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To me the very essence of education is
concentration of mind, not the collection of facts.

—Swami Vivekananda—





Kurzfassung

Die vorliegende Arbeit untersucht nicht-normales transientes Wachstum in
einfachen thermoakustischen Systemen. Letztere werden aus einer systemi-
schen Perspektive heraus betrachtet und als eine Ansammlung kontinuierlich
miteinander in Wechselwirkung stehender Subsysteme behandelt. Der syste-
mische Ansatz zeigt sich als robust und ganzheitlich, und ermöglicht einen
frischen und klaren Blick auf thermoakustische Phänomene. Die beiden Sub-
systeme Wärmequelle und Akustik werden mithilfe von Modellen niedriger
Ordnung beschrieben, die trotz ihrer kleinen Größe eine gute Annäherung
der tatsächlichen Dynamik liefern. Für die Wärmequelle kommt ein filterba-
siertes Modell mit verteilten Zeitverzügen zum Einsatz, welches aus experi-
mentellen, numerischen oder semi-analytischen Daten gewonnen wird. Das
1-D homentropische akustische Feld beinhaltet ein mittleres Strömungsfeld
und andere variierende mittlere Felder. Es wird numerisch durch eine Metho-
de der gewichteten Residuen (Galerkin-Methode) angenähert, welche weitge-
hend frei von künstlichem nicht-normalen Wachstum ist. Es wird ferner argu-
mentiert, dass die Energie des Ausgangs eines thermoakustischen Systems ei-
ne frei wählbare Größe darstellt, die lediglich die Art und Weise beeinflußt, wie
die Ergebnisse zu interpretieren sind. Numerische Nicht-Normalität, welche
von schlecht konditionierten diskretisierten Operatoren herrührt, wird physi-
kalischer Nicht-Normalität gegenübergestellt. Die Dynamik und die Grund-
mechanismen von physikalischem optimalen nicht-normalem transienten
Wachstum werden durch eine fluss- und quellenbasierte Bilanz erklärt. Op-
timales nicht-normales transientes Wachstum um einen stabilen Fixpunkt
stellt sich als höchst unwahrscheinlich dar. Suboptimales transientes Wachs-
tum kann hingegen vorkommen, ist aber klein und spielt beim Triggern eines
linear stabilen thermoakustischen Systems zu einem stationären nichtlinea-
ren Schwingungszustand keine bedeutende Rolle.
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Abstract

The present thesis investigates the non-normal dynamics of a simple thermo-
acoustic system. Such a system is modeled in a systems framework and
viewed and treated as a collection of subsystems that are in continuous feed-
back. The systems framework proves to be a robust and holistic approach,
bringing along a beneficially fresh and clear perspective on thermoacoustics.
Sophisticated low-order models for the subsystems heat source and acous-
tics are derived and analyzed. The heat source is modeled using a filter-based
representation with distributed time lag characteristics stemming from ex-
perimental or numerical data or semi-analytical approaches. The 1-D ho-
mentropic acoustic field incorporates mean flow effects and varying mean
quantities. It is numerically approximated by a method of weighted residu-
als (Galerkin method), which exhibits very little spurious non-normality. It
is argued that the output energy of a thermoacoustic system is a matter of
choice that merely prescribes the perspective from which the observed dy-
namics need to be interpreted. Spurious non-normality originating from ill-
conditioned discretized operators or from model limitations is contrasted to
physical non-normality. The dynamics and mechanisms of physical optimal
non-normal transient growth are investigated and explained from an energy
flux- and source-based perspective. The occurrence of optimal non-normal
transient growth around a stable fix point is shown to be highly improba-
ble. Despite the possibility of encountering suboptimal non-normal transient
growth, its magnitude is small and may not play an important role in the pro-
cess of triggering a linearly stable thermoacoustic system towards a nonlinear
oscillating state.
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1 Introduction and Motivation

Stability is a ubiquitous aspect of life. It represents the foundation of many
types of systems, a key requisite that many strive for, work for, or even fight
for. Stability stands at the core of mankind, the development of social systems,
religions and ideologies, all in the broader interest of creating a stable envi-
ronment, which sets the stage for prosperous life and development. Examples
are manifold: foreign policy is interested in conserving status quo; doctors try
to preserve or to restore the health of their patients; engineers would like to
design well-functioning devices; parents desire their children to develop in a
sound environment; business developers look for opportunities to keep their
companies going. More examples can be sought in nearly any area of life.

Many efforts in everyday life are thus concerned with maintaining stability
against the destabilizing effect of a given set of perturbations. Foreign pol-
icy can be threatened by perturbations such as wars, revolutions or poverty;
health is threatened by diseases; well-functioning devices may be perturbed
by unforeseen operating conditions, noise or environmental stresses; child-
hood may be perturbed by anxiety, illnesses or lack of prospects; business de-
velopment may be perturbed by financial sentiments or consumer moods.

Despite all efforts aimed at maintaining stability, a system may nonetheless
become unstable. For example, even if the police outnumbers a crowd of
hooligans, the crowd may build up unforeseen dynamics resulting in a big
fight. Or, even if parents are sure to satisfy the needs of a group of children,
they may develop into a fit of unbroken crying. Or finally, even if hundreds of
engineers have designed a rocket to successfully reach space, it may fail right
after takeoff. How do such unforeseen events of instability occur?

In some cases, events of instability occur due to a phenomenon called trig-
gering. To explain this phenomenon, Fig. 1.1 schematically depicts the pos-
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Figure 1.1: Sketch of the operating map of a dynamical system. Loss of sta-
bility through the event of triggering can happen in the bistable
region of the control parameter due to the action of a large-
amplitude perturbation (the red arrow), or a small-amplitude per-
turbation via the scenario of non-normal transient growth around
an unstable oscillating limit cycle (the yellow arrow). The pertur-
bation indicated by the blue arrow does not trigger the system.

sible operating map of a dynamical system. Below a certain threshold of the
control parameter (typically some relevant parameter of the system dynamics,
e.g. power output), the system is stable. It hence operates around a stable fix
point and can withstand any finite-amplitude perturbation. Above an upper
threshold of the control parameter, the system is linearly unstable. For any
perturbation, even with infinitesimally small amplitude, the system moves to-
wards the undesired operating point that oscillates at large amplitudes. Be-
tween both thresholds lies a bistable region, where the system can withstand
a small-amplitude perturbation, as indicated by the blue arrow in the gray-
shaded area in Fig. 1.1. However, if the perturbation is large in amplitude (see
the red arrow), the system is pushed towards the undesired operating point.
This process is called triggering.

If the dynamics of the dynamical system of interest is non-orthogonal (for ex-
ample, a group of hooligans, a group of children, or a highly complex rocket
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engine), triggering may also occur due to a phenomenon called non-normal
transient growth. In this case, a small-amplitude perturbation to the system
can transiently grow in magnitude. As the system is running in stable opera-
tion, it should be able to bear any such perturbation in the long run. However,
if the transient amplification of the perturbation is sufficiently large, it may
actuate higher-order effects that may push the system towards the unstable
operating point, as indicated by the yellow arrow in Fig. 1.1.

The above scenario of triggering through non-normal transient growth is
observed in laminar shear flows, which prematurely transition to turbu-
lence (known as bypass transition) [149]. Other examples where non-normal
transient growth is observed include population dynamics, nuclear reactors,
Markov chains [173], astrophysical objects and circumterrestrial space [24],
and weather phenomena [47]. Non-normal transient growth is known in the
control community as peaking phenomenon [53, 75, 168].

The present study deals with the phenomenon of non-normal transient
growth in thermoacoustics, where ideas of non-normality were introduced in
recent years [4–6, 85, 118]. A thermoacoustic system is a system in which a
heat source, an acoustic field and a flow field are in continuous interaction.
Prominent examples are rocket engines, gas turbines or aircraft engines. How-
ever, any combustion-driven engine, such as motors or heaters, can be con-
sidered to be a thermoacoustic system.

Triggering a thermoacoustic system to self-sustained large-scale oscillations
brings along disastrous effects and technical failure, as shown by the melted
nozzle in Fig. 1.2. Triggering of a linearly stable thermoacoustic system may
happen through a sufficiently large perturbation [185], which simply kicks the
system away from the stable point of operation towards the stable oscillating
limit cycle (analog to the red arrow in Fig. 1.1). However, triggering is also ob-
served for small-amplitude perturbations of the order of the background noise
[176, 177, 185]. There is some evidence that the latter cause for triggering may
be through non-normal transient growth.

The present thesis investigates non-normal transient growth around a stable
fix point. That is, the present study is concerned with an early phase of trig-
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Figure 1.2: Image of a melted nozzle highlighting the possible impact of
thermoacoustic oscillations. Image taken from [158].

gering, which is still entirely situated in the linear regime. Can non-normal
transient growth around a stable fix point cause a sufficient amplification of
perturbation amplitude such that the system can be attracted to an unstable
oscillating limit cycle? Is it important which measure of perturbation ampli-
tude is used? Commonly, one is interested in determining the conditions of
optimal non-normal transient growth (optimal in the sense of largest). How-
ever, how likely is it to encounter any amount of optimal or suboptimal non-
normal transient growth in the first place? In short, is non-normal transient
growth a serious threat for thermoacoustic systems operating around a stable
fix point?

In the following, the two main keywords of the present thesis, non-normal
transient growth and thermoacoustics, which so far have been used in a rather
loose manner, are introduced in greater depth. In Sec. 1.1, we give an intro-
ductory view on non-normal transient growth. The area of thermoacoustics is
introduced in Sec. 1.2. Subsequently, we define the scope of the present work
and contrast it to previous works in the field in Sec. 1.3. The structure of the
present thesis is outlined in Sec. 1.4, where each chapter is briefly summarized
and where we discuss the contributions and limitations of the present work.
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1.1 An Introductory View on Non-Normality

The present section intends to convey some basic notions of non-normality:
in Sec. 1.1.1, we define and interpret non-normality by way of example of a
simple (2 × 2)-matrix. In Sec. 1.1.2, the concept is extended to non-normal
transient growth, which is a time-dependent phenomenon.

1.1.1 Non-Normality of a Matrix

Non-normality is a property of linear systems described by a (linearized) ma-
trix L. Its mathematical definition is straightforward: L is non-normal, if it
does not commute with its conjugate transpose, i.e., L LH −LH L 6= 0. If it does,
L is a normal matrix. The concept applies in a similar manner to linear op-
erators, which are non-normal if they do not commute with their Hermitian
adjoint.

In the following, we give two interpretations of non-normality using the sim-
ple example of a (2×2)-matrix L ∈ R2×2, which is inspired by the introductory
example in [173],

L =
[−1 n

0 −2

]
,

where n is a parameter of non-normality. For n = 0, L is normal, while for
n 6= 0, L is non-normal.

Initial research on non-normality was aimed at studying spectral aspects of
ill-conditioned discretized numerical operators [60, 94, 174]. The first way to
view non-normality is thus as a measure of how well-conditioned a matrix is.
The condition number of a matrix is defined as the ratio of largest to smallest
singular value of L. Singular values are the square root of the eigenvalues of
L LH , and measure how much the action of a matrix can scale the space it is
acting on [172]. The condition number thus indicates a normalized upper
bound on the stretching action of a matrix.

For increasing condition numbers, the action of a matrix is increasingly sensi-
tive to errors in the space it is acting on. The reason is because the error might
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Figure 1.3: Stationary interpretations of non-normality: increasing the pa-
rameter of non-normality n leads to an increase in (a) the condi-
tion number, and (b) the non-orthogonality of the eigenvectors.

be more amplified (i.e., stretched) than the solution itself. This is the case for
non-normal matrices. Non-normality may thus result from ill-conditioned
matrices, which in turn depend on the chosen discretization scheme. This
topic is addressed in the present work in Chap. 7.1. For normal matrices, sin-
gular values and eigenvalues are the same, and the condition number equals
the ratio of largest to smallest eigenvalue. In Fig. 1.3(a), we plot the condition
number of L as a function of the non-normal parameter n. It is visible that the
condition of the matrix is best in the normal case for n = 0.

The second way to view non-normality is from a geometrical perspective. For
normal matrices, the eigenvectors span an orthogonal basis. With increasing
non-normality, the eigenvectors become non-orthogonal to one another. This
is visible in Fig. 1.3(b). Since normal is a synonym for orthogonal, the term
non-normality originates from this geometrical perspective.

1.1.2 Non-Normal Transient Growth

If a non-normal matrix or operator governs the time-dependent dynamics of
a discrete or continuous model, respectively, this may lead to the occurrence
of non-normal transient growth. As seen above, non-normality as such rep-
resents an inherent property of linear matrices and operators, and therefore
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constitutes a necessary condition for non-normal transient growth. However,
if the system dynamics is governed by a non-normal matrix or operator, this
does not necessarily imply the occurrence of significant non-normal tran-
sient growth. For example, the observed behavior of Markov chains, which are
known to be non-normal, does not differ significantly from the normal modal
dynamics [173]. Non-normal transient growth depends on multiple other fac-
tors, which we will discuss below.

Suppose the above defined matrix L governs the time evolution of the ordinary
differential equation

d

dt

[
x1

x2

]
= L

[
x1

x2

]
,

with energy E = x2
1 + x2

2. If L is non-normal, the maximum possible relative
amplification of energy E over time can exceed unity. This is visible from
Fig. 1.4(a), where the maximum amplification of E/E0 is plotted over time for
different non-normal parameters n ∈ [0,5].

Above a certain parameter of non-normality n, the model admits non-normal
transient growth at small times. Below this threshold (i.e., for small values of
n), the energy E always decays exponentially. In a normal system with n = 0,
which is excited at all frequencies, the exponential decay rate is given by the
least stable eigenvalue of L for all times. This stands in contrast to the non-
normal case, where the eigenvalues only dictate the asymptotic dynamics for
t → ∞. That is, whether the model is linearly stable or not is governed by
the eigenvalues of L, which is independent of non-normality. At small times,
however, maximum energy amplification is governed by the singular values
of L [148, 149, 173]. A classical linear stability analysis based on eigenvalues
is therefore not able to capture the short-term dynamics of the model. This
is precisely why interest in non-normality rose in the field of sheared flows,
where results from classical linear stability analysis were not able to explain
the transient development of flows observed in experiments [7, 43, 44, 47, 48,
74, 141, 149]. We will return to the topic of stability in the context of non-
normality in Secs. 2.2 and 2.4.2.

The effect of non-normality is also visible in a stochastic framework. Assume
an initial probability distribution (pdf) of energy ϕE at t = 0. If the propaga-
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Figure 1.4: Non-normality leads to (a) an increase in the maximum amplifi-
cation of energy E/E0, and (b) skewing a given initial energy prob-
ability distribution ϕE (indicated by the gray shaded triangle) af-
ter a given time interval ∆t . The normal process for n = 0 (—) (a)
only admits exponential decay, and (b) causes a scaling of the ini-
tial pdf, and conserves the general shape of the distribution (the
smoothing of the tip results from numerical errors).

tor matrix L is normal, the action of L leads to a scaling of the pdf ϕE over
time. However, the general shape of the initial distribution is preserved. This
is visible from Fig. 1.4(b), where the black line indicates ϕE (t = ∆t ) for n = 0
with respect to the initial pdf ϕE (t = 0) given by the gray shaded triangle1. A
significant skewing of the initial pdf is visible for n > 0. It is known that non-
normality leads to an increase in variance of random processes [45, 46, 178].

Non-normal transient growth can be explained using the interpretations of
non-normality given in the previous Sec. 1.1.1. From the interpretation of the
condition of the matrix, the stretching action of non-normal matrices may
lead to a co-domain that is enlarged and skewed with respect to the space
the matrix is acting upon. From a geometrical point of view, the energy E
corresponds to the resultant that is spanned by the eigenvectors. Although
the latter are strictly decaying in time, the resultant may transiently increase
in magnitude due to the non-orthogonality of the eigenvector space. However,
this is only possible for a particular set of decay rates and angles between each

1Slight discrepancies at the tip of ϕE result from numerical errors.
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Figure 1.5: Effect of (a) energy norm and (b) initial conditions on non-normal
transient growth.

of the eigenvectors. As is visible from Fig. 1.4, the conditions for non-normal
transient growth are not fulfilled for small values of n, even though the matrix
L is non-normal. However, the skewing action of L is present even for small
parameters of non-normality n (see Fig.1.4(b)).

As mentioned in the beginning of the present section, non-normal transient
growth depends on other factors than solely on the non-normality of the un-
derlying dynamics. In the plots shown so far, we have used the definition of
energy E = x2

1+x2
2. However, we are free to choose any other metric to quantify

the system dynamics by a scalar measure. A different energy metric amounts
to a change in perspective on the dynamics of the model.

In Fig. 1.5(a), we plot the maximum relative energy amplification for the non-
normal case of n = 5. The energy is defined as a function of an energy scalar c,
E = c2x2

1 + x2
2, with c ∈ [0.1,1]. Non-normal transient growth is only visible for

certain values of c. This example shows that the energy metric is crucial for the
analysis of non-normal transient growth. Although it does not alter the level
of non-normality contained in L, it prescribes the way in which the dynamics
is exhibited to the observer. We will return to this point in Chap. 5.

The second crucial factor for the analysis of non-normal transient growth con-
sists in the initial condition from which the model is released. Until now, we
have examined the maximum relative energy amplification E/E0 (except for
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in the stochastic framework in Fig. 1.4(b)). However, for every instant in time,
there exists only one initial condition that reaches the maximum at precisely
that instant in time. This initial condition is referred to as optimal, because it
leads to the largest possible level of energy amplification at a given instant in
time. How to compute such an optimal initial condition (OIC) will be treated
in Sec. 2.4.2.

Figure 1.5(b) depicts the evolution of energy of 30 randomly computed initial
conditions for the case of n = 5 and c = 1. The maximum energy amplifica-
tion is overlaid in yellow. It can be seen that some initial conditions lead to
non-normal transient growth, whereas others do not. That is, even if the dy-
namics of the model, together with the definition of energy metric, allow for
non-normal transient growth, the initial condition needs to be conducive to
energy amplification.

Analysis of the initial conditions leading to optimal growth may therefore shed
light on the basic mechanisms of non-normal transient growth. However, a
full analysis of non-normal transient growth also requires suboptimal condi-
tions to be taken into account. This is done in the present work in Sec. 7.3,
where we estimate the probability of encountering an initial condition leading
to non-normal transient growth. To the author’s best knowledge, an analysis
on the likelihood of non-normal transient growth has so far only been carried
out by Kim & Moehlis [91] for a low-order shear flow model.

In summary, the phenomenon of non-normal transient growth requires the
beneficial combination of three ingredients. First, the matrix or operator gov-
erning the dynamics needs to be non-normal. This is definitely the case for
most thermoacoustic systems [4, 5]. Second, the maximum energy amplifi-
cation needs to exceed unity, which in turn depends on the choice of energy.
This topic is addressed in the present study in Chap. 5. Third, the initial condi-
tion needs to be conducive to transient growth, which is treated in the present
study in Chap. 7. Due to these factors, it is not always possible to observe tran-
sient growth, even if the underlying process is non-normal.
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1.2 An Introductory View on Thermoacoustics

Thermoacoustics describes the interaction of a heat source, an acoustic and a
flow field. The archetype of a thermoacoustic system, a so-called Rijke tube,
consists of a straight duct open at both ends, which encloses a metal wire
gauze in the lower part of the duct (see Fig. 1.6). The wire gauze acts as a heat
source upon being heated by a candle or a lighter. A Rijke tube can develop
self-excited and self-sustained oscillations, which are audible as a loud sound
at about the fundamental frequency of the duct. This thermoacoustic phe-
nomenon was discovered by the Dutch physicist Pieter Rijke in 1859 [143].

The basic mechanism of developing thermoacoustic oscillations is as follows.
For a classical vertically-oriented Rijke tube, activating the heat source in the
duct leads to a natural convective flow due to the increase in temperature.
For a horizontal Rijke tube, the mean flow requires a mean pressure gradient
across the duct. In turn, the heat addition to the flow depends on the flow ve-
locity. Any minuscule acoustic perturbations alter the flow velocity, and thus
lead to a local increase or decrease in the heat addition. These fluctuations in
heat release rate are phase-delayed with respect to the acoustic velocity fluc-
tuations. The same holds true for the acoustic pressure fluctuations, which
locally compress and relax the air flow. Using the words of Lord Rayleigh pub-
lished in 1878 [140], “if heat be given to the air at the moment of greatest con-
densation, or taken from it at the moment of greatest rarefaction, the vibra-
tion is encouraged.” Thermoacoustic oscillations hence develop through the
positive feedback between the acoustic and flow field and the heat source.

Heat source (wire gauze)

Mean flow direction

Open inlet Open outlet
Bracket

Figure 1.6: Image of a glass Rijke tube with a wire gauze acting as heat source.
The classical Rijke tube is oriented vertically.

11



Introduction and Motivation

The acoustic perturbations grow by extracting energy from the heat source.
In turn, the fluctuations in heat release rate are caused by the action of the
acoustic and flow field.

Thermoacoustics is a multi-physics problem, which mainly consists of the
three fields of combustion, acoustics and fluid dynamics. Each of these fields
describes an entire research area for themselves, and therefore brings along
a different point of view on thermoacoustics. For example, the combustion-
based perspective on thermoacoustics is motivated by understanding the dy-
namics and mechanisms of heat release, and how the latter are altered by
perturbations. The acoustics-based perspective treats thermoacoustics as an
acoustic problem that is perturbed by a heat source [61, 92, 130, 142].

Analysis of thermoacoustic systems essentially amounts to investigating sta-
bility. From a design point of view, one is interested in determining whether a
given thermoacoustic system will operate under stable conditions, or whether
it is expected to attain a nonlinear oscillating limit cycle. From an understand-
ing point of view, one is interested to find out why a thermoacoustic system
may become unstable, and also to investigate the pertinent factors and pa-
rameters.

In the linear regime, a wide-spread approach to stability analysis consists in
computing the complex-valued eigenfrequencies of a network of acoustic el-
ements, such as ducts, flames, dampers, area changes or boundary condi-
tions [144, 145, 161]. If the most unstable eigenfrequency possesses a nega-
tive growth rate (i.e., a positive decay rate), the system is linearly stable. This
so-called network model analysis originates from an acoustics-based perspec-
tive on thermoacoustics. Each element is characterized by its acoustic scatter-
ing/response behavior in the frequency domain.

Frequency response functions of various elements can be determined from
experiments [89, 127], by numerical simulations [25, 35, 70, 71, 80, 112, 129,
134] or from analytical and semi-analytical models [49, 138, 154]. The qual-
ity of results of a network model analysis crucially depends on how accu-
rately each of the elements is described. Much research effort is thus aimed at
the development of measuring techniques and sophisticated numerical codes
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that allow to capture a precise picture of the dynamics of the element subject
to acoustic excitation.

Extension of the network model-based approach to the nonlinear regime
yields the so-called framework of describing functions [161]. There, the acous-
tic response behavior of an element is not only determined as a function
of frequency as in the linear case, but also as a function of the amplitude
of oscillation. The describing function framework is therefore capable of
predicting amplitude and frequency of oscillation of nonlinear limit cycles
[17, 38, 123, 137]. However, the predictions are limited to the asymptotic state
of single-frequency harmonic limit cycles.

Frequency domain analysis is inherently aimed at analyzing the asymptotic
dynamical behavior of a system. That is, frequency domain analysis yields in-
sights into the long-term behavior. It is therefore not well suited for the analy-
sis of transient processes. The latter are more conveniently investigated in the
time domain. Full-scale numerical treatment of thermoacoustic problems in
the time domain is frequent [131], but computationally expensive and time-
consuming due to the necessary combination of small time and length scales,
resulting from acoustics and combustion, respectively. Many time domain
analyses in thermoacoustics therefore use low-order model descriptions. An
extensive review on low-order modeling approaches to thermoacoustics can
be found in [132].

A time domain approach to thermoacoustics offers benefits that are comple-
mentary to those of a frequency domain approach. For example, low-order
time domain descriptions of different elements of a thermoacoustic system
yield insight into the dominant response mechanisms each occurring at char-
acteristic time scales [12, 93, 163]. Also, the linear stability bounds of an entire
thermoacoustic system can be easily determined by a spectral eigenanalysis
[16, 126, 151, 152]. This stands in contrast to the network model analysis men-
tioned above, where the eigenfrequencies are determined on a one-by-one
basis using iterative root finding algorithms.

In the nonlinear regime, recent work in the time domain has shed light on
the variety of stable and unstable limit cycles that a thermoacoustic system
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nonlinear dynamics

non-modal stability analysis

numerical modeling

system identification
optimization

system modeling

model reduction

acoustic theory

combustion dynamics

fluid dynamics
control

perturbation methods

Thermoacoustics

Figure 1.7: Schematic map of different fields of science and areas of research
that are encountered when analyzing thermoacoustic systems.

can reach (for example, [79, 81, 84, 164, 166]). These studies contribute to a
significantly better understanding and quantification of limit cycle behaviors.
Nair & Sujith [119] have developed a method to infer an impeding loss of stable
operation from time domain data by use of fractal methods. All these insights
are not available from a frequency domain perspective.

Altogether, there are many possible approaches towards analyzing thermo-
acoustics, a multi-physics problem which combines aspects from various
fields of science and areas of research. Depending on the desired flavor of the
particular analysis, a time or frequency domain framework may prove bene-
ficial. Each analysis requires the incorporation of different theories and the
combination of information from different areas, which is schematically indi-
cated by the map in Fig. 1.7.

Systems theory offers a robust platform to cope with such challenges. It
homogenizes established thermoacoustic frameworks with ideas from other
communities using a common language. Systems theory-based approaches
are recent in thermoacoustics [105, 150, 151], and are currently on the rise. For
example, some studies follow a system theory-based approach with the objec-
tive of applying active control to a thermoacoustic system [68, 126, 150, 152].
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Subsystem #1

Acoustics/Flow

Subsystem #2

Heat Source

Thermo-
acoustic
System

Input Output

Figure 1.8: Schematic setup of a thermoacoustic system consisting of two
subsystems in feedback: the subsystems acoustics/flow and heat
source.

Or, using a systemic approach, a phenomenon called intrinsic thermoacoustic
feedback (ITAF) describes potentially unstable thermoacoustic modes that
have so far been overlooked by the traditional approach of adopting an acous-
tic perspective [15, 40]. The same is true for advances in soft-sensing and gray-
box model system identification of flame response [72].

The present study also adopts a systems theory-based approach. This is done
with the aim of gaining a fresh and clear perspective on the non-normal dy-
namics of a thermoacoustic system. As depicted in Fig. 1.8, we view a thermo-
acoustic system as a generic multi-physics problem of two subsystems in
feedback: one subsystem for the acoustics and mean flow and one subsys-
tem for the heat source. In the course of the present work, the subsystems
are investigated in isolation before being assembled to a full thermoacoustic
system.

The following section is intended to put the present work into context with
previous work in the field of non-normal transient growth in thermoacoustics.

1.3 Non-Normal Transient Growth in Thermoacoustics

Studies on non-normal effects in thermoacoustics and their impact towards
triggering can be found in recent thermoacoustic literature. Interest in this
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field rose after different studies demonstrated that the interaction of an acous-
tic field with a heat source makes a thermoacoustic system non-normal
[4, 5, 85, 118]. The analyses by Balasubramanian & Sujith [4, 5] were carried
out for a duct enclosing a heat source, which was modeled as a diffusion flame
and by a simple n-τ model. For the latter, it is assumed that the heat release
rate impulsively follows the acoustic velocity by a constant delay τ (derived
from a model proposed by [28]). The maximum relative energy amplification
E/E0 (see Sec. 1.1.2) is determined to be of the order of 100 (taking into ac-
count a later correction published in [104]). The same was shown by Mange-
sius & Polifke [105] for a state space model of a Rijke tube-like configuration
with an n-τ model heat source.

In addition, Balasubramanian & Sujith [4, 5] presented evidence that non-
normal transient growth around a stable fix point may be a cause for triggering
a thermoacoustic system. This was also indicated by Subramanian & Sujith
[165] in a low-order study of a duct enclosing a more sophisticated model of a
premixed flame, and by Mariappan & Sujith [107] for a solid rocket motor. In
both studies, the maximum E/E0 is of the order of 102.

On the other hand, Juniper [76] shows for a Rijke tube-like configuration with
an n-τ model heat source that the initial conditions leading to largest energy
amplification found from optimizing the linearized governing equations are
different from those found in a nonlinear analysis. He concludes that non-
normal transient growth around a stable fix point is a rather theoretical op-
tion. In subsequent studies [77, 78], the focus is therefore pointed towards
non-normal transient growth around an unstable limit cycle. Similar to by-
pass transition in turbulence, non-normal effects can transiently amplify per-
turbations of low energy around an unstable oscillating limit cycle, before they
are repelled towards the undesired stable oscillating limit cycle by the action
of nonlinearities. The scenario of triggering is thus through the combined ef-
fect of non-normality and nonlinearity, which both contribute to growth of
perturbations. This is where triggering in thermoacoustics fundamentally dif-
fers to bypass transition to turbulence. For the latter, the nonlinear terms re-
distribute energy in a conservative manner, and growth is solely due to non-
normal effects, which are entirely linear [55, 63, 149]. In thermoacoustics,
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provided linear acoustics, the nonlinearity arises from the fluctuating heat
source, which is a non-conservative source term.

Other studies in the field of non-normality in thermoacoustics deal with the
question of appropriate energy norm. As seen in Sec. 1.1.2, the choice of en-
ergy has a strong effect on the observation of non-normal transient growth.
Wieczorek et al. [179] report a difference in the optimal relative energy am-
plification of the order of 103 depending on whether or not entropy fluctua-
tions are included in the definition of energy. We will return to this finding in
Sec. 5.1. Other studies compare different energy norms as to their mathemat-
ical properties [56, 57, 59].

In view of the factors influencing non-normal transient growth as discussed
in Sec. 1.1.2, previous studies on non-normal transient growth in thermo-
acoustics suffer from up to three critical points. First, some of the investi-
gated low-order models and associated modeling assumptions tend to be re-
strictive in that they represent an oversimplified thermoacoustic configura-
tion. Second, without exception, previous studies analyze non-normal tran-
sient growth subject to the energy defined as the L2-norm of the state vector of
the model. Results may thus be biased by the energy norm that follows from
the chosen model structure. And third, non-normal transient growth and its
impact towards triggering is examined with respect to optimal conditions of
non-normal transient growth. The likelihood of encountering such optimal
conditions, or whether suboptimal conditions may also prove dangerous, has
so far only been addressed by [109] in a different context. We will discuss these
three critical points in more detail in the following.

Common Low-Order Modeling Assumptions

There are good reasons to focus the analysis of non-normality on simple
thermoacoustic systems inspired by the Rijke tube (see Fig. 1.6). As discussed
in the previous Sec. 1.2, thermoacoustic problems are governed by the com-
plex interaction of different subsystems, which may obscure the fundamental
mechanisms of non-normal dynamics. Furthermore, one is required to solve
an optimization problem to compute the optimal conditions leading to maxi-
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heat source approach φ [-] Sr [-] Mu [-]
T0,d /T0,u

[-]
α [◦] |ζ| [-]

heated wire
[50, 51, 100]

analytical,
DNS

– O(10−2) O(10−3) ≈ 3.2 – –

lam. premixed
flame [79]

experi-
mental

0.51 ≈ 22 O(10−3) ≈ 4.8 ≈ 23
0.04±
10%

lam. premixed
flame [84]

G-eq.
model

0.85 ≈ 2 0 1 ≈ 8 O(10−2)

lam. premixed
flame [165]

G-eq.
model

0.6...1 ≈ 9 0 1 10...50
O(10−1

...10−3)

generic
[77, 78]

n-τ model – → 0 0 1 –
very

small

Table 1.1: Overview of a selection of parameters encountered in previous
studies of laminar thermoacoustic systems: equivalence ratio φ,
Strouhal number Sr, upstream Mach number Mu, ratio of down-
stream to upstream mean temperatures T0,d /T0,u, flame angle α,
and absolute damping |ζ|.

mum non-normal transient growth (see Sec. 1.1.2). In the interest of reducing
computational cost, it is thus desirable to use low-order models with as few
degrees of freedom as possible. Previous studies using low-order models are
therefore all concerned with analyzing non-normal transient growth in sim-
ple thermoacoustic systems under laminar conditions. However, it is ques-
tionable whether the common low-order modeling assumptions addressed in
the following paragraphs are reasonable. In Tab. 1.1, we give an overview on
selected parameters used in previous studies of laminar thermoacoustic sys-
tems.

The assumption of zero mean flow does not account for the effect of mean
flow onto the acoustic mode shapes (for example, [4, 5, 76–78, 105, 165]). Pos-
sible shortcomings of this assumption are discussed in [122]. Under laminar
conditions, however, the upstream Mach number Mu is of the order of 10−3. A
zero Mach number assumption may therefore be tolerable.

On the other hand, the assumption of zero temperature jump across the heat
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source neglects the actual effect of a heat source on its surroundings (for ex-
ample, [4, 5, 76–78, 105, 165]). The temperature jump encountered in real
setups, as for the experimental study published in [79], is significant (see
Tab. 1.1). It should be expected that neglecting the jump in mean quantities
strongly affects the results. This point will be addressed in Secs. 4.5 and 6.1.3.

Furthermore, the assumption of a very fast-reacting heat source does not re-
flect the slow nature of the response of most practical heat sources (for exam-
ple, [5, 76–78]). The ratio of characteristic time scales between the heat source
and the acoustic field is measured by the Strouhal number Sr. For premixed
flames, Sr = O(100 . . .101), whereas Sr = O(10−1 . . .100) for heated wires [51].
Also, a heat source modeled by an n-τ model does not express the distributed
manner of flame response. It is shown in [146, 163] and in Sec. 3.3.3 of the
present work that an n-τ model is a poor representation of the heat source
dynamics.

Altogether, the present study aims at investigating non-normal transient
growth for a more sophisticated low-order model of a duct enclosing a heat
source. As will be shown in Chaps. 3 and 4, respectively, the heat source is
modeled by an impulse response-based filter model [12], and the model of
the acoustic field incorporates a bulk mean flow and a jump in temperature,
density and speed of sound at the position of the heat source.

The Choice of Energy Norm

As mentioned above, the question of proper energy norm for thermoacoustics
is an ongoing matter of debate. Since thermoacoustic dynamics results from
the combined effect of multiple subsystems in feedback, it is unclear which
scalar measure is apt to give a meaningful quantification of the system behav-
ior. Should the energy norm be a measure of only parts of the thermoacoustic
dynamics, computing the optimal conditions leading to non-normal tran-
sient growth would necessitate semi-norm optimization algorithms, which
so far have mainly been addressed in the framework of variational methods
[52, 103].
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Without exception, previous works in the field of non-normality in thermo-
acoustics define the energy as the L2-norm of the state vector of the investi-
gated low-order model. For example, the states of the thermoacoustic model
of Mariappan & Sujith [107] resolve fluctuations in entropy and the model
contains mean flow effects, such that they use Chu’s norm [26] and Myer’s
norm [117], respectively. The thermoacoustic model of Juniper [76–78] con-
sists of acoustic states without mean flow, and the energy norm is given by the
acoustic energy. The acoustic energy, and Chu’s and Myer’s norms originate
from first principles, and therefore correspond to generic forms of perturba-
tion energy: kinetic, potential and internal perturbation energy. Other studies
introduce additional states to model the heat source subsystem [4, 105, 165].
In these cases, the output energies do not necessarily correspond to a generic
form of perturbation energy. For instance, Subramanian & Sujith [165] define
the flame states such that the output energy can be interpreted as acoustic
energy plus a contribution from acoustic monopole sources distributed along
the flame surface.

In defining the energy as the L2-norm of the state vector of the model, a given
energy norm conditions the structure of the model, or vice versa. That is, the
energy norm cannot be chosen independent of the model structure. This is
a major drawback, because the energy norm has a significant effect on the
observation of non-normal transient growth (see Sec. 1.1.2). It is therefore de-
sirable to retain a maximum degree of flexibility in the choice of energy norm.

The present study aims at realizing the previously mentioned flexibility in the
choice of energy metric. In Sec. 2.4.2, we propose an approach to perform
semi-norm optimization using the singular value decomposition (i.e., with-
out the need to resort to variational methods). We are thus able to analyze
any energy metric independent of the particular low-order model structure
in a straightforward manner. To the author’s knowledge, the only other study
related to this matter is a paper by Jiménez [73], where semi-norm optimiza-
tion is used to investigate spatially localized energy amplification in turbulent
channel flows.

Furthermore, adopting a systems theory-based perspective, we highlight that
the selection of energy is a matter of choice. It merely prescribes the perspec-
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tive in which results need to be interpreted (see Chap. 5). Any level of ob-
servable non-normal transient growth is unambiguously linked to the model
and the choice of energy. However, the choice of energy does not alter the
non-normal dynamics as such, because it is a property of the underlying lin-
ear(ized) dynamics. The choice of energy metric thus amounts to a matter of
perspective.

Optimal vs. Suboptimal Non-Normal Transient Growth

With the exception of [109], previous studies on non-normal transient growth
exclusively analyze the optimal conditions of maximum possible transient
growth. While this approach certainly sheds light on the basic mechanisms,
and thus on a deeper understanding of non-normal phenomena, it misses an
important point: Even if optimal non-normal transient growth is relevant for
triggering a thermoacoustic system, how common is it to encounter optimal
conditions? Is optimal growth of theoretical nature or of practical relevance?

The present study intends to address this point by investigating the probabil-
ity of encountering any level of non-normal transient growth (see Sec. 7.3).
Similar to the experimental study of Mariappan et al. [109], we force the
thermoacoustic system by a random linear combination of the first three
thermoacoustic eigenmodes, which reflects the initial conditions that are con-
trollable in an experiment. It is shown that although suboptimal non-normal
transient growth is quite likely, it is highly improbable to encounter optimal
non-normal growth conditions.

1.4 Summary, Contributions and Limitations

The body of the present work is divided into three main parts and consists of
six chapters (Chaps. 2–7). The first part, given in the single Chap. 2, presents
the theoretical foundations used throughout the thesis. In the second part,
which spans the four subsequent Chaps. 3–6, the low-order thermoacoustic
model is constructed and analyzed. The third part contains the core of the
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present work, and can be found in Chap. 7. There, non-normal transient
growth around a stable fix point is investigated using the previously con-
structed low-order model of a simple thermoacoustic system.

The present study applies to thermoacoustic systems in the absence of noise,
with simple 1-D geometries, where mean flow effects are trivial and where the
acoustic field is homentropic and dominated by planar waves. The limita-
tions are evident, as the above assumptions towards noise, geometry, mean
flow and acoustic field do not hold true for most practical thermoacoustic
systems. Also, the non-modal analysis is restricted to non-normal transient
growth around a stable fix point. Conclusions regarding the impact of non-
normal transient growth onto triggering are thus limited, because the stable
operating point of many practical thermoacoustic systems lies in a highly tur-
bulent nonlinear regime to begin with. Also, the optimization procedures
yielding the most dangerous initial states are limited to the linear regime. Fi-
nally, although it is reasonable to qualify the low-order models used through-
out the present study as good approximations of the observed dynamics, the
presented results lack a direct quantitative one-to-one validation to experi-
mental data. For the largest part, this shortcoming is due to the academic
nature of the present work. Generating experimental evidence of the effects
treated here is difficult, if not impossible.

In the following, each of the chapters is summarized. Within the above limita-
tions, we also discuss the contributions of the present work.

Chapter 2 conveys a systems theory-based approach to thermoacoustics and
to non-modal stability analysis. A generic multi-physics system is defined as
a family of different subsytems in feedback. We further define the notion of
stability and introduce non-normal transient growth and tools for its analy-
sis. The main contribution of Chap. 2 lies in defining a framework to perform
semi-norm optimization in a simple and numerically efficient manner (using
the singular value decomposition, without the need to resort to variational
methods).

In Chap. 3, we derive and analyze models to represent the first building block
of a thermoacoustic system, the heat source subsystem. The dynamics of the
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heat source are thereby distilled into a generic low-order model structure in
the time domain from semi-analytical and data-driven approaches. Chapter
3 highlights that low-order models in the time domain offer rich insights into
the physical response mechanisms of the heat source subsystem. This is par-
ticularly visible for the convectively-driven response of premixed flames.

Chapter 4 treats the second building block of a thermoacoustic system, the
acoustics subsystem. The equations governing the motion of an acoustic
field are derived from first principles, and we define and analyze the one-
dimensional reference duct configuration used in the present study. Different
numerical approaches to approximate the governing equations for the refer-
ence configuration are introduced and discussed. A minor contribution of
Chap. 4 consists in applying a numerical method of weighted residuals, often
referred to as the Galerkin method, to a 1-D acoustic field with spatially vary-
ing profiles of mean flow and temperature.

The last building block of a thermoacoustic system, the definition of output
energy, is discussed in Chap. 5. We contribute to the ongoing debate on ap-
propriate energy norms in thermoacoustics by highlighting that the selection
of output energy is a matter of choice, and that it merely defines the perspec-
tive that one wishes to adopt on the problem of interest. From a systems
theory-based point of view, we then list a selection of physically motivated
energy norms available for the treatment of thermoacoustic systems.

In Chap. 6, the outcomes of Chaps. 3–5 are combined to define and to analyze
the full low-order model describing the simple thermoacoustic system treated
in the present study. The temporal evolution of output energy is discussed
with the aim of later identifying the causes of non-normal transient growth.
We further perform a linear stability analysis. The contribution of Chap. 6 lies
in highlighting the benefit of adopting a holistic view on thermoacoustic sys-
tems, which stands in contrast to approaching thermoacoustics as an acoustic
problem that is slightly perturbed by a heat source.

Chapter 7 is dedicated to the analysis of the previously defined low-order
model of a simple thermoacoustic system with regards to non-normal tran-
sient growth around a stable fix point. Spurious and inherent transient growth
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resulting from ill-conditioned discretized numerical operators and model lim-
itations, respectively, is contrasted to physical transient growth. We further
investigate the dynamics of non-normal transient growth and make use of
the semi-norm optimization technique defined in Chap. 2. The probability
of encountering any level of non-normal transient growth is determined by
random sampling techniques. Combining the results, we discuss the possible
impact of non-normal transient growth onto triggering.

The first contribution of Chap. 7 is that non-normal transient growth is ana-
lyzed using semi-norm optimization, which allows for the treatment of more
sophisticated models and also to retain flexibility in the choice of energy met-
ric. Second, the non-modal analysis is not limited to optimal, but includes
suboptimal transient energy amplification. Third, the present analysis quan-
tifies the probability of encountering transient growth. Combining the contri-
butions of Chap. 7 indicates that non-normal transient growth around a stable
fix point does not seem to be a threat for triggering in simple thermoacoustic
systems.
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2 A Systems Theory Approach to
Non-Modal Analysis

The present chapter serves as a compendium of the theory used through-
out the thesis. Results and discussions of subsequent chapters are based on
the definitions and concepts introduced in the following four sections. The
systemic perspective adopted on a multi-physics problem such as thermo-
acoustics is laid out in Sec. 2.1. Stability of autonomous and forced systems is
defined in Sec. 2.2. In Sec. 2.3, the definitions of stability are linked to the so-
lution of the output of linear time invariant systems in the time and frequency
domain. Section 2.4 brings together Secs. 2.2 and 2.3, and introduces the tools
to analyze non-normal transient growth (non-modal stability analysis). While
Secs. 2.1–2.3 mostly contain standard textbook material, Sec. 2.4 features re-
sults of the present thesis.

To simplify exposition, the present chapter exclusively deals with linear sys-
tems. The definitions on interconnected systems and on stability given in the
first two Secs. 2.1–2.2 can be extended to the nonlinear regime in a straight-
forward manner. The sections on the output of linear time-invariant systems
and on the non-modal analysis given in Secs. 2.3 and 2.4, respectively, are only
valid in the linear regime. For enhanced homogeneity of presentation, the en-
tire chapter is therefore limited to linear systems.

2.1 Formulation of a System of Interconnected Subsystems

A multi-physics problem such as thermoacoustics can be viewed as a collec-
tion of different systems in feedback. In the following, we define a generic
system S consisting of Z interconnected subsystems S (i ), with i ∈ {1,2, . . . , Z }.
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… …

Figure 2.1: Sketch of the inputs and outputs to and from S (i ).

The dynamics of each subsystem is governed by a state and an output equa-
tion,

∂x(i )

∂t
=A(i ) x(i ) +B(i ) u(i ) , (2.1a)

y (i ) = C (i ) x(i ) +D(i ) u(i ) . (2.1b)

The state vector x(i )(t ) consists of N (i ) state functions defined for t > 0 on
the system domain Ω(i ) ⊂ R3 bounded by the system boundary ∂Ω(i ), so x(i ) :
R+

0 ×Ω(i ) → RN (i )
. The vectors u(i )(t ) and y (i )(t ) denote input and output to the

system, and are respectively defined on the input domain Ω(i )
u ⊂ R∞ and sys-

tem domainΩ(i ) ⊂R3. Thus, u(i ) :R+
0 ×Ω(i )

u → RM (i )
and y (i ) :R+

0 ×Ω(i ) → RP (i )
,

with number of inputs and outputs, M (i ) and P (i ), respectively. The operators
A(i ) : RN (i ) → RN (i )

, B(i ) : RM (i ) → RN (i )
, C (i ) : RN (i ) → RP (i )

, and D(i ) : RM (i ) →
RP (i )

are continuous partial differential operators of state, input, output and
feedthrough, respectively.

The input u(i ) and output y (i ) consist of the stacked input and output vectors
directly to and from S (i ), as well as to and from S (i ) to each of the other inter-
connected subsystems,

u(i ) =
[(

u(i ))T
,
(
u(1) → (i ))T

,
(
u(2) → (i ))T

, · · · ,
(
u(i−1) → (i ))T

,

(
u(i+1) → (i ))T

,
(
u(i+2) → (i ))T

, · · · ,
(
u(Z ) → (i ))T

]T
, (2.2a)
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y (i ) =
[(

y (i ))T
,
(
y (i ) → (1))T

,
(
y (i ) → (2))T

, · · · ,
(
y (i ) → (i−1))T

,

(
y (i ) → (i+1))T

,
(
y (i ) → (i+2))T

, · · · ,
(
y (i ) → (Z ))T

]T
. (2.2b)

In this manner, it is ensured that each subsystem can be forced separately,
can produce an independent output, and can act upon any other subsystem.
Figure 2.1 schematically depicts the different input and outputs to S (i ).

Interconnection of subsystems is acquired by coupling the respective input
and outputs. For example, the effect of subsystem S (q) onto subsystem S (r )

is defined in the r -th model by u(q) → (r ) = y (q) → (r ) = C (q) → (r ) x(q). Feedthrough
is neglected in the remainder of this work, D(i ) = 0. Stacking all individual
state vectors, and combining the dynamics of the individual subsystems and
the interconnections, we obtain the governing equations of the full coupled
system S ,

ẋ =Ax +Bu , (2.3a)

y = C x , (2.3b)

with

x =
[

x(1) , x(2) , . . . , x(Z )
]T

, (2.4a)

u =
[

u(1) , u(2) , . . . , u(Z )
]T

, (2.4b)

y =
[

y (1) , y (2) , . . . , y (Z )
]T

, (2.4c)

and

A=




A(1) B(1) → (2)C (1) → (2) · · · B(1) → (Z )C (1) → (Z )

B(2) → (1)C (2) → (1) A(2) B(2) → (Z )C (2) → (Z )

... . . . ...
B(Z ) → (1)C (Z ) → (1) A(Z )


 . (2.5)

The state, input and output operators, A : RN → RN , B : RM → RN and
C : RN → RP , govern the dynamics of, the input to and the output from the
entire system S defined on the system volume Ω ⊂ R3. The number of state
functions, inputs and outputs are respectively given by N , M and P . The full
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system model is hence complete and fully described if and only if the opera-
tors A, B and C are defined. We call the set (A,B,C) a continuous model that
describes the dynamical behavior of the physical system S .

The dynamics of the system S is measurable by a scalar metric, which is
defined as the L2-norm of the output. This so-called output energy E (t ) :
R+

0 ×RP → R+
0 thus corresponds to a weighted inner state product,

E = ‖y‖2
2 =

∫

Ω

yT y dΩ

=
∫

Ω

xT CT C x dΩ=
∫

Ω

xT W x dΩ , (2.6)

with energy weighting operator W = CTC :RN → RN . The term output energy
does not necessarily allude to a physical energy measure with conservative
properties, but merely originates from the fact that it is a square measure of
the output y .

Upon discretization or modal expansion, the sets of partial differential state
and output equations (2.3) reduce to ordinary differential equations (ODE),

dx

dt
= A x+B u , (2.7a)

y = C x , (2.7b)

with discretized state, input and output vectors x ∈RN , u ∈RM , y ∈RP , respec-
tively, and state, input and output matrices A ∈RN×N , B ∈RN×M , and C ∈RP×N ,
respectively. M , N and P represent the respective number of discrete inputs,
states and outputs. The state space model (SSM) defined by Eqs. (2.7) is graph-
ically shown in Fig. 2.2. General introductions to state space analysis can be
found in [54, 67].

In analogy to the output energy E of the continuous model (A,B,C), the dy-
namics of the discrete model (A,B,C) is measurable by the scalar output en-
ergy E(t ) :R+

0 ×RP → R+
0 ,

E = ‖y‖2
2 = yT y

= xT CT C x = xT W x , (2.8)
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1/sB C

Au y

+

Figure 2.2: Scheme of the SSM (A,B,C) describing S .

with symmetric energy weighting matrix W = CT C ∈ RN×N . As for E , E does
not necessarily correspond to a physical energy with conservative properties
unless C (or W) are defined accordingly.

The model definition in terms of (A,B,C) is not unique. Consider a state trans-
formation, x̃ = T−1 x with full rank matrix T ∈RN×N . Substitution into Eqs. (2.7)
yields the transformed model,

˙̃x = Ã x̃+ B̃ u , (2.9a)

y = C̃ x̃ , (2.9b)

where Ã = T−1 A T, B̃ = T−1 B and C̃ = C T. The relation between input and
output is state-transformation invariant. The action of T amounts to a mere
change of basis and must therefore not affect the input and output. If T is the
matrix of eigenvectors V, this projection diagonalizes A.

2.2 Definition of Stability

In the following, we introduce the definitions of stability used throughout the
present work. For graphical illustration, see Fig. 2.3.
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Figure 2.3: Illustration of (a) an asymptotically stable (—) and unstable (—)
autonomous system, and (b) a BIBO stable forced system with sin-
gle input u (—) and single output y (—).

2.2.1 Stability of an Autonomous System

According to the Lyapunov stability approach [88, 102], the equilibrium state
x̄ of the autonomous model given in Eqs. (2.7) with u = 0 is

• stable if for any ε> 0, there exists δ= δ(ε) > 0 such that
‖x(t0)−x̄‖2 < δ ⇒ ‖x(t )−x̄‖2 < ε ∀ t ≥ t0. That is, the system is stable
if the L2-norm of the state remains within a bound ε from the equilibrium
for any initial difference in L2-norm bounded by δ.

• unstable if it is not stable as defined above.

• asymptotically stable if it is stable as defined above and if for any ε > 0,
there exists δ= δ(ε) > 0 such that ‖x(t0)− x̄‖2 < δ ⇒ lim

t →∞
‖x(t )− x̄‖2 =

0, i.e., the state asymptotically converges towards the equilibrium.

The above definitions of stability can be restated as follows, known as the sec-
ond method of Lyapunov [88, 102]: a system is stable, if there exists a pos-
itive definite function called Lyapunov function, V (x) ≥ 0 : RN → R, where
V = 0 only for x = 0, and of which the time derivative is negative semidefinite,
d/dt

(
V (x(t ))

) ≤ 0, and asymptotically stable if its time derivative is negative
definite, d/dt

(
V (x(t ))

)< 0. That is, if a system is (asymptotically) stable, there
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must exist a metric that is positive-valued for any x 6= 0 and that (strictly) de-
creases in time (see Fig. 2.3(a)).

2.2.2 Stability of a Forced System

A forced model as given in Eqs. (2.7) with u 6= 0 is bounded input bounded
output stable (BIBO stable), if the output to a bounded input signal is also
bounded, ‖u‖1 <∞ ⇒ ‖y‖1 <∞. For a graphical illustration of BIBO stability,
see Fig. 2.3(b).

In the past decades, Willems generalized the Lyapunov stability approach
to an input-state-output setting in the behavioral framework [180, 181]. A
system S is defined to be dissipative, if there exists a non-negative storage
V (x) :RN → R and a supply rate b(u,x,y) :RM×N×P → R+

0 , with u = 0 ⇒ b = 0,
such that

V
(
x(t2)

)−V
(
x(t1)

)≤
∫ t2

t1

b
(
u(t ),x(t ),y(t )

)
dt . (2.10)

This is analog to requiring V (x) to be a positive semidefinite function with
d/dt

(
V (x(t ))

) ≤ b(u,x,y) (note the difference to autonomous systems for
which d/dt

(
V (x(t ))

) ≤ 0). S must dissipate more than was supplied to it. If
there exists any function V (x) (not strictly positive semidefinite), S is defined
to be cyclo-dissipative. The power of the concept of dissipative systems lies in
its generality. A storage and supply rate can be found for any system, whether
or not it interacts with its surroundings.

2.3 Solutions for the Model Output in Time and Frequency
Domain

The present section deals with the output of the model describing S . Sec-
tion 2.3.1 links the above definitions of stability (see previous Sec. 2.2) to the
analytical solutions of the output of linear time-invariant (LTI) systems. The
solution in frequency domain is analyzed in Sec. 2.3.2.
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2.3.1 Solution in Time Domain

The solution to the output of the SSM defined in Eqs. (2.7) reads

y(t ) = CeAt x0 +
∫ t

t0

CeA(t−τ) B u(τ) dτ , (2.11)

with initial condition x0 = x(t0), and t0 = 0 without loss of generality. The first
and second term constitute the free and forced response, respectively, which
will be analyzed in the following.

The Free Response

For u = 0, the solution to the output is that of the autonomous system. If
the real part of all eigenvalues of A are strictly located in the left half of the
complex plane, Re(si ) < 0 ∀i ∈ {1,2, . . . , N }, the model is asymptotically sta-
ble [88], which is equivalent to the definition of asymptotic stability given in
Sec. 2.2. This can easily be seen by substituting the eigenvalue decomposition
A = V−1ΛV into the first term in Eq. (2.11). The linear stability bound is thus
found by inspection of the largest growth rate of the eigenvalues si , which arise
as solutions of the characteristic equation

det
[

sI−A
]
= 0 . (2.12)

Equation (2.12) is derived by transforming the autonomous part of the state
equation (2.7a) into the complex-valued frequency space (see the definition of
Laplace transform in Eq. (2.20) below). The spectral variable s thus represents
a complex-valued frequency s =λ+ jω, where λ andω denote the growth rate
and angular frequency of oscillation, respectively.

The Forced Response

For x0 = 0, the output y is given by a convolution integral (the second term
in Eq. (2.11)). For an impulsive input of the form u = u0δ(t ), with Dirac delta
function δ(·), y = H u0 with impulse response matrix H :R+ → RP×M ,

H(t ) = CeAt B . (2.13)
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The impulse response matrix H is a full non-parametric description of a linear
time-invariant (LTI) system. Note that H is a continuous function of time t .
The term matrix refers to the discrete numbers of inputs and outputs in in-
put and output space, respectively. The discrete time version of H is denoted
by Ȟ. With knowledge of H, the system’s outputs to arbitrary inputs can be
computed.

Provided linearity and time-invariance [169], the convolution integral in
Eq. (2.11) can be re-written as

y(t ) =
∫ t

0

H(τ)u(t −τ) dτ . (2.14)

Equation (2.14) represents a so-called impulse response model of the input-
output behavior of S . However, any model possesses an impulse response
matrix H, independent of the particular model structure. It is thus impor-
tant to distinguish between impulse response models (which are necessarily
of input-output type), and the impulse response as inherent model property.

The impulse response matrix H gives a clear picture of how the output chan-
nels are affected by the different input channels. Every connection of input
channel to output channel is given by a separate impulse response (IR) func-
tion h(t ) : R+ → R. The impulse response matrix H thus consists of multiple
impulse response functions hi , where i ∈ {1,2, . . . ,P ·M }. The upper time limit
ts for which h(t ≥ ts) = 0 corresponds to the settling time of the channel. If ts

is finite1, h is a so-called finite impulse response (FIR) function [27]. IR func-
tions are the time domain analogy of transfer/frequency response functions
(see Sec. 2.3.2). They can be physically interpreted and yield characteristic
time scales of response [12, 93, 163]. In the finite case, Eq. (2.14) represents
a finite impulse response model.

The definition of BIBO stability given in Sec. 2.2 corresponds to the require-
ment that every channel of H(t ) is integrable in time [139]. Using the eigen-
value decomposition A = V−1ΛV, Eq. (2.13) becomes H(t ) = C V−1 exp(Λt )V B.
If the real parts of all eigenvalues of A contained on the diagonal of Λ are lo-
cated in the left half of the complex plane, Re(si ) ≤ 0 ∀i ∈ {1,2, . . . , N }, with

1Strictly speaking, ts is only finite for discrete time models. In continuous time, Eq. (2.13) asymptotically
converges towards zero. However, we speak of FIR models if the response drops below a small threshold ε> 0.
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rank deficiency of A equal to the number of algebraic multiplicities and the
number of Re(si ) = 0, the model is BIBO stable [88].

The Coupled Response

In some cases, the input may depend on the state vector, u = φ(x), which we
refer to as coupled input. If φ(x) is a function of frequency, the relation be-
tween u and x can be expressed analog to Eq. (2.14) as

u =
∫ t

t0

H̆(τ)x(t −τ) dτ . (2.15)

Here, the impulse response matrix of the coupled input H̆ expresses the rela-
tion between inputs and states. Substitution of Eq. (2.15) into the state equa-
tion (2.7a) of the SSM yields a set of distributed delay differential equations
(dDDE),

ẋ = A x+B
∫ t

t0

H̆(τ)x(t −τ) dτ . (2.16)

As for the autonomous case, linear stability is assessed by inspection of the
largest growth rate of the eigenvalues si , which arise as solutions of the modi-
fied characteristic equation [114, 163]

det
[

sI−A−B F̆(s)
]
= 0 . (2.17)

The above equation is an extension of the classical eigenvalue problem given
in Eq. (2.12) by the term B F̆(s). This transcendental term causes Eq. (2.17) to
have an infinite number of eigenvalues si . F̆(s) corresponds to the transfer
matrix of the coupled input (see Sec. 2.3.2 below).

2.3.2 Solution in Frequency Domain

The frequency domain solution to the output of the SSM defined in Eqs. (2.7)
reads

Y(s) = C(s)
(
sI−A(s)

)−1
B(s)U(s) = F(s)U(s) . (2.18)
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U and Y signify the corresponding time domain quantities in frequency do-
main. F(s) : C → CP×M is the transfer matrix of the model. F(s) is the fre-
quency domain analogy of the impulse response matrix H(t ) in the time do-
main. Similar to H(t ), F(s) is a continuous function of complex-valued fre-
quency s. The term matrix refers to the discrete numbers of inputs and out-
puts in input and output space, respectively. The frequency-discrete version
of F is denoted by F̌ . For a single input single output (SISO) model, P = M = 1,
and F(s) reduces to a transfer function F (s) :C → C.

If the input is coupled as defined in Eq. (2.15), the solution to the output be-
comes

Y(s) = C(s)
(
sI−A(s)−B(s) F̆(s)

)−1
X(s) = F(s)X(s) . (2.19)

Note the difference between F̆(s) and F(s), which are the transfer matrices of
the coupled input and the full model, respectively. F̆(s) is the frequency do-
main analogy of the impulse response matrix H̆(t ) of the coupled input.

Complex-valued frequency domain quantities are related to time domain
quantities by Laplace transform,

L
{
φ(t )

}=Φ(s) =
∫ ∞

0

φ(t )e−st dt . (2.20)

This is why it has been assumed x0 = 0 in Eqs. (2.18) and (2.19) without loss
of generality, as for stable systems the response to any x0 6= 0 dies away in the
time horizon of t → ∞. Frequency domain analysis is thus not well-suited for
transient analysis.

Real-valued frequency domain quantities are obtained from time domain
quantities by one-sided Fourier transform,

F
{
φ(t )

}=Φ(ω) =
∫ ∞

0

φ(t )e− jωt dt . (2.21)

In this case, the transfer matrix F(s) becomes the frequency response matrix
R(ω) : R+ → CP×M , and for a SISO model the transfer function (TF) becomes
the frequency response function (FRF) R(ω) : R+ → C. It conveys the input-
output behavior of the model as a function of real-valued angular frequencies
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Figure 2.4: Gain of the transfer function F (s) vs. gain of the frequency re-
sponse function R(ω) of a SISO model in the complex-valued fre-
quency space s = λ+ jω. The FRF R(ω) corresponds to F (s) at the
cutting plane of λ= 0 (—).

of oscillation ω. This is usually visualized in terms of gain and phase, which
gives insight into the physics of the response mechanisms [2, 27, 160].

In contrast to F(s), R(ω) only exists for bounded input bounded output (BIBO)
stable systems (see Sec. 2.2.2), as the Fourier transform of the input and output
are only defined under these conditions. The FRF R(ω) thus characterizes the
response behavior in the complex-valued frequency space s = λ+ jω in the
cutting plane of zero growth rate λ = 0 (see Fig. 2.4). Experimental data ob-
tained at distinct harmonic frequencies of oscillation always represents FRF
data, as one cannot measure the response to signals that grow or decay in
time. To analyze the stability of a system, one must resort to transfer func-
tions, which are defined in the entire complex-valued frequency space with
growth rate λ 6= 0.

It is possible to construct F(s) from R(ω) by arguments of analytic continua-
tion [111, 159]. According to this concept, the gradients of a complex-valued
function in both the real and imaginary direction are coupled in the absence
of singularities. Hence, if the derivatives of a function with respect to the real
direction are known to all orders, it is possible to extrapolate the function into
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the imaginary direction and thereby to obtain the exact analytical function in
the complex-valued space. If R(ω) is thence given as a continuous analytic
function, such that all derivatives with respect toω are known, it is possible to
extrapolate R(ω) into the complex-valued s-space and thereby to obtain the
exact expression for F(s). If FRF data is identified by an approximate function
R̂(ω), the extrapolation to F̂(s) is only valid in a limited region of confidence,
which depends on the quality of fit and the frequency response behavior [146].

2.4 Non-Modal Analysis and Optimization

The present section introduces the key concepts related to the study of non-
normal transient growth, which stands at the core of the present thesis. The
temporal evolution of output energy is analyzed in Sec. 2.4.1. It is shown that
transient growth unambiguously results from the formulation of the model
describing the system S , which is an important point made in the present
work. We also link the concepts of Lyapunov stability introduced in Sec. 2.2
to non-normality. In Sec. 2.4.2, we define the optimization problem required
to compute the optimal initial condition leading to maximum optimal non-
normal transient growth. This is done for full and semi-norms, so as to retain
a maximum degree of flexibility in choosing the output energy E . While the
optimization procedure for full norms is well-known from literature, the pro-
posed approach to deal with semi-norm optimization represents a contribu-
tion of the present thesis.

2.4.1 Evolution of Output Energy

The temporal variation of the output energy E of a continuous model (A,B,C)
can be expressed by a classical energy balance,

∂

∂t
E =

∫

Ω

(∇ f + s
)

dΩ+Sext =
∫

∂Ω

f ·n dΩ+S +Sext , (2.22)

with flux and source terms f and s, respectively, and normal vector n. The
flux and source terms unambiguously follow from the definition of the model

37



A Systems Theory Approach to Non-Modal Analysis

(A,B,C), and can be derived analytically if the continuous model is available
analytically. Depending on the definition of the output given by the output
operator C, the dynamics given by the state operator A shows up in Eq. (2.22)
either as part of the output energy E , or as flux or source terms f and S, respec-
tively. The input, which is characterized by the input operator B, is obviously
contained in the external source term Sext.

In accordance to the stability concept of dissipative systems given in Sec. 2.2.2,
the right-hand side of Eq. (2.22) corresponds to a supply rate b that governs the
temporal evolution of a storage function V . Here, the supply rate consists of a
net flux

∫
∂Ω f ·n dΩ over the domain boundaries ∂Ω, a net source S within the

domain volume Ω, and a net external source Sext. The energy E may thus in-
crease and decrease through a positive and negative supply rate, respectively.

We next turn towards the temporal evolution of the output energy E of a dis-
crete model (A,B,C). We thereby exclusively deal with autonomous models for
ease of presentation. The discussion can nonetheless be extended to forced
models in a straightforward manner. With Eq. (2.8), the temporal evolution of
output energy E of an autonomous discrete model (A,C) can be written as

∂

∂t
E = ∂

∂t

(
yT y

)

= ẋT W x+xT W ẋ

= xT (
AT W+W A

)
x , (2.23)

with the symmetric energy weighting matrix W as introduced in Eq. (2.8). As
for the continuous case, the flux and source terms driving the evolution of E
are clearly fixed by the definition of the model (A,C). If the dissipation matrix

Q = AT W+W A , (2.24)

is positive semidefinite, the energy balance of flux and source terms given in
Eq. (2.23) is not strictly negative, and there can be transient growth of output
energy. Inspection of the eigenvalue smax of Q with largest growth rate λmax(Q)
indicates an upper bound on the flux and source terms driving the time evo-
lution of output energy E .

Equation (2.24) is the famous Lyapunov equation [102], which can be solved
by numerical means [65, 128]. If the model is linear and asymptotically stable,
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there exists a W such that Q is negative definite, and therefore E is a Lyapunov
function (see Sec. 2.2.1). This W can be found by solving Eq. (2.24) for an arbi-
trary negative definite dissipation matrix Q < 0. However, the resulting metric
may not be physically meaningful or relevant to the problem (see Sec. 5.1).

It is now possible to relate the concepts of Lyapunov stability to non-
normality2. An asymptotically stable system is non-normal if the dissipation
matrix Q of the autonomous model (A,C = I) is positive definite (with iden-
tity matrix I). This is equivalent to stating that a system is non-normal if the
L2-norm of the state vector ‖x‖2 modeling the system is not a Lyapunov func-
tion. Provided an asymptotically stable system is non-normal, non-normal
transient growth is only observable if the definition of output energy is not a
Lyapunov function.

For full output energy norms (i.e., non-singular C), λmax(Q) is very similar to
the numerical abscissa [173], which indicates the maximum growth rate of
output energy for t = 0+. It is derived from a first-order Taylor series expansion
of exp(At ) around t = 0 [47, 148, 149, 173],

max
E0

1

E0

∂E

∂t
= max

E0

1

E0

∂

∂t

∥∥C (I+At )x0

∥∥2
2 +O(t 2)

≈ smax

(
1

2

(
AT CT +C A

))
. (2.25)

The numerical abscissa is the maximum real part of the numerical range [69],
which is the convex output space of an operator. For normal matrices, the
numerical range is the hull of the eigenspectrum; for non-normal matrices, it
reaches beyond.

2.4.2 Optimization of Output Energy

Despite asymptotic stability and ‖x0‖2 within the stability radius, the output
energy can transiently increase if E is not a Lyapunov function. We define the

2Note that non-normality is not a stability property, but a characteristic of the linear(ized) system.
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relative amplification of output energy of an autonomous model (i.e., u = 0) as

G(t ,x0) = E(t )

E0
= ‖C exp(At )x0‖2

2

‖C x0‖2
2

. (2.26)

The output energy over time is thus measured with respect to the initial level
of output energy at t = 0. To study non-normal transient growth, we are inter-
ested in finding the maximum G for all possible initial conditions x0. Apply-
ing such an optimization to Eq. (2.26) is mathematically sound if C is invert-
ible. In this case, E defines a full norm of which the nullspace (kernel) is the
trivial nullvector [52]. However, if C is singular, E does not include contribu-
tions from all states (of all subsystems). It thus defines a semi-norm, of which
the kernel extends beyond the trivial nullvector. The optimization problem
leading to the maximum of G is ill-posed if this nullspace is unbounded [52].
In this case, G can become unlimited, because the contributions from those
states (of those subsystems) that are not mirrored in E are not constrained in
magnitude within the optimization.

In order to deal with a well-posed optimization problem, it needs to be en-
sured that the optimization procedure leading to the maximum output energy
is performed with respect to a full norm. To this end, we define the total state
energy

EN (t ) = xT WN x = ‖CN x‖2
2 = ‖yN‖2

2 , (2.27)

with the total state energy weighting matrix WN ∈RN×N , the total state output
matrix CN ∈RN×N and the total state output vector yN ∈RN . The total state en-
ergy weighting matrix WN is purposefully defined as a positive definite matrix,
which is thus also non-singular. The latter is achieved by including identity
matrices I of appropriate sizes in the nullspaces of the output energy weight-
ing matrix W (if any). These nullspaces can be found by diagonalization of W.
The total state output matrix CN is subsequently computed as the Cholesky
decomposition of WN , and is therefore invertible (regular) by definition. By
construction, the total state energy EN is thus a full norm.

It is then possible to define the optimization problem leading to the maximum
normalized output energy amplification as

G(t ) = max
yN ,0

E(t )

EN ,0
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= max
yN ,0

‖C exp(At )x0‖2
2

‖yN ,0‖2
2

(2.28)

= max
yN ,0

‖C exp(At )C−1
N ‖2

2 · ‖yN ,0‖2
2

‖yN ,0‖2
2

= ‖C exp(At )C−1
N ‖2

2 ,

where the last equality is obtained at optimality y∗
N ,0 = (CN x0)∗ as a conse-

quence of the definition of the L2 matrix norm. As defined above, the total
state output matrix CN is a fixed regular matrix describing a bijective linear
map. It is therefore not part of the optimization problem leading to opti-
mality, but merely weights the initial condition x0 over which the maximiza-
tion in Eq. (2.28) is performed. The optimal initial condition is thus found by
x∗

0 = C−1
N y∗

N ,0.

In contrast to the relative amplification of output energyG, the maximum nor-
malized amplification of output energy G is a measure of the output energy
over time with respect to the initial level of total state energy EN defined in
Eq. (2.27). If C is invertible (and thus W does not contain any nullspaces), the
total state energy equals the output energy, EN = E , and thus G = maxy0 G.
Otherwise, EN corresponds to a generic energy norm which is not necessarily
a (physically) meaningful energy metric.

The difference between total state and output energy is expressed by the ker-
nel energy,

E †(t ) = EN (t )−E(t ) = xT W† x , (2.29)

with kernel energy weighting matrix W† = WN −W. Following Foures et al. [52],
we define the ratio of kernel to output energy,

κ(t ) = E †(t )

E(t )
, 0 ≤ κ≤∞ . (2.30)

If the output energy E defines a semi-norm, E † > 0, and thus κ > 0. For κ =
0 ∀t , the total state energy EN and the output energy E coincide, and E defines
a full norm. The ratio of kernel to output energy κ is not an absolute measure,
as it depends on the definition of the total state energy weighting matrix WN .
The exact numeric values of κ are therefore of limited interest. However, κ
serves as indication of how much energy is contained in the states (of those
subsystems) that are not reflected in the output energy E .
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The maximum possible (i.e., optimal) amplification of normalized output en-
ergy Gmax = maxt G(t ) occurs at t = t∗, which is the time at optimality. Tran-
sient growth is possible if Gmax > 1. The optimal initial condition x∗

0 (OIC)
can be found from the singular value decomposition (SVD) of C exp(At∗)C−1

N =
D S PH . D ∈ RP×P and P ∈ RN×N are unitary matrices of left- and right-singular
vectors, respectively, and S ∈ RP×N represents a diagonal matrix of singular
values. The OIC x∗

0 is the first right-singular vector multiplied by C−1
N (see the

discussion following Eq. (2.28)), which signifies the most amplified mode at
t = t∗ by the action of C exp(At )C−1

N . The total state output vector at optimal-
ity y∗

N is given by the first left-singular vector. The optimal normalized energy
growth Gmax corresponds to the square of the first singular value on the diag-
onal of S. The short-term dynamics of the output energy is thus not governed
by the eigenvalues of A, but by the singular values of C exp(At )C−1

N [148].

In principle, the absolute values of the maximum normalized energy G(t ) and
optimal energy growth Gmax are state-transformation invariant, because they
are a measure related to the output, which, in turn, does not depend on the
definition of x. The transformed maximum normalized energy growth G̃ of
the state-transformed SSM defined in Eqs. (2.9) reads

G̃(t ) = ‖C̃ exp(Ãt ) C̃−1
N ‖2

2

= ‖C TT−1 exp(At )TT−1 C−1
N ‖2

2 =G(t ) . (2.31)

The state-transformation invariance of G refutes the argument that non-
normal transient growth follows from a wrong choice of basis space and can
be eliminated by diagonalization of A, in which case, Ã =Λ, T = V, and C̃ = C V.

However, the state-transformation invariance of G and Gmax is only given if
there exists a non-singular transformation matrix T linking two models of the
same system. This condition is rarely met in practice, so the technical rele-
vance of G being state-transformation invariant is limited. G and Gmax hence
serve as an indication for the occurrence of non-normal transient growth.
While the order of magnitude is important, they should not be interpreted as
absolute measure.

Using SVD, the procedure to find the OIC is computationally simple and fast.
However, if the output energy E defines a semi-norm, the resulting optimal
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normalized energy amplification given by Gmax may not correspond to the
maximum possible relative amplification of output energy Gmax. This is be-
cause the optimization leading to Gmax yields an optimal initial ratio of kernel
to output energy κ∗

0 , for which the normalized output energy is maximized.
However, the optimization is not performed with respect to the optimal κ∗

0

that would maximize the relative amplification of output energy G. As high-
lighted in [52], this “true” maximization of relative amplification of output en-
ergy requires κ to be taken into account as additional optimization param-
eter. This can only be done using variational methods, such as constrained
optimization with Lagrangian multipliers (Lagrangian optimization). Varia-
tional methods are very flexible and powerful (for example, one can optimize
for an infinite number of constraints or cost functions), at the cost of increased
complexity and effort in computation and implementation. A comprehensive
review on optimization and control for flow systems is given by Kim & Bewley
[90].

In the following, we propose an approach to avoid the above mentioned issues
related to semi-norm optimization while still resorting to SVD. To this aim, it
is necessary to extend the above concept of energy maximization to include
forcing. In analogy to the relative amplification of output energy of an au-
tonomous model G, and using Eq. (2.11), we define the relative amplification
of output energy of a forced model as

H(t ,x0,u) = E(t )

E0
=

∥∥∥C
(
exp(At )x0 +

∫
t

0
exp

(
A(t −τ))B u dτ

)∥∥∥
2

2∥∥C
(
x0 +

∫
t

0
u dτ

)∥∥2
2

. (2.32)

The definition of H represents a maximization problem that includes a pe-
nalization of the energy needed to produce the forcing action. As for G, the
maximization problem to find the maximum H is ill-posed if C is singular. We
therefore define the maximum normalized output energy amplification of a
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forced model as

H(t ) = max
yN ,0

E(t )

EN ,0

= max
yN ,0

∥∥∥C
(
exp(At )x0 +

∫
t

0
exp

(
A(t −τ)

)
B u dτ

)∥∥∥
2

2∥∥yN ,0

∥∥2
2

, (2.33)

where yN ,0 = CN (x0+
∫ t

0 exp(A(t −τ))u dτ). Depending on the applied input u,
solution of Eq. (2.33) may present a significant challenge.

An autonomous system can be represented as a forced system that is initially
at rest and forced impulsively at t = 0 (i.e., x0 = 0 and u = u0δ(t )). The role of
the initial condition x(0) = x0 is then taken by x(0) = B u0, with input matrix B
as introduced in Sec. 2.1. We define B ∈ RN×N as diagonal matrix with ‖B‖2 =
1, such that it is ensured that x(0) is representable, i.e., that x(0) ∈ span(B).
Substituting x0 = 0 and u = u0δ(t ) in Eq. (2.33), the initial total output vector
becomes yN ,0 = CN u0, and Eq. (2.33) reduces to

H(t ) = max
yN ,0

E(t )

EN ,0

= max
yN ,0

∥∥C exp(At )B u0

∥∥2
2∥∥yN ,0

∥∥2
2

(2.34)

= max
yN ,0

∥∥C exp(At )B C−1
N

∥∥2
2 ·

∥∥yN ,0

∥∥2
2∥∥yN ,0

∥∥2
2

=
∥∥C exp(At )B︸ ︷︷ ︸

H(t )

C−1
N

∥∥2
2 ,

where the last equality is obtained at optimality y∗
N ,0 = (CN u0)∗ as a conse-

quence of the definition of the L2 matrix norm. As for the autonomous case,
the total state output matrix CN is not part of the optimization leading to op-
timality. The optimal initial forcing can thus be found by u∗

0 = C−1
N y∗

N ,0, and
therefore x∗(0) = B u∗

0 = B C−1
N y∗

N ,0. As for G , the optimal Hmax = maxt H(t ) oc-
curs at t = t∗. The optimal initial distribution u∗

0 can be found from the SVD of
C exp(At∗)B C−1

N , where u∗
0 corresponds to the first right-singular vector pre-

multiplied by C−1
N .

In analogy to the definition of G in Eq. (2.28), H in Eq. (2.34) also describes an
optimization problem of normalized output energy for autonomous systems.
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However, the important advantage of H over G lies in the fact that it can be ef-
fectively used to compute the optimal relative amplification of energy G using
SVD even if the output energy E defines a semi-norm. The procedure to find
Gmax via optimization of H is explained in the following.

The definition of B as detailed above Eq. (2.34) allows to control the impact of
the states of different subsystems onto the initial condition x(0) = B u0. This
is done by varying the magnitude of the diagonal submatrices in B that re-
late to each subsystem. We thereby implicitly weight the contribution of each
subsystem onto the initial levels of output and kernel energy, E0 and E †

0, re-
spectively (see Eq. (2.29)).

Consider as example a system consisting of two subsystems. The definition of

B =
[

k1 I 0
0 k2 I

]
, and C =

[
C1 0
0 0

]
,

will lead to zero initial kernel energy E †
0 = 0 for k1 = 1 and k2 = 0, and to zero

initial output energy E0 = 0 for k1 = 0 and k2 = 1. According to Eq. (2.30), the
latter two limiting cases correspond to an initial ratio of kernel to output en-
ergy κ0 = 0 and κ0 = ∞, respectively. In the special case of k1 = k2 = 1, H is
equivalent to G , and applying SVD to Eq. (2.34) yields the OIC x∗(0) = u∗

0 , as
well as the corresponding optimal initial ratio of kernel to output energy κ∗

0

for which the normalized output energy is maximized.

The definition of H opens an interesting perspective on the study of non-
normality. Analyzing the potential of a system to exhibit non-normal transient
growth can be interpreted as analyzing the L2-norm of the impulse response
matrix of the system H scaled by C−1

N . In principle, and subject to the afore-
mentioned practical limitations related to the absolute values of G , H is also
state-transformation invariant.

In summary, variation of B amounts to optimizing for the maximum ampli-
fication of output energy as a function of the constrained kernel space. It
is thus possible to compute Hmax and the optimal evolution of output en-
ergy E∗(t ) over the entire range of κ0. From there, it is straightforward to
compute the corresponding maximum relative amplification of output energy
Gmax = E∗(t = t∗)/E0. Although this approach requires multiple optimization
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runs, it is easy to implement and for low-order models represents a computa-
tionally inexpensive alternative to variational methods.

2.5 Chapter Summary

The present chapter can be summarized as follows:

• A full coupled multi-physics system S consisting of Z interconnected
subsystems is formulated in a systems engineering framework. Speci-
fication of the set of continuous partial differential operators (A,B,C)
defines a model that describes S . The discrete counterpart is given by
the discrete model defined by the set of matrices (A,B,C).

• Stability is defined for autonomous and forced systems, and basic non-
normal theory is laid out in the context of a systemic approach.

• Optimization approaches to maximize the output energy using SVD are
presented for full and semi-norms.
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3 The Heat Source Subsystem

The present chapter deals with the heat source, which represents the core el-
ement of a thermoacoustic system. In the context of a systemic approach,
the aim is to formulate the heat source as a subsystem that can be inserted as
generic block into the full thermoacoustic system S (T ) (see the schematic in
Fig. 1.8). It is labeled as heat source subsystem S (F ).

In most practical applications, the heat source is given by a flame. Combus-
tion dynamics is complex and presents a major field of research [22, 99, 120,
182]. Any attempt to resolve the detailed transport and chemical processes oc-
curring in a combusting medium leads to a model with a large number of de-
grees of freedom. To study non-normal transient growth in thermoacoustics,
the dominant combustion dynamics therefore needs to be condensed and in-
corporated into a low-order model. Due to their industrial relevance and low
emission properties [95], we shall focus our analysis on premixed flames, al-
though the systemic approach of modeling a heat source subsystem is, in prin-
ciple, applicable to any other kind of heat source.

The structure of the chapter is schematically depicted in Fig. 3.1, and is orga-
nized as follows. In Sec. 3.1, we derive a nonlinear analytical low-order model
describing the dynamics of laminar premixed flames, including the flame re-
sponse to fluctuations in velocity and fuel mixture. The full model is referred
to as G-equation flame. Section 3.2 deals with systems representations of the
heat source subsystem S (F ): The G-equation flame is cast into a nonlinear
state space form in Sec. 3.2.1, whereas Sec. 3.2.2 introduces a generic filter-
based state space representation that is valid for any linear time-invariant
(LTI) system. For the latter, the system dynamics is entirely given by an IR
function. Different approaches to obtain such IR functions characterizing the
linear dynamics of heat sources are presented in Sec. 3.3: In Sec. 3.3.1, we an-
alytically derive the IR function of the linearized G-equation flame under fully
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Figure 3.1: Overview of the structure of Chap. 3. The section numbers indi-
cate which parts of the chapter cover the different topics.

premixed conditions (referred to as linearized G-equation flame). Sections
3.3.2 and 3.3.3 deal with IR functions stemming from experimental or numer-
ical data, and from single time lag models (STL), respectively.

In contrast to common non-dimensionalized notation (for example, [12, 154,
163]), the heat source subsystem is treated in dimensional form throughout
the present work. In the author’s opinion, omitting non-dimensionalization,
and especially normalization, is found to enhance consistency in presentation
and to facilitate interpretation of results.

3.1 An Analytical Model of Laminar Premixed Flames

In the present section, we derive a nonlinear analytical model describing
the response dynamics of laminar premixed flames to velocity and fuel mix-
ture perturbations, a so-called G-equation flame. The model is motivated in
Sec. 3.1.1, before deriving the equations of flame motion in Sec. 3.1.2. The
equations governing the heat release rate of the flame are derived and lin-
earized in Secs. 3.1.3 and 3.1.4, respectively.
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3.1 An Analytical Model of Laminar Premixed Flames

3.1.1 Mechanisms of Heat Release

When perturbed, premixed flames produce changes in heat release rate q̇ ,
which in turn affect the acoustic field. Perturbations in q̇ result from mix-
ture inhomogeneities (fluctuations in equivalence ratio φ), and from fluctu-
ations in the surrounding velocity and pressure fields, v and p, respectively.
However, the sensitivity of premixed flames to pressure changes is small. This
is especially true if the flame length is small compared to the wavelength of
the perturbations (i.e., flame compactness). Changes in φ modify the burn-
ing velocity SL at which the flame consumes the unburnt gaseous mixture,
the heat of reaction qR , and the flame surface area A. The velocity v modifies
the balance between flame propagation and convection, thereby leading to
flame displacement and wrinkling of the flame surface, and thus modifying A.
Strong flame wrinkling and straining also leads to stretch and curvature effects
that in turn modify SL and affect the wrinkle structure. Confinement effects
may also play a role [32]. An extensive review on premixed flame–acoustic
interaction can be found in [98].

For laminar premixed flames in the absence of high-frequency velocity pertur-
bations, strain, stretch and curvature effects are negligible [175], and setting
aside confinement effects, the coarse-grained dynamics of q̇ is governed by
changes in SL, qR and A. An increase in SL means higher specific fuel con-
sumption, and an increase in qR leads to more available heat per unit mass of
gaseous fuel. Changes in A vary the amount of area that is able to release heat.
All three effects thus directly modify q̇ .

The mechanism of flame wrinkling through velocity perturbations occurs di-
rectly (i.e., the flame moves subject to an increase in v), but much stronger so
by an indirect effect. In this case, the perturbation in v is transformed to a per-
turbation in A at the flame base, which then convects downstream through
the flame at convective velocity w . The effect of this transfer mechanism is
observed in experiments [9, 18, 167] and captured in models [32, 138, 154].
However, the detailed physical mechanisms behind this acoustic-convective
(mode) transfer are yet a matter of debate. One of the likely causes may be
vorticity generation at the flame holder.
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Figure 3.2: G-equation model of a premixed flame: (a) The velocity compo-
nents governing the position of the flame sheet at G = 0, which
separates fresh fuel (G < 0) from burnt products (G > 0). (b)
The mean and perturbed flame sheet and forcing velocity compo-
nents. The full flame is obtained by rotation around y = 0 (wedge)
or y = RF (conical).

In the following, an analytical model is derived that condenses the coarse-
grained dynamics of laminar premixed flames into changes in SL, qR and A.
Detailed chemistry and higher-order effects are not incorporated, which al-
lows for a low-order model representation.

3.1.2 Flame Motion

A straightforward approach to modeling the flame dynamics is to treat the
flame surface as a level-set function, known as the G-equation framework
[87, 110]. The complex combustion processes occurring in a flame are lumped
into an infinitesimally thin reacting flame sheet in which fresh gas is instan-
taneously transformed to burnt products. The state of the gas (fresh/burnt)
is tracked by a scalar field G . We define the flame sheet to be located at the
(in principle arbitrary) level-set value of G = 0, which separates fresh gas up-
stream (G < 0) from burnt gas downstream (G > 0), as depicted in Fig. 3.2(a).
The material derivative of the scalar field G(x, y, t ) must remain constant over
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time,
DG

Dt
= 0 ⇔ ∂G

∂t
+ve f f ·∇G = 0 , (3.1)

where ve f f = v−SL n is the effective velocity acting on G = 0 and results from
the balance of transport of fresh gas at rate v and burning velocity normal to
the flame sheet SL n (see Fig. 3.2(a)). With n = ∇G/|∇G|, Eq. (3.1) is rewritten
as

∂G

∂t
+v ·∇G = SL |∇G| . (3.2)

In the present study, transport of fresh gas is strictly confined to the x-
direction, v = [ v , 0]T . Also, the position of the flame sheet at G = 0 is ex-
pressed in terms of a flame displacement function η that only depends on the
radial spatial component y , G(x, y, t ) = x − η(y, t ) = 0 (see Fig. 3.2(b)). With
these two assumptions, the equation governing the flame sheet motion be-
comes

∂η

∂t
+ v = SL

√
1+

(
∂η

∂y

)2

. (3.3)

Unlike studies using the 2-D G-equation framework [66, 82, 153], such a non-
linear 1-D formulation cannot capture flame sheet overlap in the y-direction,
which requires a parametric description of the flame surface in two dimen-
sions. Phenomena such as cusp formation can therefore be identified as to
the occurring locations, but the analysis breaks down as soon as the cusps
form. It is nonetheless a widely used model and has been extensively stud-
ied in the literature [19, 34, 36, 49, 97, 98, 138, 154]. Although of low order,
it has been shown to be a very good representation of real laminar premixed
flames, both under linear1 and nonlinear conditions. The G-equation frame-
work is therefore well-suited for the purpose of the present study, which relies
on an accurate low-order flame model in the linear1 and nonlinear regime.
Graphical comparisons exhibiting good agreement between flame shapes of
laminar premixed conical flames determined from experiments and from a
G-equation model are shown in Fig. 3 of [153].

Concerning the boundary conditions, the G-equation flame is able to swim
upstream (flame flashback) provided the perturbed velocity field is sufficiently

1The linear framework of the G-equation flame is obtained by linearization as shown in Sec. 3.1.4.
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strong in the negative x-direction. In this case, we prescribe a zero-gradient
boundary condition at the flame base. The flame re-attaches when it again
reaches the flame holder. This boundary condition was proposed and inves-
tigated in the G-equation framework by Dowling [34]. In the linear regime
(i.e., for small perturbations), the linearized G-equation flame is assumed to
remain attached to the flame holder at all times, η0(x = 0) = η1(x = 0) = 0.

3.1.3 Heat Release Rate

As mentioned in the introduction of this chapter, the heat release rate q̇ is
assumed a mere function of the mean density of the unburnt premixed fuel
ρ0, flame speed SL, heat of reaction qR and flame surface area A,

dq̇ = ρ0 SL qR dA . (3.4)

SL and qR are both functions of equivalence ratio φ. In the present study, we
employ a methane-air premixture model developed by You et al. [183]. The
corresponding graphs are shown in Fig. 3.3. It can be seen that for lean flames
(φ< 1), SL and qR are monotonically increasing functions ofφ. It is also visible
that the slope of qR is steeper for lean than for rich flames. Slight perturba-
tions in φ thus lead to large variations in q̇ for lean flames, which may couple
back to the acoustic field. This is one of the reasons why the lean regime is
more susceptible to thermoacoustic instability with respect to mixture inho-
mogeneities than the rich regime.

For axisymmetric flames, the flame surface area A is computed by revolving a
weighted infinitesimal portion of flame length dl around the axis of rotation,
which is located at y = 0 (wedge flame) or y = RF (conical flame), with flame
radius RF (see Fig. 3.2(b)),

dA =
∫ 2π

0

k(y) dϕdl . (3.5)

The weighting function k(y) is a geometrical factor, which takes the form k =
y or k = RF − y for wedge or conical flames, respectively. The infinitesimal
portion of flame length dl = dy

√
1+ (∂η/∂y)2 can be expressed in terms of
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Figure 3.3: SL and qR as a function of fuel-to-air ratioφ for a methane-air pre-
mixture model by [183].

changes in flame displacement η, so that the overall heat release rate finally
becomes

q̇ = 2πρ0

∫ RF

0

SL qR k(y)

√
1+

(
∂η

∂y

)2

dy . (3.6)

3.1.4 Orders of Flame Dynamics

In the following, we investigate the mean and linearized expressions of the
flame sheet and heat release rate dynamics given in Eqs. (3.3) and (3.6), re-
spectively. To this aim, all relevant quantities are expanded in terms of powers
of a small variable ε,

φ=
∞∑

i=0

εi φi (3.7a)

= ε0φ0 +ε1φ1 +O(ε2) , (3.7b)

where index i expresses the i -th order field of quantity φ. i = 0 and i = 1
correspond to the mean field and first-order (linearized) perturbations to the
mean field, respectively. It is assumed that the fields at every order of ε are of
order 1, such that the solution converges to the mean field for ε → 0. This
therefore also holds true for all partial derivatives of the respective fields.

The variables η, v , SL, qR and q̇ are expanded to first order according to (3.7b),
and substituted into the square of Eq. (3.3) and into the square of the differ-
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ential version of Eq. (3.6). Grouping in orders of ε yields the solutions of the
mean and linearized fields.

Mean Fields O(ε0)

∂η0

∂t
= 0 , (3.8a)

q̇0 =πR2
F ρ0 v0 qR,0 . (3.8b)

In the absence of perturbations, the flame speed balances the supply rate of
fresh gas normal to the flame front, SL,0 = v0 sinα. The mean flame position is
thus stationary (see Eq. (3.8a)) and given by ∂η0/∂y = const . = arctanα. The
mean flame shape is hence fully described by flame angle α (see Fig. 3.2(b)).
Steeper flames are obtained by increasing the mean flow velocity v0, or by de-
creasing SL via φ. According to Eq. (3.8b), the mean heat release rate q̇0 is
simply given as the mass flow of fresh premixed fuel through the circular base
area of the flame times the heat of reaction.

Linearized Fields O(ε1)

∂η1

∂t
=−v0 sinα cosα

∂η1

∂y
+ v1 −

SL,1

sinα
, (3.9a)

q̇1 = 2πρ0

∫ RF

0

k

[
v0 qR,0 sinα cosα

∂η1

∂y
+ v0 qR,1 +qR,0

SL,1

sinα

]
dy . (3.9b)

The linearized flame motion given in Eq. (3.9a) represents an advection equa-
tion, where wrinkles induced by perturbations in v and −SL/sinα (i.e., both in
positive x-direction) are convected along the length of the flame in y-direction
at a rate of vr,⊥ = v0 sinα cosα. This corresponds to vr,∥ = v0 cosα along the
flame front. The time it takes for wrinkles to advect from the base to the tip of
the flame is termed restorative time scale τr = RF /vr,⊥ in [12]. We will return to
this point in Sec. 3.3.1.

As mentioned in Sec. 3.1.1, the forcing of η1 by v1 is a convective process. Flow
perturbations generated by acoustics at the flame base are convected along
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the length of the flame in the direction of the mean flow at convective velocity
w ,

∂v1

∂t
=−w

∂v1

∂x
+ vB

1 , (3.10)

with the acoustic velocity at the flame base vB
1 = v1(x = 0). The time it takes

for perturbations to advect from the base to the tip of the flame is termed con-
vective time scale τc = RF /(w tanα) in [12] (see Sec. 3.3.1). The dynamics of
SL,1 is also governed by a forced advection equation of the form of Eq. (3.10),
but substituting v1 by SL,1, and the convective velocity w by the mean flow ve-
locity v0. This is because mixture inhomogeneities are advected downstream
with the mean flow.

The convective velocity w is determined by the physics of the specific problem
of interest. Due to the variability of w , we treat the ratio of convective to mean
flow velocity,

µ= w

v0
, (3.11)

as a free model parameter throughout the present work. It is observed thatµ∼
O(1) at low frequencies [18, 167]. At higher frequencies, µmay be much larger
than one. Presumably, these fast waves emanate from aeroacoustic effects and
are similar to those observed in free jets [9]. Kashinath et al. [83] confirm the
frequency-dependency of µ. They also find that µ is critical for the variety of
limit cycles that a coupled thermoacoustic system can reach. It is determined
that subcritical bifurcation of a thermoacoustic system is only possible for µ<
1, i.e., for w < v0 [84].

The limiting case of µ → ∞ expresses a uniform velocity model [12, 154],
where perturbations are homogeneously and instantaneously distributed in
space. This velocity model is often used in the context of low-frequency acous-
tics, where the acoustic wave length is much larger than the flame length.
However, the uniform velocity model does not capture the convective nature
of flame response, and will not be treated in the present study. In real setups, it
is nonetheless possible that premixed flames respond to both convective and
uniform velocity perturbations in parallel. To represent this case, one would
need to superimpose the response models of premixed flames subject to both
types of forcing, which can be done in a straightforward manner. The convec-

55



The Heat Source Subsystem

tive response model is analytically derived in Sec. 3.3.1. The uniform model
subsequently follows by substituting µ → ∞. A more detailed treatment of
the response characteristics of premixed flames to uniform velocity models in
the time domain can be found in [12].

There are various studies employing the G-equation framework which de-
scribe the flame motion in a flame-based reference in terms of flame displace-
ment ξ1, as indicated in Fig. 3.2(b) (see, for example, [1, 12, 19, 154]). In a lin-
earized framework, the perturbations are small by definition (of the order of
ε). In this case, it is valid to substituteη1 = ξ1 sinα into the governing Eqs. (3.9).
Subsequently rotating y to join the tilted flame axis leads to the same expres-
sions as used in the above cited articles. In the linear regime, both representa-
tions are hence equal and do not possess any particular merits with respect to
one another. However, the straightforward substitution of ξ for η is not possi-
ble for large perturbations, in which case Eqs. (3.3) and (3.6) need to be used.
Large perturbations at the flame tip cannot be captured in the flame-based
reference system, as ξ always extends orthogonally from the flame sheet. The
displacement ξ at the flame tip hence misses out on flame wrinkles over a
radial range of ξsinα. This may lead to significant differences in the flame dy-
namics at large amplitudes, especially for wedge flames. This matter is further
discussed in App. A.

In the following, the G-equation description of a premixed flame is cast into
the systemic context of a heat source subsystem. We shall deal with fully
premixed fuel supply in the remainder of this thesis, so φ1 = 0 and thus
SL,1 = qR,1 = 0. For a detailed investigation of the effect of φ1 on the linear
response of premixed flames, the interested reader is referred to [1, 155].

3.2 Systems Representation of the Heat Source Subsystem

In the current section, we cast different models for the heat source subsystem
S (F ) into the generic form of a continuous state space representation. Subse-
quently, the latter is discretized to yield a discrete state space model, which
can be solved by numerical means. In Sec. 3.2.1, we do so for the nonlinear
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G-equation flame derived in the previous Sec. 3.1. Section 3.2.2 introduces a
generic filter-based state space representation of the heat source subsystem
S (F ) that is, in principle, valid for any linear time-invariant system. For the
latter, the system dynamics is entirely given by an IR function (see Sec. 2.3.1).

3.2.1 G-Equation Representation

The heat source subsystem S (F ) modeled by the G-equation framework in-
troduced in the previous section consists itself of two subsystems, the linear
velocity model subsystem S (F,v) (see Eq. (3.10)) and the nonlinear G-equation
flame subsystem S (F,G) (see Eqs. (3.3) and (3.6)). The corresponding schematic
is depicted in Fig. 3.4. The nonlinear continuous partial differential state
space representation of S (F ) takes the form of Eqs. (2.3),

ẋ(F ) =A(F ) (x(F )) x(F ) +B(F ) u(F ) , (3.12a)

y (F ) = C (F ) (x(F )) x(F ) , (3.12b)

with

u(F ) = u(F,v) , x(F ) =
[

x(F,v) , x(F,G)
]T

, y (F ) = y (F,G) . (3.13)

u (F ) y (F )

u (F ,v ) y (F ,G )

y (F ,v ) u (F ,G )

Figure 3.4: Scheme of the heat source subsystem S (F ), itself made up of a se-
rial connection of two subsystems, the subsystem velocity model
S (F,v) and the subsystem G-equation flame S (F,G).
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The model (A(F ),B(F ),C (F )) is defined by

A(F ) =
[ A(F,v) 0
B(F,G)C (F,v)

(
x(F,v)

) A(F,G)
(
x(F,G)

)
]

, (3.14a)

B(F ) =
[
B(F,v) , 0

]T
, (3.14b)

C (F ) =
[

0 , C (F,G) (x(F,G))] . (3.14c)

According to Eq. (3.10), the continuous input-state-output variables of S (F,v)

are velocity fluctuations at the flame base, velocity fluctuations in x-direction,
and velocity fluctuations at the position of the flame sheet,

u(F,v) = vB
1 , x(F,v) = v1(x) , y (F,v) = v1(η) . (3.15)

Accordingly, the input operator B(F,v) passes on vB
1 to the states, the state oper-

ator is the differential operator with respect to x, A(F,v) = [−w ∂/∂x ], and the
output operator C (F,v) acts as time-varying interpolation operator according to
the position of the flame sheet.

For S (F,G), the continuous input-state-output variables are given as velocity
fluctuations2 at the position of the flame sheet, flame displacement, and heat
release rate,

u(F,G) = v1(η) , x(F,G) = η(y) , y (F,G) = q̇ . (3.16)

Accordingly, B(F,G) = I , and A(F,G) and C (F,G) are nonlinear partial differential
and integral operators performing the right-hand sides of Eqs. (3.3) and (3.6),
respectively.

The state vectors of both subsystems in S (F ) are discretized uniformly to ren-
der the partial differential and integral operators amenable to numerical treat-
ment,

x(F,v) =
[

v1(∆x) , v1(2∆x) , · · · , v1(NF,v∆x)
]T

, NF,v∆x ≥ max
y
η(y) , (3.17a)

x(F,G) =
[
η(0) , η(∆y) , · · · , η(NF,G∆y)

]T
, NF,G∆y = RF . (3.17b)

2Note that η is forced by v and not only by v1 in Eq. (3.3), so the input to S (F,G) should be the full velocity
field at the position of the flame sheet. However, as v0 = const ., it is known everywhere in space, and only the
dynamics of v1 needs to be computed explicitly.
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Since S (F,v) and S (F,G) are SISO, u(F,v) = u(F,v), u(F,G) = u(F,G), y(F,v) = y (F,v) and
y(F,G) = y (F,G) as defined in Eqs. (3.15) and (3.16), respectively.

The state equation of the velocity model subsystem S (F,v) may be approxi-
mated by finite elements (FE). This scheme is well-suited for solving advective
processes, as it exhibits little dissipation and can handle steep gradients. The
downstream boundary is modeled as zero gradient outflow condition. The
corresponding set of discrete matrices (A(F,v),B(F,v),C(F,v)) is explicitly given in
App. C.1.

The partial differentials in the state and output equation of the G-equation
flame subsystem S (F,G) are solved by a 5th order WENO scheme [156, 157, 184],
which is 3rd order accurate in regions with steep gradients and 5th order ac-
curate otherwise. This WENO scheme is frequently used in the context of
the G-equation flame (for example, [154, 165]). The boundary condition at
the flame holder is implemented analog to Dowling [34]. The integral in the
output equation of S (F,G) is approximated by trapezoidal summation. Time
marching is performed by a 3rd order Runge-Kutta (RK) total variation dimin-
ishing (TVD) scheme [62].

3.2.2 IR-Based Representation of LTI Systems

As introduced in Sec. 2.3.1, a linear time-invariant (LTI) system is completely
characterized by its impulse response matrix H(t ) (or IR function h(t ) for a
SISO system). The convolution equation given in Eq. (2.14) is a full description
of the output dynamics subject to any input. In the following, we extend the
input-output framework of an IR model to an input-state-output framework.
We therefore define the lagged inputs appearing in the convolution integral
given in Eq. (2.14) as states.

The continuous state space representation of any LTI system S (LTI) then reads

∂u(t −τ)

∂t
=−aIR

∂u(t −τ)

∂τ
+u(t ) , (3.18a)

y(t ) =
∫ t

t0

H(τ)u(t −τ) dτ . (3.18b)
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The state equation (3.18a) takes the form of an advection equation (see, for ex-
ample, Eq. (3.10)), where the current input u(t ) is propagated through history
τ at a rate of aIR. It is thereby possible to track the history of inputs u(t −τ),
which in turn are defined as states. The output equation (3.18b) corresponds
to the convolution equation between input and output as given in Eq. (2.14).
However, as the states are lagged inputs, the output equation is a relation be-
tween states and output. This is conform to the definition of a state space
model.

The input-state-output variables of S (LTI) are hence given as current discrete
inputs, lagged discrete inputs, and current discrete outputs,

u(IR) = u(t ) , x(IR) = u(t −τ) , y (IR) = y(t ) . (3.19)

Accordingly, the input operator B(IR) passes the input to the states, the state
operator is the differential operator with respect to τ, A(IR) = [−aIR ∂/∂τ ], and
the output operator C (IR) is a convolution operator weighted by H(t ).

The filter-based state space representation defined in Eqs. (3.18) can be used
to model any (sub-)system that is LTI. That is, different models differ in their
impulse response matrix H(t ), but not in terms of their SSM structure. Rep-
resenting a system in terms of its IR characteristics is useful if the IR matrix
is finite, i.e., if H possesses a finite settling time τs . In this case, the num-
ber of lagged states is also finite and suitable uniform discretization in the
τ-direction yields,

x(IR) =
[

u(t −∆τ) , u(t −2∆τ) , · · · , u(t −NIR∆τ)
]T

, NIR∆τ= τs . (3.20)

Since S (IR) is SISO, u(IR) = u(IR) and y(IR) = y (IR) as defined in Eq. (3.19). As in the
previous section, the partial differential in the state equation is approximated
by finite elements with a zero gradient outflow condition. The convolution
integral in the output equation is solved by trapezoidal summation, and time
marching is performed by an RK3 TVD scheme. The set of discrete matrices
(A(IR),B(IR),C(IR)) is explicitly given in App. C.2.
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3.3 Obtaining Impulse Reponse Functions

The present section deals with different approaches to obtain IR functions of
the linear time-invariant SISO heat source subsystem S (F ) with finite settling
time τs . The single input u = vB

1 and single output y = q̇1 are velocity fluc-
tuations at the base of the heat source and fluctuations in heat release rate,
respectively. Once obtained, the IR functions can be substituted into the IR-
based model structure defined in Eqs. (3.18) in the previous section to arrive
at the continuous model (A(F ),B(F ),C (F )) of the linear heat source subsystem
S (F ). IR functions also contain information on the response mechanisms and
can be interpreted physically.

In Sec. 3.3.1, we analytically derive and analyze the IR function of the lin-
earized G-equation model introduced in Sec. 3.1 under fully premixed con-
ditions. In Sec. 3.3.2, we turn to flame models that emanate from experimen-
tally or numerically determined frequency response data. Section 3.3.3 treats
single time lag models well-known in thermoacoustics as n-τ models.

3.3.1 Linearized Analytical G-Equation Flame Model

Deriving the IR Function

In the present section, we derive the IR function of the heat source subsystem
S (F ) consisting of the two subsystems convective velocity model S (F,v) and lin-
earized G-equation flame S (F,Glin) as introduced in Sec. 3.1.4. The analysis is
inspired by the derivation shown in [12]. However, in contrast to [12], the cur-
rent analysis is carried out in the laboratory-fixed reference. Possible issues
of the G-equation framework regarding the choice of reference frame are dis-
cussed in App. A.

The continuous model governing S (F,Glin) is given in Eq. (3.9). In the absence
of mixture inhomogeneities, it can be re-written as

∂η1

∂t
=−vr,⊥

∂η1

∂y
+ v1 , (3.21a)
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q̇1 =
q̇0

R2
F

sin(2α)





∫ RF

0
η1 dy conical flame

{
RF η1(RF )−

∫ RF

0
η1 dy

}
wedge flame

, (3.21b)

with restorative velocity vr,⊥ = v0 sinα cosα, q̇0 as defined in Eq. (3.8b), and
applying integration by parts to arrive at the output equation (3.21b). The
analytical solution of the state equation (3.21a) represents a memory integral,

η1(y, t ) = 1

vr,⊥

∫ y

0

v1

(
y ′, t − y − y ′

vr,⊥

)
dy ′ , (3.22)

which substituted into Eq. (3.21b) leads to the solution of the output over time
for both types of flames.

We excite S (F ) by an impulsive input u(F ) = vB
1 = d δ(t − t0), with t0 = 0 with-

out loss of generality, and displacement magnitude d . With Eq. (3.18b), the IR
function then becomes

h(t ) = q̇1

d
. (3.23)

According to the flow depicted in Fig. 3.4, the output of S (F,v) is fed as input
into S (F,Glin),

y (F,v) = u(F,G) = d δ

(
t − y

w⊥

)
, (3.24)

with w⊥ = w tanα the convective velocity component in y-direction. Substi-
tution of Eq. (3.24) into Eq. (3.22) yields

η1(y, t ) = d
µ

µ−cos2α

[
θ
(
t − y

w⊥

)
−θ

(
t − y

vr,⊥

)]
, (3.25)

with Heaviside step function θ(·), and µ= w/v0 as defined in Eq. (3.11).

The competition of the two convective processes given in Eq. (3.25) is illus-
trated graphically in Fig. 3.5. The flame is locally displaced by a distance
η1 = d µ/(µ− cos2α) convecting downstream in the mean flow direction at a
rate of w (emanating from the action of the subsystem velocity model S (F,v)).
The time scale of this process is given as convective time scale τc = RF /w⊥ =
RF /(w tanα). In parallel, a second process emanating from the action of
the subsystem linearized G-equation flame S (F,Glin) restores the initial flame
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(a) η1 > 0 in y-t-plane.
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(b) η1 > 0 in y-x-plane.

Figure 3.5: (a) Graphical illustration of Eq. (3.25) in terms of displaced flame
sheet in the y-t-plane. (b) Snapshot of the displaced flame sheet
at some t < τc in the y-x-plane.

shape convecting downstream in the direction of the mean flow at a rate of
vr,⊥/tanα= v0 cos2α. This happens because a new flame sheet develops from
the flame holder as soon as the initial flame is displaced. The displaced flame
sheet downstream is gradually deprived of fresh premixture and extinguishes,
such that eventually the original flame sheet is re-established. The time scale
of this process is given as restorative time scale τr = RF /vr,⊥.3 The competition
between both processes is only defined if µ−cos2α> 0. For any µ ∈ {0;1}, this
yields a prescription for a permissible range of α. In terms of the ratio of time
scalesΠ, this requirement can be stated as

Π= τc

τr
= cos2α

µ
< 1 . (3.26)

The IR functions of S (F ) are found by substituting Eq. (3.25) into the output
equation (3.21b). With Eq. (3.23), they read for conical and wedge flames (in-
dices C and W , respectively),

hC (t ) = q̇0

R2
F

sin(2α)





w⊥ t 0 ≤ t ≤ τc
1

1−Π
(
RF − vr,⊥ t

)
τc < t ≤ τr

0 otherwise

(3.27a)

3See App. A for a commentary on this matter.
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Figure 3.6: Comparison of the linear output of S (F ) modeled by the G-
equation (—) and the IR-based representation (−−−) subject to
the same arbitrary input signal.

hW (t ) = q̇0

R2
F

sin(2α)





−w⊥ t 0 ≤ t ≤ τc
1

1−Π vr,⊥ t τc < t ≤ τr

0 otherwise

(3.27b)

With Eq. (3.27), we have obtained a full non-parametric description of S (F ),
which substituted into Eqs. (3.18), yields an IR-based representation of S (F ).
For validation, it remains to be ensured that the IR-based (see Sec. 3.2.2) and
the G-equation representation (see Sec. 3.2.1) of S (F ) exhibit the same output
behavior in the linear regime. This must be the case as both discrete represen-
tations are uniquely linked by a state-transformation matrix T (see Sec. 2.1).
As plotted in Fig. 3.6, the output of the IR-based is identical to the G-equation
representation for small amplitudes. It is thereby also warranted that the tran-
sition from the linear to the nonlinear regime is smooth, which is crucial for
the purpose of the present study. We will return to this point in Chap. 7.

Interpreting the IR Function

The IR functions hC and hW are depicted in Figs. 3.7(a) and 3.7(b), respec-
tively, for different ratios of time scales Π. The IR functions are normalized by
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Figure 3.7: IR function h normalized by h0 = q̇0 sin(2α)/RF (top row) and gain
and phase of the corresponding FRF (middle and bottom row, re-
spectively) of the linearized G-equation flame describing S (F ) for
different ratios of time scales Π. The left and right column repre-
sent a conical and a wedge flame, respectively.
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h0 = q̇0 sin(2α)/RF . Their shape yields a straightforward view on the physical
response mechanisms. In the linear regime, q̇1 is determined by the amount
of displaced flame front for both flames, see Eq. (3.21b). For a conical flame,
the response in q̇1 builds up linearly, as an increasing amount of flame front is
displaced while the perturbation resulting from the convective process moves
downstream faster than the restoration process. Once the convective pertur-
bation leaves the flame front, the initial flame shape is gradually restored,
leading to a linear decrease in q̇1. For the wedge flame, the displaced amount
of the flame front is subtracted from the displacement at the flame tip. This
explains why the response first decreases linearly. Once the convective per-
turbation leaves the flame and thereby displaces the flame tip, the response
in q̇1 shoots up and then increases linearly until the restorative process has
regained the steady-state flame front. The jump from h < 0 to h > 0 is more
pronounced for largerΠ.

The IR functions given in Eq. (3.27) can be transformed to the frequency
domain by Fourier transform defined in Eq. (2.21) to yield the FRF R(ω) of
S (F ). The analytical expressions obtained match those given in [138, 154],
and are therefore not explicitly shown. Gain and phase of R(ω) are plotted
in Figs. 3.7(c)–3.7(f) for selected values of Π. Knowledge of the characteristic
time scales of response may be used to explain certain phenomena visible in
the gain and phase of R(ω). In the following, we summarize some findings to
this regard, which are presented more elaborately in [12].

As is visible from Figs. 3.7(e) and 3.7(f), the phase of both FRFs are (nearly)
linearly decreasing functions of ω. This indicates a convective dominance of
flame response, which, as discussed above, is due to the dynamics of the sub-
system velocity model S (F,v). Non-dimensionalizing the frequency ω by the
corresponding characteristic time scale of this process τc leads to a collapsing
of the phase evolutions into a single curve (see Fig. 3.8(a) for a conical flame).
The phase of the flame response is thus self-similar with respect to the non-
dimensional group ωτc over a wide range ofΠ.

Other interesting phenomena are the alternating periodic cutoff and local
maxima of the gain of a wedge flame visible in Fig. 3.7(d). The maxima for
low frequencies may even exceed unity (so-called excess gain behavior). Both
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Figure 3.8: (a) Self-similar phase with respect to the non-dimensional fre-
quency ωτc . (b) Self-similar gain with respect to the non-
dimensional frequency ω∆τ. (c) IR function of a sharp wedge
flame (shaded gray) and weighted response to harmonic forcing
at first cutoff frequency ωi (—).

phenomena can be explained by the shape of hW . As can be seen from
Fig. 3.7(b), the dominant portion of flame response occurs for τc < t ≤ τr , i.e.,
after the jump from h < 0 to h > 0. If the wavelength of a given frequency of
forcing ωi is such that it spans this dominant region of flame response (see
Fig. 3.8(c)), it is effectively damped and a significant drop in response is ob-
served at ωi . The opposite is true if half of the wavelength corresponding to
ωi spans the region τc < t ≤ τr . In this case, the response at ωi is significantly
amplified. Non-dimensionalization ofωby the characteristic time scale of this
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process ∆τ = τr −τc leads to self-similar behavior of the gain with respect to
the non-dimensional group ω∆τ. In this reference, cutoff lies at multiples of
2π, whereas all maxima lie at multiples of (2π−1) over a wide range of Π (see
Fig. 3.8(b)). Self-similarity is only broken for small values of Π, as the jump in
hW at t = τc decreases for decreasing Π, and one cannot speak of a dominant
region of flame response anymore.

3.3.2 IR-Based Models from Measurements

The IR function can also be obtained from experimentally measured or nu-
merically computed data. The overall goal consists in building a parametric
model that captures the dynamics of the system under investigation. The ap-
proaches used differ in whether the data is available in time or frequency do-
main.

In time domain, system identification methods provide a sound basis to es-
timating the parameters of a fixed generic model structure [101, 169]. In the
most general case, the parameters of a so-called Box-Jenkins (BJ) model—a
combination of different plant and noise models— are estimated in an opti-
mal sense [101]. FIR, ARX (autoregressive with exogeneous input), ARMA (au-
toregressive moving average) and OE (output error) models are special cases
of BJ models. The IR function results from any of these models as an inher-
ent property. In general, the IR function is a distributed function of time (as,
for example, in case of the linearized analytical G-equation flame model, see
Figs. 3.7(a)–3.7(b)).

In the frequency domain, it is possible to estimate a complex-valued function
R̂(ω) that captures the response behavior R(ωi ), where R(ωi ) is usually given
in terms of gain and phase (or equivalently in terms of real and imaginary part)
at discrete frequencies of oscillation ωi . If R̂(ω) is an analytic function, the
transfer function F̂ (s) can be constructed by arguments of analytical continu-
ation (see Sec. 2.3.2). This is imperative when performing quantitative stabil-
ity analysis in frequency domain [146]. The estimated FRF and FTF, R̂(ω) and
F̂ (s), respectively, are valid in the band of discrete frequencies in which R(ωi )
is known. Subsequent inverse Fourier transform of R̂(ω) yields the approxi-
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mate IR function ĥ(t ) in time domain. In analogy to the frequency domain,
ĥ(t ) is valid in the signal spectrum of known frequencies ωi .

Estimating the IR Function from FRF Data

An elegant approach to estimating R̂(ω) is by rational function approxima-
tions, where R(ωi ) is expressed as a sum of rational functions [64],

R̂(ω) =
Nn∑

n=1

bn

jω−an
+d . (3.28)

The zeros bn, poles an and delay d are estimated in terms of a nonlinear least
squares problem. Besides the low number of parameters to be estimated, the
main advantage using rational functions lies in the ease of computing the in-
verse Fourier transform to arrive at the IR function,

ĥ(t ) =F−1
{

R̂(ω)
}
=

(
Nn∑

n=1
bne−an t

)
+d δ(t ) . (3.29)

As the approximated FRF data is BIBO stable by definition, d = 0 and an >
0 ∀ n. The IR function ĥ(t ) is hence a linear combination of decaying expo-
nential functions.

As shown in detail in [163], the rational function approximation (3.28) is ap-
plied to experimentally determined FRF data of a turbulent premixed swirl
flame with q̇0 = 30kW and v0 = 11.3m/s studied in [93, 170] and supple-
mented with the condition that the FRF should approach a value of q̇0/v0 =
2.65kN (gain) and zero (phase) in the limit of zero frequency [135]. It is visible
from Fig. 3.9(a)–3.9(b) that the rational fit of order Nn = 12 fits the measured
data accurately. Figure 3.9(c) depicts the corresponding IR function obtained
from Eq. (3.29). As h(t ) is expressed as a sum of decaying exponential func-
tions, it is an infinite IR function and its response to an impulse is infinitely
long in theory. However, the response is negligible for t > 11.5ms (not shown).
The IR function has therefore been trimmed to a finite IR function with non-
zero values for 0 ≤ t ≤ 11.5ms.
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Figure 3.9: (a) Gain and (b) phase of experimentally measured FRF data of
a turbulent premixed swirl flame (�), corresponding rational fit
function (—), and n-τ model (−−−). (c) Corresponding IR func-
tions of rational fit (gray-shaded) and n-τ model (�).

Interpreting the IR Function

As for the linearized G-equation flame model, the shape of h can be inter-
preted physically. In this experimental case, the number of processes occur-
ring in parallel, and thus the number of characteristic time scales, is more than
only two as in the analytical case. It is hence more difficult to isolate individual
response mechanisms. Still, the shape of h can be explained by the superpo-
sition of two main response mechanisms that have been studied in [93].

The first is the response to axial acoustic waves, which induce flame wrinkles
at the flame base. The latter convect downstream at a phase velocity w in
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analogy to the convective response mechanism detailed for the linearized G-
equation flame in Sec. 3.3.1. The dominant hump of the IR function at t = τ≈
4.8ms and the almost linearly decaying slope of the phase (see Fig. 3.9(b)) can
be attributed to this response mechanism. With average flame height ≈ 4cm
[170], this leads to w ≈ 8.33m/s and µ ≈ 0.74. The second mechanism is the
response to a convective perturbation in circulation, which is created when an
axial acoustic wave passes the swirler unit. A temporary variation in the swirl
number leads to an alternating positive and negative response in q̇ (see Fig. 9
of [93]), which can be attributed to flame roll-up and to a temporal variation of
the flame angle α [125]. For details on the response mechanisms of turbulent
premixed swirl flames, the interested reader is referred to [93, 124, 125].

Both main response mechanisms are convectively driven. This explains why,
in a good approximation, the IR function of the turbulent premixed swirl
flame is finite. The fluctuations in q̇ cease once the wrinkles and perturba-
tions in swirl have convected out of the flame. In combination with the dis-
cussion on laminar premixed flames given in Sec. 3.3.1, it is concluded that
since premixed flames are dominated by convective processes, their response
dynamics is nicely approximated by finite IR function-based models.

3.3.3 Single Time Lag Model

As seen above, the response dynamics of premixed flames is convectively
driven. A very simple low-order modeling approach consists in expressing all
convective processes by a single dominant time constant τ, and in defining a
so-called interaction index n that determines an output-to-input ratio. This
single time lag (STL) model is well-known in the thermoacoustic community
as n-τmodel, and builds on pioneering work by Crocco [28]. The correspond-
ing IR function is simply a weighted delayed impulse, h(t ) = nδ(t −τ). In fre-
quency domain, this leads to an FRF R(ω) = n exp(− jωτ). The gain takes the
constant value n over all frequencies, and the phase linearly decreases with
constant slope τ.

Given experimentally or numerically determined FRF data, an STL model can
be sought to capture the response behavior at a single frequency ωi if the
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Figure 3.10: Output y of the turbulent premixed swirl flame represented by
an STL model (—) and an IR-based model obtained from a ra-
tional function approximation (—). (a) The input is given as the
monofrequent input signal at which the STL model is fitted. Both
models produce the same stationary output. (b) For an arbitrary
input signal, the STL model does not capture the full dynamics.

response behavior is indeed dominated by a single convective process. In
this case, the coarse-grained slope of the phase can be approximated by the
time constant τ, and n is chosen such that it matches the gain at ωi . This
is done for the turbulent premixed swirl flame introduced in the previous sec-
tion atωi ≈ 1640rad/s. The interaction index is determined as n ≈ 1.19kN and
τ≈ 4.8ms corresponds to the characteristic time scale of the axial convective
response mechanism discussed above. The gain, phase and the IR function of
the STL model are overlaid in Fig. 3.9.

The shortcomings of an STL model are evident. A model with constant gain
over all frequencies and a single time constant (i.e., a single physical process)
is a poor representation of most processes. These limitations become appar-
ent when comparing the output y of the STL model to that of the IR-based
model found from the rational fit approximation in Sec. 3.3.2. The latter con-
tains all time constants of the system. It is visible from Fig. 3.10(a) that both
models asymptotically produce the same output when forced at the single fre-
quency of oscillation ωi of the STL model. However, when probing the STL

72



3.4 Chapter Summary

model with an arbitrary signal that contains multiple frequencies, the output
differs significantly from that of the IR-based model (see Fig. 3.10(b)).

More comprehensive studies on the limited use of STL models, especially with
respect to linear stability analysis, are given in [146, 163]. Altogether, physical
interpretation of STL models is limited, and they cannot be used for transient
analysis. For these reasons, STL models are ill-suited for the purpose of the
present study, and are not further considered.

3.4 Chapter Summary

The present chapter can be summarized as follows:

• Different methods are presented to obtain a model (A(F ),B(F ),C(F )) de-
scribing the heat source subsystem S (F ). For all linear representations,
the response behavior is fully characterized by an IR function.

• The relevance of IR functions is highlighted. They yield insight into the
time scales of dominant response mechanisms and provide physical in-
sight.

• The response behavior of premixed flames is dominated by convective
processes. It is therefore a good approximation to express the response
dynamics by finite IR function-based models.
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4 The Acoustics Subsystem

The present chapter deals with the acoustic field, the second element of a
thermoacoustic system. The aim is to formulate the acoustic field as a subsys-
tem that can be inserted as generic block into the full thermoacoustic system
S (T ) (see the schematic in Fig. 1.8). It is labeled as acoustics subsystem S (A).

The chapter is organized as follows. The governing acoustic equations are
presented and a brief introduction to acoustic theory is given in Sec. 4.1. In
Sec. 4.2, we define the model describing the acoustic reference system that
forms the basis of further investigation, and relevant model parameters are
introduced. The acoustic model is brought to input-state-output form in
Sec. 4.3, where we also summarize a selection of existing systemic approaches
in the field. Section 4.4 is dedicated to different methods of numerically ap-
proximating the model describing S (A). Finally, the effect of non-zero mean
flow and temperature gradients on the acoustic field are discussed in Sec. 4.5.

4.1 Deriving the Equations for the Acoustic Field

The dynamics of an isentropic perfect gas is governed by the conservation
equations of mass, momentum and energy, and an equation for the transport
of entropy σ. They can be combined as [131, 142]:

MOMENTUM:
Dv

Dt
=−1

ρ
∇p + 1

ρ
∇·τ+s f , (4.1a)

MASS+ENERGY:
Dp

Dt
=−γp ∇·v+ (

γ−1
)

q̇ψ+ sm

+ (
γ−1

)[∇· (λ∇T
)+τ : ∇v

]
, (4.1b)

ENTROPY:
Dσ

Dt
= 0 . (4.1c)
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Dφ/Dt = ∂φ/∂t + v · ∇φ denotes the material derivative (of dummy variable
φ) with respect to time, with velocity vector v = [

v1, v2, v3

]T
in all three spa-

tial directions (ξ1,ξ2,ξ3), and differential operator ∇ = [
∂/∂ξ1,∂/∂ξ2,∂/∂ξ3

]T
.

It is assumed that all species involved possess equal heat capacities and molar
weights, such that γ= cp/cv is the ratio of heat capacities at constant pressure
and volume, respectively, and λ the thermal conductivity of the entire system.
The stress tensor is denoted by τ. For an incompressible Newtonian fluid,
it is possible to write ∇ ·τ = µ∇2v, with constant dynamic viscosity µ. Equa-
tion (4.1b) expressed in terms of pressure is obtained from the conservation of
sensible energy for a perfect gas combined with mass conservation [121, 131].
s f and sm represent source terms in body forces and mass, respectively. The
variation in p is driven by sm and by the heat added to the system via the heat
release rate per unit volume q̇ψ, where ψ governs the profile of heat addition
over the system volume. The mass and energy balance is damped by molecu-
lar diffusion of heat and momentum (see the second row in Eq. (4.1b)).

The acoustic field is assumed to consist of perturbations to a steady mean flow
field (i.e., ∂φ0/∂t = 0). This splitting assumption is the same as commonly ap-
plied to linearized laminar fluid dynamic problems. Using the decomposition
introduced in Eq. (3.7), the splitting assumption amounts to decoupling the
zero-th and first-order fields (of orders ε0 and ε1, respectively), and to assum-
ing that any changes to the full fields are entirely accounted for by changes
in first-order quantities. The resulting set of linearized equations can be ob-
tained by substituting the expansion (3.7b) into the set of governing equations
(4.1). Combining all powers of ε1 yields the governing acoustic equations,

MOMENTUM:
Dv1

Dt
=−v1 ·∇v0 −

1

ρ0
∇p1 +

1

ρ0
∇·τ1 +s f ,1 , (4.2a)

MASS+ENERGY:
Dp1

Dt
=−γp0∇·v1 −γp1∇·v0 +

(
γ−1

)
q̇1ψ+ sm,1

+ (
γ−1

)[∇· (λ∇T1

)+τ0 : ∇v1

]
, (4.2b)

ENTROPY:
Dσ1

Dt
=−v1 ·∇σ0 . (4.2c)

It is implicitly assumed that ∇p0 = 0 and v0 · ∇v0 = 0. These are both fair as-
sumptions in the low Mach number regime. Equations (4.2a)–(4.2b) form a
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parabolic problem formally known as the linearized Navier-Stokes equations
(LNSE) of an isentropic perfect gas. If viscous and heat diffusivity are ne-
glected, Eqs. (4.2a)–(4.2b) become hyperbolic and are known as linearized Eu-
ler equations (LEE).

Under uniform flow conditions, ∇v0 = 0 and ∇·v0 = 0, Eqs. (4.2a)–(4.2b) can be
combined to yield a wave equation for p1, from which the basic mechanisms
of sound production become directly apparent. With the speed of sound c0 =
γ (p0/ρ0), the resulting wave equation reads

D2p1

Dt 2
−∇·

(
c2

0 ∇p1

)
=−γp0∇·s f ,1 +

D

Dt

[(
γ−1

)
q̇1ψ+ sm,1

]

︸ ︷︷ ︸
driving

−∇·
(
c2

0 ∇·τ1

)
+ (
γ−1

) D

Dt

[
∇· (λ∇T1

)+τ0 : ∇v1

]

︸ ︷︷ ︸
damping

. (4.3)

The above equation resembles a forced harmonic oscillator, where viscosity
and heat diffusion dissipate sound. On the other hand, in a quiescent or uni-
formly flowing medium, sound is produced by spatially varying body force
fields (∝∇· s f ,1), and by temporal variations in heat release rate (∝ Dq̇1/Dt )
or in mass source intensity (∝ Dsm,1/Dt ). As illustrative examples for these
three sources, consider a rotating lasso, a flickering candle and an open car
window through which bulks of air periodically enter and leave the interior.
By imposing uniform mean flow conditions, other sources of sound such as
vortices (for example, in turbulent flow) cannot be captured. For a more de-
tailed overview on acoustic theory, the interested reader is referred to standard
literature (for example, [39, 92, 116, 130, 142]).

Reducing the analysis to one spatial dimension ξ, and provided a uniform
medium without source terms, Eq. (4.3) can be re-written as

(
∂

∂t
+

(
c0 + v0

) ∂
∂ξ

) (
∂

∂t
−

(
c0 − v0

) ∂
∂ξ

)
p1 = 0 . (4.4)

The left-hand side is given as the product of two advection equations with ad-
vection velocities c0±v0, respectively. This suggests a solution of p1 in terms of
rightward and leftward traveling waves f and g , that are conserved along their
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p1 = g (t* ) = -v1

t

t*
p1 = f (t* ) = v1

p1 (t =0)

f (t =0) = g (t =0)

Figure 4.1: Planar acoustic wave propagation in the ξ-t-plane. The primitive
acoustic variables v1 and p1 are equivalently represented in terms
of the characteristic waves f and g . The latter advect along the
respective characteristics ξ∓ (c0 ± v0)t .

respective characteristics, f = f
(
ξ− (c0 + v0) t

)
and g = g

(
ξ+ (c0 − v0) t

)
. It can

easily be verified that a solution to Eq. (4.4) is given by p1 = ρ0c0 ( f +g ). By use
of Eq. (4.2a) in the absence of sources, we find an equivalent representation
of planar acoustic wave propagation in terms of the so-called characteristic
waves,

[
v1

p1

]
=

[
1 −1

ρ0c0 ρ0c0

] [
f
g

]
. (4.5)

In contrast to the primitive variables v1 and p1, f and g are directed waves. At
times, this may facilitate physical interpretation and prove beneficial to dis-
tinguishing cause from effect, or signal from response. Still, whichever repre-
sentation best suits the problem at hand needs to be determined on a case-
to-case basis. The propagation of 1-D acoustic waves in both representations
is depicted in the ξ-t-plane in Fig. 4.1 for illustration.
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4.2 A Simple Acoustic System

The present study is intended to investigate the basic origins and mechanisms
of non-normal transient growth in thermoacoustic systems. The analysis is
therefore intentionally reduced to a minimum degree of complexity, so as to
isolate the interaction of a heat source and an acoustic field. This is conve-
niently done by studying the most basic of all thermoacoustic systems, a con-
figuration inspired by the classical Rijke tube [143]. In the following, we will
derive the corresponding governing equations, for which the set of equations
(4.2) serves as starting point.

The setup is illustrated in Fig. 4.2. It consists of a straight duct of length L A

and constant cross-sectional area A A. The spatial domain of the duct is de-
fined by the 1-D set X = {ξ : ξ ∈ [0,1]}. A heat source is located at ξ= ξF . The
spatial extent of the flame is assumed to be much smaller than an acoustic
wave length. The flame is therefore treated as acoustically compact. All other
source terms to the acoustic field appearing in Eq. (4.3) are zero. The dissipa-
tive effects of heat and viscous diffusivity are modeled by negative semidef-
inite damping terms for velocity and pressure, ζv and ζp , respectively. We
consider planar wave propagation in one spatial dimension ξ. The volume
function ψ can thus be expressed by a 1-D function ψq , ψ = ψq /A A, as the
heat source affects the acoustic field over a constant cross-sectional area A A.
We further assume homentropic conditions, σ1 = 0. Equation (4.2c) therefore
does not need to be taken into account. Both duct ends are treated as acous-

LA

AA

Open ends p1 = 0

upstream downstream

ΔT0

v0,u v0,d

Figure 4.2: 1-D duct configuration with non-zero mean flow v0 and non-zero
mean temperature jump ∆T0 resulting from the heat source lo-
cated at ξF . The open duct ends are acoustically fully reflective.
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tically open, which corresponds to perfectly reflective ends with p1 = 0 result-
ing from an area jump to the outside of infinity. The zero-th order quantities
are assumed constant up- and downstream of the heat source. That is, T0, ρ0

and c0 may only vary if ψq 6= 0. As mentioned above, p0 = const . everywhere,
because the Mach number is small. Finally, in order to bring pressure and ve-
locity perturbations to the same order of magnitude, all acoustic variables are
non-dimensionalized by the reference scales,

vref = c0 , ξref = L A , pref = ρ0 c2
0 , q̇ref = q̇0 ,

tref =
ξref

vref
= L A

c0
, ζref =

1

tref
= c0

L A
, ψξ,ref =

1

L A
. (4.6)

Applying the assumptions introduced in the previous paragraph to
Eqs. (4.2a)–(4.2b) and using the reference scales (4.6) yields the following
set of non-dimensional governing equations1:

∂v1

∂t
=−M

∂v1

∂ξ
−

(
3
∂M

∂ξ
−ζv

)
v1 −

∂p1

∂ξ
, (4.7a)

∂p1

∂t
=−∂v1

∂ξ
− 1

β

∂β

∂ξ
v1 −M

∂p1

∂ξ
−

(
2γ
∂M

∂ξ
−ζp

)
p1 +K q̇1ψq . (4.7b)

The steps of non-dimensionalization are presented in App. B. The term β =
β(ξ) in Eq. (4.7b), which expresses the spatial profile of the speed of sound
normalized by its mean value upstream of the heat source, is a function of the
spatial temperature profile along the duct,

β(ξ) = c0(ξ)

c0,u
= 1+∆β

∫
ξ

0

ψq (ξ̃) dξ̃ , (4.8)

with the 1-D function of heat additionψq , the temperature incremental factor
∆β =

√
T0,d /T0,u −1, and where T0,d /T0,u represents the ratio of mean temper-

atures down- (index d) and upstream (index u) of the heat source. Equiva-
lently, ∆β = c0,d /c0,u − 1 is related to the ratio of speeds of sound. The Mach
number is defined as M = v0/c0. As the bulk mean flow must obey continuity

1In the following, unless otherwise mentioned, all acoustic variables are given in dimensionless form. A for-
mal symbolic distinction to dimensional quantities is omitted in the interest of readability.
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ρ0v0 = const ., the local Mach number varies as Md = (∆β+1) Mu, and thus

M(ξ) = v0(ξ)

c0(ξ)
= Mu

(
1+∆β

∫
ξ

0

ψq (ξ̃) dξ̃

)
. (4.9)

Finally, the strength of the heat source is regulated by the scalar

K = K0

(
γ−1

) q̇0

ρ0 c3
0 A A

, (4.10)

which normalizes the mean heat release rate per duct area with an equivalent
acoustic power per unit area. The parameter K0 has been introduced to adjust
the strength of the fluctuating heat source.

In reality, the parameter K0 = 1, such that mean flow, damping, the tempera-
ture jump and the strength of the heat source are not independent from each
other. Whatever heat is produced by the heat source spreads by convection
and molecular diffusion; if it is a reacting heat source, fresh combustibles are
transported to the flame by the mean flow; and so on. However, the simple
model given in terms of Eqs. (4.7) contains Mu, ∆β, K0 and ζi as independent
parameters. This provides a basis for investigating different effects separately:
the effect of mean flow (controlled by Mu), the effect of a fluctuating heat
source (controlled by ∆β, K , ψq ), and the effect of damping terms (regulated
by ζv , ζp). In the present study, K is effectively used as bifurcation parameter
(see Sec. 6.2). An overview of parameters encountered in previous studies of
laminar thermoacoustic systems is shown in Tab. 1.1.

In the present study, the heat source is assumed acoustically compact. The
heat is thus locally added to the flow field at the position of the compact heat
source ξF , and the 0-th order quantities remain constant up- and downstream
of the heat source, respectively. That is, the mean temperature T0, density
ρ0 and speed of sound c0 exhibit a jump at ξF . We therefore define the 1-D
spatial profile ψq appearing in Eqs. (4.8) and (4.9) as a Dirac measure δξF for
any subset X A ⊆ X ,

ψq = δξF (X A) =
{

1 if ξF ∈ X A

0 if ξF ∉ X A .
(4.11)
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Consequently, the identity

∫

X A

φ(ξ̃)δξF (ξ̃) dξ̃=
{
φ(ξF ) if ξF ∈ X A

0 if ξF ∉ X A ,
(4.12)

holds for any given function φ(ξ).

With this definition for ψq , Eqs. (4.8)–(4.9) become

β(ξ) =
{

1 for 0 ≤ ξ< ξF

1+∆β for ξF ≤ ξ≤ 1 ,

M(ξ) =
{

Mu for 0 ≤ ξ< ξF

Mu (1+∆β) for ξF ≤ ξ≤ 1 ,

and the terms 1/β∂β/∂ξ and ∂M/∂ξ in Eqs. (4.7) read

1

β

∂β

∂ξ
=





∆β

1+∆β
for ξ= ξF

0 for 0 ≤ ξ< ξF ∧ξF < ξ≤ 1 ,

∂M

∂ξ
=

{
Mu∆β for ξ= ξF

0 for 0 ≤ ξ< ξF ∧ξF < ξ≤ 1 ,

For non-compact heat sources, other functions expressing the spatial profile
of heat addition are conceivable (e.g., a Gaussian or a polynomial function).

In the following, the above description of a simple acoustic field is put into the
systemic context of an acoustics subsystem.

4.3 Systems Representation of the Acoustics Subsystem

In analogy to the procedure followed for the heat source subsystem S (F ) in
Sec. 3.2, the present section deals with putting the model of the simple acous-
tic system defined in the previous Sec. 4.2 into the generic form of an input-
state-output model structure (see Sec. 4.3.1). In Sec. 4.3.2, we discuss existing
system theory-based approaches in the field of thermoacoustics.
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u (A ) y (A )

Figure 4.3: Scheme of the acoustics subsystem S (A).

4.3.1 A Simple Acoustic Model

The acoustics subsystem S (A) as introduced in the previous section is
schematically depicted in Fig. 4.3. The continuous partial differential state
space representation of S (A) takes the form of Eq. (2.3), where the input-state-
output variables of S (A) are directly apparent from Eq. (4.7). They are fluctua-
tions in heat release rate, the acoustic variables in ξ, and velocity fluctuations
at the position of the heat source (which, in turn, serve as input to the heat
source subsystem S (F )),

u(A) = q̇1 , x(A) =
[

v1(ξ) , p1(ξ)
]T

, y (A) = v1(ξF ) . (4.13)

Accordingly, the model (A(A),B(A),C (A)) is defined by the differential operators,

A(A) =



−M

∂

∂ξ
−

(
3
∂M

∂ξ
−ζv

)
− ∂

∂ξ

− ∂

∂ξ
− 1

β

∂β

∂ξ
−M

∂

∂ξ
−

(
2γ

∂M

∂ξ
−ζp

)


 , (4.14a)

B(A) =
[

0 , K ψq

]T
, (4.14b)

C (A) =
[
ψq , 0

]
. (4.14c)

An equivalent representation of the model describing S (A) in terms of
characteristic waves is obtained by state transformation with the non-
dimensionalized version of the state transformation given in Eq. (4.5). This
leads to a continuous partial differential state space representation of the form
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of Eq. (2.3) with the transformed states given as characteristic waves in space,

x̃(A) =
[

f (ξ) , g (ξ)
]T

. (4.15)

The transformed model (Ã(A), B̃(A), C̃ (A)) is defined by

Ã(A) =



−(

1+M
) ∂
∂ξ

−Dβ−D+
M +

(
ζp +ζv

)

2
Dβ+D−

M +
(
ζp −ζv

)

2

−Dβ+D−
M +

(
ζp −ζv

)

2

(
1−M

) ∂
∂ξ

+Dβ−D+
M +

(
ζp +ζv

)

2


 ,

(4.16a)

B̃(A) = 1

2

[
K ψq , K ψq

]T
, (4.16b)

C̃ (A) =
[
ψq , −ψq

]
, (4.16c)

with the abbreviated terms

Dβ =
1

2β

∂β

∂ξ
, and D±

M =
(
3±2γ

)

2

∂M

∂ξ
.

For the conditions under which the characteristic waves were derived follow-
ing Eq. (4.4) (i.e., ∆β = 0 and ζp = ζv = 0, so Dβ = D±

M = 0), it is apparent that
Ã(A) reduces to a diagonal partial differential operator, in which the non-zero
entries govern the propagation of f and g waves to the right and left at phase
velocities (1±M), respectively.

The model of the acoustics subsystem S (A) represented by Eqs. (4.14) or (4.16)
is not amenable to an analytical solution. It needs to be solved by numerical
means, which will be addressed in Sec. 4.4.

4.3.2 Other Representations

Naturally, there exist other approaches to representing an acoustic systemS (A)

in state space form. Among others, two merit special attention, since—to the
author’s knowledge—they have been the first in the field of thermoacoustics
to adopt a systemic perspective.
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Schuermans et al. adopt a hybrid analytical/numerical approach [150–152].
They bring an analytical solution of the simple wave equation Eq. (4.4) with-
out mean flow and one generic source term to state space form. The ana-
lytical solution, which is detailed in [29], depends on the eigenfunctions and
-frequencies of the system. This provides for a considerable amount of flexi-
bility, as the eigenmodes can be obtained numerically for various geometries,
or even analytically for very simple configurations.

Paschereit and co-workers follow a similar approach as that detailed in
Sec. 3.3.2 for the heat source subsystem S (F ) [16, 126]. Starting from measured
or computed frequency response data of an acoustic element of interest, they
compute a SSM with corresponding input-output behavior. The resulting SSM
is mostly of very low order (N ∼O(101)). As the only constraints to the model
are with respect to input and output, the states are arbitrary and do not nec-
essarily correspond to physically identifiable quantities.

In the present work, we resort to numerically solving the partial differential
state space representation of S (A) defined in Sec. 4.3.1. Despite limiting our
analysis to very simple duct configurations, there are strong reasons in do-
ing so with regards to the aim of the present study. As mentioned in Sec. 1.3,
we wish to retain a maximum degree of flexibility in studying different out-
put metrics. This excludes the approach taken by Paschereit and co-workers,
since it would require significant effort to obtain a variety of corresponding
output data, to which a low-order SSM could be fitted. The other approach
mentioned above relies on very complicated analytical models, which strictly
speaking only exist for a rather constrictive set of assumptions (for exam-
ple, no temperature jump, no mean flow, etc.). Flexibility in determining the
eigenmodes does not outweigh these drawbacks.

4.4 Numerical Implementation

In the present section, the model describing S (A) introduced in Sec. 4.3.1 is
rendered amenable to numerical treatment by discretization in space (see
Sec. 4.4.1) and alternatively by projection onto basis functions (see Sec. 4.4.2).

85



The Acoustics Subsystem

4.4.1 Direct Solution by Finite Differences

Primitive Variables-Based Representation

The continuous state vector x(A) is uniformly discretized in space as

x(A) =
[

v1(0) , v1(∆ξ) , v1(2∆ξ) , · · · , v1(NA,FD∆ξ) ,

p1(∆ξ) , p1(2∆ξ) , · · · , p1((NA,FD −1)∆ξ)
]T

, NA,FD∆ξ= 1 , (4.17)

and the partial differentials inA(A) are approximated by 2nd order central finite
differences (FD). The discrete input and output matrices are trivial. As for the
model describing the heat source subsystemS (F ), time marching is performed
by an RK3 TVD scheme. Since S (A) is SISO, u(A) = u(A) and y(A) = y (A) as defined
in Eq. (4.13). The set of discrete matrices (A(A),B(A),C(A)) are explicitly given in
App. C.3.1. Sufficient grid independence on the computed results is achieved
for NA,FD = 100 (see Tab. 4.1).

The pressure nodes at the boundaries are not contained in x(A), as the duct
ends are acoustically fully reflective, p1(ξ = 0) = p1(ξ = 1) = 0. The non-
reflecting boundary conditions for v1 are implemented by so-called local one-
dimensional inviscid (LODI) relations [131]. They are derived by transforming
the left-hand side of the state equation to a characteristics-based represen-
tation, which leads to an evolution equation for the characteristic waves in
terms of primitive variables. The unknown incoming wave is then computed
as a function of the known outgoing wave. For full reflection, they must be
equal. Assuming ψq = 0 at the boundaries, this yields the following equations
for v1:

∂v1

∂t
=





(
1−Mu

) ∂v1

∂ξ
+ζv v1 −

(
1−Mu

)∂p1

∂ξ
at ξ= 0 ,

− (
1+Md

) ∂v1

∂ξ
+ζv v1 −

(
1+Md

)∂p1

∂ξ
at ξ= 1 ,

(4.18)

which are solved by 2nd order one-sided finite differences.

As mentioned in Sec. 3.2.1, FD methods are ill-suited for numerically resolv-
ing steep gradients. The function of the spatial profile of heat release rate ψq
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rel. deviation of λ | ω of eigenfrequency # [%]

NA,FD 1 2 3 4 5

10 -13.2 | 12.1 -0.82 | -3.98 6.78 | -16.84 0.76 | -38.0 0.72 | -43.37

50 6.20 | -0.67 0.81 | -0.30 -0.10 | -0.72 -0.48 | -1.13 0.15 | -0.17

100 0.86 | -0.13 0.03 | -0.04 -0.02 | -0.07 0.07 | -0.10 0.39 | -0.14

200 0.00 | 0.07 0.00 | -0.00 -0.00 | -0.03 -0.00 | -0.06 -0.00 | -0.08

500 – – – – –

Table 4.1: Grid study of the primitive variables-based FD method: relative
deviation in the values of growth rate λ and angular frequency of
oscillation ω with respect to the absolute values of the first five
complex-valued eigenfrequencies of A(A) as a function of the num-
ber of discrete points NA,FD. The deviation is computed with respect
to the finer grid resolution. Sufficient grid resolution is achieved
for NA,FD = 100, because a finer resolution does not improve the
results by more than 1%. Other parameters: ξF = 0.2, ζv = −0.08,
ζp =−0.025, ∆β = 2, Mu = 0.01.

therefore takes the shape of a discrete Gaussian distribution function of width
0.05 NA,FD∆ξ centered at the node at ξF . In this manner, the heat addition to
the acoustic field is smoothened around ξF , and is flawlessly captured by the
2nd order central FD scheme. This is reflected in B(A) (see Eq. (C.11)).

Characteristic Waves-Based Representation

In analogy to the primitive variables representation, it is possible to directly
solve the transformed model describing S (A) in terms of characteristic waves
by FD or FE schemes. However, as f and g are governed by advection equa-
tions, an elegant alternative is to make use of a time-space solution technique,
which is described in the following.
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As shown in Fig. 4.4, the continuous state vector x̃(A) is discretized in space as

x̃(A) =
[

f (∆ f ξ , f (2∆ f ξ , · · · , f (N Ã, f∆ f ξ ,

g (0 , g (∆gξ , g (2∆gξ , · · · , g ((N Ã,g −1)∆gξ
]T

,

where N Ã, f∆ f ξ= N Ã,g∆gξ= 1 . (4.19)

The spatial step width is chosen such that information propagates by one
node per numerical time step ∆t , which is equivalent to a Courant number
of CFL = 1, (

1+M
)
∆t

∆ f ξ
=

(
1−M

)
∆t

∆gξ
= 1 . (4.20)

Approximating the partial differentials in Ã(A) given in Eq. (4.16a) by 1st order
backward and forward FD schemes for rightward-traveling f and leftward-
traveling g waves, respectively, in combination with a 1st order forward FD
scheme in time, leads to a simple, yet numerically absolutely stable and non-
dissipative discrete time-space scheme,

f n+1
i = f n

i−1 −∆t

(
Dβ+D+

M − ζp +ζv

2

)
f n

i +∆t

(
Dβ+D−

M + ζp −ζv

2

)
g n

i , (4.21a)

g n+1
i = g n

i+1 −∆t

(
Dβ−D−

M − ζp −ζv

2

)
f n

i +∆t

(
Dβ−D+

M + ζp +ζv

2

)
g n

i , (4.21b)

… …

… …

Figure 4.4: Discretization of the characteristic waves-based model of S (A).
The step widths∆ f ξ and∆gξdepend on the spatially varying Mach
number M(ξ).
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4.4 Numerical Implementation

with the abbreviated terms Dβ and D±
M as detailed in the following paragraph.

The index i and superscript n denote respective discrete steps in space and
time. i ∈ [2; N Ã, f ] and i ∈ [0, N Ã,g −2] for f and g , respectively. The first term
in each of the Eqs. (4.21) is called history update by Mangesius & Polifke (“to-
morrow’s yesterday is today”) [105]. They were the first to use this scheme in
the thermoacoustic context.

The abbreviated terms in Eqs. (4.21) read

Dβ =
∆β

2
(
1+∆β

)ψq , and D±
M =

(
3±2γ

)

2
Mu∆βψq . (4.22)

For an acoustically compact heat source, the spatial temperature profile is the
Dirac delta function measure as defined in Eq. (4.11). The effect of a non-zero
compact temperature jump hence causes a scaling operation of the acoustic
waves at the node at ξF . This amounts to scattering the acoustic waves at the
impedance jump, where the incoming waves are transmitted and reflected.

Fully reflective boundary conditions are achieved by referencing the history
update of the (unknown) incoming waves f1 and gN Ã,g−1 to the (known) out-
going waves g0 and fN Ã, f

,

f n+1
1 = g n

0 −∆t

(
Dβ+D+

M − ζp +ζv

2

)
f n

1 ,

g n+1
N Ã,g−1 = f n

N Ã, f
+∆t

(
Dβ−D+

M + ζp +ζv

2

)
g n

N Ã,g−1 , (4.23)

which is analog to the LODI relations introduced in the previous section.

Despite its elegance and apparent simplicity, the challenge involved with the
present time-space scheme lies in finding a suitable discretization of f and g .
From Eq. (4.20), it follows that one needs to find integer numbers of steps N Ã, f

and N Ã,g , that fulfill N Ã,g /N Ã, f = (1−M)/(1+M). Without mean flow Md = 0,
or without a temperature jump ∆β = 0, this is straightforward. However, in
the more practical case of Md 6= 0 and ∆β 6= 0, M is a function of space (see
Eq. (4.9)). The step width thus varies from up- to downstream side of the heat
source. Under these circumstances, finding suitable N Ã, f and N Ã,g is all but
trivial. This is also challenging from an implementation point of view.
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The Acoustics Subsystem

As the present study is intended to study the effects of Mu and ∆β on non-
normal transient growth in thermoacoustics, the characteristic waves-based
representation is not further considered in the present work. It is nonetheless
a viable and elegant modeling option.

4.4.2 Method of Weighted Residuals

In the following, we introduce a method that uses a variational formula-
tion to approximate the governing set of partial differential equations (PDE)
(4.7). It is very similar to FE methods and well known under the name of
Galerkin method (to name but a few examples in the thermoacoustic litera-
ture, [77, 107, 165]). However, in recent historical overviews of the method
[30, 31], Culick argues that the full breadth and universal character of the
method reaches far beyond Galerkin’s intentions. We follow Culick’s line of
arguments, and refer to the method as method of weighted residuals (MWR).

The variational formulation of the MWR starts from the partial differential
state equation governing S (A),

∫ 1

0

(
ẋ(A) −A(A) x(A) −B(A) u(A)

)
dξ= 0 , (4.24)

The state variables are projected onto spatial basis functions TM , j (ξ),

x(A) =
NA,M∑
j=1

x(A)
M , j (t )TM , j (ξ) = TM x(A)

M , (4.25)

which amounts to a time-space decoupling state transformation of the con-
tinuous acoustic state vector x(A)(ξ, t ) to the discrete state vector of the MWR
x(A)

M (t ). The columns of TM contain the spatial basis functions TM , j . Substitut-
ing Eq. (4.25) into Eq. (4.24) and multiplying by test functions TM ,k(ξ)—which
are chosen as the same as the basis functions2—, leads to an ordinary differ-

2This step is sometimes referred to as the Galerkin choice.
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ential state equation for x(A)
M :

(∫ 1

0

TMTM dξ

)
ẋ(A)

M =
(∫ 1

0

(
A(A)TM

)
TM dξ

)
x(A)

M +
(∫ 1

0

(
B(A)TM

)
dξ

)
u(A) .

(4.26)
The partial differential operators A(A) and B(A) hence operate on known spa-
tial expansion functions TM , j . Equation (4.26) can then be brought to the form
of a discrete SSM

ẋ(A)
M = A(A)

M x(A)
M +B(A)

M u(A)
M , (4.27a)

y(A)
M = C(A)

M x(A)
M . (4.27b)

Since S (A) is SISO, u(A)
M = u(A) and y(A)

M = y (A) as defined in Eq. (4.13).

The crucial step consists in selecting adequate expansion functions, so as to
minimize the residual of the approximation Eq. (4.26) (hence the name of the
method). Although not mandatory in principle, it is useful to base the choice
on physical considerations of the problem at hand.

For the primitive acoustic variables v1 and p1, it is convenient to use the mode
shapes of the fundamental acoustic duct problem without mean flow, temper-
ature jump and heat source as expansion functions,

v1(ξ, t ) =
NA,M∑
j=1

cos( jπξ) vM , j (t ) , (4.28a)

p1(ξ, t ) =
NA,M∑
j=1

sin( jπξ) pM , j (t ) , (4.28b)

so

x(A)
M =

[
vM ,1(t ) , vM ,2(t ) , · · · , vM ,NA,M (t )

pM ,1(t ) , pM ,2(t ) , · · · , pM ,NA,M (t )
]T

, (4.29)

and

TM =
[

cos(πξ) cos(2πξ) · · · cos(NA,Mπξ)
sin(πξ) sin(2πξ) · · · sin(NA,Mπξ)

]
. (4.30)
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rel. deviation of λ | ω of eigenfrequency # [%]

NA,M 1 2 3 4 5

1 0.47 | -0.18 -0.21 | -54.1 -0.52 | -70.7 -0.81 | -78.2 -1.27 | -82.1

5 -0.08 | 0.17 -0.02 | 0.04 0.02 | -0.03 0.00 | -0.10 0.25 | 0.19

10 -0.01 | 0.14 -0.01 | 0.03 0.00 | -0.02 -0.00 | -0.03 -0.01 | 0.00

50 -0.00 | 0.02 -0.00 | 0.00 0.00 | -0.00 0.00 | -0.00 0.00 | 0.00

100 – – – – –

Table 4.2: Grid study of the MWR: relative deviation in the values of growth
rate λ and frequency of oscillation ω with respect to the absolute
values of the first five complex-valued eigenfrequencies of A(A)

M as a
function of the number of expansion functions NA,M . The deviation
is computed with respect to the finer resolution. Sufficient resolu-
tion is achieved for NA,M = 5, because an increase in NA,M does not
improve the results by more than 1%. Other parameters: ξF = 0.2,
ζ1 =−0.08, ζ2 =−0.025, ∆β = 2, Mu = 0.01.

The main benefit is that these expansion functions implicitly fulfill the bound-
ary conditions at the duct ends, p1 = 0 and ∂v1/∂ξ ≈ 0 at ξ = 0 and ξ = 1.3

Additional flux terms at the boundaries are thus not needed.

Analog to the characteristic waves-based representation, the MWR can ac-
count for a compact heat source with impulsive 1-D temperature profiles ψq

as defined in Eq. (4.11). Also, since the acoustic field is modally expanded, the
MWR provides for a unique possibility to implement frequency-dependent
damping in time domain. This stands in contrast to the solution by FD, where
the damping terms can only assume constant values. We use a damping cor-
relation by Matveev & Culick [113], where damping increases with frequency,

ζv = 0 , and ζp = ζp, j = ζ1 j +ζ2

√
1

j
. (4.31)

This modal damping model and variants thereof are widely used in the
thermoacoustic community (for example, [77, 82, 108, 165]). The damping co-

3The boundary condition for v1 is a good approximation for low Mach numbers, as ∂v1/∂ξ=−M ∂p1/∂ξ, see
Eq. (4.7b).
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efficients ζ1 and ζ2 model the effects of dissipation at the duct ends and in the
boundary layer, respectively. According to [81], typical values for laboratory-
scale Rijke tubes are ζ1 ≈−0.01 . . . −0.13 and ζ2 ≈−0.005 . . . −0.03.

The corresponding set of discrete matrices (A(A)
M ,B(A)

M ,C(A)
M ) is given in

App. C.3.2. It is visible from Tab. 4.2 that sufficient independence upon the
number of expansion functions is achieved for NA,M = 5. However, to ensure
numerical independence in the presence of a fluctuating heat source (see the
study on numerical resolution in Fig. 7.5), we decide to use NA,M ≤ 30 in the re-
mainder of the present work. As for all other methods introduced in Chaps. 3
and 4, integration in time is realized by an RK3 TVD scheme.

Unless otherwise mentioned, the acoustics subsystem S (A) is approximated
by the MWR in the remainder of this thesis. The first reason is the reduced
computational cost as compared to the FD scheme due to the lower number
of degrees of freedom necessary for numerical convergence, while still being
able to incorporate non-zero mean flow and temperature jump. Secondly, the
possibility of making use of a modal damping method is appealing, because it
is a better approximation of experimentally observed damping characteristics
than a constant damping model. Thirdly, the discrete matrices of the MWR
possess a better condition number as compared to the FD scheme, which is
important for non-normal analysis. We will return to this point in Sec. 7.1.

4.5 The Effect of a Base Flow and Temperature Jump

The present section intends to investigate the effect of a non-zero base flow
and temperature jump at the position of the heat source onto the acoustic
field in the simple thermoacoustic system as introduced in Sec. 4.2. Nicoud
& Wieczorek [122] have found mean flow to change the growth rate and fre-
quency of oscillation of acoustic modes significantly even for very small Mach
numbers. In the following, we analyze the change in acoustic eigenmodes and
eigenvalues subject to the range of upstream Mach numbers and temperature
incremental factors, Mu ∈ [0,0.01] and ∆β ∈ [0,2], respectively.
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Figure 4.5: First (—), second (−−−) and third (· · · ) eigenmodes of S (A) in
terms of v1(ξ) and p1(ξ) as a function of increasing Mu (from top
to bottom) and ∆β (from left to right). Note that all quantities
are non-dimensionalized by the scales given in Eq. (4.6). Results
are obtained by spectral analysis of the system matrix A(A)

M of the
MWR with NA,M = 70. Other parameters: ξF = 0.2, ζ1 = −0.08,
ζ2 =−0.025. 94



4.5 The Effect of a Base Flow and Temperature Jump

The effects of mean flow and temperature jump on the shapes of the first three
acoustic eigenmodes given in terms of v1(ξ) and p1(ξ) are shown in Fig. 4.5.
The eigenmodes are computed by the MWR with NA,M = 70. Note that v1(ξ)
is non-dimensionalized by the local mean speed of sound c0(ξ) (see the refer-
ence scales in Eq. (4.6)), which explains the jump in v1 at ξF for ∆β > 0.

Figure 4.5(a) depicts the well-known acoustic eigenmodes in the absence of
mean flow and temperature jump. Increasing Mu for ∆β = 0 leads to a stretch-
ing of the profiles of acoustic velocity (see the first column of Fig. 4.5), whereas
the profiles of acoustic pressure are nearly unaffected. Increasing ∆β for
Mu = 0 changes the wave number of the velocity profiles on the hot side of
the duct for ξ > ξF = 0.2 (see the first row of Fig. 4.5). The pressure profiles
are nearly unaffected. The latter case is of theoretical nature, because the in-
duced mean temperature jump at ξF would not spread into the downstream
part of the duct without mean flow. The combined effect of Mu > 0 with∆β > 0
noticeably modifies the profiles of velocity and pressure. It is clear that the
eigenmodes differ significantly with respect to the pure acoustic duct modes.

Slight oscillatory phenomena are visible for mode shapes with steep jumps
at the position of the heat source ξF . This effect is inherent to the MWR,
since the mode shapes are expanded as a linear combination of sines and
cosines. These oscillations are significantly larger when using a constant
damping model (as for the FD model) rather than the modal damping model
introduced in Eq. (4.31). For the latter, damping increases with the number
of modes, and unphysical high-frequency oscillatory phenomena are inhib-
ited more effectively. The FD model and the MWR thus work best for different
damping models. Also, the FD model requires a smoothening of the temper-
ature jump, whereas the MWR does not. A direct quantitative comparison is
therefore not instructive and has been omitted.

In Fig. 4.6, we visualize the shift in eigenvalues caused by non-zero mean flow
and a non-zero temperature jump. It is visible that the theoretical case of
increasing the temperature jump in the absence of mean flow (Mu = 0 with
∆β ∈ [0,2]) leads to a change in the complex-valued eigenfrequency, especially
with respect to the angular frequency of oscillation ω (see the green paths in
Fig. 4.6). On the other hand, increasing the mean flow in the absence of a
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Figure 4.6: First three acoustic eigenvalues plotted as a function of growth rate
λ and frequency of oscillation ω for the cases Mu = 0 with ∆β ∈
[0,2] (from black to green), Mu ∈ [0,0.01] with ∆β = 0 (from black
to blue—not visible), and Mu ∈ [0,0.01] with ∆β ∈ [0,2] (from black
to red) computed by the MWR with NA,M = 70. Starting point are
the acoustic eigenfrequencies for Mu = ∆β = 0 indicated by thick
black dots. Other parameters: ξF = 0.2, ζ1 =−0.08, ζ2 =−0.025.

temperature jump (Mu ∈ [0,0.01] with ∆β = 0) does not result in a noticeable
shift in the complex-valued eigenfrequencies of S (A). However, once both pa-
rameters are increased in parallel, we observe a significant shift in angular
frequency ω and growth rate λ (see the red paths in Fig. 4.6). This corrobo-
rates the above observation that mean flow and a temperature jump have a
significant effect on the acoustic field.

4.6 Chapter Summary

The present chapter can be summarized as follows:

• The governing equations for the acoustics subsystem S (A) are derived
and brought to input-state-output form.

• Different numerical approaches are presented to efficiently solve the
acoustics subsystem S (A).

• The effects of mean flow and of inhomogeneous spatial temperature pro-
files on the 1-D acoustic field are illustrated and shown to be significant.
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5 The Output Energy

As introduced in Sec. 1.3, one major issue when investigating transient growth
is the question of appropriate metric to describe the system dynamics. We
have seen in Sec. 2.3.1 that the definition of output affects the magnitude
of observable transient growth. What is thus the proper output energy of a
thermoacoustic system? Should it incorporate the dynamics of the acoustic
subsystem S (A), or also of the heat source subsystem S (F ), or both? If both,
how should the proportions be weighted with respect to one another?

Since the definition of output is, in principle, a matter of choice, we highlight
in Sec. 5.1 that the output merely defines the perspective that one adopts on
the problem. The line of arguments is similar to that followed in [14]. We
then turn towards physically motivated outputs of thermoacoustic systems in
Sec. 5.2. Unless otherwise mentioned, the present chapter deals with dimen-
sional quantities.

5.1 The Output Defines the Perspective

To address the question of metric, we first recall some facts from Chap. 2. The
output equation of the continuous model defined in Eq. (2.3b) shows that an
output is a function of states, y = C x. The output is therefore entirely defined
by the output operator C, which weights the impact of the individual states
onto the output. It is further defined in Eq. (2.6) that the energy of the model
E corresponds to the L2-norm of the output y , and that it varies subject to flux
and source terms, f and S, respectively. The latter unambiguously result from
the definition of the autonomous model (A,C), as this defines how much en-
ergy is produced or dissipated. The output matrix C is hence needed to close
the model definition. Since C does not affect the dynamics as such, which
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is entirely given by A, the definition of C is a matter of choice. The output
thus merely defines the perspective that the investigator chooses to have on
the problem, and how the dynamics evolves from the chosen viewpoint. The
question of appropriate energy norm should thus be restated as a question of
appropriate perspective (“you get what you ask for”).

The choice of output may be motivated by physical or mathematical argu-
ments, practical reasons, modeling constraints or simply by personal prefer-
ence. As examples for these categories, the output energy may be chosen to
correspond to a physical energy or to a Lyapunov function; it may be chosen
such that it represents a quantity that is accessible in an experiment; it may
be chosen to penalize an unwanted effect that results from a given numeri-
cal scheme; or it may be chosen to represent a measure that can be used to
support or to reject a certain hypothesis. However, as the output defines the
perspective in which the results need to be interpreted, some outputs may
be more apt to analyze a given situation than others. That is, some outputs
may suggest a misleading conclusion or an incomplete picture, which other
outputs may not. We will elaborate on these points in the following using
three examples. The first example uses dimensional quantities, the second
and third refer to the simple acoustic system as defined in Sec. 4.2.

The first example is taken from literature, where Wieczorek et al. [179] analyze
the non-normal transient growth of a non-isentropic thermoacoustic system
with a non-zero steady heat source (i.e., q̇1 = 0, but q̇0 6= 0). The system is
described by two autonomous models that only differ in the definition of out-
put, (A,C1) and (A,C2). The system dynamics contained in A is given by the
dimensional Eqs. (4.2) without source terms (the exact set of governing equa-
tions treated by Wieczorek et al. is given in Eqs. (2.5)–(2.7) in [122]; for fur-
ther details, see [179]). The output operator of the first model C1 is chosen
such that the output energy E1 corresponds to the acoustic energy as derived
by Cantrell & Hart [23], which measures the kinetic and potential perturba-
tion energy of the acoustic field with mean flow (see the first, second and last
term in Eq. (5.3) below). The output operator of the second model C2 is cho-
sen such that E2 additionally takes into account fluctuations in entropy (see
Eq. (5.3)). This perturbation energy was first rigorously derived by Myers [117].
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Figure 5.1: G(t ) of (A,C1) (—) and of (A,C2) (−−−). Gmax,1 = 6.7× 103 and
Gmax,2 = 6.5. Figure redrawn from Fig. 4(a) in [179].

Wieczorek et al. report a significant difference in maximum transient growth
between the models, Gmax,1 = O(103) and Gmax,2 = O(100) (see Fig. 5.1). This
difference is explained by the fact that the optimal initial state can contain
non-zero entries in σ1, which are not accounted for in E1. The output energy
of the first model E1 subsequently increases significantly when these entropy
perturbations are converted to acoustics.

This finding can also be explained by comparing the flux and source terms
of both models, which are responsible for driving or dissipating the respec-
tive output energies Ei (t ) over time. As introduced in the discussion following
Eq. (2.22), the temporal evolution of E is governed by the flux and source terms
resulting from the model formulation. That is, depending on the definition of
output energy, the dynamics of the model is balanced as part of the output
energy, or alternatively as flux or source terms. For the case of Wieczorek et
al., the differences in flux and source terms, which lead to the difference in
temporal evolution of energies ∂E1/∂t −∂E2/∂t , are derived analytically as

f1 = f2 +
ρ0v0

2
σ0

σ0T0

cp

(
σ1

σ0

)2

, (5.1a)

S1 = S2 +
∫

L A

ρ0v0
σ0T0

cp

(
σ1

σ0

) (
v1

v0

)
∂σ0

∂ξ
dξ . (5.1b)
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The additional flux term in Eq. (5.1a) is strictly positive and expresses the fact
that regions of fluctuating entropy (so-called hot spots) exit the domain down-
stream. This process is not contained in the definition of E1 and thus shows
up as flux term (unphysically) generating E1 at the downstream boundary.
The entropy perturbations are created by the interaction of the acoustic field
with a mean entropy gradient, as indicated by the additional source term in
Eq. (5.1b). As before, E1 does not contain a measure for this transfer of kinetic
to internal energy. This leads to an additional (unphysical) source term.

The order of magnitude of the additional flux and source terms can be esti-
mated using the parameters given in [179]. With ρ0v0 ≈ O(101), σ0T0/cp ≈
O(103), σ0 ≈O(103) downstream of the heat source, ∂σ0 ≈∆σ0 = cv ln(∆T0) ≈
O(103), v1/v0 ≈O(10−2) and σ1/σ0 ≈O(10−2), both additional terms are of the
order of 103, which corresponds to the observed difference in Gmax. The dif-
ference in non-normal transient growth can hence be fully explained by the
difference in the order of magnitude of f and S driving the energies of the
models (A,C1) and (A,C2).

This example shows that the system dynamics may exhibit itself very differ-
ently subject to a different output. Choosing E2 seems straightforward from a
physical point of view. However, the change of perspective does not alter the
dynamics as such (which is the same for both models), but requires the result
to be interpreted accordingly. Choosing E1 will lead to the same conclusion if
the altered perspective is taken into account in the interpretation of results.

Consider as a second example the simple acoustic system introduced in
Sec. 4.2 with fully reflective ends and a non-zero temperature jump at the cen-
ter of the duct. We exclude fluctuations in heat release rate (i.e., K = 0), and
neglect damping and mean flow (i.e., ζi = 0 and Mu = 0). Since the state vec-
tor of the corresponding model reads x = [v1(ξ), p1(ξ)]T , it is straightforward to
use the kinetic and potential energy of the system as output (i.e., acoustic en-
ergy, see the first, second and last term in Eq. (5.3) below). This choice fixes C
and closes the model (A,C). For this academic test case, physical arguments
suggest that the fluctuating energy content of the system remains constant
over time, as there are no physical sources or sinks of energy. However, with
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Figure 5.2: Time traces of output energy of autonomous models describing
the simple acoustic system defined in Sec. 4.2 (a) without damp-
ing and E representing the acoustic energy E A, and (b) with modal
damping (ζ1 = −0.08, ζ2 = −0.025) and E as the acoustic energy
E A (—) and as a Lyapunov function Elyap (—). Other parameters:
ξF = 0.2, Mu = 0, ∆β = 1.25, K = 0.

the choice of C, the temporal evolution of energy is derived analytically as

∂E
∂t

=−v1 p1
1

β

∂β

∂ξ
. (5.2)

That is, the analysis identifies a source term in the region of the non-zero tem-
perature gradient. The acoustic energy thus does not remain constant over
time, which is visible from Fig. 5.2(a). The output energy E of the correspond-
ing discrete model oscillates around the initial value E(0).

This seemingly unphysical behavior with spurious energy growth and decay
can be explained as follows. The heat source defines a flame at rest located at
ξ = ξF . The flame is thus not able to move in response to an acoustic wave.
Instead, a local increase in velocity leads to a larger volume of fresh gas being
pushed into and consumed by the flame, and thus to more heat produced,
because the downstream temperature is assumed constant. A local decrease
in velocity due to v1 < 0 causes the opposite effect. We are thus left with the
relation q̇1 ∝ v1, which substituted into Eq. (5.2) yields a source term analog
to the classical Rayleigh source term ∂E/∂t ∝ q̇1 p1 [14]. The phenomenon of
a flame at rest producing fluctuations in energy is referred to as “the classical
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paradoxon of thermoacoustics” by Bauerheim et al. [8] and is also explained
by Strobio Chen et al. [162].

The above described mechanism of creating fluctuations in heat release rate
is fundamentally different from the fluctuations in heat release rate resulting
from an active flame as described in Chap. 3 (these fluctuations are excluded
in the present example by definition). The active flame mechanism stems
from the convectively driven response of premixed flames to acoustic pertur-
bations, which are transformed to flame wrinkles at the flame base and advect
along the flame with the mean flow. In contrast, the above mechanism with a
flame at rest happens at an acoustic time scale. It results from simplistic mod-
eling assumptions, because the model does not allow for movement of the
center of heat release. The identified source term in Eq. (5.2) is thus physical,
but, strictly speaking, the assumption as such of a flame at rest is not (although
it is widespread in thermoacoustics). Both mechanisms have in common that
they alter the acoustic energy via the Rayleigh and a Rayleigh-like source term,
which only differ in the pre-factors K and −1/β∂β/∂ξ, respectively.

For this second example, the adopted perspective prescribed by the choice
of output highlights the implicit assumptions and limitations of the model.
A different output may have accounted for the inability of the heat source to
move with flow perturbations, and yielded results that better match physical
intuition (e.g., constant energy over time). However, this argument does not
render one or another choice of output more or less appropriate.

The third example builds on the previous one. Consider the same academic
test case as before, but including non-zero damping. The system is now
asymptotically stable. To use the output energy to prove stability, we may
design the discrete model (A,C) such that E is a Lyapunov function V (see
Sec. 2.2.1). In this case, we can find the output matrix C via the Lyapunov
equation (2.24), if we require the dissipation matrix to be an arbitrary nega-
tive definite matrix (for example, Q =−I). As can be seen from Fig. 5.2(b), E(t )
is indeed strictly decaying. The evolution of output energy of a model where
E represents acoustic energy is overlaid for illustration. The mathematically
motivated choice of C being a Lyapunov function comes at the expense of E
not being physically interpretable. The corresponding energy weighting ma-
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trix W = CT C is a dense symmetric matrix, which means that E contains mixed
terms of spatially coupled velocity and pressure fluctuations.

5.2 Physically Motivated Energies for Thermoacoustics

The question of appropriate output energy is an ongoing matter of debate in
thermoacoustics [13, 20, 56, 57, 121]. The discussion is strongly motivated by
the aim to find a metric that is both physically meaningful and allows to re-
liably assess the stability of a thermoacoustic system [37, 58]. For example,
the concept of instability potentiality relies on using the acoustic energy as
metric to identify stable/unstable configurations of thermoacoustic systems
[3, 133, 171]. We have seen in Secs. 2.2 and 5.1 that an output energy is only
apt to determine stability if it is a Lyapunov function. In most cases, this goes
hand in hand with loss of physical insight. We thus back down with respect to
the Lyapunov function and rather seek an output energy that generates insight
into the physics of thermoacoustic interaction. This will facilitate interpreta-
tion of the origins of non-normal transient growth in thermoacoustic systems.

To comply to a certain formalism, Giauque et al. [59] and George & Sujith [56]
argue that the output energy should fulfill three requirements so as to qualify
as a mathematically consistent energy norm and as a “faithful measure of the
disturbance amplitude” [56]. These are:

1. E should be a quadratic function of only the first-order (fluctuating)
terms of the primitive variables.

2. E should be positive definite and non-zero unless all primitive variables
are zero.

3. E should not grow or decay in the absence of physical sources or sinks.

Over the decades, various authors have derived disturbance energies from
first principles, each valid under certain conditions (for example, [23, 26, 115,
130]). In 1991, Myers published a profound paper, in which he derives the
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S (A) S (F )

S (A) 1
2

∫
ΩA

[
ρ0 v2

1+2ρ1 v0 ·v1+ ρ0T0σ
2
1

cp
+ p2

1

ρ0c2
0

]
dΩ 1

2

∫
ΩA

[
ρ0

(
T0,d
T0,u

−1
)2 (

v0,u
q̇0

)2
q̇2

1

]
dΩ

S (F ) 1
2

∫
ΩF

[
ρ0 v2

1 +ρ1v0 ·v1

]
dΩ see Eq. (B3) in [20]

Table 5.1: Selection of second-order physical energy expressions for thermo-
acoustic systems consisting of the interacting subsystems acoustics
and heat source, S (A) and S (F ).

most general form of disturbance energy [117]. It is shown that his energy ex-
pression is able to unify the derivations cited above and to relax the assump-
tions made therein. His approach consists in expanding the governing equa-
tions and the total energy balance in orders of ε (see the expansion defined in
Eq. (3.7)). By comparing equal orders of εn of governing equations and energy
balance, it is possible to establish relations governing total energy conserva-
tion at n-th order. It is found that total energy conservation at orders n = 0 and
n = 1 is implicitly fulfilled by the corresponding sets of governing equations.
For n ≥ 2, it is shown that the total energy balance at n-th order is fulfilled by
an equation of the form of Eq. (2.22), ∂En/∂t = fn +Sn, where En only depends
on quadratic quantities of order n−1. Myers’ approach was recently extended
to gaseous combustion and to a time-averaged stationary base flow [20].

Myers’ result is astonishing for two reasons. First, the above mentioned re-
quirement 1. to a mathematically consistent energy norm is shown to be in-
herently fulfilled by disturbance energies that are derived from first princi-
ples.1 And second, the perturbation energy related to first-order quantities
governs total energy conservation at order 2. For small disturbances (i.e., in
the linear regime), disturbance energies derived from first principles are thus
an exact reflection of the principle of total energy conservation up to 2nd order.

Large parts of the present study are conducted in the linear regime (except
for the synthesis in Sec. 7.4), and non-normal transient growth is a linear phe-

1Whether an energy norm complies with requirements 2. and 3. needs to be found out on a case-to-case basis.
According to [56] for the case of uniform mean flow in 1-D, Myers’ 2nd order energy is positive definite and does
not exhibit unphysical growth/decay in the absence of physical sources/sinks if M < 1/

p
γ.
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nomenon. Second-order energies are therefore sufficiently well-suited met-
rics for the purpose of the present analysis. In the following, we put selected
physically meaningful second-order disturbance energy expressions into the
systemic context of a thermoacoustic system S (T ) consisting of the two sub-
systems in feedback,S (A) andS (F ). The motivating question is how to measure
the energy stored in and/or the work done by each of the subsystems and in
the interaction between them. A summarizing overview is given in Tab. 5.1.

S (A) → S (A). The energy measure of S (A) may reflect the kinetic (∼ v2
1) and

internal (∼σ2
1) energies stored in the first-order fields, in addition to the work

done by elastic compression (∼ p2
1) and by the mean flow advecting perturba-

tions in mass flux downstream. All these contributions are contained in Myers’
2nd order disturbance energy,

E (A A)
2 = 1

2

∫

ΩA


ρ0 v2

1︸ ︷︷ ︸
kinetic

+2ρ1 v0 ·v1︸ ︷︷ ︸
advection

+ ρ0T0σ
2
1

cp︸ ︷︷ ︸
internal

+ p2
1

ρ0c2
0︸ ︷︷ ︸

el. comp.


 dΩ . (5.3)

S (F ) → S (A). For an acoustically compact heat source, the effect of S (F ) onto
S (A) can be viewed as an acoustic monopole creating a difference in acous-
tic velocity δv1 up- and downstream of the heat source. From the linearized
Rankine-Hugoniot equations governing the jump conditions of planar acous-
tic waves at the acoustically compact heat source [86, 136], we obtain

δv1 =
(

T0,d

T0,u
−1

)
v0,u

q̇0
q̇1 , (5.4)

which is accurate to first order in Mach number, and where p1/p0,u is ne-
glected. The energy density of the acoustic monopole should then be given
as ρ0(δv1)2/2 [116, 130], and thus

E (AF )
2 = 1

2

∫

ΩA

[
ρ0

(
T0,d

T0,u
−1

)2 (
v0,u

q̇0

)2

q̇2
1

]
dΩ

= 1

2
ΩF ρ0

(
T0,d

T0,u
−1

)2 (
v0,u

q̇0

)2

q̇2
1 , (5.5)
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because q̇1 6= 0 only within the heat source volume ΩF . For acoustically com-
pact heat sources,ΩF ¿ΩA. Further, if mean flow effects are small, v0,u ¿ c0,u,
it can be expected that E (AF )

2 is negligible in magnitude.

S (A) → S (F ). The effect of S (A) onto S (F ) may be measured by the kinetic
energy stored in the volumetric portion of the first-order fields that perturb
the heat source, in addition to the work done by the mean flow to advect the
perturbed mass flux through the flame volumeΩF ,

E (F A)
2 = 1

2

∫

ΩF

[
ρ0 v2

1 +ρ1v0 ·v1

]
dΩ . (5.6)

Note that from the perspective of S (F ), ΩF is finite. However, as ΩF is con-
tained inΩA, E (F A)

2 is already accounted for in E (A A)
2 (see the first two terms in

Eq. (5.3)).

S (F ) → S (F ). An energy measure of S (F ) is proposed by Brear et al. in [20] for
the case of gaseous combustion. The full energy is given by

E (F F ) =
∫

ΩF

ρ
n−1∑
k=0

g0,k Yk dΩ , (5.7)

with g0,k and Yk the Gibbs’ free energy and mass fraction of the k-th species.
g0,k corresponds to the chemical potential of the k-th species for isobaric
combustion. The second-order energy E (F F )

2 is obtained by expanding Eq. (5.7)
to second order and making use of equilibrium and non-equilibrium thermo-
dynamic differentials. The details of the derivation are given in App. B of [20].
The exact expression for E (F F )

2 is not written here but can be found in Eq. (B3)
of [20].

The above selection of second-order energy norms is to a certain extent ar-
bitrary, and other choices are conceivable. However, as seen in the previous
Sec. 5.1, the choice of output merely defines the perspective the investigator
wishes to have on the dynamics. Here, we choose to have a perspective on
the matter that is motivated by a physical energy (i.e., a scalar measure of the
entire spatially distributed dynamics of the system). This stands in contrast to
physically motivated measures that are spatially confined to a certain moni-
toring plane of ΩA, such as, for example, pressure or velocity fluctuations at
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the position of the heat source, or at the inlets and outlets. Whether the above
selection of energies can be used to define the output of a model describing
the thermoacoustic system S (T ) is subject to the fineness of the model.

5.3 Chapter Summary

The present chapter can be summarized as follows:

• It is highlighted that the definition of output is, in principle, a matter
of choice that is critically tied to the dynamics described by the system
model. The output merely defines the perspective of how the system dy-
namics exhibits itself, but it does not alter the system dynamics as such.
The output therefore prescribes the way in which results should be inter-
preted.

• A selection of physical disturbance energies for thermoacoustic systems
are put into the systemic context of interacting subsystems acoustics and
heat source, respectively.
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6 Linear System Analysis of the Full
Thermoacoustic Model

The present chapter is dedicated to a linear system analysis of the full
autonomous low-order model (A(T ),C (T )) describing S (T ). In Sec. 6.1, the
thermoacoustic model is assembled by combining the heat source subsystem
S (F ), the acoustics subsystem S (A), and the definition of output (i.e., the out-
comes of Chaps. 3, 4 and 5, respectively). We further analyze the evolution
of output energy from an analytical perspective, and discuss the effect of a
fluctuating heat source on the acoustic field. The impact of different model
parameters on linear stability is studied in Sec. 6.2.

6.1 The Full Low-Order Thermoacoustic Model

The present section begins by assembling the autonomous thermoacoustic
model in Sec. 6.1.1. The output energy is analyzed from an analytical perspec-
tive in Sec. 6.1.2, before investigating the effect of a fluctuating heat source on
the acoustic field in Sec. 6.1.3.

6.1.1 Model Assembly

The full thermoacoustic system S (T ) consists of the subsystems heat source
S (F ) and acoustics S (A), which are assembled as an autonomous system of
Z = 2 interconnected subsystems as defined in Sec. 2.1. The thermoacoustic
systemS (T ) is then described by a continuous input-state-output model of the
form of Eq. (2.3) with

x(T ) =
[

x(A)T
, x(F )T

]T
, (6.1)

109



Linear System Analysis of the Full Thermoacoustic Model

u (F )

y (T )u (A ) y (A )

y (F )

Figure 6.1: Scheme of the autonomous thermoacoustic system S (T ) consist-
ing of the interacting subsystems acoustics S (A) and heat source
S (F ).

and

A(T ) =
[ A(A) B(A)C (F )

B(F )C (A) A(F )

]
. (6.2)

A graphical illustration of S (T ) is shown in Fig. 6.1.

The model (A(A),B(A),C (A)) representing S (A) is given by the simple 1-D ho-
mentropic model defined in Eqs. (4.14) with an acoustically compact heat
source and fully reflective duct ends. In the nonlinear regime, the model
(A(F ),B(F ),C (F )) describing S (F ) is defined by the G-equation flame model
given in Eq. (3.14). Provided linearity, we use the IR-based representation de-
fined in Sec. 3.2.2 with the analytically derived IR functions of a linearized G-
equation flame given in Eqs. (3.27).

Although the heat source is acoustically compact (i.e., there is a disparity in
characteristic length scales between the subsystems acoustics S (A) and heat
source S (F ), LF ¿ L A), it is not convectively compact, since the time scales
of the heat source subsystem S (F ) result from convective processes. The heat
source is therefore distributed in time (as can be seen from the IR function
of the linearized G-equation flame), but nevertheless compact in space. The
point-wise coupling with the acoustic field, as done in the present work, is
therefore a good approximation in this situation.

Following the discussion of the previous Chap. 5, we decide to choose the out-
put such that the output energy E corresponds to a physical energy. The low-
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order models used to describe S (T ) cannot represent all physical energies that
are introduced in Sec. 5.2 (see Tab. 5.1). For instance, the second-order flame
energy E (F F )

2 is not resolvable because we do not model detailed combustion
processes. The same holds for fluctuations in internal energy present in E (A A)

2 ,
since σ1 = 0 in the homentropic case. Further, the heat source is assumed
acoustically compact, so E (AF )

2 = 0. We are thus left with the pure acoustic en-
ergy with non-zero mean flow (i.e., E (A A)

2 as defined in Eq. (5.3) with σ1 = 0),
which is sometimes referred to as Cantrell & Hart energy [23, 56, 117]. This
is the only form of perturbation energy that is resolvable by the present low-
order model describing S (T ).

Using the reference scales given in Eq. (4.6) in addition to ΩA,ref = A A L A, the
non-dimensionalized output energy E (T ) reads

E (T ) = 1

2

∫ 1

0

[
v2

1 +2M v1p1 +p2
1

]
dξ . (6.3)

The autonomous thermoacoustic model (A(T ),C (T )) describing S (T ) is thus
closed by defining

C (T ) =
[
C (T,A) , 0

]
, (6.4)

where

C (T,A) =
p

2

2

[
1 M

0
p

1−M 2

]
. (6.5)

The output energy E (T ) defines a semi-norm, because the definition of output
does not include the states x(F ) of the subsystem S (F ). This will become im-
portant in Chap. 7 when investigating non-normal transient growth by means
of SVD (see also the discussion in Sec. 2.4.2).

The set of discrete matrices (A(T ),C(T )) and (A(T )
M ,C(T )

M )—depending on whether
the acoustic model of S (A) is solved by finite differences or the MWR—are
given in App. C.4. As stated in Sec. 4.4.2, we use the MWR unless otherwise
mentioned. By default, the discrete thermoacoustic model is thus given by
(A(T )

M ,C(T )
M ).

Each of the two subsystems S (A) and S (F ) possesses a characteristic time
scale. For S (A), TA = L A/c0 corresponds to the travel time of an acoustic wave
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acoustic mixed flame

ξF ζ1 ζ2 ∆β Mu Sr φ α µ type

default 0.2 −0.08 −0.025 1.25 0.005 1 0.85 23◦ 0.9 wedge

Table 6.1: Default parameter values of the low-order thermoacoustic model as
used in the present study: flame position ξF , damping coefficients
ζ1 and ζ2, temperature incremental factor∆β, upstream Mach num-
ber Mu, Strouhal number Sr, equivalence ratio φ, flame angle α,
ratio of convective to mean flow velocity µ, and the type of the lam-
inar premixed flame.

through the duct (see tref defined in Eq. (4.6)). For S (F ), TF represents the set-
tling time of the flame, which for the G-equation flame is given by the restora-
tive time scale τr = 2RF /(v0 sin(2α)) (see Sec. 3.3.1) [12]. Combining both sub-
systems thus yields an additional parameter, which is the Strouhal number,

Sr = TF

TA

= 2RF c0

L A v0 sin(2α)
= He

M

2

sin(2α)
. (6.6)

Sr corresponds to a ratio of non-dimensional groups that are representative
of the geometry and flow, the Helmholtz number He = LF /L A and the Mach
number M . The additional factor 2/sin(α) in Eq. (6.6) stems from the specific
definitions of the characteristic length and velocity scales of the G-equation
flame. Obviously, Sr results from the configuration under investigation. How-
ever, in the present low-order model of S (T ), Sr can be specified as inde-
pendent parameter. A different Strouhal number frequently used in thermo-
acoustic literature is defined as S̃r = TF ω, where ω represents the angular fre-
quency of oscillation of the input to the heat source [12, 138, 153, 154].

Values of Strouhal numbers typically found in laminar thermoacoustic sys-
tems are shown in Tab. 1.1. Configurations with premixed flames have much
larger Strouhal numbers than configurations using a heated wire as heat
source, Sr =O(100 . . . 101) vs. Sr =O(10−2). This highlights the convective na-
ture of premixed flames.
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The default parameters of the thermoacoustic model used in the present study
are summarized in Tab. 6.2. They originate from the parameters of the sub-
systems acoustics and heat source, S (A) and S (F ), respectively, as well as the
mixed parameter Sr. The parameter values are inspired by values encountered
in a typical configuration of a laminar thermoacoustic system (cf. Tab. 1.1). As
mentioned above, it is a special feature of the low-order model that all param-
eters can be treated as independent.

6.1.2 Analysis of Output Energy

For the thermoacoustic model (A(T ),C (T )), the flux and net source terms due
to which E (T ) varies in time are derived analytically as

f (T ) =−
(
M v2

1 +
(
1+M 2)v1 p1 +M p2

1

)
, (6.7a)

S(T ) = K q̇1

∫

L A

[
p1 +M v1

]
ψq dξ

︸ ︷︷ ︸
(extended) Rayleigh source term

−
∫

L A

[
∂M

∂ξ

[
4 v2

1 +M
(
3+γ)

v1 p1 +2γp2
1

]
+ 1

β

∂β

∂ξ
p1 v1

]
dξ

︸ ︷︷ ︸
source term related to gradients in mean flow and temperature

(6.7b)

+
∫

L A

[
ζv v2

1 +M
(
ζv +ζp

)
v1 p1 +ζp p2

1

]
dξ

︸ ︷︷ ︸
damping term

.

In the absence of mean flow, the flux term f (T ) reduces to the well-known
acoustic flux (v1 p1) over the boundaries. However, in the present model,
p1 = 0 at the boundaries, so f (T ) = −M v2

1. E (T ) thus increases (decreases) if
a higher (lower) convective flux M v2

1 enters the domain upstream than leaves
the domain downstream.

The source term S(T ) given in Eq. (6.7b) consists of a term resulting from the in-
teraction of the fluctuating heat source with the acoustic field (see the first line
of Eq. (6.7b)), a source term related to the gradients in mean flow and temper-
ature, ∂M/∂ξ and ∂β/∂ξ, respectively (see the second line of Eq. (6.7b)), and
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a damping term (see the third line of Eq. (6.7b)). For small mean flow (i.e.,
Mu ¿ 1), the source terms in Eq. (6.7b) that depend on M and ∂M/∂ξ are neg-
ligible in magnitude. The main sources to E (T ) are thus the classical Rayleigh
term K q̇1

∫
L A

p1ψq dξ, the Rayleigh-like source term due to the assumption
of a flame at rest (see the last term in the second line of Eq. (6.7b)), and two
strictly dissipative damping terms (see the first and last terms in third line of
Eq. (6.7b)). As discussed in the second example of Sec. 5.1, the Rayleigh-like
source term results from the assumption of a flame at rest, which is inherent
to the model. We therefore refer to this source term as inherent source term in
the remainder of the present work.

Since the net flux and source terms are not strictly dissipative, it obviously fol-
lows that the thermoacoustic model (A,C) admits transient growth, and that
E (T ) is not a Lyapunov function. The main sources to E (T ) are the Rayleigh
source term and the Rayleigh-like inherent source term, which scale with the
strength of the heat source and the mean temperature jump, respectively. We
therefore expect the strength of the heat source regulated by K and the magni-
tude of the temperature jump regulated by the temperature incremental fac-
tor ∆β to dominate transient energy growth. This matter will be discussed in
Sec. 7.2.2.

6.1.3 The Effect of a Fluctuating Heat Source

The present section investigates the effect of a fluctuating heat source on the
eigenmodes and eigenfrequencies of S (T ). In structure, the present section is
similar to Sec. 4.5.

The effect of a heat source on the shapes of the eigenmodes ofS (T ) can be seen
in Fig. 6.2. In the absence of a heat source (i.e., K = 0), the velocity and pres-
sure profiles are those of the uncoupled acoustic subsystem (cf. Figs. 6.2(a)
and 6.2(b) to Figs. 4.5(a) and 4.5(e), respectively). For K > 0, the velocity pro-
files exhibit an increasingly strong jump δv1 at ξ = ξF . This is due to the
heat source acting as an acoustic monopole source. The pressure profiles also
change, but less prominently than the velocity profiles. A compact heat source
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p
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ξ

v 1

0 ξF 1

(a) Mu=0, ∆β=0, K=0.

p
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ξ

v 1
0 ξF 1

(b) Mu=5e−3, ∆β=1.25, K=0.
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ξ
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0 ξF 1

(c) Mu=0, ∆β=0, K=5.9e−4.

p
1

ξ

v 1

0 ξF 1

(d) Mu=5e−3, ∆β=1.25, K=5.9e−4.

Figure 6.2: First (—), second (−−−) and third (· · · ) eigenmodes of S (T ) in
terms of v1(ξ) and p1(ξ) as a function of K , Mu and ∆β. Results
are obtained by spectral analysis of A(T )

M with otherwise default pa-
rameter values.
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thus changes the acoustic mode shapes significantly. The change would even
be more pronounced for heat sources that are distributed in space.

The complete eigenspectrum of S (T ) is plotted in Fig. 6.3. For the uncoupled
case (i.e., K = 0), the eigenvalues associated to S (A) and S (F ) are clearly sep-
arated (see Fig. 6.3(a)). Once coupled (i.e., K > 0), the eigenspectra move to-
gether to form a thermoacoustic eigenspectrum (see Fig. 6.3(b)). The coupled
and uncoupled eigenspectrum differ significantly, and a net distinction be-
tween the eigenvalues associated to the individual subsystems is not possible.

In Fig. 6.4, we plot the paths of the first three (initially acoustic) eigenvalues for
a range of increasing strength of the fluctuating heat source K = [0,7.4×10−4].
The paths of the eigenvalues of three thermoacoustic configurations are com-
pared, which differ only in the Strouhal number Sr: a fast heat source with
Sr = 10−2, such as a heated wire (indicated by the blue path in Fig. 6.4), and
two slower heat sources with Sr = 1 and Sr = 3, respectively, indicative of a
premixed flame (see the green and red paths in Fig. 6.4, respectively).

For all Sr, the eigenvalues change in growth rateλ and angular frequency of os-
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(a) Uncoupled: K = 0.
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(b) Coupled: K = 7.4×10−4.

Figure 6.3: Eigenspectra of S (T ) for (a) uncoupled and (b) coupled subsystems
S (A) andS (F ). For K > 0, the eigenvalues of both subsystems merge
to form a thermoacoustic eigenspectrum. Results are obtained by
spectral analysis of A(T )

M with otherwise default parameter values.
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Figure 6.4: First three eigenvalues ofS (T ) plotted as a function of growth rateλ
and frequency of oscillationω subject to the increasing strength of
the heat source K = [0,7.4×10−4] for Sr = 0.1 (from black to blue),
Sr = 1 (from black to green), and Sr = 3 (from black to red) com-
puted from spectral analysis of A(T )

M with otherwise default param-
eter values. Starting point are the acoustic eigenfrequencies for
the uncoupled case K = 0 indicated by the thick black dots.

cillationω subject to an increase in the strength of the fluctuating heat source
K . For the fast heat source with Sr = 0.1, the eigenvalues move in the same
direction over the entire range of increasing K . That is, the eigenvalues ei-
ther become more stable (as the first two eigenvalues shown in Figs. 6.4(a) and
6.4(b)), or more unstable (as the third eigenvalue shown in Figs. 6.4(c)). This
stands in contrast to the slow heat sources with Sr = 1 and Sr = 3. Here the di-
rection of the path may change while K is increased. That is, while increasing
the strength of the fluctuating heat source, an eigenvalue may first become
more stable and then move back towards higher growth rates, or vice versa.
This behavior seems to become more pronounced for increasing Strouhal
number Sr (see the second and third eigenvalues in Figs. 6.4(b) and 6.4(c)).

A similar finding of thermoacoustic eigenvalues changing direction while the
strength of the fluctuating heat source is increased is reported by Emmert et
al. [41]. Strictly speaking, this behavior makes K less apt to be used as lin-
ear stability parameter. It cannot be excluded that the system returns to the
linearly stable regime when increasing K beyond a critical threshold at which
the system becomes unstable. However, for the present low-order model of
S (T ) with the investigated configuration, the turning behavior is stronger for
eigenvalues with higher than with lower frequency of oscillation (see Fig. 6.4).
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acoustic mixed flame

ξF ζ1 ζ2 ∆β Mu Sr φ α µ type

min. 0.025 −0.13 −0.03 0 0 10−3 0.5 20◦ 0.86 wedge

max. 0.475 −0.01 −0.005 2 0.05 5 1 25◦ 1 wedge

Table 6.2: Parameter ranges for the linear stability analysis of S (T ).

Due to the employed modal damping model, these higher modes are damped
more strongly. The first eigenmode is thus most likely to govern the overall
linear stability behavior of S (T ). In this case, K represents a reliable linear sta-
bility parameter, and will be used as such in the following Sec. 6.2.

Altogether, a spectral analysis of S (T ) highlights that thermoacoustic systems
should be seen as a whole. This stands in contrast to the traditional approach
of viewing thermoacoustics as an acoustic system that is slightly perturbed
by a fluctuating heat source (see the discussion in the introductory Sec. 1.2).
As S (A) and S (F ) are inherently coupled, it makes sense to speak of thermo-
acoustic behavior, rather than seeking to separate cause and effect of two sub-
systems that are in direct feedback.

6.2 Linear Stability Analysis

The present section deals with the linear stability behavior of S (T ). The stabil-
ity bounds are obtained in two ways, which are detailed in the following.

6.2.1 Classical Eigenvalue Analysis of the System Operator

In the first approach, linear stability is determined by finding the critical
strength of the heat source K = Kcrit at which the system is marginally stable.
Marginal stability is reached when the largest growth rate of the eigenvalues
of the discrete system matrix A(T )

M is zero. The resulting stability maps are pre-
sented in a 2-parameter space. Larger (smaller) values of Kcrit indicate more
(less) stable regions. The theoretical limiting case of Kcrit = 0 would mean that
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Figure 6.5: Linear stability map of S (T ) in terms of Kcrit in the (ζ1,ζ2)-
parameter space with otherwise default parameter values. More
(less) stable regions are indicated by larger (smaller) values of Kcrit.

the system is linearly unstable even in the absence of thermoacoustic cou-
pling.

The parameter ranges over which linear stability of the thermoacoustic model
is investigated are summarized in Tab. 6.2. As for the default parameter values
given in Tab. 6.1, the parameter ranges are inspired by values encountered in
typical configurations of laminar thermoacoustic systems (cf. Tab. 1.1).

Consider as example the linear stability map of ζ1 vs. ζ2 given in Fig. 6.5. The
critical strength of the heat source Kcrit increases for increasing values of ζi .
As anticipated, linear stability is thus enhanced for larger damping. Due to
the definition of the modal damping model in Eq. (4.31), ζ1 is more influential
than ζ2.

The linear stability maps of S (T ) in different 2-parameter spaces are shown in
Fig. 6.6. To ease comparison, the first parameter is always given by the temper-
ature incremental factor ∆β. The first column represents the effect on linear
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stability of the acoustic and mixed parameters ξF , Mu and Sr, whereas the sec-
ond column shows the effect of the flame parameters φ, α and µ. The results
are summarized in the following:

• Flame position ξF (Fig. 6.6(a)). The spatial location at which the fluctuat-
ing heat source feeds into the acoustic field is an important factor for the
linear stability ofS (T ). The acoustic field is least receptive for q̇1 (i.e., most
stable) in the region of ξF = 0.28. . .0.38. The downstream half of the duct
for 0.5 < ξF < 1 is not shown, because it does not yield additional relevant
information as compared to the upstream half depicted in Fig. 6.6(a).

• Upstream Mach number Mu (Fig. 6.6(c)). The effect of non-zero mean
flow on linear stability is small in the range of upstream Mach numbers
considered. For the temperature incremental factor ∆β < 0.5, increasing
mean flow has a slightly destabilizing effect on S (T ). For ∆β > 0.5, this
trend is inverted. It is difficult to give a physical explanation of the ob-
served stability map, because the variation of Kcrit is marginal in the range
of Mu and ∆β considered. However, both the mean flow and the temper-
ature jump affect the thermoacoustic eigenmodes (see Figs. 4.5 and 6.2),
and thereby also alter the linear stability behavior.

• Strouhal number Sr (Fig. 6.6(e)). The ratio of time scales between the
subsystems S (F ) and S (A) has a destabilizing effect on S (T ). That is, heat
sources with large characteristic time scales tend to be detrimental for
the stability of the thermoacoustic system. It is well-known from control
theory that systems with large delays are more difficult to control [169],
because a change in the delayed part of the system shows its effect only
after some time lag. This is also the case for the thermoacoustic interac-
tion present in S (T ). Conversely, fast heat sources have a stabilizing effect
onS (T ). For small values of Sr, Kcrit is of the order of four times larger than
the maximum Kcrit associated to the red color shading.

• Fuel-to-air ratio φ (Fig. 6.6(b)). Lean combustion clearly has a destabiliz-
ing effect on S (T ). In the present study, the reason for this stability behav-
ior is linked to the specific model of the premixed flame. From Fig. 3.3, it
is visible that decreasing φ entrains a decrease in flame speed SL and in
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Figure 6.6: Linear stability maps of S (T ) given in terms of Kcrit in different 2-
parameter spaces with otherwise default parameter values. More
(less) stable regions are indicated by larger (smaller) values of Kcrit.
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heat of reaction qR . Both directly affect the mean heat release rate q̇0 (i.e.,
the mean power of the flame), which thus reduces with φ (see Eq. (3.8b)).
In addition, since we require the Strouhal number to remain constant at
the default parameter value of Sr = 1, a decrease in SL requires an equiv-
alent decrease in the flame radius RF (see the definition of Sr in Eq. (6.6)).
Finally, the prefactor appearing in the definition of the IR function of the
premixed wedge flame in Eq. (3.27b) contains the term q̇0/R2

F . The latter
IR function governs the strength of the fluctuations in heat release rate
q̇1. In reducing q̇0 and RF with φ, the fluctuating heat source thus gains
strength, and leads to a destabilization of S (T ).

• Flame angle α (Fig. 6.6(d)). In a general fashion, increasing the flame an-
gle α has a destabilizing effect on S (F ). That is, short flames, where the
ratio of convective to restorative times scales Π is small, are less stable.
It thus seems that the configuration is less stable the more the process
of convection and restoration are decoupled. However, this trend is not
homogeneous. As can be seen from the corresponding stability map, the
stabilizing impact of α is largest for ∆β < 0.5.

• Ratio of convective to mean flow velocities µ (Fig. 6.6(f)). In a general
fashion, increasing µ has a destabilizing effect on S (T ). That is, the sys-
tem becomes more stable for small convective velocities, which—as for
the flame angle α—amounts to large ratios of convective to restorative
time scalesΠ. This is why the corresponding stability map is very similar
to that of α vs. ∆β given in Fig. 6.6(d). Both parameters affect the shape
of the IR function of the flame (see Fig. 3.7 in Sec. 3.3.1).

• Temperature incremental factor ∆β (all plots in Fig. 6.6). The effect of a
temperature jump on the linear stability behavior of S (T ) is strong. How-
ever, depending on the operating point, the effect may be stabilizing or
destabilizing. A general trend cannot be stated.
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NA,M = 1 and by spectral analysis of A(T )
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6.2.2 Eigenvalue Analysis of Delay Differential Equations

The second approach to determine linear stability makes use of the definition
of a coupled input given in Sec. 2.3.1. As S (F ) is modeled by an IR-based rep-
resentation, its state vector is given as lagged acoustic velocity fluctuations at
the flame base, x(F ) = vB

1 (t −τ) (see Sec. 3.2.2). In this special case, S (F ) acts as
coupled input to S (A). Upon discretization, the linear stability can therefore
alternatively be determined by solving for the roots of the characteristic equa-
tion (2.17) of a set of distributed delay differential equations (dDDE). For the
present low-order model, the characteristic equation reads [114, 163]

det
[

s I−A(A)
M −diag

(
B(A)

M

)
F (F )(s)

]
= 0 , (6.8)

where F (F )(s) represents the transfer function of the linearized G-equation
flame, which is obtained by Laplace transform of the IR functions given in
Eqs. (3.27).

As mentioned in Sec. 2.3.1, the characteristic equation (6.8) possesses an infi-
nite number of eigenvalues si . It can be solved using software packages de-
signed for the numerical treatment of delay differential equations, such as
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DDE-BIFTOOL [42] or TRACE-DDE [21]. In a single-mode approximation of
the MWR (i.e., NA,M = 1), the linear stability bound of Eq. (6.8) can be deter-
mined analytically by setting s =± jω [166].

Although the current approach describes an elegant analytical solution and a
quick estimate of the linear stability bound [163], the latter may not be very
accurate. This is shown in Fig. 6.7, where Kcrit of S (T ) is plotted as a function of
ξF . The analytical estimates of the stability bounds do not match at all, neither
in trend nor in order of magnitude, to those computed by spectral analysis of
the full operator A(T )

M with NA,M = 70. This mismatch is due to the inability of a
single mode to resolve the thermoacoustic mode shapes.

6.3 Chapter Summary

The present chapter can be summarized as follows:

• The low-order thermoacoustic model is assembled and studied as to its
linear system behavior. This includes the effect of different parameters
on the linear stability bounds of S (T ), as well as analyzing the flux and
source terms in charge of driving and damping the output energy.

• We highlight the benefit of adopting a holistic view on thermoacoustic
systems, rather than treating it as an acoustic problem that is slightly per-
turbed by a heat source.
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7 Non-Normal Transient Growth in
Thermoacoustics

The present chapter stands at the core of the present thesis. The low-order
thermoacoustic model formulated in the previous chapters is employed to
investigate non-normal transient growth of a simple thermoacoustic system
around a stable fix point. The overall aim is to gain a deeper understanding on
the basic dynamics of non-normal transient growth and to indicate whether it
could be a threat for triggering S (T ) to an oscillating state.

The chapter is organized as follows. In Sec. 7.1, we contrast spurious to phys-
ical non-normal transient growth, which is strongly related to the numerical
schemes used to resolve the model of S (T ). Physical non-normal transient
growth is analyzed in detail as to its dynamics and to the relevant parameters
influencing transient growth in Sec. 7.2. In Sec. 7.3, we determine the prob-
ability of observing any (optimal or suboptimal) level of transient growth in
S (T ). The concept is exemplified for a toy model of S (T ) with two degrees of
freedom, before being applied to the full low-order model of S (T ). The rele-
vance of non-normal transient growth for triggering is discussed in Sec. 7.4.

7.1 Spurious Non-Normal Transient Growth

As discussed in the introductory Sec. 1.1.1, the study of non-normality first
arose in the field of numerical computation to determine the condition of op-
erators [60, 94, 174]. If an operator is ill-conditioned due to the underlying
numerical scheme, this may cause non-normality that cannot be attributed
to the physical problem at hand. In this case, the operator exhibits spurious
non-normality, which may lead to spurious non-normal transient growth.
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The majority of discretized numerical operators possesses a certain amount
of spurious non-normality, which is inevitable due to the necessary inclusion
of boundary conditions, field inhomogeneities or meshing constraints. This
does not alter the ability of these operators to represent the dynamics of the
problem, so as to generate reliable stability maps or to correctly forward the
problem in time. However, if one is interested in studying non-normal tran-
sient growth, the amount of spurious non-normality should not dominate the
total amount of non-normality.

In general, it is difficult to distinguish between spurious and physical non-
normality, because both are present in parallel. One approach is to analyze a
normal system that by definition lacks any sources of physical non-normality.
Such a normal system is given by the isolated and undamped simple acoustic
subsystem S (A) defined in Sec. 4.2 without mean flow and temperature jump,
K = 0, Mu = 0, ζi = 0 and ∆β = 0. As the boundary conditions are acousti-
cally fully reflective, the acoustic energy of any acoustic field initialized inside
the duct remains constant over time. Growth or decay of acoustic energy are
thus not possible in this theoretical configuration, and the problem is free of
physical non-normality.

The time traces of the maximum normalized output energy G(t ) and the evo-
lution of optimal relative amplification of output energy G∗(t ) of the nor-
mal configuration of S (A) are shown in Fig. 7.1 using the FD scheme and the
method of weighted residuals (MWR) defined in Secs. 4.4.1 and 4.4.2, respec-
tively. It is evident that the MWR predicts the anticipated result of G(t ) =
G∗(t ) = const . = 1. In contrast, the FD scheme predicts Gmax ≈ 2, and G∗(t )
distinctly increases twice before remaining constant for t > 1 acoustic time
scale. The FD system matrix A(A) thus exhibits spurious non-normality.

The origins of spurious non-normality of the FD scheme can be explained
with the help of Fig. 7.2, where the optimal initial mode shapes given in terms
of v1(ξ) and p1(ξ) and their evolutions in time are plotted at different snap-
shots corresponding to those indicated in Fig. 7.1. The optimal initial mode
shape x∗(A)

0 at t = 0 depicted in Fig. 7.2(a) contains wrinkles with steep gradi-
ents near the boundaries. At t = t1, these wrinkles have been reflected at the
boundaries, which is visible from the phase change of the acoustic pressure in
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Figure 7.1: The maximum normalized output energy G and the optimal rel-

ative amplification of output energy G∗ from the OIC x∗(A)
0 of

the normal configuration of S (A) (without damping, mean flow,
heat source and temperature jump) using the FD scheme and the
method of weighted residuals (MWR) defined in Secs. 4.4.1 and
4.4.2, respectively. The FD scheme exhibits spurious non-normal
transient growth, whereas the MWR does not.

Fig. 7.2(b). This goes hand in hand with a significant increase in the optimal
relative amplification of output energy G∗ (see Fig. 7.1). The latter remains
constant while the wrinkles are propagated through the duct (see Fig. 7.2(c)),
and again increases when the wrinkles are once more reflected at the bound-
ary (see Fig. 7.2(d)). As the FD method used is not apt to handle oscillations
with steep gradients, the wrinkles are dissipated, which can be seen from the
smoothened shape of the wrinkles at t = t4 in Fig. 7.2(e). From this point on-
wards, the wrinkles do not contain strong gradients anymore, and the opti-
mal relative amplification of output energy G∗ remains constant over time as
it should be, even when the acoustic waves are reflected at the boundaries
(cf. Figs. 7.2(f) and 7.1).

For the FD scheme, the implemented boundary conditions thus render the
discrete state matrix ill-conditioned (see also the structure of A(A) given in
App. C.3.1). The optimization algorithm, which optimizes over the entire
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Figure 7.2: OIC x∗(A)
0 and its evolution in time of the normal configuration of

S (A) using the FD scheme defined in Sec. 4.4.1. The snapshots in
time are indicated in the corresponding time traces of G(t ) and
G∗(t ) in Fig. 7.1. x∗(A)

0 is visualized in terms of v∗
1 (ξ) and p∗

1 (ξ).

space of initial conditions, thus generates oscillations in x∗(A)
0 that are not con-

sistent with the imposed boundary conditions, and that the underlying nu-
merical scheme cannot handle. Thereby, spurious energy is generated. Avoid-
ance of these unphysical oscillations in x∗(A)

0 would require an additional con-
straint to limit the space of permissible initial conditions. This is only possi-
ble using variational optimization methods (see the discussion in Sec. 2.4.2).
In contrast, the MWR does not exhibit spurious non-normal transient growth,
because the entire space of initial conditions implicitly fulfills the boundary
conditions. The latter hence do not alter the condition of the discretized nu-
merical operator A(A)

M .
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Figure 7.3: (a) Optimal initial condition x∗(F )
0 given in terms of v∗B

1 (t − τ) at
t = 0 plotted over the history variable τ of a generic test case using
an FE (—), FD2 central (—), and FD1 backward scheme (−−−).
The boundary conditions of the FE and FD2 schemes render the
underlying operators ill-conditioned, leading to unphysical oscil-
lations in x∗(F )

0 . (b) Profiles of vB
1 (t −τ) subject to mono-frequent

harmonic forcing. Unlike the FD schemes, the FE scheme is nearly
free of dissipation and dispersion.

The same phenomenon of unphysical oscillations in the optimal initial con-
dition is also observable for different numerical schemes modeling the heat
source subsystem S (F ). In Fig. 7.3(a), we compare x∗(F )

0 given in terms of the
optimal initial profiles of lagged acoustic velocity at the flame base v∗B

1 (t −τ)
plotted over the history variable τ of a generic test case obtained by an FE
scheme (the default scheme used), a 2nd order central FD scheme (FD2), and
a 1st order backward FD scheme (FD1). The latter scheme was used by Sub-
ramanian & Sujith in a similar context [165]. The discretized numerical oper-
ators of the FE and FD2 schemes are ill-conditioned due to the implemented
boundary conditions, and the corresponding x∗(F )

0 exhibit unphysical oscilla-
tions. This is not the case for the FD1 scheme, where the boundary condition
does not alter the condition of the matrix (not shown, see for example Eq. (B6)
in [165]). However, the coarse-grained shape of x∗(F )

0 is the same for all three
schemes.
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The picture changes when comparing the performance of the different nu-
merical schemes with respect to profiles that are not computed from an op-
timization routine. Figure 7.3(b) displays the profiles of vB

1 (t − τ) subject
to mono-frequent harmonic excitation. The FE scheme is the only scheme
nearly free of dissipation and dispersion. Despite producing the best results
with respect to the OIC, the FD1 scheme is highly dispersive and dissipative.

As mentioned in the beginning of the present section, spurious non-normality
is troublesome if its effect on transient growth is of the same order of mag-
nitude as that resulting from physical non-normality. In Fig. 7.4, we plot the
growth rateλmax of the most unstable eigenvalue smax of the dissipation matrix
Q(T ) of the low-order thermoacoustic model describing S (T ) over the strength
of the fluctuating heat source K . The acoustics subsystem S (A) is modeled us-
ing the FD scheme and the MWR, respectively, and the heat source subsystem
S (F ) is modeled using the FE scheme. According to the discussion given in
Sec. 2.4.1, the largest growth rate λmax(Q(T )) indicates an upper bound on the
supply rate to the temporal change in output energy. For K = 0 (K > 0), the
subsystems S (A) and S (F ) are uncoupled (coupled). Increasing K to the linear
stability bound at K = Kcrit thus introduces physical non-normality to S (T ).

The dashed lines in Fig. 7.4 depict the case without mean flow and temper-
ature jump. For K = 0, only damping affects the output energy (see the
flux and source terms in Eqs. (6.7)). The output energy E then represents a
strictly decaying Lyapunov function, and λmax(Q) < 0. For K > 0, the out-
put energy E may transiently grow due to the first source term in Eq. (6.7b),
and λmax(Q) > 0. Using the MWR to model S (A), λmax(Q) follows the an-
ticipated trend and monotonically increases with K . Using the FD scheme,
λmax(Q) = const . for all K . This shows that for this configuration spurious
non-normality is stronger than or at least of the same order of magnitude as
physical non-normality.

The full lines in Fig. 7.4 signify the case where S (T ) is configured using the de-
fault parameter values given in Tab. 6.1. In this case, all source terms given
in Eq. (6.7b) are present, and transient growth is possible even for K = 0.
We therefore expect λmax(Q) > 0 for all K . This is confirmed by both meth-
ods describing S (A). For the FD scheme, λmax(Q) = const . takes nearly the
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Figure 7.4: Growth rate λmax of the most unstable eigenvalue smax of Q(T ) over
K /Kcrit. S (A) is modeled using the FD scheme or the MWR. For
Mu = 0 and ∆β = 0 (−−−), λmax(Q)(T ) should increase with K , as
is the case for the MWR, but not for the FD scheme. For default
parameter values, it is expected that λmax(Q)(T ) > 0, because non-
zero source terms can cause non-normal transient growth of en-
ergy even for K = 0. This trend is confirmed by both methods.

same value as without mean flow and temperature jump. For the MWR,
λmax(Q) = const . is much larger than without mean flow and temperature
jump. As the condition of the operator is now also affected by the presence of
mean flow and temperature jump, it is not possible to distinguish the effects
of spurious and physical non-normality. However, since the presence of mean
flow and temperature jump shows an effect on λmax(Q), and since λmax(Q) fol-
lows the anticipated trend, it is concluded that the MWR is nonetheless better
suited to study non-normal transient growth than the FD scheme.

In summary, the FD scheme is not suited for the study of non-normal tran-
sient growth. Corroborating the arguments in favor of the MWR made in the
end of Sec. 4.4.2, all results produced in the remainder of this chapter thus
make use of the MWR to model the acoustics subsystem SA. Concerning the
performance of the schemes modeling S (F ), we decide to use the FE scheme
for transient simulations (as defined by default in Sec. 3.2.2), and to use the
FD1 scheme to compute the OIC x∗(F )

0 .
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7.2 Analysis of Physical Non-Normal Transient Growth

The current section deals with the analysis of the physical non-normal tran-
sient growth observed in the simple thermoacoustic system S (T ). Since the
output energy defines a semi-norm, we investigate the influence on transient
growth of those initial states that are not contained in the output energy, and
how the optimal normalized energy amplification Hmax and the optimal mode
shapes evolve in time (see Sec. 7.2.1). The influence of different model pa-
rameters on transient growth is addressed in Sec. 7.2.2. By default and unless
otherwise mentioned, the strength of the fluctuating heat source K is set to
approximately 99% of the critical value Kcrit at the linear stability bound.

Before proceeding, it is necessary to ensure that the results presented in the
following are independent of the resolution of the numerical schemes used. In
Fig. 7.5(a), we investigate the value of Hmax obtained when varying the num-
ber of basis functions NA,M used in the numerical model of S (A). Since NIR
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Figure 7.5: (a) Relative difference of Hmax (%) as a function of the number of
basis functions NA,M (and thus NIR). The reference value of Hmax ≈
1.6 is taken at the finest grid resolution NA,M = 100 (corresponding
to NIR = 550). (b) Maximum of the relative difference (%) between
|x∗(T )

0 | with NA,M and NA,M −1 as a function of NA,M . Configuration:
κ0 = 0, K = 7.3×10−4, default parameter values.
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used in the numerical model of S (F ) is linked to NA,M by a condition ensur-
ing numerical stability, NIR ∝ (NA,M ,Sr,∆β, Mu), variation of NA,M accordingly
changes NIR. The color shading indicates the difference in Hmax relative to the
finest resolution in the top right corner of the plot. It is visible that Hmax ≈ 1.6
changes by less than 0.1% for NA,M > 50.

The maximum of the relative difference between |x∗(T )
0 | with NA,M and NA,M−1

basis functions is plotted in Fig. 7.5(b) over NA,M . For NA,M > 30, the coarse-
grained slope of this error measure is below 1%. To ensure independence from
the numerical resolution, all following results are produced with NA,M = 70
unless otherwise mentioned. For default parameter values, this corresponds
to NIR = 414.

7.2.1 The Dynamics of Non-Normal Transient Growth

The Effect of Kernel Energy

Since the output energy E of the discrete model (A(T ),C(T )) of S (T ) defines
a semi-norm (see Sec. 6.1.1), the initial ratio of kernel to output energy κ0

should be taken into account as an additional optimization parameter to find
the optimal relative amplification of output energy Gmax = Emax/E0 (see also
the discussion in Sec. 2.4.2).

The first limiting case is that of κ0 = 0, where the initial condition does not
contain fluctuations in the heat source subsystem S (F ). The corresponding
time traces of the maximum normalized energy amplification H (defined in
Eq. (2.34)) and optimal relative energy amplification G∗ (defined in Eq. (2.26))
are plotted in Fig. 7.6(a) and 7.6(c) for default and minimum values of damp-
ing, respectively. For default damping values, Hmax ≈ 1.6 is reached at t∗ = 1.69
acoustic time scales. For low damping, Hmax ≈ 1.7 occurs very quickly at
t∗ = 0.34 acoustic time scales.

The other limiting case is obtained for κ0 =∞, where the initial output energy
E0 = 0 and thus Gmax =∞. In this case, the optimal initial condition x∗(T )

0 con-
tains non-zero entries only in x(F )

0 , which subsequently affect the acoustic field
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Figure 7.6: Left column: Time traces of the maximum normalized output en-
ergy H defined in Eq. (2.34) (−−−) and optimal relative energy
amplification G∗ defined in Eq. (2.26) (—) in the limiting case of
κ0 = 0 (i.e., no kernel energy at t = 0). Right column: Same as
left column, but for κ0 = ∞. In this case E0 = 0, and we plot the
optimal amplification of output energy E∗ (—). Damping is given
by the default (top row) and the minimum parameter values (bot-
tom row) shown in Tabs. 6.1 and 6.2, respectively. Configuration:
K = 7.3×10−4 and K = 1.8×10−4 for default and low damping val-
ues, respectively, otherwise default parameter values.

(and thus the output energy E) for t > 0. This corresponds to an initial condi-
tion where the heat source is perturbed in a quiescent acoustic environment
(for example, by oscillating the flame holder without this action generating
noise). The time traces of the maximum normalized output energy H and
the optimal output energy E∗ corresponding to this limiting case are plotted
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in Fig. 7.6(b) and 7.6(d) for default and minimum values of damping, respec-
tively. It can be seen that E0 = 0 increases up to Emax = Hmax at optimality for
t = t∗.

In practice, it is not possible to generate initial conditions that are exclusively
affecting only one of the subsystems. It is therefore interesting to investigate
how the initial ratio of kernel to output energy κ0 affects the maximum levels
of non-normal transient growth. Using the optimization procedure laid out in
Sec. 2.4.2, we compute the maximum relative and normalized amplification of
output energy Gmax and Hmax, respectively, over a range of κ0. As κ0 is reduced,
the initial level of output energy E0 increases. This decreases the available
amount of kernel energy that could potentially be converted to output energy
through the coupling between both subsystems. One might therefore expect
that the maximum relative energy amplificationGmax increases monotonically
with κ0, as shown by Foures et al. [52] for a model of a viscous turbulent flow.
For the present model describing S (T ), however, Gmax is not a monotone func-
tion of κ0. As can be seen from Fig. 7.7, Gmax ≈ Hmax ≈ 1.6 for 0 ≤ κ0 < 103.
For κ0 > 103, Hmax tends to infinity, whereas Gmax decreases to values slightly
above unity, before finally tending to the anticipated maximum of infinity for
κ0 > 1010.

Although the initial output energy E0 indeed decreases for increasing κ0, the
effect of S (F ) onto S (A) is not sufficiently strong so as to convert large parts of
the kernel energy to output energy. This is due to the Rayleigh source term
given in the first row of Eq. (6.7b), which dictates that the conversion from
kernel to output energy can only take place if the acoustic field is receptive to
fluctuations in heat release rate. Otherwise, the interaction of both subsys-
tems does not modify or even decreases E , and kernel energy is not converted
to output energy. This effect is fundamentally different from flow systems,
where the entire kernel energy eventually transfers to output energy [52].

The behavior of Gmax with respect to κ0 indicates that the OICs with non-zero
initial output energy E0 are dominated by non-zero values in the state vector
x(A)

0 of the acoustics subsystem S (A). Since the Rayleigh term inhibits con-
servative transfer of kernel to output energy, initial perturbations in the heat
source subsystem S (F ) are not very effective at maximizing the acoustic en-
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Figure 7.7: Maximum normalized and relative amplification of output energy,
Hmax and Gmax, respectively, as a function of the initial ratio of
kernel to output energy κ0. For κ0 < 103, Gmax ≈ Hmax ≈ 1.6. For
κ0 > 103, Hmax tends to infinity, whereas Gmax decreases and only
tends to infinity forκ0 > 1010. Configuration: K = 7.3×10−4, default
parameter values.

ergy. As mentioned above, for all practical setups the initial output energy
E0 > 0, and thus κ0 ¿∞. In addition, Gmax ≈ Hmax ≈ 1.6 is unaffected by the
magnitude of the initial kernel energy over a wide range of κ0. This translates
to small perturbations in the heat source subsystem S (F ) not causing a sig-
nificant change in the dynamics of non-normal transient growth of S (T ). We
therefore focus further analysis onto the limiting case of κ0 = 0 (i.e., the ini-
tial condition does not contain any fluctuations in the heat source subsystem
S (F )). This also facilitates interpretation of results, as the relative equals the
normalized amplification of output energy, G(t ) = H(t ) =G(t ).

The Process of Non-Normal Transient Growth

The evolution of the acoustic states x(A) = [v1(ξ), p1(ξ)]T and the flame states
x(F ) = vB

1 (t −τ) during the occurrence of non-normal transient growth is visu-
alized in Fig. 7.8 for the default and low damping values specified in Tabs. 6.1
and 6.2. Four snapshots in time are depicted, each corresponding to the op-
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timal evolution of relative amplification of output energy G∗ shown in the left
column of Fig. 7.6: the OIC at t = 0, the phase of dominant transient growth at
t = t1, optimality at t = t∗, and the phase of decay following Hmax at t = t2.

The OIC at t = 0 is not instructive as such, but it sets the stage for the phase
of growth leading to the optimal energy amplification. This process is ana-
lyzed in the following in the context of the flux and source terms driving the
temporal evolution of output energy. Since M = 0.05 is very small, we neglect
the corresponding flux and source terms in Eqs. (6.7). With this simplifica-
tion, and as discussed in Sec. 6.1.2, transient growth can be explained by two
driving source terms, the (physical) Rayleigh source term resulting from the
interaction of the acoustic field with the heat source, and the inherent source
term resulting from the assumption of a flame at rest. In order to lead to an
increase in output energy, driving needs to overcome the strictly dissipative
damping term.

For low damping values, the optimal energy amplification Hmax occurs at
t∗ = 0.34 acoustic time scales. By this time, the fluctuations in velocity at
the flame base have not yet been advected to the tip of the flame, where the
dominant flame response in q̇1 is generated. For reference, the shape of the
IR function of the premixed wedge flame derived and discussed in Sec. 3.3.1
is overlaid onto the lagged values of velocity fluctuations at the flame base
vB

1 (t −τ) in the right column of Fig. 7.8. Non-zero vB
1 (t −τ) (indicated by the

yellow lines) does not encounter the region of strong flame response in any
of the snapshots. Thus no significant fluctuations in heat release rate q̇1 are
generated (see also the convolution equation (3.18b) governing the output of
the heat source subsystem), and the Rayleigh source term is negligible. On
the other hand, the inherent source term is positive if v1(ξF ) and p1(ξF ) are
of opposite sign. This is the case during the driving phase at t = t1. At op-
timality, dE/dt = 0, and the net source terms are zero. During the phase of
decay at t = t2, v1(ξF ) and p1(ξF ) are of same sign and thus the output energy
E decreases more strongly than solely by the action of dissipative damping.

For default damping values, the optimal energy amplification Hmax occurs at
t∗ = 1.69 acoustic time scales. In contrast to the case with low damping, the
phase of dominant transient growth is due to both source terms driving the
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Figure 7.8: Profiles of v1(ξ), p1(ξ) and vB
1 (t −τ) (left, center and right columns,

respectively) during non-normal transient growth for default (—)
and low damping (—): (a) The OIC at t = 0, (b) the phase of dom-
inant transient growth at t = t1, (c) optimality at t = t∗, (d) the
phase of decay at t = t2 (all snapshots are indicated in Fig. 7.6). The
IR function is overlaid in the right column. Configuration: κ0 = 0,
K = 7.3×10−4 and K = 1.8×10−4 for default and low damping, re-
spectively, otherwise default parameter values.
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output energy in parallel, as can be seen from the black lines in the second
row of Fig. 7.8. At t = t1, v1(ξF ) and p1(ξF ) are of opposite sign. Also, domi-
nant non-zero values of the lagged acoustic velocity at the flame base vB

1 (t−τ)
meets the dominant zone of the IR function, thus generating significant q̇1,
that in turn is of the same sign as p1(ξF ). The Rayleigh source term is hence
positive. At optimality, the net source terms are zero as before. During the
phase of decay at t = t2, v1(ξF ) and p1(ξF ) are of same sign, whereas q̇1 and
p1(ξF ) are of opposite sign. In addition to damping mechanisms, both source
terms thus contribute to a decay in output energy.

In summary, the OIC is such that the source terms driving the output energy
are maximized during a short period of time. We can distinguish two scenarios
of optimal non-normal transient growth, which are discussed in the following.

If optimality is reached at time scales much shorter than the characteristic
time scales of the heat source subsystem S (F ), that is, at an acoustic time scale,
non-normal transient growth is due to the inherent modeling assumption of
a flame at rest. In the present low-order model, this scenario is observed for
low damping values. As mentioned in Sec. 6.1.2, the inherent scenario of non-
normal transient growth is physical as such. However, the modeling assump-
tion of a flame at rest, strictly speaking, is not physical.

If optimality is reached at time scales of the order of or larger than the char-
acteristic time scales of the heat source subsystem S (F ), optimal non-normal
transient growth is due to the interaction of the heat source with the acoustic
field. This second scenario represents a physical event of non-normal tran-
sient growth in thermoacoustic systems. It is observed in the present low-
order model for default damping conditions.

Despite the physical nature of the second scenario of non-normal transient
growth, transient growth originating from the temperature gradient as in the
first scenario is also present. As is visible from Fig. 7.6(a), transient growth
can already occur for very small times (i.e., H > 1 for t > 0+). This indicates
that both scenarios of non-normal transient growth occur in parallel. For this
configuration, however, largest (i.e., optimal) transient growth is due to the
physical coupling of the heat source with the acoustic field.
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Figure 7.9: (a) The optimal energy amplification Hmax and (b) the time at op-
timality t∗/TA of S (T ) in the (ζ1,ζ2)-parameter space with κ0 = 0,
K ≈ 0.99Kcrit, and otherwise default parameter values.

7.2.2 Parameters Influencing Transient Growth

In the following, we analyze the influence of the parameters of the low-order
model describing S (T ) on non-normal transient growth. In particular, the
optimal normalized energy amplification Hmax and the time at optimality t∗

are displayed in a 2-parameter space in analogy to the linear stability maps in
Sec. 6.2.1.

As a first illustrating example, consider Hmax and t∗ as a function of the
damping coefficients (ζ1,ζ2) shown in Fig. 7.9. Whereas damping does not
have a large impact on the magnitude of non-normal transient growth (see
Fig. 7.9(a)), it does on the time at which optimality occurs (see Fig. 7.9(b)). For
very low and very high values of ζ1, Hmax is reached very quickly, indicative of
the inherent first scenario of non-normal transient growth. At intermediate
values of ζ1, Hmax occurs at around two acoustic time scales, which matches
the second scenario of non-normal transient growth discussed in the previous
section.
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The maps of the optimal normalized energy amplification Hmax and the time
at optimality t∗ in different 2-parameter spaces are shown in Figs. 7.10–7.11.
To ease comparison, the first parameter is always given by the temperature
incremental factor ∆β. In analogy to the linear stability maps in Sec. 6.2.1,
Fig. 7.10 represents the acoustic and mixed parameters ξF , Mu and Sr, whereas
Fig. 7.11 depicts the flame parametersφ,α and µ. The results are summarized
in the following:

• Flame position ξF (Figs. 7.10(a)–7.10(b)). The optimal energy growth
Hmax is more pronounced in the surroundings of ξF ≈ 0.1 and ξF ≈ 0.35.
In these regions, t∗ is also large, indicative of the physical second sce-
nario of transient growth via the Rayleigh term. By inspection of the lin-
ear stability map shown in Fig. 6.6(a), it is noticeable that regions of large
Hmax align well with regions of enhanced linear stability, where Kcrit is
large. This also hints at the second scenario, because enhanced linear
stability goes hand in hand with the system being able to bear a stronger
fluctuating heat source before becoming linearly unstable, and thus a
stronger Rayleigh term.

• Upstream Mach number Mu (Figs. 7.10(c)–7.10(d)). The effect of mean
flow on Hmax and on t∗ is barely noticeable in the range of upstream
Mach numbers considered. The simplifying assumption of neglecting
the flux and source terms that depend on Mu, and thus to explain non-
normal transient growth with only two dominant source terms, is there-
fore valid.

• Strouhal number Sr (Figs. 7.10(e)–7.10(f)). The ratio of time scales be-
tween the subsystems S (F ) and S (A) plays a crucial role for non-normal
transient growth. In general, Hmax decreases with Sr. For large Strouhal
numbers (except for Sr = 1), which are those encountered in many
thermoacoustic systems, Hmax and t∗ are small. This behavior is indica-
tive of the inherent first scenario of transient growth, where the interac-
tion of the heat source and the acoustic field is negligible. By the time
the effect of a slow heat source is noticeable in a thermoacoustic con-
figuration, damping mechanisms have already significantly diminished
the amplitude levels of the acoustic field. On the other hand, transient
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Figure 7.10: The optimal energy amplification Hmax (first column) and the
time at optimality t∗ (second column) of S (T ) in different 2-
parameter spaces with κ0 = 0, K ≈ 0.99Kcrit, and otherwise de-
fault parameter values: (a)–(b) ∆β vs. ξF , (c)–(d) ∆β vs. Mu, (e)–(f)
∆β vs. Sr.
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Figure 7.11: The optimal energy amplification Hmax (first column) and the
time at optimality t∗ (second column) of S (T ) in different 2-
parameter spaces with κ0 = 0, K ≈ 0.99Kcrit, and otherwise de-
fault parameter values: (a)–(b) ∆β vs. φ, (c)–(d) ∆β vs. α, (e)–(f)
∆β vs. µ.

143



Non-Normal Transient Growth in Thermoacoustics

growth through the physical second scenario via the Rayleigh term is
extremely pronounced for very low Strouhal numbers. For example, at
Sr = 10−3, Hmax ≈ 20, which exceeds the maximum color shading by an
order of magnitude. Optimality is reached at the order of two acoustic
time scales. As observed for ξF , these regions align well with regions
of enhanced linear stability (see Fig. 6.6(e)). Since the system can bear
a stronger heat source before becoming linearly unstable, the Rayleigh
term leading to non-normal transient growth is also stronger.

• Fuel-to-air ratio φ (Figs. 7.11(a)–7.11(b)). The equivalence ratio does not
have a noticeable effect on non-normal transient growth. This is because
φ only alters the mean heat release rate q̇0. However, the strength of the
heat source K is regulated by the adjustable parameter K0, K ∝ K0 q̇0 (see
Eq. (4.10)). If q̇0 increases due to an increase in φ, K0 decreases accord-
ingly, such that the critical strength of the heat source at the linear stabil-
ity bound Kcrit remains unaffected by φ.

• Flame angleα (Figs. 7.11(c)–7.11(d)) and ratio of convective to mean flow
velocities µ (Figs. 7.11(e)–7.11(f)). As seen for the linear stability maps
depicted in Figs. 6.6(d) and 6.6(f), α and µ have a similar effect on Hmax

and on t∗, as both alter the shape of the IR function. Transient growth is
marginally enhanced for small values of α and µ, which corresponds to
the convective and restorative processes of flame response occurring at
increasingly similar time scales (i.e., large ratios of convective to restora-
tive time scales Π). Regions of increased Hmax also align with regions
of enhanced stability, indicative of the physical second scenario of non-
normal transient growth.

• Temperature incremental factor ∆β (all plots in Figs. 7.10–7.11). The ef-
fect of a temperature jump on Hmax and especially on t∗ is strong, which
is in agreement with the study of Li & Zhao [96]. In general, low and in-
termediate values of ∆β favor the physical second scenario of transient
growth via the Rayleigh term. For high ∆β, transient growth more likely
occurs through the inherent first scenario, as the source term resulting
from the gradient in temperature at ξF are increased. These observations
are especially well visible from Figs. 7.11(a)–7.11(b), where the second
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parameter φ does not exhibit any effect on Hmax and t∗. However, the
temperature jump does not alter the order of magnitude of maximum
non-normal transient growth.

In summary, optimal non-normal transient growth thus results from a maxi-
mization of the source and flux terms associated with the formulation of the
model describing S (T ). This observation was anticipated by analytical argu-
ments in Sec. 6.1.2. For the present model, the transient maximization of
source terms either leads to the advent of inherent transient growth (due to
the assumption of a flame at rest), or to the advent of physical transient growth
with a transiently maximized Rayleigh term. Thermoacoustic configurations
that can bear a stronger heat source (i.e., more stable configurations) can thus
exhibit larger levels of non-normal transient growth. This is especially well vis-
ible in the present model for certain values of the position of the heat source
ξF , and for extremely low values of Strouhal number Sr.

7.3 Probability of Transient Growth

From the previous section, it is clear that physical non-normal transient
growth can occur in simple thermoacoustic systems S (T ). Similar to most
studies in this area, the analysis so far dealt with worst case scenarios (i.e.,
optimal mode shapes leading to largest growth). Other mode shapes resulting
in suboptimal transient energy amplification were not considered. To obtain
a more in-depth picture of the phenomenon, we therefore shift the focus on
the likelihood of encountering transient growth in general. That is, how large
is the subset of all possible initial conditions x0 resulting in (any non-zero)
level of transient growth, and how probable is it to encounter such an initial
condition? The latter question seems important to determine the relevance of
non-normal transient growth with respect to triggering, and bridges theoreti-
cal and practical aspects of non-normal transient growth.

For models of very low order (i.e., with number of states N = O(100)), it is
possible to determine the probability distribution of the output energy sub-
ject to a given initial state distribution by analytical means. This will be ad-
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dressed in Sec. 7.3.1. For larger models and for a more sophisticated analysis,
it is necessary to resort to random sampling, so-called Monte Carlo methods
(see Sec. 7.3.2).

7.3.1 Analytically Determined Probability

Consider a low-order model in state space form of the type of Eq. (2.7) with
N = 2 states, of which the output evolves from the initial condition in time,

[
y1

y2

]
(t ) = L(t )

[
x0,1

x0,2

]
, (7.1)

with output energy E = y2
1 + y2

2 . The propagator L is defined as

L(t ) =
[

l11(t ) l12(t )
l21(t ) l22(t )

]
=

[
c11 c12

c21 c22

]

︸ ︷︷ ︸
C

exp

(
t

[
a11 a12

a21 a22

]

︸ ︷︷ ︸
A

)
, (7.2)

such that E can be computed from the initial state values x0,1 and x0,2 at any in-
stant in time using the mathematical operations of multiplication by a scalar,
summation and squaring.

Suppose both initial values x0,i are given as independent random variables
that can take values on the support (outcome space) zi . The corresponding
probabilities Pi of falling into a given interval [z1, z2] are then defined by the
respective probability distribution functions (pdf) ϕx0,i : x0,i → R+

0 ,

Pi (z1 ≤ x0,i ≤ z2) =
∫ z2

z1

ϕx0,i (z̃i ) dz̃i . (7.3)

In this case, the operations of scalar multiplication, summation and squaring
given in Eq. (7.2) cannot be applied in the same manner as in the deterministic
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case. For independent random variables, the latter operations are defined by

SCALAR MULT.: ϕ(a z) =ϕ(z)
1

a
, (7.4a)

SUMMATION: ϕ1(z1)+ϕ2(z2) =
∫ ∞

−∞
ϕ1(z1)ϕ2(z1 − z2) dz2 , (7.4b)

SQUARING:
[
ϕ(z)

]2
= 1

2
p

2

(
ϕ(

p
z)+ϕ(−pz)

)
, (7.4c)

with scalar a 6= 0. In the stochastic case, multiplication by a scalar thus
amounts to scaling, summation becomes a convolution, and squaring is a
nonlinear operation of the initial pdf. The supports z change accordingly.
Equations (7.4) are derived from principles of random variable transform [33].

With Eqs. (7.4), it is possible to compute the pdf of output energyϕE over time
subject to given initial state probability distribution functions ϕx0,1 and ϕx0,2.
We do so in the following for an extremely low-order model describing the
simple thermoacoustic system S (T ), which in the following is referred to as
the toy model of S (T ). Although such a model is a very coarse approximation
of the dynamics of S (T ), it can be used as a rough estimate of the probability
of transient growth. More importantly, this simple example serves to convey
the basic approach of investigating the probability of transient growth.

The toy model describing S (T ) is given by the acoustics subsystem S (A) with-
out mean flow and temperature jump, Mu =∆β = 0. It is modeled by the MWR
with NA,M = 1. The fields of v1(ξ) and p1(ξ) are thus each described by one
mode, and the entire model consists of only N = 2 degrees of freedom. Fluc-
tuations in heat release rate occurring through the heat source subsystem S (F )

are computed by a single time lag model q̇1 = K vB
1 (t −τ), which for small time

lags τ¿ 1 (corresponding to Sr ¿ 1) can be approximated by a first-order Tay-
lor series as q̇1 ≈ K (vB

1 (t )−τ∂vB
1 (t )/∂t +O(τ2)). With this approximation, the

model describing S (F ) does not require separate states and can be directly in-
corporated into S (T ). The same approximation has been employed by differ-
ent authors to investigate non-normal transient growth [5, 77]. The employed
model parameters are summarized in the caption of Fig. 7.12.

For the presently investigated configuration, the time traces of the maximum
normalized output energy H and the optimal relative amplification of output
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Figure 7.12: Time traces of the maximum normalized amplification of output
energy H (−−−) and the optimal relative amplification of out-
put energy G∗ (—) of the thermoacoustic toy model describing
S (T ) with two degrees of freedom (NA,M = 1). The OIC x∗(T )

0 =
[−1;−5.1×10−3]T is reached at t∗/TA = 0.34. Configuration: K =
10, ξF = 0.4, ζp = −0.3, ∆β = 0, Mu = 0, Sr = 10−2, flame modeled
as STL model.

energy G∗ are depicted in Fig. 7.12. In a coarse-grained manner, the traces are
similar to those obtained from a finer model describing S (T ) (cf. Fig. 7.6(a)).
Transient growth is due to the physical second scenario discussed at the end
of Sec. 7.2.1, because the Rayleigh term K p1 q̇1 is the only source driving the
output energy.

We define the pdfs of both initial states as independent uniform distributions
ϕx0,i ∼ U ([−1,1]) (see Fig. 7.13(a)). Any possible initial condition x(T )

0 , includ-
ing the OIC x∗(T )

0 = [−1;−5.1×10−3]T , is thus reachable with the same probabil-
ity. The resulting pdf of the initial output energy ϕE0 is defined on the support
[0,0.5], because the output energy as defined in Eq. (6.5) can take values in
the interval [0,0.5] for the present configuration of S (T ). It can be seen from
Fig. 7.13(a) that ϕE0 is not uniformly distributed, but that it is more likely to
start from low initial output energies. The probability distributions of energy
ϕ(E(t )) are computed by evolving the model equations (7.1) in time starting
from the above defined uniform pdfs for the initial values. We therefore make
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use of the random variable operations defined in Eqs. (7.4).

Figure 7.13(b) depicts the probability P of exceeding maxE0 = 0.5 over time,
which reaches its peak Pmax ≈ 5% at t ≈ 0.2 acoustic time scales. It is inter-
esting to note a significant drop in P at the time of optimality t∗/TA = 0.34.
This might indicate that it is more likely to obtain a moderate amount of tran-
sient growth from non-optimal initial conditions than from the optimal initial
condition x∗(T )

0 .

However, Fig. 7.13(b) only serves as indication but not as sufficient quantifica-
tion of non-normal transient growth. This is because ϕE is not normalized by
ϕE0. SinceϕE andϕE0 are not independent random distributions, an analytical
random variable transform yielding the pdf of relative output energy G = E/E0

does not exist. It is thus not possible to identify and to quantify the probability
of relative amplification of output energy G by analytical means. We therefore
resort to an analysis of random sampling in the following section.
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Figure 7.13: (a) Initial analytical pdfs ϕ(x0,i ) ∼ U ([−1,1]) (—) and ϕ(E0)
(−−−). The corresponding pdfs obtained from 106 random sam-
ples are indicated in gray. (b) Analytically determined probabil-
ity P of exceeding the maximum initial level of output energy
maxE0.
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7.3.2 Random Sampling

In the present section, we determine the probability of non-normal transient
growth by random sampling. This is first done for the toy model of S (T ) with
N = 2 degrees of freedom introduced in the previous section. Subsequently,
the same analysis is carried out for the default thermoacoustic model used
throughout the present work.

The Toy Model of S (T )

The toy model of S (T ) is initialized and evolved in time from Np = 106 ran-
domly sampled initial conditions. The resulting normalized energy levels are
recorded in time and saved in a histogram, from which the probability of
reaching a given energy level can be examined. As for the analytical case, the
pdfs of the individual initial states ϕx0,1 and ϕx0,2 are uniformly distributed,
which leads to a given pdf of the initial output energy ϕE0. To validate the
agreement between the analytical and the sampled initial pdfs, the sampled
distributions are overlaid in Fig. 7.13(a).

The resulting probability of exceeding a given relative level of output energy
G = E/E0 is plotted over time in Fig. 7.14(a). It can be seen that the proba-
bility of exceeding H(t ) is zero, which confirms the theoretically determined
maximum of the normalized output energy. It is also visible that the relative
energy level is bounded from below, indicated by the probability of P = 100%
of exceeding a lower level of G. At multiples of t/TA = n T /2, where T ≈ 1.44
corresponds to the only period of oscillation of the model, the upper and lower
bounds coincide. That is, all time traces of G meet every half a period of oscil-
lation.

The probability of observing non-normal transient growth over time—which
corresponds to the probability of exceeding G = 1 in Fig. 7.14(a)—is shown in
Fig. 7.14(b). In a general manner, the probability to observe transient growth
follows the trend of H(t ). With Pmax ≈ 61% at t = t∗, it is most probable to
observe transient growth at the time of optimality.
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Figure 7.14: (a) Probability P of exceeding a given relative energy level G =
E/E0 over time of the toy model of S (T ) recorded from Np = 106

sampled runs. The maximum achievable level above which P = 0
corresponds to H(t ) (—). (b) Probability of non-normal transient
growth P (G > 1), which corresponds to the contour plot in (a)
sliced at G = 1.

The overall probability of reaching transient energy amplification at at least
one point in time can be deduced from the histogram of the maximum relative
amplification of output energy Gmax = maxt G depicted in Fig. 7.15. Only 15%
of all runs exhibit Gmax ≤ 1.02. In fact, 11.2% of all runs do not exhibit transient
growth at all. It is interesting to see that the surrounding of Hmax is reached
more frequently than intermediate values of maximum transient growth. This
might be due to the fact that the present toy model of S (T ) behaves very much
like a damped harmonic oscillator.

Non-normal transient growth for the present toy model of S (T ) with N = 2 de-
grees of freedom is thus very likely. In the following section, we apply the same
approach of random sampling to the low-order model employed throughout
the present work. The factors limiting the interpretability and generality of
the results obtained from the toy model of S (T ) are thereby relaxed (for exam-
ple, no temperature jump and mean flow, a single time lag model for the heat
source, very low Strouhal number, insufficient resolution of mode shapes).
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Figure 7.15: Normalized histogram of the maximum relative amplification
of output energy Gmax of the toy model of S (T ) recorded from
Np = 106 sampled runs. 11.2% of all runs do not exhibit transient
growth at all (indicated by the thick dot at Gmax = 1).

The Full Low-Order Model of S (T )

With N =O(102) states, performing a probability analysis of the full low-order
model of S (T ) requires significantly more computational effort than for the
toy model of S (T ). This is the case for the analytical approach as well as for
the random sampling method. The analytical approach is not pursued at all,
because the number of required random transform operations scales with N 2.
In view of the limited insight, we directly focus on random sampling.

The full low-order model of S (T ) with default parameter values as given in
Tab. 6.1 and K = 7.3× 10−4 is evolved in time from randomly sampled initial
conditions. For reasons discussed in Sec. 7.2.1, the initial ratio of kernel to
output energy κ0 = 0, such that the initial condition only contains non-zero
acoustic states x(A)

0 . The initial conditions are created as random linear com-
binations of thermoacoustic eigenmodes (cf. Fig. 6.2(d)),

x(A)
0 =

Nx∑
i=1

[
ai VT

v,i , bi VT
p,i

]T
, (7.5)

where Vv,i and Vp,i represent the vectors of discretized eigenmodes in terms of
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acoustic velocity and pressure, respectively, and ai and bi are the correspond-
ing random coefficients of velocity and pressure, respectively, each uniformly
distributed ai ∼U ([−1,1]) and bi ∼U ([−1,1]) ∀i ∈ {1,2, . . . , Nx}.

By creating the initial conditions according to Eq. (7.5), it is ensured that the
model is initialized from reachable and physically meaningful initial condi-
tions. The initial conditions can be designed to contain contributions from up
to Nx = NA,M resolvable eigenmodes of the model. Choosing different coeffi-
cients for the velocity and pressure distributions amounts to controlling the
initial phase between acoustic velocity and pressure. The number of random
variables is thus given as 2Nx .

If we assume the random coefficients ai and bi to take Ni discrete values
within the interval [−1,1], we require at least Ni to the power of 2Nx randomly
initialized runs in order for the probability analysis to produce substantiated
and reliable results. With Ni = 10 and default Nx = NA,M = 70, the number of
runs would surpass numerical feasibility despite the low-order nature of the
thermoacoustic model. In the following, we therefore limit the analysis to the
first three eigenmodes, Nx = 3 and thus 2Nx = 6 random variables. The cho-
sen number of eigenmodes is also of interest from a practical point of view,
because it corresponds to the number of eigenmodes that can be initialized
in an experimental setup. Beyond Nx = 3, it is very hard to excite a mode in
practice, as the damping encountered by the higher modes is quite high.

With the above definitions, the low-order model of S (T ) is thus initialized and
evolved in time from Np = 8.27×106 randomly sampled initial conditions con-
sisting of the first three eigenmodes of the model as defined in Eq. (7.5). The
resulting normalized energy levels are recorded in time and saved in a his-
togram. To save computational time, we reduce the number of modes of the
MWR to NA,M = 30, which according to Fig. 7.5 still yields accurate results.
Also, we limit the time horizon over which the evolution of energy is traced
to slightly beyond the time at optimality t = t∗, which amounts to tmax = 2
acoustic time scales (cf. 7.6(a)).

The probability of exceeding a given level of G = E/E0 is shown in Fig. 7.16(a).
As for the toy model of S (T ), the relative energy level is bounded from below.
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Figure 7.16: (a) Probability P of exceeding a given relative energy level G =
E/E0 over time of the full low-order model of S (T ) recorded from
Np = 8.27×106 sampled runs. The theoretical maximum given
by H(t ) (—) is never reached. (b) Probability of non-normal tran-
sient growth P (G > 1), which corresponds to the contour plot in
(a) sliced at G = 1. The initial conditions consist of random lin-
ear combinations of the first three eigenmodes. Configuration:
κ0 = 0, K = 7.3×10−4, default parameters values.

It is also visible that there is a certain non-zero probability of transient en-
ergy amplification. However, the upper threshold of zero probability lies far
below the theoretical maximum given by H(t ). This indicates that optimal
non-normal transient growth cannot occur from initial conditions consisting
of contributions from only three eigenmodes.

The probability of exceeding G = 1, that is the probability of obtaining
any non-zero level of relative amplification of output energy, is plotted in
Fig. 7.16(b). It is confirmed that transient growth can happen over the entire
investigated time horizon. The highest probability of exceeding G = 1 occurs
for small times, peaking with Pmax = 26.5% at t ≈ 0.5 acoustic time scales. This
hints at the inherent first scenario of transient growth defined in the end of
Sec. 7.2.1. The probability P (G > 1) then exhibits a minimum at t = 1 acoustic
time scales, before increasing to a smaller second peak of P ≈ 17% at t ≈ 1.5
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Figure 7.17: Normalized histograms ofGmax of the full low-order model ofS (T )

recorded from Np = 8.27×106 sampled runs: (a) all runs, (b) only
runs where Gmax occurs at t > 0.9 acoustic time scales to exclude
the inherent first scenario of transient growth. 27.4% of all runs
do not exhibit transient growth at all (indicated by the thick dot
at Gmax = 1 in (a)). The initial conditions consist of random linear
combinations of the first three eigenmodes.

acoustic time scales. Since the ratio of flame to acoustic time scales Sr = 1, this
time range is of the order of the characteristic time scale of flame response.
The observed energy amplification therefore results from the second scenario
of non-normal transient growth discussed at the end of Sec. 7.2.1.

The histogram of Gmax = maxt G is depicted in Fig. 7.17(a). Approximately 40%
of all runs exhibit transient growth of Gmax ≤ 1.02, and 27.4% of all runs do
not result in transient energy growth at all. The largest level of relative energy
amplification is maxGmax = 1.48, which happens in the marginal event of 2.6×
10−3 % of all runs. The surroundings of the theoretically determined optimal
energy amplification Hmax are not reached by initial conditions consisting of
three eigenmodes. This shows that optimal (i.e., largest) energy amplification
requires very specific initial conditions (see the optimal initial mode shapes
depicted in the first row of Fig. 7.8).

As discussed above, the largest probability of observing transient energy am-
plification occurs at small times through the inherent first scenario of tran-
sient growth. To filter out this effect, we plot in Fig. 7.17(b) the histogram of
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Gmax exclusively taking into account those runs where the maximum energy
is reached for t > 0.9 acoustic time scales. This applies to 28.8% of all runs.
That is, transient growth through the second scenario of transient growth is
observed in less than one third of all runs, whereas inherent transient growth
happens in 43.8% of all runs. However, it is visible that the events of larger
relative energy amplification Gmax > 1.2 are all due to the scenario of the fluc-
tuating heat source coupling with the acoustic field.

In summary, the present probability analysis of S (T ) shows that suboptimal
non-normal transient growth is a possible event. Approximately one third
of all random initial conditions containing contributions from the first three
thermoacoustic eigenmodes exhibit physical non-normal transient energy
amplification. However, approximately 87% of these physical events of non-
normal transient growth exhibit relative energy amplification of less than 1.25.
That is, only 3.8% of all runs lead to a physical relative energy growth of
Gmax > 1.25, which still lies far below the theoretically determined optimal
non-normal energy amplification of Hmax ≈ 1.6. Non-normal transient growth
around a stable fix point in simple thermoacoustic systems thus seems un-
likely, and, if occurring, is of small magnitude. Given the measurement noise
present in any practical setup, it is thus unlikely to find substantiated experi-
mental evidence of transient growth in simple thermoacoustic systems. This
conclusion is in agreement with the thesis of Mariappan [106]. The question
of classifying probabilities as low or even fully insignificant is yet an open mat-
ter of debate, and will need to be addressed in future studies.

7.4 Discussion

The current section serves as brief synthesis of the present chapter, with the
aim of indicating the impact of non-normal transient growth around a stable
fix point onto triggering.

There are at least two requirements that need to be fulfilled in order to trigger a
linearly stable system away from its stable fix point. First, the operating point
needs to lie in a bistable region of the operating map (subcritical bifurcation,
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see Fig. 1.1). Second, linear growth mechanisms need to be sufficiently strong
so as to initiate nonlinearities. Otherwise it is not possible for the dynamics
of the system to be attracted towards an unstable limit cycle, which, in turn,
propels the solution towards a stable oscillating limit cycle (see the scenario
of triggering from low-amplitude perturbations in Chap. 1).

The first point is not discussed here, as it exceeds the scope of the present
study without generating any novel insights. It has been shown by Kashinath
et al. [81–84] that a G-equation flame coupled to a 1-D acoustic field is capa-
ble of reproducing subcritical bifurcation behavior, and also of attaining limit
cycles in analogy to those observed in experiments [79].

The second point is addressed in the following, where we compare the or-
ders of magnitude of the optimal relative amplification of output energy G∗ of
the same configuration of S (T ) in the linear and nonlinear regime. The aim
is to investigate whether, in principle, non-normal transient growth is suf-
ficiently pronounced so as to initiate the nonlinear terms that are present
in the heat source subsystem S (F ). The time traces of G∗ are therefore
plotted in Fig. 7.18(a) for different amplitude levels of velocity fluctuations
maxξ,t |v∗

1 (ξ, t )|/v0. The plots are obtained from the nonlinear thermoacoustic
model describing S (T ), where the heat source subsystem S (F ) is given by the
nonlinear G-equation model defined in Eqs. (3.14).

For amplitude levels maxξ,t |v∗
1 (ξ, t )|/v0 < 5%, the time traces of G∗ follow

that of the linearized model (indicated by the dashed black line), where
Hmax ≈ 1.6 is reached at t∗ = 1.69 (cf. Fig. 7.6(a)). For amplitude levels
maxξ,t |v∗

1 (ξ, t )|/v0 > 5%, the time traces of the optimal relative amplification
of output energy G∗ visibly differ from the linear evolution, and the nonlinear
regime is reached. For the present configuration, increasing the amplitude
levels leads to a decrease in the maximum relative amplification of output en-
ergy Gmax. The same is reported by Juniper in [76].

The same time traces as for the optimal relative amplification of output en-
ergy G∗, but in absolute values of optimal output energy E∗, are plotted in
Fig. 7.18(b). The resulting evolutions of E∗ with linear character (i.e., am-
plitude levels maxξ,t |v∗

1 (ξ, t )|/v0 < 5%) are orders of magnitude smaller than
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Figure 7.18: Time traces of optimal output energy obtained from the nonlin-
ear model of S (T ) in (a) relative values given by the optimal rel-
ative amplification of output energy G∗ and (b) in absolute val-
ues of optimal output energy E∗. The amplitude levels of velocity
maxξ,t |v∗

1 (ξ, t )|/v0 ∈ {0.05,0.47,4.67,23.37,46.73,93.46,140.19}%
(from black to yellow). The maximum normalized output energy
H (−−−) and G∗ (—) obtained from the linearized model of S (T )

are indicated in (a). Nonlinear effects are visible for amplitude
levels exceeding 5%. Configuration: κ0 = 0, K = 7.3× 10−4 and
default parameter values.

those with nonlinear character (i.e., maxξ,t |v∗
1 (ξ, t )|/v0 > 5%). Since non-

normal transient growth is of the order of unity, it is not strong enough to
increase the amplitude level by a sufficient amount so as to trigger nonlin-
earities. Also, the peak in transient growth occurs over less than one acoustic
time scale. Thus, even if the initial level of energy is near the border of linear
to nonlinear behavior, it seems unlikely that non-normal transient growth will
initiate nonlinearities in a substantial and long-lasting manner.

In combination with the low probability of obtaining larger values of transient
growth in the first place (see Sec. 7.3), results indicate that triggering through
transient growth around a stable fix point may be an insignificant event for
simple thermoacoustic systems. Although theoretically possible, its occur-
rence seems of academic nature.
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The latter conclusion applies for realistic, but simple thermoacoustic systems,
such as a Rijke tube. The situation may be very different for thermoacoustic
systems in the presence of noise, with turbulent flow, multiple burners and/or
complex geometries. Also, the above conclusion may not apply to triggering
away from an unstable or stable oscillating attractor, which corresponds to
the operating condition of a “humming” thermoacoustic system, such as a
turbulent combustion chamber.

7.5 Chapter Summary

The present chapter can be summarized as follows:

• Care must be taken in distinguishing physical from spurious non-normal
transient growth, especially if they are of the same order of magnitude.
Spurious non-normality results from ill-conditioned discretized numer-
ical operators.

• Non-normal transient growth always results from a transient maximiza-
tion of the net flux and source terms driving the output energy. For
the present model of S (T ), there are two main driving source terms.
Their transient maximization leads to two different scenarios of transient
growth, of which one is due to thermoacoustic coupling and the other is
related to the modeling assumption of a flame at rest.

• For the present simple thermoacoustic system, physical optimal non-
normal transient growth is of the order of unity (Hmax ≈ 1.6 for a con-
figuration using default parameter values). It is dominated by non-zero
acoustic state values.

• For the present simple thermoacoustic system, it is quite likely to en-
counter physical suboptimal non-normal transient growth (with prob-
ability of approximately one third). However, the event of reaching op-
timal non-normal transient growth, as identified theoretically by mathe-
matical tools, tends to zero for the present setup in the absence of noise.
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• Results indicate that non-normal transient growth around a stable fix
point might not be a frequently encountered cause for triggering simple
thermoacoustic systems to a nonlinear oscillating state.
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In the present work, a thermoacoustic system is formulated as a generic multi-
physics system consisting of two subsystems in feedback (acoustics and heat
source). Different models based on analytical (e.g. the acoustics subsystem in
terms of LEE), semi-analytical (e.g. the heat source subsystem in terms of G-
equation flame) and data-driven frameworks (e.g. the heat source subsystem
in terms of distributed time lag models) describing each of the subsystems are
investigated in isolation as to their dynamical behavior, before subsequently
performing a system analysis of the entire thermoacoustic system. The overall
system analysis involves the study of output energy, linear stability bounds,
spurious transient growth and the dynamics and probability of physical and
model-inherent non-normal transient growth around a stable fix point and its
impact on triggering.

The essential novelty of the present work consists in the study of non-normal
transient growth including energy metrics that are semi-norms and taking
into account optimal and suboptimal energy amplification. To the author’s
knowledge, a probability-based investigation of non-normal transient growth
is unique in the thermoacoustic literature. Also, the low-order thermoacoustic
model includes a mean temperature jump, a trivial, but non-zero mean flow,
and a heat source with time-distributed response characteristics, of which the
time lags need not be small with respect to the acoustic time scales.

The key finding of the present study indicates that non-normal tran-
sient growth around a stable fix point—although possible and theoretically
sound—does not seem to be a likely cause for triggering in thermoacoustic
systems in the absence of noise, with simple 1D geometries, where mean flow
effects are trivial and the acoustic field is dominated by planar waves. For
these simple systems, optimal non-normal transient growth is highly unlikely.
Although energy amplification resulting from suboptimal non-normal tran-
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sient growth is frequently encountered, its magnitude is small and will likely
not suffice to trigger nonlinearities. Also, it occurs over short periods of time.

The above observations hold true independent of the energy norm used to
quantify non-normal transient growth. It is highlighted that the energy metric
merely prescribes the perspective from which non-normal transient growth
needs to be interpreted. To this regard, the energy metric is a crucial factor to
investigate non-normal transient growth. However, it does not alter the degree
of non-normality as such.

The other main outcome of the present study is that adopting a systems
framework to describe thermoacoustics is a promising approach. The sys-
tems approach is a robust and rigorous platform, where insights from differ-
ent fields of research, such as acoustics, hydrodynamics and combustion dy-
namics, can be consistently combined using a common language. Owing to
the flexible framework laid out above, the present study could be redone for
different (perhaps more sophisticated) models of existing subsystems, simply
by adding or replacing subsystems in the described framework.

Combining the key finding with the lessons learned from the systemic ap-
proach indicates research directions which may seem worthwhile taking. Al-
though non-normal transient growth around a stable fix point might not seem
a relevant issue for such simple thermoacoustic systems, the situation may be
very different for sophisticated thermoacoustic systems of practical relevance.
For such setups with noise, complex geometries and non-trivial flow fields, the
challenge consists in obtaining low-order model descriptions of the subsys-
tem flow or flow/acoustics (it has been outlined in Chap. 3 how to do extract
low-order models of the heat source subsystem). Data-based model order re-
duction techniques may offer a starting point in this direction. If successful,
the low-order descriptions of the different subsystems could be substituted
into the framework outlined in the present thesis to study the effect of non-
normal transient growth. Care should be taken in identifying and using nu-
merical schemes that exhibit little spurious non-normality. Also, further effort
needs to be aimed at studying the probability of non-normal transient growth,
and of defining the threshold below which non-normal transient growth may
be classified as an insignificant factor towards triggering.
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Most industrial thermoacoustic systems operate under highly turbulent con-
ditions around stable oscillating attractors (so-called humming). These sys-
tems are thus situated in the nonlinear regime even before becoming un-
stable. It might therefore be of greater interest to investigate the impact of
non-normal transient growth around such an oscillating nonlinear state than
around a linearly stable fix point. Data-driven approaches which include the
effect of stochasticities may shed light on whether or not non-normal tran-
sient growth plays a determining role in destabilizing such setups. This knowl-
edge would be of great benefit in understanding triggering beyond the frame-
work of academic setups.
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A Commentary on the G-Equation Flame

The G-equation model describing the laminar premixed flame dynamics is
derived in Sec. 3.1 in a laboratory-fixed reference frame. As depicted in
Fig. 3.2(b), the flame displacement η extends in the direction of the mean flow
x, and is thus only a function of the radial component y and time t , η= η(y, t )
(see also the step in the derivation from Eq. (3.2) to Eq. (3.3)). This stands
in contrast to some of the previous studies on the 1-D G-equation flame,
which employ a flame-fixed reference (for example, [1, 12, 19, 32, 154, 165]).
There, the flame displacement ξ is perpendicular to the mean flame sheet (see
Fig. 3.2(b)).

The reason why the present study employs a laboratory-fixed reference is due
to the fact that the nonlinear flame sheet kinematics cannot be represented
correctly in the flame-fixed reference. This is because the flame sheet either
misses a portion or overlaps for large positive and negative values of flame
displacement at the flame tip, respectively. Both effects are clearly not phys-
ical and alter the response in heat release rate fluctuations q̇1, which in turn
is determined from the fluctuating flame surface area A1. The error is more
pronounced for wedge flames, where the flame tip lies one flame radius away
from the axis of rotation, and thus has a large effect on the overall flame sur-
face area. Preetham et al. [138] have equally used the laboratory-fixed refer-
ence to study the nonlinear flame response of the G-equation flame.

As mentioned at the end of Sec. 3.1.4, the situation is different for the lin-
earized 1-D G-equation flame, where the magnitude of flame displacement
is assumed to be small. In this case, it does not matter which reference frame
is used, as will be shown in the following.

The linearized G-equation flame is treated in Sec. 3.3.1 under fully premixed
conditions. The equations governing the fluctuations in flame displacement
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Commentary on the G-Equation Flame

η1 and in heat release rate q̇1 are given in Eqs. (3.21). Using Eq. (3.4), the heat
release rate fluctuations q̇1 are expressed in terms of fluctuations in flame sur-
face area A1. Equations (3.21) can then be written as

∂η1

∂t
=−SL,0 cosα

∂η1

∂y
+ v1 , (A.1a)

A1 = 2π cosα





∫ RF

0
η1 dy conical flame

{
RF η1(RF )−

∫ RF

0
η1 dy

}
wedge flame

. (A.1b)

In a linear framework, the flame displacement variables of the laboratory-
fixed and the flame-fixed reference frames, η1 and ξ1, respectively, are related
by ξ1 ≈ η1 sinα (see also the inset in Fig. 3.2(b)). Substituting this relation into
Eqs. (A.1), the latter become

∂ξ1

∂t
=−SL,0 cosα

∂ξ1

∂y
+ v1 sinα , (A.2a)

A1 =
2π

tanα





∫ RF

0
ξ1 dy conical flame

{
RF ξ1(RF )−

∫ RF

0
ξ1 dy

}
wedge flame

. (A.2b)

Equation (A.2b) is the same as derived by Schuller et al. in Eqs. (21) and (29) in
[154] (mind that the radial coordinate is defined as x in [154]).

Further, the radial coordinates of the laboratory-fixed and the flame-fixed ref-
erences, y and Y , respectively, are related by Y = y/sinα (see Fig. A.1), which
substituted into Eqs. (A.2), and keeping in mind that SL,0 = v0 sinα, yields

∂ξ1

∂t
=−v0 cosα

∂ξ1

∂Y
+ v1 sinα , (A.3a)

A1 = 2π cosα





∫ RF /sinα

0
ξ1 dY conical flame

{
RF

sinα
ξ1( RF

sinα)−
∫ RF /sinα

0
ξ1 dY

}
wedge flame

. (A.3b)

Equations (A.3) correspond to the governing equations found in most studies
employing a flame-fixed reference for the 1-D G-equation flame (for example,
[1, 19, 154], and with minor differences [12, 165]).
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Figure A.1: Sketch of the G-equation flame as it should be according to phys-
ical arguments.

To conclude the present commentary, we return to the discussion on the two
competing response mechanisms of the G-equation flame given in Sec. 3.3.1.
As explained with the help of Fig. 3.5(b), the first process of convection locally
displaces the flame sheet in the direction of mean flow. The corresponding
perturbation is advected downstream at the convective velocity w (see also
Fig. A.1). In parallel, the other process of flame response restores the unper-
turbed flame shape starting from the flame base. This causes a second dis-
continuity in the flame shape, which travels downstream at a rate of vr .

As stated in Sec. 3.3.1, restoration happens because a “new flame sheet devel-
ops from the flame holder as soon as the flame is displaced. The displaced
flame sheet downstream is gradually deprived of fresh premixture and extin-
guishes.” In Fig. 3.5(b), the resulting flame displacement is oriented in the di-
rection of mean flow due to the reference frame used. However, following the
physical arguments cited above, the process of restoration leads to a flame
displacement that is perpendicular to the mean flame sheet, as depicted in
Fig. A.1. This kind of flame displacement is not representable in terms of η1

in the laboratory-fixed reference, but instead would require to be modeled
in terms of ξ1 in the flame-fixed reference (as is done in [12]). On the other
hand, the convective displacement, which is clearly oriented in the direction
of mean flow, cannot be represented by ξ1, but only by η1.

The framework of the 1-D G-equation flame thus faces a dilemma, which is
visible from Fig. A.1: Each of the reference frames can represent the flame dis-

185



Commentary on the G-Equation Flame

placement of only one of the two processes of flame response in a physically
correct manner. The laboratory-fixed reference can represent the convective
process in a physically meaningful manner, but fails to do so for the restorative
process. For the flame-fixed reference, it is vice versa. From a mathematical
point of view, the dilemma at least does not exist in the linear regime, as we
have shown above that in this case both frames of reference yield equivalent
results. However, the situation is certainly different in the nonlinear regime.

The above dilemma raises general questions regarding the 1-D G-equation
flame. Is it simply a modeling framework that happens to decently mirror
the experimentally observed linear response characteristics of laminar pre-
mixed flames? And how much physical interpretability does the 1-D frame-
work offer in the first place? Are the linear response characteristics of the 2-D
G-equation flame the same as those obtained in the 1-D case? The present
study makes no attempt to resolve these issues. They rather contribute to an
even greater sense of sympathetic wonderment on the fact that the 1-D G-
equation model is nonetheless a powerful low-order modeling tool in the field
of thermoacoustics.
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B Non-Dimensionalizing the Equations
Governing the Simple Acoustic Model

The dimensional set of equations governing the respective conservation of
momentum and of energy and mass of the simple acoustic system treated in
Sec. 4.2 read

∂ṽ

∂t̃
=−ṽ0

∂ṽ

∂ξ̃
− ṽ

∂ṽ0

∂ξ̃
+ ζ̃v ṽ − 1

ρ̃0

∂p̃

∂ξ̃
, (B.1a)

∂p̃

∂t̃
=−γp̃0

∂ṽ

∂ξ̃
− ṽ0

∂p̃

∂ξ̃
−γp̃

∂ṽ0

∂ξ̃
+K0

(γ−1)

Ã A

˜̇q d̃ , (B.1b)

where ˜ denotes dimensional quantities. With the reference scales given in
Eq. (4.6), Eqs. (B.1) can be transformed to express the non-dimensional tem-
poral evolution of acoustic velocity and pressure, respectively. Keeping in
mind that the speed of sound c̃0 = c̃0(ξ̃) is a function of space, and with the
definitions of β, M and K as given in Eqs. (4.8), (4.9) and (4.10), respectively,
Eqs. (B.1) become

∂v

∂t
=−M

∂v

∂ξ
−

(
2

M

β

∂β

∂ξ
+ ∂M

∂ξ
−ζv

)
v − ∂p

∂ξ
, (B.2a)

∂p

∂t
=−∂v

∂ξ
− 1

β

∂β

∂ξ
v −M

∂p

∂ξ
−

(
γ
∂M

∂ξ
+γM

β

∂β

∂ξ
−ζp

)
p +K q̇ d . (B.2b)

From Eqs. (4.8) and (4.9), we find that M(ξ) = Muβ(ξ), which substituted into
Eqs. (B.2) yields the non-dimensional governing equations shown in Eqs. (4.7).
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C Matrices of Discrete Models

C.1 Subsystem Velocity Model SF,v

The matrices describing the discrete model of the linear velocity model sub-
system S (F,v) treated in Sec. 3.2.1 read

A(F,v) = (
M(F,v)

FE

)−1
K(F,v)

FE , ∈RNF,v×NF,v , (C.1)

B(F,v) = (
M(F,v)

FE

)−1
B(F,v)

FE , ∈RNF,v , (C.2)

with finite element mass and stiffness matrices, respectively,

M(F,v)
FE = ∆x

6




4 1
1 4 1

1 4 1

. . . . . . . . .

1 4 1
1 4 1

1 2




, ∈RNF,v×NF,v , (C.3)

K(F,v)
FE = w

2




0 -1
1 0 -1

1 0 -1

. . . . . . . . .

1 0 -1
1 0 -1

1 -1




, ∈RNF,v×NF,v . (C.4)
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C.2 IR-Based Representation of LTI Systems

C(F,v) ∈ RNF,G×NF,v is implemented as a time-varying matrix that linearly inter-
polates the velocity field at the current position of the flame sheet. It is not
given explicitly.

C.2 IR-Based Representation of LTI Systems

The matrices of the discrete model describing the IR-based representation of
an LTI system defined in Sec. 3.2.2 are defined in the following. For each input-
to-output channel, the discrete matrices read

A(IR) = (
M(IR)

FE

)−1
K(IR)

FE , ∈RNIR×NIR , (C.5)

B(IR) = (
M(IR)

FE

)−1
B(IR)

FE , ∈RNIR , (C.6)

C(IR) =∆τ ȟ, ∈RNIR , (C.7)

with discretized impulse response function of the input-to-output channel ȟ
and finite element mass and stiffness matrices, respectively,

M(IR)
FE = ∆τ

6




4 1
1 4 1

1 4 1

. . . . . . . . .

1 4 1
1 4 1

1 2




, ∈RNIR×NIR , (C.8)
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K(IR)
FE = aIR

2




0 -1
1 0 -1

1 0 -1

. . . . . . . . .

1 0 -1
1 0 -1

1 -1




, ∈RNIR×NIR . (C.9)

C.3 Acoustics Subsystem SA

The matrices of the discrete models describing the acoustics subsystem SA

treated in Chap. 4 are laid out in the following.

C.3.1 Primitive Variables-Based Representation

The primitive variables-based representation of the acoustics subsystem S (A)

is discussed in the first part of Sec. 4.4.1. The corresponding matrices of the
discrete model are defined as

A(A) =
[

A(A)
v → v A(A)

p → v

A(A)
v → p A(A)

p → p

]
, ∈R(2NA,F D )×(2NA,F D ) , (C.10)

(
B(A))

m =
{

K ˇ̌ψq,m−NA,F D−1 for m ∈ [
(NA,F D +2);2NA,F D

]

0 otherwise
,

∈R(2NA,F D ) , (C.11)

(
C(A))

n =
{

1 for n = nF

0 otherwise
, ∈R(2NA,F D ) , (C.12)

where nF∆ξ= ξF .

It is visible from the structure of the submatrices appearing in Eq. (C.10) that
the boundary elements of the submatrices render the state matrix A(A) non-
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normal (see the first and last rows in the following Eqs. (C.13)–(C.16)). The
submatrices read

A(A)
v → v =

Pv v

2∆ξ




-3 4 -1
1 0 -1

1 0 -1

. . . . . . . . .

1 0 -1
1 0 -1
-1 4 -3




+ζv I−Rv v ,

∈R(NA,F D+1)×(NA,F D+1) , (C.13)

A(A)
p → v =

Pv p

2∆ξ




-4 1
0 -1
1 0 -1

. . . . . . . . .

1 0 -1
1 0
-1 4




, ∈R(NA,F D+1)×(NA,F D−1) , (C.14)

A(A)
v → p = 1

2∆ξ




1 0 -1
1 0 -1

. . . . . . . . .

1 0 -1
1 0 -1




−Rpv ,

∈R(NA,F D−1)×(NA,F D+1) , (C.15)
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A(A)
p → p = Ppp

2∆ξ




0 -1
1 0 -1

. . . . . . . . .

1 0 -1
1 0




+ζp I−Rpp ,

∈R(NA,F D−1)×(NA,F D−1) , (C.16)

where I stands for identity matrices of suitable sizes. The auxiliary matrices of
the FD scheme are defined as

(Pv v )mn =





(1−Mu) for m = n = 1
Mu β̌m for m = n ∈ [

2; NA,F D

]

(1+Md ) for m = n = (NA,F D +1)
0 otherwise

, (C.17)

(
Pv p

)
mn =





(1−Mu) for m = n = 1
1 for m = n ∈ [

2; NA,F D

]

(1+Md ) for m = n = (NA,F D +1)
0 otherwise

, (C.18)

(
Ppp

)
mn =

{
Mu β̌m+1 for m = n ∈ [

1;(NA,F D −1)
]

0 otherwise
, (C.19)

(Rv v )mn =
{

3 Mu∆β ψ̌q,m for m = n ∈ [
1;(NA,F D +1)

]

0 otherwise
, (C.20)

(
Rpv

)
mn =




∆β

ψ̌q,m+1

β̌m+1

for m ∈ [
1;(NA,F D −1)

]∧n = m +1

0 otherwise
, (C.21)

(
Rpp

)
mn =

{
2γMu∆β ψ̌q,m+1 for m = n ∈ [

1;(NA,F D −1)
]

0 otherwise
. (C.22)

The discrete 1-D distribution function regulating the heat addition to the
acoustic field is given as a discrete normal distribution function,

ψ̌q = 1

σ
p

2π
exp

(
−

(
ξ̌−ξF

)2

2σ2

)
, ∈R(NA,F D+1) , (C.23)
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with discretized spatial coordinate ξ̌= [
0,∆ξ, . . . , NA,F D∆ξ

]T
. The standard de-

viationσ is chosen such that at least 99.9% of the changes in distribution occur
within ξF ±0.025. The discrete non-dimensional temperature distribution is
accordingly given as discrete cumulative distribution function,

β̌= 1+ ∆β
2

[
1+erf

(
ξ̌−ξFp

2σ

)]
, ∈R(NA,F D+1) . (C.24)

C.3.2 Method of Weighted Residuals

The method of weighted residuals (MWR) is introduced in Sec. 4.4.2. The cor-
responding matrices of the discrete model read

A(A)
M =

[
AM ,vM → vM AM ,pM → vM

AM ,vM → pM AM ,pM → pM

]
, ∈R(2NA,M )×(2NA,M ) , (C.25)

(
B(A)

M

)
m =

{
2K sin

(
(m −NA,M )πξF

)
for m ∈ [

(NA,M +1);2NA,M

]

0 otherwise
,

∈R(2NA,M ) , (C.26)

(
C(A)

M

)
n =

{
cos

(
nπξF

)
for n ∈ [

1; NA,M

]

0 otherwise
, ∈R(2NA,M ) , (C.27)

where

(
AM ,vM → vM

)
mn = 2Mu

(
nπNmn −3∆βPmn

)
+ζv δmn , (C.28)

(
AM ,pM → vM

)
mn =−mπδmn , (C.29)

(
AM ,vM → pM

)
mn = mπδmn −

2∆β
1+∆β

Qmn , (C.30)

(
AM ,pM → pM

)
mn =−2Mu

(
nπNnm +2γ∆βRmn

)
+ζp δmn , (C.31)
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for m,n ∈ [1; NA,M ] and with Kronecker delta δmn. The auxiliary operators of
the MWR are defined as

Nmn =





∆β

4mπ

{
cos

(
2mπξF

)−1

}
for n = m

1
π(n−m)(n+m)

{
n

(
1−cos(nπ) cos(mπ)

)

+∆β
[

m sin(nπξF ) sin(mπξF )

+n
(
cos(nπξF ) cos(mπξF )−cos(nπ) cos(mπ)

)]}
for n 6= m

(C.32)

and

Pmn =
{

cos2
(
mπξF

)
for n = m

cos
(
nπξF

)
cos

(
mπξF

)
for n 6= m

, (C.33)

Qmn =
{ 1

2 sin
(
2mπξF

)
for n = m

cos
(
nπξF

)
sin

(
mπξF

)
for n 6= m

, (C.34)

Rmn =
{

sin2
(
mπξF

)
for n = m

sin
(
nπξF

)
sin

(
mπξF

)
for n 6= m

. (C.35)

C.4 Thermoacoustic System ST

The full thermoacoustic model is computed in dimensional time. Unlike the
model describing SF , that describing SA is non-dimensionalized by the refer-
ence scales given in Eq. (4.6). In combining both models, the reference scales
tref, vref and q̇ref thus appear in the assembled state operators A(T ) and A(T )

M ,
which are detailed in the following.
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C.4 Thermoacoustic System ST

C.4.1 Primitive Variables-Based Representation

In a primitive variables-based framework, the matrices of the discrete model
describing the autonomous thermoacoustic system S (T ) read

A(T ) =



1

tref
A(A) 1

tref q̇ref
B(A) C(F )

vref B(F ) C(A) A(F )


 , ∈R(2NA,F D+NF )×(2NA,F D+NF ) , (C.36)

C(T,A) = chol

(
∆ξ

2

[
I Qv v

Qpp I

])
, ∈R(2NA,F D )×(2NA,F D ) , (C.37)

where I stands for identity matrices of suitable sizes. In the linear case, NF =
NIR, and in the nonlinear case, NF = NF,v +NF,G +1. The auxiliary operators of
the FD scheme are defined as

(Qv v )mn =
{

Mu β̌m for m ∈ [
2; NA,F D

]∧n = m −1
0 otherwise

, (C.38)

(
Qpp

)
mn =

{
Mu β̌m+1 for m ∈ [

1;(NA,F D −1)
]∧n = m +1

0 otherwise
. (C.39)

C.4.2 Method of Weighted Residuals

Using the method of weighted residuals, the matrices of the discrete model
describing the autonomous thermoacoustic system S (T ) read

A(T )
M =




1

tref
A(A)

M

1

tref q̇ref
B(A)

M C(F )

vref B(F ) C(A)
M A(F )


 , ∈R(2NA,M+NF )×(2NA,M+NF ) , (C.40)

C(T,A)
M = chol

(
1

4

[
I 2Mu N

2Mu NT I

])
, ∈R(2NA,M )×(2NA,M ) , (C.41)

with identity matrix I ∈RNA,M×NA,M and N as defined in Eq. (C.32).
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