion coefficient of

F

G

∣
∣
∣
∣

x=0

≈ 1. (7.5)

In contrast to this good match of fit and estimated pressure profile, the
downstream tangent of |p1(Lengine)| is slightly negative. Combined with
the phase shift of these positions of more than π, this indicates a certain
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error in the predicted fit. This discrepancy may originate from different
reasons: i) the estimated temperature distribution is not accurate enough.
ii) Although the pressure sensors are water cooled, the heating causes a
certain impact on the output data. iii) A bad preparation of the micro-
phone leads to deviations from the calibrated state.

The quality of the three prediction tools is compared in terms of the ma-
genta colored markers in Figure 7.9. They denote the pressure values
predicted by computing the hot downstream value from the upstream
reference state. For this purpose, the scattering matrix values obtained
using the MMM (∗), the CFD/SI method (�) and the one-dimensional
prediction tool (+) for the first eigenfrequency Wo ≈ 1.65 are extracted.
Next, applying Equations (3.24) and (3.26) these values are transformed
into transfer matrix data in pu notation. Finally multiplying the acoustic
state vector of the upstream plane by these matrices yields the predicted
p1 values at the downstream end of the stack. The experimental results
(∗) show the strongest deviation. The measurement error at the operating
point of Wo ≈ 1.65 is too large to produce reasonable results. The pre-
dicted pressure amplitudes of the CFD data (�) match to the predicted
shape on the hot left side. This is not valid for the phase value. It devi-
ates half as much as the experimental data, but the confidence interval
is not captured. This deviation is related to the different cross-sectional
shapes of the pores. As shown later (Fig. 7.12), the impact of this param-
eter causes the largest deviations in this region. Using the right cross-
sectional shape values obtained from the one-dimensional model IMP

(+) leads to a match within the confidence intervals. Here and in the next
section, the scattering matrix was obtained for quadratic pore shapes of
equal hydraulic radius R. Apart from the validation of experimental re-
sults in Section 7.1.3, this adaption is presented only in this section.

7.2.2 Thermoacoustic Onset

The pressure data displayed in Figure 7.8 are recorded in the cold duct
at the position of microphone A, which is denoted “Mic A” in Figure 7.9.
The reconstructed mode shape leads to a factor of ≈ 1.3 between the
pressure value at the downstream antinode and the measured value at
location A. However, as the cycle increment in the linear acoustic regime
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is independent of the amplitude values, the consideration of the pressure
at any location should lead to the same results.

The red curves in Figure 7.8 display an exponential fit of the hull curve
connecting the positive and negative peak values of the measurement.
The exponential prefactor, the growth rate α, of both curves deviates by
approximately ±10% from the mean value of 1.4 s−1. The value of the
cycle increment of 1.3 × 10−2 is of the same order of magnitude as the CI
of the engine of Penelet et al. [136]. The maximum CI of the black curve
in Figure 6.5 is smaller by a factor of two.

For comparability, a network model6 of the lossless engine was created
to numerically predict the instability of the setup in terms of its first
complex-valued eigenfrequency. The same scattering matrix as used in
Section 7.2 is implemented. The data of the corresponding scattering ma-
trix were obtained from the quasi one-dimensional model described in
Chapter 4. As stagnant mean flow conditions prevail, the solution of in’t
panhuis et al. [81] (Sec. 7.1.4.1) in combination with Rott functions for
quadratic pores can be applied to produce the data series. These data
columns were fitted to analytical expressions with a precision of 10−3 in
the region of ±40 Hz around the expected first eigenfrequency.

This lossless network model revealed a CI three times higher than the
fitted experimental value. An estimation of damping by viscous friction
in the test-rig was determined in separate tests at ambient conditions.
The damping ratio for different length configurations was determined
by exciting the experimental apparatus with a small explosive. Applying
spectral methods to the time line of the recorded pressure data yielded
damping ratios for the eigenfrequencies of the system. These test showed
that the cycle increment of the first eigenfrequency at ambient conditions
was about CI ≈ −2 × 10−2. If this damping effect is assumed to occur
in the network model in the same way, the predicted CI has to be cor-
rected by adding both cycle increments (Eq. (6.8)). Using this approach,
the real and imaginary parts of the predicted complex-valued first eigen-
frequency matched with high accuracy to the experimental values.

6 taX v0.9 [106].
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7.2.3 Limit Cycle Oscillations

The mode shape displayed in Figure 7.9 was obtained from the complex-
valued pressure data of the first eigenfrequency in the limit cycle region.
Limit cycle oscillations occur if nonlinear effects consume the amplifica-
tion power. Some of these nonlinear mechanisms cause an energy shift
to higher modes [187]. A further reduction of the power is restricted to
the increasing impact of nonlinear acoustic terms. Second-order contri-
butions in the enthalpy transport change the energy balance of the lin-
ear system. This effect and changes in the heat transfer coefficient at the
heaters lead to a variation of the axial mean temperature distribution in-
side the TA stack [187]. The thermal relaxation time for these changes is
orders of magnitudes larger than the acoustic time scales7. This causes a
delay of the system response and the peak pressure magnitudes reached
after about eight seconds in the observed case slightly decreases until a
steady axial temperature profile is reached.

A consideration of the hull curves in the onset and limit cycle reveals a
shift of the amplitude values of approximately +250 Pa. This suggests an
increase in mean pressure when the engine operates in the limit cycle. A
close investigation of moving average values of the data set demonstrates
that this deviation is a result of the superposition of multiple frequencies
that slightly vary in time.

The blue curve in Figure 7.8 displaying two periods of the first eigenfre-
quency indicate a non-negligible contribution of higher harmonics to the
acoustic signal in the limit cycle. In contrast to the linear acoustic regime
of the onset, where only the first and second eigenfrequency can be iden-
tified in the frequency spectrum, these higher harmonics can also easily
be recovered from Figure 7.10. This figure displays the frequency-related
pressure magnitude values obtained by a standard fast Fourier transform
(FFT) of the limit cycle region. The first harmonic at f I ≈ 106 Hz contains
the major energy of the acoustic signal and all higher harmonic ampli-
tudes reveal an exponential decrease, which are typically observed in TA
limit cycles [11, 184, 217]. Sakamoto et al. [173] attribute their occurrence
to the strong nonlinearity of higher mode standing waves, which is not

7 The stagnant fluid thermal relaxation time is reduced by the acoustic oscillations inside the pores.
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Figure 7.10: FFT of the TA engine in its limit cycle. The first four eigenfrequencies
are easily detectable. The steep decay of the amplitude values in the vicinity of the
eigenfrequencies indicates low damping inside the system.

physically explained. The numerical model of Watanabe et al. [204, 216]
showed these higher harmonics. Their decay rate did not follow expo-
nential decrease. Naugolikh et al. [125] explain the energy shift to the
next harmonics based on the Korteweg-de Vries-Burgers equation [221]
where the solutions for special conditions reveal an exponential ampli-
tude relation.

In the present work, the amplitude of the second eigenfrequency is
slightly higher than the value expected from the exponential decay. This
is due to the fact that the second eigenfrequency f I I , like the first, experi-
ences an amplification by the TA effect with an overcritical temperature
gradient. The lower amplitude of |p1( f I I)| compared to the |p1( f I)| is due
to the higher Lautrec numbers La at this frequency. This coincides with a
lower TA interaction over the stack (compared to Section 1.3).

A good qualitative measure for the damping inside the system is the de-
termination of the damping coefficient by the full width at half maxi-
mum [54]. The steep drop of the frequency content in the vicinity of the
harmonics indicate a very low damping inside the engine (compare to
Sec. 7.2.2). The TA amplification is mainly balanced by the second-order
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7.3 Instability Potentiality of TA Stacks and Regenerators

heat transfer effects and turbulent dissipation caused by the high pres-
sure amplitude itself.

7.3 Instability Potentiality of Thermoacoustic Stacks and

Regenerators

As stated in Section 3.2.5, the instability potentiality (IP) derived from
the scattering matrix of the TA regenerator is a good predictor for the be-
havior of a complete TA apparatus. In combination with assumed small
losses at the reflecting ends, the demonstrated neutral and passive behav-
ior of ducts, discrete area and temperature changes indicate a tendency
of passive behavior for both resonator components. The only potentially
unstable elements are the heat exchangers and the TA regenerator. A de-
tailed investigation of the heat exchanger scattering matrices might lead
to maximum eigenvalues higher than unity. The eigenvalues λmax of the
stack will not be reached. This statement is based on the fact that, if a heat
exchanger exposed to stagnant mean flow conditions would cause com-
parable or even higher limit cycles than those of TA engines. Such setups
would be more common because of the reduced number of components.
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As no such application is known to the author8, the deviation from unity
of the maximum eigenvalue λmax of heat exchangers is expected to be at
least an order of magnitude lower than the value occurring in TA regen-
erators.

The maximum (solid line) and minimum (dashed line) eigenvalues of
the TA regenerator operating under reference conditions are depicted in
Figure 7.11. They are computed using the one-dimensional model values
of the scattering matrix displayed in Figure 7.1. This model is also used
for the parameter variation in the next chapter. The dotted line indicat-
ing unity splits the potentially unstable region from the potentially stable
region in this plot. The maximum and minimum eigenvalues describe
energy values. They may be compared to the square of the magnitude of
the scattering matrix elements. Qualitative relations can be drawn for the
frequency limits. They reveal some insight about the dominating compo-
nents of the TA regenerator.

Next, the low Wo limit eigenvalues depicted in Figure 7.11 are investi-
gated. We compare these values to the scattering matrix data for this limit
displayed in Figure 7.2. A short glance at this figure reveals, that sup-
pressing a hot to cold traveling characteristic wave amplitude Gd should
lead to maximum power amplification, while suppressing Fu cause max-
imum acoustic power reduction. Neglecting the contributions of the re-
flection coefficients Equation (3.47) reads

ηmax =
cd̺0,d

cu̺0,u
|tud|2 = 1.46 > λmax, (7.6)

ηmin =
cu̺0,u

cd̺0,d
|tdu|2 = 0.62 < λmin (7.7)

for these approaches. The contributions of the reflection coefficients lead
to variations of these data, that lead to te eigenvalues of Figure 7.11. The
corresponding eigenvectors of λmax,min coincide with this simplified in-
vestigation. They nearly point into the direction of one of the incoming
characteristic wave amplitudes Fu and Gd [73]. Hence, a systems op-
erating with contributions of mostly one characteristic wave amplitude

8 The reader should be aware that strictly speaking this is only valid for stagnant mean flow conditions.
Mean flow interactions in the area expansions downstream of heat exchangers may lead to instabilities
in technical applications. However, shear layer induced mechanisms arise after a transition to turbulent
flow conditions.
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leads to maximum/minimum acoustic power amplification. Qualitative
explanations provided by various authors [31, 187] support this finding.
Traveling wave engine engines for example always try to suppress the
hot to cold traveling wave in the region of the regenerator.

In the high frequency limit of Figure 7.11 λmax almost reaches unity. This
is not valid for the tud element of the scattering matrix, which is larger
by approximately 0.05, but the phase shift of ruu towards zero causes
a negative contribution in terms of IP. In contrast to this behavior, the
lower eigenvalue is not affected by the reflection coefficients. It reaches
the same values as tdu which still is stable. As shown by Holzinger et al.
[72], the reduced impact of the TA energy conversion in the transmission
coefficients (Fig. 7.2) lead to a higher impact of the reflection coefficients
to the maximum eigenvalue. With Womersley number increasing above
Wo > 1, the corresponding eigenvector shifts to a mixed state of incom-
ing waves causing an optimum standing wave condition at the stack.

The distance to unity is larger for λmin than for λmax in this central Wo
sector. These distances do not necessarily scale with the ratio of unstable
to stable states. A consideration of the acoustic power output to input
ratio of Holzinger et al. [72] showed for Wo = 1 that as long as the
characteristic wave amplitude entering the system from the cold side is
larger than the hot counter part, the system is unstable for any relative
phase, although the distance of λi to the neutral state is almost equal.
Even if this wave relation is violated, most of the states are active and
increase the acoustic power inside the system.

7.3.1 Influence of Mean Parameters

The investigation of the acoustic instability potentiality in the preced-
ing section reveals some insight in the coupling of scattering matrices
and IP for TA regenerators for the reference case. These operating con-
ditions depend on parameters that can easily be retrieved from the set of
Equations (2.1). The Rott functions fK,ν depend on the Womersley num-
ber Wo and the cross-sectional shape of the regenerator. A change in
geometry may yield an improved energy conversion for the technical ap-
plication in question. The different value returned from the Rott’s func-
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7 Thermoacoustic Interaction in Zero Mean Flow Conditions

tions fK,ν for one frequency is related to their scaling with Pr. The use of
different fluids may significantly change the IP of the problem. Viscous
dissipation and thermal diffusion both also scale with mean pressure p0.
A pressurization leads to changes in the scattering behavior. Finally, the
TA amplification term scales with mean temperature T0. The investiga-
tion of different temperature differences over the stack should influence
the IP of the TA regenerator. For yielding a certain insight into the impact
of those parameters, they are varied in the next sections. Combinations
of parameter variations, which might lead to optimum conditions, are
beyond the scope of this work and not considered here.

7.3.1.1 Influence of the Cross-Sectional Pore Shape
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The viscous Rott’s functions describing slab stacked (≡), quadratic (�)
and circular shaped pores (©) are defined by [187]

fν,≡ =
2 tanh

(
1+i

2 Wo
)

(1 + i)Wo
, (7.8a)

fν,� = 1 − 64

π4 ∑
m,nodd

1

m2n2
(

1 − 2i
[

π
4Wo

)2
(m2 + n2)

] , (7.8b)
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fν,© =
2J1 [(i − 1)Wo]

(i − 1)Wo J [(i − 1)Wo]
. (7.8c)

If the thermal penetration depth δK is considered, the Womersley num-
ber Wo is replaced by the Lautrec number La. As these dimensionless
numbers scale with the square root of the Prandtl number Pr (Tab. 4.1),
their ratio is fixed by the chosen operating fluid. Especially the real val-
ues of these functions deviate for 1 . Wo . 5. Their impact on the IP is
mainly restricted to this region.

Figure 7.12 depicts λmin,max for these three cross-section geometries. The
high and low frequency values of the profiles of both quantities stay un-
affected. Circular and quadratic pores lead to almost equal eigenvalues
except for a small intermediate Wo region.

The peak IPs are reached by circular pores for Wo ≈ 1.5. The radial
symmetry of the boundary layers improves the energy conversion with
respect to the axial symmetric shapes occurring in the other profiles. The
lower performance of the slab pores profile at the region of maximum IP
is due to the lower change in phase for f≡. The smoother phase change
of the parallel plate geometry coincides with larger magnitude values of
the Rott function. Thus, while the circular pores are favorable for low Wo,
slab geometries lead to a better performance for applications operating at
Wo > 2. The higher amplitude values of f≡ also increase the impact in
A12 and A21 of the set of transport Equation (2.1), which strongly con-
tribute to λmin. The higher damping causes lower minimum eigenvalues
over the entire Womersley number range.

7.3.1.2 Material Properties of the Fluid

The ratio of viscous diffusion to thermal conductivity is a characteris-
tic quantity for many energy conversion processes. Here, the Prandtl
number Pr is not just a scaling factor for the TA interaction term A22 of
Equation (2.1a). It also determines the value of the thermal Rott func-
tion fK for a given Womersley number Wo and thus has an impact on the
full system of Equations (2.1). In Figure 7.13 this impact is investigated
in terms of a change in the heat conduction K of air. The standard case
(black) of Pr ≈ 0.7 is depicted for orientation purposes. This value is
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Figure 7.13: Prandtl number variations for a slab pore operating with air. Lower
Pr cause a wider Womersley number range of high IP. λmin has a maximum in the
medium Wo range, which becomes more distinct for high Pr.

varied over one order of magnitude. The drastic change displays the lim-
its reachable for mixtures of noble gases and refrigerants like R-12 [124].
Most gases fall in this parameter range. As shown in Figure 7.13, a change
in Pr does not affect the limit values of λi. The solid blue curve depict-
ing λmax for low Pr also tends to unity for high frequency values. The
stable eigenvalues behave slightly different. The minimum eigenvalues
of high Prandtl numbers Pr experience a maximum value in the range of
Wo ≈ 2. A reduction in Pr causes a wider frequency spread, in which the
maximum IP deviates far from unity. Using mixtures with low Pr leads
to a better performance for equal operating frequencies [202]. Keeping
this in mind, the reader should be aware that the speed of sound of these
mixtures often strongly deviates from c in air and thus, the operating fre-
quency of an apparatus changes remarkably.

7.3.1.3 Impact of Mean Pressure

Many technical applications operate under pressurized conditions in or-
der to increase the power density [185]. Figures 7.14 depicts the influence
of a change in mean pressure of up to ten times the standard conditions.
These results are traceable by considering the set of Equations (2.1). The
TA conversion term A22 is considered to be almost unaffected by changes
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Figure 7.14: IP of different pressurization levels. The viscous diffusion increases
with p0. The eigenvalues become slightly lower.

in p0. Hence, this dominating term causes similar IPs for all four cases.
The only terms directly scaling with mean pressure are those containing
viscous dissipation A12 and the thermal diffusion A21. While the latter
component decreases with p0, the viscous component becomes stronger
and thus causes higher damping. Since the Prandtl number Pr of air
is lower than unity, an increase causes higher IPs for pressurized sys-
tems. This tendency further supports the utilization of pressurized se-
tups, which already experience higher performance values because of the
higher power densities being transported through the regenerator.

7.3.1.4 Variation of the Mean Temperature Gradient

The combination of mean temperature and its gradient in the TA interac-
tion term A22 in Equation (2.1b) supports the idea of a strong dependency
on this parameter. The influence of ∂T0/∂x and β = T−1

0 can easily be
separated by varying two of the following three parameters:

1. Adapting the compressibility β in terms of mean temperature level
T0(x) while keeping the temperature gradient ∂T0/∂x constant;

2. Changing the mean temperature gradient ∂T0/∂x by varying the hot
downstream temperature Td;
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7 Thermoacoustic Interaction in Zero Mean Flow Conditions

3. Changing the mean temperature gradient ∂T0/∂x by changing the
stack length LS for a given temperature difference ∆T0.

Here, the first two variations are carried out. Surprisingly, a shift of the
temperature profile for ±100 K, which corresponds to the first variation,
changes the eigenvalues mainly due to the temperature dependency of
the thermophysical parameters of the fluid. The IP profile of the acoustic
two-port still almost matches the reference case displayed as the black
curves in Figure 7.15. On the one hand, this is due to the relatively small
changes of compressibility from 3/4 to 3/2. This nevertheless should
cause changes in viscosity µ, thermal conductivity K etc. On the other
hand, the right hand side viscous friction term A12 of Equation (2.1a) also
scales with this factor and balances these changes. It leads to an unaltered
behavior.

Changing the hot mean temperature affects both, the compressibility β
and ∂T0/∂x, but as changes in β have little impact on the result, it can
be considered as a change of the second parameter. The linear scaling
of the TA interaction term A22 in Equation (2.1b) with the mean tem-
perature gradient ∂T0/∂x indicates a linear relation between λi − 1 and
this parameter. A qualitative consideration of the low frequency limits of
Figure 7.15, which displays this variation type from 5 K/L < ∆T0/LS <
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Figure 7.15: Mean temperature dependency of the IP. The spread of the limit curves
inclines with increasing T0. A higher driving gradient linearly scales with λmax − 1.
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300 K/L, yields a linear relation between λmax − 1 and the temperature
gradient. The blue colored curves denote a temperature gradient of 5 K
(dark blue), 10 K and 50 K (light blue) per stack length L. The distance
between the orange colored 200 K/L and the reference case depicted in
black is as large as the distance between the former curve and the max-
imum IP of 300 K/L. No saturation limit is reached for the investigated
temperature gradients. It is expected that the maximum acoustic power
output ratio always scales linearly with an increase in temperature dif-
ference. The power output is further affected by diffusion. Such effects
are taken into account by the D-TC-D model treated in Section 7.1.2.
Figure 3.4 shows that if dissipative effects are taken into account in the
ducts, both eigenvalues D-TC-D decrease from unity for higher Wom-
ersley numbers Wo. Hence, considering Wo > 0, the offset of the linear
scaling with the temperature gradient changes. The offset follows the
decaying lines of the eigenvalues λD−TC−D,max of the simplified model.
The linear scaling factor is computed from λmax − λD-TC-D,max for varying
Womersley numbers and temperature gradients.

The variation of the regenerator length for constant temperatures at both
ends was also investigated for reasons of completeness. However, the
change in the results verified that the impact of the change in β is negli-
gible compared to a variation of the temperature gradient.

The temperature gradient affects the TA interaction locally. One might
expect that a change in the temperature profile T0(x) caused by mean
flow u0 or higher-order effects could lead to other IPs than the ones
shown here. For implicit modeling (IMP), mean flow changes only re-
sult in an adaption of T0(x). However, due to the linear scaling of the
relevant term, the overall impact of different mean temperature profiles
T0(x) neither affects the scattering matrices nor the IP of TA regenerators.
Impacts of mean flow, which are captured by the other demonstrated
models, are investigated in the next chapter. As the observed influences
do not change the nature of the scattering matrices and low Ma affect
the IP computation by 1 ± Ma−1, their impact on IP is not considered for
these cases.
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8 Impact of Mean Flow on the Scattering Be-
havior of Thermoacoustic Stacks

As discussed in Section 2.4, the mean flow has a strong impact on the ax-
ial distribution of the mean temperature. The profile changes from linear
to exponential. Traditional modeling approaches (IMP) take this change
in mean quantities into account, without considering the impact of mean
velocity u0 in detail in the acoustic transport equations . However, varia-
tions in the spatial profile of T0(x) for the same inlet and outlet conditions
Tu,d lead to small changes in the predicted scattering matrix of a TA re-
generator. This approach underestimates the impact of mean flow on the
scattering behavior. The one-dimensional models derived in Chapter 4
consider in addition the direct coupling of mean velocity u0(x) and the
acoustic quantities in the TAPEs (Eqs. (4.36)). This chapter demonstrates
the higher accuracy of these new models MI, MII for the prediction of
acoustic scattering matrices of stacks that are affected by mean flow. It is
organized as follows: at first, Section 8.1 shows the MMM data for three
different mean flow configurations and discusses the observed impact of
mean flow. In a second step, the same configurations are investigated
using CFD/SI methods. Finally, Section 8.3 provides a validation of the
one-dimensional models MI and MII for two cases that vary in Peclet
number Pe (Eq. (4.32)): a heat conduction dominated, mean flow affected
case Pelin and the same case with a temperature field arising from the
mixed convection and conduction influence comparable to experimental
conditions Peexp. The CFD results are chosen as reference solution be-
cause of their robustness. These results are also compared to the stagnant
mean flow case. It is shown that especially in the low Womersley number
Wo region and for larger Peclet numbers Pe, the more accurate modeling
approaches improve the predicted scattering behavior with respect to the
CFD solutions.
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8.1 Experimental Mean Flow Results

Determining the influence of mean flow on the scattering behavior of
TA regenerators is one of the main goals of this thesis. Trends in ex-
perimental data – as long as their nature is physical and they are no
experimental artifacts – have to be captured by numerical approaches.
Therefore, the results obtained are reconsidered in a first step. Figure 8.1
displays scattering matrices of the experimentally investigated TA core
for three different mean flow conditions without the application of the
reconstruction method discussed in Section 6.1.3. The black markers de-
note the amplitude (+) and phase (◦) values for stagnant mean conditions,
i.e. the case denoted Pe0. The blue symbols depict a case with a mean
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Figure 8.1: Scattering matrices obtained experimentally using the MMM in the
presence mean flow u0. Three cases are investigated: No mean flow ( Pe0, black
markers), moderate mean flow of ( Pelow ≈ 15, blue markers) and high mean flow
( Pehigh ≈ 30, red markers). The latter configurations correspond to mean flow ve-

locities at the ambient upstream inlet of u0 = 0.05 m s−1 and u0 = 0.1 m s−1. Higher
Peclet numbers Pe lead to a lower impact of the TA effect in the transmission coef-
ficients tud and tdu.
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flow of ṁ ≈ 88.8 mg s−1, which is denoted by Pelow. This Peclet num-
ber of Pe ≈ 15 is equivalent to an inlet mean flow velocity of a stack
pore of u0 ≈ 0.05 m s−1 or a reference Mach number of Ma ≈ 1.5 × 10−4.
The Pehigh ≈ 30 data in red correspond to operating conditions occur-
ring with equal temperature difference and twice the air mass flow rate
(ṁ ≈ 176 mg s−1). The mean field conditions at the ambient upstream
(reference) end of the stack stay constant. This also accounts for the mean
flow velocity u0 ≈ 0.1 m s−1 and Ma ≈ 3 × 10−4. The latter configuration
corresponds to the maximum mean flow feed, the air supply of the ex-
perimental setup can provide.

The phase Φ of all scattering matrix coefficients is only marginally af-
fected by mean flow. The phases of the reflection coefficients vary
stronger than those of the transmission coefficients, especially for very
small magnitude values. This indicates that these deviations may be re-
lated to measurement errors.

The reflection coefficient amplitudes |r|, especially the cold entry |ruu|
are similar for all the three cases. The inaccuracy of the data in the low
frequency limit (Wo → 0) was discussed in Section 7.1.4. The stagnant
flow values of |ruu| and |rdd| were larger than predicted by the numerical
simulation (Sec. 7.1.3) over the entire Womersley number range. In the
mean flow affected conditions, a similar overestimation of the reflection
coefficient amplitudes can be stated.

The high frequency limit of all three mean flow cases coincide. Phase
and magnitude values of the mean flow affected case match the stagnant
flow conditions. In this region, the impact of the TA effect is negligible.
Therefore, the scattering matrix values are dominated by viscous dissipa-
tion and the change in mean temperature ∆T over the stack. The changes
in wave number (Eq. (3.28)) are negligible due to its maximum relative
change of less than 1%. Hence, the similar high frequency data of the
cases prove that ∆T of all three cases is the same.

In contrast to the high frequency range TA energy conversion plays an
important role in the low frequency regime. Here, especially the impact
on the transmission coefficients t is reduced with increasing mean flow.
When the Womersley number Wo drops below a value of four, increas-

163



8 Impact of Mean Flow on the Scattering Behavior of TA Stacks

ing mass flow rates cause a stronger trend towards unity for both |tud|
and |tdu|. This trend supports empirical observations [158, 159, 187] that
the performance of a TA device drops with increasing mean flow and
stops working before the temperature profile is “blown off”. The ob-
served deviations in gain of more than 10% justify invoking direct mean
flow interaction in one-dimensional prediction tools, although closure as-
sumptions have to be drawn and the numerical effort increases.

8.2 CFD/SI Mean Flow Results

The CFD results of stagnant mean flow (black) and the Pehigh case are
displayed in Figure 8.2. The intermediate case Pelow is skipped here.
Instead, a second cases with the same upstream u0 conditions as Pehigh

is displayed. They only differ in their mean temperature profile. Pelin
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Figure 8.2: Scattering matrices obtained using the CFD/SI method for zero mean
flow (black) and mean flow velocity of u0 = 0.1 m s−1 (red and blue). The latter two
cases differ in their mean temperature profile, a conduction dominated case Pelin

(red) and a convection/diffusion case Peexp depicted in blue.
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denotes a configuration which is dominated by axial heat conduction.
This limit case may be realized using copper regenerators. Using such
a material leads to an almost linear temperature distribution along the
pore. The stagnant mean flow conditions displayed in black in Figure 2.3
experience the same averaged temperature profile as Pelin depicted in
blue. The convection/conduction mixed case Peexp is affected by oper-
ating conditions similar to Pehigh. This change is equivalent to replac-
ing the regenerator made of copper by a ceramic component based on
cordierite while keeping all reference conditions constant. As depicted
by the blue graph in Figure 2.3, the temperature distribution has an ap-
proximately exponential contour. Such a configuration leads to regions
of higher products of u0

∂T
∂x

and the additional terms accounted for in MI

and MII may have a stronger impact on the scattering behavior of the
TATEs.

The mean flow independent phase values of the transmission coefficients
tud and tdu detected in the experimental investigation is reproduced by
the CFD/SI method. The signal propagation over the stack is dominated
by the axial average of the speed of sound. It further scales with the mean
velocity in terms of 1 ± Ma. As the maximum Mach number in the Peexp

configuration equals Ma ≈ 3 × 10−4 this impact is negligible. The phases
of the reflection coefficients Φ(r) are not influenced by any changes in
transport velocity c ± u0. Thus, no clear trend is visible in Figure 8.2 from
the three investigated cases.

At first the amplitude changes from the stagnant flow case Pe0 to the con-
vection dominated case Peexp are examined. The trends detected in the
experimental investigation are captured. All curves in Figure 8.2 overlap
in the Womersley region of Wo > 6. When the frequency is decreased,
the transmission coefficients |t| in the Peexp case show a clear reduction
in magnitude. The decrease of |tud| especially affects traveling wave en-
gines, which try to suppress all other components. A reduction of 5% |tud|
causes a 25% reduction in efficiency and should be taken into account in
the prediction models. In this region, the gain values of the reflection
coefficients |r| also decrease by a small amount, which matches the ex-
perimental investigations qualitatively.
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8 Impact of Mean Flow on the Scattering Behavior of TA Stacks

The scattering matrix of the Pelin case is a mixture of both cases investi-
gated so far. In the low frequency limit, all gain values match the stagnant
mean flow conditions. When the Womersley number Wo is increased, the
curves start to tend to the Peexp scattering matrix coefficients until they
overlap in a region of 3 < Wo < 6.

These observations facilitate two statements. The contribution of the gray
boxed mean flow terms in the TATEs (Eqs. (4.36)), which account for
the convective transport of acoustic quantities, increases with decreas-
ing Womersley number. Furthermore, the interaction of changes in mean
temperature T0(x) and mean velocity u0(x) affects the impact of these
terms. If a linear temperature gradient occurs, the scattering matrix of
the stack stays almost unaffected.

8.3 1D-Modeling of Mean Flow Affected Regenerators

In the last section, the CFD data revealed a mean flow dependency of the
acoustic scattering behavior. This especially applies to regenerators oper-
ating at low Wo conditions. The prediction of scattering values for other
configurations consumes a lot of computational resources. The use of less
compute intensive tools, like the quasi-one dimensional tool developed
in Chapter 4 is preferable as long as their accuracy is acceptable. In the
following, the results obtained by these two methods are compared for
the cases demonstrated in the previous section. The impact of consider-
ing mean flow terms is presented in terms of a validation of the models
MI and MII against the implicit model IMP. Validating the scattering
matrices resulting from these explicit models against data obtained from
CFD and the implicit model gives an idea about the adequacy of the clo-
sure assumptions for the modeled terms Λi (Eqs. (4.36)).

8.3.1 Heat Conduction Dominated Conditions

The green curves (solid for gain and dashed for phase) depicted in
Figure 8.3 represent the frequency-dependent scattering matrix of a TA
regenerator exposed to an almost linear mean temperature gradient and
Ma ≈ 3 × 10−4. The symbols denote the scattering matrix predictions

166



8.3 1D-Modeling of Mean Flow Affected Regenerators

 

 

 

 

0
0
0

0
00

1

1

22

22

44

44

66

66

88

88

1010

1010

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.6

0.7

0.8

0.9

1.1

1.2

1.3

1.4

Wo [−]Wo [−]

Wo [−]Wo [−]

|t u
d
|[
−
]

Φ
(t

u
d
)
[r

ad
]

|t d
u
|[
−
]

Φ
(t

d
u
)
[r

ad
]

|r d
d
|[
−
]

Φ
(r

d
d
)
[r

ad
]

|r u
u
|[
−
]

Φ
(r

u
u
)
[r

ad
]

ππ

ππ

π
2

π
2

π
2

π
2

00

00

-π
2-π

2

-π
2-π

2

-π-π

-π-π

|CFD|

Φ(CFD)

|MI|

Φ(MI)

|MII|

Φ(MII)

|IMP|

Φ(IMP)

Figure 8.3: One-dimensional models MI, MII and IMP vs. CFD data for Ma ≈
3 × 10−4 and a vanishing Pe – the Pelin case. While the implicit model does not react
to mean flow, both explicit models show a (very) small reduction in TA interaction
in the transmission coefficients.

of the models MI(�) and MII(�), which consider u explicitly, and the
precursor of these models, the indirectly affected model IMP(•). Filled
symbols represent gain values, while empty marker stand for the phases
of the matrix elements, respectively. Except for small deviations in the
region of 1 . Wo . 4, all three modeling approaches predict the same
scattering matrix data. This coincides with a negligible impact of all gray
boxed terms in the TAPEs (Eqs. (4.36)).

In general, it can be stated that for this configuration the increased com-
putational effort of the explicit method derived in Chapter 4 is not jus-
tified by an improvement in prediction precision. The change in |tud| in
the range of 1 . Wo . 6, which is captured with higher precision, is
of the order of the estimated accuracy achieved for the different meth-
ods. Computing the scattering matrix values at a single frequency using
one processor of a standard desktop PC takes about thirty seconds. The
improvement of the enhanced models MI and MII comes along with an
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8 Impact of Mean Flow on the Scattering Behavior of TA Stacks

increased computational effort by a factor of about three and twenty, re-
spectively.

8.3.2 Peclet Number Controlled Conditions

The validity of the quasi one-dimensional models is presented in
Figure 8.4. The Pelin configuration discussed in the last section cannot
be obtained in the experimental setup. The operating conditions of Peexp

reproduce the operating conditions inside the test rig. This configuration
causes stronger deviations in the scattering matrix if mean flow is present
(Fig. 8.2). As stated in Section 7.3.1.4, neither the IP, nor the scattering ma-
trix coefficients are affected by a change in mean temperature profiles if
mean flow vanishes. Moreover, replacing the y-dependent mean quanti-
ties by their cross-sectional averaged quantities is expected to influence
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Figure 8.4: One-dimensional models MI, MII and IMP vs. CFD data for a con-
vection influenced pore: scattering matrix coefficients of the Peexp ≈ 30 case. The
implicit model still performs similar to previous curves. MI overpredicts the ampli-
tude reduction of |t|. MII matches with a reasonable accuracy for these values. The
reflection phases of the latter deviate from CFD.
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8.3 1D-Modeling of Mean Flow Affected Regenerators

the operating point Pelin with its linear axial temperature profile T0(x) to
some extent. The interaction of acoustic transport variables scaling with
a product of those mean quantities is the origin of the deviations between
Pelin and Peexp.

The ratio of convective to conductive fluxes of Pe ≈ 30 in the latter case
causes a very steep temperature profile and non-constant axial gradients
in u0 and T0. Six of the new terms in Equations (4.36) include a combina-
tion of these quantities. Among these terms are Λi, which are modeled
by different closure assumptions in MI and MII. The impact and capa-
bilities of these closure assumptions can be drawn from the differences in
resulting scattering matrix data.

Using the same colors and markers, Figure 8.4 displays the acoustic scat-
tering matrices of all three one-dimensional models and the correspond-
ing CFD solution for Peexp operating conditions. Although the devia-
tions from the reference solution increase at very small frequencies most
tendencies are captured well by the quasi one-dimensional models. In
total, a higher complexity of the model improves the solution. The im-
plicit model IMP captures all four phases of the predicted CFD results
over the entire range of Wo. When the TA mechanisms cause a certain
phase deviation from the predominant time delay of simplified network
approaches (Fig. 7.2), these phases still match the reference solution. In
contrast, the changes in gain for low Wo . 3 are not predicted by this
model, because it neglects direct mean flow coupling in the derivation.
This accounts for the increase/decrease of the transmission coefficients
|tud|/|tdu| induced by the TA effect. The IMP magnitude values deviate
by up to 0.1 from the reference CFD values.

The explicit models take into account the coupling terms between mean
velocity and acoustic quantities in Equations (4.36). They vary in their
closure assumption for Λi. Modeling these two terms is the main sim-
plification in the final set of equations. If so, the differences obtained in
scattering matrix values compared to CFD reflect the influence of these
two terms.

In contrast to IMP, the model MI, which neglects the terms Λi, does not
capture the phases Φ of the reflection elements r depicted in Figure 8.4.
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8 Impact of Mean Flow on the Scattering Behavior of TA Stacks

Especially the low frequency region, i.e. Wo < 3, is not captured at all be-
cause deviations in Φ of up to −π occur in this region. The crucial trans-
mission coefficients |t| match for a wider region than for the IMP model.
Contrary to all other results obtained, the model tends to the lower limit
values of the temperature change (Eq. (7.2)) presented in Figure 7.2. This
means that the TA effect is predicted to totally break down for low fre-
quencies using this closure assumption. The reference simulation does
not share this trend. Thus, the closure terms Λi need to be considered.

Only MII takes these terms into account. Although the closure assump-
tion is simplified severely, the transmission gain values match very well
in the critical region of Wo < 3. The absolute deviation in |tud| and |tdu|
between the quasi one-dimensional model and the CFD data is reduced
by one order of magnitude, while the phase of these components stays
comparable to CFD. The phase and gain error of the reflection coeffi-
cients is also reduced by a factor of approximately two. The errors still
increase with decaying Womersley numbers Wo.

Summarizing the validation of the one-dimensional models, a stepwise
improvement in prediction accuracy is visible for the enhanced modeling
of MI and MII. Taking into account mean flow in the TAPEs (Eqs. (4.36))
is crucial for a better prediction. Especially a valid closure assumption
for the terms Λi is necessary for a good description of the low Womersley
region of cases with high Peclet numbers. Modeling these terms by a
cross-sectional average of the IMP solution, i.e. MII, causes a reduction
of 50% in magnitude error relative to MI. Except for the low frequency
limit, MII performs very accurate. In this region, the more sophisticated
approaches discussed in Section 4.5.4 have to be used for achieving high
accuracy.
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9 Conclusions and Outlook

The impact of laminar mean flow on acoustic scattering in TA regen-
erators has been investigated. A quasi one-dimensional approach was
presented. Two closure assumptions were derived for an analytical ap-
proach. The accuracy of the modeling approaches has been validated
against CFD data and results obtained experimentally for one test con-
figuration.

The validation succeeded for stagnant mean flow conditions with only
little deviation for scattering matrix measurements as well as reconstruc-
tion of the operating conditions of the experimental test rig in engine
operation mode. Due to the lack of reliability of the multi microphone
measurements, the CFD solution was chosen as reference solution for a
validation of the quasi one-dimensional approach.

The second part of the validation was then carried out for mean flow
affected pores. The experimental data, CFD results and the analytical
modeling revealed two key findings:

1. The TA effect occurring in regenerators is affected by mean flow ve-
locity u0. For the settings considered, the transmission coefficients
of the scattering matrices showed an increasing sensitivity to mean
flow for Mach numbers of Ma > 1.5 × 10−4. The change of TA
interaction is stronger if combinations of steep axial gradients in
mean flow velocity u0(x) and mean temperature T0(x) occur inside
the pore. Thus, linear temperature profiles produce more acoustic
power than convection-affected distributions T0(x), which, for ex-
ample, occur in fluid/solid material combinations of air inside a ce-
ramic regenerator. Linear temperature profiles are maintained by
stack materials providing high conductivity. Such configurations
show a TA scattering behavior similar to stagnant mean flow con-
ditions. This is not valid for convection dominated cases. The inves-
tigated combinations of mean flow and mean temperature distribu-
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tion cause a certain decay in the TA interaction. This corroborates
the observations of other publications [158, 159].

2. The experimental results and multi-dimensional CFD simulations
show a good agreement in the trends observed. These trends in
the CFD solution data can also be predicted by the quasi one-
dimensional model. To find a good agreement, mean flow contri-
bution has to be taken into account in the linearization process. Fur-
ther, adequate closure assumptions have to be chosen. Here, espe-
cially in the low Wo region, the advanced MII model showed better
agreement than IMP and MI. Only for very low Womersley numbers
Wo all tested closure assumptions fail. For the best model, MII this
failure is restricted the phase of the reflection coefficients. Higher
complexity leads to higher accuracy, but is also accompanied by an
increase in computational effort. The same challenges arise with a
more detailed description of the mean flow field.

The quasi one-dimensional model can be applied in numerical prediction
tools in the early stage of the development of new technical setups. The
TA transport ODEs predict the spatial distribution of cross-sectionally
averaged acoustic pressure and velocity distributions. Their validity is
independent of nonlinear effects as long as they only affect mean quan-
tities. Thus the quasi one-dimensional models yield accurate predictions
of the acoustic performance of any TA device that is affected by mean
flow.

The low-order model improves the prediction of acoustic transfer of all
devices marked by green dots in Figure 1.2 depicting the TA iceberg anal-
ogy. It enables a more accurate prediction of the performance of devices
affected by unwanted or deliberate mean flow. Streaming effects inside
TA traveling wave applications can cause mean flow velocities compara-
ble to the cases investigated in Chapter 8. These effects per se lead to a
reduction in conversion efficiency by causing losses and storing energy
in second-order terms. The investigated examples show that these reduc-
tions are even increased by the direct impact of mean flow on the acoustic
transport equations. This shows the necessity of suppressing mean flow
in such devices. The suppressing characteristic of mean flow velocity
may also be used to stabilize systems. For example, a small amount of
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mean flow circulating in pipes entering and leaving the hydrogen stor-
age of a fuel cell car can prevent the system from going unstable. Such
a measure improves the security of the energy supply in mobile appli-
cations. Modeling the losses inside the supply system carefully facili-
tates the application of the one-dimensional model derived to determine
the necessary amount of mean flow to stabilize the system. Finally, the
direct application of mean flow inside thermoacoustic devices may still
be advantageous to traditional methods. Especially in waste heat con-
version, where the heat is fed to the device by enthalpy flow, the direct
conversion of heat into acoustic power is attractive for potential appli-
cation. The omission of one heat exchanger reduces the costs of the de-
vice. These have to be balanced by the decrease in energy conversion
efficiency, which is implied by the occurrence of mean flow inside the
regenerator. Additionally, reducing the losses inside the system by omit-
ting the heat exchanger may even lead to an improved performance of
the overall setup. Computing this situation with the one-dimensional
tool leads to an accurate prediction of the expected efficiency of the sys-
tem.

The low computational costs allow for a fast determination of the acoustic
transfer for various configurations. Furthermore, applying it in combina-
tion with the instability potentiality as optimization tool facilitates draw-
ing a map that indicates the positive or negative impact of mean flow.
The influence of several mean parameters shown in Section 7.3 demon-
strates the multi-dimensionality of such a map. Tabulation methods and
optimization algorithms should be applied to ensure a fast determination
of promising operating conditions. Nevertheless, a technical device oper-
ating with deliberate mean flow that improves the TA power conversion
performance remains unknown. The investigation of possible fields of
application is left to future research activity.

Finally, this thesis provides contributions that facilitate the understand-
ing of the impact of mean flow on the TA effect. So far, Sondhauss and
Rijke type applications were clearly separated. Extending the use of the
former to the convective mean flow regime merges their applicability.
This thesis does not show the differences and similarities of these energy
conversion mechanisms. A close investigation may yield a combined ap-
plication or demonstrate a familiarity of both effects that is not known
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today. It may lead to a new nomenclature distinguishing between con-
duction and convection dominated acoustic power conversion.
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A Details of the Derivation of the Quasi 1D-
Model

This chapter contains details of the derivation shown in Chapter 4. The
special non-dimenzionalization technique applied yields a dimensionless
system of equations in different orders of ε, i.e. the pore aspect ratio. Due
to this ratio such terms of higher order are later neglected and, for better
readability, presented in the main text with abbreviations Ai

(
O
(
ε2
))

. In
the following chapter, these terms are presented. The derivation of the
quasi one-dimensional explicit TAPEs (Eqs. (4.63)) causes an increase in
number of terms of the implicit solution. For the purpose of giving an
overview of the derivation steps, these terms are accumulated to replace-
ment parameters. In the second part of this chapter, these parameters are
given in detail.

A.1 Higher Order Terms in the Dimensionless NSEs

The formulation of the LNSEs (Eqs. (4.9)) contain various terms
Ai

(
O
(
ε2
))

which are later neglected.

The second and higher order contribution in ε to the axial momentum
Equation (4.9b) reads

A1

(
O
(
ε2
))

= ε2

[

κ

Wo2

(

2
∂2u

∂x2
+

∂2v

∂x∂y

)

+
κ

Wo2
ζ

(
∂2u

∂x2
+

∂2v

∂x∂y

)]

+ ε3 κ

Wo2

∂2v

∂x2
. (A.1)

The spatial derivatives and the scaling with Wo indicate the origin of the
terms. All terms in A1

(
O
(
ε2
))

result from viscous stress tensor τij.
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The transversal momentum Equation (4.9c) is multiplied by ε to obtain
zeroth order information. Thus,

A2

(
O
(
ε2
))

= ε2

[

̺
Dv

Dt
+

κ

Wo2

(

2
∂2v

∂y2
+

∂2u

∂x∂y

)

+
κ

Wo2
ζ

(
∂2v

∂y2
+

∂2u

∂x∂y

)]

+ ε3

[

3κ

Wo2

∂2v

∂x∂y
+

κ

Wo2
ζ

(
∂2u

∂x2
+

∂2v

∂x∂y

)]

(A.2)

additionally contains the substantial derivative of the transversal veloc-
ity.

Both the fluid energy conservation (Eq. (4.9d)) and the solid energy con-
servation (Eq. (4.9f)) further include the axial thermal conductivity term
in

A3

(
O
(
ε2
))

= ε2

[

2κ

Wo2

([
∂v

∂y
+

∂u

∂x

]2

+
∂u

∂y

∂v

∂x

)

+
κ

Wo2
ζ

(
∂v

∂y
+

∂u

∂x

)2

+
κ

2La2

∂2T

∂x2

]

+ ε4 κ

Wo2

∂v

∂y

2

,

A4

(
O
(
ε2
))

= ε2 κ

2La2
S

∂2T

∂x2
, (A.3)

which is of higher order in ε. This is in accordance to the approach for the
thermodynamic cycle stated in Section 1.2. It states that changes of the
thermodynamic state in the vicinity of a thermo-viscous acoustic bound-
ary layer are governed by transversal heat conduction, while the axial
contribution is negligible.

A.2 Abbreviations for the Analytical Approaches

The abbreviations introduced in Section 4.5.3 follow a nomenclature
based on the original equation and contributing terms.
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A.2.1 Axial Momentum Equation

Comparing Equations (4.36c) and (4.39) under consideration of
Equation (4.37) directly leads to

Xp1
=

(1 − γ) T

iκ − Ma∂T
∂x

, (A.4)

XΛ1
=

(1 − γ) TΛ1

iκ − Ma∂T
∂x

. (A.5)

A.2.2 Energy Equation

Substituting the solution of Equation (4.39) into Equation (4.36e) leads to
the abbreviations

Ep1
=

T
(
(−1 + γ) κ − icpMaγ∂T

∂x

)

cp

(
κ − iMa ∂T

∂x

) , (A.6)

Ep1,Fν = 0, (A.7)

Ep′1
= −(Ma (−1 + γ) T2

cp

(
iκ + Ma∂T

∂x

) , (A.8)

Ep′1,Fν
= − Xp1

∂T
∂x

iκ + Ma∂T
∂x

, (A.9)

EΛ2
=

i (−1 + γ) TΛ2

cp

(
κ − iMa ∂T

∂x

) , (A.10)

EΛ1,Fν =
−XΛ1

∂T
∂x

iκ + Ma∂T
∂x

. (A.11)

Here, the terms EΛ2
and EΛ1,Fν vanish for MI. After combining the energy

Equations (4.36e) and (4.36f) the new variables occurring are

Tp1
=

(

PrEp1
+ Ep1,Fν

(

−1 +
fK,ν

fK

))

EǫS
, (A.12)

Tp′1
=

(

PrEp′1
+ Ep′1,Fν

(

−1 +
fK,ν

fK

))

EǫS
, (A.13)

TΛ1
= − (EΛ1,FνEǫS

) +
(PrEΛ2

fK + EΛ1,Fν fK,ν)EǫS

fK
, (A.14)
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Tp1,FK
=

Ep1,Fν ( fK − fK,ν)EǫS
+ Ep1

fK (1 −PrEǫS
)

fK
, (A.15)

Tp′1,FK
=

Ep′1,Fν
( fK − fK,ν)EǫS

+ Ep′1
fK (1 −PrEǫS

)

fK
, (A.16)

TΛ2FK
=

EΛ1,Fν ( fK − fK,ν)EǫS

fK
+ EΛ2 (1 −PrEǫS

) . (A.17)

It needs to be emphasized that all of these terms include contributions
of EǫS

indicating of the fluid-solid interaction. This index is discharged.
Again, Equations (A.14) and (A.17) are zero for the less accurate model
MI.

A.2.3 Gas Law

The first substitution process of the resulting energy Equation (4.58) and
momentum Equation (4.39) into the ideal gas Equation (4.36a) yields two
new parameters

Gp1
=

γ

(−1 + γ) T
, (A.18)

GT1
=

−1

(−1 + γ) T2
, (A.19)

which are combined to

Gp1
= Gp1

+
(
Ep1,Fν + Tp1

+ Tp1,FK
− Tp1,FK

fK − Ep1,Fν fK,ν

)
GT1

,

(A.20)

Gp′1
=
(

Ep′1,Fν
+ Tp′1

+ Tp′1,FK
− Tp′1,FK

fK − Ep′1,Fν
fK,ν

)

GT1
, (A.21)

GΛ1,Λ2
= (TΛ1

+ TΛ2FK
+ EΛ1,Fν − TΛ2FK

fK − EΛ1,Fν fK,ν)GT1
(A.22)

in the cross-sectional averaging process. Again the last term is zero for
MI.
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A.2.4 Conservation of Mass

Finally, all derived formulas are substituted in the conservation of mass
(4.36b), and the intermediate values

k〈u1〉 =
−i ∂T

∂x

(−1 + γ) T2
(
κ + iMa ∂T

∂x

) , (A.23)

k〈u′1〉 =
i

(
(−1 + γ) T

(
κ + iMa ∂T

∂x

)) , (A.24)

k〈̺′1〉 =
−i
(
−
(
MaT3

)
+ MaγT3

)

(−1 + γ) T2
(
κ + iMa ∂T

∂x

) , (A.25)

result in the coefficients

Ku′1
= − ( fν − 1) k〈u1〉Xp1

( fν − 1) k〈u′1〉Xp1
− Gp′1

k〈̺′1〉
, (A.26)

KΛ1,Λ2
= −

Gp′1
k〈̺′1〉XΛ1

f ′ν

( fν − 1) k〈u′1〉Xp1
− Gp′1

k〈̺′1〉

−
( fν − 1)

(

Xp1

(

GΛ1,Λ2
− k〈̺′1〉

∂GΛ1,Λ2
∂x

)

+ Gp′1
k〈̺′1〉

∂XΛ1
∂x

)

( fν − 1) k〈u′1〉Xp1
− Gp′1

k〈̺′1〉
,

(A.27)

Kp′1
=

Gp′1

[

( fν − 1)
(

Xp1
+ k〈̺′1〉

∂Xp1
∂x

)

+ Xp1
k〈̺′1〉

∂ fν

∂x x
]

( fν − 1) k〈u′1〉Xp1
− Gp′1

k〈̺′1〉

−
( fν − 1) k〈̺′1〉Xp1

(

Gp1
+

∂Gp′
1

∂x

)

( fν − 1) k〈u′1〉Xp1
− Gp′1

k〈̺′1〉
, (A.28)

Kp1
=

( fν − 1)Xp1

(

Gp1
− k〈̺′1〉

∂Gp1
∂x

)

( fν − 1)k〈u′1〉Xp1
− Gp′1

k〈̺′1〉
. (A.29)
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The second transport ODE of the acoustic variables (see Eqs. (4.63)) is
denoted in terms of these coefficients. The term KΛ1,Λ2

contains the terms
differing in the different model derivations.
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The experimental investigation of TA regenerators in Chapter 6 necessi-
tates the introduction of two modeling approaches. The hot downstream
data acquisition region is governed by non-negligible changes in mean
temperature T. As the test rig only allows for local temperature prob-
ing, the axial distribution is modeled. The scattering matrices obtained
include the acoustic transmission behavior of the adjacent heaters. This
transmission behavior is reconstructed from separate measurements. As
the final solution is — to some extent — sensitive to this data, the re-
constructed scattering matrices are modeled analytically before they are
applied to obtain a set of data comparable to numerical results.

B.1 Approximated Temperature Distribution Inside the

Downstream Duct

The temperature field inside the hot regenerator and its prolongation is
multi-dimensional. A consideration of dimensionless numbers is nec-
essary to allow for a one-dimensional consideration of the temperature
profile. The temperature field has been investigated in detail in the se-
mesterarbeit of Loth. All data values are taken from this thesis.

The hot resonator part of the duct is supplied with heat from an external
heater. Thus, the cross-sectional average of the mean temperature can be
approximated by a linear distribution in the axial direction

Tlin(x) = a1 + a2x. (B.1)

This does not account for the extension part containing the standard mi-
crophone adapter “M”. Here, a closer investigation has to be carried out.
The combined heat transfer coefficient through the insulated duct wall
related to its hydraulic diameter reaches values of

k ≈ 0.125 W m−2 K−1. (B.2)

207



B Experimental Modeling Approaches

Considering the corresponding Biot number yields a negligible contribu-
tion of the transversal heat conduction. Hence the governing equation
describing the steady state axial temperature distribution inside the hot
duct is approximated by

a
∂2T

∂x2
+ u

∂T

∂x
+

2k

Ka
(T − T∞) = 0. (B.3)

The general solution of this problem reads

Texp(x) = T∞ + C1 exp(b1x) + C2 exp(−b2x), (B.4)

where bi are problem-dependent parameters and Ci are integration con-
stants that have to be determined by local temperature data.

The contact plane of both regions located at xL yields the coupling condi-
tion

Texp(xL) = Tlin(xL). (B.5)

The temperature distribution is described by three parameters that have
to be determined by local temperature data.
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Figure B.1: Typical temperature fit for MMM measurements. The blue curve de-
picts the temperature distribution inside the ambient upstream duct. The red graph
follows the temperature profile derived, which is linear for xd . 0.2. The black dots
denote the time averaged thermocouple data.
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B.2 Reconstructed Network Representations of the heaters

A typical temperature distribution obtained by fitting to additional data
points is displayed in Figure B.1 The black dots denote the measurement
data the curves are fitted to. The overlay of fit and measurement data
indicate a good agreement of approximated temperature distribution and
measured thermocouple data.

B.2 Reconstructed Network Representations of the

heaters

As discussed in Section 6.1.3, the scattering matrix of a TA regenerator
cannot be obtained by direct measurements. The heaters maintain the
temperature gradient and their acoustic transfer behavior contributes to
the measurement of the TA core. Their impact needs to be determined by
separate investigations. These reveal a vanishing influence of mean flow
in the scattering matrix values of the heaters, which is thus neglected. For
geometrical comparison of the data, the reader is referred to Figures 6.7
in Section 6.3.1.2. The maximum variation of the optimized characteristic
geometric scales with respect to their real measure is below 5%.

Ambient heater

The network model representing the ambient heater consists of three duct
elements separated by two area changes depicted in Figure B.2. Two
additional area changes that represent the solid area of the plates. The
temperature change over the heater is not taken into account, assuming
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ck

Upstream
Parallel Plates

Reduced Area
(Cooling Pipes)
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Figure B.2: Network representation of the ambient heater. The inner area changes
account for the cooling pipes. The numbering relates the two-ports to the data listed
in Table B.1.
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good thermal contact. Accounting for the temperature induced reflection
yields no improvement in reconstructing the data.

A sketch of the combination of these acoustic two-ports is depicted in
Figure B.2. All relevant data for this and the following models are listed
in Table B.1.

Item Type Data Description

1 AC α ≈ 1.03 From resonator to heater

2 D L = 7 mm
y = 1 mm

heater between finns

3 AC α ≈ 1.1 Contraction due to cooling pipes

4 D L = 7 mm
y = 1 mm

heater between finns

5 AC α ≈ 0.9 Expansion to standard heater area

6 D L = 7 mm
y = 1 mm

heater between finns

7 AC α ≈ 0.97 heater to TA stack

Table B.1: Geometrical parameters of the network representation of the cold heater.
AC denotes area changes. D stands for viscous duct elements.

Figure B.3 displays the scattering matrices of a measured scattering ma-
trix of the ambient heater (black dots) and the corresponding reconstruc-
tion model (red lines). The latter is corrected by a duct model represent-
ing the missing heater and regenerator in the measurement. The trans-
mission coefficients match for a wide region. Due to the small amplitude
values, the measured reflection coefficient data are not trustworthy.
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Figure B.3: Experimental data vs. model data of the cold heater. The model data is
corrected by a duct representing the lengths of the missing heater and regenerator.

211



B Experimental Modeling Approaches

Hot Downstream heater
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Figure B.4: Network representation of the Hot heater. The inner area changes ac-
count for Area chnges due to the frames and difference in length between the heat-
ing plates and distance between the frames.

The TA regenerator is partially inserted into the ceramic frame of the
downstream heater. Figure B.4 displays the the approximated combi-
nation of acoustic two-port elements modeling the acoustic transmission
of the heater. It is represented by four area changes connected by viscous
duct elements. The first accounts for the change from TA stack to the heat
exchanger. The heating part containing the metal foils is followed by a
cross-section equivalent to the the ceramic frame. This element is fol-
lowed by the second heater frame. Furthermore, an additional ceramic
duct part needs to be considered. The same argument that is stated for
the cold heater also good holds for neglecting thermal changes in this
component. Table B.2 lists the characteristic parameters of the acoustic
elements.

The models of both heat exchangers are similar. So is their scattering
behavior, Thus a validation of the scattering matrices of the heater model
is not presented here.
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B.2 Reconstructed Network Representations of the heaters

Item Type Data Description

1 AC α ≈ 0.73 From TA stack to heater

2 D L = 20 mm
y = 7 mm

Heater between foils

3 AC α ≈ 1.55 Contraction to ceramic frame

4 D L = 3 mm
y =
22.5 mm

Heater frame

5 AC α ≈ 0.65 Expansion to ceramic duct area

6 D L = 2 mm
y =
27.5 mm

Ceramic duct

7 AC α ≈ 1.13 Contraction to resonator duct area

Table B.2: Geometrical parameters of the network model representing the heater.
AC denotes area changes. D stands for viscous duct elements.
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