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1 Introduction

1.1 Bubble column reactors

Bubble columns are employed as chemical reactors or contactors in which
gas is dispersed in the form of bubbles into a continuous liquid phase to
effect an intensive interfacial contacting. The resulting two-phase flow
accounts for the excellent heat and mass transfer characteristics of this
type of apparatus. Due to these favorable properties, bubble columns are
intensively applied in chemical, biochemical, petrochemical, pharmaceutical
and metallurgical industries for a variety of processes, i.e. oxidation,
hydrogenation, chlorination, numerous biochemical processes [110], etc.
Additional advantages of these apparatuses are their compactness, simple
construction without moving parts and low operating and maintenance
costs. Industrial high tonnage bubble columns are built in a wide range of
sizes, from devices with a capacity of 100 m3 – 200 m3 to large reactors with
3000 m3. Units for waste water treatment may even exceed these dimensions
and reach a capacity of up to 20 000 m3 [56].

A conventional bubble column is constituted of a cylindrical vessel holding
the liquid with a gas distributor at its bottom. Various types are commonly
used for the distributor design, including perforated plates, sintered plates
or different jet configurations. A basic bubble column setup is sketched in
figure 1.1. Gas is sparged into the column, in which ascending bubbles
interact with the liquid phase and induce a dynamic two-phase flow.
Depending on the intensity of mass transfer phenomena, a corresponding
proportion of the gaseous phase is absorbed in the liquid, while the
remaining gas escapes through the upper surface. The off-gas is either
recovered and fed back to the gas inlet or is released.

Bubble column designs have been modified and adapted over the years to a
wide range of configurations. The insertion of internals into the two-phase
flow region is very common in industrial reactors to prevent an excessive
maldistribution of the gaseous phase, attenuate large recirculation zones

1



1 Introduction

Gas

Gas distributor

Gas

Figure 1.1: Sketch of a simple bubble column configuration

or adjust the reactor temperature level via integral heat exchange devices.
Horizontally arranged internal perforated plates create a multistage cascade,
which intensifies mass transfer, while installed packings or static mixers
promote a uniform gas flow throughout the column. In bubble column loop
reactors, the recirculation of the liquid phase is directed through internal
or external loops. In this way, a high gas throughput can be achieved,
retaining a homogenous two-phase flow zone [105]. Slurry bubble columns
are three-phase reactors or contactors characterized by the suspension of
particles in the liquid phase. This type of apparatus allows for an intimate
and homogeneous contacting of solid catalysts with the gas-liquid flow.

Although the gas is distributed homogeneously over the entire cross-section
in conventional bubble columns, the dispersed gaseous phase predominantly
rises through the center of the column, specifically larger bubbles. By
entraining the surrounding liquid, the ascending gas phase causes a recircu-
lating fluid motion of the liquid phase. The liquid moves downwards in the
near-wall regions, partially transporting a certain amount of bubbles with
it. Depending on the column geometry and the gas throughput, this pattern
is eventually superimposed by radial, meandering or spiral motions of the
gas-liquid flow. The resulting complex hydrodynamic behavior determines

2



1.1 Bubble column reactors

the two-phase flow characteristics, including dispersed and continuous phase
velocities, gas phase distribution and bubble sizes.

The core of chemical reactor design can be subdivided into the modeling
of chemical reactions and flow dynamics. While there is an emphasis on
using very detailed approaches for the reaction kinetics, strongly simplifying
assumptions are often applied concerning the occurring pattern of fluid
motion. Due to this prioritization, the insufficient understanding of
prevailing fluid dynamics often is a major source of uncertainty in the reactor
design (see figure 1.2).

This correlation is particularly relevant for bubble column reactors, since
the gas-liquid interaction determines heat and mass transfer effects, which
govern the functionality and efficiency of the apparatus. In most cases,
empirical correlations and deductions from oversimplified considerations are
used for the evaluation of hydrodynamic characteristics, mass and heat
transfer phenomena, and dispersion processes in bubble columns [188].
These approaches do not capture the complexity of interacting phenomena
and their results are limited in accuracy and scope of application. For a more
detailed representation of the hydrodynamic, thermodynamic and chemical
processes of the gas-liquid flow, analysis methods based on computational
fluid dynamics (CFD) have been promoted in recent years.

Prediction
&

Design

Flow pattern
& Contacting

Kinetics

Figure 1.2: The role of fluid dynamics and kinetics in chemical reactor design [127]
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1 Introduction

The development and enhancement of CFD methods for multiphase flows
has been a field of activity for numerous researchers over the last two to
three decades. Most of these research activities can be assigned to one of
three general simulation techniques, which differ in their modeling approach,
their focus of investigation and their computational demands [177] [223] (see
section 2.1). All of these fundamental multiphase CFD methods have been
applied to turbulent gas-liquid flows in numerous studies. Nevertheless,
the representation of various aspects of gas-liquid flow dynamics with
conventional CFD approaches is associated with considerable uncertainties,
bound to specific hydrodynamic conditions or requires a disproportional
computational effort. Specifically focusing on the enhancement of CFD
models for industrial scale bubble column hydrodynamics, the present work
contributes to the continuing research effort in the respective field.

1.2 Objectives and outline

The aim of this work is the development of a numerically efficient simulation
model for the comprehensive representation of bubble column flows in
industrial scale applications. To accurately capture the complex two-
phase hydrodynamics, the modeling approach is required to reproduce the
transient character of these flows in a three-dimensional domain. These
constraints necessitate the application of a computationally efficient method
with an associated discretization of the flow field.

The approach at hand resolves the fluid dynamics to a large extent, while
non-resolved phenomena are accounted for by corresponding model for-
mulations. Besides the abstracted consideration of interfacial phenomena,
e.g., mass and momentum transfer effects, the allowance of fluid particle
interaction, i.e. breakup and coalescence, represents the major part of this
modeling effort. In contrast to the majority of related studies, the energy
containing scales of fluid turbulence are resolved in this approach, while
only small scale turbulent phenomena are considered in the form of model
formulations. This procedure gives a detailed representation of turbulence
in the flow field and its influence on fluid dynamics and bubble interaction.

As the consideration of different fluid particle sizes, i.e. polydispersity, is
potentially associated with a substantially increased computational demand

4



1.2 Objectives and outline

of the respective CFD method for multiphase flows, its numerically efficient
incorporation in the current model is a core part of this study. Fluid particle
dimensions are decisive for the accurate determination of the gas phase flow
dynamics and its interaction with the continuous phase. Depending on the
hydrodynamic and geometrical conditions, a broad spectrum of bubble sizes
may occur in a bubble column reactor.

A subdivision of the fluid particle size spectrum is commonly used to
incorporate polydispersity in related multiphase CFD approaches. This
direct consideration of the entire size range prevents the analysis of gas-
liquid flows in large domains with reasonable computational effort. Since
this work specifically aims at the simulation of industrial scale applications,
local bubble size spectra are represented in an abstracted manner by using
only specific characteristics of the associated size distribution function
(i.e. the mathematical moments). This procedure significantly reduces the
computational demand for the resolution of fluid particle polydispersity.

The present approach for the abstracted representation of local fluid particle
dimensions necessitates an adaption of bubble breakup and coalescence for-
mulations to suit this modeling framework. Based on the characteristics of
this conversion process, additional constraints affect the selection and incor-
poration of fluid particle interaction formulations. The novel configuration
of models in this work is established on the premise of not only providing
accuracy in the description of breakup and coalescence phenomena, but
also retaining efficiency in its numerical realization. In contrast to common
variants of the considered modeling framework, the current method is able
to comprehensively describe the polydisperse character of industrial scale
bubble column hydrodynamics with reasonable computational effort.

Besides the influence of breakup and coalescence phenomena on local bubble
size distributions, the respective population balance is also affected by
non-uniformities in local fluid particle motion. An incorporation of model
functionalities for the evaluation of individual bubble velocities contradicts
the superimposed modeling concept and is impracticable for bubble column
flows of the considered scale. With the current restriction to locally size-
dependent bubble dynamics, a numerically efficient evaluation of resulting
implications on bubble size relations is ensured. Although this concept
of size-specific fluid particle motion, i.e. polycelerity, generally represents
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1 Introduction

a simplification, it is specifically favorable for bubbly flows, where the
dispersed phase flow is governed by interfacial interaction rather than by
particle inertia. While the assumption of locally uniform bubble velocities
is commonly made in alternative studies, the present model configuration
captures polydisperse gas phase motion more accurately. As a novel
application, the current work exhibits the representation of polycelerity in
the simulation of complex bubble column hydrodynamics.

Using experimental data from well-studied test cases, the current numerical
model is validated by a comparison of pilot scale bubble column flow
characteristics. Besides fluid dynamic properties including dispersed and
continuous phase velocities as well as characteristics of turbulence, local
bubble size distributions and gas fractions are analyzed and contrasted. In
a further study, the transport and interfacial exchange of chemical species
is analyzed numerically.

In chapter 2 of this thesis, the general mathematical correlations for the
description of multiphase flows are derived in conjunction with the intro-
duction of corresponding modeling approaches. Subsequently, fundamentals
for the applied gas-liquid flow modeling concept are discussed further,
with an emphasis on turbulence considerations and interfacial exchange
formulations. The chapter is completed by a brief outline of modeling
approaches for chemical reaction phenomena within a CFD framework,
associated with a discussion on their accurate scope of application.

The principles of population balance theory are presented in chapter 3,
accompanied by the derivation of corresponding governing equations. While
the central part of this section focuses on the consideration of breakup and
coalescence phenomena, the incorporation of population balance equations
into a CFD framework is exemplified. The introduction of the configuration
used in this study concludes the chapter.

With reference to the introduction of general modeling concepts in the
preceding sections, the methodical details of the approach employed in the
current study are specified in chapter 4. To this end, the adaptions and
extensions of prevalent theories, which have been developed in the scope
of this work, are explicated and formally derived. An outline of the model
implementation into an existing CFD framework represents the final part
of this segment.
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1.2 Objectives and outline

The validation studies of the developed model are presented in chapter 5.
Besides the comparison of current simulation results concerning hydrody-
namic properties with equivalent data from experimental and numerical
studies, this part consists of an investigation of different local particle
velocity evaluation approaches. As a final point, the depiction of absorption
processes with the current numerical framework is analyzed.
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2 Gas-liquid flow modeling

2.1 Modeling approaches

Caused by the dynamic interaction between the dispersed and the con-
tinuous phase, bubble column hydrodynamics are characterized by a
broad spectrum of fluid dynamic time and length scales. These length
scales encompass several orders of magnitude, ranging from large-scale
liquid circulations of up to several meters down to the smallest scales
of turbulence. Due to the width of the spatial and temporal range of
gas-liquid motion, a direct numerical representation of all hydrodynamic
phenomena in industrial bubble columns is not feasible. Therefore, different
multiphase CFD methods have been developed, resolving specific scales of
the gas-liquid flow field, while representing unresolved hydrodynamic effects
through appropriate model formulations.

Table 2.1 provides an overview of the available CFD methods for dispersed
gas-liquid flows, including their considered length scales and potential
applications. This categorization of approaches subject to the level of
spatial resolution is also referred to as hierarchy of models [199] [54].
Every numerical approach is tailored to investigate specific hydrodynamic
characteristics, which eventually can be transferred to the coarser-resolving
CFD approach in the form of subscale model formulations. This interrelated
multilevel modeling allows for the numerical investigation of gas-liquid flow
phenomena of almost the entire spectrum of length and time scales [211].
Yet, every level of numerical gas-liquid flow modeling is accompanied by a
considerable effort of model development and validation. Subsequently, the
three general CFD methods for the simulation of dispersed gas-liquid flows
will be introduced in more detail.

Interface resolving methods
Interface tracking or capturing methods resolve the position and
dynamic behavior of the phase boundaries. Hence, these approaches
are preferably used for the simulation of segregated gas-liquid and
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2.1 Modeling approaches

Model Equations Spacial
resolution Applicability

Interface
resolving
methods

Navier-Stokes equation for both
phases; advanced interface tracking or
capturing scheme

High
∆� Dp

Small systems;
O(102) bubbles

Euler-
Lagrange
model

Equation of motion for each bubble;
volume averaged mass-and momentum
conservation equation for liquid phase

Medium
∆ ≈ Dp

Lab-scale bubble
columns, bubble
plumes

Euler-
Euler
model

Averaged mass and momentum
conservation equations for both phases

Low
∆� Dp

Full size reactor

Table 2.1: Overview of general modeling techniques for dispersed gas-liquid flows
(adapted from [59])

liquid-liquid flows or detailed studies of dispersed flows with a small
number of fluid particles. The fluid dynamics of the phases and
their interfacial coupling is described directly by the Navier-Stokes
equations with respective phase-specific properties. No cross-phase
averaging procedure is applied, accompanied by modeling assumptions
for unresolved multiphase flow conditions. Due to their very high com-
putational demand, these methods are not suitable for the simulation of
dispersed two-phase flows in industrial scale applications, e.g., bubble
column hydrodynamics.

Interface tracking and capturing approaches differ in the way phase
boundaries are accounted for. Commonly, interface tracking techniques
are based on a moving mesh approach, in which the interface coin-
cides with a set of conforming cell faces. Alternatively, a dynamic
surface mesh or Lagrangian particles are employed to depict the phase
boundaries relative to a fixed Eulerian mesh. These approaches are
commonly referred to as front-tracking methods [208] [204]. While the
representation of the interface is very accurate, strong topology changes
of bubbles such as breakup and coalescence require additional model
modifications.

In contrast, the interface capturing method is typically based on a
purely Eulerian description of the two-phase flow field. With this
approach, the Navier-Stokes equation is supplemented by an advection
equation for a marker field, indicating the position of fluid interfaces.
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2 Gas-liquid flow modeling

In this way, even major transformations of the phase boundaries can
be depicted, provided that advanced numerical schemes are used to
optimally ensure the conservativity of both phases. The two most
commonly applied variants of the interface capturing approach are the
Level-Set method [166] [187] and the Volume-of-Fluid (VOF) method
[98].

Euler-Lagrange method
This approach is applicable exclusively to the simulation of dispersed
multiphase flows. The primary phase is described as a continuum in
an Eulerian context, while the particles of the dispersed phase are
tracked individually in a Lagrangian manner. Interfacial coupling is the
crucial part of the Euler-Lagrange method and various corresponding
approaches, representing different levels of modeling complexity, can be
applied. Although several techniques have been developed to average
particle conditions or define representative particles, the computational
costs of this method prevent the adequate depiction of the multiphase
flow dynamics in industrial applications with a large number of
dispersed particles.

If a one-way coupling approach is applied, the influence of the dispersed
phase on the continuous phase is neglected, whereas the fluid particle
motion is mainly governed by the primary phase velocity. In contrast,
a two-way coupling technique considers the interdependency of gas-
liquid phase motion, including the back-coupling of bubble presence
and dynamics on the continuous phase. By additionally depicting
particle-particle interaction in the flow field, the four-way coupling
approach provides the most comprehensive representation of the two-
phase flow dynamics. Although its application is accompanied by a
substantial increase in computational effort, this coupling procedure is
essential for the accurate representation of bubble column flows with
moderate to high gas throughput.

The dispersed phase volume fraction αd is a rough indicator of
which coupling approach is most appropriate for the concerned gas-
liquid flow. One-way coupling may be used for marginal gas content
α < 10−6, while the two-way coupling approach is suitable for gas
volume fractions of up to α ≈ 10−3. For higher values of the dispersed
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2.1 Modeling approaches

phase volume fraction, a four-way coupling technique should be used
[191] [74] [218].

Euler-Euler method
Both the dispersed as well as the continuous phase are considered as
interpenetrating continua with this approach. Instead of resolving
interfacial surfaces, the phase volume fraction indicates local phase
proportions. The representation of the two-phase flow on the cor-
responding large scale level necessitates the incorporation of model
formulations for the description of phase interaction phenomena. Using
this approach, it is possible to simulate the multiphase hydrodynamics
of industrial applications with their large dimensions and numerous
dispersed phase particles.

The governing equations for the Euler-Euler method can be derived
from different averaging techniques of the fluid dynamic conservation
equations (see section 2.2), implicating the consideration of unresolved
flow phenomena through respective models. Formulations for the
interfacial exchange of mass, momentum or heat may be derived empir-
ically, numerically or analytically. Based on simplifying assumptions
concerning the kinetic exchange between the phases and the interfacial
velocity difference respectively, a number of simplistic two-phase flow
models have been developed (e.g., homogeneous equilibrium model
[101], drift flux model [230], diffusion model [207]). Since their scope of
application is limited and excludes the detailed description of complex
bubble column flows, these approaches will not be discussed further in
this work.

With the incorporation of a population balance equation (PBE),
local bubble size distributions can be considered in the Euler-Euler
framework. In addition, this configuration allows for the inclusion of
breakup and coalescence phenomena to give a profound representation
of polydisperse gas-liquid flows.

The Euler-Euler method is taken as the basis for the numerical simulation
model introduced in this work. Through comprehensive adaptions and
extensions, an adequate method for the description of bubble column hydro-
dynamics of industrial relevance is developed. The theoretical foundation
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2 Gas-liquid flow modeling

of this approach is outlined in the subsequent section, followed by the
explication of complementing and exceeding model formulations.

2.2 Eulerian governing equations

The governing equations for multiphase flows in an Eulerian context with a
focus on the formulations for dispersed gas-liquid flows are derived in this
section. The starting point for this process is the local instantaneous for-
mulation of a general balance equation in an incompressible and isothermal
multiphase environment. With a short overview of conventional averaging
procedures (time averaging, volume averaging, ensemble averaging), the
volume fraction is introduced as the indicator function for the phases.
Subsequently, the volume averaged continuous field transport equations
of mass, momentum and chemical species are deduced in a phase-specific
context.

The following derivation of two-phase flow governing equations is restricted
to the concept of a continuous field description of the phases in an Eulerian
context. Although the deduction of interface tracking and capturing
methods is closely related to the outlined procedure, merely distinct in the
scale of averaging, these approaches are not discussed in further detail in
this work. In contrast to more general concepts, which allow for numerous
dispersed phases, or include a potential size-specific classification of fluid
particles in the equation derivation (i.e. multifluid model), the following
explications differentiate between two phases only (i.e. two-fluid model).
For more generic approaches in the derivation of mathematical formulations
for Eulerian multiphase models, the reader is referred to respective literature
by Drew & Passman [70], Ishii & Hibiki [103], Prosperetti & Tryggvason
[177] or Kolev [113].

2.2.1 Local instantaneous formulation

The discussion of local instantaneous governing equations in a multiphase
system is predicated on the consideration of a spatially fixed control volume
VC which is occupied by two separated time-dependent subregions V1(t) and
V2(t) associated with different physical phases (see figure 2.1):
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2.2 Eulerian governing equations

VC = V1(t) ∪ V2(t) =
⋃
k

Vk(t) with k = 1, 2. (2.1)

The region boundaries are denoted as AC and Ak(t) respectively, with
AI(t) = A1(t) ∩A2(t) as the phase separating interface which is considered
as surface of infinitesimal thickness. The delimitation AC of the domain VC
is comprised of subregion boundaries sections:

AC = A1,C(t) ∪ A2,C(t) =
⋃
k

Ak,C(t) with Ak,C ⊆ Ak. (2.2)

VC

V2(t)

V1(t)

A1,C(t)

AI(t)
A2,C(t)

Figure 2.1: Eulerian control volume VC and subdomains V1(t), V2(t) for two-fluid balance
equations

This simple reference environment is the basis for the subsequent derivation
of a balance equation for the generic phase-specific extensive fluid property
ψk. The respective mathematical conversion is applied in a comparable
manner for the more general multifluid approach by, e.g., Hjertager [99] or
Buffo [27].

Assuming the validity of the continuum hypothesis, the integral balance
formulation for ψ on VC results in
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2 Gas-liquid flow modeling

d
dt

∫
VC
ρψ dV =

∑
k

( d
dt

∫
Vk(t)

ρkψk dV
)

︸ ︷︷ ︸
accumulation

=

−
∑
k

∫
Ak,C(t)

ρkψk (uk · nk) dA︸ ︷︷ ︸
net convective flux

−
∑
k

∫
Ak,C(t)

(Jk · nk) dA︸ ︷︷ ︸
net diffusive flux

+
∫
AI(t)

ΦI dA︸ ︷︷ ︸
interfacial source term

+
∑
k

∫
Vk(t)

ρkΦk dV︸ ︷︷ ︸
volumetric source term

, (2.3)

where ρk, uk and Jk are the density, velocity and molecular flux of phase
k, nk denotes the normal vector of Ak(t) in outward direction, and ΦI and
Φk are the interfacial and volumetric source term.

With the introduction of an interface velocity uI , the terms of equation
(2.3) representing accumulation, net convective flux and net diffusive flux
are transformed by making use of Leibniz and Gauss’ theorems:

d
dt

∫
Vk(t)

ρkψk dV =
∫
Vk(t)

∂

∂t
ρkψk dV +

∫
AI(t)

ρkψk (uI · nk,I) dA, (2.4)

∫
Ak,C(t)

ρkψk (uk · nk) dA =
∫
Vk(t)
∇·(ρkψkuk) dV −

∫
AI(t)

ρkψk (uI · nk,I) dA,
(2.5)

∫
Ak,C(t)

(Jk · nk) dA =
∫
Vk(t)
∇ · Jk dV −

∫
AI(t)

(Jk · nk,I) dA, (2.6)

where nk,I represents nk exclusively on the phase boundary to denote the
direction of interfacial exchange associated with k.

The combination of equations (2.3) to (2.6) yields

∑
k

∫
Vk(t)

[
∂

∂t
ρkψk +∇ · (ρkψkuk) +∇ · Jk − ρkΦk

]
dV =

∑
k

∫
AI(t)

[ṁk,Iψk + (Jk · nk,I)] dA+
∫
AI(t)

ΦI dA, (2.7)
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2.2 Eulerian governing equations

with ṁk,I representing the interfacial mass flux emanating from phase k,
which in turn is defined as

ṁk,I = ρk (uk − uI) · nk,I . (2.8)

The generic choice of VC implies a global validity of equation (2.7). Hence,
the local instantaneous equation is deduced to

∂

∂t
ρkψk +∇ · (ρkψkuk) +∇ · Jk = ρkΦk, (2.9)

with the corresponding interfacial jump condition

ṁ1,Iψ1 + ṁ2,Iψ2 + J1 · n1,I + J2 · n2,I = −ΦI . (2.10)

As a consequence of the physical phenomena considered in this work, the
balance equations for mass, momentum and chemical species are formulated
from the equations (2.9) and (2.10). The additional deduction of the energy
balance equation in various forms is outlined by Jakobsen [105].

Mass balance equation (ψk = 0)

∂

∂t
ρk +∇ · (ρkuk) = 0. (2.11)

Interfacial jump condition

ṁ1,I + ṁ2,I = 0. (2.12)

Momentum balance equation (ψk = uk)

∂

∂t
(ρkuk) +∇ · (ρkukuk) = ∇ · T k + ρkbk. (2.13)

Interfacial jump condition

ṁ1,Iu1 + ṁ2,Iu2 − T 1 · n1,I − T 2 · n2,I = ςI . (2.14)

The stress tensor T characterizes the diffusive transport of momentum.
The unity of volumetric or body forces is represented by bk and ςI
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2 Gas-liquid flow modeling

denotes the area-specific surface force. With the assumption of a
constant surface tension σ, ςI is defined as

ςI = 2κIσnk,I , (2.15)

where κI represents the interface curvature [8].

Chemical species balance equation (ψk = Y X
k )

∂

∂t

(
ρkY

X
k

)
+∇ ·

(
ρkY

X
k uk

)
= −∇ ·GX

k + ρkΨX
k . (2.16)

Interfacial jump condition

ṁ1,IY
X

1 + ṁ2,IY
X

2 +GX
1 · n1,I +GX

2 · n2,I = ΥX
I . (2.17)

GX denotes the diffusive flux of chemical species X according to Fick’s
law, while ΨX and ΥX

I represent the net volumetric and interfacial
production rate of X.

Equations (2.11) to (2.17) constitute the mathematical framework for a
hydrodynamic and chemical depiction of an arbitrary gas-liquid system. For
the adoption of these governing equations in a CFD simulation, a numerical
discretization is required associated by a respective averaging of local fluid
dynamic conditions. The scale of averaging determines the spectrum of
hydrodynamic phenomena that are captured and signifies the computational
demand. For the consideration of industrial scale apparatuses, comparably
large scale averaging techniques are most suitable.

2.2.2 Averaging of governing equations

The numerical consideration of multiphase flow phenomena in an Euler-
Euler context, associated with a respective spatially fixed discretization
for both phases, implies the definition of averaged governing equations.
Unresolved local multiphase flow conditions are accounted for by model
formulations. Several techniques have been adopted for the derivation of
averaged gas-liquid governing equations. These methods can be assigned
to three fundamental approaches: volume averaging [164], time averaging
[101] and ensemble averaging [68].

16



2.2 Eulerian governing equations

The separation of multiphase fluid dynamic phenomena into explicitly
resolved and unresolved physical processes serves as a basic principle and is
common to all of the mentioned procedures. For volume or time averaging,
a continuous spatial domain or temporal interval is determined, while
numerous discrete realizations are used to obtain a representative mean
in the ensemble averaging method. Although the averaging domains differ
in their dimension, these approaches are associated through the spatio-
temporal correlation of fluid motion. For fluid dynamic investigations, be
they of numerical, experimental or analytical nature, the ergodic hypothesis
is commonly assumed valid. It states that for statistically stationary and
homogeneous flows the volume, time and ensemble averages are identical
[105]. Consequently, the resulting averaged governing equations are similar
in the description of resolved flow phenomena and their mathematical
structure is independent of the employed averaging approach.

In consideration of the spatial discretization of the multiphase flow domain
with the application of CFD, the volume averaging approach appears most
suitable. However, in the opinion of several researchers, the validity of
averaged flow characteristics in an Euler-Euler formulation is predicated on
the selection of an accurate averaging range. In this regard, Nigmatulin [164]
argued that the considered domain should be “many times greater than the
nonuniformities [. . . ], but at the same time much less than the characteristic
macrodimension of a problem”. On the other hand, the properties of
averaging procedures indicate that a different selection of the averaging
scale does not implicate the invalidity of averaged flow quantities, but
necessitates the reinterpretation of respective fluid dynamic characteristics
and corresponding unclosed terms [21]. Even if the averaged quantities
may not be exactly smooth, various numerical results (e.g., [227], [197],
[163]) evince that a spatial discretization in range or slightly larger than the
fluid particle size is sufficient for the adequate description of the dispersed
phase as an Eulerian continuum. Additionally, an according resolution
allows for an improved depiction of the continuous flow dynamics and
hence may represent a favorable compromise. This correlation is further
discussed in section 2.3 with regard to turbulence modeling. For a more
detailed investigation of the connection between dispersed phase particle
size and averaging domain, the reader is referred to respective discussions
by Brennen [24] or Crowe et al. [49].
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2 Gas-liquid flow modeling

The volume averaging approach is used for the subsequent derivation of
Euler-Euler gas-liquid flow governing equations. The interpretation of the
averaging domain as a spatial filter is not only in line with the numerical
discretization, but also agrees with the applied technique for turbulence
modeling (see section 2.3.1). As a preliminary step, the characteristic or
indicator function Xk(x, t) is introduced, depicting the position of phase k
in the form of a Heavyside function:

Xk(x, t) =
1 if x ∈ Vk(t)

0 otherwise
. (2.18)

As the characteristic function can be interpreted as an extensive quantity
analogous to the phase volume, a conservation equation is formulated,
reading

∂Xk

∂t
+ uI · ∇Xk = 0. (2.19)

Here, the gradient of the phase indicator function is defined as

∇Xk = nk,I δ (x− xI) , (2.20)

with δ (x− xI , t) denoting the Dirac delta function for the identification of
the interface associated with the respective position xI .

The consideration of the Eulerian control volume VC with its internal loca-
tion x is complemented by a relative position vector η. This configuration
allows for the representation of an arbitrary location in VC by x′ = x + η.
Hence, the mathematical operation of the volume averaging procedure of a
generic quantity ψ is formulated as

〈ψ〉 = 1
VC

∫
V
ψ (x+ η, t) dx′. (2.21)

Applied to the characteristic function Xk, the volume averaging results in

〈Xk〉 = 1
VC

∫
V
Xk (x+ η, t) dx′ = Vk

VC
= αk. (2.22)
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2.2 Eulerian governing equations

This expression describes the volume fraction of phase k, where

∑
k

αk = αc + αd = 1. (2.23)

As a prerequisite for the volumetric averaging of the conservation equations,
Leibnitz and Gauss’ rules for the temporal and convective term are defined
as

〈
Xk

∂ψk
∂t

〉
= ∂

∂t
〈Xkψk〉 −

〈
ψk
∂Xk

∂t

〉
(2.19)= ∂

∂t
〈Xkψk〉+ 〈ψkuI∇ ·Xk〉 =

∂

∂t
〈Xkψk〉+ 1

VC

∫
AI(t)

nk,I · uIψk (x+ η, t) dA, (2.24)

〈Xk∇ψk〉 = ∇〈Xkψk〉 − 〈ψk∇Xk〉 =

∇〈Xkψk〉 −
1
VC

∫
AI(t)

nk,Iψk (x+ η, t) dA. (2.25)

By first multiplying the local instantaneous equation (2.9) with the charac-
teristic function Xk, followed by the volumetric averaging procedure with
respect to (2.24) and (2.25), the averaged balance equation for a generic
phase-specific fluid variable ψk is obtained as

∂

∂t
〈Xkρkψk〉+∇ · 〈Xkρkψkuk〉+∇ · 〈XkJk〉 =

〈XkρkΨk〉 −
1
VC

∫
AI

(ṁk,Iψk + Jk · nI) dA. (2.26)

The corresponding jump condition is formulated by multiplying (2.10) with
the gradient of the indicator function ∇Xk prior to volume averaging. This
limits the averaging domain to the phase boundaries and yields

∫
AI

(ṁ1,Iψ1 + ṁ2,Iψ2 + J1 · n1,I + J2 · n2,I) dA = −
∫
AI

ΦI dA. (2.27)
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2 Gas-liquid flow modeling

This derivation is restricted to isothermal and incompressible fluids only.
Furthermore, the densities of both phases are assumed constant. Aiming at
the formulation of the constitutive equations of the two-fluid model subject
to volume averaged single fluid quantities, it is suitable to define a phasic
averaging operator based on (2.21) as

ψk = 〈Xkψk〉
αk

. (2.28)

Given these prerequisites, equation (2.26) can be written in the form of

∂

∂t

(
αkρkψk

)
+∇ ·

(
αkρkψkuk

)
+∇ ·

[
αk

(
Jk + Jk,tur

)]
=

αkρkΨk −
1
VC

∫
AI

(ṁk,Iψk + Jk · nI) dA. (2.29)

Denoting the unresolved scales of turbulence fluctuations, Jk,tur originates
from the averaging of the advective term in the transport equation and is
defined as

Jk,tur = ρk
(
ψkuk − ψkuk

)
. (2.30)

Jk,tur cannot be evaluated from averaged flow quantities and thus must
be accounted for by a respective model formulation. The basic modeling
approach as well as several methods for the determination of Jk,tur are
explicated in the subsequent chapter.

With the specification of the generic variable ψ, the averaged two-fluid
governing equations are derived, consisting of respective formulations for
mass, momentum and chemical species.

Mass balance equation (ψk = 0)

∂

∂t
(αkρk) +∇ · (αkρkuk) = Γk. (2.31)

The source term Γk denotes the interfacial mass transfer, described as
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Γk = − 1
VC

∫
AI
ṁk,I dA. (2.32)

Interfacial jump condition∫
AI

(ṁ1,I + ṁ2,I) dA = Γ1 + Γ2 = 0. (2.33)

Momentum balance equation (ψk = uk)

∂

∂t
(αkρkuk) +∇ · (αkρkukuk) =

∇ ·
[
αk

(
T k − T k,tur

)]
+ (αkρkg) +M k,Γ +M k,I . (2.34)

The residual stress tensor in virtue of unresolved turbulence is repre-
sented by T k,tur. M k,Γ denotes the net variation of momentum due to
interfacial mass transfer and is commonly approximated by

M k,Γ = − 1
VC

∫
AI

(ṁk,Iuk) dA ≈ Γkuk, (2.35)

while the interfacial flux of momentum is represented by M k,I , formu-
lated as

M k,I = 1
VC

∫
AI

(T k · nk,I) dA. (2.36)

Interfacial jump condition∫
AI

(ṁ1,Iu1 + ṁ2,Iu2 − T 1 · n1,I − T 2 · n2,I) dA =

− VC (M 1,Γ +M 2,Γ +M 1,I +M 2,I) =
∫
AI
mσ

I dA. (2.37)

Chemical species balance equation (ψk = Y
X
k )

∂

∂t

(
αkρkY

X
k

)
+∇ ·

(
αkρkY

X
kuk

)
=

−∇ ·
[
αk

(
G

X
k +GX

k,tur

)]
+ ΓX

k +
(
αkρkΨ

X
k

)
. (2.38)

GX
k,tur describes the residual scalar flux caused by the unresolved flow

turbulence. The unity of all interfacial mass fluxes of chemical species
X in association with phase k is summarized in ΓX

k , which is defined as
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ΓX
k = − 1

VC

∫
AI

(
ṁk,IY

X
k +GX

k · nk,I
)

dA. (2.39)

Interfacial jump condition
∑
k

ΓX
k = ΓX

1 + ΓX
2 = − 1

VC

∫
AI

ΥX
I dA. (2.40)

The right hand side of equation (2.40) accounts for heterogeneous
reactions, which occur on the interfacial boundary and affect the
conservation of reacting species.

As opposed to numerous published derivations of volume averaged
Euler-Euler governing equations, Prosperetti & Tryggvason [177] (referenc-
ing Harlow & Amsden [94]) pointed out that the diffusive term in the
momentum equation (2.34) and M k,I have to be considered in combination
for further rigorous discussion on interfacial momentum exchange. This
yields

∇·
(
αkT k

)
+M k,I = −∇ (αkpk)−∇·(αkτ k)+pk,I∇αk−τ k,I∇αk+M k,GD =

− αk∇pk −∇ · (αkτ k) + (pk,I − pk)∇αk − τ k,I∇αk +M k,GD, (2.41)

where the averaged stress tensor T has been split into a pressure term and
the deviatoric stresses

T = − (pI + τ ) . (2.42)

The impact of all external forces on the phase boundaries of phase k is
summarized in M k,GD, which is commonly referred to as generalized drag
term. In contrast to the consideration of segregated flows, τ k,I∇αk, the com-
bined interfacial shear and volume fraction gradient effect, is neglected here
since only dispersed flows are studied in this work [102]. Although several
models have been developed accounting for the influence of an interfacial
pressure difference (pk,I − pk)∇αk [121] [123], this term is generally assumed
insignificant for incompressible fluids in an Euler-Euler context as argued by
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2.2 Eulerian governing equations

Drew [68]. More detailed explications on the deduction of equation (2.41)
can be found elsewhere (e.g., [177], [105], [151]).

The Newtonian strain stress relation (neglecting bulk viscosity) is assumed
valid for both phases. Consequently, the shear stress tensor τ can be
expressed in the form of

τ = 2µk
(1

3∇ · ukI + Sk
)
, (2.43)

with the strain-rate tensor formulated as

Sk = 1
2
(
∇ · uk + (∇ · uk)T

)
. (2.44)

Although local phase fractions and thermodynamic conditions potentially
alter fluid viscosities in a gas-liquid environment, the dynamic viscosity
µk of both phases is generally assumed to be constant. In this study,
an isothermal two-phase flow environment is considered with relatively
small local secondary phase fractions, which strengthens this assumption.
The primary phase viscosity commonly corresponds to the respective
molecular property (µc = µc,mol). A comparably unanimous method for the
determination of the secondary phase viscosity µd has not been established
so far. In several studies the laminar viscosity of the dispersed phase
is equated with the molecular viscosity (µd = µd,mol) (e.g., [31]), while
the respective property is neglected in alternative publications (µd = 0)
(e.g., [29]). In this work, the disperse phase viscosity is derived from
the continuous phase equivalent including additional contributions from
turbulence modeling. This procedure is in line with the majority of recent
numerical investigations in this field (e.g., [229], [197]) and presented further
in section 2.3.1.

In accordance with Fick’s law, the diffusive flux of species X in phase k is
defined as

G
X
k = −ρkDX

k∇Y
X
k , (2.45)
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2 Gas-liquid flow modeling

where a constant phase-specific molecular diffusion coefficient DX
k is as-

sumed.

With the application of the Euler-Euler method, local pressure differences
between the phases caused by surface tension are generally neglected.
Hence, the continuous as well as the dispersed phase share the identical
pressure field:

pc = pd = p. (2.46)

2.3 Turbulence modeling

One of the major challenges in the numerical simulation of fluid dynamics is
the consideration of turbulence. Since the numerical depiction of the entire
spectrum of turbulence scales is still limited to academic investigations due
to excessive computational demand, modeling approaches are inevitable in
industrial CFD applications. The physics behind the generation, evolution
and dissipation of turbulence is complex and still not fully understood.
As a consequence, turbulence models are bound to certain prerequisites or
have to be modified in virtue of the regarded fluid dynamic conditions, yet
evoking considerable uncertainties in the simulation results. The severity of
modeling deficiencies depends on the range of turbulent scales that are not
numerically resolved, but have to be accounted for in an abstracted manner.
Thus, it is suitable to strive for a compromise between the resolution of large
turbulent eddies through affordable accuracy in the spacial discretization
and adequate modeling of the residual turbulent scales.

Gas-liquid flows, specifically buoyancy driven bubbly flows, feature a wide
range of turbulent scales. The size of turbulent eddies ranges from
dimensions similar to the characteristic length of the mean flow down
to the smallest turbulent scales (Kolmogorov scales) of motion. This
broad spectrum in combination with its interrelation to fluid particle
motion complicate the adequate description of turbulence in the numerical
simulation of two-phase flows. Nevertheless, turbulent fluctuations in the
flow field account for bubble coalescence and breakup phenomena, which
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2.3 Turbulence modeling

necessitates their accurate depiction in case fluid particle interaction is
accounted for in the simulation.

If even the smallest scales of turbulence are resolved by the spatial
discretization, the numerical approach is referred to as direct numerical
simulation (DNS), emphasizing that no turbulence model is adopted.
Regarding gas-liquid flows, this approach is ultimately accompanied by
the application of an interface resolving method (see section 2.1) [206]
[66]. Corresponding numerical studies assist the derivation or validation
of model formulations for interfacial forces or multiphase turbulence, yet,
the description of industrial scale engineering problems is not feasible.

The majority of existing gas-liquid flow turbulence models can be cate-
gorized as Reynolds-averaged Navier-Stokes (RANS) approaches deduced
from single-phase flow formulations [132] [111]. Specifically adapted k-
ε-models have been widely applied to the primary phase formulations in
Eulerian-Eulerian simulations of gas-liquid flows (e.g., [172], [160], [183],
[64]). Studies incorporating alternative RANS formulations, such as the k-
ω-model [15] or the Reynolds stress model (RSM) [19] [37] are used far less
frequently.

Due to the time-averaged representation of turbulence in RANS methods,
this modeling approach is not able to accurately capture unsteady two-
phase flow dynamics. The turbulent hydrodynamics are represented by
a quasi steady-state approximation, which arguably is sufficient for the
quantitative analysis of time-averaged mean flow patterns, but does not
allow for the evaluation of instantaneous local flow phenomena or turbulence
parameters [63]. Additionally, the assumption of an isotropic turbulence is
made in the majority of RANS approaches. This does not coincide with the
characteristics of turbulence in dispersed bubbly flows, where the large-scale
velocity fluctuation amplitude in vertical direction is approximately double
the respective value for horizontal directions [63]. The resulting deficient
representation of the two-phase flow dynamics leads to an erroneous depic-
tion of particle interaction phenomena and consequently to altered bubble
size distributions. Due to this substantial influence, the adequate modeling
of the two-phase flow turbulence is of major importance, specifically for
bubble column flow simulations, which may be strongly affected by local
bubble size relations.

25



2 Gas-liquid flow modeling

Following this line of reasoning, a number of recent studies (e.g., [58], [22],
[62], [197]) have incorporated the large eddy simulation (LES) approach
for the Euler-Euler simulation of bubble column hydrodynamics. With the
Euler-Euler LES (EELES) model, which is also referred to as very large
eddy simulation (VLES), the large scale structures of turbulence, comprising
most of the turbulent energy, are resolved while the residual scales are
accounted for by a respective model formulation. In view of this, the
LES approach can be characterized as a tradeoff between DNS and RANS,
constituting a valuable compromise between accuracy in the depiction of
turbulence and a numerically efficient representation, which allows for the
consideration of large scale flows.

For the category of LES models considered in this study (see section
2.3.1), the distinguishing mark, which defines the minimum length of a
resolved turbulent eddy, correlates with the numerical mesh size. LES
governing equations are derived by a filtering operation, in which the spatial
discretization defines the respective local filter width ∆tur. Therefore, the
modeling approaches for the residual spectrum of turbulence are commonly
referred to as sub-grid scale (SGS) models. Further details on LES
characteristics and fundamentals are explicated in the subsequent chapter.

By adopting the LES method for the simulation of dispersed gas-liquid
flows, the interrelation of fluid particle sizes with the filter width of the
turbulence spectrum has to be taken into consideration. To ensure LES
model validity, ∆tur must correspond to a methodical separation in the
inertial subrange of turbulence energy. This necessitates a relatively fine
spatial discretization in case of bubble column flows. On the other hand, a
filter width smaller than the dispersed phase particle size deviates from the
prerequisites for the averaged Euler-Euler governing equations (see section
2.2.2) and the potentially resolved scales of continuous phase fluid motion
in proximity of fluid particles are resolved deficiently due to the absence
of interface details. Furthermore, the derivation of conventional interfacial
exchange terms is predicated on a spatial discretization according to an
Eulerian conception.

By reference to the turbulent energy spectrum, figure 2.2 illustrates a
configuration where the LES filter width ∆tur, correlating to a cut-off
wavenumber K of turbulence fluctuations in Fourier space, is smaller than
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2.3 Turbulence modeling

the fluid particle size Dp. The highlighted range of turbulence wavenumbers
indicates the scale of eddies which are theoretically accounted for by the LES
setup, although their accurate representation is not feasible in an Eulerian
framework.

E

KDp ∆tur

modeled

inertial subrange

resolved

Figure 2.2: Turbulence energy spectrum in case Dp > ∆tur (adapted from [161])

Milelli [153] performed a detailed systematic study investigating the relation
between LES filter length and bubble size for the simulation of gas-liquid
flows. His findings, which are summarized in [152], define a lower limit of
the LES filter width by specifying

∆tur

Dp
≥ 1.5 (2.47)

for an accurate representation of bubble affected turbulence in gas-liquid
flows. A corresponding correlation is depicted in figure 2.3 in terms of
the turbulence energy spectrum and in figure 2.4 illustrated as exemplary
relation between bubble size and filter length, satisfying the Milelli criterion
(2.47).

The application of LES methods for the Eulerian simulation of gas-liquid
flows still represents a rather novel approach and its utilization for large scale
engineering problems is still bound to the availability of high performance
computing equipment. Thus, various fluid dynamic aspects related to
turbulence modeling are still under investigation or subject to future
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E

KDp∆tur

modeled

inertial subrange

resolved

Figure 2.3: Turbulence energy spectrum in case
Dp < ∆tur (adapted from [161])
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Fig. 2. (a) Spectra for condition when bubble size larger than filter width (Niceno
et al. [18]), (b) spectra for condition when bubble size smaller than filter width
(Niceno et al. [18]), (c) Milleli [16] condition.

of the resolved field. This is illustrated by the saw-like shading
in Fig. 2a. This influence on the resolved part of the spectra is
not acceptable for LES.

The situation which is safe for Euler–Euler–LES is shown
in Fig. 2b, where dB is smaller than Δ, and all bubble induced
scales, which cannot be calculated with Euler–Euler–LES, fall
into SGS part of the spectra. This is not just a conceptual con-
sideration, as shown by Milelli [16], who made an a-posteriori
analysis of the minimum ratio of the bubble and cell size for LES
for bubble plumes and came up with the criterion: h/dB > 1.5. The

criterion states that cell size must be at least 50% larger than the
bubble diameter for accurate LES. The situation is illustrated in
Fig. 2c (Niceno et al. [18]).

In the present work, the bubble diameter was specified as
4 mm based on experimental observation. The flow is domi-
nated by the energetic, large-scale structures in the core of the
flow, with wall effects having a smaller impact on the overall
flow field, so we used a uniform grid with 15 × 15 × 50 (coarse
grid), 30 × 30 × 100 cells (fine grid). Since the dimensions of
the domain are 15 cm × 15 cm × 50 cm, ratio h/dB is 1.2 for the
fine grid and 2.5 for the coarse grid. A simulation over 150 real-
time seconds needs roughly 72 and 192 h for coarse and fine grid,
respectively, on an AMD optron single-processor machine.

4. Results and discussion

The simulations of gas liquid flow in a bubble column have
been carried out with two different approaches as described in
the earlier section using CFX 4.3. The details of the cases sim-
ulated is given in Table 1. Deen et al. [14] carried out the LES
using Smagorinsky model. In view of this, in the present study,
the effect of interfacial forces for LES has not been reported to
avoid repetition. Instead, new results with Germano model and
sensitivity analysis for RANS have been provided in the follow-
ing sections. Further, in case of RANS, attempt has been made to
bring out effect of turbulent dispersion force on the predictions.

The simulations have been carried out using the time step
between 0.005 and 0.01 s, depending upon the resolution. The
time step was selected by applying the CFL-criterion, i.e.
�t ≤ �z/|u|. No significant effect was observed by refining the
time step. The simulations were run for 20 s before any flow
statistics were collected. This allowed for all the initial dynam-
ics of establishing the flow from zero velocity start condition
to die out. Statistical data was collected over the period of next
130 s. A time history plot of the axial liquid velocity at one
point (z = 0.25 m, x = y = 0.075 m) in the column is shown in
Fig. 3 between 100 and 150 s. From this figure, it can be seen
that, provided that drag, lift and virtual mass forces are taken
into account, LES represents the transient behaviour observed
in the experiments of Deen et al. [22] in terms of frequency and
amplitude of the fluctuations. Both the time and velocity scales
are fairly in agreement with the experimental data. It should
be noted that both the sub-grid scale models capture the experi-
mental observation reasonably well. In contrast, only large scale
fluctuations which are small in magnitude are resolved in the k–ε

Table 1
Overview of models and grid spacing

Case �x, �y �z

(mm)
�t Model Forces

1 10.0 0.01 Ex-RANSa, BIV MD, ML, MVM, MTD

2 10.0 0.005 LES, Smagorinsky, BIV MD, ML, MVM

3 10.0 0.005 LES, Germano, BIV MD, ML, MVM

4 10.0 0.005 LES, Germano MD, ML, MVM

5 6.0b 0.005 LES, Germano, BIV MD, ML, MVM

a k–ε model with extra terms by Simonin and Viollet [30].
b Up to 450 mm in the z-direction.

Dp

∆tur

Figure 2.4: Illustration of the
Milelli criterion [162]

studies. Nevertheless, this modeling approach is distinctly superior to
RANS methods regarding the depiction of multiphase flow dynamics and
turbulence characteristics. These advantages are of paramount importance
for the proceeding investigation of dispersed phase particle interaction
and ultimately for the analysis of heat and mass transfer phenomena.
The following explanations on turbulence modeling are limited to the
EELES approach. Further information on RANS modeling in particular
for multiphase flow applications can be found elsewhere (e.g., [175], [217],
[132], [111]).

2.3.1 LES fundamentals and eddy viscosity

Developed for the numerical simulation of single phase turbulent flows, the
LES approach is based on a filtering procedure of the turbulent fluctuations
of flow parameters, primarily the velocity components. This operation
divides the turbulence spectrum into two parts. While larger eddies,
containing most of the turbulent energy, are numerically resolved, turbulent
scales below a certain spatial dimension have to be accounted for by a
respective model. In view of the different properties of large and small scale
turbulence eddies (see table 2.2), this differentiation is specifically favorable
and yields a more generic validity of the turbulence modeling approach.
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2.3 Turbulence modeling

Large eddies Small scale eddies
Produced by mean flow Produced by large eddies
Depends on boundaries Universal
Ordered Random
Requires deterministic description Can be modeled
Inhomogeneous Homogeneous
Anisotropic Isotropic
Long-lived Short-lived
Diffusive Dissipative
Difficult to model Easier to model

Table 2.2: Comparison of properties of large scale and small scale turbulence eddies [114]

Generally, the cut-off filter size ∆tur in physical space can be interpreted
as a corresponding limiting wavenumber in Fourier space of turbulent
fluctuations. Furthermore, several LES models are formulated in terms of a
temporal filtering approach, which commonly relates to the spatial equiva-
lent. The following explications solely refer to the spatial interpretation of
LES filtering. Considering a generic flow quantity ψ, an arbitrary location
in the flow domain x′ = x+η, and a spacial filter kernel function G(x,x′),
the mathematical representation of the filtering operation is

ψ̃(x) =
∫
G(x,x′)ψ(x′) dx′, (2.48)

where the SGS turbulence fluctuations ψ′ can be represented as

ψ′ = ψ − ψ̃. (2.49)

The derivation of the Euler-Euler governing equations for gas-liquid flows
(2.29) is conducted by a volume averaging procedure, whose primary
purpose is the simplified consideration of local two-phase flow conditions
without interface details in the description of multiphase fluid dynamics.
Besides this property, the deduction additionally prohibits the numerical
resolution of turbulence fluctuations in the flow field with spatial dimen-
sions below the averaging range. In this respect, the volume averaging
procedure constitutes a spatial filtering operation to turbulence scales and
consequently represents a specific form of the LES. Alternative derivations of
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2 Gas-liquid flow modeling

the two-fluid governing equations are based on the separation of averaging
operations for local phasic conditions and turbulence fluctuations. This
allows for the application of various LES configurations, but is accompanied
by an increased complexity in the formal description. The current study
is limited to the consideration of a volume averaging procedure which
simultaneously represents an LES filtering operation. Hence, the specifics
of the LES turbulence model are selected accordingly.

A so-called box or top-hat filter is applied, which is exclusively dependent
on the selected spatial filter size ∆tur:

G(x,x′) =


1
∆tur

if |x− x′| ≤ ∆tur

2
0 otherwise

. (2.50)

This type of filter kernel function can be categorized as homogeneous, which
implies, without limitation,

• Consistency
∞∫
−∞

G(x,x′)dx′=1,

• Linearity ψ̃1 + ψ2 = ψ̃1 + ψ̃2.

Additionally, the filtering procedure in the considered form represents a
Reynolds operator, which signifies ˜̃

ψψ′ = 0 and ˜̃
ψψ = ψ̃ψ̃.

Since equivalence of volume averaging and LES filtering is assumed (ψ = ψ̃),
solely the notation for the former operation (ψ) will be applied from now
on.

In the generic Euler-Euler governing equation for gas-liquid flows (2.29),
the averaging of the advective term yields the unclosed expression Jk,tur
(see formulation (2.30)). With regard to the momentum balance equation,
the respective term Jk,tur is generally referred to as residual stress tensor
T k,tur. This parameter represents the spectrum of spatial turbulent velocity
fluctuations which cannot be resolved by the selected averaging scale. In
case of the continuous phase, the residual stress tensor is formulated as

T c,tur = ρc (ucuc − ucuc) = 2
3kc,turI + τ c,tur, (2.51)
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where kc,tur denotes the residual turbulent kinetic energy. The first term on
the right hand side represents the isotropic part of the stress tensor whose
definition in Einstein notation with indices i and j yields

2
3kc,turI = 1

3ρc (uc,iuc,i − uc,iuc,i) . (2.52)

The deviatoric or anisotropic part τ c,tur, which is also referred to as SGS
Reynolds stress tensor, can consequently be described as

τ c,tur = ρc (uc,iuc,j − uc,iuc,j)−
1
3ρc (uc,iuc,i − uc,iuc,i) . (2.53)

Due to the occurrence of averages of velocity correlations (e.g., uc,iuc,j)
in equation (2.53), a direct evaluation of the Reynolds stress tensor τ c,tur
is inaccessible. These terms are a function of unknown SGS velocity
fluctuations and hence necessitate a model formulation to overcome this
closure problem. Several approaches have been developed (e.g., [83] [224])
with the Smagorinsky model [192] being the most prevalent. It is based on
the evaluation of the SGS Reynolds stress tensor by

τ c,tur ≡ −2(CS∆tur)2 ∣∣∣Sc∣∣∣Sc, (2.54)

with CS representing the Smagorinsky coefficient and Sc denoting the
strain-rate tensor introduced in equation (2.44). Although varying defini-
tions are possible, the norm of the strain-rate tensor is formulated according
to Pope [175] as

∣∣∣Sc∣∣∣ ≡ (
2ScSc

)1/2
. (2.55)

Derived from the fluid dynamic relations in laminar flow, the linear eddy
viscosity model describes the Reynolds stress tensor τ c,tur in terms of the
strain-rate tensor and a turbulent viscosity µc,tur [78]. The later expression
is introduced to account for the unresolved turbulent velocity fluctuations
in the form of an addition to viscous effects in the continuous phase flow.
With regard to equation (2.54), the mathematical definition reads
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τ c,tur ≡ −2µc,turSc, (2.56)

with

µc,tur = ρc(CS∆tur)2 ∣∣∣Sc∣∣∣ . (2.57)

For single phase high Reynolds number flows, Smagorinsky constant values
of CS ≈ 0.17 are commonly specified, provided that the spatial filter width
is within the inertial subrange of turbulence scales. Yet, the optimal value
may vary in a wide range, from CS = 0.065 [157] to CS = 0.25 [109],
depending on the local flow regime. Regarding the core part of a channel
flow, for instance, optimal agreement to experimental findings is achieved
with a Smagorinsky constant in the range of 0.065 < CS < 0.1 [79]. In
case of the continuous phase turbulence in bubble column flows, a value of
CS ≈ 0.1 is proposed by several respective studies (e.g., [227], [62]). Higher
values for the Smagorinsky constant implicate a significant attenuation of
the gas-liquid flow dynamics, which eventually results in a steady state
solution [63]. The lack of an exact a priori specification for CS represents
a major disadvantage of the classical Smagorinsky model and initiates
research towards dynamic CS formulations or alternative LES approaches.

In a number of recent publications concerning the numerical simulation of
gas-liquid flows, a further addition to the turbulent viscosity µc,tur due to
bubble induced turbulence, is proposed [22] [182]. Since the relevance of this
effect as well as its appropriate modeling approach (e.g., [184], [205]) is still
under investigation, bubble induced turbulence is not taken into account in
this work. This neglect is in line with the majority of numerical simulations
of bubble column flows (e.g., [65], [53], [13]).

With the incorporation of the turbulence modeling formulations (2.54) to
(2.57) into the volume averaged momentum equation (2.34), in conjunction
with the discussion on phase-specific stress relations and interfacial mo-
mentum transfer (equations (2.41) to (2.44)), the Euler-Euler momentum
equation for the continuous phase reads
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∂

∂t
(αcρcuc) +∇ · (αcρcucuc) =

∇·
[
αcµc,eff

(
∇ · uc + (∇ · uc)T −

2
3ucI

)]
−αc∇p+(αcρcg)+Γcuc+M c,GD,

(2.58)

with the effective dynamic viscosity µc,eff comprising a molecular and a
turbulent contribution µc,eff = µc + µc,tur.

There is no consent on the inclusion of a specific turbulence formulation in
the Eulerian depiction of the dispersed phase. Several approaches have been
proposed in the literature, ranging from the neglect of any representation of
turbulence in the dispersed phase governing equations (e.g., [165]), over an
evaluation analogous to the continuous phase formulation (e.g., [171]), to
the derivation from continuous phase turbulence relations (e.g., [58]). The
latter approach is also applied in this work, following the model of Jakobsen
[106], where the primary phase effective viscosity µc,eff is scaled by the ratio
of gas and liquid densities and transferred to the dispersed phase as

µd,eff = ρd
ρc
µc,eff . (2.59)

This definition allows for the formulation of the Euler-Euler dispersed phase
momentum balance equation in analogy to the continuous phase expression
(2.58) as

∂

∂t
(αdρdud) +∇ · (αdρdudud) =

∇·
[
αdµd,eff

(
∇ · ud + (∇ · ud)T −

2
3udI

)]
−αd∇p+(αdρdg)+Γdud+M d,GD.

(2.60)

2.3.2 LES of the species transport equation

With regard to equation (2.30), the residual turbulent concentration fluc-
tuations of a generic species X in phase k are given by

33



2 Gas-liquid flow modeling

GX
k,tur = ρk

(
Y X
k uk − Y

X
kuk

)
. (2.61)

Applying the gradient diffusion approach [72], GX
k,tur is modeled in the form

of

GX
k,tur = −ρkDk,tur∇Y

X
k , (2.62)

where Dk,tur represents the phase-specific turbulent diffusion coefficient,
which is evaluated in analogy to the Smagorinsky model [192] by

Dk,tur = µk,tur
Scturρk

= 2 (CS∆tur)2

Sctur
∣∣∣Sk∣∣∣ . (2.63)

As a consequence of the inherent relation of SGS diffusive momentum and
species transport (see section 2.5.1), the turbulent Schmidt number Sctur is a
model constant and determines the magnitude of the SGS species diffusion
Dk,tur. While a turbulent Schmidt number of Sctur = 0.7 is common for
RANS models, a value of Sctur = 0.4 is generally set for LES approaches
[173].

The introduced method for the evaluation of SGS diffusive transport,
including the gradient diffusion approach (2.62) and the Smagorinsky model
analogy (2.63), is not bound to the consideration of chemical species
but commonly applied for the LES simulation of all passive scalar flow
quantities. Specifically the SGS diffusion in the description of the fluid
dynamic transport of enthalpy is modeled analogously, with the turbulent
Prandtl number Prtur being the equivalent of the turbulent Schmidt number
Sctur. In spite of the similar diffusive transport processes for heat and
mass in single and multiphase fluid dynamics, variant specifications for Sctur
and Prtur are conceivably used. In their LES simulation, Van der Hoeven
et al. [210] suggest an SGS Prandtl number of Prtur = 0.7 while specifying
Sctur = 0.4.

As discussed in the previous section, turbulence contributions are accounted
for in the momentum equations of both the continuous and the dispersed
phase. Following this concept, equation (2.62) is introduced as valid for
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both phases in this work, although its application in case of the dispersed
phase is avoided later on in the numerical studies of bubble column flows
(see section 5). The way of incorporating diffusive terms in the dispersed
phase species equations of an Euler-Euler model is controversial. Examples
for alternative configurations can be found in the literature [229].

An adaption to the evaluation of the continuous phase diffusive transport
as introduced in equations (2.62) and (2.63) is presented by Darmana
et al. [55]. They determine the effective diffusion coefficient in their
Euler-Lagrange LES of bubble column flows by

DX
c,eff = DX

c +Dc,tur = µc,eff

ScX
c ρc

, (2.64)

where ScX
c denotes the (molecular) Schmidt number, which depicts the ratio

between the diffusivity of momentum, i.e. viscosity, and the mass diffusivity
as

ScX
k = µk,
DX
k,ρk

(2.65)

in the phase generic definition. The physical basis of this modified model
is unclear. Thus, the determination of the turbulent diffusion coefficient in
this work is deduced from the Smagorinsky model as presented above.

The introduced formulations regarding the LES modeling of species trans-
port in association with the definition of the molecular diffusive flux
according to Fick’s law (2.45) yields an Euler-Euler transport equation for
the generic species X in phase k in the form of

∂

∂t

(
αkρkY

X
k

)
+∇ ·

(
αkρkY

X
kuk

)
= ∇ ·

(
αkDk,eff∇Y

X
k

)
+ ΓX

k +
(
αkρkΨ

X
k

)
,

(2.66)

where the molecular and turbulent contributions to the species diffusion
are summarized in DX

k,eff = DX
c +Dc,tur. For high Schmidt number species,

the SGS diffusivity outweighs the molecular equivalent which can thus be
neglected. While this simplification generally is inapplicable for gaseous
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flows (Sc ≈ 1), species diffusion in liquids can potentially be considered in
that manner (Sc >> 1) [79].

2.4 Interfacial closure relations

As part of the deduction of volume averaged Euler-Euler governing equa-
tions, the interfacial interaction between the phases has been accounted
for by the respective source terms M k,GD, Γk and ΓX

k in the phase-
specific conservation equations (see section 2.2.2). Model approaches for
the interfacial exchange of momentum and mass, primarily suitable for
bubbly flows, are introduced in the following subsections. This includes
an explanation of the corresponding physical basis of the formulations and
the presentation of several model variants.

2.4.1 Momentum transfer

As formulated in equation (2.41), M k,GD denotes the contribution to the
interfacial flux of momentumM k,I which needs to be accounted for through
a closure relation. This generalized drag term M k,GD represents the unity
of all external forces acting on the interfacial boundaries of phase k and
is commonly expressed as a linear combination of various forces per unit
two-phase flow volume. With the differentiation between continuous and
dispersed phase, the consequent formulation reads

M c,GD = −M d,GD =
∑
MZ = N

∑
F Z , (2.67)

where ∑
F Z represents the net force acting on a single particle and

N denotes the number of fluid particles per two-phase mixture volume,
evaluated as

N = 6αd
πD3

p

, (2.68)

with a mean diameter Dp of the dispersed phase. In the following section,
interfacial forces of different nature are introduced contributing to
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2.4 Interfacial closure relations

∑
F Z = FD + F L + F VM + F TD. (2.69)

The considered forces account for the interfacial exchange of momentum
due to drag, lift, virtual mass and turbulent dispersion (in order of their
appearance in equation (2.69)). Beyond that, several additional interfacial
forces for gas-liquid flows have been reported in literature. Since their
effect is generally marginal, neglectable for bubble column flows or not yet
comprehensively investigated, further contributions are not discussed in this
work. The reader is referred to respective literature sources for information
on Basset force [198], wall lubrication force [7] or wall deformation force
[136].

2.4.1.1 Drag force

The drag force acting on a solid or fluid particle in a continuous flow field
can be split into two components [18] [105]. The induced fluid stress normal
to the interfacial boundary is described by the form drag, also referred to
as pressure drag. The remaining shear stress components are accounted for
by the friction drag. This separation is specifically prominent for analytical
solutions of drag relations. In his pioneering work, Stokes [194] combined
both contributions to analytically find the drag formulation for laminar
flows around a rigid sphere

FD = 3πµcDp (ud − uc) , (2.70)

which is valid for very low particle Reynolds numbers Rep < 1, defined as

Rep = ρcDp |ud − uc|
µc

. (2.71)

In order to generalize the applicability of this approach, the standard
formulation for the drag force is deduced from this considerations as

FD = 1
2CDρcAP |ud − uc| (ud − uc) , (2.72)
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where AP denotes the projection area of the particle to its relative velocity
and the drag coefficient CD accounts for the flow conditions. In the case
of Stokes flow (Rep < 1) around a sphere (AP = π

4D
2
p), CD can be derived

from equation (2.70) as

CD = 24
Rep

. (2.73)

With expression (2.72), varying drag effects on rigid spheres for higher
particle Reynolds numbers can be assigned to modified values of CD.
For Rep > 1, continuous phase flow inertial effects gain importance and
with a further increase of Rep, a vortex is formed behind the sphere.
This contradicts the prerequisites of Stokes and equation (2.73) becomes
invalid. The standard drag curve, shown in figure 2.5, illustrates the
relation between the drag coefficient CD and the particle Reynolds number
Rep for the flow around a sphere. To accurately capture this trend,
several researchers have proposed drag coefficient correlations for particle
Reynolds numbers exceeding the Stokes flow region, the most prominent
were formulated by Schiller & Naumann [185] and Morsi & Alexander [159].
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Figure 2.5: Standard drag curve: drag coefficient CD of a sphere as a function of the
particle Reynolds number Rep (adapted from [44])

The description of interfacial forces on bubbles, or fluid particles in general,
is substantially more complex than the consideration of rigid spheres.
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2.4 Interfacial closure relations

Interfacial interaction may excite the deformation of the bubble, which
alters the surrounding flow of the continuous phase. The modified fluid
particle shape depends on the adjacent continuous phase flow pattern as
well as on the physical properties of gas and liquid. This interrelation can
be described by a group of dimensionless numbers. Besides the particle
Reynolds number Rep (2.71), the Eötvös number Eo

Eo =
gD2

p |ρc − ρd|
σ

(2.74)

and the Morton number Mo

Mo = gµ4
c |ρc − ρd|
ρ2
cσ

3 (2.75)

are of interest in this context. The shape regimes of single rising bubbles
or falling drops, undisturbed by neighboring fluid particles or continuous
phase fluid motion, are illustrated in figure 2.6.

Similar to the consideration of spherical particles, a vortex develops behind a
rising bubble in case of higher particle Reynolds numbers. As a consequence
of bubble deformation with a further increase of Rep, the vortex may
shed asymmetrically inducing a rocking bubble motion and bubble surface
oscillations. Due to the complexity of gas-liquid flow phenomena, the
formulation of a universally valid drag force model in an Euler-Euler context
has not been achieved so far. Specifically for bubble column flows, numerous
drag formulations have been published of which several will be introduced
in the following.

The available drag force correlations for bubble column flows can be
subdivided by their general approach. Formulations for the drag coefficient
CD as a function of the terminal rise velocity up,ter of a bubble are applied
in a small number of published simulations only (e.g., [22], [118]). From the
consideration of a balance of forces for a single bubble rising in a stagnant
fluid [89], the respective correlation is derived as

CD = 4
3
ρc − ρd
ρc

gDp

u2
p,ter

. (2.76)
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Figure 2.6: Grace diagram [88] for shape regimes of single rising bubbles or falling drops
in liquid (adapted from [44])
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This rather simplistic perception, which does not reflect the two-phase
flow condition in bubble columns, may account for the rare use of this
approach. Several researchers proposed different correlations to determine
the bubble terminal velocity (e.g., [150], [45], [200]). Clift et al. [44] provide
a comprehensive discussion of this topic including the analysis of various
experimental results for air-water systems, illustrated in figure 2.7.

Eötvös Number Eo

Te
rm

in
al

Ve
lo

ci
ty
u
p
,t
er

[c
m

/s
]

Equivalent Diameter Dp,e [mm]

Figure 2.7: Terminal velocity of air bubbles in water at 20°C [44]

The majority of drag correlations for bubble column flows is formulated
subject to one or multiple dimensionless numbers introduced above. Pri-
marily the particle Reynolds number Rep and the Eötvös number Eo are
employed in this relation. Ishii & Zuber [104] established the arguably
most prominent drag force model, a combination of several correlations
valid for different bubble flow conditions. While they proposed adapted
Stokes [194] and Schiller-Naumann [185] formulations in case of small Rep
values and undistorted spherical bubbles, novel correlations for the distorted
bubble regime and churn-turbulent flow conditions were introduced, which
are specifically relevant for bubble column flows:

• Distorted bubble regime

CD = 2
3
√

EoE, (2.77)
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with

E =
1 + 17.67α6/7

c

18.67αc

2

. (2.78)

• Churn-turbulent regime
CD = 8

3α
2
c . (2.79)

In the vast majority of cases, the Ishii-Zuber model is applied in a simplified
form. Here, solely the distorted bubble regime is considered, accompanied
by the neglect of the multiplying factor E, which yields

CD = 2
3
√

Eo. (2.80)

For the two-phase flow conditions in industrial bubble columns with
relatively high values for Eo and Rep yet retaining moderate volumetric
gas fractions, this simplification can be regarded as well justified.

Tomiyama et al. [201] [199] derived drag force formulations from detailed
experiments analyzing single bubble motion of air-water systems. According
to their model, the gas-liquid system has to be categorized subject to the
level of contamination in order to select an adequate drag force expression.
The following classification is proposed:

• Pure systems

CD = max
min

 16
Rep

(
1 + Re0.687

p

)
,

48
Rep

 , 8
3

Eo
Eo + 4

 . (2.81)

• Slightly contaminated systems

CD = max
min

 16
Rep

(
1 + Re0.687

p

)
,

72
Rep

 , 8
3

Eo
Eo + 4

 . (2.82)

• Fully contaminated systems

CD = max
 16

Rep
(
1 + Re0.687

p

)
,
8
3

Eo
Eo + 4

 . (2.83)
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It is argued that recirculating gas motion inside the bubbles is induced in
pure gas-liquid system flows, which decrease the viscous drag. This effect is
either partially or entirely suppressed in case of contaminated systems due
to the accumulation of impurities on the bubble surface. In the ultimate
case, the interface can be regarded as rigid. [143]

The introduced drag closure relations are deduced from simplified two-
phase flow considerations or unimpaired single bubble motion, neglecting
the impact of neighboring fluid particles or swarm effects. These influences
are taken into account in recent experimental and numerical investigations
(e.g., [190], [124], [180]), potentially yielding drag force models which
are inherently more suitable for the description of bubble column flow
conditions.

2.4.1.2 Lift force

Similar to the derivation of Euler-Euler drag force models for gas-liquid
flows, the theoretical principles for lift force correlations are based on
investigations of laminar flow around spherical particles. In corresponding
experimental investigations, the motion of a single rigid sphere perpendic-
ular to the flow direction has been observed. The physical origin of this
transversal migration has been denoted as lift force which is acting on the
particle. This effect is induced by an asymmetric flow and pressure field
around the particle position, caused either by particle rotation (Magnus lift
force), shear flow conditions (Saffman lift force), or a combination of the
two, respectively. From these considerations, a number of researchers (e.g.,
[10], [69]) derived the lift force formulation in an Eulerian context as

ML = CLαdρc (ud − uc)×∇× uc, (2.84)

where CL represents the lift coefficient which is evaluated according to model
correlations. In case of spherical particles in an inviscid flow, a value of
CL = 0.5 has been determined, while Lahey [119] proposes values of the lift
coefficient as small as CL = 0.01 for viscous flows.

The investigation of lift forces acting on deformable fluid particles is
accompanied by a considerable increase in complexity. Various experi-
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mental studies of gas-liquid flows have indicated that the migration of
bubbles normal to their direction of ascent does not only differ from the
theoretical conclusions for rigid spheres, but may even be opposite in
direction. Tomiyama et al. [199] [202] gave an explanation for this behavior,
concluding from detailed experimental and numerical investigations of single
bubble motion in simple shear flows. While the analyzed bubble motion is
in line with the classical Saffman lift force theory for small Eötvös numbers,
the bubble deformation is accompanied by a slanting of the adjacent vortex
in case of higher Eötvös numbers. The resulting modified flow conditions
may lead to an inversion of the net transversal forces.

Although this effect is not compatible with the concept of lift forces on
spherical particles, Tomiyama et al. [202] quantify this phenomenon as part
of a model formulation which is based on the classical lift force correlation
(2.84). The parametrization yields a piecewise defined formulation1 for the
lift force coefficient in the form of

CL =


min [0.228 tanh (0.121Rep) , f (Eoh)] if Eoh < 4
f (Eoh) if 4 ≤ Eoh ≤ 10
−0.27 if Eoh > 10

, (2.85)

with

f (Eoh) = 0.00105Eo3
h − 0.0159Eo2

h − 0.0204Eoh + 0.474, (2.86)

and Eoh representing a modified Eötvös number with respect to the
horizontal axis Dp,h of the distorted bubble

Eoh =
gD2

p,h |ρc − ρd|
σ

. (2.87)

The bubble aspect ratio A, representing the ratio between the vertical
and horizontal dimension of the bubble, is determined according to Wellek
et al. [215] as
1 The present formulation is a slightly modified version of the original model, adapted by Frank et al. [81]
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A = Dp,v

Dp,h
= 1

1 + 0.163Eo0.757 , (2.88)

with a relation to the mean bubble diameter Dp in the form of

Dp =
(
Dp,vD

2
p,h

)1/3
. (2.89)

The diagram in figure 2.8 illustrates the relation between the lift coefficient
CL and the bubble diameter Dp according to the Tomiyama model for an
air-water system at ambient conditions.
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Figure 2.8: Lift force coefficient CL according to the Tomiyama model for an air-water
system (|ud − uc| = 0.25 m/s)

Alternative models for the lift force in bubbly flows can be found in a
comprehensive overview by Hibiki & Ishii [96]. The lift force models
published so far are derived from simplistic gas-liquid flow conditions, which
also applies for the Tomiyama model. To further extend the respective
considerations to more practical two-phase flows, a continuing research
effort is required.

Following the results of several numerical investigations (e.g., [227], [93]), a
lift force coefficient of CL = 0.5 is applied in many recent bubble column
flow simulations, specifically LES studies, superseding the former neglect
of transversal forces. Latest publications on numerical investigations of
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bubble column flows exhibit an increased application of more complex lift
force correlations, particularly the Tomiyama model, without yielding a
unanimous conclusion on the quality and suitability of model formulations.

2.4.1.3 Virtual mass force

An accelerating motion of a dispersed particle causes the continuous fluid
in its vicinity to accelerate as well. As a consequence, a retaining force is
acting on the particle, commonly referred to as virtual or added mass force.
Drew et al. [69] [67] formulated an expression for the virtual mass force in
an Eulerian framework as

MVM = CVMαdρc

(Dud
Dt −

Duc
Dt

)
, (2.90)

and derived a value of CVM = 0.5 for the virtual mass coefficient in case of a
spherical particle in potential flow. With this configuration, the acceleration
of the particle is adapted as if half of the fluid mass it displaces were added
to the particle mass.

Considering bubbly flows, Tomiyama [200] deduced a model expression
for the virtual mass coefficient from experimental investigations. For
ellipsoidal-shaped bubbles, he proposed the formulation of the virtual mass
coefficient in the form of a diagonal tensor CVM with different entries
for the horizontal CVM,h and vertical direction CVM,v, respectively. These
expressions read

CVM,h = A cos−1A−
√

1−A2

A2
√

1−A2 −A cos−1A
, (2.91)

CVM,v = cos−1A−A
√

1−A2

(2A−1 −A)
√

1−A2 − cos−1A
. (2.92)

So far, the introduced Tomiyama approach, as well as alternative models
for virtual mass effects in bubbly gas-liquid flows (e.g., [84], [134]) have
rarely been applied in published CFD simulations of bubble column hy-
drodynamics [227] [229]. Until now, the most frequently used virtual mass
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correlation for respective Euler-Euler models is determined by the selection
of CVM = 0.5. Several comparative numerical studies (e.g., [58], [197])
indicate that virtual mass effects are of minor significance for gas-liquid
flows in bubble columns, outweighed by the impact of lift, and primarily
drag forces. Although their influence on the numerical results is arguably
marginal, virtual mass correlations are frequently incorporated in recent
corresponding publications, which may also be explained by beneficial
effects on numerical stability.

2.4.1.4 Turbulent dispersion force

As discussed in section 2.3, the fluctuating motion of the dispersed phase
is not or only partially resolved within an Euler-Euler framework for gas-
liquid flows. Consequently, the dispersion of fluid particles due to unresolved
turbulence is not depicted by the numerical model and various researchers
propose the consideration of this effect in the form of an interfacial force,
termed turbulent dispersion (or diffusion) force. A number of respective
model formulations for the numerical incorporation of this force have been
published. Moraga et al. [158] and Lucas et al. [135] give an overview
of available models including their application in respective studies. The
most prominent variant is based on a general expression of the turbulent
dispersion force derived by analogy with molecular movement [120] as

MTD = CTDρckc,tur∇αd. (2.93)

While the original model defined a constant value of CTD = 0.1 for the
turbulent dispersion coefficient, this approach was later extended by Lopez
de Bertodano [133] who formulated a more general evaluation of CTD subject
to the particle Stokes number.

The introduced consideration of the dispersive transport of bubbles caused
by gas-liquid turbulence in terms of an interfacial force is controversial,
specifically with respect to a coincident modeling of the dispersed phase
residual stress [99]. With the application of an LES approach, turbulent
eddies down to the size range of the bubble diameter are accounted for
by the numerical discretization (see section 2.3). Hence, depending on the
bubble to grid size ratio, the justification for the incorporation of a turbulent
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dispersion force model is limited or nonexistent. Generally, the turbulent
dispersion force is neglected in LES simulations of bubble column flows,
while latest studies pursue the adaption of existing formulations for the
application in an LES context (e.g., [196]).

By studying published Euler-Euler model configurations for the simulation
of bubble column hydrodynamics, it is evident that an unanimous setup
for the modeling of interfacial forces has not been established yet, not in
terms of considered phenomena nor in their respective model formulation.
Several tabular reviews of bubble column flow simulation configurations
(e.g., [197], [14], [91]) exhibit the variety of combinations with respect to
interfacial momentum exchange closure relations. The main reason for the
lack of definite knowledge in this field can be ascribed to the complexity
of experimentally determining individual aspects of momentum exchange,
particularly in polydisperse bubble swarms. Further numerical and ex-
perimental studies are necessary to clarify and quantify the interaction of
interfacial forces. A similar conclusion is drawn by researchers like Ishii &
Hibiki [103], who hereof reported: “In the present status of development,
constitutive equations for some forces are based on speculation, and the
applicable flow ranges are not given clearly. Thus, unlike the standard
drag force, such lateral forces have not been well developed”. In view of
this, rather elementary configurations for the consideration of interfacial
momentum exchange are applied in this work, coinciding with various
numerical studies reported in the literature.

2.4.2 Mass transfer

In the Euler-Euler constitutive equations for gas-liquid flows (2.31) to
(2.40), mass transfer phenomena are collectively accounted for by the source
terms Γk and ΓX

k . While both expressions are formulated with respect to
the associated phase k, the latter exclusively represents the mass transfer of
chemical species X. Consequently, the net mass transfer in association with
phase k can be expressed as a combination of species-specific contributions
by

Γk =
∑
X

ΓX
k . (2.94)
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Mass transfer across the phase boundary in a gas-liquid environment may
be effected by different thermodynamic and chemical phenomena, e.g.,
evaporation, condensation or absorption. Exclusively the latter effect is
considered in this work and a brief explication of the respective physical
basis is given in the subsequent segments. Although the remaining mass
transfer phenomena originate from alternative physical processes, their
impact on the conservation equations of mass, momentum and chemical
species is commonly formulated similar to the correlation presented in
chapter 2.2.2. As only a concise introduction to mass transfer theory is
part of this section, the reader is referred to specialized literature for a
detailed derivation of formulations and information on all physical aspects
(e.g., [12], [50], [116]).

Mass transfer across the gas-liquid interface, specifically absorption, is
driven by a local gradient in concentration of chemical species between
the phases. The induced mass flux tends to counter the chemical imbalance
until eventually a state of equilibrium is reached. While this process can
be directly described if only diffusive transport is considered, turbulent
convection necessitates the development of more complex concepts of formal
representation. Several approaches have been developed to conceive this
phenomenon.

The penetration theory was introduced by Higbie [97] and describes absorp-
tion from a bubble surface in terms of a reiterative transport of individual
fluid elements that migrate to the interface, exchange mass while being in
contact with the bubble and remigrate to the fluid bulk. Danckwerts [51]
adapted this approach to establish the surface renewal model by defining
a statistical evaluation approach for the contact time instead of the former
assumption of a constant exposure time. As opposed to these approaches,
the boundary layer theory considers the liquid fluid dynamics in the vicinity
of the bubble by the constitutive equations. Yet, several simplifying
assumptions have to be made in the derivation of practical formulations,
which are outlined in respective literature sources (e.g., [18]).

A mass concentration profile from within a dispersed bubble across the
phase boundary to the liquid bulk is illustrated in figure 2.9. This depiction
exhibits the three types of resistance the mass flux between the phases
has to overcome: the single phase transport to

(
Y X
d → Y X

d,I

)
and from the
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interface
(
Y X
c,I → Y X

c

)
, respectively, as well as the transfer resistance across

the phase boundary
(
Y X
d,I → Y X

c,I

)
.3386 D. Darmana et al. / Chemical Engineering Science 60 (2005) 3383–3404
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Fig. 2. Schematic representation of gas–liquid mass transfer.

2.4. Mass transfer

The interphase mass transfer in a bubble with radiusRb
is considered to be driven by mass fraction gradients. The
mass fraction of a chemical speciesj in the liquid phase and
bubble are represented byY jl and Y jb , respectively, while
the value of both quantities at each side of the bubble–liquid
interface is given byY j∗l andY j∗b (seeFig. 2).

The mass transfer in a bubble due to a mass fraction gra-
dient of speciesj is represented as

ṁ
j
b = Ekjl Ab�l (Y j∗l − Y jl ), (14)

whereE is the enhancement factor due to chemical reactions,
Ab is the surface area of the bubble andkjl is the mass
transfer coefficient for speciesj, which is determined using
a Sherwood relation for a moving bubble (Bird et al., 2002):

Sh= 2 + 0.6415(ReScj )1/2. (15)

When the mass transfer resistance lies in the liquid phase,
the mass fraction on the liquid side of the interface can be
determined using a Henry constant

Y
j∗
l =HjY jb

�b
�l

, (16)

whereHj is the Henry constant for the speciesj.
The total mass transfer rate is the sum of the mass transfer

rates of all speciesj, thus

ṁb =
NS∑
j=1

ṁ
j
b. (17)

The mass transfer from the liquid to a bubble can be written
asṁl→b=max(ṁb,0), while the mass transfer from a bubble
into the liquid isṁb→l = max(−ṁb,0).

3. Numerical implementation

In this section the numerical implementation of the model
described in Section 2 will be described briefly.

3.1. Time marching

To resolve the time-dependent motion of the bubbles and
the liquid phase, as well as the chemical species, four dif-
ferent time scales are considered. The biggest time step
(�tflow) is employed in solving the Navier–Stokes equations
to obtain the macroscopic liquid flow field. The interphase
mass and momentum transfer are resolved on the scale of
the bubble time step(�tbub). To account for the possible
encounters (collisions) between bubbles and the displace-
ment of the bubbles an even smaller time step(�tab) is
used. The chemical species transport equation is solved us-
ing a time step�tspec similar to the�tflow. However, for
chemical species, which undergo fast chemical reactions a
smaller time step is required, in order to prevent numerical
instability.

3.2. Bubble tracking and direct bubble–bubble interaction

The mass and momentum conservation equation of the
bubbles are ordinary differential equations. These equa-
tions are integrated numerically using a first-order explicit
scheme. For a general time integrable variable	 the formula
can be written as

	t+1 = 	t +
(

d	
dt

)t
�tbub. (18)

The mass and momentum balance equations for each bub-
ble are solved sequentially. First, the mass transfer rate is
calculated explicitly using the method describe in Section
2.4 to obtain the bubble volume rate of change. Using the
numerical scheme described in Eq. (18), the bubble volume
rate of change is integrated to obtain a new bubble size.

Subsequently the bubble momentum equation is solved by
first calculating the interphase momentum and mass transfer
term explicitly. The acceleration of each individual bubble is
obtained in a straight forward manner using Eq. (2). The new
bubble velocity is obtained by integrating the acceleration
using Eq. (18).

The collision between bubbles is modeled using the so-
called hard sphere model following the work ofHoomans
et al. (1996). In this method a constant time step�tbub is
used to account for the forces acting on a bubble. Within
this time step, the velocity of bubbles is assumed to change
only due to binary collisions between the bubbles. A se-
quence of collisions is then processed, one collision at a
time.

To predict the collision between bubbles, we extend the
model that is widely used in the field of molecular dynamics
(Allen and Tildesley, 1987) by taking into account the rate
of change of the bubble size. Consider two bubbles,a and
b, of radiusRa andRb, respectively. At timet the bubbles
are located atra andrb with velocity va andvb and bubble
growth rates (in terms of bubble radius growth rate)Ṙa and
Ṙb. If those bubbles are to collide at timet + �tab then the
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Figure 2.9: Illustration of mass concentration relations effecting mass transfer across the
gas-liquid interface (adapted from [52])

Generally, the phase boundary is regarded as infinitesimally thin and
thermodynamic equilibrium with respect to mass transfer is assumed at
the interface. With the additional prerequisite of low solubility of a gaseous
species X in liquid, which is generally well justified, the interfacial mass
concentration relation can be represented by Henry’s law as

Y X
c,I = HXY X

d,I

ρd
ρl
, (2.95)

where the dependency of the dimensionless Henry coefficient H on tem-
perature and pressure is neglected in this study. For bubbly flows, a
homogeneous concentration of species throughout the bubble volume is
commonly assumed (Y X

d,I = Y X
d ) which yields

Y X
c,I = HXY X

d

ρd
ρc
. (2.96)

The description of mass transfer between the phases can therefore be
reduced to the consideration of the liquid side only. According to this
concept, the interfacial mass flux of species X in volume-specific form is
expressed as
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ΓX
c = KX

c apρc
(
Y X
c,I − Y X

c

)
= KX

c apρc

(
HXY X

d

ρd
ρc
− Y X

c

)
, (2.97)

where KX
c is the volumetric mass transfer coefficient on the liquid side and

ap denotes the volume-specific net bubble surface. Various models for the
determination of KX

c have been reported in the literature, deduced from the
theoretical concepts of mass transfer introduced above. Expressions for the
dimensionless Sherwood number, which represents the ratio between the
effective absorption velocity and the molecular diffusivity as

ShX = K
X
c Dp

DX
c

, (2.98)

are derived according to the boundary layer theory. These formulations
correlate with equivalent Nusselt number (Nu) expressions for the related
consideration of heat transfer, which is based on analogous physical
transport processes. In case of spherical fluid particles, the correlation of
Frössling is applicable, which reads

ShX = 2 + 0.6 Re1/2
p

(
ScX

c

)1/3
. (2.99)

The dimensionless Schmidt number, adopted in this expression, is intro-
duced above in equation (2.65). For bubble column flows, the correlation
of Glaeser [86] is frequently applied. He proposes

ShX = 2 + 0.015 Re0.89
p

(
ScX

c

)0.7 (2.100)

for deformable bubbles in turbulent flow [23] [216]. Deduced from penetra-
tion theory and surface renewal model, Lamont & Scott [122] developed a
formulation for the mass transfer coefficient based on the consideration of
local turbulence interaction with the interface

KX
c = 2√

π

(
DX
c

)0.5
(
εcρc
µc

)0.25
, (2.101)
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where εc denotes turbulent dissipation in the liquid. The prefactor 2√
π

has been adapted frequently, while the present form corresponds to the
theoretical derivation [170].

In some literature sources, equation (2.97) is expanded by an additional
factor, referred to as enhancement factor. It accounts for the influence of
chemical reactions in the continuous phase on the absorption process. While
the enhancement factor is unity for slow reactions, it is determined subject
to reaction kinetics and local concentrations for fast chemical reactions [179].
Details on the categorization of chemical reactions with respect to reaction
velocity are given in the subsequent section.

2.5 Depiction of chemical reaction

Due to the complexity of multi-component chemical interaction and the
wide range of relevant time scales, specifically in relation to temporal
dimensions of fluid dynamic transport, the consideration of chemical re-
actions in an Eulerian CFD framework is particularly challenging. This
chapter outlines the theoretical basis of this topic in conjunction with a
brief introduction of common modeling approaches. The thematic overview
is of a rather general nature and not limited to the consideration of bubble
column flows. A deduction of specific model correlations for bubbly flows
is omitted as the representation of chemical reaction phenomena is not an
integral part of the developed numerical model (see chapter 4).

The subsequent outline of chemical reaction modeling fundamentals is
not bound to particular phasic conditions, yet the focus is shifted to
multiphase reactive processes to the end of this section. Characteristics
of hydrodynamic mixing processes are discussed at the beginning, as the
relation between mixing time scales in the flow field and time scales of
chemical reactions is of essential relevance for reaction modeling.

2.5.1 Mixing processes in turbulent flows

Scalar mixing processes in the flow are described in the form of convective
and diffusive terms in corresponding transport equations. Regarding
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2.5 Depiction of chemical reaction

chemical species, these effects are depicted as part of the local instantaneous
species conservation equation (2.16), where ∇ ·

(
ρY Xu

)
represents the

convective transport and ∇ ·
(
ρDX∇Y X

)
the diffusive component2. The

interaction of both transport processes defines species mixing effects in
turbulent flows:

• Turbulent convection induces a fluid dynamic engulfment of the species
fields without molecular permeation. Assuming initially separated
layers of chemical species in a turbulent flow, the convective transport
is responsible for the deformation of species regions and elongation
of the interface (see figure 2.10). Yet, there are no molecular mixing
effects and discrete transitions between species regions persist. As a
result of the convective transport, a complex structure of species fields
develops, associated with a reduction of the respective characteristic
length scales.
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Figure 3.3. Sketch of slab initial conditions at t = 0.

Figure 3.4. Sketch of scalar field with slab initial conditions at 0 < t .

which implies that φ will be constant in fluid elements convected by the flow.6 Thus, if the

initial scalar field is segregated into two domains D and Dc as shown in Fig. 3.3, so that

φ(x, 0) =
{

0 for x ∈ D

1 for x ∈ Dc,
(3.4)

then the turbulence field will only change the length-scale distribution,7 while keepingφ =
0 or 1 at every point in the flow, as shown in Fig. 3.4. However, with non-zero diffusivity,

the scalar field will eventually begin to ‘move towards the mean,’ as seen in Fig. 3.5.

In a fully developed turbulent flow, the rate at which the size of a scalar eddy of

length lφ decreases depends on its size relative to the turbulence integral scale Lu and the

Kolmogorov scale η. For scalar eddies in the inertial sub-range (η < lφ < Lu), the scalar

mixing rate can be approximated by the inverse of the spectral transfer time scale defined

in (2.68), p. 42:8

γ (lφ) =
( ε
ν

)1/2
(
η

lφ

)2/3

for η ≤ lφ ≤ Lu . (3.5)

6 A Lagrangian description of the velocity field can be used to find the location X(t) of the fluid element at time
0 < t that started at X(0). In the Lagrangian description, (3.3) implies that the scalar field associated with the
fluid element will remain unchanged, i.e., φ(X(t), t) = φ(X(0), 0).

7 Or, equivalently, the turbulence field will change the scalar energy spectrum.
8 We have set the proportionality constant in (2.68) equal to unity. Applying the resultant formula at the Batchelor

scale suggests that it may be closer to 0.5 (Batchelor 1959).

(a) t = 0
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(b) t > 0

Figure 2.10: Illustration of fluid dynamic species mixing by turbulent convection [79]

• As opposed to turbulent convection, the mixing on a molecular level
is described by the process of diffusion. Molecular diffusion effects
the blurring of discrete interfaces between species fields and reduces
local gradients of concentration (see figure 2.11). Deducible from its
definition, the influence of molecular diffusion is intensified in regions
of high concentration gradients and most effective in the smallest
fluid dynamic length scales. The enhancement of molecular mixing
properties in virtue of turbulence thus stems from the consequences

2 Since this outline is limited to the consideration of reactive processes in a continuous flow field (also
disregarding heterogeneous interfacial reactions (ΥX

I = 0)), the phase indicating subscript is omitted in
the remainder of this section (e.g., ΨX

k = ΨX
c = ΨX).
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of turbulent convection: a steepening of local concentration gradients
and an increased exchange surface.

60 Statistical description of turbulent mixing

Figure 3.5. Sketch of scalar field with slab initial conditions and non-zero diffusivity at 0 � t .

gradient
compression

vortex
stretching

Figure 3.6. Sketch of vortex stretching at small scales.

Using the relationship between Lu and η given in Table 2.2, p. 36, the mixing rate at the

velocity integral scale Lu found from (3.5) is approximately

γ (Lu) = ε

k
, (3.6)

while the mixing rate at the Kolmogorov scale is approximately

γ (η) =
( ε
ν

)1/2
= Re1/2

L γ (Lu). (3.7)

Thus, at high Reynolds numbers, Kolmogorov-scale mixing will be much faster than

integral-scale mixing. Nevertheless, as shown below, the overall mixing time will be

controlled by the slower process, i.e., integral-scale mixing.

For scalar eddies smaller than the Kolmogorov scale, the physics of scalar mixing

changes. As illustrated in Fig. 3.6, vortex stretching causes the scalar field to become

one-dimensional at a constant rate (Batchelor 1959). Thus, for lφ ≤ η, the mixing rate can

be approximated by

γ (lφ) =
( ε
ν

)1/2
for lφ ≤ η. (3.8)

This process continues until lφ reaches the Batchelor scale, where diffusion takes over and

quickly destroys all scalar gradients. The scalar field is then completely mixed, i.e.,

φ(x,∞) =
{

〈φ〉 for x ∈ D

〈φ〉 for x ∈ Dc.
(3.9)

The total mixing time tmix can thus be approximated by the time required to reduce

lφ(0) = Lφ to lφ(tmix) = λB.

Figure 2.11: Illustration of fluid dynamic species mixing by turbulent convection and
molecular diffusion [79]

Different characteristic length scales can be defined when studying tur-
bulence, e.g., the Kolmogorov microscale lη which represents the smallest
spatial dimension of a turbulent eddy in the velocity field. Viscous
effects prevent the formation of local velocity fluctuations below this scale.
In analogy to this concept, a smallest length scale can also be defined
for turbulent mixing processes where concentration gradients in smaller
dimensions are leveled by diffusion. The relation between both microscales
is defined by the Schmidt number Sc. In fluids, where Schmidt numbers are
in the order of 100-1000 [11], the smallest length scale of mixing is referred
to as Batchelor scale lB, with

lB
lη

= Sc−1/2. (2.102)

Hence, the Batchelor microscale lB is substantially smaller than the
Kolmogorov length lη in this environment. The evolution and behavior
of velocity and species fluctuations are analogous for turbulent scales
associated with the inertial subrange of the turbulence spectrum. Since
turbulent fluctuations in the velocity field cease at spatial dimensions below
the Kolmogorov microscales, the concentration fluctuations are spatially
reduced by the strain field for the subjacent length spectrum. Ultimately,
the Batchelor microscales are reached and the increasing influence of diffu-
sive effects evens out remaining concentration gradients. A more detailed
explanation of scalar and velocity turbulence interrelations is presented by
Paul et al. [167].
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2.5 Depiction of chemical reaction

2.5.2 Fundamentals of chemical reaction modeling

In section 2.2.1, the source term ΨX was introduced, a volume-specific net
production rate, which describes the impact of chemical reactions on the
species field. This expression is a function of the reaction rate constant λ
and the concentrations of reacting species:

ΨX = f
(
λ, Y A, Y B, . . . , Y R) . (2.103)

If a simple chemical reaction of the form

A + B −→ C (2.104)

is considered, the related source terms are represented by

ΨA = ΨB = −λY AY B and ΨC = λY AY B. (2.105)

In most cases, the reaction rate constant λ is strongly temperature-
dependent, specifically in homogenous gas reactions. This aspect is
commonly specified by the Arrhenius’ equation

λ = CA exp
(−E
RT

)
, (2.106)

which describes the interrelation of temperature T and activation energy
E in chemical kinetics. The coefficients CA and R represent the pre-
exponential factor and the universal gas constant. Regarding chemical
reactions in liquid environments, the impact of temperature on the reaction
rate is often outweighed by solubility constraints on reacting species
concentrations.

If the volume averaging procedure introduced in section 2.2.2 is employed
on the chemical reaction source terms, issues similar to the consideration
of turbulence fluctuations arise as a consequence of the multiplicative
combination of influencing factors. With the assumption of a uniform
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2 Gas-liquid flow modeling

reaction rate constant3 λ, the exemplary transformation of an expression
from equation (2.105) yields

ΨA = −αλY AY B = −αλ
(
Y

A
Y

B + Y ′AY ′B
)
. (2.107)

It is not possible to evaluate the averaged correlation of SGS concentrations
fluctuations Y ′AY ′B from the transported variables Y A and Y

B [4]. Thus,
the alternative deduction of the chemical reaction source term in the form
of a model approach is unavoidable, even in this simplistic exemplification.
The consideration of local variations of λ and non-linearities with respect
to species concentrations would additionally complicate the derivation of
volume averaged expressions. For practicle engineering problems, the
incorporation of chemical reaction phenomena in an Eulerian framework
cannot be established without modeling considerations.

The selection of an adequate modeling approach depends on a comparison
of relative reaction and mixing rates. Formally, this decisive relation is
represented by the Damköhler number Da as

Da = τmix
τchem

, (2.108)

with τmix and τchem denoting the characteristic time scales of species mixing
and chemical reaction, respectively. Table 2.3 gives a rough outline of time
scale value ranges in an industrial scale chemical reactor. According to
this relation, reactive flow processes can be categorized as slow chemistry,
finite-rate chemistry or fast chemistry.

Fox [79] describes the general approach to evaluating the characteristic
chemical time scales of a reaction system by defining the corresponding
Jacobian matrix as

J = ∂Ψ
∂Y

, (2.109)

with Ψ =
[
ΨA ΨB · · · ΨR

]T
and Y X =

[
Y A Y B · · · Y R

]T
.

3 The simplification of a uniform reaction rate constant generally is invalid for practicle applications due
to a strong dependency of λ on local temperatures (see (2.106)).
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Chemical time scales [s] Flow time scales

slow chemistry

103

τη

τres

τmix

102

101

100

finite-rate chemistry
10−1

10−2

10−3

fast chemistry

10−4

10−5

10−6

10−7

10−8

10−9

Table 2.3: Relation of chemical and fluid dynamic time scales in a typical plant scale
chemical reactor (τres mean residence time, τη characteristic time scale of
smallest turbulent eddies: Kolmogorov time scale) (adapted from [79])

From the eigenvalues Λi of this matrix, individual chemical time scales for
the concerned species can be determined in the form of

τchem,i = 1
|Λi|

, (2.110)

where min(τchem,i) represents the decisive value for the chemical reaction
system. If the one-step reaction system of expression (2.104) is considered,
the evaluation of chemical time scales yields τchem,1 =

(
−∂ΨA

∂Y A

)−1
= 1

λY B ,
τchem,2 = 1

λY A and τchem,3 = 0. The latter expression indicates that C is an
inert species in the respective system of reactions.4

Several models have been developed for the evaluation of the characteristic
time scale of turbulent mixing in the flow field [167] [179]. The arguably
most prominent formulation regarding mixing processes in liquids was
introduced by Corrsin [46]. He describes the time range for the reduction

4 The Jacobian matrix for the considered chemical source terms reads J =


∂ΨA

∂Y A
∂ΨA

∂Y B 0
∂ΨB

∂Y A
∂ΨB

∂Y B 0
∂ΨC

∂Y A
∂ΨC

∂Y B 0



57



2 Gas-liquid flow modeling

of species fluctuations from the domain dependent largest scales ls over the
Kolmogorov microscales lη to the Batchelor length lB as a combination of
respective terms

τmix = 2
l2s
ε

1/3

︸ ︷︷ ︸
ls→lη

+ 1
2

(
ν

ε

)1/2
ln (Sc)︸ ︷︷ ︸

lη→lB

. (2.111)

Depending on the categorization according to time scale considerations,
inherently diverging approaches are commonly applied for the modeling of
chemical reactions in an Eulerian context. To this end, the Damköhler
number is used as an indicator for appropriate model selection and will
consequently be employed for the systematic subdivision of the subsequent
section on modeling approaches.

2.5.3 Modeling approaches

Hereinafter, several theories for the description of chemical reactions within
an Eulerian numerical framework are introduced subject to a categorization
with respect to the Damköhler number. In general, the models are not
rigorously derived from filtered balance equations, but involve phenomeno-
logical simplifications or rest upon statistical conceptions. A more elaborate
presentation of respective approaches is given by Fox [79] or Andersson
et al. [4].

2.5.3.1 Slow chemistry (Da � 1)

If all chemical time scales are significantly larger than the characteristic time
scale of turbulent mixing, it can be assumed that the species concentrations
are already mixed down to the molecular level at the time of reaction. In
this case, the laminar chemistry model can be applied which implies that
SGS fluctuations of the species concentrations and temperature field can be
neglected in the determination of the chemical source terms. Therefore, the
simple correlation
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ΨX (
λ, Y A, Y B, . . . , Y R) = αΨX

(
λ, Y

A
, Y

B
. . . , Y

R
)

(2.112)

is valid; or regarding the exemplary reaction of expression (2.104):

ΨA = −αλ
(
Y

A
Y

B
)
. (2.113)

2.5.3.2 Fast chemistry (Da � 1)

A high Damköhler number implies that occurring chemical reactions are
fast in comparison to turbulent mixing rates. In this case, the reactive flow
processes are mixing-limited. A reaction rate-based description of chemical
source terms similar to equation (2.105) is inadequate, since the stiff system
of equations would hinder the simultaneous evaluation of fluid dynamic and
chemical processes in the flow. As a consequence, alternative approaches
have been developed, of which several are based on the mixture fraction
theory. This method can be applied for non-premixed reacting species and
was originally established for combustion modeling of diffusion flames [203].

To give a concrete description of this approach, the simple chemical reaction
expression (2.104) is generalized by the inclusion of generic stoichiometric
coefficients as

jAA + jBB −→ jCC. (2.114)

With the stoichiometric concentration ratio S = jA

jB , the chemical source
terms are related by ΨA = SΨB and ΨC = − (1− S) ΨA. The definition
of a parameter Z = Y A − Y B/S permits the formulation of the following
transport equation:

∂

∂t
Z +∇ · (Zu) = −∇ · (D∇Z) . (2.115)

In this way, an explicit evaluation of the chemical reaction source terms is
avoided and the depiction of the reactive flow is reduced to the consideration
of a passive scalar. It is possible to define alternative scalar parameters, from
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which transport equations similar to (2.115) can be derived. The mixture
fraction ξ is formulated by a normalization of Z as

ξ = jBY A − jAY B + jAY B
0

jBY A
0 + jAY B

0
, (2.116)

where Y A
0 and Y B

0 are the species concentrations in their premixed state,
commonly representing different inlet streams. Thus, the value range of
ξ is limited to 0 ≤ ξ ≤ 1. If combustion processes are considered, the
limiting values represent the concentration conditions at the inlets for fuel
and oxidizer.

Formulation (2.116) is specifically favorable for fast irreversible reactions. In
the ultimate case (mixed-is-reacted approach), the simultaneous presence of
multiple reactants at a location in the flow field is assumed invalid (Y B = 0
if Y A > 0, and vise versa). Beyond that, a state has to be considered in
which no reactants are present (Y B = 0, Y A = 0). It is defined by the
stoichiometric mixture fraction ξst as

ξst = jAY B
0

jBY A
0 + jAY B

0
. (2.117)

With this parameter, expressions for the local instantaneous reactants
concentrations can be deduced with respect to the assumption of infinitely
fast chemistry. The consequent formulations read

Y B = Y B
0

(
1− ξ

ξst

)
; Y A = 0 if ξ < ξst, (2.118)

Y A = Y B
0 S

(
ξ

ξst
− 1

)
; Y B = 0 if ξ > ξst. (2.119)

The species concentration relations from equations (2.118) and (2.119) are
graphically depicted in figure 2.12.

For the determination of volume averaged reactant concentrations (Y A and
Y

B) a probability density function (PDF) P (ξ) for the mixture fraction is

60



2.5 Depiction of chemical reaction

ξ0 ξst 1

Y B Y C

Y A

Figure 2.12: Sketched distributions of reactants (Y A, Y B) and product (Y C) concentra-
tions in case of infinitely fast chemistry (continuous line) and finite-rate
conditions (dashed line) [32]

introduced in conjunction with an LES filtering procedure in analogy to
(2.48):

P (ξ,x) =
∫
G(x,x′)P (ξ,x′) dx′. (2.120)

In an LES context, P (ξ,x) can be interpreted as probability of occurrence
on a SGS level. The locally defined expression P (ξ,x′) is commonly referred
to as fine-grain function, whereas the LES parameter P (ξ,x) is termed
filtered density function (FDF) or large eddy PDF (LEPDF) [25].

The combination of equations (2.119) and (2.120) yields a definition of the
averaged species concentration of A as a function of P (ξ,x), given by

Y
A =

∫ 1

0
Y AP (ξ) dξ = Y B

0 S
∫ 1

0

(
ξ

ξst
− 1

)
P (ξ) dξ. (2.121)

In the commonly applied presumed PDF approach, a functional form of
P is predefined with its parameters derived from the LES-filtered mixture
fraction value ξ and a modeling approach for the associated SGS variance
Gtur in the corresponding transport equation

∂

∂t

(
αρξ

)
+∇ ·

(
αρξu

)
+∇ · (αGtur) = −∇ ·

(
αρD∇ξ

)
, (2.122)

61



2 Gas-liquid flow modeling

with

Gtur = ρ
(
ξu− ξu

)
. (2.123)

As a summary, figure 2.13 illustrates the sequential steps for the determina-
tion of LES-filtered species concentrations in the mixture fraction approach.
First, the input parameters for the mixture fraction transport equation
(2.122) are generated by the numerical evaluation of the LES-filtered Navier-
Stokes equations including accompanied turbulence modeling. The resulting
averaged values of ξ are adopted to specify the respective PDF which in turn
is used to calculate species concentrations according to equation (2.121).

flow field ξ & Gtur PDF P (ξ) Y
A & Y

B

Figure 2.13: Schematic procedure for the mixture fraction approach for instantaneous
reactions (adapted from [4])

Adapting the present procedure, more complex reaction schemes as well
as equilibrium reactions can be described through the consideration of a
passive scalar. More information on these modifications as well as a detailed
deduction of generic governing equations for this method are outlined by
Fox [79].

As an alternative to the mixture fraction method, the eddy dissipation model
(EDM) [193] [139] is applicable for the numerical description of premixed or
partially premixed fast reactions in the flow. This method is based on the
conception of considered chemical reactions being completely describable by
the characteristics of turbulent mixing. For the application of this approach,
the following formulations are to be evaluated:

ΨX = jXMXCEDM,1 ρ τ
−1
SGS min

R

 Y R

jRMR

 (2.124)

• According to equation (2.124), the concentration of the reaction-
limiting reactant determines the evaluation of the source term. In a
lean combustion, for example, the fuel concentration would be relevant,
in the case of rich combustion the oxidizer concentration, respectively.
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ΨX = jXMXCEDM,1CEDM,2 ρ τ
−1
SGS

∑
P Y

P∑
P jPMP (2.125)

• Equation (2.125) is based on the idea that in case of premixed
conditions, the reaction progress is potentially determined by the
contacting of reaction products with the reactant flow. Thus, the
sum of product concentrations ∑

P Y
P is used for the calculation of

the chemical source term.

According to the EDM, the minimum of equations (2.124) and (2.125) is
eventually employed as source term in the corresponding species equation.
The parameters CEDM,1 and CEDM,2 represent model constants which have
to be adjusted to the particular problem within a wide range of potential
values. As an essential influencing factor, the SGS turbulent time scale
τSGS =

∣∣∣S∣∣∣ is included in the LES form of the EDM to quantify the intensity
of mixing processes. Alternatively, the turbulent time scale τSGS can be
determined in analogy to the procedure for RANS models through according
formulations for turbulent dissipation ε and SGS turbulent energy kSGS
(τSGS = kSGS/ε) [73]. In order to extend the scope of this model, this
approach was further developed in various forms. More detailed information
on EDM and its adaptations can be found in literature by Peters [168] as
well as by Cant & Mastorakos [32].

2.5.3.3 Finite-rate chemistry (Da ≈ 1)

While the consideration of reactive processes could be significantly simpli-
fied by appropriate assumptions in sections 2.5.3.1 and 2.5.3.2, an analogous
approach is not possible for this category of reactive flows. The time scales
of chemical reaction and turbulent mixing are of a comparable magnitude,
thus, none of these two processes can be prioritized. As a consequence,
statistical methods are primarily applied for an adequate LES modeling of
the reactive flow. Based on the definition of the mixture fraction PDF in the
preceding section, a similar expression can be formulated for the chemical
source term in a more general manner:
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ΨX =
∫ ∫ ∫

. . .
∫

ΨXP
(
λ, Y A, Y B, . . . , Y R) dλ dY A dY B . . . dY R. (2.126)

In this case, all influencing parameters of the chemical source term are
used as internal variables of the PDF. These generally include the reactants
concentrations, as well as the reaction rate constant which in turn is usually
a function of temperature. For determining LES-filtered PDF values,
different procedures have been established:

Presumed Function PDF/FDF
If the functional form of the PDF is specified a priori, it is sufficient
to formulate and evaluate transport equations for the first moments
(mean, variance, . . . ) of this function in order to allow closure
of the equation system for arbitrary combinations of the internal
variables. Both the choice of a function type, as well as the modeling
of LES-filtered terms in the transport equations, is associated with
considerable uncertainty.

Transported PDF/FDF
This approach is based on the direct formulation of a transport
equation for the multidimensional PDF P

(
λ, Y A, Y B, . . . , Y R

)
. The

definition of the associated LES-filtered convective term is restricted
to coarsely simplifying model assumptions. To work around this
issue, the internal variables of P can be supplemented by the flow
velocity components (P

(
λ, Y A, Y B, . . . , Y R,u

)
). The formulation of

LES governing equations for this configuration is accompanied by
a considerable modeling effort as well. Alternatively, Monte Carlo
methods are often resorted to for solving the transport equation
in order to realize an efficient numerical evaluation even for high-
dimensional PDFs.

Detailed information on the derivation and characteristics of statistical
methods for chemical reaction modeling in a CFD context are provided
by Pope [174] and Fox [79].
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2.5.4 Multiphase reactive flow modeling

Regarding reactive flows in a multiphase environment, Ranade [179] distin-
guishes between three categories:

• The reaction zone is located in one of the phases, either in the bulk or
close to the interface, e.g., various gas-liquid reactions.

• Interfacial reactions which occur on the phase boundaries, e.g., cat-
alytic reactions.

• Single phase reactions with products forming another phase, e.g.,
crystallizations.

Bubble column reactors are intensively applied for both bulk and interfacial
reactions, while this type of apparatus is rarely employed for reactive flows
of the third category. Reactions occurring in the continuous phase of
bubble column flows are initiated by absorption processes, which allow the
migration of gaseous reactants into the liquid. As described in section 2.4.2,
absorption phenomena depend on local flow conditions and fluid particle
size relations. The latter influence is also essential to interfacial reactions
in which the reactive area is determined by the magnitude of interfacial
area in the flow. To accurately account for local phase boundary relations
and bubble size spectra in an Euler-Euler context, a population balance
equation with respect to fluid particle size or volume has to be included in
the model setup. According formulations are introduced in the subsequent
chapter.
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Different gas-liquid flow regimes occur in bubble column reactors depending
on the superficial gas velocity and the size of the apparatus. While the
bubble size is approximately constant for low gas flow rates, bubble breakup
and coalescence phenomena gain significance in the heterogeneous regime
which is characterized by higher superficial gas velocities. This operating
condition is attractive for industrial applications due to enhanced mixing
rates and increased gas throughput. For the highly dynamic heterogeneous
flow field, predictions resulting from the evaluation of global parameters
are limited in generality and validity. More detailed models are necessary
for an adequate depiction of the flow characteristics. This includes the
consideration of local bubble size evolution and its interaction with the
two-phase hydrodynamics. [105] [57] [110]

In the scope of this chapter, the representation of the fluid particle size
dynamics by means of a population balance equation (PBE) is explicated.
Starting from the presentation of fundamentals of this approach, the general
governing terms of the PBE are derived and specified for the investigated
gas-liquid system. Subsequently, the inclusion of formal representations
for continuous size evolution or particle interaction phenomena in the
PBE framework is outlined. A general presentation of the numerical
solving procedures of the PBE formulation and its integration into an
Euler-Euler framework is given prior to the specification of the according
configuration used in this work.

3.1 Population balance equation

In an Eulerian framework, polydispersity and particle interaction phenom-
ena, e.g., breakup and coalescence, are described by the population balance
equation (PBE). This transport equation for the local number density
function (NDF) of fluid particles depicts the bubble size dynamics in gas-
liquid flows. In this section, the principles of this method are introduced
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in a generic context. The explication ranges from the definition of a
general population balance equation to the derivation of the monovariate
NDF considered in this work. More detailed information on all aspects
related to the numerical description of polydisperse multiphase systems are
comprehensively given by Marchisio & Fox [143].

3.1.1 Fundamentals and governing equations

In a population balance framework, disperse phase particles are identified
by a certain number of considered properties, termed coordinates in this
context. These coordinates are classified as either external or internal.
Examples of external coordinates are spatial position or the instance of
time, while internal coordinates can be of various nature, e.g., particle tem-
perature, size or volume. If multiple dispersed particles have the identical
set of coordinates, these are indistinguishable in the considered population
balance framework. If only one internal coordinate is taken into account,
the population balance is specified as monovariate, in contrast to the higher-
dimensional multivariate case with numerous potential combinations of
internal coordinates.

For the general derivation of the PBE, an internal-coordinate vector
ζ ≡ (ζ1, ζ2, . . .)T is defined. With this, the number of dispersed particles in
a generic volume dx = (dx1, dx2, dx3)T featuring characteristics within the
interval dζ are described by

n (ζ;x, t) dx dζ, (3.1)

where n is the NDF subject to the set of internal coordinates ζ. In general,
the NDF is assumed to represent the deterministic behavior of a large
number of particles to ensure the smoothness of this function regarding
external and internal coordinate space. The characteristics and limits of
the relation between particle number and NDF are extensively discussed by
Ramkrishna [178]. In this work, the population balance model is considered
in line with the conventional continuum mechanical theory which implies the
description of NDF dynamics in the form of a respective balance equation
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∂n (ζ;x, t)
∂t︸ ︷︷ ︸

transient term

+∇ · [n (ζ;x, t)up]︸ ︷︷ ︸
convection term

+ ∂

∂ζ
·
[
n (ζ;x, t) ζ̇

]
︸ ︷︷ ︸

representation of
continuous processes

= h︸︷︷︸
representation of

discontinuous processes

.

(3.2)

Equation (3.2) constitutes the population balance equation (PBE) in
continuous form, while a subdivision of n according to internal coordinate
intervals yields a discrete formulation. This differentiation of equation types
with a focus on fluid particle populations is further outlined by Jakobsen
[105], albeit denoting the variants microscopic and macroscopic PBE. The
relation between PBE formulations and corresponding solving procedures
is sketched in section 3.4 of this thesis.

The first term on the left hand side of equation (3.2) describes the temporal
change of the NDF, whereas the second term represents its modification in
virtue of convective particle transport in physical space. An evolution of the
NDF due to continuous changes in one or multiple internal coordinates is
depicted by the third term. In this context, ζ̇ = dζ

dt designates the internal-
coordinate velocity comprised of individual internal coordinate variations as
vector components. Discontinuous events altering the NDF are summarized
in the source term h. In theory, the categorization between continuous and
discontinuous phenomena is subject to the considered length and time scale
relations. In view of the current application on polydisperse bubbly flows,
this classification is evident: processes on a molecular level, e.g., absorption,
are regarded as continuous, while discrete particle phenomena, e.g., bubble
coalescence, are described as discontinuous events.

In case the particle velocity is incorporated as internal coordinate in the
NDF, an alternative formulation is more suitable. Here, the transport equa-
tion for n (ζ,up;x, t) is known as generalized population balance equation
(GPBE) which reads

∂n (ζ,up;x, t)
∂t

+∇ · [n (ζ,up;x, t)up] + ∂

∂up
· [n (ζ,up;x, t)ap]

+ ∂

∂ζ
·
[
n (ζ,up;x, t) ζ̇

]
= h. (3.3)
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The third term on the left hand side of equation (3.3) is depicted sep-
arately from the remaining internal coordinate contributions (which are
summarized in the fourth term), as it allows an analysis of particle kinetics.
The continuous evolution of the NDF in particle velocity space, which is
described in that term by ap, represents particle acceleration or body forces
acting on a particle, e.g., gravity. With up as internal coordinate, the
source term h specifically includes the representation of discrete changes in
the particle velocity caused by collision processes, for example.

The analytical evaluation of equation (3.2) or (3.3) is limited to simplistic
cases without practical relevance. For the numerical solution, specific
methods have to be employed, of which several are introduced in section
3.4. However, even these procedures are bound to closure models for various
terms, which need to be formulated with respect to the particulate system at
hand. Specifics for the description of disperse gas-liquid flows are introduced
in the subsequent sections.

3.1.2 Application to gas-liquid flows

In this work, population balance theory is used to describe the partic-
ulate character of the gaseous phase in bubble column hydrodynamics.
Various internal coordinates can be used to formulate the NDF or, more
specifically, bubble number density function. Potential features for the
categorization of fluid particles are their thermodynamical, chemical or
geometrical properties (e.g., enthalpy, species concentration or surface area).
In addition, the particle velocity can be employed as internal coordinate
with an accompanied formulation of the GPBE. Only very few examples of
the definition of a multivariate PBE in the context of gas-liquid flows can
be found in the literature (e.g., [28]). The specification of a monovariate
population balance, with the bubble size or volume as single internal
variable, is by far the most common configuration.

Following this concept, the bubble diameter Dp is considered as single
internal coordinate in the remainder of this thesis. This specification
consequently implies a monovariate NDF n (Dp;x, t), which reflects the
polydisperse character of turbulent bubbly flows. As an additional assump-
tion, all bubbles are regarded as spherical in the context of population
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balance theory. This common simplification coincides well with gas-liquid
flows featuring small sized bubbles, while minor discrepancies arise for
higher values of particle Reynolds and Eötvös numbers (see figure 2.6).
The prerequisite regarding sphericity of fluid particles does not apply to
the Euler-Euler framework presented above, where the interfacial exchange
may be specified with regard to deformable fluid particles.

3.2 Breakup and coalescence

The basic principles of breakup and coalescence modeling in the framework
of a bubble size related PBE is presented in this segment. Following the
introduction of conventional model formulations for discontinuous events in
the PBE, their applicability to turbulent bubble column flows is discussed.

Marchisio & Fox [143] distinguish between three fundamental types of
discrete processes affecting the population balance. With an association
to dispersed gas-liquid flows, these categories can be introduced as:

• Zeroth-order point processes, exclusively determined by local continu-
ous phase conditions (e.g., nucleation of bubbles)

• First-order point processes, describing the interaction of dispersed fluid
particles with the liquid phase fluid dynamics (e.g., turbulence induced
bubble breakup)

• Second-order point processes, representing discontinuous phenomena
related to bubble-bubble interaction (e.g., bubble coalescence)

With the neglect of the first category, the consideration of discrete processes
affecting the PBE is limited to the depiction of bubble coalescence and
breakup in this study. Resulting effects on the PBE are collectively
incorporated by the source term h in equation (3.2). For an adequate
representation, a subdivision of this parameter according to the nature of
the discontinuous event (i.e. coalescence hC, breakup hB) and its type of
influence on the NDF is more suitable:

h (Dp) = hC (Dp) + hB (Dp) = bC (Dp)− dC (Dp) + bB (Dp)− dB (Dp) . (3.4)
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• Coalescence birth term bC (Dp): production rate of bubbles with
diameter Dp due to coalescence of smaller fluid particles

• Coalescence death term dC (Dp): destruction rate of bubbles with
diameter Dp due to their coalescence with other particles

• Breakup birth term bB (Dp): production rate of bubbles with diameter
Dp due to breakup of bigger fluid particles

• Breakup death term dB (Dp): destruction rate of bubbles with diameter
Dp due to their breakup

Numerous model approaches have been proposed for the specification of
each component of equation (3.4). Although different physical and fluid
dynamic conditions and causalities in relation to fluid particle breakup and
coalescence have been considered, the basic equation structure is similar in
most cases. Commonly, the general expressions established by Ramkrishna
[178] constitute the formal basis, which is extended and interpreted to
specify model relations. In line with the bubble diameter-based formulation
of the NDF n (Dp;x, t), these functions will subsequently be presented in
the formulation subject to particle diameter (b (Dp), d (Dp)). The derivation
of these expressions from bubble volume-based functions is presented in
appendix A.1.

The physical fundamentals of fluid particle breakup and coalescence mod-
eling are outlined in the following, accompanied by exemplary model
formulations specifically for turbulent bubbly flows. For further reading,
Liao & Lucas [128] [129] give a very comprehensive overview of available
approaches

3.2.1 Bubble coalescence modeling

Apart from a few exceptions, model approaches for the description of bubble
coalescence are based on the conception of a three step mechanism. First,
two bubbles collide, then coher and form a liquid film between them,
draining out gradually. As a last step, the liquid layer eventually raptures
to leave a single fluid particle. Generally, the coalescence of more than two
bubbles is disregarded with reference to the low probability of a respective
phenomenon.

71



3 Population balance

Local differences in bubble motion induce relative velocities of fluid particles
and consequently allow for their collision. In turbulent flows, multiple
potential causes for local particle velocity inhomogeneities can be identified.
Prince & Blanch [176] propose a cumulative consideration of collision
phenomena due to turbulent fluctuations, buoyancy effects and laminar
shear. Yet, further possible origins of collision processes have been reported
[129]. Concerning turbulent bubbly flows, Chen [38] concludes that only
turbulence induced collision and collision through wake entrainment are of
interest in this context. With the unavailability of an adequate model for
the latter phenomena and its subordinate importance, this work, as the
vast majority of related studies, is limited to the consideration of turbulent
bubble collisions.

The PBE source terms for aggregation phenomena are introduced in
their size-specific form to account for bubble coalescence in the respective
monovariate population balance:

bC(Dp) =
D2
p

2
∫ Dp

0

rC
(
γp,

(
D3
p − γ3

p

)1/3)
(
D3
p − γ3

p

)2/3 n(γp)n
((
D3
p − γ3

p

)1/3) dγp, (3.5)

dC(Dp) = n(Dp)
∫ ∞
0
rC(γp, Dp)n(γp) dγp. (3.6)

While several empirical correlations for the coalescence rate rC as kernel
function have been proposed in early studies, the subdivision into a
collision frequency ωC and a coalescence probability PC is common to later
publications (e.g., [176], [126]). The corresponding expression reads

rC (γp, Dp) = ωC(γp, Dp)PC(γp, Dp). (3.7)

With the limitation to turbulence induced bubble collisions in the gas-liquid
flow, an analogy to the random motion of molecules in the kinetic gas theory
is commonly assumed. With this prerequisite, the collision frequency can
be formulated as a combination of the potential collision area of impacting
bubbles AC and the approach velocity up,rel. In general, the velocity of
colliding fluid particles is equated to the velocity of equivalent turbulence
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eddies with length scales similar to the bubble diameters [47]. The formal
expression for this correlation yields

up,rel (γp, Dp) =
(
(utur(Dp))2 + (utur(γp))2)1/2

, (3.8)

with

utur(Dp) = CC (εcDp)1/3 , (3.9)

where CC is a model constant. This concept is based on the assumption
that the energy of smaller turbulence eddies is insufficient to effect bubble
motion, while bigger eddies influence disperse phase movement on a larger
scale without causing local relative velocities.

The area for bubble collision is specified as the circular face of potential
bubble intersection as

AC (γp, Dp) = π

4 (Dp + γp)2 . (3.10)

Hence, the fluid particle collision frequency is given in the form of

ωC (γp, Dp) = AC (Dp, γp)up,rel (Dp, γp)

= C
1/2
C
π

4 ε
1/3
c (Dp + γp)2 (D2/3

p + γ2/3
p

)1/2
. (3.11)

Various values of CC have been reported in different model approaches
spanning a value range between 0.127 and 2 [129]. In order to clarify
the rather ambiguous specification of this parameter, latest publications
propose an evaluation with respect to volume fraction conditions and fluid
particle distance [213].

According to the introduced sequential process of bubble coalescence, two
fluid particles cohere prior to unification. Whether coalescence eventuates is
determined by the relation between the time tdrain the separating liquid film
needs to drain out and the contact time tcont of respective fluid particles.
Coulaloglou [48] expressed this relationship by
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PC (γp, Dp) = exp
−tdrain (γp, Dp)

tcont (γp, Dp)

 . (3.12)

Based on phenomenological considerations, Chesters [42] formulated ex-
pressions for tdrain subject to fluid particle surface rigidity and mobility.
Regarding gas bubbles, the approach for deformable particles with fully
mobile interfaces is appropriate, which reads

tdrain (γp, Dp) = 1
2
ρcup,relD

2
p

(1 + ϑ)2 σ
, (3.13)

with ϑ = min(γp,Dp)
max(γp,Dp) .

Luo [137] derived a correlation for the interaction time tcont of dispersed
gas in bubble column flows by making use of a kinetic energy conservation
approach applied to a simplified parallel liquid film. These considerations
yield

tcont (γp, Dp) = (1 + ϑ)


(
ρd
ρc

+ CVM
)

3 (1 + ϑ2) (1 + ϑ3)
ρcD

3
p

σ


1/2

. (3.14)

With the combination of equations (3.13) and (3.14), the formal specifica-
tion of the coalescence probability is obtained as

PC (γp, Dp) = exp

−
[3

4 (1 + ϑ2) (1 + ϑ3)
]1/2

(
ρd
ρc

+ CVM
)1/2

(1 + ϑ)3
We1/2

 , (3.15)

where the dimensionless Weber number We = ρc min(γp,Dp)up,rel
σ .

Although several of its underlying assumptions are repeatedly commented
on as questionable [105], the present configuration for bubble coalescence
modeling in turbulent gas-liquid flows is well established and by far the most
frequently applied. However, a definite specification of the constant CC has
not been derived so far and the selected values may vary considerably.
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3.2.2 Bubble breakup modeling

In comparison to the depiction of aggregation phenomena in the PBE, which
is discussed in the preceding section, modeling approaches for fluid particle
fragmentation are more diverse in the determination of causal physical
processes and more complex in their mathematical formulation. The latter
property specifically impedes on numerical solving procedures of the PBE
and will be discussed as part 4.3 of the subsequent chapter.

The physical origin of dispersed fluid particle fragmentation is characterized
by an interaction between external stresses on the interface, emanating
from the continuous phase dynamics and counteracting interfacial effects.
The latter influence is composed of surface stress due to surface tension
and viscous stresses caused by fluid motion inside the bubble or drop.
Both contributions work towards restoring the fluid particle shape, while
continuous phase fluid dynamics potentially induce destabilizing alterations
of the phase boundary. The spectrum of respective external effects is
comprised of, without limitation, laminar shear, local shearing-off phenom-
ena and turbulent fluctuations. In consistency with the considerations on
bubble coalescence, exclusively effects from continuous phase turbulence are
regarded as relevant in this work. This assumption is well established and
justified with respect to turbulent gas-liquid flows in bubble columns.

The source terms for fluid particle fragmentation in the monovariate PBE
introduced in equation (3.4) are specified as

bB(Dp) =
∫ ∞
Dp

rB(γp, Dp)n(γp) dγp, (3.16)

dB(Dp) =
∫ Dp

0

γ3
p

D3
p

rB(Dp, γp) dγp n(Dp). (3.17)

Here, the death term dB is expressed according to the comparatively general
formulation by Lehr & Mewes [125]. For information on the transformation
from the original volume-specific forms to the current expressions (3.16) and
(3.17), the reader is again referred to appendix A.1.
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The considered breakup models are based on the conception of fluctuating
turbulence eddies impinging on the bubble surface and potentially causing
fluid particle fragmentation. To allow for an adequate mathematical
representation of this phenomenon, this perception is limited to binary
breakup processes only. Analogous to the evaluation of the coalescence
kernel function, the equivalent for breakage rB(Dp, γp) can be determined
from the combination of a collision frequency ΩB and a breakup probability
PB as

rB (Dp, γp) =
∫ φmax
φmin

ΩB (Dp, φ)PB (Dp, γp, φ) dφ, (3.18)

where ΩB (Dp, φ) describes the bombardment rate of the regarded fluid
particle with turbulence eddies of size φ and PB (Dp, γp, φ) denotes the
probability of its ensuing fragmentation into daughter bubbles of size γp and(
D3
p − γ3

p

)1/3, maintaining gas phase volume. The definition of integration
limits φmin and φmax varies among model approaches [176] [138] [126]. These
limits define the smallest and largest eddy dimensions to be relevant in this
context. The impact of smaller eddies is regarded as insufficient to cause
breakage while turbulent fluctuations on a larger scale induce fluid particle
motion rather than fragmentation. Equation (3.18) is frequently modified
to deduce a simpler correlation which reads

rB (Dp, γp) = FB (Dp) βB (Dp, γp) , (3.19)

where FB (Dp) represents the breakup frequency of bubbles with diameter
Dp and βB (Dp, γp) is termed daughter bubble size distribution and describes
the probability a bubble of size γp is formed by the fragmentation of a fluid
particle with diameter Dp.

Even with the limitation to turbulence induced bubble breakup, numerous
different interpretations of related physical phenomena have been reported
in prevalent models [128]. The respective approaches are predominantly
variant in the identification of the critical condition which eventually results
in fluid particle separation. Three prominent models will be introduced
briefly:
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Model of Luo & Svendsen [138]
According to this model, bubble breakup eventuates if the kinetic
energy of impacting turbulent eddies overcomes the additional surface
energy caused by fragmentation. Using an energy balance with refer-
ence to the kinetic gas theory, Luo & Svendsen derive a model function
for PB, while the collision frequency ΩB is evaluated similarly to the
coalescence equivalent ωC with fluid particle and turbulence eddies as
collision partners. For simplicity, the resulting formulation for rB is
presented with respect to bubble volumes

(
Vp = π

6D
3
p; Θp = π

6γ
3
p = f Vp

)
as

rB (Vp, f Vp) = 0.923 (1− α)
 ε

D2
p

1/3 ∫ 1

ςmin

(1 + ς)2

ς11/3 exp(−χ) dς, (3.20)

with

χ =
12

[
f2/3 +

(
1− f2/3

)
− 1

]
σ

CCρcε2/3D
5/3
p ς11/3

, (3.21)

where ς = φ
Dp

and f denotes the volume ratio of the smaller daughter
bubble and the mother bubble. Evidently, the expression for breakup
frequency FB can be deduced from (3.20) by

FB (Vp) =
∫ 0.5

0
rB (Vp, f Vp) df. (3.22)

Model of Mart́ınez-Bazán et al. [145][146]
The basic idea of this approach is comparable to Luo & Svendsen’s
model, except for the definition of the critical kinetic energy of
turbulence to effect bubble breakup. In this case, the external stresses
are contrasted with the interfacial stress from surface tension. In
other words, bubble breakage occurs if enough deformation energy is
introduced to outweigh retaining effects. In contrast to alternative
approaches, Mart́ınez-Bazán does not express this correlation in terms
of collision frequency and fragmentation probability, but directly
deduces a formulation for the breakup frequency FB by making use
of the assumed isotropic characteristic of turbulence. This yields
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FB (Vp) = CMB

[
CC (εDp)2/3 − 12 σ

ρcDp

]1/2
Dp

, (3.23)

with the model constant CMB ≡ 0.25± 0.03 for air-water systems.

Model of Lehr et al. [126]
This model is based on a balance between the inertial force of the
impinging turbulence eddy and the surface force of the smaller daughter
bubble. With this concept, capillary effects are also taken into account,
which prohibits the separation into very small bubbles, although energy
considerations would not only allow but promote a respective frag-
mentation. The determination of the breakup probability is deduced
from the force balance, while the collision frequency is formulated
equivalently to Luo & Svendsen’s method. The combination of both
parameters yields

rB (Vp,Θp) = 1.190
∫ φmax
φmin

σ

ρcε1/3γ4
p

(Dp + φ)2

φ13/3 exp
− 2σ

ρcε2/3φ2/3γp

 dφ.

(3.24)
A rigorous derivation of the breakup frequency F from correlation
(3.24) follows expression (3.22). Yet, Lehr et al. recognize the math-
ematical complexity of this procedure due to the occurring integral
expressions and specify an approximated analytical solution. The re-
sulting expression is specifically favorable for the PBE solving method
applied in this study and its derivation and characteristics will be
presented in section 4.3.

The introduction of appendant mathematical expressions for the daughter
bubble size distributions β is omitted in favor of a graphical depiction
of corresponding relations via figure 3.1. Respective functional forms
can be ascribed to three distinct categories, commonly termed U-shaped
3.1a, bell-shaped (or inverted U-shaped) 3.1b and M-shaped 3.1c. These
graphs exhibit the fundamentally different conceptions of bubble breakup
phenomena by the introduced methods and indicate the complexity of
finding an adequate mathematical description of fluid particle fragmentation
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processes. Following the conclusions of the latest studies on this topic, an
M-shaped daughter bubble size distribution is arguably most suitable for
the depiction of bubble breakup in turbulent flows [212] [128].
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Figure 3.1: Dimensionless daughter bubble size distributions
?

β as a function of the
daughter bubble to mother bubble volume ratio f for the introduced breakup
models [128]

Although the fluid particle breakup model of Luo & Svendsen [138] is
the most prominent approach, as it has been used in numerous published
investigations (e.g., [40], [222], [209], [16]) and implemented in several
commercial CFD tools (e.g., [6]), this model has been repeatedly and
extensively criticized in the academic literature (e.g., [92], [212], [115]).
The frequent application of this method may be explained partially by
the absence of model parameters, which also applies for the approach of
Lehr et al.. By contrast, two adjustable model constants are part of the
formulation by Mart́ınez-Bazán et al. with its application being bound to
homogeneous isotropic turbulent flows [128]. Comparative studies of bubble
breakup closures of Luo & Svendsen, and Mart́ınez-Bazán et al. for bubble
column flows do not come to a unanimous conclusion regarding model
quality and applicability, which implies a rather situative validity of model
concepts [41] [154].

From the discussion outlined above, it can be concluded that a compre-
hensive and physically sound model description of fluid particle breakup
phenomena has not yet been developed. Thus, further efforts in terms of
experimental and numerical investigations are required to this end [38] [5]
[128]. Concerning bubble column flows, this statement is at least partially
valid for bubble coalescence modeling as well. This is emphasized by
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Jakobsen et al. [107] (referencing Duduković et al. [71]), who conclude to
this regard: “The mechanisms of coalescence and breakage are far from
being sufficiently understood yet”.

3.3 Absorption

In contrast to the incorporation of bubble breakup and coalescence models,
absorption processes in the gas-liquid flow are taken into account by a
continuous event formulation in the PBE.1 Regarding the monovariate
diameter-based population balance considered here, the corresponding
source term can be deduced form equation (3.2) as

∂

∂Dp

[
n (Dp) Ḋp

]
. (3.25)

The mathematical description of net mass transfer across the phase bound-
ary of a fluid particle is formulated through an according mass balance.
With reference to the species-specific expression (2.97), the balance equation
reads

dVp
dt ρd = −

∑
X
KX
c Apρc

(
Y X
c,I − Y X

c

)
, (3.26)

where Ap is the fluid particle surface area. Assuming spherical particles(
dVp
dDp

= Ap
2

)
yields

Ḋp = dDp

dt = −2ρc
ρd

∑
X
KX
c

(
Y X
c,I − Y X

c

)
. (3.27)

Model expressions for the volumetric mass transfer coefficient KX
c , particu-

larly in association with gas-liquid flows, have been introduced previously
in section 2.4.2.
1 The complete dissolution of bubbles as a result of mass transfer, which represents a zeroth order
discontinuous event, will not be approached in this work.
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3.4 Population balance equation and CFD

The discretization with respect to external and internal coordinates of
the continuous population balance formulation is the prerequisite for its
numerical solution in association with the Euler-Euler multiphase flow
model. The LES filtering procedure introduced above is applied to the
spatial discretization of the present diameter-based monovariate PBE to
give

∂n (Dp)
∂t

+∇ · [n (Dp)un (Dp)] + ∂

∂Dp

[
n (Dp) Ḋp

]
=

bC (Dp)− dC (Dp) + bB (Dp)− dB (Dp) , (3.28)

as SGS fluctuations of the NDF are commonly neglected.

A crucial aspect in the formulation of the PBE (3.28) is the definition
of an adequate convection velocity un. In many cases, the assumption
un = ud is made, although the convection velocity ud merely represents
the dispersed phase volume motion in a purely two-fluid description. With
this specification, the impact of convection on the PBE does not consider
individual fluid particle kinetics, but is of an averaged nature. Consequently,
variations in particle motion due to different internal coordinate values,
specifically geometrical characteristics like size or volume, are not accounted
for with this configuration. A respective model concept does not allow for
the depiction of size-dependent segregation processes, for example. Being
an important aspect of gas-liquid flow modeling, the consideration of local
bubble velocity distributions in conjunction with the selected PBE solution
approach is one of the methodical novelties of this work and is discussed in
section 4.4.

The discretization of the PBE with regard to internal coordinates is
explicated in the following. Therefore, an overview of available methods
is given prior to a more detailed description of the quadrature method of
moments, which constitutes the basis for the numerical model developed in
this work. For the sake of simplicity the overbar to denote spatial averaged
quantities, as well as the PBE source term for continuous processes affecting
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the NDF
(

∂
∂Dp

[
n (Dp) Ḋp

])
is neglected in the following subsections. This

restriction to discrete events as PBE source terms allows for a simple
description of discretization principles.

3.4.1 Method of classes

The arguably most natural approach to discretizing the PBE with respect
to internal coordinates is the subdivision of the continuous NDF n(ζ) into
numerous segments ni(ζi), corresponding to discrete intervals of ζ. An
exemplary depiction of such an approximative representation of a diameter-
based NDF is illustrated in figure 3.2. These subdivisions are commonly
referred to as classes and allow a representation of the PBE as

∂ni
∂t

+∇ · (niun,i) = bC,i − dC,i + bB,i − dB,i. (3.29)

Since the classes are considered similarly to distinct dispersed phases with
a corresponding set of Eulerian equations, the numerical effort multiplies
accordingly. Regarding an NDF with respect to fluid particle size, this
problem often is at least partially avoided by applying the multiple-size
group model (MUSIG) by Lo [131]. He expresses the PBE (3.29) in mass
conservative form for every particle size group and assumes a common
velocity field, yielding

∂ρdαd$i

∂t
+∇ · (ρdαd$iud) = bC,$,i − dC,$,i + bB,$,i − dB,$,i. (3.30)

Here, $i = αd,i
αd

denotes the dispersed phase volume fraction of fluid particles
of size group ni. The aspect of a common convection velocity is associated
with the considerable model shortcomings addressed above, yet, it results
in substantial reductions of computational costs. With this assumption
towards particle kinetics, the application of this approach regarding gas-
liquid flows is not only limited to “convection dominated bubbly flows or
bubbles with small inertia”, as stated by Liao [130], but also insufficient to
capture the considerable influence of size depended interfacial momentum
transfer.
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3.4 Population balance equation and CFD

As a further development of the original MUSIG method (later termed
homogeneous MUSIG model) Krepper et al. [117] presented an adaption.
They proposed the subsummation of several fluid particle size groups into
velocity groups to define two levels of particle classification (see figure 3.2).
With this approach, commonly referred to as inhomogeneous MUSIG model,
the PBE reads

∂ρdαd,j$i

∂t
+∇ · (ρdαd,j$iud,j) = bC,$,i − dC,$,i + bB,$,i − dB,$,i, (3.31)

where $i = αd,i
αd,j

and ∑
j αd,j = αd.
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ud,j ud,j ud,j ud,j
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Figure 3.2: Method of classes, homogeneous and inhomogeneous MUSIG model repre-
sentation of an exemplary diameter-based NDF n (Dp)

Depending on the number of velocity groups and the ratio to the number
of particle size subgroups, the inhomogeneous MUSIG model compensates
for the weaknesses of the prior formulation to some extent. It potentially
allows for a more accurate depiction of fluid particle motion in association
with an improved representation of particle interaction. Nevertheless, the
advancement is strongly dependent on an appropriate classification of fluid
particles and adequate closure formulations for particle interaction and
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interfacial exchange. Still, all variants of classes methods are immanently
accompanied by an extensive numerical effort in order to accurately depict
polydisperse flows of practical interest.

The polydispersity of bubble column flows has frequently been described
by approaches of the category method of classes (e.g., [30], [39], [221]).
Bannari et al. [14] validated the numerical results of several classes method
configurations against comparative data of experimental scale bubble col-
umn hydrodynamics. They came to the conclusion that 11 to 25 bubble
size classes are necessary to give a decent representation of the dispersed
gas-liquid flow. An according setup is computationally expensive and
consequently hinders the analysis of bubble column flows on larger scales,
even if considerable computational capabilities are available.

3.4.2 Method of moments

In view of the deficiencies of classes methods in the discretization of the
particle NDF, alternative approaches have been developed in recent years.
According theories abstract the PBE by using only specific characteristics
of the NDF (i.e. the mathematical moments). Regarding their general
definition, the multivariate NDF moments are evaluated by

M (k,l,...,m) =
∫ ∞

0
. . .

∫ ∞
0

∫ ∞
0
n (ζ) ζk1 ζ l2 . . . ζmi dζ1 dζ2 . . . dζi. (3.32)

Thus, moments of the diameter-based NDF are formulated as

M (k) =
∫ ∞

0
n (Dp)Dk

p dDp, (3.33)

where the generic expression M (k) is referred to as moment of order k. The
application of the according mathematical operation to the corresponding
continuous PBE yields

∂M (k)

∂t
+∇ ·

(
M (k)u(k)) = b

(k)
C − d

(k)
C + b

(k)
B − d

(k)
B , (3.34)
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which is commonly denoted as moment transport equation (MTE). With
the representation of the continuous NDF by a finite number of moments,
some information on the exact function shape is lost, while characteristics of
particular importance in an engineering context are captured by the set of
moments. Equation (3.33) accompanied by the assumption of spherical
particles allows for the following physical interpretation of lower order
moments [35]:

• M (0): total number of particles (per unit volume)
• M (1): sum of particle diameter (per unit volume)
• πM (2): total surface area of particles (per unit volume)
• π

6M
(3): total volume of particles (per unit volume); or the local volume

fraction of the dispersed phase αd

An analytical solution of the MTE is limited to academic cases with simplis-
tic formulations for discontinuous processes as well as restrictions concerning
initial and boundary conditions [100]. These simplified configurations do not
correspond to practical problems with PBE characteristics as introduced
in the preceding sections. In more realistic cases, a closure problem is
inevitable and several approaches for its resolution are presented as part of
this section.

To avoid the simplifying assumption of locally uniform particle motion,
variant moment velocities u(k) for different orders k of moments have to be
considered in the MTE. Their theoretical definition for the conception of
size-determined particle motion is given by

u(k) =
∫∞
0 un(Dp)n(Dp)Dk

p dDp∫∞
0 n(Dp)Dk

p dDp
, (3.35)

which indicates that a practical evaluation is nontrivial. Explications on the
relation of convection velocities of individual particles and NDF moments
as well as the presentation of the approximative determination of u(k) used
in this study are introduced in chapter 4.4.

Another crucial point in the use of method of moments (MOM) for
bubble column flows is the incorporation of accurate bubble coalescence
and breakup formulations in the numerical framework without losing
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computational efficiency or numerical stability. A further discussion on
this aspect in conjunction with the selection and adaption of adequate
formulations is outlined in section 4.3 of this thesis.

3.4.2.1 Presumed function method of moments (PMOM)

The closure problem related to the method of moments becomes manifest in
the necessity to determine higher or non-normal order moments occurring
in the MTE. One way of approaching this issue is the predefinition of the
functional form of the NDF. In this way, the computation of a finite number
of MTEs is sufficient to define the entire NDF and consequently allows
for the evaluation of moments of arbitrary order. In this context, several
functional forms of the NDF have been proposed, with beta- and gamma-
functions being the most prominent. Regarding the latter function type,
configurations with two or three parameters can be found in corresponding
publications [214] [34] [35]. The NDF definition in the three-parameter
variant is given by

n(Dp) = CΓ,1
D
CΓ,3−1
2 exp

(
− Dp

CΓ,2

)
C
CΓ,3
Γ,2 Γ (CΓ,3)

, (3.36)

where the variables CΓ,1, CΓ,2 and CΓ,3 are determined by three consecutive
moments evaluated by respective MTEs. With this prerequisite, all NDF
moments can be computed by

M (k) = CΓ,1
Γ (CΓ,3 + k)Ck

Γ,2
Γ (CΓ,3)

. (3.37)

As the major disadvantage of this approach, the considered distributions
need to be representable by the selected functional form. As an example,
a gamma function type cannot be used to depict a multipeak NDF. This
property may substantially limit potential applications, or necessitate the
adjustment of NDFs to meet the function form specifications. This aspect
of the PMOM, as well as further information on its formal derivation
and examples of its application for gas-liquid flows, are comprehensively
discussed by Carneiro [36].
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3.4 Population balance equation and CFD

3.4.2.2 Quadrature method of moments (QMOM)

In his pioneering work, McGraw [149] defined a solution to the moment
closure problem that is based on a Gaussian quadrature approximation
of a monovariate NDF. As a result of this procedure, the continuous
distribution function subject to the internal coordinate is represented by
a summation of Dirac delta functions. In this sense, the fundamental
approach is comparable to the PMOM, albeit the QMOM is not limited to
the depiction of distribution functions of a specific type. With the generic
internal coordinate vector ζ, the representation of a multivariate NDF in a
QMOM context is expressed as

n̂ (ζ) =
Nm∑
m=1

. . .
Nl∑
l=1

Nk∑
k=1

wk,l,...,m δ
(
ζ1 − ζ̂1,k

)
δ
(
ζ2 − ζ̂2,l

)
. . . δ

(
ζj − ζ̂j,m

)
,

(3.38)

where the quadrature parameters are denoted by wi, representing the
weights and ζ̂i, representing the abscissas, respectively. For the monovariate,
diameter-based distribution the according expression reads

n̂ (Dp) =
Ni∑
i=1

wi δ
(
Dp − D̂p,i

)
, (3.39)

which is exemplarily illustrated for Ni = 3 in figure 3.3.

The QMOM allows for an approximative evaluation of arbitrary order
moments through

M (k) =
∫ ∞

0
n (Dp)Dk

p dDp =
∞∑
i=1

wiD̂
k
p,i ≈

Ni∑
i=1

wiD̂
k
p,i, (3.40)

where equation (3.40) is exact in case n (Dp) corresponds to a polynomial
of degree (2Ni − 1) or less. Otherwise, the accuracy of approximation
depends on the number of quadrature parameters Ni as well as on the
NDF characteristics [144] [43].

Several mathematical algorithms can be used for the determination of
quadrature parameters, i.e. weights and abscissas, from the function mo-
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Figure 3.3: QMOM representation with three abscissas and weights of an exemplary
diameter-based NDF n (Dp)

ments. These quadrature procedures are a central element of the QMOM
and discussed as part of section 3.5 together with further information
on QMOM characteristics, specifically regarding the model configuration
considered in this work. The QMOM has frequently been applied for the
representation of polydispersity in bubbly flows (e.g., [183], [169], [85]).
In this context, several QMOM variants have been reported. They differ,
e.g., in the number of considered moments or with respect to fluid particle
interaction modeling. The configuration employed in this study is specified
in the subsequent chapter.

Due to the properties of conventional quadrature procedures, the classical
QMOM is restricted to the consideration of monovariate NDFs only. To
this end, Yuan & Fox [226] developed an extension by introducing a
conditional density function. This parameter defines a conditional relation
of internal coordinates and therefore facilitates the computation of weights
and abscissas for multivariate distributions. As a first step, the quadrature
parameters of a primary internal coordinate are individually determined
before dependencies on other coordinates are sequentially incorporated
through subsequent adapted quadrature procedures. This method is gen-
erally referred to as conditional quadrature method of moments (CQMOM)
and first applications of this theory to gas-liquid flows can be found in
scientific journal publications [26] [170].
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3.4 Population balance equation and CFD

Another promising adaption of the QMOM, termed extended quadrature
method of moments (EQMOM), has been reported recently [225]. This
approach is based on the idea of introducing an additional parameter in the
NDF representation to specify functions with finite support to approximate
the distribution function, instead of resorting to Dirac delta functions. In
this way, it is possible to reconstruct a smooth, non-negative NDF with an
exact representation of the first 2Ni + 1 moments [143].

3.4.2.3 Direct quadrature method of moments (DQMOM)

Given the mathematical complexity of quadrature procedures, the repeated
determination of weights and abscissas from NDF moments is expensive
in its computational realization and potentially compromises numerical
stability. With the use of the DQMOM, this recursive evaluation is avoided
by directly solving for transport equations of weights and abscissas. The
consequent expressions read

∂wi
∂t

+∇ · (wiui) = hw,i, (3.41)

∂D̂p,i

∂t
+∇ ·

(
D̂p,iui

)
= hD̂,i, (3.42)

where the source terms are determined by solving the following linear system
of equations:

(1− k)
Ni∑
i=1

D̂k
p,ihw,i + k

Ni∑
i=1

D̂k−1
p,i hD̂,i = b

(k)
C − d

(k)
C + b

(k)
B − d

(k)
B . (3.43)

In their original work, Marchisio & Fox [140] showed that this approach
is applicable to both monovariate and multivariate distributions without
the necessity of major adaptions. Besides the complexity of evaluating
adequate source terms from equation (3.43), this method (in its original
form) suffers from deficiencies regarding the conservation of NDF moments.
As summarized by Buffo et al. [26], there are cases in which the DQMOM
fails to correctly compute the evolution of NDF moments as a consequence
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of spatial discontinuities of quadrature parameter fields and the absence of a
diffusive term in equations (3.41) and (3.42). Yet, several applications of the
DQMOM for the simulation of bubble column flows have been published,
including the study by Selma et al. [186] who emphasized the beneficial
properties of this method regarding computational costs.

As the majority of alternative quadrature-based methods of moments is
related to one of the approaches presented above, their introduction will
be omitted here and the reader is referred to the literature on sectional
quadrature method of moments (SQMOM) [9], extended method of mo-
ments (EMOM) [75], et cetera.

The basic concepts of moments modeling in combination with an overview
of approach variants were outlined in this section. As the QMOM is used as
framework for the description of polydisperse bubble column hydrodynamics
in this work, further explications regarding this theory in conjunction with
its application to bubbly flows are given in chapter 3.5.

3.4.3 Interfacial area transport equation

As an alternative to the method of classes and moments methods with
regard to the depiction of different fluid particle sizes in an Eulerian
context, Kocamustafaogullari & Ishii [112] developed an approach based on
the introduction of an additional conservation equation for the interfacial
area. Consequently, this model is commonly referred to as interfacial
area transport equation (IATE) or interfacial area concentration equation
(IACE). In combination with the local dispersed phase volume fraction,
the additional conserved variable allows for a very limited conception of
prevailing fluid particle size conditions. In its original form, the respective
theory predicts locally varying, monodisperse bubble sizes, but does not
allow for a thorough conclusion on the characteristics of gas-liquid flow
polydispersity. Several adaptions of this approach have been proposed to
give a more detailed picture on local fluid particle sizes and shapes [95].
However, the description of bubble size dynamics in turbulent bubbly flows
including fluid particle interaction is possible only to a very limited extent
with this simplified approach. Nevertheless, some examples can be found
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in literature in which the IATE approach was used for bubble column flow
simulations (e.g., [93]).

3.5 Description of the QMOM

Based on the brief introduction of this approach in subsection 3.4.2.2, the
description of the quadrature method of moments is further extended to
provide a thorough depiction of this method’s derivation and principles. As
part of this presentation, the product difference algorithm is introduced,
which determines the quadrature parameters from the transported mo-
ments. Subsequently, the QMOM governing equations for the character-
ization of continuous and discontinuous events in the PBE are deduced.

The QMOM is predicated on the Gaussian quadrature to approximate
arbitrary moments of the diameter-based NDF as

M (k) =
∫ ∞
0
n (Dp)Dk

p dDp ≈
Ni∑
i=1

wiD̂
k
p,i. (3.44)

In the context of quadrature theory, the associated NDF n(Dp) is regarded
as weight function that has to fulfill the following requirements: positivity
in the entire integration interval, existence of function moments of arbitrary
order k [82]. These prerequisites are met, since all aspects are immanent
characteristics of any valid NDF.

3.5.1 Quadrature procedure

As the central part of the QMOM, the quadrature procedure or inversion
algorithm allows the computation of quadrature parameters from function
moments. In theory, this evaluation is achieved by the solution of the
following non-linear system of equations:
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M (0) =
Ni∑
i=1

wi,

M (1) =
Ni∑
i=1

wiDp,

...

M (2Ni−2) =
Ni∑
i=1

wiD
2N−2
p ,

M (2Ni−1) =
Ni∑
i=1

wiD
2N−1
p .

(3.45)

Marchisio & Fox [143] advise against this direct procedure due to poor
convergence behavior and advantageous alternatives. These are based on
the consideration of orthogonal polynomials, characterized by

〈Pi,Pj〉 =
∫ ∞
0
n(Dp)Pi(Dp)Pj(Dp) dDp

= 0 for i 6= j

> 0 for i = j
. (3.46)

A Gaussian quadrature is defined if the roots of the orthogonal polynomials
correspond to the abscissas D̂p of the QMOM representation of n(Dp) [61].
Assessing the leading coefficient of these orthogonal polynomials to be unity
(Pi = Di + . . .), they satisfy a recurrence formula as

Pi(Dp) = (Dp − Ca,i) Pi−1(Dp)−C2
b,iPi−2(Dp) with i = 1, 2, . . . , (3.47)

where the coefficients

Ca,i = 〈DpPi−1,Pi−1〉
〈Pi−1,Pi−1〉

with i = 1, 2, . . . , (3.48)

C2
b,i = 〈Pi−1,Pi−1〉

〈Pi−2,Pi−2〉
with i = 2, 3, . . . , (3.49)

and P−1 = 0, P0 = 1, Cb,1 = 1. This correlation can be expressed in matrix
form:
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Cp(Dp) = Dpp(Dp) + r(Dp), (3.50)

where

C =



Ca,1 1
C2
b,2 Ca,2 1

. . . . . . . . .
C2
b,Ni−1 Ca,Ni−1 1

C2
b,Ni

Ca,Ni


(3.51)

and

p(Dp) = (P0(Dp), . . . ,PNi−1(Dp))T , r(Dp) = (0, . . . , 0,−PNi(Dp))T .
(3.52)

From the relation

PNi(D̂p) = 0 ⇔ Cp(D̂p) = D̂pp(D̂p), (3.53)

it is evident that the zeros of PNi, which represent the quadrature abscissas,
coincide with the eigenvalues of C. By scaling C with a diagonal matrix
Dc = diag (Cc,1, . . . , Cc,Ni) where Cc,1 = 1 and Cc,i = Cc,i−1

Cb,i
, correlation

(3.53) is transformed into the symmetric eigenvalue problem C̆p̆ = Dpp̆
with p̆ = Dcp and C̆ = DcCDTc to give

C̆ =



Ca,1 Cb,2

Cb,2 Ca,2 Cb,2
. . . . . . . . .

Cb,Ni−1 Ca,Ni−1 Cb,Ni
Cb,Ni Ca,Ni


. (3.54)

The matrix transformation restores the respective eigenvalues and allows
their simple determination. A number of approaches have been published,
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which allow for an efficient calculation of matrix coefficients Ca and Cb.
Also applied in this work, the product difference (PD) algorithm constitutes
the most prominent method and is outlined in appendix A.2. Yet, some
researchers classified its numerical stability as suboptimal, specifically for
a high number of QMOM abscissas, which has led to the promotion of
alternatives [108] [143].

The evaluation of quadrature weights is defined by

wi = v2
i,1M

(0), (3.55)

where vi,1 is the first component of the normalized eigenvector of C̆
associated with the eigenvalue D̂p,i. A reconstruction of the underlying
mathematical considerations for this relation is outlined in appendix A.3.

3.5.2 Breakup and Coalescence

As discussed in section 3.4.2, the QMOM is incorporated to overcome the
closure problem associated with the application of moment methods on
realistic particulate systems. The complication related to equation closure
emerges from mathematically complex source term correlations. Specif-
ically, expressions for fluid particle breakup and coalescence necessitate
the application of additional model considerations such as QMOM. The
transformation of corresponding source terms into a moments context prior
to the formulation in terms of quadrature parameters is presented in the
following, predicated on the explanations of Marchisio et al. [141].

The formulations (3.5) and (3.6), describing coalescence phenomena in the
continuous, monovariate PBE, are adapted to represent MTE equivalents
by

b
(k)
C =

∫ ∞
0
Dk
pbC(Dp) dDp

= 1
2
∫ ∞
0
n(γp)

∫ ∞
0
rC (γp, γ̌p)

(
γ̌3
p + γ3

p

)1/3
n (γ̌p) dγ̌p dDp, (3.56)

with γ̌3
p = D3

p − γ3 and
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d
(k)
C =

∫ ∞
0
Dk
pdC(Dp) dDp =

∫ ∞
0
Dk
pn(Dp)

∫ ∞
0
rC(γp, Dp)n(γp) dγp dDp.

(3.57)

The discretization of source terms b(k)
C and d(k)

C by the quadrature represen-
tation (3.44) yields a transformation of integral expressions to summations
subject to abscissas D̂p,i and weights wi:

b
(k)
C ≈

1
2
∑
i

wi
∑
j

wj
(
D̂3
p,i + D̂3

p,j

)k/3
rC
(
D̂p,i, D̂p,j

)
, (3.58)

d
(k)
C ≈

∑
i

D̂3
p,iwi

∑
j

wjrC
(
D̂p,i, D̂p,j

)
. (3.59)

An equivalent transformation procedure is conducted for the PBE fragmen-
tation source terms (3.16) and (3.17) where the breakup kernel function
rB(γp, Dp) is expressed by the breakup frequency FB(Dp) and the daughter
bubble size distribution βB(Dp, γp) to give

b
(k)
B =

∫ ∞
0
Dk
pbB(Dp) dDp =

∫ ∞
0
Dk
p

∫ ∞
0
βB(γp, Dp)FB(Dp)n(γp) dγp dDp,

(3.60)

d
(k)
B =

∫ ∞
0
Dk
pdB(Dp) dDp =

∫ ∞
0
Dk−3
p FB(Dp)n(Dp)

∫ ∞
0
γ3
pβB(Dp, γp) dγp dDp.

(3.61)

The conversion in terms of a quadrature procedure yields

b
(k)
B ≈

∑
i

FB(D̂p,i)wiB̀i, (3.62)

with B̀i =
∫ D̂p,i

0
γkpβB(D̂p,i, γp) dγp =︸︷︷︸

(A.5)

∫ D̂p,i

0
γk+2
p

π

2β
′
B

(
π

6 D̂
3
p,i,

π

6γ
3
p

)
dγp,

d
(k)
B ≈

∑
i

D̂k−3
p,i FB(D̂p,i)wiB́i, (3.63)
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with B́i =
∫ D̂p,i

0
γ3
pβB(D̂p,i, γp) dγp =︸︷︷︸

(A.5)

∫ D̂p,i

0
γ5
p

π

2β
′
B

(
π

6 D̂
3
p,i,

π

6γ
3
p

)
dγp.

The integral expressions in B̀i and B́i cannot be evaluated by making use of
QMOM properties, because they do not involve the NDF as weight function.
These formulations do not correspond to the quadrature definition (3.44)
and must be solved separately. For k = 3 the birth and death rates cancel
each other out. Thus, the volumetric transport of the disperse phase is not
influenced by the bubble interaction processes.

3.5.3 Absorption

Besides the source terms for discontinuous events in the PBE, absorption
phenomena are accounted for in this work. In population balance theory,
the resulting modifications of the NDF are classified as continuous processes
and their transformation into a moments, respectively, a QMOM context is
outlined in this section.

Starting point is the absorption expression for the diameter-based NDF
introduced in equation (3.25). It is converted into a MTE term using the
rule of integration by parts:

∫ ∞
0
Dk
p

∂

∂Dp

[
n (Dp) Ḋp

]
dDp

=
[
Dk
pn (Dp) Ḋp

]∣∣∣Dp=∞
Dp=0 −

∫ ∞
0

∂Dk
p

∂Dp
n (Dp) Ḋp dDp. (3.64)

While the first term on the right side is zero for the upper integration limit
(Dp =∞)2, the consideration of Dp = 0 yields

[
Dk
pn (Dp) Ḋp

]∣∣∣
Dp=0 =


n (0) Ḋp

∣∣∣
Dp=0 if k = 0

0 if k > 0
. (3.65)

For Ḋp

∣∣∣
Dp=0 > 0, expression (3.65) represents the nucleation rate of

particles, for example, in crystallization processes. The consideration of
2 For Dp →∞, n (Dp) tends to zero faster than Dk

pḊp tends to infinity [143].
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particle dissolution or droplet evaporation implicates Ḋp

∣∣∣
Dp=0 < 0. In these

cases, the evaluation of term (3.65) is complex, as the described phenomena
are a function of local particle size conditions [143] [90]. Since bubble
dissolution plays an insignificant role for the gas-liquid system considered
in the current study, expression (3.65) is entirely omitted here. This
simplification is in line with similar investigations on bubbly flows (e.g.,
[26]) and allows a formulation of equation (3.64) as

∫ ∞
0
Dk
p

∂

∂Dp

[
n (Dp) Ḋp

]
dDp = −k

∫ ∞
0
Dk−1
p n (Dp) Ḋp dDp. (3.66)

In case Ḋp is not a function of Dp, this term can be expressed as

k
∫ ∞

0
Dk−1
p n (Dp) Ḋp dDp = kM (k−1)Ḋp (3.67)

and does not hinder the closure of the MTE in conventional form. Other-
wise, this correlation is to be expressed in terms of quadrature parameters,
yielding

k
∫ ∞
0
Dk−1
p n (Dp) Ḋp dDp ≈ k

∑
i

wiD̂
k−1
p,i Ḋp(D̂p,i), (3.68)

which allows for the solution in a QMOM framework. With the prefactor k
in equations (3.67) and (3.68), these terms are omitted for the consideration
of the zeroth moment. This implies that the number of fluid particles
remains unchanged by respective correlations, which coincides with the
properties of the described absorption phenomena.
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Based on the preceding introduction of fundamentals for the considered
modeling approach, the adaptions and extensions developed in this work
are presented in this chapter. To ensure the applicability of the resulting
moments model for the accurate depiction of industrial bubble column flows,
major modifications as well as novel approaches are incorporated. The
adaptions include a numerically robust algorithm for moment conversion
and correction, an adequate representation of bubble interaction phenomena
and the consideration of size-specific bubble motion. In addition, a
description referring to the implementation of the model in an existing CFD
framework is part of this chapter.

4.1 Model framework

In this section, the mathematical basis of the present model is summarized
referencing corresponding explications which were introduced in preceding
chapters. The presentation of model fundamentals includes the Euler-
Euler governing equations, the applied turbulence model and the considered
interfacial forces. This recapitulating overview constitutes the basis for
subsequently introduced model adaptions and extensions.

As a starting point, the governing equations for the numerical model are
re-presented:

Mass balance equation

Equation (2.31) exhibits the volume averaged Euler-Euler mass balance
equation in the considered form, which reads

∂

∂t
(αkρk) +∇ · (αkρkuk) = Γk. (4.1)
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Only the dispersed phase volume fraction (k ≡ d) is solved for since
αd + αc = 1. The mass transfer source term Γd is evaluated according
to equation (2.97) as

Γd =
∑
X

ΓX
d = −

∑
X
KX
c apρc

(
HXY

X
d

ρd
ρc
− Y X

c

)
, (4.2)

with the volume-specific net bubble surface ap = 6αd
Dp

and the Sherwood
correlation (2.100) by Glaeser [86] to determine the volumetric mass
transfer coefficient Kc by

ShX = K
X
c Dp

DX
c

= 2 + 0.015 Re0.89
p

(
ScX

c

)0.7
. (4.3)

Momentum balance equation

From equations (2.58) and (2.60), the phase generic
Euler-Euler momentum conservation equation results in

∂

∂t
(αkρkuk) +∇ · (αkρkukuk) =

∇ ·
[
αkµk,eff

(
∇ · uk + (∇ · uk)T −

2
3ukI

)]
−

αk∇p+ (αkρkg) + Γkuk +M k,GD, (4.4)

with µc,eff = µc + µc,tur. The turbulent contribution is defined by an
LES Smagorinsky approach, introduced in section 2.3.1, to give

µc,tur = ρc(CS∆tur)2 ∣∣∣Sc∣∣∣ , (4.5)

where CS = 0.1. The dispersed phase effective viscosity is determined
by µd,eff = ρd

ρc
µc,eff as proposed by Jakobsen [106] and introduced in

equation (2.59).
As contributions to the generalized drag term M k,GD, drag, lift and
virtual mass forces are taken into account in this study. Corresponding
formulations are specified as follows:
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Drag force

With the combination of equations (2.67), (2.68) and (2.70),
the general expression for the drag force contribution on the
momentum equation yields

MD = 3
4
CD
Dp

ρcαd |ud − uc| (ud − uc) , (4.6)

where the simplified Ishii-Zuber formulation (2.80) is used to
determine the drag coefficient as

CD = 2
3
√

Eo. (4.7)

This arguably is the prevailing model for the description of fluid
particle drag in bubble column flows (e.g., see the summary of
simulation configurations by Tabib et al. [197]). It should be
emphasized here that the combination of equations (4.6) and
(4.7) results in a depiction of drag effects on the momentum
conservation that is independent of fluid particle size. Hence,
exclusively the gas volume fraction couples local dispersed phase
characteristics with drag force specifics.
While the drag coefficient correlation by Ishii & Zuber, as pre-
sented in equation (4.7), as well as the resulting force on a single
particle FD is a function of fluid particle size, this dependency
is compensated with the incorporation of this drag model into an
Eulerian framework. The corresponding relation can be explained
by the definition of the Eulerian source terms as volume-specific
formulations (see section 2.4.1). Hence, the volume averaged
impact of drag effects MD does not feature a dependency on fluid
particle size, although the drag force acting on an individual fluid
particle is formulated subject to its diameter.

Lift force

The source term regarding lift force effects is presented in expres-
sion (2.84) and reads
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4.1 Model framework

ML = CLαdρc (ud − uc)×∇× uc. (4.8)

Two configurations for the computation of the lift force coefficient
are applied here. Either a constant coefficient of CL = 0.5
is assumed or alternatively the Tomiyama model, introduced in
section 2.4.1.2, is incorporated to specify

CL =


min [0.228 tanh (0.121Rep) , f (Eoh)] if Eoh < 4
f (Eoh) if 4 ≤ Eoh ≤ 10
−0.27 if Eoh > 10

.

(4.9)

Virtual Mass force

The impact of virtual mass force effects on the
Euler-Euler momentum balance reads

MVM = CVMαdρc

(Dud
Dt −

Duc
Dt

)
, (4.10)

as introduced in equation (2.90). For the appendant coefficient, a
constant value of CVM = 0.5 is selected as commonly specified for
bubble column simulations.

Chemical species balance equation

In case absorption phenomena in the gas-liquid environment are
considered, the hydrodynamic model is complemented by respective
species flow fields. As chemical reactions are disregarded in the scope
of this work, the conservation equation of a generic species X associated
with phase k is deduced from expression (2.66) as

∂

∂t

(
αkρkY

X
k

)
+∇ ·

(
αkρkY

X
kuk

)
= ∇ ·

(
αkDk,eff∇Y

X
k

)
+ ΓX

k . (4.11)
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Absorption phenomena are represented assuming that the gaseous
phase constantly consists of one chemical species only. With Y X

d = 1
equation (4.11) reduces to the dispersed phase continuity equation
(4.1), thus, solely the continuous phase species field is accounted for. In
this context, the effective species diffusion is comprised of a molecular
and a turbulent contribution (DX

c,eff = DX
c + Dc,tur). In line with the

LES Smagorinsky approach, Dc,tur = 2(CS∆tur)2

Sctur
∣∣∣Sc∣∣∣ with Sctur = 0.7.

Moment transport equation

The MTE is introduced in the form of equation (3.34), which is
expanded by the source term (3.66) if absorption is taken into account.
In this case the MTE reads

∂M (k)

∂t
+∇·

(
M (k)u(k))−k ∫ ∞

0
Dk−1
p n (Dp) Ḋp dDp = b

(k)
C −d

(k)
C +b(k)

B −d
(k)
B ,

(4.12)
where Ḋp is specified by formulation (3.27) as

Ḋp = −2ρc
ρd

∑
X
KX
c

(
HXρd

ρc
− Y X

c

)
. (4.13)

The presentation of source term specifics for bubble breakup and
coalescence formulations is omitted here, since a concise overview is
given in section 3.5.2 and a discussion on model details follows as part
4.3 of this chapter.

4.2 Incorporation of the QMOM

4.2.1 Conversion of Euler-Euler governing equations

The combination of the QMOM with the Euler-Euler approach is specified
in this section. While the formulation of MTE source terms in a QMOM
context is straightforward, as outlined in passages 3.5.2 and 3.5.3, a
corresponding conversion of the Euler-Euler equations for mass, momentum
and species conservation requires additional considerations. Instead of the
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4.2 Incorporation of the QMOM

assumption of a constant bubble diameter, the transport equation source
terms are to be formulated subject to a local spectrum of bubble sizes.
Formally, this can be achieved by expressing the dispersed phase volume
fraction in terms of the bubble diameter NDF as

αd = n(Dp)
πD3

p

6 ∆Dp (4.14)

prior to an integration of the conservation equations over the diameter
spectrum (with ∆Dp → dDp)[34]. The resulting continuity equation for
the dispersed phase volume fraction reads

∂

∂t

(
π

6M
(3)ρd

)
+∇ ·

(
π

6M
(3)ρdu

(3)
)

=

−
∫ ∞

0
KX
c n(Dp)D2

pπρc

(
HXρd

ρc
− Y X

c

)
dDp. (4.15)

Equation terms which initially do not feature a dependency on fluid particle
size are reconverted into their original form by αd = π

6M
(3) while a

formulation in terms of NDF moments or QMOM parameters is facilitated
otherwise. Although considered as bubble size dependent, the dispersed
phase velocity is disregarded in the transformation procedure since its
conception as a volume averaged quantity is consistent througout the
equation conversion (ud = u(3)). With these prerequisites equation (4.15)
can be expressed as

∂

∂t
(αdρd) +∇ · (αdρdud) = −

∫ ∞
0
KX
c n(Dp)D2

pπρc

(
HXρd

ρc
− Y X

c

)
dDp.

(4.16)

In general, a mathematically complex dependency of the volumetric mass
transfer coefficient on the bubble size (KX

c (Dp)) has to be assumed, which
necessitates the formulation of the mass transfer expression in terms of
quadrature parameters, to give

∂

∂t
(αdρd) +∇ · (αdρdud) = −πρc

(
HXρd

ρc
− Y X

c

) Ni∑
i=1

wiKX
c (D̂p,i)D̂2

p,i. (4.17)
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An equivalent conversion procedure is conducted for the momentum and
chemical species conservation equations, which results in adapted formula-
tions for mass and momentum transfer source terms. While the transfor-
mation of Γk was introduced above in equation (4.17), the generalized drag
term modification yields

M k,GD =
∫ ∞

0

3
4
g |ρc − ρd|

σ
ρcn(Dp)

πD3
p

6 |ud − uc| (ud − uc) dDp

+
∫ ∞

0
CLn(Dp)

πD3
p

6 ρc (ud − uc)×∇× uc dDp

+
∫ ∞

0
0.5n(Dp)

πD3
p

6 ρc

(Dud
Dt −

Duc
Dt

)
dDp.

(4.18)

With the selection of the Ishii-Zuber model as correlation for the drag
coefficient, the drag force source term in the Eulerian momentum equation
M k,D is independent of bubble size and is consequently unchanged by
the equation transformation. While this characteristic also applies to the
virtual mass force formulation, the lift force term potentially is altered if
the Tomiyama approach (4.9) is used. Thus, the general expression subject
to quadrature parameters reads

M k,GD = M k,D+π

6ρc (ud − uc)×∇×uc
Ni∑
i=1

CL(D̂p)wiD̂3
p+M k,V M . (4.19)

4.2.2 Disperse phase continuity equation and the MTE

In section 3.4.2 physical equivalences of NDF moments were introduced.
Making use of the compatibility of the dispersed phase volume fraction
and the third order moment, the associated transport equations are inter-
changeably linked via α = 6

πM
(3). As a consequence, solely one of these

conservation equations has to be solved for in the numerical model. The
interrelation of both formulations is outlined in the sequel.

Since the source terms for bubble breakup and coalescence cancel each other
out (see 3.5.2), the third order moment transport equation is deduced from
expression (4.12) as

104



4.2 Incorporation of the QMOM

∂M (3)

∂t
+∇ ·

(
M (3)u(3)) = −3

∫ ∞
0
D2
pn (Dp) Ḋp dDp. (4.20)

With the incorporation of equation (4.13) and the consideration of the
correspondence of M (3) to αd, this correlation can be expressed by

∂

∂t
(αdρd) +∇ · (αdρdud) = −

∫ ∞
0
KX
c n(Dp)D2

pπρc

(
HXρd

ρc
− Y X

c

)
dDp,

(4.21)

which is identical to formulation (4.16).

4.2.3 Invalid moments and moment correction

The spatio-temporal development of the constituent NDF moments is
described individually by the corresponding transport equations (4.12).
Although a set of moments is mathematically coupled as it physically
represents different characteristics of the same distribution function, this
relation may be altered due to the individual numerical transport of
each moment. As a result, invalid combinations of moments may occur,
which do not represent a physical NDF. In case QMOM functionalities are
incorporated to close the system of equations, corrupted sets of moments
prohibit the determination of appropriate quadrature parameters using, e.g.,
the PD algorithm.

Invalid moment combinations can be identified by the Hankel-Hadamard
determinants, which define the following constraints for the validity of an
arbitrary set of moments:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M (k) M (k+1) · · · M (k+l)

M (k+1) M (k+1) · · · M (k+l+1)

... ... . . . ...
M (k+l) M (k+l+1) · · · M (k+2l)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≥ 0, (4.22)

where k = 0, 1, . . . , 2l + 1 and l ≥ 0 [189].
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It is aimed at correcting invalid sets of moments by assigning minimal
changes to the individual moment values. For this purpose, McGraw [148]
proposed the minimum square gradient algorithm, an iterative procedure
based on the convexity requirement of ln

(
M (k)

)
as a function of k . For

the first four moments
(
M (0), . . . ,M (3)

)
this relation equals the Hankel-

Hadamard determinants for k = 0, 1 and l = 1 as

M (k)M (k−2) ≥
(
M (k−1))2

. (4.23)

In addition, this constraint is fulfilled for any physically consistent moment
combination of consecutive order. However, in this general case, the
convexity requirement only represents a necessary condition for moments
validity, the sufficient requirement is given by expression (4.22).

McGraw’s algorithm sequentially identifies and adapts specific moments
to fulfill the convexity condition with minimal intrusion. By evaluating
the Hankel-Hadamard determinants, additional correction steps may be
initiated to eventually yield valid sets of moments. The corresponding
modification procedure is briefly outlined in appendix A.4.1. For invalid
NDFs which are virtually monodisperse, this procedure either fails to
correct the set of moments in an acceptable number of iterations or the
successful conversion is entirely prevented due to numerical inaccuracies. A
mathematical reflection of this issue is outlined in appendix A.4.2.

For such cases, an alternative correction method is applied based on the
approach by Wright et al. [219]. This algorithm conditions the log-normal
distribution to constitute the functional form of the NDF, which is thus
defined by

n(Dp) = CLN,1
exp

(
− ln(Dp−CLN,2)

2C2
LN,3

)
DpCLN,3

√
2π

. (4.24)

The corresponding NDF moments are evaluated from

M (k) = CLN,1 exp
kCLN,2 +

k2C2
LN,3
2

 , (4.25)
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where CLN,1 ≡ M (0), CLN,2 denotes the distribution mean and CLN,3
represents the standard deviation.

The arithmetic means of two log-normal distribution moments, determined
from equation (4.25), are used to compute the corrected set of moments.
In each case, the parameters CLN,1 , CLN,2 and CLN,3 of these log-normal
functions are respectively evaluated from three low-order moments (M (0),
M (1), M (3) and M (0) , M (2) , M (3)). As M (0) and M (3) are adopted for the
determination of both distribution functions, the consistency of respective
variables (and their physical equivalents) is assured.

In practice, a maximum number of iterations1 for the minimum square
gradient algorithm is defined to yield a valid set of moments. If a physically
consistent combination is not reached within this limit, the respective
moments are evaluated by the log-normal approach. Since the affected
distributions, i.e. virtually monodisperse NDFs, can be described very
accurately by log-normal functions, this method proved to be both efficient
and exact throughout the simulations. An analysis of moment modifications
due to this hybrid correction procedure is presented in section 5.2 together
with other simulation results. A depiction of the entire moment correction
procedure is illustrated in the form of a flowchart in figure 4.1. A similar
setup of the two introduced correction methods was successfully used for an
alternative application by Petitti et al. [169].

Besides the discussed moment correction procedure, the introduction of
minimum moment values necessitates the conditional modification of mo-
ment combinations. To prevent the occurrence of non-positive moment
values, which would impede the determination of quadrature parameters
and ultimately lead to instabilities in the numerical processing, a lower
limit for moment values is defined. It is specified by a minimum local
gas volume fraction of αd,min = 10−5, which proved to be insignificant for
mass conservativity relations yet sufficient to ensure numerical stability. In
case this limit is undercut, the respective local dispersed phase fraction is
reset to αd,min with the NDF specifications at the gas inlet. This bounding
procedure was tested extensively and the current configuration does not
yield a noticeable alteration of numerical results.
1 Although McGraw [148] reports that one or two passes through the algorithm should arguably be sufficient
to correct regular distributions, a limiting number of 10 to 15 iterations proved to be both accurate and
numerically efficient.
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Figure 4.1: Flowchart of the incorporated procedure for correcting invalid sets of mo-
ments

4.3 Depiction of bubble breakup and coalescence

With the incorporation of conventional bubble breakup and coalescence
formulations, which are presented in section 3.2, into the QMOM framework
several aspects have to be taken into account. Besides the accurate
description of population balance modifications, adequate for the regarded
two-phase flow conditions, efficiency in the numerical realization of the
approach is to be assured. The latter criterion can be satisfied by the
selection of appropriate model formulations and their according adoption, in
spite of the mathematical complexity of common breakup and coalescence
theories. To this end, a combination of methods is implemented in the
current numerical model to obtain an efficient numerical evaluation without
jeopardizing accuracy in the depiction of the respective phenomena. This
setup represents a novelty in the context of a QMOM and was introduced
first in Acher et al. [1].
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The QMOM expressions for fluid particle aggregation (3.58) and (3.59)
indicate that model formulations for the bubble coalescence rate rC can
be directly incorporated without implicating additional complexities in the
numerical calculation. Instead of the diameters of interacting fluid particles,
the quadrature abscissas constitute the input variables for the evaluation of
these parameters. With the coalescence kernel function rC being determined
by the product of the collision frequency ωC and the coalescence probability
PC from expression (3.11) and (3.15), the respective QMOM source terms
applied in the current model are obtained as

b
(k)
C = π

8C
1/2
C ε1/3c

∑
i

wi
∑
j

wj
(
D̂3
p,i + D̂3

p,j

)k/3 (
D̂p,i + D̂p,j

)2 (
D̂

2/3
p,i + D̂

2/3
p,j

)1/2

× exp

−
[3

4 (1 + ϑ2) (1 + ϑ3)
]1/2

(
ρd
ρc

+ CVM
)1/2

(1 + ϑ)3
We1/2

 , (4.26)

d
(k)
C = π

4C
1/2
C ε1/3c

∑
i

D̂3
p,iwi

∑
j

wj
(
D̂p,i + D̂p,j

)2 (
D̂

2/3
p,i + D̂

2/3
p,j

)1/2

× exp

−
[3

4 (1 + ϑ2) (1 + ϑ3)
]1/2

(
ρd
ρc

+ CVM
)1/2

(1 + ϑ)3
We1/2

 , (4.27)

with ϑ = min(D̂p,i,D̂p,j)
max(D̂p,i,D̂p,j) and We = ρc min(D̂p,i,D̂p,j)up,rel

σ .

Regarding the depiction of bubble breakup phenomena in a QMOM frame-
work, the incorporation of a conventional model formulation is considerably
more complex. As depicted in the delineation of QMOM fragmentation
source terms (3.62) and (3.63), an additional integration operation is
required to evaluate the parameters B́i and B̀i. Respective correlations
cannot be simplified by an expression in terms of quadrature parameters
and consequently represent a potential drawback to numerical efficiency.
This is specifically relevant if the daughter bubble size distribution βB in
the integrand features an integral expression as well.

In section 3.2.2 three conventional approaches for the description of fluid
particle fragmentation phenomena were introduced in their general for-
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mulation for a continuous NDF. The model of Mart́ınez-Bazán et al. is
not considered further in this work due to the mentioned assumption
regarding turbulence isotropy and the dependency on additional model
parameters. Concerning the application of a population balance theory for
the description of polydisperse bubbly flows, the model of Luo & Svendsen
arguably represents the most prominent breakup formulation. In this
method, the daughter bubble size distribution is deduced from the breakup
kernel function rB, defined in equation (3.20), as

βB (Vp, f Vp) = rB (Vp, f Vp)
FB (Vp)

=

∫ 1

ςmin

(1 + ς)2

ς11/3 exp(−χ) dς
∫ 0.5

0

∫ 1

ςmin

(1 + ς)2

ς11/3 exp(−χ) dς df
. (4.28)

While the accurate numerical evaluation of equation (4.28) itself is chal-
lenging, a respective incorporation into the QMOM framework via the
expressions (3.62) and (3.63) necessitates a numerical realization which is
computationally expensive and rather unstable. Even if advanced methods
are used to evaluate the multidimensional integral expressions, associated
with high computational costs, major inaccuracies may potentially occur
due to critical function extrema at the integration domain boundaries. As
this bubble breakup formulation evidently is unsuitable for the application
in a QMOM context, the model of Lehr et al. is implemented in this work.
While the mathematical structure of the original correlations is similar
to the model of Luo & Svendsen (see equation (3.24)), Lehr et al. [126]
provide an approximation based on the definition of following dimensionless
coefficients for length

?

l and time
?

t:

?

l =
(
σ

ρc

)3/5 1
ε

2/5
c

;
?

t =
(
σ

ρc

)2/5 1
ε

3/5
c

. (4.29)

With these prerequisites, the equation variables are expressed in dimen-
sionless form (

?

Dp = Dp/
?

l, ?
γp = γp/

?

l,
?

Vp = Vp/
?

l3,
?

Θp = Θp/
?

l3,
?

FB = FB
?

t,
?

β = β
?

l3), which allows for a mathematically simple formulation of approxi-
mated model correlations as

110



4.3 Depiction of bubble breakup and coalescence

FB(Dp) =
?

FB(
?

Dp)
?

t
= 1

?

t

1
2

?

D5/3
p exp

−
√

2
?

D3
p


 (4.30)

for the breakup frequency and

β′B (Vp,Θp) =
?

β′B

(
?

Vp,
?

Θp

)
?

l3
= 1

?

l3

 6
π3/2 ?

γ3
p

exp
(
−9

4
[
ln
(
22/5 ?

γp
)]2)

(
1 + erf

[
3
2 ln

(
21/15

?

Dp

)])
 (4.31)

describing the daughter bubble size distribution as piecewise defined func-
tion, where

β′B (Vp,Θp) for 0 ≤ Θp ≤ Vp/2
β′B (Vp,Θp) = β′B (Vp, Vp −Θp) for Vp/2 ≤ Θp ≤ Vp

. (4.32)

In contrast to the aforementioned Luo & Svendson approach, the incor-
poration of the simplified equations (4.30) and (4.31) into the QMOM
formulations (3.62) and (3.63) reduces the mathematical complexity to a
one-dimensional integral expression for each source term. With respect to
the quadrature parameters, the corresponding correlation for B̀i reads

B̀i =
∫ 3
√

D̂3
p,i
2

0
γk−1
p

3
π1/2

exp
(
−9

4

[
ln
(

22/5
?
l
γp
)]2)

(
1 + erf

[
3
2 ln

(
21/15
?
l
D̂p,i

)]) dγp

+
∫ D̂p,i

3
√

D̂3
p,i
2

γk+2
p

D̂3
p,i − γ3

p

3
π1/2

exp
−9

4

[
ln
(

22/5
?
l

(
D̂3
p,i − γ3

p

)1/3)]2
(
1 + erf

[
3
2 ln

(
21/15
?
l
D̂p,i

)]) dγp. (4.33)

For the first summand on the right hand side an antiderivative can be
formulated as
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˜
B̀i (γp) =
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with
˜
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π1/2
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?
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to eventually result in
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˜
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(
D̂3
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)1/3
2 dγp.

(4.35)

Since the formulation for B́i represents a special case of B̀i for k = 3 an
individual presentation is omitted here.

With the exception of B̀i and B́i all terms of the current QMOM breakup
and coalescence configuration are expressed as algebraic formulations de-
pendent on flow properties and the quadrature parameters only. This setup
proved to be both exact in the computation of complex model correlations
and computationally efficient in the associated numerical realization.

4.4 Relaxation time approach

An important and challenging aspect in the modeling of polydisperse flows
with moment methods is the consideration of the size-dependency of particle
motion through appropriate evaluation of moment velocities. In the most
general polykinetic case, velocities of individual particles within one control
volume may differ from each other, even if they are equal in size. This
local particle velocity spectrum is represented in certain moment methods
by incorporating the particle velocity components as internal variables in
the moment setup (e.g., [226], [80]).
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In the present work, a more restrictive situation is considered: this concept
allows for size-specific particle motion, assuming that particles of identical
size also have locally identical velocities. This perception is commonly
referred to as polycelerity. Although not fully general, important effects
like segregation due to size-dependent inter-phase momentum exchange can
be captured in the MOM context through non-identical moment transport
velocities without an extensive modification of the moment method. In
line with this concept, Carneiro et al. [35] presented a model using the size-
dependency of particle relaxation times to deduce corresponding constituent
moment velocities. While this approach was incorporated into a PMOM
setup, its application in a QMOM framework is outlined in Acher et al. [1]
and is presented in detail in this thesis.

Regarding the numerical description of polydisperse gas-liquid flows with
moment methods, it has been a common approach to assume all moment
velocities to be identical to the Eulerian dispersed phase velocity (e.g., [169],
[183]):

u(k) = ud. (4.36)

As an alternative to this simplification, a more extensive model is applied
and analyzed in the scope of this work. The theoretical definition of moment
transport velocities for the assumption of a purely size-dependent spectrum
of the local fluid particle velocities, i.e. polycelerity, is introduced in equation
(3.35) and re-presented here for convenience:

u(k) = 1
M (k)

∫ ∞
0
un(Dp)n(Dp)Dk

p dDp. (4.37)

The current approach for the determination of constituent moment trans-
port velocities is based on the ideas of the equilibrium Eulerian method
by Ferry & Balachandar [76] [77]. With this alternative to the classical
Eulerian concept, the particle velocity is formulated in terms of a first order
expansion around the continuous phase velocity subject to its relaxation
time.

Unlike the previous description of particle dynamics in an Eulerian context,
the depiction within a Lagrangian framework constitutes the starting
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point for the formal deduction of the current evaluation procedure of
individual moment velocities. While Maxey & Riley [147] present an
equation of individual particle motion including the consideration of various
interfacial momentum exchange terms, the limitation of this concept to the
representation of drag relations yields

dup
dt = τ (uc − up) , (4.38)

where the particle relaxation time τ characterizes the response time scale of
dispersed particle motion to an adaption of the surrounding continuous flow
field. Deduced from these considerations, a formal expansion of the particle
velocity up around an arbitrary velocity ◦

u, corresponding to a relaxation
time ◦

τ, reads

up = ◦
u+ (τ− ◦

τ) dup
dτ

∣∣∣∣∣◦
τ

+O
(
τ2) . (4.39)

The simplification to a first order expression with ◦
τ = 0 yields

up = uc + τ
dup
dτ

∣∣∣∣∣◦
τ=0

, (4.40)

with ◦
u|◦τ=0 = uc. Introducing a reference relaxation time τ0 with the

associated velocity u0, the derivative dup
dτ

∣∣∣∣◦
τ=0

can be evaluated by

dup
dτ

∣∣∣∣∣◦
τ=0

= u0 − uc
τ0

, (4.41)

where τ0 has to be sufficiently small to assure validity of this linear
approximation. To transform this approach into the moment context,
the respective integration procedure (4.37) is applied to the preceding
expressions to give

1
M (k)

∫ ∞
0
un(Dp)n(Dp)Dk

p dDp = u(k) ≈ uc + τ(k)

τ0
(u0 − uc) . (4.42)
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This formulation corresponds to an evaluation of the moment transport
velocity u(k) by a linear interpolation between the continuous phase velocity
uc and the reference velocity u0 (see figure 4.2). In line with the
findings of Bollweg et al. [20], the current method is exclusively used for
an interpolative evaluation, not for the extrapolation beyond u0.

0 τ (k) τ0

uc

u(k)

u0

τ

u|τ

Figure 4.2: Schematic representation of the relaxation time approach: linear interpola-
tion between the continuous phase velocity uc and the reference velocity u0
to determine moment velocities u(k) [35]

Since the third moment is transported similarly to the volume-averaged
dispersed phase (u(3) = ud), ud is selected as reference velocity and can be
determined from the dispersed phase momentum equation (4.4). Hence, an
according adaption of equation (4.42) yields

u(k) ≈ uc + τ(k)

τ(3) (ud − uc) . (4.43)

Equation (4.43) constitutes the final form of the relaxation time approach
which is hereof referred to as RTA, while the simplified model with identical
moment velocities (see equation (4.36)) is denoted by IMV.

Analogous to the previous applications of this concept in a PMOM frame-
work (e.g., [35], [60]), the formulation for Stokes flow is applied to determine
the particle relaxation times as

τ =
ρdD

2
p

18µc
. (4.44)
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The transformation to the moment context consequently yields

τ(k) = ρd
18µc

M (k+2)

M (k) . (4.45)

The Stokes drag correlation allows for a numerically stable and efficient
computation of moment velocities, but the application of this formulation
for bubble column hydrodynamics is suboptimal. An adaption of the RTA
based on the Schiller-Naumann correlation, as outlined in appendix A.5,
does not improve the depiction of distorted bubble drag relations and
is accompanied by numerical instabilities. The incorporation of a more
adequate drag correlation is desired for future work. In contrast to the
volume specific representation of the dispersed phase drag relations in
the Euler-Euler framework, the considered relaxation times are determined
from individual particle kinetics. Therefore, the incorporation of different
drag models for the RTA and Euler-Euler formulations is well justified.

The fundamental ideas of the RTA can be used to extend the respective
concept in order to simultaneously account for alternative interfacial forces.
A potential approach which concurrently describes the effects of size-
dependent drag and lift force correlations on the bubble size NDF is sketched
in appendix A.6.

4.5 Implementation in OpenFOAM

Built in a C++ environment, OpenFOAM constitutes an open-source code
library which is specifically useful to solve for scalar or vector variable trans-
port equations in a two or three-dimensional context. Hence, OpenFOAM
can be used as a modular program package for various CFD problems and
is an optimal software tool to extend or adapt predeveloped CFD solvers for
specific applications. Carneiro et al. [33] used the Euler-Euler finite volume
solver twoPhaseEulerFoam as a basis for the implementation of PMOM
functionalities, which were further extended by Dems et al. [60]. The fun-
damental implementation principles of the OpenFOAM Euler-Euler solver
remain unchanged in the course of these modifications and can be found in
the comprehensive discussion by Rusche [181].
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4.5 Implementation in OpenFOAM

By adopting and extending the existing code, the QMOM framework with
the described moments conversion and correction algorithms is established
on top of the Euler-Euler base structure of the numerical model. The
sequential solving procedure for the present approach is depicted in the form
of a flow chart in figure 4.3. To allow for an efficient solution of the QMOM
procedure, corresponding sections of the solver are summarized in a separate
code class, which is called from the standard Euler-Euler environment.
As part of this structure, the fluid particle breakup and coalescence
functionalities are established as a distinct code module, which can be added
as an option. Likewise, the RTA implementation allows for an optional
activation of this feature, while the MTE configuration resorts to an IMV
setup otherwise.

QMOM procedure

Realization of the RTA

Computation of MTE source terms

Evaluation of MTEs

Moment correction (see figure 4.1)

Determination of quadrature
parameters (PD algorithm)

Computation of interfacial momentum
closure terms (drag, lift, virtual mass)

Evaluation of momentum conservation
equations (incl. LES turbulence)

Pressure correction algorithm (PISO)

Computation of interfacial mass transfer

Evaluation of chemical
species conservation equations

R
un

ti
m

e
lo

op
(h

yd
ro

dy
na

m
ic

on
ly

)

R
un

ti
m

e
lo

op
(i

nc
l.

ab
so

rp
ti

on
)

Figure 4.3: Sequential solution procedure for the current Euler-Euler moments model
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Although the MTE source terms representing discontinuous events, i.e.
bubble coalescence and breakup, are deduced to yield comparably simple
mathematical correlations, one-dimensional integral expressions have to be
evaluated in order to compute respective formulations (see section 4.3). To
accurately and efficiently determine these correlations through an adaptive
integration procedure, corresponding libraries of the GNU Scientific Library
(GSL) are incorporated in the OpenFOAM environment and utilized as part
of the code structure for breakup and coalescence formulations.

As indicated in the solution procedure illustration in figure 4.3, two
solver variants have been developed. While the incorporation of chemical
species balance equations in conjunction with corresponding source term
correlations is omitted for exclusively hydrodynamic studies, respective
formulations are included in case absorption phenomena are analyzed as
well. Although the code complexity is substantially increased in the latter
case, the addition in terms of computational time is inconsiderable as
even complex transport equations are solved efficiently by the OpenFOAM
algorithms.

As the main implementation strategy for code modifications and extensions
conducted in the scope of this work, the incorporation of model function-
alities is established on the premise of using as much of the OpenFOAM
classes, functions and coding structure as possible. A key element in this
effort represents the frequent application of indicator fields. These auxiliary
scalar fields, with entries being either zero or one, allow for a locally
conditional execution of algorithms by simple algebraic field operations,
which are provided by the standard OpenFOAM code package.
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5.1 Validation of the hydrodynamic model

The simulation results of the present model with regard to bubble column
hydrodynamics are compared against experimental and numerical findings
in this segment. Two test case configurations are considered. In subsection
5.1.1, a validation case with an experimental scale bubble column geometry
of square cross-section is introduced prior to the presentation and analysis
of simulation results. This investigation is complemented by the validation
of the numerical model against experimental findings from a bubble column
configuration with a circular cross-section. The respective results are
discussed in part 5.1.2 of this chapter.

The experimental analysis of local bubble size distributions in bubble col-
umn flows necessitates the application of advanced measurement techniques.
Due to the limited penetration depth of optical measurement methods,
one often resorts to quasi two-dimensional bubble column geometries
for according studies. The gas-liquid flow dynamics in a corresponding
experimental setup varies substantially from the situation in industrial
scale apparatuses. The boundaries, located closely together, hinder the
development of radial, meandering or spiral motions of the gas-liquid
flow. Sources for detailed experimental data on bubble size distributions
in a genuine three-dimensional bubble column are rare, thus, additional
experimental investigations on bubble column hydrodynamics are desired
for future validations.

5.1.1 Results for square cross-sectional bubble column

Parts of the following validation of the hydrodynamic numerical model
against experimental and numerical findings concerning a bubble column
configuration with square cross-section were presented similarly in Acher
et al. [1] [3].
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5.1.1.1 Test case description and numerical setup

The experimental scale bubble column used as validation case in this work
was first investigated by Deen et al. [58] for experimental and numerical
studies of the two-phase flow field. Subsequently, various Euler-Euler and
Euler-Lagrange based models (e.g., [227], [195]) were validated against their
findings. The majority of these simulations are based on the assumption
of a uniform bubble size. By applying advanced optical measurement
techniques, Hansen [93] analyzes local bubble size distributions with this
experimental setup. Additionally, he simulates the dynamic bubble size
behavior by adding an interfacial area transportation equation (IATE)
model to an Euler-Euler framework, incorporating the approaches of Wu
et al. [220] (IATE Wu) and Moilanen et al. [156] (IATE Moi.) for bubble
breakup and coalescence in the IATE formulation. Since these studies allow
for a comparison of the local bubble size spectrum, the experimental and
numerical results of Hansen [93] are used for the validation of the present
numerical model.

The bubble column used as a test domain has a square cross-section
(0.15 m× 0.15 m) and a height of 0.45 m (see figure 5.1a). The square gas
sparger (0.0375 m× 0.0375 m) is concentric with the bottom of the bubble
column and is modeled as a perforated plate with a porosity of 2.47%.
All simulations describe a water/air system at room temperature where
initially the entire column is filled with liquid. The air bubbles enter the
bubble column through the sparger with a diameter of 4 mm as documented
by Deen et al. [58]. Figure 5.1a shows the simulation domain including the
horizontal evaluation line H (0.25 m centrally above the sparger) and the
vertical centerline V. For the analysis of bubble size distributions, Hansen
[93] primarily used area-averaged data from the measurement plane P
(0.15 m× 0.12 m) with its center at a distance of 0.25 m from the gas inlet.

The numerical grid, as taken from Hansen [93], consists of 46080 equal-
sized hexahedral cells depicted in figure 5.1b. Considering the inlet bubble
size, the spatial resolution meets the Milelli criterion (see section 2.3).
Ničeno et al. [162] and Sungkorn et al. [195] successfully employed a finer
numerical mesh for the simulation of the current test case with a filter
width being only 20 to 25% larger than the presumed fluid particle size.
This criterion is fulfilled in all current simulations for the vast majority of
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P
H

V

(a) Domain geometry, measurement lines
(H, V ) and plane P

(b) Numerical mesh

Figure 5.1: Illustration of bubble column test case configuration with square cross-section

bubble sizes, based on measurements of the experimental as well as of the
numerical bubble size distributions.

This validation study concentrates on the case with a superficial gas velocity
of ud,sf = 4.9 mm/s. To further scrutinize local bubble size distributions,
the results of two additional cases with superficial gas velocities of 3.2 mm/s
and 6.6 mm/s are evaluated. The simulated time for each case is 350 s, where
time-averaged data is taken from the last 150 s.

A summary of boundary condition specifications and numerical schemes
for the transported flow variables is listed in table 5.1. A small tolerance
is allowed concerning the definition of moment inlet conditions to ensure
the validity of the selected combination of moments, which does not
impair the consistency of implemented boundary conditions with respective
experimental investigations. In line with recent publications (e.g., [29]),

121
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first order schemes are employed for the evaluation of MTE formulations.
In this manner, the corruption of moments sets due to individual numerical
processing of moments is kept to a minimum.

Variable Inlet Outlet Walls Scheme
Gas volume
fraction αd

0.0247 Zero gradient Zero gradient 1st order
upwind

Moments M (k) M (k)/M (k−1) =
4 mm(±0.003 mm)

Zero gradient Zero gradient 1st order
upwind

Gas velocity ud
Depends on

ud,sf

Zero gradient with
backflow No slip Lim. 2nd order

upwind

Liquid velocity uc 0.0 m/s Zero gradient with
backflow No slip Lim. 2nd order

upwind

Pressure p Zero gradient
Fixed value for

outflow; fixed total
pressure for inflow

Zero gradient 1st order
upwind

Table 5.1: Simulation boundary conditions and numerical schemes for the square cross-
sectional bubble column test case

The Ishii-Zuber drag correlation and the specification of constant coeffi-
cients for lift1 and virtual mass force formulations (CL = 0.5, CVM = 0.5)
constitute the adopted configuration for the Eulerian momentum exchange
modeling (see chapter 4). An equivalent configuration of interfacial force
models is used by Hansen [93] to obtain his numerical findings. For the
coalescence coefficient in the fluid particle interaction formulation, a value
of CC = 2 is specified for the current simulations.

5.1.1.2 Gas-liquid flow results

The investigated bubble column flow represents a highly transient two-
phase system. Figure 5.2a shows a snapshot of the gas volume fraction
distribution at the simulated time of 200 s, whereas figure 5.3a represents
the corresponding velocity field for the liquid phase. The interaction with
the continuous phase decelerates the incoming stream of gas, which causes
a region of comparatively high volumetric gas content (αd ≈ 0.1) above
the sparger. The ascending disperse phase remains compact below the
1 Preliminary results showed that an adoption of the Tomiyama lift force model in the current simulation
setup did not significantly alter the QMOM findings. However, it led to a reduction of numerical stability
for this validation case of Hansen, which prevented the evaluation of representative time-averaged results.
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axial position close to the level of the evaluation plane P and fluctuates
with a small range. Downstream, the bubble plume breaks up until the
gas is spread throughout the entire bubble column cross-section. A highly
dynamic interaction between the gas and liquid flow is present in this
region. The liquid phase velocity field is dominated by vortices of a wide
size spectrum randomly changing form and position over time. A similar
flow behavior is also shown in simulation results by Zhang et al. [227] and
reported from experimental investigations by Deen et al. [58].

In contrast to the dynamic appearance of the instantaneous pictures,
the time-averaged representations in figures 5.2b and 5.3b show a steady
symmetric pattern. The ascending gas flow is averaged to a slightly
diverging plume, while the liquid velocity field forms the characteristic
recirculation pattern. These illustrations indicate that the time-averaging
interval chosen in line with Hansen [93] yields valid data for the subsequent
analysis.

(a) Instantaneous flow field

αd

(b) Time-averaged flow field
(200 s – 350 s)

Figure 5.2: Contour plots of the gas volume fraction αd on a vertical cutting plane at
column center
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(a) Instantaneous flow field

|uc|

(b) Time-averaged flow field
(200 s – 350 s)

Figure 5.3: Contour plots of the liquid velocity magnitude |uc| and unscaled velocity
vectors on a vertical cutting plane at the column center

Figure 5.4 shows the time-averaged axial gas velocity along the horizontal
centerline H of the column. The QMOM simulation results are in good
agreement with the comparative numerical and experimental data. The
decay of velocity at the column walls is not depicted in detail in the
comparative data due to the lack of monitoring points in that area. The
axial velocity is zero for both phases on the walls because of the non-slip
boundary condition.

The peak values of the distribution of the averaged liquid axial velocity
along H do not agree for the data considered. As shown in figure 5.5 the
QMOM simulation results are below Hansen’s numerical and experimental
findings for the center part of the domain. Since the drag formulation is
similar for all simulations, this difference can be explained by the analogous
variance of peak values for the axial gas phase velocity profile (see figure
5.4).
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Figure 5.4: Time-averaged axial gas velocity along the horizontal centerline H of the col-
umn; QMOM simulation results compared with experimental and numerical
data from Hansen [93]
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Figure 5.5: Time-averaged axial liquid velocity along the horizontal centerline H of
the column; QMOM simulation results compared with experimental and
numerical data from Hansen [93]
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The slower upward motion of the liquid phase results in a moderate
attenuation of the axial velocity fluctuations in comparison to the respective
experimental and numerical data. Figure 5.6 depicts the corresponding
data along the horizontal centerline H . While there is an offset between the
QMOM simulation results and the comparative data, the approximately flat
trend throughout the column cross-section is well captured. In analogy to
the continuous phase velocity values, its fluctuations cease close to the wall
due to the non-slip boundary condition.
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Figure 5.6: Time-averaged axial liquid velocity fluctuations along the horizontal center-
line H of the column; QMOM simulation results compared with experimental
and numerical data from Hansen [93]

Figure 5.7 shows the radial fluctuations of the liquid velocity along H . The
numerical results of IATE and QMOM simulations are in good agreement
with the experimental values. From the comparison with the axial liquid
velocity fluctuations (see figure 5.6), Deen et al. [58] concluded that the
assumption of isotropic turbulence used in standard RANS models is not
applicable in this case. The accurate representation of turbulence in the two-
phase flow field by the solver is of special importance, since the turbulence
dissipation rate significantly influences the bubble breakup and coalescence
models and hence the bubble size distribution.
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Figure 5.7: Time-averaged radial liquid velocity fluctuations along the horizontal center-
line H of the column; QMOM simulation results compared with experimental
and numerical data from Hansen [93]

5.1.1.3 Analysis of bubble size distribution

For the analysis of bubble size relations on P, a comparison between
the experimental values of different representative bubble diameters and
the corresponding simulation results is depicted in figure 5.8. In addi-
tion to the results of the simulation case with a superficial gas velocity
of ud,sf = 4.9 mm/s, the numerical data for ud,sf = 3.2 mm/s and
ud,sf = 6.6 mm/s are evaluated. Representative bubble diameter formula-
tions are defined by respective moment relations

(
Dp,ij =

(
M (i)/M (j)

)1/(i−j) ;

e.g., Sauter diameter Dp,32 = M (3)/M (2)
)
, while the standard deviation (std.

dev.) is evaluated by
√(
M (2)/M (0)

)
−
(
M (1)/M (0)

)2.

As illustrated in figure 5.8, simulation values for all representative bubble
diameters are in good agreement with the corresponding experimental data.
The analysis of bubble sizes yields similar results for the three superficial gas
velocities. This can be ascribed to the relatively low gas throughput, which
does not give reason to expect significant variation of bubble interaction
intensity. Due to the comparably high dispersed phase volume fractions in
proximity to the gas inlet, the majority of bubble interaction phenomena
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Figure 5.8: Results for representative bubble diameters and gas volume fraction area-
averaged over plane P; QMOM simulation results compared with experi-
mental data from Hansen [93]

occur in this flow region, before the gas is being spread throughout the
entire bubble cross-section while ascending.

The aim of the experimental investigations of Hansen [93] was to measure
local bubble sizes as accurately as possible. Using latest optical measure-
ment techniques, he analyzed approximately 105 bubbles in each run to
generate statistically definite experimental results regarding dispersed phase
size relations. This emphasizes the quality of the experimental validation
data concerning local bubble size distributions. The dispersed phase volume
fraction is deduced from these findings accompanied by a high absolute
measurement error for the present low gas fraction values. This is a plausible
explanation for the significant deviation of the simulation results with the
experimental findings regarding dispersed phase volume fractions, especially
in the case with a superficial gas velocity ud,sf = 6.6 mm/s.
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Apart from the analysis of moment relations by representative bubble
diameters, the experimental results of Hansen [93] allow for a validation
of bubble size distributions by transforming the computed moment values
into continuous function form. To this end, a log-normal distribution is
presumed as basic function type and the three parameters CLN,1 ,CLN,2
and CLN,3 are calculated according to equation (4.25). Taking into account
the shape of the experimentally found bubble size distributions depicted in
the histograms of figure 5.9, this rather simple reconstruction procedure is
arguably sufficient for the considered cases. Since the low-order moments
and their physical equivalents represent the most significant characteristics
for the dispersed phase flow, the log-normal function is evaluated using(
M (0),M (1),M (2)

)
(LogNorm012),

(
M (0),M (1),M (3)

)
(LogNorm013) and(

M (0),M (2),M (3)
)

(LogNorm023). In order to compare the resulting con-
tinuous representations of the bubble size distributions to the experimental
findings, mathematical moments are calculated from the discrete histogram
values and are used to depict the experimental results in terms of the
corresponding log-normal functions as well.

Applying this consideration, the QMOM findings for the bubble size
distribution functions depicted in figure 5.9 are in good agreement with
the corresponding experimental data. This analysis yields similar relations
between the numerical and comparative experimental data for all regarded
superficial gas velocities. A comparison of the bubble size spectrum with
the numerical data from Hansen [93] is not possible, since the IATE model
does not allow the prediction of the entire function profile. Instead, the
Sauter diameter Dp,32 as representative bubble size can be deduced from
the IATE variables.

In addition to the investigation of area-averaged bubble size distributions
on the evaluation plane P, Hansen [93] measured bubble sizes at five
distinct locations (focus plane 0.02 m× 0.02 m) in the flow field. The
position of the corresponding points (Center, Bottom, Top, Left, Right)
on P are illustrated in figure 5.10. The experimental analysis is limited
to the evaluation of Dp,10, Dp,32 and the standard deviation. This set of
values corresponds to a rather limited representation of the number density
function, but allows for a qualitative validation of the local numerical
results. Respective local measurements for the bubble Sauter diameter are
used to augment the subsequent comparison of QMOM and IATE results
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Figure 5.9: Discrete and continuous bubble size distribution functions from QMOM
simulation results and comparative experimental data area-averaged over
plane P
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located along the horizontal and vertical evaluation line. An extended
analysis of bubble size relations at the specified locations is presented as
part of section 5.2.
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Figure 5.10: Positions of local bubble size evaluation locations on plane P

Figure 5.11a shows the Sauter diameter distribution along the horizontal
centerline H of the column considering the experimental and numerical
results of Hansen, as well as the determined QMOM values for the case
with a superficial gas velocity of ud,sf = 4.9 mm/s. While the QMOM
results are in the range of the experimental values over the whole column
width, large differences to the IATE data can be identified, particularly
close to the walls. QMOM’s high diameter values in that area seem to
be in line with the experimental results, although more data points would
be needed for a definite conclusion. Similar statements can be made for
the test case analysis with superficial gas velocities ud,sf = 3.2 mm/s and
ud,sf = 6.6 mm/s (see figures 5.11b and 5.11c). The QMOM simulation
results capture the shape of the diameter profile significantly better than
the IATE models and with reasonable agreement with the absolute values.

Hansen also numerically analyzed the Sauter diameter profile along the
vertical centerline V . Unfortunately, only the IATE results for sampling
positions with a distance of more than 0.15 m from the sparger were
published. A plot of the experimental and numerical findings along V for
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Figure 5.11: Sauter diameter profile along the horizontal evaluation line H ; QMOM
simulation results compared with experimental and numerical data from
Hansen [93]

the main case with a gas superficial velocity of ud,sf = 4.9 mm/s shows
significant differences between the IATE and the QMOM results (see figure
5.12a). Both IATE models predict a considerable increase of the bubble
size within the bottom 0.15 m of the bubble column, followed by a breakup
dominated region, before the diameter value stabilizes. In contrast, the
QMOM results indicate a less significant effect of the coalescence processes
above the gas sparger and a smooth increase of bubble size further along
the vertical centerline V .
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Figure 5.12: Sauter diameter profile along the vertical centerline V ; QMOM simulation
results compared with experimental and numerical data from Hansen [93]

For the main test case, shown in figure 5.12a, all simulation results are
in range with the experimental values. Because of the very limited data
set from the experimental studies, a conclusive evaluation of the different
numerical approaches is not possible. Unfortunately, the analysis of the
corresponding results for the test cases with superficial gas velocities of
ud,sf = 3.2 mm/s and ud,sf = 6.6 mm/s does not clarify this point (see
figures 5.12b and 5.12c). The qualitative and quantitative depiction of the
diameter distribution along V is very similar to the main test case.
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5.1.2 Results for circular cross-sectional bubble column

As an additional validation case, the gas-liquid flow of an air-water system
in a circular cross-sectional bubble column is analyzed. The considered test
case was originally used by Bhole et al. [17] to experimentally investigate
bubble column hydrodynamics via laser Doppler anemometer measure-
ments. Subsequently, their findings have been employed as comparative
data for numerous numerical studies (e.g., [16], [197]). The presentation of
the respective experimental data by Bhole et al. [16] is taken as a basis for
the following validation study.

The test case geometry, depicted in figure 5.13a, consists of a circular column
of 0.15 m diameter and a height of 0.9 m. In contrast to the preceding
validation case configuration, the gas inlet sparger takes up the entire
column cross-section and a significantly higher superficial gas velocity of
up,sf = 20 mm/s is investigated. With the corresponding gas throughput,
the current setup features hydrodynamic specifications which are more likely
to coincide with values from industrial applications. In line with Bhole
et al. [16], a constant bubble size is assumed at the gas inlet which is
determined by the correlation of Miyahara et al. [155]. With respect to
the current sparger characteristics, this evaluation yields an inlet bubble
diameter of Dp = 8.81 mm. A constant gas volume fraction of αd = 0.5
is imposed at the gas inlet, analogous to the simulation configuration of
Buffo et al. [29]. Apart from these modifications, the remaining numerical
specifications are consistent with the setup presented in table 5.1.

As depicted in illustrations 5.13b and 5.13c, the simulation domain is
spacially discretized by a numerical mesh of 13000 hexagonal cells. With
respect to the experimental values of local fluid particle size conditions, the
resulting ratio of computational grid size to bubble diameter is similar to the
relations specified in the proceeding study. Although the spatial resolution
may locally fail to meet the Milelli criterion (see section 2.3), mesh size
conditions as proposed by Ničeno et al. [162] and Sungkorn et al. [195] are
generally satisfied.

Similar to the two-phase flow pattern in the square cross-sectional bubble
column, the current gas-liquid hydrodynamics are characterized by transient
vortices of different sizes and orientations, yielding a highly dynamic bubbly
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0.3 m

0.45 m

0.6 m

(a) Simulation domain and evaluation
heights

(b) Numerical mesh on
cross-section

(c) Numerical mesh along column
height

Figure 5.13: Geometry, numerical grid and evaluation locations of the bubble column
test case with circular cross-section

flow. Validation data are derived from numerical results time-averaged over
a period of 200 s (simulation time 200 s – 400 s). To allow for a comparison
with equivalent experimental values, the simulation results are evaluated as
radial profiles of fluid dynamic quantities at column heights of 0.3 m, 0.45 m
and 0.6 m as illustrated in figure 5.13a.

In their numerical studies of the current test case, Bhole et al. [16] analyzed
the impact of different lift force models on the simulation findings. They
report of fundamentally variant hydrodynamic characteristics, depending on
the selected lift force formulation and argue that the Tomiyama model is
most suitable for this kind of configuration. This conclusion is supported by
the current numerical investigations. Using the previous Euler-Euler setup
for interfacial momentum exchange (Ishii-Zuber drag model, CL = 0.5,
CVM = 0.5) results in the development of a stable or metastable recir-
culation region above the gas inlet (see figure 5.14a). This flow pattern
hinders the appearance of radial-symmetric validation data even for long
averaging periods, jeopardizes numerical stability and dominates gas-liquid
flow characteristics. With the adoption of the Tomiyama lift force model,
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the highly transient hydrodynamic pattern develops as depicted in figure
5.14b and described by Tabib et al. [197].

As they observe a substantial overprediction of bubble diameters for the cur-
rent test case using conventional model formulations, Bhole et al. [16] pro-
pose an adaption of the bubble coalescence model. Likewise, Chen et al. [39]
[41] report similar deficiencies in the depiction of bubble size relations
with common fluid particle breakup and coalescence formulations. In their
studies, considering a circular cross-sectional bubble column configuration
of similar dimensions, they propose a multiplication of the fragmentation
rate by an arbitrarily determined factor of 10 to compensate for bubble size
overprediction. If the bubble interaction terms used in the previous test case
(CC = 2.0) are applied for this study without modification, bubble diameter
values are 20% to 50% above the experimental findings. With the adaption
of the coalescence coefficient to CC = 0.127, which represents the minimum
of the reported value range [129], the simulation results concerning bubble
size are in good agreement with comparative experimental data as discussed
in the following presentation of the validation study results.

(a) Lift force coefficient CL = 0.5

|uc|

(b) Tomiyama lift force model

Figure 5.14: Instantaneous liquid velocity magnitude |uc| and unscaled velocity vectors
on a central cutting plane at the lower third of the column
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5.1 Validation of the hydrodynamic model

Figure 5.15 depicts the experimental and numerical data regarding the
axial liquid velocity as radial profiles at the aformentioned evaluation
heights. The QMOM results correspond well to the validation values in
all three considered cases. While the peak values at the column center are
slightly below the experimental findings, the numerical results closer to the
boundaries tend to overpredict experimentally determined velocities. The
current mesh size does not allow for a detailed depiction of fluid dynamic
conditions at the column wall, yet the recirculating motion of liquid in that
area is captured well.
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Figure 5.15: Time-averaged radial profiles of the axial liquid velocity (200 s – 400 s);
QMOM simulation results compared with experimental data from Bhole
et al. [16]

Unfortunately, the literature sources for the validation data on local bubble
size relations do not specify which representative diameter (e.g., D32, D10) is
analyzed in their studies [17] [16]. Hence, exclusively qualitative conclusions
can be drawn from the comparison with local bubble size distribution
characteristics of QMOM findings. While, at a column height of 0.3 m,
the representative bubble diameters from simulation results are significantly
higher than corresponding experimental data, a generally good agreement
can be assessed for the evaluation locations on higher levels (see figure
5.16). The numerical results indicate that the effects of bubble breakup
and coalescence models compensate one another for most of the simulation
domain and yield approximately constant size distributions at all evaluation
positions. In the experimental study, a corresponding state of equilibrium
for the diameter relations of ascending bubbles is reached above 0.3 m
column height.

As depicted in figure 5.17, the analysis of gas volume fraction values yields
similar results for the three locations in the domain. Close to the column
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Figure 5.16: Time-averaged radial profiles of representative bubble diameters
(200 s – 400 s); QMOM simulation results compared with experimental
data from Bhole et al. [16]

walls, the QMOM findings correspond well to the validation data, while the
simulation values substantially underpredict the gas content at the column
center. The correlation of this underprediction with the positions of highest
bubble diameter values arguably indicates a deficient representation of drag
forces with regard to corresponding bubble size conditions. Applying an
alternative drag model, the simulation results of Bhole et al. [16] follow the
experimental data on the volumetric gas fraction more closely.
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Figure 5.17: Time-averaged radial profiles of dispersed phase volume fraction
(200 s – 400 s); QMOM simulation results compared with experimental data
from Bhole et al. [16]

5.2 Analysis of polycelerity

The current numerical model makes it possible to analyze the effect of
a size-dependent particle velocity formulation (RTA) on the simulation
results in comparison to the assumption of locally uniform bubble motion
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(IMV). To this end, the square cross-sectional bubble column test case
introduced in segment 5.1.1.1 was simulated with two corresponding QMOM
configurations of the Euler-Euler solver. The respective numerical results
concerning local bubble size distributions in case of the application of the
RTA are presented in section 5.1.1.3. By extending this validation of RTA
simulation data against experimental findings, the numerical results of both
moment velocity models are contrasted. To this end, differences in local
bubble size distributions are illustrated and analyzed.

Since the interfacial forces are independent of the bubble size for the selected
formulations for drag (Ishii-Zuber model), lift (CL = 0.5) and virtual mass
(CVM = 0.5), the moment velocity formulation does not influence the
hydrodynamic representation by the Eulerian framework, but effects the
bubble size distribution results only. Apart from minor deviations due to the
finite averaging period of the dynamic flow field, the resulting hydrodynamic
values are identical for both simulation setups and section 5.1.1.2 exhibits
an according validation against experimental data of the concerned test
case. Hence, an explicit examination of gas and liquid velocity conditions
for the IMV simulation is omitted here. A corresponding analysis can be
found in Acher et al. [2] which additionally features parts of the following
comparative study of moment velocity models.

The inclusion of IMV simulation results concerning the representative
diameter values on P into the respective analysis depicted in figure
5.8 allows for a comparison of both simulation types (see figure 5.18).
As shown above, the RTA simulation findings correspond well with the
experimental validation data. If the RTA is not incorporated, evaluated
representative bubble diameters (Dp,10, Dp,20, Dp,30) are substantially larger
for all considered cases. This correlation is further analyzed and interpreted
through a continuous representation of bubble size relations on P.

Figure 5.19 exhibits good agreement of all predicted bubble size distribu-
tions from simulations applying the RTA with the experimental findings.
As already indicated by the corresponding representative bubble diameters,
neglecting the RTA in the present QMOM model leads to major deviations
of experimental and numerical results. Compared to the experimental
findings, the peak values of the log-normal functions are at diameter values
more than twice as large and the content of bubbles with diameters below
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Figure 5.18: Representative bubble diameters and gas volume fraction area-averaged
over plane P; QMOM simulation results with identical moment velocities
(IMV) and applying the relaxation time approach (RTA) compared with
experimental data from Hansen [93]

2 mm is marginal. Due to the increased contribution of larger bubbles to the
dispersed phase volume fraction, the number density function represents a
comparably flat curve throughout the diameter range.

The poor results for the bubble size distributions, that is observed if all
moments are convected with identical velocities, can be explained by the
insufficient representation of the bubble size-dependent fluid particle flow
patterns. While the path of larger bubbles is influenced by the liquid flow
field on large scales only, smaller bubbles follow the continuous phase more
faithfully. In areas of recirculating liquid phase, small bubbles will follow
the vortices or even get trapped for a short period of time. This leads to
an increase in residence time of small bubbles in the corresponding flow
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Figure 5.19: Discrete and continuous bubble size distribution functions from QMOM
simulation results (RTA and IMV) and comparative experimental data area-
averaged over plane P
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5 Model validation and simulation results

regions. Figure 5.20 shows a fluid vortex and the Sauter diameter (Dp,32)
contours in its proximity. The circulating flow field leads to a size-dependent
separation of the bubbles in the downflow region on the left. Smaller bubbles
accumulate in the wall region, whereas larger bubbles remain in the center.

Dp,32

Figure 5.20: Contour plot of the instantaneous Sauter diameter (Dp,32) field and unscaled
liquid velocity vectors on plane P

At distinct positions on P, specified by depiction 5.10, local numerical and
experimental representative diameters for the studied superficial gas veloc-
ities are illustrated in figure 5.21. Similar conclusions can be drawn from
the comparison of the corresponding results for all three gas throughput
rates. While the RTA results are in range of the experimental findings
for the representative diameter Dp,10, severe deviations to the alternative
numerical data are clearly recognizable. This tendency corresponds to
the discussed area-averaged findings and indicates that the percentage of
small bubbles is underestimated. Regarding the remaining representative
diameters, the quality of the corresponding numerical results is comparable,
though the simulations including the RTA yield a better agreement with the
comparative experimental data for higher gas flow rates.

In all cases, the experimental values indicate the trend of bubble sizes along
the column width. Smaller bubbles accumulate at the column walls, whereas
the bubble size distributions at the center are dominated by large bubbles.
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Figure 5.21: Results for representative bubble diameters at distinct positions on P
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5 Model validation and simulation results

This deviation is captured accordingly by all RTA simulations. In contrast,
the numerical data with identical moment velocities is characterized by a
flat trend along the column width or even by a minimum of the bubble size
in the center.

To demonstrate the influence of the moments correction algorithm described
in section 4.2.3, figure 5.22 exemplarily depicts the time-averaged relative
moment modifications θ(k) = ∆M (k)/M (k) for k=3 as a consequence of
moment correction. The flow region close to the gas inlet is susceptible
to moment correction, since minor numerical inaccuracies are sufficient
to yield invalid sets of moments for virtually monodisperse distributions.
Illustration 5.22b also shows that the simulation including the RTA is
more commonly subject to moment correction, albeit with marginal relative
moment modifications. This increased rate of moment correction can be
ascribed to the additional option of moment variance due to the moment
velocity formulation.

(a) Identical moment
velocities (IMV)

θ(3)

(b) Relaxation time
approach (RTA)

Figure 5.22: Contour plots of the time-averaged relative moment corrections for the third
moment M (3) on a vertical cutting plane at column center (200 s – 350 s)
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5.3 Simulation of interfacial mass transfer

The maximum values of θ(k) in the computational domain for all in-
corporated moments are listed in table 5.2. For both moment velocity
formulations all time-averaged corrections of moments are significantly
below 1% and consequently may not substantially influence the final results
concerning local bubble size distributions. Since the dispersed phase is
convected through the column and released at the outlet, the modification
of moments due to the correction algorithm does not accumulate in
the domain. Concerning the dispersed phase volume fraction, moment
correction yields a time-averaged offset in gas throughput from inlet to
outlet of maximum 3%.

Moment velocity formulation M (0) M (1) M (2) M (3) M (4) M (5)

Relaxation time approach (RTA) 0.31% 0.15% 0.17% 0.39% 0.05% 0.17%
Identical moment velocities (IMV) 0.03% 0.01% 0.01% 0.65% 0.03% 0.01%

Table 5.2: Maximum domain-wide values of time-averaged relative moment corrections
θ(k) (200 s - 350 s)

5.3 Simulation of interfacial mass transfer

The incorporation of chemical species transport equations including appro-
priate source terms for interfacial exchange phenomena allows the depiction
of absorption processes in gas-liquid flows. Since an adequate representation
of the bubble column hydrodynamics in the square cross-sectional bubble
column test case is ensured by the model validation (see 5.1.1), further
studies concerning the interfacial mass transfer are conducted with this
configuration. The corresponding simulation results are analyzed and
compared with analogous numerical findings from literature sources. To
this end, the Euler-Euler investigation of mass transfer phenomena for this
test case by Zhang et al. [229] [228] is used for comparison. Besides this
study, Darmana et al. [52] analyzed equivalent processes for the current
bubble column setup applying an Euler-Lagrange model.

For all current numerical studies, the dispersion of CO2 bubbles in pure
water constitutes the considered gas-liquid system with properties2 analo-
2 Gas:ρd = 1.98 kg/m3, µd = 1.812× 10−5 kg/ms; Liq.:ρc = 1.0× 103 kg/m3, µc = 1.0× 10−3 kg/ms;
σ = 7.275× 10−2 N/m, DCO2

c = 1.699× 10−9 m2/s
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5 Model validation and simulation results

gous to the specifications by Zhang et al. [229]. As a simplification, this
species combination is represented assuming purity of the gaseous phase
(Y CO2

d = 1) throughout the simulation. Consequently, the respective
CO2 concentration equation reduces to the dispersed phase continuity
formulation (see subsection 4.1) and the hydrodynamic model is extended
by a balance equation for Y CO2

c only. Initialized as zero, the respective scalar
mass fraction field is solved with a limited second order upwind scheme and
all boundary conditions are defined as zero gradient. For the determination
of the interfacial mass transfer, the Sherwood correlation by Glaeser [86] is
incorporated as outlined in section 4.1.

The remaining model setup is similar to the main validation case presented
in section 5.1.1. This applies to the domain geometry and the spatial dis-
cretization (see figure 5.1) as well as to the simulation boundary conditions
and numerical schemes stated in table 5.1. Furthermore, the identical set of
models for the Eulerian representation of interfacial momentum exchange
(Ishii-Zuber drag model, CL = 0.5, CVM = 0.5) and fluid particle interaction
(CC = 2) is used. The simulation domain is initially filled with pure water
before the CO2 enters the bubble column with a superficial gas velocity of
ud,sf = 4.9 mm/s and a monodisperse inlet bubble size of 4 mm.

As part of the following numerical investigation, the impact of different
model functionalities on the simulation results concerning interfacial mass
transfer is studied. Therefore, a variety of simulation configurations are
considered, which are introduced in table 5.3. With Sim 1 the absorption
processes exclusively affect local gas volume fractions, while the bubble size
remains constant (Dp = 4 mm). Configurations Sim 2 and Sim 3 allow for
a modification of bubble sizes as a result of absorption phenomena only.
The additional consideration of bubble breakup and coalescence events is
part of simulation cases Sim 4 and Sim 5.

Concerning the analysis of absorption phenomena, Zhang et al. [229]
considered two simulation configurations: an Euler-Euler model with the
definition of a constant bubble size (similar to Sim 1 ) and a model
extension in terms of a bubble number density equation to allow for
variable fluid particle sizes. The bubble number density model (BNDM) is
characterized by the incorporation of a transport equation for the volume-
specific number of fluid particles. Considering the physical equivalents of
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5.3 Simulation of interfacial mass transfer

Simula-
tions

Bubble size
distribution

Moment transport
velocity Bubble interaction

Sim 1 Constant bubble size - -
Sim 2 QMOM IMV -
Sim 3 QMOM RTA -
Sim 4 QMOM IMV Breakup and Coalescence
Sim 5 QMOM RTA Breakup and Coalescence

Table 5.3: Simulation cases for the numerical study of interfacial mass transfer

NDF moments, this formulation coincides with the MTE for M (0). In
combination with the dispersed phase continuity equation, it allows the
calculation of a representative bubble diameter and gives a very limited
depiction of local bubble size conditions. Since Zhang et al. [229] use the
Eulerian convection velocity for the bubble number density equation, the
BNDM simulation setup can be regarded as similar to case Sim 2 but with
an inferior representation of bubble size relations and alternative submodels
for interfacial momentum exchange.

This resemblance is reflected by the numerical results regarding bubble
size profiles along a horizontal and vertical evaluation line as illustrated
in figure 5.23. Both plots show that simulation case Sim 2 and the BNDM
yield very similar numerical results. If a size-dependent particle velocity
is considered via the RTA (Sim 3 ), bubble sizes are generally below the
alternative findings. This phenomenon coincides well with the conception
of simulated fluid particle motion being more susceptible to deflection by
the liquid flow if the RTA is applied (see figure 5.20). As a consequence,
specifically smaller bubbles will follow fluid vertices more faithfully and
therefore have an increased residence time. This is associated with a longer
absorption period and an enhanced shrinking of respective fluid particles.

Looking at figure 5.23b, the significance of this effect can be related to the
column height. At the lower part of the domain, the ascending stream of
bubbles is compact and not exposed to strong recirculating liquid motions.
At a column height of 0.15 m to 0.2 m the plume breaks up and disperses the
gas bubbles throughout the domain cross-section. Here, the size-dependent
consideration of fluid particle motion takes effect and ultimatelly yields a
reduction of the Sauter diameter.
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Figure 5.23: Instantaneous bubble Sauter diameter profiles (time = 25 s); Comparison of
two similar approaches (Sim 2 (QMOM, IMV, no coalescence and breakup)
and bubble number density model (BNDM) of Zhang et al. [229]) with
results of simulation Sim 3 (QMOM, RTA, no coalescence and breakup)

The similarity of QMOM results applying an IMV approach (Sim 2 ) and
the BNDM data can also be identified from the comparison of illustrations
presented in figure 5.24. There, contour plots of bubble Sauter diameter
values on a central cutting plane are depicted for three different simulation
times. While the size reduction of ascending bubbles due to interfacial mass
transfer is strongest at early stages of the simulation, it exhibits a decline
with the gradually increasing aqueous CO2 concentration. As a result
of converging concentration levels in gas and liquid, the interfacial mass
transfer is attenuated and the impact of absorption processes on bubble
sizes is less significant. The sequential illustrations of bubble size relations
in both the QMOM and BNDM simulation capture this correlation with
great resemblance.

The impact of moment velocity models on the depiction of absorption
phenomena by the numerical simulation can be analyzed through a compar-
ison of respective dissolved CO2 concentration fields. Figure 5.25 exhibits
contour plots of the instantaneous CO2 concentrations for simulation times
25 s, 50 s and 75 s. While the range of concentration values is on a similar
level at the starting phase of simulations, the results gradually diverge
from each other as the absorption rate with the application of the RTA
is considerably higher compared with the IMV simulations.
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5.3 Simulation of interfacial mass transfer

time = 25 s

Dp,32 [mm]

time = 50 s time = 75 s
(a) Results of simulation Sim 2 (QMOM, IMV, no coalescence and breakup)

Dp,32 [mm]

(b) Numerical comparative data (BNDM) [229]

Figure 5.24: Contour plots of the instantaneous bubble Sauter diameter values on a
vertical cutting plane at column center
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Figure 5.25: Contour plots of the instantaneous CO2 concentrations on a vertical cutting
plane at column center
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5.3 Simulation of interfacial mass transfer

Generally, a narrow value range of local instantaneous CO2 concentration
in the domain can be assessed from figure 5.25, which indicates a rather
homogeneous absorption process despite differences in local gas volume
fractions and bubble size relations. The high intensity of liquid flow
dynamics and turbulence accounts for a rapid leveling of concentration
inhomogeneities, leaving only a minor general increase of dissolved CO2
concentrations from the sparger to the column outlet.

Figure 5.26 shows the evolution of the domain-wide normalized dissolved
CO2 concentration for all conducted simulations as well as for the com-
parative data from Zhang et al. [229]. With the consideration of bubble
size modifications in consequence of interfacial mass transfer an increase
of absorption effects compared to the constant bubble case is observed
for both numerical models. Smaller bubbles are associated with higher
values for the volume-specific interfacial area and consequently enhance
mass transfer processes. In contrast to the gradually growing difference
of respective concentration levels in current simulations Sim 1 and Sim 2,
Zhang et al. predict a steep increase of dissolved CO2 concentration at early
BNDM simulation stages followed by a trend similar to the relations with
constant bubble size. Figure 5.26a additionally depicts the aforementioned
intensification of simulated absorption phenomena with the incorporation
of the RTA. The resulting increase of the normalized concentration level
compared with IMV findings is similar to the difference between Sim 2 and
Sim 1 results.
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(a) QMOM simulation results (see table 5.3)
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Figure 5.26: Evolution of the normalized dissolved CO2 concentration in the domain
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5 Model validation and simulation results

An additional consideration of bubble breakup and coalescence yields
results of dissolved CO2 concentrations significantly below the alternative
numerical findings. In spite of the slightly different fluid properties, the
incorporation of fluid particle interaction models results in similar bubble
size relations as for the air-water system presented in section 5.1.1.3. The
impact of absorption processes on the simulated bubble size conditions is of
subordinate importance. Respective bubble Sauter diameter values of 5 mm
to 7 mm are accountable for the attenuated absorption of CO2 compared
with simulation results neglecting fluid particle interaction.

In figure 5.26, the quantitative discrepancies between current simulation
results and comparative numerical data arguably originate from non-
identical Eulerian model formulations for interfacial momentum exchange.
While the lift force correlation applied by Zhang et al. [229] coincides
with the current configuration, their simulations incorporate alternative
drag and virtual mass force models by Tomiyama [200]. A comparative
investigation of different model combinations for momentum and mass
exchange formulations with the current model is desired, but must be left
for future work.
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6 Conclusions and Outlook

A numerical model has been developed for the accurate and computationally
efficient description of polydisperse bubble column flows. With the current
approach, it is possible to consider gas-liquid flow conditions in apparatuses
of industrial relevance, with respect to geometrical scale as well as regarding
fluid properties and operating conditions. The model functionalities allow
for a depiction of prevailing hydrodynamic characteristics and enable the
representation of the highly transient two-phase flow dynamics. In addition,
the introduced numerical method has been extended in order to capture
absorption phenomena in the gas-liquid environment, which determine the
overall mass transfer capabilities of the apparatus.

An Euler-Euler two-fluid framework with appropriate submodels for the
representation of interfacial exchange of momentum and mass constitutes
the methodical basis of the developed solver. In this context, the effects of
drag, lift and virtual mass forces are taken into account, which govern the
interrelation of gas and liquid flow dynamics. Turbulence in the flow field
is considered through an LES approach, which is specifically configured
for the current application on bubbly flows. In this way, the dynamic
behavior of the two-phase flow is captured accurately as opposed to a time-
averaged attenuated representation in RANS formulations. The evaluation
of transient turbulence characteristics provides the basis for the adequate
prediction of local bubble-bubble and bubble-fluid interaction.

In order to account for local bubble size distributions, population balance
theory is applied in combination with the two-fluid approach. With the
incorporation of a method of moments formulation, this configuration is able
to depict the polydisperse character of bubble column hydrodynamics with
comparably low additional computational demand. The physical validity
of moment sets is assured through a correction algorithm, which is tailored
to adapt individual moment values with minimal intrusion. It resorts to
one of two basic moment correction procedures depending on the prevailing
bubble size distribution characteristics.
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6 Conclusions and Outlook

Closure of the moment transport equations is attained by making use
of a quadrature approximation for source terms of high mathematical
complexity. The current quadrature method of moments features appro-
priate bubble coalescence and breakup formulations to obtain an efficient
evaluation without jeopardizing accuracy in the representation of the
respective phenomena. The local size specific bubble motion is considered
by individual moment transport velocities, which are evaluated through a
numerically efficient approach. Based on the relation of size dependent
bubble relaxation times, formulations for constituent moment velocities are
derived and incorporated in the QMOM setup. The resulting numerical
model is implemented by adapting and extending an existing CFD solver
from the open-source software package OpenFOAM.

A validation study of the hydrodynamic model has been conducted using
comparative experimental and numerical results for the two-phase flow in
a square as well as in a circular cross-sectional bubble column domain.
The respective findings demonstrate the capability of the present approach
to accurately predict the gas and liquid flow fields and capture local
bubble size relations considerably well. A quantitative comparison of
the bubble size spectrum with the experimental results is carried out
based on representative bubble diameters as well as regarding continuous
representations of the bubble size distributions.

An additional study focuses on the effect of different moment transport
velocity formulations on local bubble size relations. While the applied
relaxation time approach yields simulation results which correspond well to
respective experimental findings, the values from simplified considerations
with identical moment velocities deviate substantially. Without the RTA,
the tendency of smaller bubbles to accumulate in near-wall regions is not
depicted, which results in an underrepresentation of these bubble sizes in
corresponding distributions.

This deficient description of local bubble size relations consequently affects
the representation of absorption phenomena in the two-phase flow. These
correlations have been analyzed in an additional investigation regarding
local and global flow characteristics influenced by gas absorption. To this
end, several model configurations have been considered and their numerical
results are presented in comparison. In this context, the impact of interfacial
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mass transfer on bubble sizes has been investigated regarding spacial
distribution as well as with respect to temporal evolution. Differences
in the accumulation of the dissolved chemical species have been analyzed
via illustrations of the instantaneous concentration field and in the form
of normalized global concentration levels. The study results exhibit a
moderate increase of absorption processes in case the adaption of bubble
sizes due to mass transfer is included. This tendency is intensified if non-
uniformity of moment velocities is taken into account by incorporating the
RTA. With the consideration of bubble breakup and coalescence phenomena
comes a significant decrease of absorption effects due to the general increase
of bubble sizes. With regard to the considered bubble column flows, these
numerical results indicate a subordinate importance of mass transfer effects
on bubble size relations compared to bubble interaction phenomena.

Due to the complexity of respective measurement techniques, experimental
investigations considering two-phase flow characteristics and specifically
local bubble size distributions in bubble column flows are rare. To obtain
this experimental data in a simplified manner, several corresponding studies
resort to quasi two-dimensional bubble column geometries. These experi-
mental setups are substantially different from industrial scale apparatuses,
as the boundaries hinder the appearance of characteristic motions of the
gas-liquid flow in these domains. To further scrutinize numerical results
of gas-liquid flow models, an enhanced experimental research effort in this
field is desired. With a broader spectrum of potential validation data, the
quality and applicability of submodels for interfacial momentum exchange
or fluid particle interaction could be adequately evaluated.

As discussed in section 2.4, various correlations have been proposed to
account for interfacial forces such as drag, lift or virtual mass in an
Euler-Euler context. With regard to the simulation of bubble column flows,
numerous configurations of momentum exchange formulations have been
used in published investigations. The concerning model specifications differ
in terms of considered phenomena as well as their respective correlations.
The closure formulations incorporated in the current work coincide with
the majority of comparable investigations. Yet, additional studies with
the application of alternative submodels could be used to evaluate the
universality of the developed numerical approach regarding the considered
gas-liquid flow conditions.
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6 Conclusions and Outlook

The relaxation time approach for the determination of individual moment
transport velocities (see section 4.4) is based on the conception of solid par-
ticle movement under Stokes flow conditions. This drag correlation allows
for a numerically stable and efficient computation of moment velocities,
yet its application to bubble column hydrodynamics is suboptimal. The
analysis of alternative formulations resulting in the incorporation of a more
adequate drag correlation is desired for future work.
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A Appendix

A.1 Transformation of discontinuous PBE source
terms

For the depiction of polydispersity in terms of a monovariate PBE, the
particle volume Vp is often preferred to the diameter Dp as single internal
variable. In case solely discontinuous processes in the population balance
are accounted for, the resulting PBE for the NDF n′ (Vp) reads

∂n′ (Vp)
∂t

+∇ · [n′ (Vp)up] = b′C (Vp)− d′C (Vp) + b′B (Vp)− d′B (Vp) . (A.1)

The following transformation of PBE source terms to diameter-based
expressions is predicated on the explanations of Marchisio et al. [144].
Given their definition, the following relation between the considered forms
of NDFs can be deduced for spherical particles:

n′ (Vp) dVp = n′
(
π

6D
3
p

)
π

2D
2
pdDp = n (Dp) dDp. (A.2)

Furthermore, it must be noted that coalescence kernel function rC and the
breakup frequency F are intensive properties, which implies

r′C (Θ, Vp) = r′C

(
π

6γ
3
p ,
π

6D
3
p

)
= rC (γp, Dp) (A.3)

and, respectively,

F ′B (Vp) = F ′B

(
π

6D
3
p

)
= FB (Dp) . (A.4)

In contrast,
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β′B (Θp, Vp) = β′B

(
π

6γ
3
p ,
π

6D
3
p

)
= 2
πD2

p

βB (γ,Dp) (A.5)

applies for the daughter bubble size distribution β.

With these prerequisites, the following transformations for the birth and
death terms can be formulated:

• Coalescence birth term bC:

b′C (Vp) = 1
2
∫ Vp
0
r′C (Θp, Vp −Θp)n′ (Vp −Θp)n′ (Θp) dΘp, (A.6)

b′C

(
π

6D
3
p

)
= 1

2
∫ Dp

0
rC
(
γp,

(
D3
p − γ3

p

)1/3)
n′
(
π

6D
3
p −

π

6γ
3
p

)
n (γp) dγp =

1
2
∫ Dp

0
rC
(
γp,

(
D3
p − γ3

p

)1/3) n
((
D3
p − γ3

p

)1/3)
π
2
(
D3
p − γ3

p

)2/3 n (γp) dγp, (A.7)

bC(Dp) =
D2
p

2
∫ Dp

0

rC
(
γp,

(
D3
p − γ3

p

)1/3)
(
D3
p − γ3

p

)2/3 n(γp)n
((
D3
p − γ3

p

)1/3) dγp,

(A.8)
with b′C (Vp) = b′C

(
π
6D

3
p

)
= π

2D
2
pbC (Dp).

• Coalescence death term dC:

d′C (Vp) = n′ (Vp)
∫ ∞

0
r′C (Θp, Vp)n′ (Θp) dΘp, (A.9)

d′C

(
π

6D
3
p

)
= n′

(
π

6D
3
p

) ∫ ∞
0
r′C

(
π

6γ
3
p ,
π

6D
3
p

)
n (γp) dγp, (A.10)

dC(Dp) = n(Dp)
∫ ∞

0
rC(γp, Dp)n(γp) dγp, (A.11)

with d′C (Vp) = d′C
(
π
6D

3
p

)
= π

2D
2
pdC (Dp).
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• Breakup birth term bB:

b′B (Vp) =
∫ ∞
Vp
F ′B (Θp) β′B (Θp, Vp)n′ (Θp) dΘp, (A.12)

b′B

(
π

6D
3
p

)
=
∫ ∞
Dp

F ′B

(
π

6D
3
p

)
β′B

(
π

6γ
3
p ,
π

6D
3
p

)
n (γp) dγp, (A.13)

bB(Dp) =
∫ ∞
Dp

FB (Dp) βB (γp, Dp)n (γp) dγp, (A.14)

with b′B (Vp) = b′B
(
π
6D

3
p

)
= π

2D
2
pbB (Dp).

• Breakup death term dB:

d′B (Vp) =
∫ Vp

0

Θp

Vp
β′B (Vp,Θp) dΘp F

′
B (Vp)n′ (Vp) , (A.15)

d′B

(
π

6D
3
p

)
=
∫ Dp

0

γ3
p

D3
p

β′B

(
π

6D
3
p,
π

3γ
3
p

)
π

2γ
2
p dγp F ′B

(
π

6D
3
p

)
n′
(
π

6D
3
p

)
=

∫ Dp

0

γ3
p

D3
p

βB (Dp, γp) dγp F ′B
(
π

6D
3
p

)
n′
(
π

6D
3
p

)
, (A.16)

dB(Dp) =
∫ Dp

0

γ3
p

D3
p

βB(Dp, γp) dγp F ′B (Dp)n(Dp), (A.17)

with d′B (Vp) = d′B
(
π
6D

3
p

)
= π

2D
2
pdB (Dp).

A.2 Product difference algorithm

The PD algorithm, introduced by Gordon [87], is used to evaluate the
coefficients Ca,i and Cb,i of the recurrence formula, which in turn define
the Gaussian quadrature abscissas and weights (see section 3.5.1). For
information beyond the following brief summary of this approach the reader
can turn to Marchisio and Fox [143], John and Thein [108] or Marchisio
[142].

As a preliminary step, the matrix A is defined with entries Ai,j specified by
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Ai,1 =
1 for i = 1

0 for i 6= 1
with i = 1, . . . , 2Ni + 1 ,

Ai,2 = (−1)i−1 M
(i−1)

M (0) with i = 1, . . . , 2Ni ,

Ai,j = A1,j−1Ai+1,j−2 − A1,j−2Ai+1,j−1
with i = 1, . . . , 2Ni + 2− j
and j = 3, . . . , 2Ni + 1

.

(A.18)

From this matrix the polynomial coefficients are evaluated by

Ca,i =
%2 with i = 1
%2i + %2i−1 with i = 2, . . . , Ni

,

Cb,i+1 =
√
−%2i+1%2i with i = 1, . . . , Ni − 1 ,

(A.19)

where

%i = A1,i+1

A1,iA1,i−1
with i = 2, . . . , 2Ni. (A.20)

Examples:

PD algorithm:

Ca,1 = M (1)

M (0) . (A.21)

Recurrence formula:

Ca,1 = 〈DpP0,P0〉
〈P0,P0〉

=
∫∞
0 Dpn(Dp) dDp∫∞

0 n(Dp) dDp
= M (1)

M (0) (A.22)

⇒ P1(Dp) = Dp −
M (1)

M (0) . (A.23)

182



A.3 Fundamentals of the determination of quadrature weights

PD algorithm:

Cb,2 =
M (2)M (0) −

(
M (1)

)2

M (0)M (1)
M (1)

M (0)


1/2

=
M (2)M (0) −

(
M (1)

)2

(
M (0)

)2


1/2

.

(A.24)

Recurrence formula:

Cb,2 =
〈P1,P1〉
〈P0,P0〉

1/2

=


∫∞
0

(
D2
p − 2Dp

M (1)

M (0) +
(
M (1)

M (0)

)2)
n(Dp) dDp∫∞

0 n(Dp) dDp


1/2

=
M (2)M (0) −

(
M (1)

)2

(
M (0)

)2


1/2

, (A.25)

et cetera.

A.3 Fundamentals of the determination of quadrature
weights

The QMOM quadrature weights are evaluated by equation (3.55) which is
re-presented here for convenience:

wi = v2
i,1M

(0). (A.26)

Here, vi,1 is the first component of the normalized eigenvector of C̆
associated with the eigenvalue D̂p,i. This relation can be reconstructed
by considering

〈1,Pj〉 =
Ni∑
i=1

wiPj =
0 for j = 1, . . . , Ni

M (0) for j = 0
. (A.27)

Hence,
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P̆ [w1, . . . , wNi]
T = M (0) [1, 0, . . .]T = M (0)e1, (A.28)

with the matrix P̆ comprised of eigenvectors P̆ =
[
p̆(D̂p,1), . . . , p̆(D̂p,Ni)

]
.

By defining P̆ℵ which represents the orthogonal matrix with normalized
eigenvectors of C̆ as columns (P̆Tℵ C̆P̆ℵ = diag(D̂p,i, . . . , D̂p,Ni)), it yields

vi = P̆ℵei = vi,1p̆(D̂p,i) ⇒ P̆ℵ = P̆Dv, (A.29)

with Dv = diag(v1,1, . . . , vNi,1). And finally the relation for wi reads

wi = M (0)eTi P̆e1 = M (0)eTi P̆ℵDTv e1 = M (0)v2
i,1. (A.30)

A.4 Minimum square gradient algorithm

A.4.1 Fundamental procedure

A detailed explication of this conversion procedure including exemplary
moment combinations is presented by McGraw [148] or Petitti et al. [169].
The following summary aims to provide the fundamental idea of this
algorithm.

Starting point of the minimum square gradient algorithm is the determina-
tion of a difference table with ln

(
M (k)

)
being the first column entries as

depicted in table A.1.

ln
(
M (k)

)
D1 D2 D3 ≡ a . . .

ln
(
M (0)

)
D1,1 = ln

(
M (1)

)
−ln

(
M (0)

)
D2,1 = D1,2 −D1,1 a1 = D2,2 −D2,1 . . .

ln
(
M (1)

)
D1,2 = ln

(
M (2)

)
−ln

(
M (1)

)
D2,2 = D1,3 −D1,2 a2 = D2,3 −D2,2 . . .

ln
(
M (2)

)
D1,3 = ln

(
M (3)

)
−ln

(
M (2)

)
D2,3 = D1,4 −D1,3 a3 = D2,4 −D2,3 . . .

... ... ... ...

Table A.1: Difference table subject to ln
(
M (k)

)

Using this table, compliance of moment combinations with the convexity
criterion is verified by non-negativity of third column entries (D2,1,D2,2, . . .).
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A.4 Minimum square gradient algorithm

If the relation of ln
(
M (k)

)
and k is of quadratic form, fourth column

entries equal zero and consequently yield |a|2 = 0. The moment correction
procedure is based on the minimization of |a|2 via

anew = aold + ln (Ckbk) , (A.31)

where bk represents the response vector which characterizes the impact
of a unit increment of ln

(
M (k)

)
on a. In case the first six moments

(M (0), . . . ,M (5)) are considered, this concept can be depicted by a vector
modification as illustrated in figure A.1

0

anew = aold + ln (Ckbk)

ln (Ckbk)

aold

Figure A.1: Illustration of the minimum square gradient correction procedure in the form
of a vector operation [149]

By assigning orthogonality between anew and bk the adaption is ensured to
be of minimal extent and is described by

(aold + ln (Ckbk)) · bk = 0, (A.32)

which results in the definition of the modification factor Ck as
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Ck = exp
− cos (aold, bk)

|aold|
|bk|

 = exp
−(aold · bk)

|bk|2

. (A.33)

With equation (A.31) this consequently yields

|anew|2 = |aold|2
[
1− cos2 (aold, bk)

]
. (A.34)

The moment M (k∗) to be modified is identified by the largest value for
cos2 (aold, bk) in order to optimally rectify smoothness of ln

(
M (k)

)
as a

function of k. Thus, the corrected moment value is determined by

ln
(
M (k∗)

new

)
= ln

(
M

(k∗)
old

)
+ ln (Ck∗) . (A.35)

If the resulting set of moments does not fulfill the convexity criterion or
fails the superordinate Hankel-Hadamard requirement (4.22), the correction
procedure sequentially proceeds minimizing |a|2 until eventually a valid
moment combination is attained.

A.4.2 Virtually monodisperse distributions

Number density functions which practically represent monodisperse distri-
butions are characterized by a relation of consecutive function moments
as

M (k+1)

M (k) ≈
M (k)

M (k−1) . (A.36)

With the consideration of an extended formulation of the third column
entries D2,k of table A.1 as

D2,k =
[
ln
(
M (k+1))− ln

(
M (k))]− [

ln
(
M (k))− ln

(
M (k−1))]

= ln
M (k+1)

M (k)

− ln
 M (k)

M (k−1)

, (A.37)
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it becomes evident that D2,k ≈ 0 for the regarded functional form. Hence,
the identification of an invalid set of moments is dependent on minor changes
of D2,k or can even be influenced by numerical inaccuracies.

With D2,k ≈ 0 follows ak ≈ 0 which complicates the accurate evaluation
of equation (A.33) to find the exact value of Ck ≈ 1. This in turn
impinges on the precise moment correction in correlation (A.35). Thus, the
determination of a valid moment combination for virtually monodisperse
distributions by the minimum square gradient algorithm either results in
a mathematically inefficient procedure or is prevented due to numerical
inaccuracies.

A.5 RTA with Schiller-Naumann drag correlation

The drag relations of dispersed spherical particles are accurately represented
by the Stokes model in case of low relative velocities to the continuous
phase flow (Rep < 1), while the formulation of Schiller & Naumann depicts
the respective phenomena for moderate to high particle Reynolds numbers
(0.1 < Rep < 1000). Combining the general definition of the particle
relaxation time

τ = 4
3

ρdDp

ρcCD |(uc − up)|
, (A.38)

with the CD-correlation of the Schiller-Naumann approach yields

τ = min
 ρdD

2
p

18νcρc
1

1 + 0.15 Re0.687
p

,
4
3

ρdDp

0.44ρc |ud − uc|

 . (A.39)

A.5.1 QMOM formulation

An evaluation of equation (A.39) in a QMOM framework is straightfor-
ward as the quadrature parameters are adopted to determine the particle
relaxation time in a moments context as
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τ(k) = 1
M (k)

∫ ∞
0

τ(Dp)Dk
p n(Dp) dDp ≈

1
M (k)

Ni∑
i=1

τ(Dp,i)Dk
p,iwi. (A.40)

A.5.2 Approximation by series expansion

If the closure procedure of the MTE does not resort to a quadrature
approximation of the NDF (e.g., PMOM), τ(k) can be approximated by
a series expansion. To this end, expression (A.39) is reformulated to give

τ = min


ρd

2.7ν0.313
c ρcu0.687

rel

D2
p

1
0.15

(
νc
urel

)0.687
+D0.687

p︸ ︷︷ ︸
τ1

,
4
3

ρdDp

0.44ρcurel︸ ︷︷ ︸
τ2


. (A.41)

with urel = |ud − uc|. The transformation of τ1 into a moments context
yields

τ
(k)
1 = 1

M (k)

∫ ∞
0

A D2
p

B +D0.687
p

 n(Dp)Dk
p dDp, (A.42)

where A = ρd
2.7ν0.313

c ρcu0.687
rel

and B = 1
0.15

(
νc
urel

)0.687
. For the approximative

determination of τ(k)
1 , a series expansion for τ1 is conducted around B = 0

to result in

τ1 ≈ AD1.313
p − ABD0.626

p + AB2D−0.061
p . (A.43)

The consideration of the quadratic term in equation (A.43) is necessary to
prevent the occurrence of negative relaxation time values in case of small
particle Reynolds numbers. Thus, the approximation for τ

(k)
1 reads

τ
(k)
1 ≈ A

M (k+1.313)

M (k) − AB
M (k+0.626)

M (k) + AB2M
(k−0.061)

M (k) . (A.44)
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Regarding the upper limit τ2 of the Schiller-Naumann relaxation time
correlation (A.41), the equivalent in terms of a MOM formulation is
obtained as

τ
(k)
2 = 4

3
ρd

0.44 ρcurel
M (k+1)

M (k) . (A.45)

With the approximate formulation (A.43), the drag correlation of Schiller
& Naumann does not convert to the Stokes model anymore for low particle
Reynolds numbers. The incorporation of the Stokes moment relaxation
time introduced in expression (4.45) into the minimum function of the
Schiller-Naumann correlation restores this transition. Thus, the resulting
correlation for τ(k) is given by

τ(k) = min
 ρd

18µc
M (k+2)

M (k) , τ
(k)
1 , τ

(k)
2

 . (A.46)

A.6 Towards an extension of the RTA to account for
lift force effects

The RTA as outlined in section 4.4 is based on an expansion of the
particle velocity up around the continuous phase velocity uc subject to
the particle relaxation time τ. The consequent formulation is introduced in
expression (4.40) and subsequently used to deduce the moment transport
velocity correlation as stated in equation (4.43) and re-presented here for
convenience:

u(k) ≈ uc + τ(k)

τ0
(u0 − uc) = uc + τ(k)

τ(3)urel. (A.47)

This concept corresponds to an evaluation of u(k) by a linear interpolation
along urel, a deflection normal to this direction is neglected.
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A.6.1 Impact of lift force

Regarding bubbly flows, lift force effects, as introduced in section 2.4.1.2,
are arguably the main reason for an impact on fluid particle motion
in a direction deviant to urel. With the assumption that the par-
ticle velocity component in the direction of action of the lift force(
u⊥p =

(
up · FL|FL|

)
F l
|F l| ⇒ u⊥p⊥urel

)
is not influenced by any other phenom-

ena, an expansion subject to the lift coefficient CL can be formulated
analogously to the previous RTA as

du⊥p
dt

∣∣∣∣∣∣
CL

=
du⊥p
dt

∣∣∣∣∣∣
CL=0︸ ︷︷ ︸

=0

+CL

du⊥p
dt

∣∣∣∣
CL,0
− 0

CL,0 − 0 . (A.48)

Consequently, du⊥p
dt is a linear function of the lift coefficient:

du⊥p
dt = CL

CL,0

du⊥p
dt

∣∣∣∣∣∣
CL,0

. (A.49)

A simple first order discretization in time yields

∆u⊥p =
(
up − uoldp

)⊥ = CL
CL,0

∆ u⊥p
∣∣∣
CL,0

. (A.50)

A.6.2 Extension of the RTA

The RTA as presented in section 4.4 is limited to the consideration of
effects on the particle velocity in relative velocity direction. A particle
size-dependent force normal to this direction (e.g., Tomiyama lift force)
disagrees with this conception. In case of the simultaneous consideration of
drag and lift force effects, expressions (4.40) and (A.50) can be combined
to yield
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up = uc + τ

τ0
urel︸ ︷︷ ︸

(a)

+ τ

τ0︸︷︷︸
(d)

−∆ u⊥p
∣∣∣
CL,0︸ ︷︷ ︸

(b)

+ CL
CL,0

∆ u⊥p
∣∣∣
CL,0︸ ︷︷ ︸

(c)

 . (A.51)

(a) Previous formulation; Implicitly includes deflection of reference particle
normal to urel

(b) Deflection of reference particle normal to urel is subtracted to allow for
an unimpaired linear interpolation according to (A.50)

(c) Linearly interpolated contribution of the lift force is added to the
particle velocity evaluation

(d) As the lift force is a linear function of both the lift coefficient and the
reference particle velocity u0, this prefactor is appropriate

Three examples for the determination of the particle velocity by the
extended RTA are illustrated in figure A.2 and several characteristics of
equation (A.51) are presented thereafter.

τ
τ0

= 1; CL
CL,0

= 0

τ
τ0

= 1
2 ; CL

CL,0
= 1

τ
τ0

= 1
2 ; CL

CL,0
= −1

uc

uoldp

urel

up

uoldrel

∆u⊥p

Figure A.2: Sketch of exemplary determinations of particle velocities with the extended
relaxation time approach

• up = uc for τ = 0

• up = ud for τ = τ0 und CL = CL,0
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• If CL is independent of particle size ( CL
CL,0

= 1), correlation (A.51)
converts to the previous RTA

Transferred into the moments context equation (A.51) reads

u(k) = uc + τ(k)

τd
urel + τ(k)

τd

C(k)
L

CL,d
− 1

∆ u⊥p
∣∣∣
CL,d

. (A.52)
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