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Abstract

Amplitude prediction of nonlinear oscillations in thermo-acoustic systems
is important since the detrimental effects of instabilities on the combustor
lifetime and noise emissions depend on the limit cycle amplitude. In thermo-
acoustics, the nonlinearity associated with the response of the heat source
to a velocity perturbation is often dominant and controls the steady state
oscillations. Therefore, it is crucial to have an accurate dynamic model of the
heat source available, which can be used in the nonlinear regime for a range
of operating conditions.

Different nonlinear system identification procedures have been used to
obtain a dynamic model of the heat source that is valid for a range of ampli-
tudes and frequencies. The identified nonlinear heat source in time domain
is coupled to the time domain model of thermo-acoustic system. Higher
order transfer functions are developed as the extension of the linear transfer
functions to the nonlinear regime and used in the frequency domain to inves-
tigate the nonlinear heat source/linear acoustic interaction. A physics-based
model for the dynamics of the heat source, based on Proper Orthogonal
Decomposition (POD) method, is formulated as an alternative to system
identification. In a multivariate approach, POD modes are constructed from
Computational Fluid Dynamics (CFD) data, and subsequent projection of the
governing system of equations onto the modes gives the reduced order model
of the nonlinear heat source.

A frequency domain coupled modes system model is developed that takes
into account the interaction of various modes through the higher order
transfer functions of the nonlinear heat source. The various contributions
of the coupling terms to the Rayleigh index is determined, and an energy
balance between the modes is analyzed in the nonlinear regime.

Finally, a systematic approach is presented to study the non-modal stability of
thermo-acoustics where the system has non-orthogonal eigenvectors. In this
approach, the heat source is obtained from linear system identification, and
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a full system is simulated in time domain using the Galerkin method. The ap-
proach is attractive inasmuch as it allows to consider realistic configurations
of the heat source, even with large delay times.
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Nomenclature

Latin Characters

a evolution coefficient of mode, modal coefficient
ai polynomial coefficients
A flame surface area [m2]
A amplitude of forcing
A,B fuzzy sets
A,B system matrices
A0, An,Bn Fourier coefficients
A,B ,C ,D,F polynomial representation of linear system identification
b flame radius [m]
Bn nth order Bernoulli number
c speed of sound [m/s]
c element of cluster centers vector
c1,c2 damping coefficients
ci polynomial coefficients
cv specific heat capacity at constant volume [J/kg-K]
C vector of cluster centers
C calibration matrix
C ,D modal coefficients in frequency domain
d diameter [m]
D domain
D coefficient of the heat source
E perturbation energy
f frequency [Hz]
f nonlinear function of state vectors
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Nomenclature

f tangent hyperbolic function
f (t ) forcing function at the inlet
fi n, fout static input/output nonlinearity
fNyquist Nyquist frequency
F nonlinear function
F (ω) frequency response
G linear dynamic part
G field property
G( jω) linear acoustic transfer function
Gmax maximum growth factor
h heat transfer coefficient [W/m2-K]
h unit impulse
h partitioned delay
hn nth order Volterra kernel
Hn nth order transfer function
i , j imaginary unit
I identity matrix
J Jacobian matrix
k heat transfer rate coefficient
K (A,ω) amplitude and frequency dependent gain
K1,K2 heat transfer rate constants
L filter length
L length [m]
L solution operator
m fuzziness exponent
M matrix of cross products of modes
M signal length
M number of units of neural network topology
n interaction index
n normal
n slope of the output curve in linear regime
N length of the signal
N length of the partitioned delay
N inner domain
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Nomenclature

N number of modes
N (A,ω) describing function
N (s) Laplace transformed modal coefficient
Nu number of past inputs
NQ number of past outputs
p pressure [Pa]
po polynomial order
P unknown vector parameter
P M partition matrix
q data set
Q heat transfer rate per unit area [W/m2]
Q̂ magnitude of heat release rate, interaction index
Q1,Q−1,Q2,Q−2 complex conjugate coefficients
r threshold value for the liner regime
r number of clusters
r (t ) external forcing
R matrix of modes
R rule
RQu cross-correlation vector
Ruu auto-correlation matrix
s coefficient of system matrices
S cross-section area of the duct [m2]
S matrix of velocity modes
S matrix of data set
SL laminar flame speed [m/s]
T period of oscillation [s]
T temperature [K]
u, v velocity [m/s]
U matrix of inputs
v additive noise
V velocity perpendicular to flame [m/s]
V cost function
w, x state vectors
w,W weights of neural network
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Nomenclature

x antecedent
X universe
x f heat source location [m]
X ,Y coordinate system aligned to flame [m]
y consequent
y output
Q(s) Laplace transformed output
z element of data set matrix
z root, eigenvalue
Z training data set

Greek Characters

α flame inclination angle [deg]
β degree of the fulfillment
β coefficient of system matrices
γ specific heat ratio [-]
Γ1 inlet
δ Kronecker delta
∆t time step [s]
∆ f frequency resolution [Hz]
∆qr heat release per unit mass of mixture [J/kg]
∆(z) characteristic equation
ε perturbation amplitude
ζ flame front position [m]
η modal coefficient
θ weights of neural network
λ eigenvalue
λ thermal conductivity [W/m-K]
Λ pseudo-spectra
µ dynamic viscosity [kg/m-s]
µ membership function
ν kinematic viscosity [m2/s]

xiii



Nomenclature

ξ damping factor
ρ density [kg/m3]
σ singular value
τ time lag [s]
Φ phase [deg]
ϕ set of regressor
χ state vectors of modal coefficients
ω radial frequency [rad/s]
Ω domain
Ω partition of delay dimension

Indices

∞ free stream
→ 0 zero limit
a air
approx approximation
CFD CFD
d duct
d1,d2,d3 modal indices
f flame
m model
max maximum
min minimum
NeuralNet related to neural network
Nyquist Nyquist
o operating point
pred prediction
Q output
s, ss steady state
u input
uu,uQ bilinear products
w wire
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Nomenclature

Superscripts

′ fluctuating
∼ dimensional
−→ vector
. first order time derivative
.. second order time derivative
− mean value
(1), (2) includes first/second order spatial derivatives
N up to time N
T temperature component
T transpose
u, v velocity components

Non-Dimensional numbers

A Velocity amplitude ratio [u′/ū]
Re Reynolds number [µū/L]
Pr Prandtl number [cpµ/λ]
Ma Mach number [ū/c]
Str Strouhal number [ωL/ū ]
Nu Nusselt number [αL/λ ]

Abbreviations

ARX Auto Regressive with EXogenous Input
CFD Computational Fluid Dynamics
DDE Delay Differential Equation
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Nomenclature

FFT Fast Fourier Transformation
FIR Finite Impulse Response
HOTF Higher Order Transfer Functions
LOM Low Order Model
LTI Linear Time Invariant
NARX Nonlinear Auto Regressive with EXogenous Input
NFIR Nonlinear Finite Impulse Response
NOE Nonlinear Output Error
ODE Ordinary Differential Equation
OE Output Error
POD Proper Orthogonal Decomposition
RI Rayleigh Index
SI System Identification
TS Takagi - Sugeno fuzzy model

Operators

ℑ Imaginary part
ℜ Real part
∇ Nabla operator
4 Laplace operator
〈., .〉 Inner product
〈...〉 Ensemble average
�.� Norm
D Differential operator
L Laplace transformation
z Shift operator
Z Z-transformation
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1 Introduction

1.1 Thermo-Acoustic Instabilities

Thermo-acoustic instabilities are a major concern in many power generation
systems, gas turbines, rocket engines and industrial burners [89, 106]. In gas
turbines, the establishment of stringent emission standards and regulations
requires that they operate in lean premixed regimes. In this regime, the com-
bustors are more prone to thermo-acoustic instabilities [82]. These instabil-
ities are mainly a result of the interaction of acoustic waves and fluctuating
heat release (other effects like the fluctuations of equivalence ratio and en-
tropy can also affect the instability). As a result of this interaction, a self sus-
tained feedback loop may be established. The resulting large amplitude pres-
sure oscillations may cause structural damage to the mechanical parts, exces-
sive heat transfer to the walls of the combustion chamber and increased noise
emissions [38,89,106,113]. Therefore, it is important to understand the nature
of these oscillations along with adequate modeling strategies for better design
and control.

If the heat release fluctuations are in phase with the pressure fluctuations, the
acoustic oscillations acquire energy from the heat source. This criterion for
the occurrence of the instabilities is known as "Rayleigh criterion", which has
been stated by Lord Rayleigh as [115] :

“If heat be communicated to, and abstracted from, a mass of air vibrating (for
example) in a cylinder bounded by a piston, the effect produced will depend
upon the phase of the vibration at which the transfer of heat takes place. If
heat be given to the air at the moment of greatest condensation, or be taken
from it at the moment of greatest rarefaction, the vibration will be encouraged.
On the other hand, if heat will be given at the moment of greatest rarefaction,
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Introduction

or abstracted at the moment of greatest condensation, the vibration will be
discouraged”.

Mathematically, this relation can be represented as an index [113];

RI = 1

T

T∫
0

∫
V

p ′(x, t )Q ′(x, t )d tdV , (1.1)

for one cycle of the oscillation with period T , pressure fluctuation p ′ and heat
release fluctuation Q ′. The above integral relation is valid when the gas dy-
namics is linear and can be derived using linearized conservation equations
[27,46]. The Rayleigh criterion for nonlinear acoustics has been considered by
Culick [30]. If RI > 0, then instability is enhanced. The Rayleigh criterion is a
necessary but not sufficient condition for instability in the presence of losses
of acoustic energy.

Let us assume the following forms for a resonator tube at open-open bound-
ary conditions with a concentrated heat source for the pressure and the heat
release oscillations,

p ′(x, t ) = P̂ sin(ωt )sin
(π

L
x
)
, (1.2)

Q ′(x, t ) = f (u(t −τ)) = Q̂ sin(ω(t −τ))cos
(π

L
x
)
δ(x −x f ), (1.3)

where a compact heat source is located at position x f for a tube length of L,
and the chosen spatial ansatz (sin

(
π
L x

)
) for the pressure oscillation p ′ satisfies

the boundary condition. The spatial ansatz (cos
(
π
L x

)
) for the acoustic veloc-

ity oscillation u′ can be seen from the one-dimensional acoustic momentum
equation involving the relation between the pressure and velocity. The heat
release response is expressed as a linear function of acoustic velocity with a
delay term τ. This, so-called “n −τ” model [29], is a widely used heat source
model for combustion applications. Substituting the above expressions in the
Rayleigh index, we obtain the following simplified form,

2



1.1 Thermo-Acoustic Instabilities

p '=0 p '=0

x=0 x= x f x=L

x

Figure 1.1: A resonator tube of length L at open-open boundary conditions
with a concentrated heat source at position x = x f

RI = P̂Q̂

4
cos(ωτ)sin

(
2
π

L
x f

)
. (1.4)

The above expression becomes greater than zero if the conditions cos(ωτ) > 0
and sin

(
2π
L x

) > 0 or if cos(ωτ) < 0 and sin
(

2π
L x

) < 0 are satisfied simultane-
ously. This implies the following relation for the Rayleigh index to be positive
for the delay term τ and heat source location x f

0 < x f < L

2
, 0 < τ< T

4
or

3T

4
< τ< T, (1.5)

L

2
< x f < L,

T

4
< τ< 3T

4
. (1.6)

A graphical representation of the above relationship, which represents the re-
gions of potential instability (“stability map”), is shown in Fig. 1.2.

Now let us assume the heat release oscillation as a nonlinear function (for a
nonlinear relation, the method of superposition does not apply, see Appendix
A for a definition of the linearity) of the acoustic velocity as,

Q ′(x, t ) =
(
Q̂ sin(ω(t −τ))cos

(π
L

x
)
+ε

(
Q̂ sin(ω(t −τ))cos

(π
L

x
))3

)
δ(x −x f ).

(1.7)
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Figure 1.2: Graphical representation of Rayleigh Index and the regions of po-
tential instability (RI>0)

The amplitude of the third order nonlinearity is introduced with the ε coeffi-
cient. If this representation is incorporated in Eq 1.1, the following simplified
form is obtained,

RI = P̂Q̂

4
cos(ωτ)sin

(
2
π

L
x f

)(
1+ 3ε

4
Q̂2 cos2

(π
L

))
. (1.8)

This equation, when compared to Eq. 1.4, introduces an additional term with
ε coefficient. If ε > 0, then the nonlinear contribution of the term is positive,
and if ε < 0, the nonlinear contribution of the term is negative. This shows in
an exemplary manner that the nonlinearity has a stabilizing or destabilizing
effect on thermo-acoustic oscillations. In literature, the expression “satura-
tion of thermo-acoustic instability” is frequently used. This expression means
that nonlinear effects tend to stabilize (limit) the unstable growth of thermo-
acoustic oscillations. In this simple example, only one mode of the oscillation
is taken into account. If the acoustic pressure and velocity are expressed as su-
perposition of the modes, then the nonlinearity (in this case we considere only

4



1.2 Nonlinear Effects in Thermo-Acoustic Systems

the nonlinearity in the combustion response to velocity perturbation) causes
the coupling terms of the modes to appear. Eventually, thermo-acoustic os-
cillations lead to nonlinear steady state periodic oscillations which are called
“limit cycle”. Damping and the losses of the acoustic energy will be equal to
the energy gained from the heat source when the limit cycle is reached.

1.2 Nonlinear Effects in Thermo-Acoustic Systems

Nonlinearities in thermo-acoustic systems can be of several types.

Heat source nonlinearity: For most velocity sensitive thermo-acoustic sys-
tems (heat release is a function of the acoustic velocity perturbation in the
immediate vicinity), the dominant source of the nonlinearity is the relation-
ship between the flow in the vicinity of the heat source and heat release oscil-
lations. With increasing amplitudes of the velocities with respect to the mean,
nonlinear effects become important.

The nonlinear effects in a simple resonator tube (“Rijke tube”) configuration
have been numerically and experimentally analyzed by Heckl [59]. It has been
shown that nonlinearity in the heat source with increasing amplitudes deter-
mines the saturation of the instability in the Rijke tube. As the heat source
mode, a correlation that is widely used in hot wire anemometry based on
“King’s Law” has been used. It has a square root type nonlinearity with one
time lag.

Hantschk and Vortmeyer [57] have performed numerical simulation of the Ri-
jke tube using computational fluid dynamics (CFD). Heating bands kept at
constant temperature have been used as the heating element. The two di-
mensional compressible Navier-Stokes and energy equation for a Rijke tube
with open-open and open-closed boundary conditions have been solved. It
has been shown that flow reversal in the vicinity of the heat source (for ve-
locity fluctuation amplitude at 30% of the mean where the nonlinearity in the
heat source kicks in) is responsible for the system to reach limit cycle.

Matveev [87] has derived a nonlinear transfer function model of the heat

5
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source using convective heat transfer equation in unsteady flow. A quasi-
steady approach has been utilized, and the amplitude dependent nonlinear-
ity in the phase of the transfer function has not been taken into account. The
heat source model in this study is very similar to the one that has been used by
Heckl [59]. It has been shown that the flow reversal at the heat source is critical
for the nonlinear addition of the heat transfer.

The above mentioned studies have been performed for a simple configuration
of a thermo-acoustic device (Rijke tube). The nonlinearity in the heat source
is the determining factor for these systems to achieve limit cycle oscillations.

It is sometimes useful to check the heat source response (nonlinear dynamic
response of the heat source) to harmonic acoustic perturbations of high am-
plitude. This type of analysis gives valuable information about the nonlinear
heat source behavior on the overall stability of thermo-acoustic system.

Nonlinearity in the heat release response to harmonic velocity forcing for the
heat source, in isolation from the thermo-acoustic system, has been investi-
gated for a laminar premixed flame by Lieuwen [81]. It has been shown that
the phase has negligible dependence on the forcing amplitude in contrast to
gain of the transfer function. The nonlinearity has been found to increase with
frequency and, at comparable amplitudes, the response of the V-flame is more
nonlinear than that of a conical flame.

The response of the diffusion flame model (infinite chemistry) to uniform ve-
locity disturbances has been studied both analytically and numerically by Bal-
asubramanian and Sujith [9]. It has been shown that in contrast to laminar
flame model, the gain exhibits no dependence on the forcing amplitude, and
the phase shows some weak deviations from the linear behavior at high fre-
quencies. Even though an exponential type nonlinearity was observed in the
flame heat release response, the FFT diagrams showed almost linear behavior
for the considered ranges of amplitudes and frequencies.

Gas dynamics nonlinearity: Gas dynamics nonlinearity is valid in the entire
flow domain, as compared to the local nonlinear effects, and is primarily in-
duced by the instability in rockets, where fluctuating amplitude of the pres-
sure reaches 20-50% of the mean.

6



1.2 Nonlinear Effects in Thermo-Acoustic Systems

Culick and co-workers [102,142] have considered second and third order non-
linearity for gas dynamics in combustion chambers. Approximate solutions
based on modal approach and spatial averaging using conservation equations
have been reported. Existence and the stability of the limit cycle have been an-
alyzed.

Nonlinear instability of oscillations in gas-filled tubes has been studied by Kar-
pov and Prosperetti [68]. Asymptotic analysis has been used, with expansion
up to fourth order in the perturbation parameter. Limit cycle amplitude de-
pendence upon the temperature difference in the stack, and stack plate spac-
ing have been obtained.

Yuan et al. [143] have analyzed the thermo-acoustic prime movers with heat
transfer and drag effects in the nonlinear regime. A numerical scheme has
been developed that can handle steep wave forms.

These studies show that nonlinear gas dynamics is important for some
thermo-acoustic systems to saturate the instability into limit cycle oscilla-
tions. But in many premixed combustors at low Mach numbers, at the onset
of the nonlinearity, the magnitude of the pressure fluctuations is quite small.
The reported pressure amplitudes are of the order of 1-5% of the mean [80]. In
this case linear acoustic treatment is adequate.

Nonlinearity of the losses: Nonlinearities of acoustic losses could be due to
the reflection of the waves from the boundaries, losses in the acoustic bound-
ary layer, and convection losses of the sound due to the mean flow [59, 88].

Atig et al. [3] investigated numerically, the effect of nonlinear losses localized
at the open end of the tube for a clarinet-like instrument. The nonlinear losses
have been found to have significant influence on the playing range of the clar-
inet.

Heckl [59] has showed that with increasing amplitudes, the nonlinearity at the
reflections from the tube ends may also contribute to the saturation of the
instability.

Nonlinearities limit the growth of the unstable modes of the oscillations and
determine the final amplitude. If it is not possible to avoid thermo-acoustic
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instabilities altogether, then it becomes important to predict the amplitude of
the nonlinear oscillations. This is required since the detrimental effects of in-
stabilities on the combustor lifetime and noise emissions depend on the limit
cycle amplitude. Therefore, it is necessary to find the amplitude dependence
of the limit cycle oscillation and its stability to system parameters for design
objective of thermo-acoustic systems.

To suppress the thermo-acoustic instabilities, active and passive control
strategies have been developed [2, 60, 113]. In passive control, modifications
in the system hardware, either for the chamber dynamics or combustion dy-
namics (modification of the burners, addition of the resonators, baffles),have
been proposed [33]. In active feedback control of thermo-acoustics, a con-
troller is designed, which prevents the favorable coupling between heat re-
lease and acoustics such that oscillations would decay [37]. On the other hand,
a nonlinear controller may be necessary for the following reasons [127]:

• To improve the performance of the controlled system (to operate in a
wide range of conditions; a linear controller may have poor performance
or even become unstable).

• To deal with some special types of nonlinearities like hysteresis or satu-
ration, whose linear approximations do not exist (see Appendix B for the
hysteresis and saturation type nonlinearity).

• To deal with model uncertainties (linear controllers generally require
that the model parameters should be known, as the uncertainties in the
model parameters may cause poor performance or unstable operation.
Nonlinear controllers can be designed to incorporate nonlinearity in the
controller to tolerate the uncertainties.)

1.3 Non-Normality of Thermo-Acoustic Systems

A system is said to be non-normal if its operator or system matrix does not
commute with its adjoint. Thermo-acoustic systems have non-normal oper-
ators, which are caused by the heat source [8, 10]. Non-normal systems have
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non-orthogonal eigenvectors (Eigenvectors are obtained from the system ma-
trices. In vibrational analysis, eigenvectors represent the shape of the vibra-
tional mode, and the eigenvalues show the frequencies of these modes). A de-
cay of the individual eigenvectors does not necessarily indicate a decay of the
response [8, 123, 136]. In the short time-scales involved, there may be energy
exchange between the modes, and this may cause an amplification of the ini-
tial energy. If this short time growth of initial energy achieves high enough am-
plitudes, then the nonlinearity present in the system will be excited (nonlinear
driving). Therefore, a classical stability analysis based on the normal-modes
may give unreliable predictions.

In the context of combustion instabilities, Balasubramanian and Sujith [8]
have studied the non-normal nature of the flame/acoustic interactions in a
ducted diffusion flame. An infinite chemistry diffusion flame model with one
dimensional acoustics has been used. Both the combustion response and the
system acoustics have been represented in terms of the basis functions (modal
representation). It has been shown that for the coupled system, for certain ini-
tial conditions, the oscillations decay, whereas for certain other initial condi-
tions the oscillations grow (for the same set of parameters).

Balasubramanian and Sujith [10] have shown the non-normality in a Rijke
tube with a heat source model based on King’s law. The full thermo-acoustic
system has been simulated in time domain with the Galerkin method. The
delay time in this heat source model is short and a Taylor series approxima-
tion has been made to eliminate the delay term. If the system has large delays
which are caused by the heat source, i.e. when flame is used as heat source,
one has to deal with the delay term.

Subramanian and Sujith have studied the non-normal behavior for a ducted
premixed flame [129]. In this approach, system acoustics has been coupled
with the flame front displacement equation (G-equation).

In these approaches, introducing additional degrees of freedom from the
combustion response to the system matrices may introduce non-normality.
It is hard to judge if the non-normality introduced in this way is a numerical
or physical effect.
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1.4 Modeling Approaches of Thermo-Acoustic Systems

Thermo-acoustic systems can be simulated either in time or frequency do-
main. A variety of approaches exist with differences in complexity, accuracy
and flexibility. Low order modeling of thermo-acoustic systems has become
important since a reduction in the computational demand (time and re-
sources) is achieved. System stability and performance dependency upon the
system parameters can be quickly checked (i.e. limit cycle amplitude depen-
dence upon the damping, heat source location). A schematic representation
of the system modeling approaches of thermo-acoustic systems along with
their capabilities is shown in Fig. 1.3.

Figure 1.3: A schematic of the modeling approaches for thermo-acoustic sys-
tems

1.4.1 Time Domain System Models

In CFD based modeling of the thermo-acoustic systems, compressible Navier-
Stokes equation along with the energy equation are solved using finite dif-
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ference/element/volume techniques. CFD models of the full thermo-acoustic
systems could predict the limit cycle. Entezam et al. [44] have observed the
limit cycle oscillations in the Rijke tube by numerical simulation with CFD.
Chattereajie et al. [25] have obtained the amplitude and the frequency of the
nonlinear oscillations for a reacting flow inside a Rijke tube combustor using
CFD. Even though the finite element/volume solvers can deal with thermo-
acoustic systems in complex geometric configurations, different length and
time scales involved in the combustion/acoustic interactions make it hard to
achieve converged results. Even in the case of a simple duct (one dimensional
acoustics), expensive computational resources and time are required.

Linearizing the Navier-Stokes equation yields the inhomogeneous wave equa-
tion for pressure fluctuations, with a source term which represents the heat
release rate from combustion [100, 101]. Pankewitz [99–101] has solved the
inhomogeneous wave equation for complex geometries using finite element
method. In this approach, heat source is modeled by a flame transfer function
obtained either from experiments or numerical simulations.

Approximate solution of the partial differential equation for the inhomoge-
neous wave equation can be obtained using Galerkin method [31, 32, 145].
Powell and Zinn [112] applied a Galerkin expansion technique to investigate
the longitudinal and transversal instability in liquid rocket motors. The tech-
nique has also been used by Culick in several studies [1,31,32]. In the Galerkin
method, acoustic velocity and pressure are expressed in terms of basis func-
tions which satisfy the boundary conditions and constitute a complete set of
basis. The computation is cheaper compared to the former approach. In the
inhomogeneous wave equation and Galerkin method, a closure term for the
combustion response (heat release/transfer rate) is required. When the heat
source has many constant delays, a delay differential equation has to be solved
in the Galerkin method, which creates a difference in the computational time.

1.4.2 Frequency Domain System Models

Low order models of thermo-acoustic system in the frequency domain, called
“network models”, have been developed and used to study the stability of
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thermo-acoustic systems [35, 38, 45, 70, 74, 111]. The flame jump conditions
along with the network elements, which are described by their flame transfer
functions/matrices yield a set of equations to be solved to determine the fre-
quency and the growth rate of the oscillation. An analytical investigation of the
thermo-acoustic stability with network elements has been performed by Merk
[90]. In this approach, individual elements of thermo-acoustic networks are
represented by their transfer functions/matrices. Transfer functions/matrices
can be obtained analytically for simple acoustic elements, such as area change
and pressure loss, or can be determined from experimental measurements
[103, 104, 106]. System identification has been offered as a tool to determine
the transfer function/matrices of complicated elements like a turbulent flame
[53, 54]. This frequency domain approach works only in the linear regime and
is incapable of predicting the limit cycle amplitude.

To find the amplitude of the nonlinear oscillations of thermo-acoustic sys-
tems in the frequency domain, sinusoidal describing function technique has
been used in which the nonlinearity in the heat source is taken into account
[36, 39, 96]. Describing function is simply an amplitude dependent frequency
response of the nonlinear element [36, 52, 96]. The method can be considered
as an extension of the linear network models to the nonlinear regime with
the nonlinear elements described by their describing functions [36,96]. Dowl-
ing [36] has used a saturation type nonlinearity for the flame model to use
in the describing function method to predict the frequency and amplitude of
the limit cycle. Dowling and Stow [128] have used a nonlinear flame transfer
function model in a network approach to obtain the limit cycle amplitude and
frequency for a lean premixed prevaporised combustor. In these studies, the
amplitude dependent frequency response of the flame (only for the gain) has
been used to predict the approximate limit cycle amplitude. Noiray et al. [96]
have used the nonlinearity in the combustion response for a laminar flame
using single harmonic forcing. In this study, both the gain and the phase of
the nonlinearity for the flame frequency response have been taken into ac-
count. In the sinusoidal describing function method, the effect of modal cou-
pling has been ignored. This approach approximates the nonlinear oscilla-
tions when the system acoustics filter the higher harmonic components that
are produced by the nonlinear heat source.
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1.5 Thesis Overview and Contributions

The aim of this research to develop methods for limit cycle amplitude predic-
tion. We start with a model for the heat source with many degrees of freedom,
and proceed to derive a “low-order” dynamic model that can be used as part
of some system model to predict system stability. Firstly, nonlinear dynamic
model of the heat source is obtained using system identification procedures or
a proper orthogonal decomposition technique. This model of the heat source
is then directly coupled to a time domain system model of the full thermo-
acoustic system, i.e. Galerkin time domain. Higher order transfer functions as
the extension of the linear transfer functions to the nonlinear regime is de-
veloped and used in the frequency domain to investigate the nonlinear heat
source/acoustic interaction. Then, a frequency domain system model with
coupled modes of the full thermo-acoustic system is developed. This system
model goes beyond the existing sinusoidal describing function approach and
does take into account the interactions of various modes. Rayleigh index in
the nonlinear regime is investigated.

As model problems for the heat source, three different configurations have
been used: a heated wire mesh in pulsating flow, a heated plate in pulsating
flow and a laminar premixed flame. The basic physics of these model prob-
lems is well understood and they have been found to have adequate nonlin-
earity even at the relatively small pressure fluctuations. This would ease the
analysis of the system for implementation and validation of the various non-
linear identification strategies and modeling approaches.

The major goals of the research reported in this thesis are:

1. System identification for the nonlinear heat source

To obtain a low-order/efficient dynamic model of the heat source that
is valid for a range of operating conditions (different amplitudes and fre-
quencies), nonlinear system identification methods are used. A variety of
nonlinear system identification methods developed for applicatios such
as signal processing and control, appear suitable. The input-output data
set generated either from the CFD (for the wire in pulsating flow) or from
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the flame governing equations (laminar premixed flame, G-equation) are
used in the nonlinear identification procedures. In this way, a time do-
main model of the heat source with the nonlinear input-output relation
(input is the acoustic velocity at the vicinity of the heat source and the
output is the heat transfer from the wire or heat release from the flame)
is obtained.

2. Physics based nonlinear modeling with Proper Orthogonal Decompo-
sition (POD)

To obtain a nonlinear dynamic model of the heat source with system
identification is a challenging task, and generally requires trial and er-
ror approaches. Modeling approaches using governing equations of the
system could be advantageous. A physics based nonlinear modeling ap-
proach with POD is developed to obtain a low order model of the non-
linear heat source. A heated plate in pulsating flow is used instead of the
wire for the sake of simplicity in the numerical processing with POD. The
input-output relation is included in the low order model equation (cou-
pled system of ordinary differential equations (ODEs) describing the evo-
lution of the POD modes). POD modes, obtained from a multivariate ap-
proach (collects unsteady CFD computations of the heat source for dif-
ferent amplitudes and frequencies of the forcing (input)) are used in the
low order model to define the heat source over the desired range of oper-
ating conditions.

3. Nonlinear system model in frequency domain with coupled modes
With increasing amplitude, energy is transferred to the higher order
modes due to nonlinear effects. It is commonly argued that, at the higher
frequencies, dissipative mechanisms are stronger and the energy that is
driven to the higher harmonic is easily dissipated. However, an energy
balance between the modes has not been analyzed yet in detail since the
current modeling approach of the nonlinear thermo-acoustic system in
the frequency domain is a one mode approximation (sinusoidal describ-
ing function method). A coupled modes frequency domain system mod-
eling approach that could take the interactions of various modes into
account, is developed. Higher order transfer functions which describe
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the heat source nonlinearity are used in this system modeling approach.
When the acoustic velocity and pressure are expressed as superposition
of the modes, then these modes are coupled through the higher order
transfer functions to give energy contribution at the different harmonics
(contribution of the higher order modes to the fundamental mode and
the energy transfer of the fundamental mode to the higher order modes
due to nonlinearity). Rayleigh index in the nonlinear regime is investi-
gated and an energy balance between the modes, analyzed.

4. Non-modal stability

A systematic approach is presented to study the non-normal behavior of
thermo-acoustic systems when the heat source is obtained from system
identification. System identification method gives more flexibility for the
modeling of the heat source (complex configurations of the heat source,
and no restriction on the delay time). This approach can handle large
delay times resulting from the heat source.

In Chapter 2, CFD models of the wire mesh and plate in pulsating flow are
presented. Heat transfer basics in pulsating flow is reviewed, and the laminar
premixed flame configuration is discussed in this work.

In Chapter 3, linear system identification basics are reviewed and the equa-
tions for the correlation based identification method are developed. A widely
used heat source model based on King’s law and the heat source model
based on CFD (wire gauze) is identified. Then the premixed laminar axi-
symmetric V-flame is identified and the linear transfer functions of the dif-
ferent heat source models are calculated. Advantages of the dynamic model-
ing with system identification is discussed for different wire heat sources (heat
source model based on King’s law, heat source model obtained using unsteady
boundary layer equations, and heat source obtained from system identifica-
tion using input-output data set from CFD computations).

In Chaper 4, different nonlinear identification procedures are used to obtain
the nonlinear dynamic model of the heat source. First, calculation of the non-
linear transfer function from FFT is considered. Then a polynomial based
equation error type (one step ahead prediction) identification is derived. This
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identification procedure is extended into frequency domain with two differ-
ent approaches: a harmonic balance approach (in which the nonlinear trans-
fer functions are derived from a set of nonlinear system of equations) and a
harmonic probing approach (in which the higher order transfer functions are
derived using recursive relations). The nonlinear transfer functions of the heat
source are obtained from these frequency domain models. Then a neural net-
work nonlinear identification strategy is used in time domain and converted
into frequency domain using the expansion of the sigmoid activation function
into a polynomial approximation. CFD model heat source is identified and
nonlinear transfer functions with different nonlinear identification strategies
have been derived. The laminar premixed flame is also identified using neu-
ral network based system identification. Finally a fuzzy based identification
procedure is introduced and CFD model heat source is identified by this iden-
tification method. In the conclusion section of this chapter, advantages of the
nonlinear system identification and the reason for using a wide range of iden-
tification procedures are discussed.

In Chaper 5, a low order model of the heat source (heated plate in pulsat-
ing flow) is developed based on the proper orthogonal decomposition tech-
nique. Equations are derived for the low order model after the projection of
the governing equations onto the modes. A multivariate approach, which col-
lects data from different databases of the unsteady CFD, is utilized to describe
the heat source over a range of amplitudes and frequencies.

In Chaper 6, various system modeling approaches are discussed and equa-
tions are derived for a simple duct. Then the frequency domain coupled
modes system modeling approach based on the higher order transfer func-
tions is introduced. Rayleigh index and energy balancing between the modes
in the nonlinear regime have been analyzed, and the effect of the modal cou-
pling in determining the limit cycle amplitude is discussed.

In Chaper 7, an approach is presented to study the non-normal behavior of
the thermo-acoustic systems when the full thermo-acoustic system is simu-
lated in time domain using the Galerkin method, and the heat source is ob-
tained from linear system identification. The method has the flexibility to deal
with the complex configuration of the heat source using system identification.
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Moreover, it can handle large delay times resulting from the heat source.
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2 Transient Simulation of the Heat Source

Three different configurations of heat source are chosen as model problems;
a heated wire mesh, a heated plate and a laminar premixed flame. The basic
physics of these model problems are well understood and they have adequate
nonlinearity even at relatively small pressure fluctuations. This eases the anal-
ysis of the system for implementation and validation of the various nonlinear
identification strategies and modeling approaches. The first and second heat
source models (wire and plate in pulsating flow) are simulated in time domain
with finite volume and finite element techniques. The laminar premixed flame
is simulated using a finite difference scheme for the one-dimensional partial
differential equations derived from simplified assumptions (G-equation). The
time series for input-output (heat transfer/release response to velocity forc-
ing) is generated and used in linear / various nonlinear system identification
procedures for the wire in pulsating flow and for the laminar flame. For the
sake of numerical simplicity, a flat plate is used instead of a wire to obtain a
low order model of the heat source with POD approach.

In this chapter, the numerical configurations for the wire and plate in pulsat-
ing flow are first introduced. Then, the governing equations for the plate are
presented, as these are used later in the POD modeling approach. Heat trans-
fer basics in pulsating flow are reviewed and the mechanism of the nonlinear-
ity in heat transfer is discussed. Lastly, the flame configuration is introduced
along with the governing equation.

2.1 CFD Model of Heat Transfer of the Wire in Pulsating Flow

The heat source is a wire gauze in the Rijke tube in the presence of the mean
flow. A schematic of the Rijke tube with the heating element is shown in
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Fig. 2.1. The basic physics of this simple model problem is well understood.
The analytical result for the transfer function (heat transfer response to veloc-
ity forcing) is derived using unsteady boundary layer equations by Lighthill
[83]. Moreover, various identification procedures using input-output data set
generated from unsteady CFD are implemented and validated. 
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Figure 2.1: Schematic of the Rijke tube with a concentrated heat source

Numerical Setup

The model of the heat source in CFD is the flow over a cylinder, represent-
ing the vicinity of one half of a wire of a Rijke tube. The body-fitted mesh is
composed of 16540 quadrilateral elements and is refined close to the cylinder
surface. Mesh independence of the solutions have been confirmed.

Wall

Sym Sym

Sym Outlet
Inlet

u=uu '
9d w d w 15d w 15d w

Q= QQ '
T=T w

Figure 2.2: Geometry and boundary conditions for CFD modeling of a single
wire
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The computational domain along with the boundary conditions is shown in
Fig. 2.2. The unsteady incompressible Navier-Stokes equation along with the
energy equation is solved with FLUENT 6.1 segregated solver (a general pur-
pose finite volume solver) [49]. A second order implicit formulation in time,
with a time step of 10−4 s and a second order accurate spatial discretiza-
tion, is used. Second order upwind schemes are used for the momentum and
the energy equations. The global convergence for the continuity, momen-
tum and energy residuals are set to 10−4, 10−5 and 10−5. The fluid model is
incompressible, and the fluid properties are chosen to be temperature in-
dependent. Karman vortex streets are observed downstream of a cylinder at
Reynolds number Re > 40. The Reynolds number based on the characteristic
length (wire diameter, dw ) is given by,

Re = ρūdw

µ
, (2.1)

where ū, ρ and µ represent the mean velocity, density and dynamic viscosity
of the flow, respectively.

In the present case, Re = 13, such that Karman vortices are absent. The use
of symmetry boundary conditions at the top and bottom of the domain to re-
duce the size of the computational domain is thus justified. The diameter of
the cylinder dw is much smaller than the acoustic wavelength of the highest
frequency of interest, i.e. the wire is “acoustically compact”, and an incom-
pressible fluid model is adequate. The harmonic perturbation at the inlet is
transmitted immediately to the outer flow near the cylinder because of the
incompressibility assumption.

2.2 Numerical Simulation of Pulsating Flow with Wall Heat
Transfer for a Heated Plate

For the sake of simplicity in numerical processing with POD, a flat plate in-
stead of a cylinder in pulsating flow is considered. The CFD model is restricted
to the vicinity of the local heat source for the flow over a heated (kept at con-
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stant temperature) wall section, as shown in Fig. 2.3. The fluid model is in-
compressible, and the material properties are assumed to be temperature in-
dependent as in the case of the cylinder in cross-flow. The Reynolds number,
based on the length L of the heated section, is 13. An unstructured mesh, with
44150 quadrilateral elements and coarsened away from the heated section, is
used. Mesh independence of the solution is assured.

WallSym Sym

Sym Outlet
Inlet

u=uu '
9 L L 15 L 15 L

Q= QQ '

T=T w

Figure 2.3: Computational domain and boundary conditions with the fluctu-
ating part of the velocity u′ and the fluctuating part of the heat
transfer rate Q ′

Governing Equations

In the case of the wire in pulsating flow and the flame heat sources, only
the input-output data set generated from the numerical simulation is used
in identification procedures to create dynamical models. On the other hand,
the governing equations of the system are used in the POD approach to obtain
a low order dynamic model of the heat source.

The non-dimensionalization and governing equations are as follows:

u = 1+ u′

ū
, T = T ′

Tw − T̄
, x = x̃

L
, y = ỹ

L
, t = ū

L
t̃ .

The superscripts (¯), ( ′ ), (˜), and Tw denote the mean values, fluctuating parts,
dimensional values (for coordinates x,y and for time t ) and wall tempera-
ture, respectively. Then, the dimensionless form of the incompressible Navier-
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Stokes and energy equations becomes,

Du

Dt
=−5p + 1

Re
42u, (2.2)

DT

Dt
= 1

PrRe
42T . (2.3)

Reynolds and Prandtl numbers are defined as,

Re = ρūL

µ
, (2.4)

Pr = cpµ

λ
. (2.5)

The symbols cp and λ denote the specific heat capacity at constant pres-
sure and the thermal conductivity, respectively. Equations (2.2) and (2.3) are
solved using Comsol Multi-physics 6.1 solver (a general purpose finite ele-
ment solver) [28] with a time step of 1/50 th of the period of the harmonic exci-
tation at the inlet. Harmonic excitations at different amplitudes and frequen-
cies are applied at the inlet. At the heated section, the unsteady heat transfer
rate per unit area (thermal flux, units W/m2) is extracted as an area-averaged
value over the heated flat plate. In the CFD model, a perturbation of small or
large amplitude is imposed on the steady state solution, which is used as the
initial condition for the unsteady calculations.

2.3 Heat Transfer in Oscillatory Flow

In the case of forced convection, the non-dimensional heat transfer rate, Nus-
selt number (Nu), is a function of Reynolds (Re) and Prandtl (Pr) numbers
[7, 122], such that,

Nu = f (Re,Pr). (2.6)

Simple empirical correlations are available for the heat transfer from the wire
and plate for different Reynolds ranges. Hilpert [61] gave such a relation for
the range between 1 and 240000 using different wire diameters.
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King’s Law

A correlation by King [71] now known as King’s law, is widely used in hot wire
anemometry:

Q(t ) = Lw (Tw −T )

λa +2

√
πλacv ρ̄

dw

2
|u(t −τ)|

 . (2.7)

Material properties of the fluid are denoted by ρ̄ for the mean density, cv for
the specific heat at constant volume, and λa for the heat conductivity of fluid.
Lw and dw represent the length and the diameter of the wire, respectively. Tw

is the temperature of the wire, and τ is the time lag.

Heat transfer rate from the wire, for small imposed fluctuation at the inlet,
has a linear dependence upon the amplitude of the fluctuating part of the in-
coming velocity at a fixed frequency. This dependence for the high and low
frequency limits has also been shown by Lighthill [83]. This linear relation can
also be seen from King’s law, where the square root nonlinearity becomes a
linear relation between the unsteady part of the heat transfer rate and the un-
steady velocity for a constant time lag. The relation in Eq. (2.7) is written as,

Q ′(t )+Q̄ = K1 +K2

√∣∣∣∣1+ u′(t −τ)

ū

∣∣∣∣, (2.8)

where K1 and K2 are constants that are defined as,

K1 = Lw (Tw −T )λa, K2 = 2Lw (Tw −T )

√
πλacv ρ̄

dw

2ū
.

For flow velocities much less than the mean velocity, a Taylor series approxi-
mation for the square-root nonlinearity is written as,

√∣∣∣∣1+ u′(t −τ)

ū

∣∣∣∣= 1+ 1

2

u′(t −τ)

ū
− 1

8

(
u′(t −τ)

ū

)2

+ ...., for
u′(t −τ)

ū
< 1. (2.9)

23



Transient Simulation of the Heat Source

Neglecting the square term and other higher order terms of the above equa-
tion, a linearized form for the fluctuating parts becomes,

Q ′(t ) = K2

2

u′(t −τ)

ū
. (2.10)

This is the widely used heat source formulation, the so-called “n −τ′′ formu-
lation for combustion systems.

Wall Heat Transfer in Laminar Flow

In order to obtain the heat transfer from the unsteady boundary layer equa-
tions, similarity solutions or integral equations are used, in which assumed
profiles (generally polynomials of various orders) for the velocity and tem-
perature boundary layers are introduced [7, 122]. If the outer flow imposes a
low amplitude harmonic time dependent perturbation on the base flow, then
the solution of the unsteady boundary layer can be obtained when the fre-
quency of the imposed oscillation is very low or very high (expanding around
frequency). When the perturbation amplitudes are comparable to that of the
mean, nonlinear contributions in the boundary layer cannot be neglected
thereafter. Higher harmonics as well as the nonlinear streaming part appear
in the thermal and hydrodynamic boundary layer responses [133]. These non-
linear contributions have an influence on the heat transfer. A linear relation is
no more valid for higher amplitudes of the fluctuation.

Heat transfer at the wall for a laminar flow is computed by the Fourier’s Law
as,

Qw =−λ ∂T

∂y

∣∣∣∣
w

= h(Tw −T∞), (2.11)

where λ, h, T∞ and y denote the thermal conductivity of the fluid, heat trans-
fer coefficient, free stream temperature and wall normal coordinate, respec-
tively. In the numerical simulation, the wall heat transfer is computed by the
approximation of the temperature gradient at the wall based on the nearest
element to the wall.
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Figure 2.4: Normalized heat transfer rate of the sections 1,2,3 and 4 on the
wire’s surface for different velocity amplitude fluctuations (dashed
lines-2, dotted lines-1 continuous lines-0.3)

The flow passed over the heated wire, reverses back in the second half of the
period and reduces the effective heat transfer rate from the cylinder when the
fluctuating part of the flow velocity has a value comparable to the mean. Heat
transfer rate is monitored at four different sections on the wire as indicated
in Fig. 2.4. The normalized fluctuating heat transfer rates (Q ′) with respect to
steady state values (Qs) are shown for three different fluctuating amplitudes.
Time axis is normalized with respect to the period of the excitation (T ). Non-
dimensional amplitude and the frequency of the forcing, velocity amplitude
ratio (A), and Strouhal Number, (Str) are defined as,
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A = u′

ū
, (2.12)

Str =ωdw

ū
, (2.13)

for fluctuating velocity u′, forcing radial frequency ω, wire diameter dw and
the mean velocity ū. Most of the heat transfer takes place in the first quadrant,
and the heat transfer rates for A = 0.3 show almost linear behavior at every
section (pure sinusoid). The first nonlinear contribution is seen for A = 2 in
the second quadrant. In the last two quadrants, nonlinear contributions for
A = 1 and A = 2 become significant.

         
                    

Inflowdirection Inflowdirection

Figure 2.5: Path of massless particles released at inlet for Str = 0.721 and A = 1
(left), A = 2 (right)

In order to visualize the flow reversal at the wire with increasing velocity am-
plitudes, massless particles are introduced at the inlet and tracked over time.
The Lagrangian trajectories of a massless particle released at the inlet posi-
tion, for two different velocity amplitude ratios at Str = 0.721, are shown in
Fig. 2.5.
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2.3 Heat Transfer in Oscillatory Flow
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Figure 2.6: Non-dimensionalized heat flux (with respect to the steady state
values at the local positions and amplitude of the forcing at the
inlet) at three points of the heated flat part

In Fig. 2.6, the non-dimensionalised (with respect to steady state value) fluc-
tuating heat transfer rate per unit area at three points of the heated flat part
are shown for A = 0.3, 0.75, 1.2 and 2, at Str = 10 (based on the length of the
plate L),

Str = ω̃L

ū
, (2.14)

where ω̃ is the dimensional angular frequency.

The nonlinearity in the portion of the signal is clearly seen from the distortion
of a pure harmonic with the addition of a higher harmonic for high amplitude
of fluctuation for the second and third points.

The complex interactions between the hydrodynamic and the thermal bound-
ary layer with the nonlinear contributions prevent the correlation of the heat
transfer rate at the wire and the fluctuating part of the incoming velocity us-
ing unsteady boundary layer equations [122, 133]. In the following sections,
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Transient Simulation of the Heat Source

nonlinear dynamic models for the input-output relation (input is the velocity
forcing and output is the fluctuating part of the heat transfer rate either form
the wire or plate) are obtained using nonlinear system identification proce-
dures and proper orthogonal decomposition technique.

2.4 Laminar Premixed Flame Configuration

As a third example of the heat source, a laminar premixed flame is considered.
The flame is an axi-symmetric V- flame attached at one point, and is shown in
Fig. 2.7. The laminar flame dynamics is described by front tracking equations,
called the G-equations, and at the flame front, the following equation holds
[40, 48, 81, 129] good,

DG

Dt
= SL|OG|, (2.15)

where G is a field property. The other assumptions are the spatially uniform
velocity field (purely axial) and a constant laminar flame speed. With these
simplifications, the following flame front tracking equation is obtained when
the incoming velocity is assumed to be ~u = (0, v) for a coordinate system
aligned with the flow.

∂ξ′

∂t
+ (

v̄ + v ′)cos(α)
∂ξ′

∂X
− (

v̄ + v ′)sin(α) =−SL

√
1+

(
∂ξ′

∂X

)2

, (2.16)

where the velocity components along and perpendicular to the flame are
given as v cos(α), v sin(α), respectively, and α is the inclination of the flame
to incoming flow. Further analysis of the resulting partial differential equation
(linearization) and a numerical scheme to solve it are described in [129].

The heat release, Q, for a laminar premixed flame is written as,

Q = ρSL∆qr A, (2.17)
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2.4 Laminar Premixed Flame Configuration

where ρ is the density of the incoming mixture,∆qr is the heat release per unit
mass of the mixture [J/kg], and A is the flame surface area.
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Figure 2.7: Schematic of the axi-symmetric V-flame attached at one point

In the absence of the equivalence ratio fluctuations from the above equation,
the response is related to the area fluctuation as,

Q ′

Q̄
= A′

Ā
. (2.18)

The flame area A is calculated from the flame front position by the following
relation [81, 129],

A(t ) = 2π

a/sin(α)∫
0

(X sin(α)−ξcos(α))

√
1+

(
∂ξ

∂X

)2

d X . (2.19)

We have used the code developed at IIT Madras (Prof. Sujith’s group) [129] for
the laminar flame to get the input (acoustic forcing) and output (heat release
rate of the flame) data set, which is used in the system identification methods.
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3 Linear System Identification

System identification can be used to construct dynamic models from the
input-output data sets that may be obtained from an experimental test rig or
numerical simulation [84, 124]. For the CFD model of the wire heat source,
obtaining a linear transfer function (heat transfer response of the wire to
small acoustic perturbations for a frequency range) may be challenging due
to the complex interactions in the hydrodynamic and thermal boundary layer.
Lighthill has derived an analytical transfer function using unsteady boundary
layer equations in the low- and high-frequency regimes, respectively [83]. Lin-
ear transfer function of the CFD model of the wire heat source is computed
from an FFT of the response with single sinusoid excitations for different fre-
quencies. On the other hand, with the linear identification method based on
correlation, one can obtain the same transfer function using a broadband ex-
citation signal with less computational effort. More complex configurations of
the heat source, such as a turbulent flame, are identified in the linear regime
(linear transfer function is obtained) using the input-output data set from un-
steady CFD computations or experimental setup [54, 132]. It is advantageous
to know some of the physical parameters of the system a priori, e.g. the order
of the maximum lag, when constructing dynamic models from identification.
This information can also be obtained from the identification as in a black-box
approach [144]. In this chapter, the common procedures and model structures
used in linear system identification are presented. Then, equations for a cor-
relation based linear identification in time domain is derived. Three different
heat source models, which include CFD model of the wire heat source, heat
source model based on King’s law and a simple model for the laminar pre-
mixed flame, are identified using this correlation based linear identification.
Transfer functions are derived. Moreover, the transfer functions for the heat
source based on King’s law, CFD model of the wire heat source and Lighthill’s
derivation are compared.
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3.1 Procedures and Model Structures used in Linear System Identification

3.1 Procedures and Model Structures used in Linear System
Identification

Identification methods can generally be classified as parametric and non-
parametric. In the parametric approaches, the system is described with dif-
ferential/difference equations, and the aim is to find the parameters of this
mathematical description. Well known non-parametric representations are
the Impulse Response (in the time domain) and the Frequency Response (in
the frequency domain).

The input-output representation of an LTI (Linear Time Invariant, see Ap-
pendix A for the definition of an LTI system) system in polynomial form is
expressed as [84] :

A(z)Q(t ) = B(z)

F (z)
u(t )+ C (z)

D(z)
v(t ), (3.1)

where A, B, C, D, F are polynomials in terms of z , u and Q are the input and
output of the system, and v is the error term. z is a shift operator namely,

zQ(t ) =Q(t +1). (3.2)

Here, Q(t +1) is a shorthand notation for Q(t +∆t ), for the time step ∆t . This
operator simply shifts one step ahead value of the input or output to the cur-
rent time. The past inputs (u(t −1), ...,u(t −Nu)) and outputs (Q(t −1), ...,Q(t −
NQ)) are called the regressors. Depending on the polynomials used, different
model structures appear [84].

FIR (Finite Impulse Response):

A =C = D = F = 1

This is the simplest model structure to be considered. The past inputs are used
as regressors. The structure results in a linear least square problem for min-
imizing the cost function (e.g. Euclidean norm of the residual between the
actual and the estimated output). It requires many regressors and the conver-
gence rate is slow.

ARX (Auto Regressive with eXogenous input):
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C = D = F = 1

This model structure uses the past inputs and past outputs as regressors. This
again results in linear least square description where the cost function needs
to be minimized.

ARMAX (Auto Regressive Moving Average with eXogenous input): D = F = 1

OE (Output Error): A =C = D = 1

In the identification, a model structure is selected and the number of past in-
puts and outputs are specified. Another classification that is important (for
an application in “divide and conquer”) is based on whether the simulated or
measured past outputs are used as regressors in the model structure. In an
output error type modeling approach, the simulated past outputs obtained
from the model structure are used, whereas, in an equation error type model-
ing approach, the measured past outputs are used as regressors. A criterion to
minimize the difference between the actual output and output from identifi-
cation are specified in order to get the parameters of the model structures. In
an equation error/output error type modeling approach, this criterion results
in a linear/nonlinear least square fit.

Identification methods have the following procedures in common [84, 124,
126]:

• An appropriate choice of the input signal: The system is excited with
a proper signal for the excitation of all relevant modes of interest. Gen-
erally, broadband forcing, chirp signals or pseudo random binary se-
quences, which have white noise characteristics, are used to excite the
system for a wide range of frequencies.

• Model structure selection: Equation error or output error model struc-
tures are used.

• Selection of the number of past inputs and outputs used in the model
structure (the system “memory”): A priori information about the maxi-
mum time lag of the system is helpful. Depending on the maximum fre-
quencies of interest and the time lag of the system under consideration,
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3.2 Time Domain Identification using Correlation Analysis

the number of regressors is specified.

• An algorithm to minimize the cost function: The difference between re-
sponses of the time series data generated from numerical simulation or
experiment and identification is minimized. Marquardt-Levenberg algo-
rithm, Gauss-Newton methods or other nonlinear optimization (genetic
algorithms, particle swarm optimization) methods are used.

• Model Validation: The identified model is tested against signals which
have not been used in the estimation. In a broadband forcing, half of the
data is used for the fit (minimization of the cost function) while the other
half is used for validation.

3.2 Time Domain Identification using Correlation Analysis

For an LTI system, the output in discrete form is expressed by the following
equation [84],

Q(t ) =
∞∑

l=−∞
h(l )u(t − l )+ v(t ), t = 1,2, .... (3.3)

where Q, u, h and v denote the output, input, unit impulse and additive noise,
respectively.

For a causal Finite Impulse Response (FIR) model with maximum length of
L, (the impulse coefficients will be zero after L terms) this relation is written
as [84, 137],

Q(t ) = h(0)u(t )+h(1)u(t −1)+ ...+h(L)u(t −L). (3.4)

If the input u is a stationary process with zero mean and uncorrelated with the
additive noise v , then

Ruv(r ) = 〈u(t )v(r − t )〉 = 0, ∀r, (3.5)

RQu(r ) = 〈Q(t )u(r − t )〉 =
L∑

l=0

h(l )Ruu(l − r ), ∀r, (3.6)
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where 〈. . .〉 denotes the ensemble average over the data record.

If the unit impulse response coefficients h(l ) of a system are not known a pri-
ori, they can be computed (“estimated”) from the auto-correlation matrix of
the signal Ruu and the cross-correlation vector between the signal and the re-
sponse RQu by the following relation:

h = R−1
uuRQu. (3.7)

This equation, sometimes called the inversion of the Wiener-Hopf equation
[107, 110], is written in expanded form as [84, 137],

h(0)
h(1)

...
h(L)

=


Ruu(0) Ruu(1) . . . Ruu(L)

Ruu(−1) Ruu(0) . . . Ruu(L−1)
...

... . . .
...

Ruu(−L) Ruu(−L+1) . . . Ruu(0)


−1 

RQu(0)
RQu(1)

...
RQu(L)

 . (3.8)

For the finite time series data {u(t ),Q(t )} of length M , the individual elements
of the auto-correlation matrix and the cross correlation vector are,

Ruu(l − r ) = 1

M −L+1

M∑
t=L

u(t − l )u(t − r ), l ,r = 0, . . . ,L, (3.9)

RQu(r ) = 1

M −L+1

M∑
t=L

Q(t )u(t − r ), r = 0, . . . ,L. (3.10)

Three different heat source models are identified using this correlation based
identification. First, a simple model of the heat source based on King’s law is
identified. Next, the time series of heat transfer rate fluctuations in response to
broadband forcing of velocity is generated from the CFD model described in
the previous chapter. The response is obtained in terms of the unit impulse
response h and the frequency response F (ω), valid for a range of frequen-
cies. Transfer function of the CFD model of the wire heat source is compared
with an analytical transfer function derived by Lighthill [83] and also with the
heat source model based on King’s law [71]. Finally, a laminar premixed axi-
symmetric V- flame is identified. Linear transfer function of the flame derived

34
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Figure 3.1: Schematic of the correlation based linear system identification
with unsteady CFD

analytically is compared with the transfer function obtained from identifica-
tion.

A schematic of the identification scheme for CFD model of the wire heat
source is given in Fig. 3.1.

3.3 Identification of a Simple Model (“King’s law”) for the
Heat Source

As described in the previous chapter, King’s law relates the heat transfer rate
Q(t ) to the input u(t − τ) at an earlier time t − τ, where τ is a characteristic
time delay. A modified version of King’s law is used, that has been proposed
by Heckl [59] for the study of nonlinear effects in a Rijke tube:

Q ′(t ) = k

(√∣∣∣∣1

3
+u′

f (t −τ)

∣∣∣∣−
√

1

3

)
, (3.11)
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with

k ≡ 2Lw (Tw −T0)

S
p

3

√
πλcv ρ̄

dw

2
ū. (3.12)

An estimation for the delay time τ is given by Lighthill [83] for frequencies
f ¿ 20ū/dw as,

τ= 0.2
dw

ū
. (3.13)

In the case with a wire diameter dw = 10−3 m and a mean flow velocity
ū = 0.2772 m/s, the delay term is τ = 7.215× 10−4 s. In the non-dimensional
form (see Galerkin time domain model in the system modeling chapter for the
reference values of the non-dimensionalization), this corresponds to τc0/Ld =
0.261. Here, c0 and Ld denote the speed of the sound and duct length, respec-
tively.

In the identification, low amplitude forcing is used for the fluctuating part of
the velocity. The linearized form of Eq. (3.11) is as follows,

Q ′(t ) = k
p

3

2
u′

f (t −τ). (3.14)

This simple linear form is identified using the procedure outlined above. As
the input, a broadband forcing of amplitude 15% of the mean value (A = 0.15)
is used with a non-dimensional time step ∆t = 0.0181. The length of the input
signal is 10000 time steps, and with these conditions the maximum resolved
non-dimensional frequency is fNyquist = 22, with a non-dimensional frequency
spacing of ∆ f = 0.0055 [107, 144].

The coefficients of the unit impulse response are shown in Fig. 3.2, and as
expected only one non-zero element appears at the 15th position, which cor-
responds to the approximate time lag of τapprox = 0.253. The time lag of the
model τ = 0.261 is not an integer multiple of the time step ∆t , but the time
lag is obtained with less than 3% error. Decreasing the time step will increase
the accuracy in the estimation of the time lag. Once the unit impulses are
found, they are used to check the response against single sinusoidal excita-
tions from the analytical model. A schematic of the validation approach is
given in Fig. 3.3.
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Figure 3.2: Coefficients h(l ), l = 0,1, . . . ,100 of the unit impulse response iden-
tified from King’s law (Only one non-zero element at position l =
15.)
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Figure 3.3: Schematic of the validation for sinusoidal excitation at different
frequencies

3.4 Identification of the CFD Model Heat Source

A broadband excitation signal is imposed on the steady state velocity at the
inlet position for unsteady calculations. The form of the excitation signal is:
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u(t ) = ū +0.15ū (2× rand(M ,1)−1) , (3.15)

where rand function generates the pseudo-random numbers between 0-1
with uniform distribution [86]. The amplitude of the perturbation is 15% of
the mean value (A = 0.15). Time series data (input-output) generated from
CFD model is used for the identification. CFD calculation is performed with
M = 20000 time steps and a step size of ∆t = 5×10−5 s.

Half of the data is used for identification and the other half is used for vali-
dation. The maximum resolved frequency is 4000 Hz at a frequency spacing
of 1 Hz (if all the data set is used for the identification) [144]. The number of
unit impulses is chosen as L = 200. Further increment of this number does not
improve the accuracy of identification.

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

l

h(
l)

Figure 3.4: Coefficients h(l ), l = 0,1, . . . ,200 of the unit impulse response iden-
tified from the CFD simulation (For l > 200, there is no significant
contribution to the response.)

A measure of the quality of identification is the match between the output
Qpred predicted by the dynamic model and the actual output QCFD computed
with CFD:

Fit =
1−

√√√√∑N
k=1(Q(k)CFD −Q(k)pred)2∑N

k=1 Q(k)2
CFD

×100. (3.16)
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Figure 3.5: Normalized (with respect to steady state values) heat transfer rates
obtained from CFD and linear system identification using second
half of the data set

The validated model fit for the second half part of the data is 98.7.

Transfer function of the CFD model of the wire heat source is calculated by z-
transform of the unit impulses which are obtained after a broadband forcing
as,

F(ω) =
L∑

l=1

hl e−iωl∆t . (3.17)

Transfer functions obtained from Lighthill’s analytical approximation, from
heat source model based on King’s law and from CFD model heat source are
shown in Fig. 3.6. The low frequency limits of the transfer functions , F (ω)ω→ 0,
are used for the normalization factor. As can be seen in the plot, King’s law ap-
proximates Lighthill’s result only at low frequencies. At higher frequency, the
gain of the transfer function decreases, while the phase deviates from the lin-
ear decay and eventually asymptotes a constant value. However, the phase ap-
proaches -90 deg in Lighthill’s transfer function and -70 deg for the identified
CFD heat source model transfer function [50, 83, 122].

For further validation, sinusoidal excitation responses (non-dimensionalised
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Figure 3.6: Gain and phase of the transfer function obtained from inverse z-
transform of the unit impulses for the identified King’s law and
CFD model along with the Lighthill’s analytical approximation of
the transfer function
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Figure 3.7: Non-dimensionalised (with respect to steady state values) heat
transfer fluctuations for King’s law and CFD along with the results
from linear system identification (dashed lines), for sinusoidal ex-
citation at non-dimensional frequency of 1.658

with respect to the steady state values) from the identified model and the CFD
model are compared for non-dimensional excitation frequency of 1.658 and
amplitude of 10% of the steady state value (A = 0.1) as shown in Fig. 3.7. In the
plot, the response of the identified King’s law is also added at the same non-
dimensional frequency. The fit of the models from identification is 98 for CFD
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3.5 Identification of a Laminar Premixed Flame Model

model of the wire heat source and 99 for the heat source based on King’s law.

3.5 Identification of a Laminar Premixed Flame Model

A chirp signal with linearly varying frequency component over time is used as
the input signal for the identification. The form of the signal is,

u(t ) = ū +0.01ū sin
((
ωmax −

(ωmax −ωmin

M
k
))

k∆t
)

, k = 1,2, . . . , M , (3.18)

with maximum and minimum frequencies of ωmin = 150 and ωmax = 1000 in
rad/s, and amplitude 0.01ū, (1% of the mean value, A = 0.1). The values M =
15000 and ∆t = 1.2566×10−4 s denote the number of total samples used and
time step, respectively. A frequency domain representation of the input signal
and the heat release response from the flame is shown in Fig. 3.8
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Figure 3.8: Input and output (heat release fluctuation response) in frequency
domain

An estimate of the time lag for the flame is given as [48, 129],

τ f = b

SL cos(α)
. (3.19)
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Figure 3.9: Transfer function calculated analytically and obtained from linear
system identification

For flame radius b = 0.0075 m, laminar flame speed SL = 0.1231 m/s and the
inclination angle of α= 10 deg, the time lag becomes τ f = 0.061 s.

For a Finite Impulse Response model structure, with the given time step ∆t ,
the filter length (memory) or the number of regressors that should be retained
in the model structure is at least

Nu = τ f

∆t
= 492. (3.20)

In the identification, a filter length of L = 600 is chosen. The transfer func-
tion or the frequency response of the laminar flame (heat release response to
acoustic perturbations) is calculated by z-transform of the unit impulses.

A comparison of the transfer functions derived analytically [40] and calculated
from identification is shown in Fig. 3.9.
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3.6 Discussions and Conclusions

System identification methods are used as a tool to construct linear dynamic
models using time series (input-output data set) generated from an unsteady
CFD computation or experimental test rig. Fast Fourier Transformation is
used to produce the frequency response of complicated elements with exci-
tation at discrete forcing frequencies. On the other hand, linear system iden-
tification delivers the frequency response in a fast and efficient manner using
one simulation and appropriate choice of the excitation signal.

Comparison of the transfer functions of three different heat sources; heat
source model based on King’s law, Lighthill’s analytical derivation and the CFD
model of the wire heat source, give different results. The phase approaches -
90 deg in Lighthill’s transfer function and -70 deg for the identified CFD heat
source model transfer function. In Lighthill’s derivation, there is no explicit
dependence on the Re number [83]. The Re number should be greater than 10
to fulfill the boundary layer assumption. The results are derived in both the
low- and high-frequency regimes. The results for the intermediate frequen-
cies are obtained with interpolation. Heat source model based on King’s law
has one time lag and approximates Lighthill’s result only at low frequencies.
On the other hand, transfer function calculation using unsteady CFD compu-
tation and system identification is more effective. Firstly, there is no restriction
on the time delay as in heat source model based on King’s law. Secondly, it is
possible to determine the effect of the Re number on the heat transfer behav-
ior. The transfer function is obtained at Re = 13. Even though the heat source
in CFD is modeled as a cylinder that is kept at constant temperature and the
flow with temperate independent material properties, it is possible to include
a constant heat input to the cylinder as the boundary condition [50] and tem-
perature dependent material properties of the flow as well.

The results for the laminar premixed flame show that the approximate time
lag is captured with system identification as the memory length of the filter.
Moreover, the results from the analytically derived transfer function matches
very well with those obtained from linear system identification.
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4 Nonlinear System Identification

Nonlinear system identification can be used to obtain nonlinear dynamic
models using the the input-output data set of a nonlinear system/process
[18, 93, 126]. To correlate the heat transfer response of the wire to pulsating
flow velocity (amplitude and frequency), unsteady boundary layer equations
are utilized. In this case, due to the complex interactions between the hydro-
dynamic and thermal boundary layer with the nonlinear contribution and
streaming parts, it is not possible to derive an analytical closed form solu-
tion for the input-output relation. Some parts of the problem (simplified un-
steady boundary layer equations) have to be solved numerically [133]. Fast
Fourier Transformation (FFT) is utilized to obtain the nonlinear transfer func-
tion (“describing function”). In this case, CFD model of the heat source is ex-
cited with single sinusoids for different amplitudes-frequencies, and the heat
transfer at the wire is then calculated at the forcing frequency. This approach
has some drawbacks. Firstly, in order to cover the relevant range of dynamics,
it may require many expensive CFD calculations. Secondly, nonlinear transfer
function can only be used in a sinusoidal describing function model of the full
thermo-acoustics, in which the effect of the higher order modes is neglected
(refer to “Prediction and Analysis of Thermo-Acoustic Limit Cycles” chapter
for a detailed explanation). As an alternative, nonlinear system identification
methods promise to provide an effective and fast way of obtaining the input-
output relation from the observation of the input-output data set. A nonlinear
dynamic model of the heat source is obtained that works in the desired range
of frequencies and amplitudes. This modeling approach is used for more ad-
vanced configurations of the heat source (even for a flame of technical inter-
est).

Another important aspect is a proper system model of the thermo-acoustics
along with the nonlinear dynamic model of the heat source. If the full thermo-
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acoustic system is simulated in time domain, then a nonlinear model of the
heat source in time domain is required. In this case, neural network or fuzzy
based identification methods is utilized, which are the universal functional
approximators. If a frequency domain simulation of the thermo-acoustic sys-
tem (sinusoidal describing function is the only method available until now) is
required with the nonlinear heat source, then the computation of the ampli-
tude and frequency dependent nonlinear transfer function of the heat source
is necessary. A system model is developed in the frequency domain that goes
beyond the “sinusoidal describing function”. In this approach, input-output
relation is expressed in polynomial form with memory. Extension of this poly-
nomial model into frequency domain gives the higher order transfer func-
tions. Heat source nonlinearity is expressed in terms of higher order transfer
functions. This then makes it possible to include the coupling of the modes for
a thermo-acoustic system simulated in the frequency domain. One drawback
of the method is the resulting large number of parameters when the delay time
is large and the polynomial order of the approximation is high, which are the
challenges both for the identification and post-processing of the said param-
eters.

In this chapter, the calculation of the amplitude dependent nonlinear transfer
function for the CFD model of the wire heat source from FFT is considered.

Next, nonlinear system identification problem and the procedures are dis-
cussed.

The equations for a second order polynomial identification using an equation
error type model structure are then derived. The identification method is ex-
tended into the frequency domain using two different approaches, namely,
a harmonic balance approach and a harmonic probing approach. Computa-
tional Fluid Dynamics (CFD) model of the wire heat source is identified and
nonlinear transfer functions are calculated.

A nonlinear identification method based on neural networks and its extension
into the frequency domain are presented. Higher order transfer functions de-
veloped from this approach for the CFD model of the wire heat source is used
in the coupled modes frequency domain system model (refer to the chapter
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“Prediction and Analysis of Thermo-Acoustic Limit Cycles”). The weakly non-
linear laminar premixed flame is also identified, and the difficulties encoun-
tered in the nonlinear identification for this model heat source are discussed.

Finally, the CFD model of the wire heat source is identified using a fuzzy based
identification procedure.

4.1 Nonlinear Transfer Function from Fast Fourier Transfor-
mation (FFT)

To capture the nonlinearity in the heat transfer, FFT of the responses to har-
monic excitations are computed and amplitude dependent nonlinear behav-
ior is obtained [1, 20, 32]. The computations are performed for discrete ampli-
tudes and frequencies, and the values in between are obtained with interpo-
lation.

F (ω)A0,ω0 =
FFT(Q ′/Qs)

FFT(u′/us)

∣∣∣∣
A0,ω0

, (4.1)

gives the nonlinear transfer function at the forcing frequency ω0 and ampli-
tude A0. This heat source, which is nonlinear through its explicit amplitude
dependence, is then used in a frequency domain thermo-acoustic system
model, i.e. in a sinusoidal describing function method.

The responses (heat transfer rates) of the cylinder to harmonic forcing at the
inlet for a range of Str (0.361, 1.08, 1.80, 3.61) and for a range of A (0.3, 0.75,
1, 1.5 and 2) are obtained. Fast Fourier Transformations of the response and
the excitation signals are then performed. At the forcing frequency, the am-
plitude and the phase relation between the unsteady heat transfer rate and
the unsteady velocity is calculated. In Fig. 4.1, it is seen that the peaks at the
multiple integer of the fundamental harmonic forcing increase with high fluc-
tuation amplitudes. For A = 2, the second harmonic reaches nearly 80% of the
fundamental harmonic at the lowest frequency.
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4.1 Nonlinear Transfer Function from Fast Fourier Transformation (FFT)

Figure 4.1: FFTs of the heat transfer rates for different velocity amplitude ra-
tios and at Str = 0.361

In Fig. 4.2, the comparison of the transfer function for different velocity ampli-
tude ratios is shown along with a linear transfer function computed by Föller
et al. [8]. At A = 0.3, the behavior is linear. The deviation from the linear trans-
fer function is more pronounced at low Strouhal numbers and high velocity
amplitude ratios. At higher frequencies, the response approaches linear trans-
fer behavior, a decrease in the gain and an asymptotic value of -70 deg in the
phase. Gain is more sensitive than the phase, and the amplitude dependence
of the phase can be neglected up to A = 1.5. Another observation is the non-
monotonic behavior for A = 2 in the gain, where a decrease in the gain is fol-
lowed by an increase and then a decrease. Many CFD computations are re-
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Figure 4.2: Gain and phase of the transfer function for forcing with single si-
nusoids at different velocity amplitude ratios and Strouhal num-
bers along with a linear transfer function obtained from linear
identification on a semi-logarithmic plot

quired to cover the relevant range of dynamics. Some nonlinear dynamic be-
havior (non-monotonic behavior) cannot be captured, unless the interesting
range of frequencies and amplitudes are not considered. Another disadvan-
tage of the method is that the response is obtained at the forcing frequency
only. But in the nonlinear modeling of system behavior it is also important to
consider the higher harmonics. Drawbacks of the FFT approach can be cir-
cumvented with nonlinear system identification methods which will be dis-
cussed in the following sections. These discrete points (at specific A and Str)
then serve as a reference to check the validity of our nonlinear identification

48



4.2 Nonlinear Identification Problem

methods.

4.2 Nonlinear Identification Problem

Input-output modeling of the nonlinear systems are generally catego-
rized as nonparametric -functional series expansion (Volterra, Wiener series
expansion)- and parametric (differential/difference equation models, neural
network models, polynomial models) [18, 97]. Volterra series is the extension
of the impulse response of the linear system to the nonlinear case [19, 119].
These are the Taylor series expansion applied to functionals. Orthogonaliza-
tion of the Volterra series has been proposed to express the input-output
modeling of the nonlinear system with less number of parameters and to
obtain the parameters of the nonlinearity using broadband type excitation
signals [72, 77]. In Hammerstein and Wiener identification methods, a linear
dynamic block is connected to a static nonlinear input and/or output block
structure [18, 73]. Neural network is a black-box identification method which
uses expansion functions through the units (layers) to model the nonlinear
input-output relation [92, 98, 105, 126]. There also exist local linear models
which use fuzzy based algorithms that could be utilized as nonlinear iden-
tification tools [5, 6, 130].

The procedures and requirements used in the nonlinear system identification
are comparable to those of the linear system identification. The input signal
covers the relevant range of frequencies, as well as amplitudes. In the identifi-
cation, it is common to add past outputs in the regressor set in order to achieve
better convergence rates and to use small number of regressors. The actual
outputs, or computed outputs, is then used in the set of regressors. In the for-
mer case, analytical closed form solution to derive the parameters is obtained
for some choice of the function like polynomials. It is then easily extended
into the frequency domain. In the latter case, the computed outputs from the
model (output from the identified model, Qm) are used in the set of regres-
sors as the past outputs. Even though it seems attractive and is the method
of choice in the time domain thermo-acoustic system model (e.g. Galerkin
time domain simulation), obtaining a model with this identification may have
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stability and nonlinear optimization problems (optimum initial guess, trap-
ping into local minimum). A schematic representation of the equation error
and output error type model structures is shown in Fig. 4.3. In the figure, z
represents the shift operator which simply shifts the one step ahead value of
the input or output to the current time (refer to “Linear System Identification”
chapter).

Qm t−N Q

u t−N u

Qm t−2

Qm t−1

Qt 

u t 

Qm t 

z−1z−1z−1

Output Error
Model

u t 

u t−N u

Qt−1

Qt−N Q
Equation Error

Model

Figure 4.3: Schematic of the equation error and output error model structures

The nonlinear dynamic fit is generally expressed as,

Q(t ) = F (Q(t −1), ..,Q(t −NQ),u(t ), ...,u(t −Nu)). (4.2)

The function F is linear with respect to its arguments (regressors, Q(t − i ),
u(t − j )) for a linear system. In linear identification, it is not so difficult to
obtain a dynamic model using one of the existing model structures and ap-
propriate choice of the excitation signal. For a nonlinear system, the form of
the function F is not known a priori. This function is approximated using ex-
pansion functions and polynomials. One can encounter the problem of the
“curse of dimensionality” (a significant amount of increase in the parameters
by adding extra dimensions corresponding to the degree of nonlinearity and
the number of regressors) depending on the maximum time lag of the system,
relevant maximum and minimum frequencies and the degree of the nonlin-
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earity. Nonlinear extensions of the linear model structures are named as NFIR,
NARX and NARMAX, and NOE [26].

4.3 Polynomial Identification

4.3.1 Derivation

The first identification method discussed is the second order polynomial
identification which is of type NARX. It utilizes only past inputs and outputs
(actual output) consisting of nonlinear terms up to second order in the regres-
sor set; the bilinear products of uu and uQ,

Q(t ) =Qapprox(t )+ v(t ). (4.3)

The output is approximated by Qapprox which is a second order polynomial,

Qapprox(t ) =
Nu∑

k=1

hu(k)u(t −k +1)+
NQ∑
l=1

hQ(l )QCFD(t − l )

+
Nu∑

k=1

NQ∑
l=1

huQ(k, l )u(t −k +1)QCFD(t − l )

+
Nu∑

k=1

Nu∑
m=1

huu(k,m)u(t −k +1)u(t −m +1). (4.4)

Here, QCFD and Q represent the actual output obtained from CFD compu-
tation and model output, respectively. The matrix of inputs U, vector of un-
known parameters P and regressor set Z are defined as,

U = [u(t −k +1), QCFD(t − l ), u(t −k +1)u(t −m +1), u(t −k +1)QCFD(t − l )] ,
(4.5)

P = [
hu(k), hQ(l ), huu(k,m), huQ(k, l )

]
, (4.6)

Z M = [u(t −k +1), QCFD(t − l )] , (4.7)

k,m = 1, . . . , Nu , l = 1, . . . , NQ .

The difference (error) between the approximated and actual outputs is mini-
mized in a least square sense;
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V (Z M ;P ) = 1

M

M∑
i=1

(QCFD −PU )2, (4.8)

where i is a time index. The vector of the unknown parameters is derived from,

∂V

∂P
= 0, as (4.9)

P = 1

M

M∑
i=1

(QCFDU T )
1

M

M∑
i=1

(UU T )−1. (4.10)

Since the actual outputs are used in the regressor set (label “CFD” is attached),
an analytical closed form solution for the unknown parameters P is obtained.
This simply represents the product of the cross correlation between the input
matrix U and output vector Q, and the inverse of autocorrelation of the input
matrix U.

4.3.2 Identification of the Heat Transfer of Wire in Pulsating Flow from Un-
steady CFD

The CFD model for the heat transfer of the wire in pulsating flow that has been
described in the previous chapters is excited with a broadband forcing at the
inlet position. In order to excite the nonlinearity in the heat transfer rate of
the wire, A = 2 is chosen as the perturbation amplitude. The unsteady CFD is
calculated for M = 10000 time steps with a time step of ∆t = 10−4s. Half of the
data is used for estimation and the other half is used for validation. Validation
is also performed against single frequencies and different amplitudes.

The information about the time lag is got from system identification methods.
For accurate identification in the linear regime, maximum filter length is cho-
sen to exceed all time delays of the system [109]. The estimation of the order
of the time lag in the linear regime, which has been given by Lighthill [83] is
rewritten as,
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Figure 4.4: Schematic of the nonlinear identification from input-output data
set of unsteady CFD computation in order to obtain a dynamic
model of a heat source

τ= 0.2
dw

ū
, f ¿ 20

ū

dw
. (4.11)

In our case, this corresponds to a time lag of τ = 7.2× 10−4s for frequencies
f ¿ 5544Hz (with the characteristic length -wire diameter dw = 10−3m, and
mean velocity ū = 0.2772m/s). This time lag for the linear system is used as
an initial option while choosing the filter lengths (number of past inputs and
outputs in the regressor set) for nonlinear system identification.

The parameters that are chosen in the second order polynomial identification
are Nu and NQ , which correspond to the maximum time lag in the input and
output data, respectively. Also the time lag between the input and the out-
put is selected to be different from zero. If only inputs (NFIR model structure)
are used in the identification, then at least 10 is used as the memory filter,
according to the time lag of the linear system and the time step of the un-
steady CFD computations. On the other hand on using past outputs in the
model structure, the memory length becomes less. The parameters are cho-
sen as Nu = 4, NQ = 3.
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Figure 4.5: The degree of the fit between the CFD data (validation data set)
and nonlinear system identification, Nu = 4, NQ = 3

The degree of the fit which has been defined earlier in the “Linear System
Identification” chapter for the validation data is 98.15.

Validation for Single Harmonics

The parameters obtained from the polynomial identification with broadband
forcing describe the CFD model of the wire heat source for a range of ampli-
tudes and frequencies. To check this, validation is performed for a single har-
monic at different amplitudes. A schematic representation of the validation
for a single harmonic is shown in Fig. 4.6. The actual output which is labeled
with CFD is used in the regressor set.

U t−k 

QCFDt−l 
Qapprox t 

Parameters
Broadband forcing

Figure 4.6: Schematic of the validation procedure for single harmonic forcing
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Figure 4.7: FFT with CFD and nonlinear identification for A = 1.5 and A = 2 at
Str = 0.361

Fast Fourier Transformations of the heat transfer rates from the CFD and from
the identified model are shown for Str = 0.361 in Fig. 4.7 on a single plot for
A = 1.5 and A = 2. The percentage of the error in the amplitude of fundamental
peak never exceeds 1%, but for second harmonic it is in the level of up to 5%
for Str = 0.361 and Str = 1.807. At Str = 7.229, it exceeds 10%. This is caused by
the time step that is used in CFD. In the single harmonic forcing correspond-
ing to Str = 7.229, 1/50 of the period is used as time step, which is less than
the time step for the identification with broadband forcing. The results are in-
terpolated from a fine time interval grid to a coarse one. This explains there is
a slight difference at high Str where nonlinearity is less. Distortions from the
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ellipses in the phase portraits are interpreted as indication of the nonlinearity
in the heat transfer rate. As seen in Fig. 4.8, there is a slight difference at A = 2
for Str = 0.361 in the phase portraits.
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Figure 4.8: Phase portraits with CFD and with nonlinear identification at Str =
0.361, A = 1 and A = 2

Although the accuracy with this identification method (equation error type)
is high, the set of regressors require past outputs from CFD model of the wire
heat source. This nonlinear heat source model cannot be coupled with acous-
tics in a time domain simulation of a thermo-acoustic system. In this case,
the only method of choice is to use the identification procedures which re-
quire only input (NFIR model structure) or the model outputs from the iden-
tified heat source (NOE). Nevertheless, the advantage of accuracy and ease of
the equation error type identification scheme is used in extending it into fre-
quency domain with two different approaches, namely, a harmonic balance
method and a harmonic probing method which is considered next.
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4.3 Polynomial Identification

4.3.3 Nonlinear Transfer Function

4.3.3.1 Harmonic Balance

Let us assume we have a sinusoidal input,

u(t ) = U0

2i

(
e iωt −e−iωt) , (4.12)

and as the output we consider harmonics up to second order;

Q(t ) =Q0 + Q1

2
e iωt + Q−1

2
e−iωt + Q2

2
e2iωt + Q−2

2
e−2iωt , (4.13)

where Q1, Q−1, and Q2, Q−2 are complex conjugate coefficients.

The input and output will be replaced in the second order polynomial struc-
ture (see Eq. (4.4)). Equating the exponentials with the same harmonic (expo-
nentials with terms 0, iωt , 2iωt ) on both sides of the equation, a system of
nonlinear equations for the unknown coefficients (Q1, Q−1, Q2, Q−2) is set. The
resulting equations for the unknown coefficients are:

Zeroth harmonic: e0iωt (. . . . . .) = 0,

Q0 −Q0

NQ∑
l=1

hQ(l )−U 2
0

4

Nu∑
k=1

Nu∑
m=1

huu(k,m)
(
e−iω(k−m)∆t +e−iω(m−k)∆t)

−
Nu∑

k=1

NQ∑
l=1

huQ(k, l )

(
U0Q−1

4i
e−iω(k−1−l )∆t −U0Q1

4i
e−iω(l−k+1)∆t

)
= 0. (4.14)

First harmonic: e iωt (. . . . . .) = 0,

Q1 −U0

2i

Nu∑
k=1

hu(k)e−iω(k−1)∆t − Q1

2

NQ∑
l=1

hQ(l )e−iωl∆t

−
Nu∑

k=1

NQ∑
l=1

huQ(k, l )

(
U0Q0

2i
e−iω(k−1)∆t −U0Q2

4i
e−iω(−k+1+2l )∆t

)
= 0. (4.15)
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Second harmonic: e2iωt (. . . . . .) = 0,

Q2

2
− Q2

2

NQ∑
l=1

hQ(l )e−2iωl∆t +U 2
0

4

Nu∑
k=1

Nu∑
m=1

huu(k,m)e−iω(k+m−2)∆t

−U1Q1

4i

Nu∑
k=1

NQ∑
l=1

huQ(k, l )e−iω(k+l−1)∆t = 0. (4.16)
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Figure 4.9: Gain and the phase of the transfer function obtained with single
harmonic forcing, second order identification and linear identifi-
cation on a semi-logarithmic plot. NL Ident (red - 0.30, black - 0.75,
blue - 1, cyan - 1.5, pink - 2), green - Linear Identification, Single
Harmonic Forcing (Markers, same color)

The system of equations is included for the complex conjugate parts. Although
this step is not necessary, it is useful to check if the resulting coefficients in-
deed are complex conjugate. Inclusion of third and fourth harmonics has neg-
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ligible influence on the solution, whereas addition of five or more harmon-
ics results in numerical problems for the nonlinear system of equations. In
Fig. 4.9, the results for the amplitude and phase of the transfer function at the
forcing frequency are shown.

The comparison of the nonlinear transfer function from single harmonic forc-
ing and harmonic balancing of the second order identification shows good
agreement for the gain up to A = 1, where the nonlinear effect is already cap-
tured by a decrease in the gain of the transfer function. The agreement in the
gain deteriorates at low Str for A = 1.5 and A = 2. The deviation for the phase is
even stronger than that of the gain. But the phase has a negligible amplitude
dependence nonlinearity up to A = 1.5, which has been shown earlier when
deriving the nonlinear transfer function from FFT.

4.3.3.2 Harmonic Probing

A wide class of nonlinear systems is expressed as Volterra series representa-
tion [20, 79]. This is the extension of the impulse response of a linear system
into the higher dimensions. The transfer function of a linear system is calcu-
lated by transforming the unit impulses into frequency domain (z-transform
for a discrete case). The same analogy is used to define the higher order trans-
fer functions of the nonlinear system by extension of the higher order im-
pulses (Volterra kernels) into frequency domain. In the following sections, the
higher order transfer functions are computed using second order polynomial
identification derived earlier, and harmonic probing approach introduced by
Bedrosian et al. [13].

The response of a nonlinear system is represented by Volterra series approxi-
mation as;

Q(t ) =
∫ ∞

−∞
h1(τ1)u(t −τ1)dτ1︸ ︷︷ ︸

Impulse response

+

∫ ∞

−∞
. . .

∫ ∞

−∞
hn(τ1, . . . ,τn)︸ ︷︷ ︸

nth order kernel

u(t −τ1) . . .u(t −τn)dτ1 . . .dτn + . . . . . (4.17)

59



Nonlinear System Identification

The extension of the higher order Volterra kernels in the frequency domain
gives the higher order transfer functions [13]. The first order or linear transfer
function is defined as,

H1(ω) =
∫ ∞

−∞
h1(τ1)e−iωτ1dτ1, (4.18)

and similar definitions apply for the other kernels. The nth order transfer
function is defined as,

Hn(ω1, . . . ,ωn︸ ︷︷ ︸
ω1+...+ωn=ω

) =
∫ ∞

−∞
. . .

∫ ∞

−∞
hn(τ1, . . . ,τn)e−iω1τ1−...iωnτn dτ1 . . .dτn. (4.19)

The input spectra at a specific frequency could produce terms which can be
multiple integer frequencies, and inter modulations which are specific to non-
linear systems. The higher order transfer functions take these effects into ac-
count [76, 141]. The computation of higher order transfer functions is per-
formed by harmonic probing method as by Bedrosian et al. [13]. A schematic
representation of the approach to find the higher order transfer functions is
shown in Fig. 4.10 .

To find the first order transfer function, the system is excited with single har-
monic forcing,

u(t ) = e iωt , (4.20)

and the corresponding response calculated from Volterra series representa-
tion is given as,

Q(t ) = H1(ω)e iωt +H2(ω,ω)e2iωt +H3(ω,ω,ω)e3iωt . (4.21)

The input (Eq. (4.20)) and output (Eq. (4.21)) are then used in the second or-
der polynomial identification (Eq. (4.4)). Taking only the linear terms in the re-
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Figure 4.10: Schematic of the harmonic probing method to find the higher or-
der transfer functions

sponse and equating the terms of the first order exponentials, the linear trans-
fer function is obtained as,

H1(ω) =
∑Nu

k=1 hu(k)e−i (k−1)ω∆t

1−∑NQ

l=1 hQ(n)e−i lω∆t
. (4.22)

The computation of the second order transfer function requires harmonic
forcing at two different frequencies [13, 24],

u(t ) = e iω1t +e iω2t . (4.23)

The corresponding nonlinear response is obtained from Volterra series repre-
sentation as,
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Q(t ) = H1(ω1)e iω1t +H1(ω2)e iω2t +2H2(ω1,ω2)e iω1t+iω2t . (4.24)
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Figure 4.11: Gain and the phase of the first order transfer function calculated
from single sinusoid forcing at A = 0.3, linear system identifica-
tion and harmonic probing on a semi-logarithmic plot

Again, this response is used in the polynomial identification structure in
Eq. (4.4), and the terms of exponentials which correspond to the sum of the
frequencies are equated to find the second order transfer function as,

H2(ω1,ω2) =


∑Nu

k=1

∑Nu
m=1 huu(k,m)(e−i (k−1)ω1∆t +e−i (m−1)ω1∆t )

+∑Nu
k=1

∑NQ

l=1 huQ(k, l )H1(ω1)e−i (k−1)ω2∆t−i lω1∆t

+∑Nu
k=1

∑NQ

l=1 huQ(k, l )H1(ω2)e−i (k−1)ω1∆t−i lω2∆t


2−2

∑NQ

l=1 hQ(l )e−i lω∆t
. (4.25)
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Figure 4.12: Gain of the second order transfer function computed from the
recursive relation of the harmonic probing approach

The computation of the third order transfer function requires excitation at
three different frequencies. The computation of higher order transfer func-
tions is straightforward using this method, once the coefficients of the poly-
nomial identification are obtained with unsteady CFD and broadband forc-
ing. The higher order transfer functions are then computed as the functions
of frequency and the coefficients. The relation is recursive as also seen from
Eq. (4.25). Although the procedure to compute the higher order transfer func-
tions with this approach is time consuming, generally a small number of
higher order transfer functions are sufficient to achieve convergence in the
response.
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In Fig. 4.11, the responses from the single harmonic forcing, at A = 0.3, and
linear identification are compared with the first order transfer function com-
puted from harmonic probing. The overall agreement between the different
methods is good for both phase and gain. In Fig. 4.12, the gain of the second
order transfer function is shown. It is a surface plotted over two Str values,
and highest values are achieved on the main diagonal. It is hard to represent
and interpret the higher order transfer functions of third and higher order de-
grees. In Fig. 4.13, the gain of the first three transfer functions is shown. The
amplitude of the third order transfer function on the main diagonal is much
less than the first order transfer function.
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Figure 4.13: Gain of the first three transfer functions on the main diagonal
computed from the recursive relation of the harmonic probing
approach

4.4 Neural Network Identification

Neural network identification methods belong to parametric nonlinear black
box identification procedures [92, 98, 105, 126]. They appear promising in the
identification of any nonlinearity up to a specified degree of accuracy (univer-
sal function approximators). For highly nonlinear systems, black box identifi-
cation can be used if little or no priori information about the complex physics
is available. As mentioned in the previous chapters, in the case of a wire in
pulsating cross flow, nonlinear complex interactions take place in the bound-
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ary layer when the pulsating flow velocity achieve higher values. It is possible
to obtain a dynamic model (input-output relation) that is valid for a range of
amplitudes and frequencies with nonlinear black box identification based on
only the measured input and output data set. Nonlinear dynamic models of
more advanced configurations of the heat source can also be obtained with
this approach (in the case of a turbulent combustion). A detailed discussion
about the nonlinear black-box identification methods is found in [67, 126].
Figure 4.14 shows the neural network identification scheme for the nonlinear
heat source.

Based on the measured input-output data set, a dynamical model is con-
structed. The procedure consists of 3 steps:

1. The number of past inputs and outputs, which are called the regressors, is
selected. The model structures that are used are the nonlinear extension
of linear model structures like NARX, NFIR, NOE [26].

2. A nonlinear map is created from the space of regressors to the nonlinear
response, using functional expansion with the hyperbolic tangent activa-
tion function within a unit.

3. The criterion to minimize the difference between the actual output and
output from identification results in a nonlinear least square fit. Opti-
mization techniques like Gauss-Newton or Levenberg-Marquardt are
used to find the parameters of nonlinearity.

Network structures are classified as feed-forward or recurrent [92, 105]. In a
recurrent network structure, computed outputs from the network are fed as
the input to the layers. In this study a feed-forward network structure is used,
and only past inputs are considered as the input to the neural network (NFIR-
model). The network has only 1 hidden layer and a tangent hyperbolic as the
activation function. A schematic of the neural network topology along with
the regressors that are used as the input is shown in Fig. 4.15.

Let ϕ be the set of regressors with memory length L, input u, and output y

φ= [1 u(t −1) ....u(t −L)], (4.26)
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Figure 4.14: Nonlinear identification using unsteady CFD and Neural Net-
work approximation

and Z N is the set of the input-output data (training set) up to time N .

The identification problem is then formulated as the minimization of the error
between the CFD model output and the output from neural network, which is

1

u t−1

u t−L
f .

f .

F .

wML

wM1

wM0

w10

1

W 0

W 1

W M

yNeuralNet t 

Figure 4.15: 1 hidden layer feed-forward neural network structure along with
regressors with tangent hyperbolic activation function f and the
linear function F at the output layer, M is the number of units
and L is the memory length of the regressors
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represented as,

VN (θ) = 1

N

N∑
t=1

[yCFD(t )− yNeuralNet(t )]2. (4.27)

This function is minimized by some nonlinear iterative search algorithms.
Moreover, Levenberg-Marquardt technique is used to find the minimum of
the function and hence the weights of neural networks which are denoted by
θ .

The output from the neural network is written in terms of the weights of the
network as,

yNeuralNet(t ) =
M∑

j=1

W j f (
L∑

l=1

wjlφl +wj0)+W0, (4.28)

where w and W ′s are the weights of the neural network for the input and out-
put to the hidden layer, and f is the tangent hyperbolic activation function.

4.4.1 Extraction of Volterra Kernels in terms of Neural Network Weights

As mentioned earlier, a wide class of nonlinear systems can be represented in
Volterra series form for the input-output relation [18,19]. This is the extension
of the Taylor series approximation applied for the functionals. For an input-
output data set (u(t ), y(t )) with memory length L, this relation is written for a
third order nonlinearity in discrete form as,

y(t ) = h0 +
L∑
τ=1

h1(τ)u(t −τ)+
L∑

τ1=1

L∑
τ2=1

h2(τ1,τ2)u(t −τ1)u(t −τ2)

+
L∑

τ1=1

L∑
τ2=1

L∑
τ3=1

h3(τ1,τ2,τ3)u(t −τ1)u(t −τ2)u(t −τ3). (4.29)

Different approaches exist in literature to extract the kernels. A correlation
based analysis with broadband forcing has been developed by Schetzen et
al. [120]. This method requires lengthy signals and the number of parameters
(h coefficients) is huge. A orthogonalization of the above expression using a
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Gram-Schmidt algorithm has been purposed by Korenberg et al. [72]. This has
the advantage of not requiring a specific type (like broadband) of signal for
the excitation of the system. Wray et al. [139] have developed a strategy to get
improved accuracy of the nonlinear approximation in comparison to Toeplitz
matrix inversion proposed by Korenberg et al. [72]. In this study the approach
proposed by Wray et al. [139] is used.

The idea is to expand the neural network approximation output as in Eq. (4.28)
for the tangent hyperbolic function around the bias term. Taylor series ap-
proximation of the tangent hyperbolic function around zero is written as,
[139],

tanh(x) =
∞∑

n=1
(−1)n+1 Bn(24n −22n)x2n−1

(2n)!
, (4.30)

where Bn is the n th order Bernolli number and is defined as,

Bn = 2(2n)!

(2π)2n

∞∑
s=1

1

s2n
. (4.31)

Expanding the activation function in Eq. (4.28), the neural network output is
expressed as,

yNeuralNet(t ) =
M∑

j=1

W j


∞∑

k=1
(−1)k+1Bk(24k −22k)

(
L∑

l=1
wjlφl +wj0

)2k−1

(2k)!

+W0.

(4.32)

Combining this representation with Volterra series of third order in the form
as in Eq. (4.29), the kernels are expressed in terms of the weights of the neural
network.

The zeroth order kernel:
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h0 =
M∑

j=1

W j


∞∑

k=1
(−1)k+1Bk(24k −22k)C (2k −1,0)w 2k−1

j0

(2k)!

+W0. (4.33)

The first order kernels:

h1(a) =
M∑

j=1

W j


∞∑

k=1
(−1)k+1Bk(24k −22k)C (2k −1,1)wjaw 2k−2

j0

(2k)!

 , (4.34)

a = 1...L.

The second order kernels:

h2(a,b) =
M∑

j=1

W j


∞∑

k=1
(−1)k+1Bk(24k −22k)C (2k −1,2)wjawjbw 2k−3

j0

(2k)!

 , (4.35)

a,b = 1...L.

The definition of the nth order kernel is hence given as,

hn(a1, .., an) =
M∑

j=1

W j


∞∑

k=1
(−1)k+1Bk

(
24k −22k

)
C (2k −1,n) w j a1..w j an w j 0

2k−n−1

(2k)!

,

(4.36)
a1, . . . , an = 1...L.

where C is defined as,
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C (m,n) =
{

m!
n!(m−n)! for m ≥ n
0, otherwise.

(4.37)

4.4.2 Higher Order Transfer Functions

Once the kernels of various orders are calculated, these are then extended into
frequency domain to obtain the higher order transfer functions. When the sys-
tem experiences different frequencies, one can see how the nonlinearity of the
system effects these frequencies in order to produce sum of the frequencies,
and differences between the frequencies which are typical for a nonlinear sys-
tem. For a thermo-acoustic system, these transfer functions allow us to see
how different modes interact with each other and transfer energy to higher
order modes.

The first order transfer function is computed from z-transform of the first or-
der kernel as,

H1(ω) =
L∑

k=1

h1(k)e−iωk∆t . (4.38)

The second order transfer function is obtained from z-transform of the second
order kernel along the two frequency directions as,

H2(ω1,ω2) =
L∑

k=1

L∑
l=1

h2(k, l )e−iωk∆t e−iωl∆t . (4.39)

Finally, the third order transfer function is computed from z-transform along
the three frequency directions of the third order kernel and is written as,

H3(ω1,ω2,ω3) =
L∑

k=1

L∑
l=1

L∑
m=1

h3(k, l ,m)e−iωk∆t e−iωl∆t e−iωm∆t . (4.40)
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If suppose the system experiences a sinusoid input with amplitude U0 and
frequency ω,

u(t ) =U0 sin(ωt ) =U0

(
e iωt −e−iωt

2i

)
, (4.41)

then the corresponding output in the frequency domain in terms of the higher
order transfer functions is computed as,

Y (ω) =U0H1(ω)+ 3U0
3

4
H3(ω,ω,−ω). (4.42)

In this expression, the contribution of the nonlinearity is seen in the third or-
der transfer function. The advantage of this representation of the nonlinearity
will be clearer when a frequency domain thermo-acoustic system model is de-
veloped.

4.4.3 Nonlinear Identification of the Wire in Pulsating Flow from CFD and
Nonlinear Transfer Function

As the input to the heat source, a chirp signal of varying amplitudes is used
with Str ranging from 0.72 to 2.88. The perturbation amplitudes are A =
0.3,1,1.5 and 2. The memory length of the regressors is 15, and the neural
network is a structure with one hidden layer and 12 neurons, composed of
tangent hyperbolic functions and a linear output layer.

The corresponding nonlinear approximation with the neural network along
with Volterra series approximation up to third order is shown in Fig. 4.16. The
fit to the CFD output is 86% for both the approximations. Next the kernels
of various orders are extracted with the procedure outlined in the previous
section. Figure 4.17 shows the first and second order kernels. The value of the
h0 is −0.00186.

For a sinusoidal input, the output from the heat source model is calculated
using Eq. (4.42) in terms of higher order transfer functions and amplitude of
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Figure 4.16: Approximation of the nonlinear heat transfer rate (non-
dimensionalized with respect to the steady state value) from the
heat source for a chirp signal of varying amplitude with Neural
Network identification and Volterra series of third order approxi-
mation

the sinusoid. A comparison with the single sinusoidal response from CFD is
shown in Fig. 4.19 for A = 1.5,2 and for Str = 1.08,1.8,2.16,2.88 along with a
linear transfer function. The maximum deviation is observed at A = 1.5 and
Str = 1.08, but this is less than 6%, and an overall agreement between the
model output and CFD output is adequate for the considered range of am-
plitudes and frequencies.
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Figure 4.17: First (top) and second (bottom) order kernels (Number of the re-
gressors is 15)

4.4.4 Nonlinear Identification of the Laminar Premixed Flame

The flame model considered in the previous chapters is excited with a chirp
signal of varying amplitudes. The Str ranges from 6.2 to 49.5. Perturbation am-
plitudes are A = 0.5,0.4,0.3 and 0.1. The flame model is weakly nonlinear and
nonlinearity increases with the increasing frequency. The second harmonic
for a single sinusoid excitation at high amplitude and frequency for the forcing
velocity (at A = 0.5 and Str = 49.5) gives a peak about 7% of the fundamental
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Figure 4.18: Third order kernels for the first four fixed third dimension

harmonic.

A first estimation for the number of regressors is involved in the model struc-
ture (NFIR), and is calculated from the time step of the simulation ∆t =
1.5708× 10−4 s and estimated time lag of the laminar flame τ f = 0.0619 s as
Nu = 394. Increasing the range of frequency increases the number of regres-
sors.

The number of regressors is taken as 420. In Fig. 4.20, at the top, the approx-
imation of the flame response with neural network identification is shown.
At the bottom of Fig. 4.20, a detail of the signal with the approximation for
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Figure 4.19: Gain of the transfer function calculated from CFD for single si-
nusoidal input (A = 1.5,2, Str = 1.08,1.8,2.16,2.88), and obtained
from higher order transfer functions along with a linear transfer
function on a semi-logarithmic plot

different orders of Volterra series is shown. A second order approximation is
adequate in this case. Taking third order terms into account does not increase
the accuracy in approximation. In comparison to the previous model (CFD of
the wire in pulsating flow), the number of regressors is changed from 15 to
420. Premixed flames have larger time delays, and this has a significant effect
on the nonlinear identification because of the “curse of dimensionality”. For
the premixed flame model considered here (it allows a maximum A = 0.5, and
flashback is not allowed in the code), a second order model is adequate, but a
third order approximation has to deal with 4203 = 74.08×106 terms. When a
wide range of frequencies is taken into account, it may be computationally
expensive for the identification algorithm and post-processing with a large
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number of parameters.

4.5 Other Nonlinear Identification Strategies

4.5.1 Block Oriented Structures

In this modeling approach, static nonlinearity in the input/output is fol-
lowed before/after a linear dynamic part in Hammerstein/Wiener models. In
Hammerstein-Wiener models, static nonlinearity in both the input and out-
put is considered. A schematic representation of Hammerstein, Wiener and
Hammerstein-Wiener cascade models are shown in Fig. 4.21. An approxima-
tion as the sum of Wiener systems (cascade model) is possible for a system
that could be written as Volterra series representation [73].
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Figure 4.21: Cascade block models. Top - Hammerstein model, Middle -
Wiener model, Bottom - Hammerstein -Wiener model

Let us consider a Hammerstein model. The static input nonlinearity is
parametrized with polynomial up to degree po as,

fi n(u) = a1u +a2u2 + ...+apoupo. (4.43)

In fact, a different basis other than polynomials and different nonlinear
shapes, i.e. saturation type nonlinearity, are used. In the linear block, different
linear model structures (FIR, ARX, OE) are assumed. Let us consider an FIR
representation for the linear dynamic part which is denoted by G in Fig. 4.21.

G(z) = c0z0 + c1z−1 + ...+ cLz−L, (4.44)

where z is the shift operator. The corresponding output with these
parametrizations for a maximum filter length L becomes,

y(t ) =
po∑

k=1

L∑
l=0

cl akuk(t − l ). (4.45)
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In the identification using the above parameterizations, the aim is to find the
parameters of this nonlinear representation by minimizing the difference be-
tween the experimental measurement/ CFD simulation output and the Ham-
merstein model output.

4.5.2 Identification based on Fuzzy Logic

Fuzzy Logic

Fuzzy logic and fuzzy sets are used as function approximation and also for
input-output modeling of dynamical systems [5, 6, 130]. A system is defined
by a collection of if-then rules with fuzzy relation.

If velocity is high then nonlinearity becomes greater.

In this example, ’velocity is high’ - is an antecedent proposition and, ’nonlin-
earity becomes greater’ - is a consequent proposition. This aptly applies to
fuzzy sets. A membership function for a fuzzy set A is a mapping of the an-
tecedent (x), µA(x) : X → [0,1]. The value of µA(x) is the membership value
of x ∈ X . If µA(x) = 1, x completely belongs to fuzzy set A. Fundamental oper-
ations of union and intersection is performed on fuzzy sets with the member-
ship functions [131]. Intersection of the fuzzy sets A and B is defined as,

µA(x)∧µB (x) = min(µA(x),µB (x)). (4.46)

In Linguistic fuzzy model, the antecedent and consequent propositions are
fuzzy propositions whereas, in Takagi-Sugeno (TS) fuzzy model, the an-
tecedent is a fuzzy proposition, and the consequent is a crisp function [130,
131].

From the identification point of view, an NFIR structure which uses only past
inputs, y(t ) = F (u(t ),u(t−1), ..,u(t−Nu+1), rule i (Ri ), is expressed in linguis-
tic fuzzy model using if-then structures as,

Ri : If u(t ) is Ai 1 and... and u(t −Nu +1) is Ai Nu then y(t ) is Bi 1,
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where Ai and Bi are the antecedent and consequent linguistic terms, respec-
tively.

In order to obtain the output of the TS fuzzy model, a fuzzy inference method
is used without performing defuzzification. For a TS fuzzy model defined as,

Ri : If x1 is Ai 1 and..and xn is Ai n then yi = ci 0+ci 1x1++..+ci n xn, for i = 1, .,K

the corresponding output will be [130, 131]

y =
∑K

i=1βi yi∑K
i=1βi

, (4.47)

and degree of the fulfillment βi is defined as [131],

βi =µAi 1(x1)∧µAi 2(x2)...µAi n (xn). (4.48)

µAi k (xk) denotes the membership value of the fuzzy set Ai k .

The above equation can be viewed as local linearization for the approximation
of a nonlinear function [5, 6].

Fuzzy Clustering

Data clustering is used to divide the element of the data into clusters so that
the elements in the same clusters are as similar as possible whereas elements
of the different classes are as dissimilar as possible [6]. The degree of similarity
is defined in terms of suitable distance measure. In fuzzy clustering, elements
can belong to more than one cluster, and an associated degree of the mem-
berships of the elements to the clusters are defined.

In one of the popular fuzzy clustering algorithms, Fuzzy c-Means [17], a data
set S = [z1, z2, .., zk] is partitioned into r clusters with cluster centers C =
[c1, ...,cr ] for a given objective function. The partition matrix P M = [µi j ] ob-
tained from the algorithm denotes the degree of the membership of the ele-
ment i to cluster j . In the objective function, a parameter that controls the
fuzziness of the clusters m is included. A higher value represents greater over-
lapping of the clusters, and a typical value for m is 2 [17].
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The shape of the clusters is determined by the distance measure that is also
included in the objective function. Fuzzy c-Means algorithm searches for the
spherical clusters, whereas Gustafson-Kessel clustering algorithm finds the el-
lipsoidal clusters [56]. Clusters obtained with Gustafson-Kessel method can
be represented by a number of TS rules [6]. A specific procedure, where the
fuzzy sets or so-called membership functions are obtained by projecting the
clusters onto the antecedent variables (which are the regressors in the non-
linear identification problem), is utilized to find these rules. Details about the
procedure is found in [6] .

Identification of CFD Model of the Wire Heat Source

A multilevel (7 level) excitation signal is chosen as the input to the heat source
[11, 12]. The input-output signals (normalized with respect to the steady state
values) are shown in Fig. 4.22. Time step of the CFD computation is ∆t =
3× 10−4 s , and the length of the signal is M = 1468. The input-output data
set (time series generated from unsteady CFD) is used in Fuzzy-Identification
Toolbox [4]. The number of regressors Nu = 10, number of clusters r = 13, and
the fuzziness exponent m = 2 are chosen as the parameters for the identifica-
tion algorithm. Membership functions are obtained from the projection of the
clusters onto the regressors. The membership degree of the regressors to each
of the clusters is shown in Fig. 4.23 with the membership functions. The first
plot represents the degree of membership of the first regressor (u(t )) to each
of the clusters with the shown functions.
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Figure 4.22: Above - a multi level excitation signal and a detail of the signal,
Below - heat transfer rate of the wire and a detail of the response

Validation is performed against single sinusoids. Figure 4.24 shows CFD
output and output from fuzzy model for A = 1,1.5,2,2.65, and Str =
1.08,1.80,1.80 and 2.67. The degree of the fits between the fuzzy model out-
puts and CFD model outputs are 98%, 98%, 95% and 92%, respectively.
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Figure 4.23: Membership functions, where first plot shows the membership
degree of the regressor u(k) to each of the clusters

Table 4.1 and Table 4.2 show the consequent parameters and cluster centers
obtained from identification algorithm. The first two rules from the table are
read as,
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Figure 4.24: Validation for single sinusoids Top - A = 1,1.5 and Str = 1.08,1.80
Bottom - A = 2,2.65 and Str = 1.8,2.67
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1. If u is A11 and u(k −1) is A12 and u(k −2) is A13 and u(k −3) is A14 and

u(k −4) is A15 and u(k −5) is A16 and u(k −6) is A17 and u(k −7) is A18

and u(k −8) is A19 and u(k −9) is A110 then

y(k) = 6.2 ·10e−2u +4.5 ·10e−2u(k −1)+4.2 ·10e−2u(k −2)+6.4 ·10e−2u(k −3)

+2.6 ·10e−3u(k −4)+5.5 ·10e−2u(k −5)−6.2 ·10e−2u(k −6)+6.1 ·10e−2u(k −7)

−5.2 ·10e−2u(k −8)−1.1 ·10e−2u(k −9)+9.7 ·10e−2

2. If u is A21 and u(k −1) is A22 and u(k −2) is A23 and u(k −3) is A24 and

u(k −4) is A25 and u(k −5) is A26 and u(k −6) is A27 and u(k −7) is A28

and u(k −8) is A29 and u(k −9) is A210 then

y(k) =−1.0 ·10e−1u +7.5 ·10e−2u(k −1)−3.3 ·10e−1u(k −2)+1.2 ·10e−1u(k −3)

−1.7 ·10e−1u(k −4)+1.5 ·10e−1u(k −5)−2.1 ·10e−1u(k −6)+4.2 ·10e−1u(k −7)

−5.7 ·10e−2u(k −8)+1.7 ·10e−1u(k −9)−7.8 ·10e−1
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4.6 Discussions and Conclusions

In this chapter different approaches of nonlinear system identification have
been explored with the aim of obtaining a dynamic model of nonlinear heat
source. In this modeling approach, a dynamic model is constructed using only
the input-output data set that may be generated from an unsteady CFD com-
putation or obtained from experiment. This affords flexibility for the formula-
tion of the heat source model (refer to “Discussions and Conclusions” section
of the “Linear System Identification” chapter).

Nonlinear system identification problem is interpreted as a general nonlin-
ear functional (function of the past inputs and past outputs) approximation.
In the first step of the identification, a suitable excitation signal is chosen in
order to excite all relevant modes as well as amplitudes of interest. A broad-
band signal with high amplitude, a chirp signal with varying amplitudes and
a multi-level signal are used for the excitation signal. A priori knowledge of
the approximate time lag of the system is useful, but this information could
be obtained as a black-box approach as well. The number of past inputs and
outputs that should be retained in the model is then selected according to
the time step of the simulation and time lag of the system. Laminar premixed
flame has large delay time compared to wire in pulsating flow. This makes the
nonlinear identification of the premixed flame challenging when large ranges
of operating conditions (frequencies and amplitudes) are considered as it has
been shown in section 4.4 of this chapter.

Another issue is whether the full thermo-acoustic system is simulated in time
domain or frequency domain. In the former case, equation error type model
structures are useless since they require actual outputs for the set of regressor.
Output error models, which make use of outputs from the model, may lead to
instability and typical problems of the nonlinear optimization as discussed in
section 4.2. First, an equation error type model (one step ahead prediction) for
a parametrization of the input-output modeling with the polynomials up to
second order is considered. The approach is extended into the frequency do-
main with two different approaches; with a harmonic balance approach and a
harmonic probing approach, which provides the nonlinear transfer function
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and higher order transfer function of the heat source. In the former case, a
system of equations for the coefficients of the harmonic ansatz, and in the lat-
ter case, a recursive relation to compute the higher order transfer functions is
obtained. The latter approach is computationally inefficient when the compu-
tation of the transfer functions with order more than four is considered. But
generally, a few higher order transfer functions are sufficient to get conver-
gence in the response. These nonlinear transfer functions are used for the full
thermo-acoustic system modeling in frequency domain, i.e. in a sinusoidal
describing function approach.

On the other hand, universal approximation capabilities of the neural net-
works can be used to capture the nonlinearity in the response of the heat
source. Neural networks can approximate any nonlinearity up to a desired
degree of accuracy with layered structures using activation functions like sig-
moid. A polynomial type representation is obtained with the help of neural
networks either by using polynomials as activation functions or approximat-
ing the sigmoid with polynomials around the bias term. This type of represen-
tation (polynomial type input-output) of the nonlinearity in the heat source
response has greater advantages when it is considered to be extended into fre-
quency domain. The identified heat source with neural network is also used
in the time domain simulation of thermo-acoustic system.

Fuzzy based identification has shown to be used for general functional ap-
proximation and can also be used to obtain nonlinear dynamic models from
the observation of the input-output data set. They give a transparent repre-
sentation of the nonlinearity, and the input-output is stated with linguistic
interpretation in terms of rules.

In this chapter, various nonlinear identification methods have been consid-
ered. Most of the procedures have similar steps (input signal design, mini-
mization of the cost function, and validation) and they differ only in approx-
imating the functional representation with regressors. Nonlinearities are di-
verse, and obtaining a dynamic model using only the input-output data set is
generally a challenging task. It requires much trial (optimum excitation sig-
nals, selection of the memory lengths and common problems of nonlinear
optimization) and error efforts. In time domain, one can start with general
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function approximations like fuzzy models and neural networks. To get the
nonlinear transfer function of the heat source from the identification, exten-
sion of the polynomial type equation error models into frequency domain is
considered. This has the advantage of requiring a smaller number of regres-
sors and fast convergence rates for the nonlinear optimization problem (re-
fer to section 4.3 for the harmonic probing and harmonic balance approach).
Higher order transfer functions, which are the extension of the linear transfer
functions to the nonlinear regime, may be computed economically by extend-
ing the neural network into frequency domain (refer to section 4.4). This then
serves as a basis for the system modeling strategy with coupled modes in the
frequency domain. In the previous studies for modeling approaches of the full
thermo-acoustic systems, sinusoidal describing function was the only method
considered in the frequency domain, since an adequate representation of the
nonlinear heat source in the frequency domain was not available. Using the
concept of higher order transfer functions, system modeling that also allows
to consider the modal coupling is possible (refer to the section “Frequency
Domain System Model with Coupled Modes” of the chapter “Prediction and
Analysis of Thermo-Acoustic Limit Cycles”).
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5 Low Order Model of the Heat Source
with POD

Obtaining a nonlinear dynamic model from system identification (refer to
“Nonlinear System Identification” chapter) is a challenging task since the
functional form of the approximation, the number of regressors that should
be retained in the model structure, optimum initial conditions and local min-
imum problems of nonlinear optimization are unknown. Creation of dynamic
models from nonlinear system identification generally requires considerable
trial and error. On the other hand, using governing equations of the system
to obtain a nonlinear low order model of the system could be an alternative to
nonlinear system identification. In this approach, system variables (velocities,
temperature) are expressed as superposition of basis functions which consti-
tute a complete set of basis. Basis functions satisfy the orthogonality condi-
tion, and different basis, such as Lagrange and Fourier, can be used. Proper
Orthogonal Decomposition (POD) technique provides basis functions (POD
modes) that are optimal in the sense that the energy is captured with the least
number of modes. Low order models of the system can be obtained by pro-
jecting the governing system equations onto the POD basis.

POD is widely used in capturing the coherent structures in turbulent flow
[15,125]. It has statistical basis and is equivalent to principal component anal-
ysis and the Karhunen-Loeve method used in statistics. The equivalence of
singular value decomposition, principal component analysis and Karhunen-
Loeve decomposition has been discussed by Wu et al. [140]. Reduced order
models for the flow past bluff bodies have been obtained by POD. The inter-
esting features of these flow types have been successfully captured by POD
[34, 51, 85].

The application of POD to heat transfer problems has been rarely studied.
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Hasan and Sanghi [58] performed POD analysis of 2D flow in a thermally
driven rotating cylinder and obtained a reduced order model. A hybrid ap-
proach was utilized to estimate the flow field for an intermediate Reynolds
number using the hybrid POD modes. Huang and Baumann [63] have ob-
tained a low order model of the laminar premixed flame heat source and cou-
pled this model with system acoustics to get the amplitude of the limit cycle
oscillation.

Our aim in this chapter is to obtain a nonlinear dynamic model of the heat
source with POD. The incompressible Navier-Stokes equation along with the
energy equation are used as the governing system equations. The aim is to
obtain a heat source model valid for a range of operating conditions, which
include amplitudes and frequencies of the flow pulsating velocity. A multi-
variate approach, which collects data from different databases, is utilized to
describe the dynamics within the desired range of amplitudes and frequen-
cies. The forcing at the inlet (fluctuating part of the velocity) is introduced ex-
plicitly in the ordinary differential equations (ODE) of the low order model.
The non-vanishing pressure term resulting from the incompressible Navier-
Stokes equation is included using a calibration technique [51]. This nonlinear
heat source model can be used to predict the limit cycle oscillations for the full
coupled thermo-acoustic system in time domain. Nonlinear transfer function
can also be calculated from this low order model. A flow chart of the proposed
approach is shown in Fig. 5.1.

Figure 5.1: Flow chart of the approach to obtain a low order model of the heat
source
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5.1 Low Order Model with Proper Orthogonal Decomposition

5.1 Low Order Model with Proper Orthogonal Decomposition

5.1.1 Computing POD Modes

An ensemble of data, either from numerical simulations or experiments, can
be expressed in terms of a reduced order basis. The data set is projected onto
the new basis, and the difference between the original data and the projected
data is minimized in a least square sense.

A data set obtained from unsteady CFD calculations is denoted by q . It is then
expanded in terms of basis functions as,

q j =
∑

a j iΦi , j = 1,2, ..., M , i = 1,2, ..., N , (5.1)

where j is the time index and i is the index for the mode number truncated
at N . The modes are then calculated by minimizing the distance between the
original data and approximated (projected) data [78],∣∣∣∣q −Proj(q)

∣∣∣∣→ min. (5.2)

This is equivalent to maximizing the inner product of ensemble average, nor-
malized by the inner product of the basis vectors [78],

〈q,Φ〉/〈Φ,Φ〉→ max. (5.3)

For two vector field variables~a and~b, the inner product is defined as the inte-
gration of the scalar product of the variables over the domainΩ,〈

~a,~b
〉
=

∫
Ω

(
3∑

i=1

ai bi

)
dΩ. (5.4)

The expression in Eq.( 5.3) is then reformulated as an integral eigenvalue
problem. The integral is Fredholm integral of 1st type,∫

Ω
〈q(x)

⊗
q(x ′)〉Φ(x ′)d x ′ =λΦ(x). (5.5)

The first integrand is the autocorrelation tensor. This integral can either be
solved numerically or by using singular value decomposition. The first mode
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Low Order Model of the Heat Source with POD

captures the greatest fraction of the energy, and the second mode gets the sec-
ond greatest portion of energy. This energy is associated with the norm that is
defined, and is not necessarily the energy of the system under investigation.

The POD expansion is generally used for the fluctuating part of the variables,
but when the total values (sum of the fluctuating and the mean values) are ex-
pressed as expansion of POD modes, the first mode shows the mean of the
field variables. POD can be used as scalar or vectorial mode. In the scalar
mode, the number of ordinary differential equations after projection increases
by a factor of the number of field variables used in the POD expansion. How-
ever, vectorial POD modes show good long term behavior compared to the
scalar POD modes [118].

5.1.2 Galerkin Projection

Velocities and temperature are expressed in terms of vectorial modes as,

[u(~x, t ), v(~x, t ),T (~x, t )] =
N∑

k=1

ak(t )[φu
k (~x),φv

k(~x),φT
k (~x)]. (5.6)

(The velocities and the temperature are nondimensionalised, refer to the gov-
erning equations of the heated plate in “Transient Simulation of the Heat
Source” chapter.) Substitution in the incompressible Navier-Stokes and en-
ergy equations yields,

N∑
k=1

d ak

d t
[φu

k ,φv
k ,φT

k ] =
N∑

k=1

ak

Re

[
∂2φu

k

∂x2
+ ∂2φu

k

∂y2
,
∂2φv

k

∂x2
+ ∂2φv

k

∂y2
,

1

Pr
(
∂2φT

k

∂x2
+ ∂2φT

k

∂y2
)

]

+
N∑

k=1

N∑
l=1

ak al

[
−φu

k

∂φu
l

∂x
−φv

k

∂φu
l

∂y
,−φu

k

∂φv
l

∂x
−φv

k

∂φv
l

∂y
,−φu

k

∂φT
l

∂x
−φv

k

∂φT
l

∂y

]

+
[−∂p(~x, t )

∂x
,−∂p(~x, t )

∂y
,0

]
,

(5.7)

92



5.1 Low Order Model with Proper Orthogonal Decomposition

where the coefficients a(t ) depend only on time t , while the modal functions
φ(~x) depend only on spatial coordinates~x.

Using the orthogonality of the POD modes, namely∫
Ω
φkφl dΩ= δkl, (5.8)

where δkl represents the Kronecker delta function, the reduced order model
is obtained as

ȧm(t ) =
N∑

k=1

ak(t )

Re
〈M (2)

k (~x),Rm(~x)〉

+
N∑

k=1

N∑
l=1

ak(t )al (t )〈M (1)
kl (~x),Rm(~x)〉+〈−5p(~x, t ),Sm(~x)〉,

(5.9)

where functions R(~x), S(~x) and M (i )(~x) are defined as,

Rm = [φu
m,φv

m,φT
m],

Sm = [φu
m, φv

m],

M (1)
kl =

[
−φu

k

∂φu
l

∂x
−φv

k

∂φu
l

∂y
,−φu

k

∂φv
l

∂x
−φv

k

∂φv
l

∂y
,−φu

k

∂φT
l

∂x
−φv

k

∂φT
l

∂y

]
,

M (2)
k =

[
∂2φu

k

∂x2
+ ∂2φu

k

∂y2
,
∂2φv

k

∂x2
+ ∂2φv

k

∂y2
,

1

Pr

(
∂2φT

k

∂x2
+ ∂2φT

k

∂y2

)]
.

For clarity of notation, ~x-dependencies are not shown explicitly in the above
equations.

5.1.3 Incorporating the term related to the pressure

The formulation for the low order model in Eq. (5.9) has an inner product re-
lated to the pressure,

〈5p(~x, t ),Sm(~x)〉 =
∫
Ω

(5p(~x, t )).Sm(~x)dΩ=

=
∫
Ω
5.(p(~x)Sm(~x))dΩ−

∫
Ω

p(~x)5 .Sm(~x)dΩ=
∫
Γ

p(~x, t )Sm(~x)~ndΩ, (5.10)
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where −→n is outward normal vector. The above relation is obtained from
Green’s theorem and divergence free properties of the POD modes. The only
contribution is from the boundaries. At the inlet and side boundaries there is
contribution from pressure, and this inner product does not vanish. Different
approaches are available to include this non-vanishing term. Noack et al. [95]
utilized the pressure-Poisson equation, in which the inner product results in
additional quadratic terms in the Galerkin low order model. An analytical pro-
cedure to compute the resulting contribution was presented. In an alternative
approach, Noack et al. [95] utilized an empirical pressure model which uses
the following linear form,

〈−5p(~x, t ),Sm(~x)〉 =
N∑

k=1

ak(t )Ckm. (5.11)

Based on the information for the evolution coefficients, which is obtained
from the projection of the data onto the modes and the time dependent val-
ues of the pressure on the chosen grid points, a system of equation will be
set to compute the C coefficients. The above equation for pressure snapshots
results in an overdetermined system of equations for the C coefficients since
the number of modes retained in the model is much less than the number of
snapshots. In another approach proposed by Galletti et al. [51], the same lin-
ear relation in Eq. (5.11) is assumed for the inner product. However, to find
the coefficients, an optimization problem is proposed. We use the approach
of Galletti et al. in this study. The reference values of the evolution coefficients
are obtained by projecting the snapshot data onto the POD modes.

ãk(ti ) = 〈Snapshot(~x, ti ),φk(~x)〉, (5.12)

where k is an index related to the mode number and i is the time index. The
optimization problem is constructed by finding the minimum of

V =
M∑

m=1

N∑
k=1

( ˙̃ak(tm)− ȧk(tm))2 → min. (5.13)
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5.1 Low Order Model with Proper Orthogonal Decomposition

Figure 5.2: Domain decomposition into the inlet boundary domain and the
inner domain for the integral computation resulting from the in-
ner products for a discrete case

5.1.4 Incorporating the Inlet Boundary Condition

On incorporating the inner product related to the pressure gradient, the re-
duced order model becomes,

ȧm(t ) =
N∑

k=1

ak(t )

Re
〈M (2)

k (~x),Rm(~x)〉+
N∑

k=1

N∑
l=1

ak(t )al (t )〈M (1)
kl (~x),Rm(~x)〉+ak(t )Ckm.

(5.14)
Based on Fig. 5.1, the main aim is to obtain the input-output relation, where
the input corresponds to different amplitudes and frequencies, and the out-
put is the evolution coefficient of the temperature modes. The structure of the
Eq. (5.14) does not provide any useful information, since this relation is in-
cluded implicitly. The structure can be rearranged to obtain the effect of input
in the reduced order model with an approach proposed by Efe [41], and Efe
and Özbay [42].

For a discrete case, the decomposition of the domain is shown in Fig. 5.2 with
the inlet boundary and inner domain. The total domain D can be written as a
sum of the sections Γ1, Γ2 , and Γh . The inlet is composed of the grid points
which are located at the midpoint of section Γ1 along the vertical axis.

D → Domain, N → InnerDomain, Γ1 → Inlet, D/Γ1 = N ,Γ1∪Γ2 . . .∪Γh = D.

The inner product over the domain can be written as a sum of inner products
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over the inlet boundary and inner domain.

〈a,b〉D =
∫

D
ab dD =

h∑
i=1

∫
Γi

ab dΓi =
∫
Γ1

ab dΓ1+
h∑

i=2

∫
Γi

ab dΓi = 〈a,b〉Γ1+〈a,b〉N .

(5.15)
The forcing condition at the inlet is expressed as,

f (t ) =
N∑

k=1

ak(t )Rk(~x)Γ1. (5.16)

This then can be written as,

am(t )R(m)B = f (t )−
N∑

k 6=m

ak(t )Rk(~x)Γ1. (5.17)

Expressing the low order model as a sum of the inlet boundary and the inner
domain yields,

ȧm(t ) = 1

Re

N∑
k=1

ak(t )〈M (2)
k (~x),Rm(~x)〉Γ1 +

N∑
k=1

N∑
l=1

ak(t )al (t )〈M (1)
kl (~x),Rm(~x)〉Γ1.

(5.18)

This further can be written as,

ȧm(t ) = am(t )

Re
〈M (2)

m (~x),Rm(~x)〉Γ1 +
N∑

k 6=m

ak(t )

Re
〈M (2)

k (~x),Rm(~x)〉N

+
N∑

k=1

N∑
l=1

ak(t )al (t )〈M (1)
kl (~x),Rm(~x)〉Γ1 +

1

Re

N∑
k=1

ak(t )〈M (2)
k (~x),Rm(~x)〉N

+
N∑

k=1

N∑
l=1

ak(t )al (t )〈M (1)
kl (~x),Rm(~x)〉N +

N∑
k=1

ak(t )Ckm. (5.19)

The first inner product over the inlet boundary in Eq. (5.19) can be written as,

am(t )

Re
〈M (2)

m (~x),Rm(~x)〉Γ1 = 〈M (2)
m (~x)

Re
, f (t )〉Γ1 −

N∑
k=m

ak(t )

Re
〈M (2)

m (~x),Rk(~x)〉Γ1.

(5.20)
Substituting Eq. (5.20) in Eq. (5.19) yields,

ȧm(t ) = 〈M (2)
m (~x)

Re
, f (t )〉Γ1 +

N∑
k=1

ak(t )

Re
(〈M (2)

k (~x),Rm(~x)〉D −〈M (2)
m (~x),Rk(~x)〉Γ1).

(5.21)
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The second inner product over the inlet boundary in Eq. (5.18) can be ex-
pressed as,

N∑
k=1

N∑
l=1

ak(t )al (t )〈M (1)
kl (~x),Rm(~x)〉Γ1 =

N∑
k=1

N∑
l=1

ak(t )al (t )〈−φu
k (~x)

∂φu
l (~x)

∂x
,φu

m(~x)〉Γ1

= f (t )
N∑

l=1

al (t )〈∂φ
u
l (~x)

∂x
,φu

m(~x)〉Γ1. (5.22)

The final form of the reduced order model with the dynamic boundary condi-
tion incorporated at the inlet is,

ȧm(t ) = f (t )

Re
〈M (2)

m (~x),1〉Γ1 + 1

Re

N∑
k=1

ak(t )(〈M (2)
k (~x),Rm(~x)〉D −〈M (2)

m (~x),Rk(~x)〉Γ1)

+ f (t )
N∑

l=1

al (t )〈∂φ
u
l (~x)

∂x
,φu

m(~x)〉Γ1 +
N∑

k=1

ak(t )Ckm

+
N∑

k=1

N∑
l=1

ak(t )al (t )〈M (1)
kl (~x),Rm(~x)〉N . (5.23)

5.1.5 Multivariate Approach

To construct a low order model for the heat source that can be used over
a range of amplitudes and frequencies, the snapshots from the different
databases are taken and the multivariate modes are calculated from this data
set. In the multivariate model, the aim is to predict the response of the system
using POD modes, such that a system limit cycle can be computed with fre-
quencies and amplitudes that are not known a priori. The intermediate values
for the calibration matrices C are obtained by applying a Lagrange interpo-
lation. In the first case three different A (0.3, 1 and 2) at a fixed Str = 10 is
considered. The validation case is for A = 1.2 at Str = 10. In the next case three
different Str (10, 17.5 and 25) at a fixed A = 2 is considered. The validation
case is chosen at A = 2 and at Str = 15. The number of modes considered for
these two cases is 10. As the next case, three different A (0.3, 1 and 2) and three
different Str (15, 17.5,and 25) are considered. For the calibration matrices C ,
a two dimensional Lagrange interpolation is used. The test case is chosen as
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A = 1.2 and Str = 20. In this test case, the first 15 POD modes are taken into ac-
count. Finally a low order model with 15 POD modes is constructed between
A in the range of 0.3-3.5, and Str in the range of 45-75 (which covers the fun-
damental frequency of the limit cycle for a tube of 1 m length with open-open
boundary conditions) taking into account 18 unsteady CFD calculations. The
case A = 0.3 is chosen as the limit of the linear regime for the forcing, since the
amplitude of the second harmonic peak in an FFT diagram reaches less than
5% of the fundamental harmonic.

5.2 Results

5.2.1 POD modes and eigenspectra at single harmonic excitation

First, a sinusoidal excitation at Str = 10 and A = 2 is considered. The POD
modes are computed with the singular value decomposition of the snapshot
matrix, which is obtained from the computational field for the two veloc-
ity components and temperature. The grid size for the data extraction is 100
points along the y-axis, and 200 points along the x-axis (parallel to the heated
section).
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         1                          92

          2                          96
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          6                          98.5

         10                         99.5

Figure 5.3: Eigenspectra on a semi-logarithmic scale for Str = 10 and A = 2
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Fig. 5.3 shows the eigenvalues, which represent the energy level captured by
each of the POD modes on a semi-logarithmic scale. The energy levels for each
of the modes are represented in a hierarchical way. The first ten modes capture
99.5% of the energy associated with the selected inner product.

Figure 5.4(a) and Figure 5.4(b) show the first six POD modes for the u velocity
component and temperature along with the heated flat section (between co-
ordinates 0 and 1 along the horizontal direction), respectively. The first mode
gives the mean value, as the mean values have not been subtracted from the
ensemble a priori. The higher modes develop into smaller scales with less en-
ergy. In our case, the smaller scales represent the nonlinear effects, while the
linear effects are captured by the first few modes. Evolution coefficients for
the POD modes, which are obtained by the projection of the data on the POD
modes for Str = 10, at A = 0.3 and A = 2, are shown in Fig. 5.2.1. These coef-
ficients will be used as the reference values when constructing the low order
model after the projection of the governing system equations onto the POD
basis which has been discussed in the previous sections. The sixth and seventh
coefficients for A = 2 have higher frequencies compared to A = 0.3, which is
an indication of the nonlinearity.

5.2.2 Mono-variate model: constant amplitude or constant frequency

In the mono-variate approach, only one parameter, i.e. either amplitude or
frequency of the forcing at the inlet, of the low order model is changed in
Eq. (5.23). The POD modes are computed from the singular value decompo-
sition of the snapshot matrix that is taken either for a range of frequencies or
amplitudes from the unsteady CFD computations. For any frequency or am-
plitude within the range considered, the field variables can be represented as
a superposition of these POD modes.

First, for the snapshot matrix, while A = 2, three different Str (10, 17.5 and 25)
are considered. Figure 5.6(a) shows the evolution coefficients for the six POD
modes obtained with POD based low order model (POD/LOM) and from the
unsteady CFD calculations for Str = 15. Next, for the snapshot matrix, Str is
kept constant at 10, and three different A (0.3, 1 and 2) are considered. As the
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Figure 5.4: First six POD modes for U-Velocity and Temperature (left 1-3-5,
right 2-4-6). The heat source is located between the coordinates 0
and 1 along the horizontal direction
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Figure 5.5: Evolution coefficients at Strouhal number 10 and for A = 0.3
(dashed lines) and A = 2 (continuous lines). On the left for 2-4-6th
POD modes, and on the right for 3-5-7th POD modes
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Figure 5.6: Evolution coefficients (left: 2, 5 right: 3, 7) with CFD (continuous
line) and with POD/LOM (circles)
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validation case, for A = 1.2, the evolution coefficients of the six POD modes
are compared in Fig. 5.6(b) from the CFD (projected data onto POD basis) and
the POD based low order model (model described in Eq. (5.23)). In both these
cases (constant amplitude or constant frequency), the number of modes con-
sidered in the low order model is 10. Considering 15 modes leads to instability
in the ODEs describing the evolution coefficients.

5.2.3 Bivariate model for a range of amplitudes and frequencies
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Figure 5.7: Evolution coefficients (left: 2, 4 right: 3, 6) at A = 1.2, and Str = 20
with CFD (continuous line) and with POD/LOM (circles)

In the bivariate model, both the amplitudes and frequencies of the forcing
function at the inlet boundary are changed. In this way a low order model of
the heat source that should be valid for a range of frequencies and amplitudes
is constructed. The amplitude and the frequency of the forcing considered in
the snapshot matrix are chosen as A = 0.3,1, and2, and Str = 10,17.5, and 25.
In total, nine different unsteady CFD computations are collected in the data
set. Using the POD modes calculated from this snapshot matrix, it should be
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possible to express any operating point within this range as the superposi-
tion of these modes. The first 15 POD modes are considered for the low order
model. It was observed that with an increasing number of modes, the ODEs
for the evolution coefficients become unstable especially for higher Strouhal
number (above 20). On the other hand, when only the first 10 POD modes are
considered, the accuracy in the approximation decreases, especially for high
velocity amplitude ratios. The evolution coefficients for a test case at A = 1.2
and Str = 20 is shown in Fig. 5.7.

The time domain evolution of any field variable at any location of the compu-
tational domain can be written in terms of the expansion with the POD modes
after the evolution coefficients are obtained from the low order model. For the
temperature, the expansion can be written as,

T (x, y, t ) =
15∑

k=1

ak(t )ΦT
k (x, y). (5.24)
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Figure 5.8: Evolution of temperature at two points (located one element
length above the heated plate) with CFD (continuous line) and
with POD/LOM (circles)

The heat transfer at the wall for a laminar flow is computed by the Fourier’s
Law,

Qw =−λ f
∂T

∂y

∣∣∣∣
w

= h(Tw −T∞), (5.25)

where thermal conductivity of the fluid is λ f , heat transfer coefficient is h and
wall normal coordinate is y . In the numerical simulation, the wall heat transfer
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is computed with the approximation of the temperature gradient at the wall
based on the nearest element to the wall. For small perturbations (amplitude
of the unsteady velocity at the inlet), boundary layer equations could also be
used to obtain simplified expressions for the unsteady heat transfer rate at the
wall [122]. When the perturbation levels are comparable to that of the mean,
nonlinear contributions in the boundary layer cannot be neglected further
(e.g. nonlinear streaming part) [133]. In this case, a semi-analytical solution
is obtained and a part of the problem is solved numerically. In Fig. 5.8(a) and
Fig. 5.8(b), the evolution of the temperature is shown for two points along the
heated section, just one element length above it. 200 equidistant grid points
are considered in the x-direction (parallel to the heated section) for the snap-
shot matrix, where the heated part corresponds to the points between the 73rd
and 83rd grid points.

5.2.4 Nonlinear transfer function of the heat source from low order model

Next, Str in the range of 45 to 75, and A 0.3 to 3.5 are considered. Three Str (45,
60 and 75) values and six A (0.3, 1, 2, 2.5, 3 and 3.5) values are considered. In
this case, the limit of the linear regime is taken as A = 0.3 since for Str ranges
considered, a sinusoid forcing at A = 0.3 gives a second harmonic peak which
is less than 5% of the fundamental. In total, 18 CFD calculations are collected
for the snapshot matrix. All data within this range is expressed as expansion
of the POD modes calculated from this data set. The range of the frequency
will cover the limit cycle fundamental frequency of an open-open duct of 1 m
length. 15 POD modes are considered in the low order model. Figure 5.9 shows
the normalized averaged heat transfer rate at the heated section with respect
to the steady state value for A = 2.5 ,A = 3.5 and Str = 60 (left) / Str = 75 (right).
The nonlinearity in the heat transfer rate, which appears as distortions from
a pure sinusoid, is captured with the low order model based on POD with 15
modes. The approximations with 13 and 10 POD modes are also shown in the
plots.

Figure 5.10 shows the gain and the phase of the transfer function at Str = 60
for the amplitude range considered from the low order model and the CFD.
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Figure 5.9: Non-dimensionalized (with respect to steady state value) averaged
heat transfer rate at the heated section – CFD vs. POD/LOM re-
sults. Left: A = 2.5, Str = 60, Right: A = 3.5, Str = 5
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Figure 5.11: Shape of the nonlinearity for gain and phase of the transfer func-
tion obtained from POD based low order model

The approximation of the transfer function from the low order models with
different number of POD modes is also shown. The accuracy in the gain with
the model with 13 modes is comparable to that with 15 modes, whereas it
deviates in the phase especially for low amplitudes. A change in length of the
heated plate will change the Reynolds number and this may have an effect
on the transfer function. Figure 5.11 shows the nonlinear map for the transfer
function as a function of Str and A considered within the range obtained from
the low order model. This simplified representation of nonlinearity of the heat
source could be used in the “sinusoidal describing function” model for a full
thermo-acoustic system to predict limit cycle amplitudes [96].

5.3 Discussion and Conclusion

A nonlinear low order model for the heat transfer dynamics of a heated plate
in pulsating flow has been obtained with POD technique. POD modes have
been used as the basis for the representation of the system variables (velocities
and temperature) in the low dimensional space. The snapshot matrix has been
constructed from unsteady CFD computations that have been performed for
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a range of amplitudes and frequencies. POD modes have been calculated by
singular value decomposition of this matrix. Nonlinear dynamic model of the
heat source has been obtained by projecting the governing equations of the
system (unsteady Navier-Stokes and energy) onto the POD basis. The effect of
the pressure term resulting from incompressibility has been included with a
calibration method. The desired input (forcing velocity at the inlet) and output
(temperature) have been written explicitly in the low order model equations.

It has been observed that ODEs describing the evolution of POD modes may
lead to unstable results depending on the number of modes taken (generally
for a large number of modes). On the other hand, nonlinearity could not be
represented adequately when small number of modes were taken. One may
also get unstable results for the long term behavior of the ODEs.

Low order model obtained from POD describes the heat source for the de-
sired range of pulsating amplitudes and frequencies. It could be coupled with
the time domain simulation of the full thermo-acoustic system. Alternatively,
nonlinear transfer function can be obtained from this low order model.

In this study, data was collected for single sinusoid forcing at different ampli-
tudes and frequencies. The system could be excited with a broadband forcing
at high amplitudes, a chirp signal with varying amplitudes or with a multilevel
excitation signal to cover the desired range of amplitudes and frequencies. Af-
ter such an excitation, POD modes were seen to describe the system for the
spatial description of the operating range. ODEs of the modal coefficient de-
scribe the time dependent part. This then provides a powerful alternative for
the nonlinear system identification to get a nonlinear dynamic model of the
heat source (refer to “Conclusion and Outlook” section of the “Nonlinear Sys-
tem Identification” chapter).

A very simple geometry was also considered for the sake of simplicity in the
numerical processing with POD. More complex geometrical configurations,
such as cylinder in pulsating flow, can also be considered. It requires only
accurate numerical integration and differentiation resulting from the inner
products (as functions of POD modes) on the computational domain. The ex-
plicit Re dependence of the equations can be used to include the effect of tur-
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bulence. The computations for several Re numbers from a direct numerical
simulation can be collected in the snapshot matrices to construct the POD
modes. Flow field for an intermediate Re number can be predicted using the
low order model equations.
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6 Prediction and Analysis of
Thermo-Acoustic Limit Cycles

Nonlinear effects of the thermo-acoustic system limit the growth of unstable
mode of oscillation and lead to steady state periodic nonlinear oscillations
which are called “limit cycle”. If it is not possible to avoid thermo-acoustic in-
stabilities altogether, then it becomes important to predict the amplitude of
the nonlinear oscillations. This is required since the detrimental effects of in-
stabilities on the combustor lifetime and noise emissions depend on the limit
cycle amplitude.

As discussed in the previous chapters, accurate predictions of the stability lim-
its and limit cycle amplitudes require an adequate heat source model valid
in the nonlinear regime, and also a suitable system model. CFD computa-
tions of the full thermo-acoustic system could model limit cycle. These com-
putations generally demand huge computational resources and time since
thermo-acoustic instabilities involve various physical phonemona covering
a wide range of length and time scales [108, 138]. Moreover, the simulations
are performed for one set of parameters in one simulation [33]. In the design
stage, the limit cycle amplitude dependency on various system parameters
has to be checked, which makes the full CFD modeling approach of thermo-
acoustic instability unfeasible.

Linearized Navier-Stokes equation yields the inhomogeneous wave equation
for pressure fluctuations with a source term, which represents the heat release
rate from combustion [100, 101]. Approximate solution of the partial differen-
tial equation for the inhomogeneous wave equation can be obtained by the
Galerkin method [31, 32, 145]. In the Galerkin method, acoustic velocity and
pressure are expressed in terms of basis functions which satisfy the boundary
conditions and constitute a complete set of basis. The computations will be
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economical compared to the former approach. A nonlinear dynamic model
of the heat source has been obtained with neural network based system iden-
tification as discussed in detail in the chapter “Nonlinear System Identifica-
tion”. This heat source model results in a representation with many constant
delays. A delay differential equation with many delay terms is obtained when
this heat source model is used in the Galerkin time domain equations. Numer-
ical integration of this delay differential system is also computationally expen-
sive (time consuming). The inhomogeneous wave equation and the Galerkin
method can predict limit cycle amplitudes.

On the other hand, frequency domain system models are attractive since
they require solving a set of algebraic equations instead of partial differen-
tial equations. Linear network models of thermo-acoustic system have been
developed [35, 38, 45, 70, 74, 111]. In this approach, individual elements of
thermo-acoustic network are described by their transfer functions/matrices
which could be derived analytically, measured from the experiments or com-
puted from the numerical simulations. Polifke and co-workers have used lin-
ear system identification method as an effective tool to construct transfer
functions/matrices using input-output data set generated from unsteady CFD
computations [64, 65, 110, 132]. Network models of the thermo-acoustic sys-
tems can predict the frequency and the growth rate of the oscillations, but are
incapable of predicting the limit cycle amplitudes.

An extension of the linear network models to the nonlinear regime has been
achieved with describing function method [36, 96]. Sinusoidal describing
function is an amplitude dependent frequency response of the nonlinear el-
ement to sinusoidal input [36, 52, 96]. The input to the heat source (the only
nonlinear element in our case) is assumed to be sinusoidal and the nonlinear
element produces higher harmonics, which are at multiple integers of the fun-
damental harmonic. When the system acoustic filters these higher harmonics,
an approximation for the limit cycle amplitude is possible. Describing func-
tion method neglects the effect of coupling between modes since it is a one-
mode (sinusoid) approximation.

Our aim in this chapter is to develop a coupled modes system model in the
frequency domain. In this approach, acoustic velocity and pressure are ex-
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pressed as superposition of the modes. Equations have been derived from the
Galerkin time domain system model. Network models can also be extended
to the nonlinear regime (see Appendix C for a derivation). This approach goes
beyond the “sinusoidal describing function method”, as coupling of the modes
is involved. The nonlinearity in the heat source is expressed in terms of the
higher order transfer functions through which the modes are coupled. Higher
order transfer functions have been developed from the extension of the neu-
ral network identification method to the frequency domain (see details for
the derivation of the higher order transfer functions in the “Nonlinear Sys-
tem Identification” chapter). The energy exchange between the modes (from
fundamental to the higher order modes and from the higher harmonics to the
fundamental mode through coupling) can be analyzed. The contribution of
the coupling terms of different modes to the Rayleigh index in the nonlinear
regime can be obtained. Moreover, the method is computationally efficient in
comparison to a time domain simulation and it can capture the shape and
amplitude of the limit cycle.

In this chapter, the Galerkin time domain method for one dimensional acous-
tics is first introduced, since the limit cycle can be predicted with this method.
Moreover, the system model equations for the frequency domain with the
coupled modes have been derived from this method. Nonlinear dynamical
system analysis from the Galerkin model equations has been considered.
Time domain simulation of the thermo-acoustic instability in the Rijke tube,
with the heat source obtained from nonlinear system identification, has been
performed.

Then, the sinusoidal describing function method is introduced and the de-
scribing functions for some simple nonlinearities are derived (see Appendix
B for the describing function table for some common nonlinearities). Ampli-
tude prediction of the limit cycle with describing function has been consid-
ered, and equations have been derived from the Galerkin method. Next, the
model obtained from POD approach is considered (a heated plate in pulsating
flow, refer to the chapter “Low Order Model of the Heat Source with POD”) as
a nonlinear heat source. Nonlinear transfer function of this model heat source
is used in the equations for the prediction of the limit cycle amplitude and

112



frequency.

Finally, the frequency domain system model with coupled modes is consid-
ered. Equations are derived from the Galerkin method. When the input to the
heat source is expressed as a superposition of the modes, these will be coupled
through the higher order transfer functions (when the heat source nonlinear-
ity is expressed in terms of higher order transfer functions). Simulation results
have been shown for the Galerkin time domain method, describing function
method and the coupled modes system model. The Rayleigh index in the non-
linear regime is considered, and the contribution of the individual terms is
determined.

A schematic representation of the limit cycle prediction in time domain with
the Galerkin method and in the frequency domain with coupled modes ap-
proach, when the heat source is obtained from the nonlinear system identifi-
cation, is shown in Fig. 6.1.

Figure 6.1: Schematic of the proposed approach from the nonlinear identifi-
cation of the heat source to the simulation in time and frequency
domain for the full thermo-acoustic system
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6.1 Galerkin Time Domain

6.1.1 Derivation

In this modeling approach, acoustic velocity and pressure are expressed in
terms of a set of basis functions, which constitute a complete basis and sat-
isfy the boundary conditions [10, 31, 32]. Using the orthogonality of the basis
functions, partial differential equations are projected onto the basis functions
and one has to solve a set of ordinary differential equations instead of par-
tial differential equations. Even though the method used here is for a simple
geometry (Rijke tube), it can also be applied to complex geometries of practi-
cal interest. In this case (complex geometry case, also including more general
boundary conditions), the basis functions (mode shapes) could be obtained
from a three dimensional finite element simulation of the acoustics of the sys-
tem [16]. Acoustic variables (pressure and velocity) are then written as the su-
perposition of these mode shapes with the time dependent coefficients.

The governing equations for one dimensional acoustic field with the heat
source term can be written as [10, 38]

Acoustic Momentum:

ρ̄
∂ũ′

∂t̃
+ ∂p̃ ′

∂x̃
= 0. (6.1)

Acoustic Energy:

∂p̃ ′

∂t̃
+γp̄

∂ũ′

∂x̃
= (γ−1)Q ′. (6.2)

If the equations are non-dimensionalized using the duct parameters and
mean values,

t = t̃
L
c0

, x = x̃

L
, u′ = ũ′

ū
, p ′ = p̃ ′

p̄
, ρ = ρ̃

ρ̄
, Ma = ū

c0
, (6.3)
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6.1 Galerkin Time Domain

then the non-dimensional form of the equations can be written as,

γMa
∂u′

∂t
+ ∂p ′

∂x
= 0, (6.4)

∂p ′

∂t
+γMa

∂u′

∂x
= (γ−1)

c0p̄
Q ′δ(x −x f ). (6.5)

In the Galerkin method, acoustic velocity and pressure are written in terms of
the natural modes of the duct [31, 32],

u′(x, t ) =
N∑

m=1
ηm(t )cos(mπx), p ′(x, t ) =−

N∑
m=1

γMa

mπ
η̇m(t )sin(mπx). (6.6)

Using the above expansions for the acoustic velocity and pressure in the non-
dimensional acoustic energy equation (Eq. (6.5)), and integrating over the do-
main [0,1] we obtain,

−γMa
N∑

m=1

η̈m(t )
mπ

1∫
0

sin(mπx)sin( jπx)d x

−γMa
N∑

m=1
mπηm(t )

1∫
0

sin(mπx)sin( jπx)d x

= γ−1
c0p0

Q ′ sin( jπx f )

(6.7)

Using the orthogonality of the modes, namely

1∫
0

sin(mπx)sin( jπx)d x =
{ 1

2 for m = j
0 for m 6= j

(6.8)

results in a set of ordinary differential equations for the time dependent coef-
ficients of the expansion, which are,
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d 2η j

d t 2
+2ξ jω j

dη j

dt
+ω j

2η j = 2(1−γ)

Mac0p0γ
jπsin( jπx f )Q ′, (6.9)

with ω j = jπ. The linear damping mechanism included in the above equa-
tion takes into account the acoustic boundary layer at the tube walls, sound
radiation from open ends of the tube and sound convected away due to the
mean flow. The damping coefficients have been experimentally determined
by Matveev and expressed using the following relation [88],

ξ j = 1

2π

(
c1
ω j

ω1
+ c2

√
ω1

ω j

)
. (6.10)

In the equations above, the heat source is written explicitly, and in the case of
a heat source model from linear/nonlinear system identification, one has to
solve a delay differential equation with multiple fixed delays. If the number of
the fixed delays is large, the computations may be time consuming.

6.1.2 Stability Analysis of Nonlinear Dynamical System

Two mode approximation is assumed and the King’s law heat source model is
used in the Galerkin formulation. The equations can be written as,

ẋ1 = x2, (6.11)

ẋ2 =−2ξ1ω1x2 −ω1
2x1 +D sin(πx f )

(√∣∣∣∣1

3
+x1 cos(πx f )+x2 cos(2πx f )

∣∣∣∣−
√

1

3

)
,

(6.12)

ẋ3 = x4, (6.13)
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ẋ4 =−2ξ2ω2x4−ω2
2x3+2D sin(2πx f )

(√∣∣∣∣1

3
+x1 cos(πx f )+x2 cos(2πx f )

∣∣∣∣−
√

1

3

)
.

(6.14)

For the sake of simplicity, the delay term τ is assumed to be 0 and for the ease
of notation, x1 → η1, x3 → η2 convention is used.

In the compact form, the above equations can be written as,

ẋ = f (x), (6.15)

where f is a nonlinear function of the state vectors. For dynamical systems,
Hartman-Grobman theorem states that near the hyperbolic fixed point, the
nonlinear system has qualitatively the same structure as that of the linearized
system [134].

(0,0,0,0) is a steady state solution of the above equations, where ẋi = 0, for
i = 1,2,3,4.

Linearization of the Eq. (6.15) around the steady state points can be written
as,

ẋ = ∂ f

∂x

∣∣∣
x0

x, (6.16)

where the Jacobian matrix can be computed at the steady state points from
the following relation as

J (x) = ∂ f

∂x
=


∂ f1

∂x1
.. .. ∂ f1

∂x4

.. .. .. ..

.. .. .. ..
∂ f4

∂x1
.. .. ∂ f4

∂x4

 . (6.17)

The individual elements of the Jacobian matrix are,

117



Prediction and Analysis of Thermo-Acoustic Limit Cycles

J (1,1) = J (1,3) = J (1,4) = 0, J (1,2) = 1,

J (2,1) =−ω1
2 +D sin(πx f )cos(πx f )

√
3

4
,

J (2,2) =−2ω1ξ1 +D sin(πx f )cos(πx f )

√
3

4
,

J (2,3) = J (2,4) = 0, (6.18)

J (3,1) = J (3,2) = J (3,3) = 0, J (3,4) = 1,

J (4,1) = 2D sin(πx f )cos(πx f )

√
3

4
,

J (4,2) = 2D sin(2πx f )cos(2πx f )

√
3

4
,

J (4,3) =−ω2
2, J (4,4) =−2ξ2ω2.

System stability analysis can be studied using the eigenvalues of the Jacobian
matrix. If all the eigenvalues have negative real parts, then the system is stable
near the steady state (fixed) points. If none of the eigenvalues of the Jacobian
has a zero real part, then the system is hyperbolic at this fixed point. If the
system is hyperbolic and at least one of the eigenvalues has a positive real
part, then the system is unstable.

For the first case, the damping coefficients, and coefficient of the heat source
are chosen to be c1 = 0.01, c2 = 0.001, and D = 8, respectively. In Fig. 6.2,
the real parts of the eigenvalues are shown when the heat source location is
changed. All eigenvalues have non-zero real parts, so that the system is hy-
perbolic at the fixed point. The critical positions of the heat source for the
stability of the system are between 0-0.25 and 0.75-1, where the real part of
the third and fourth eigenvalues exceed 0. For the second configuration, with
the damping coefficients and heat source location chosen as c1 = 0.01, c2 =
0.001, and x f = 0.35, respectively, the coefficient of the heat source is varied
between 0 and 100. The critical value of this coefficient is found to be 25 from
the lower part of the Fig. 6.3.

As stated by Culick [33], CFD computations provide information about one
set of parameters of the thermo-acoustic systems. For example, a single CFD
computation cannot provide information about the system behavior for dif-
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Figure 6.2: Real part of the eigenvalues vs heat source location for c1 =
0.01,c2 = 0.001,D = 8. Top(1st and 2nd eigenvalues), Bottom(3rd
and 4th eigenvalues)
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Figure 6.3: Real part of the eigenvalues vs coefficient of the heat source for
c1 = 0.01,c2 = 0.001, x f = 0.35. Top(1st and 2nd eigenvalues), Bot-
tom(3rd and 4th eigenvalues)

ferent heat source locations. This type of analysis is quite useful for thermo-
acoustic systems to create the stability maps dependent on the system param-
eters. Furthermore, the time delay, which is an important parameter for the
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stability of the thermo-acoustic systems, can also be included and the same
type of analysis can be performed. Bethke et al. have performed a stability
analysis of a gas turbine combustion chamber using the Galerkin model equa-
tions [16].

The local stability analysis with the linearization works only in the neighbor-
hood of the steady state or fixed points. This analysis cannot provide informa-
tion about the stability when the real part of one of the eigenvalues is zero and
for locations far way from the fixed points.

6.1.3 Simulation with the CFD/SI Model of the Wire Heat Source

The dynamic model of the heat source (wire in pulsating flow) obtained from
a neural network identification procedure has been used in time domain
Galerkin simulation. Matlab DDE solver is used to solve the delay differen-
tial equations with the delays resulting from the identification part. For the
first configuration, the heat source is located at 0.15L downstream of the tube
inlet with the tube length, L. Total time of the simulation is set to 1000 (non-
dimensional time), and a five mode approximation is utilized. In the second
configuration, the heat source location is set to 0.25L downstream of the tube
inlet, and the simulation time is 1500 (non-dimensional time).

Figures 6.4 and 6.5 show the evolution of the acoustic velocity (non-
dimensionalized with respect to the mean value) at the heat source location.

Figure 6.6 at the top, shows the normalized heat transfer rate (with respect to
the steady state value) and acoustic velocity when the limit cycle is reached for
a heat source located at 0.15L. This plot also shows how the heat source acts as
a nonlinear element. At the bottom, the phase portrait of the non-dimensional
acoustic pressure and non-dimensional heat transfer rate is shown. In Fig. 6.6,
the same plots as before are shown for a heat source location at 0.25L. The
computational time for these simulations varies between 10-13 hours on a 64-
Bit processor with 2.8 GHz.
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Figure 6.4: Evolution of the acoustic velocity at the heat source for the ini-
tial condition η1(0)=0.02, duct length L=5.65, heat source location
x f =0.15L, and damping coefficients c1=0.0135, c2=0.0015
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Figure 6.5: Evolution of the acoustic velocity at the heat source for the ini-
tial condition η1(0)=0.04, duct length L=5.65, heat source location
x f =0.25L, and damping coefficients c1=0.0135, c2=0.0015

6.2 Describing Function

To predict the limit cycle amplitudes in the frequency domain, linear network
models have been extended into frequency domain with describing function
method [36, 96]. In the linear network models of thermo-acoustics, individual
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Figure 6.6: Top - Non-dimensional acoustic velocity and heat transfer rate
when the limit cycle is reached (shows how the heat source
acts as a nonlinear element), Bottom – Phase portrait of the
non-dimensional acoustic pressure versus non-dimensional heat
transfer rate for the initial condition η1(0)=0.02, duct length
L=5.65, heat source location x f =0.15L, and damping coefficients
c1=0.0135, c2=0.0015
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when the limit cycle is reached (shows how the heat source
acts as a nonlinear element), Bottom – Phase portrait of the
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elements are described by their transfer functions/matrices. A sinusoidal de-
scribing function is simply the amplitude-dependent frequency response of a
nonlinear element to sinusoidal input [52].

A sinusoidal input to the heat source is assumed as,

u(t ) = A sin(ωt ). (6.19)

The nonlinear heat source produces higher harmonics other than the funda-
mental. The periodic output can be expanded into a Fourier series expansion
as,

Q(t ) = A0

2
+

∞∑
n=1

[An cos(ωnt )+Bn sin(ωnt )], (6.20)

where the Fourier coefficients can be calculated as,

A0 = 1

π

π∫
−π

Q(t )d(ωt ), (6.21)

An = 1

π

π∫
−π

Q(t )cos(nωt )d(ωt ), (6.22)

Bn = 1

π

π∫
−π

Q(t )sin(nωt )d(ωt ). (6.23)

Let us assume A0 = 0 (odd nonlinearity) and at the output consider only the
fundamental component,

Q(t ) = A1 cos(ωt )+B1 sin(ωt ). (6.24)

The describing function N (A,ω) of the nonlinear element is defined as,
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N (A,ω) = B1

A
+ j

A1

A
. (6.25)

Describing function is a function of amplitude and frequency for general non-
linear elements [127]. Simplified analytical closed form expressions for the de-
scribing functions can be obtained for some nonlinear types (see Appendix B
for a table of sinusoidal describing functions for some common nonlineari-
ties).

6.2.1 Describing Function of Cubic and Saturation Type Nonlinearity

Cubic Nonlinearity : The input-output relation is given by

Q = u3 = A3sin3(ωt ). (6.26)

The Fourier coefficient A1 = 0 and

B1 = 1

π

π∫
−π

A3sin3(ωt )sin(ωt )d(ωt ) = 3A3

4
. (6.27)

Therefore, the fundamental harmonic at the output is,

Q1(t ) = B1 sin(ωt ), (6.28)

and the corresponding describing function is calculated as,

N (A) = B1

A
= 3A2

4
. (6.29)

Saturation Type Nonlinearity : For a sinusoid input u = A sin(ωt ), the input-
output relation is in the linear regime for A ≤ r . The output is n A sin(ωt ) and
the corresponding describing function is n (slope of the input-output curve
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in linear region). A graphical representation of the input-output relation and
saturated output is shown in Fig. 6.8.
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Figure 6.8: Input-output for a saturation type nonlinearity (left) and saturated
output (right)

Due to the symmetry of the nonlinearity, the Fourier coefficient is calculated
over a quarter of the period for A ≥ r as,

B1 = 4

π

π/2∫
0

n A sin(ωt )sin(ωt )d(ωt )+ 4

π

π/2∫
β

n A sin(ωt )d(ωt ) = An

π

(
2β+ sin(2β)

)
,

(6.30)

and the corresponding describing function is

N (A) = B1

A
= n

π

(
2β+ sin(2β)

)
, (6.31)

with β= sin−1(r /A).

In the above nonlinearities, describing functions are found to be indepen-
dent of the frequency. Generally, the describing function of the heat source
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is a function of both amplitude and frequency.

6.2.2 Limit Cycle Calculation with Describing Function

After obtaining the describing function of the nonlinear element, the ex-
istence and the oscillation amplitude of the limit cycles are checked. A
schematic representation of the self excited thermo-acoustic system is shown
in Fig. 6.9.

G  j

N  A ,
uQ

r=0

−



SystemAcoustic

Describing Function
Heat SourceDynamics

Figure 6.9: Closed loop thermo-acoustic system with describing function and
linear acoustic element

The following equations are satisfied for the closed loop system [52, 127];

Q = N (A,ω)u, (6.32)

u =−G( jω)Q, (6.33)

and therefore the limit cycle equation can be obtained as,
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1+G( jω)N (A,ω) = 0. (6.34)

Two equations are obtained for the real and imaginary parts of the expression
in Eq. (6.34) for the amplitude A and frequency ω of the limit cycle.

Generally, the equation is written as,

G( jω) = −1

N (A,ω)
= −1

K (A,ω)e jφ(A,ω)
, (6.35)

and a graphical search is done by plotting the left and right hand side of the
equations, and at the intersection point, the amplitude and frequency of the
limit cycle are obtained [52]. In the above equation, the dependency of the
gain (K ) and phase (φ) of the transfer function upon amplitude and frequency
is written explicitly.

Now, the equation for limit cycle calculation from Galerkin time domain equa-
tions is derived. The Laplace transform of Eq. (6.9) with the transformed vari-
ables can be written as,

ηm(t )
L→Nm(s), ω= s

j
,

Nm(s)
(
s2 +2ξ jωm s +ωm

2)= 2(1−γ)

Mac0p0
mπsin(mπx f )Q(s). (6.36)

Converting the input to the heat source in s-domain yields,

u(s) =
N∑

m=1
Nm(s)cos( jπx f ). (6.37)

Transfer function of the linear acoustic part will be obtained as,

G(s) = u(s)

Q(s)
= (1−γ)π

Mac0p0

N∑
m=1

(
m sin(2mπx f )

s2 +2ξmωm s +ωm
2

)
. (6.38)
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Figure 6.10: Graphical search for limit cycle with describing function
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The model obtained from the POD modeling approach is considered as the
heat source model. The amplitude and frequency dependent nonlinear trans-
fer function for the gain and phase is parametrized using two dimensional
Lagrange polynomials.

A graphical representation for the intersection of the linear acoustic part
and inverse of describing function is shown in Fig. 6.10(a), and in detail in
Fig. 6.10(b) for two different amplitudes. Two different limit cycles with the
amplitudes and frequencies, (A0,ω0) = (1.45,3.62) and (A1,ω1) = (2.92,3.63),
are found. Nonlinear heat source model obtained from POD is valid for
the predicted limit cycle amplitudes and frequencies. The frequency (non-
dimensional) of fundamental mode of oscillation for a 1m length tube at
open-open boundary conditions without heat source, is 3.141.

6.3 Frequency Domain System Model with Coupled Modes

In this system modeling approach, it is assumed that the main source of the
nonlinearity is due to the heat source for a thermo-acoustic system. A model
of the heat source has been obtained from neural network based nonlinear
identification using input-output data set generated from the unsteady CFD
computations. A polynomial representation of the input-output is obtained
after an approximation of the expansion function (tangent hyperbolic) used
in the units of the neural network with polynomials. Extensions of the lin-
ear transfer function to higher dimensions, the so-called higher order trans-
fer functions, are obtained in the frequency domain. Details of the procedure
to compute the higher order transfer functions have been described earlier in
the “Nonlinear System Identification” chapter. This type of representation of
the nonlinearity has great advantages when used in a modal basis represen-
tation of the thermo-acoustic system. It allows the input to the heat source to
be the sum of the modes, and accounts for the interaction of the modes. An
analysis of the energy balance (harmonic balance) of the modes (transfer of
energy from the fundamental mode to the higher order modes and contribu-
tion of the higher order modes to the fundamental mode) is possible with this
approach. Rayleigh index in the nonlinear regime can be studied, and the con-
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6.3 Frequency Domain System Model with Coupled Modes

tribution of the higher order modes to this index can be found out. In the cur-
rent version, Galerkin time domain equations are used, in which the system
variables (acoustic velocity and pressure) are expressed as sum of the modes.
However, linear network modeling approach can also be used for an exten-
sion into the nonlinear regime with this nonlinear representation of the heat
source (see Appendix C for a derivation of Nonlinear Network Model).

6.3.1 Derivation

The evolution coefficient in front of the mth mode in the frequency domain
can be written as,

ηm(t ) = Am sin(ωm t )+Bm cos(ωm t ) =
(

Bm

2
+ Am

2i

)
e iωm t +

(
Bm

2
− Am

2i

)
e−iωm t .

(6.39)
Let us denote the following,

Cm = Bm

2
+ Am

2i
, Dm = Bm

2
− Am

2i
. (6.40)

The time derivatives then become,

dηm(t )

dt
= iωmCme iωmt − iωmDme−iωmt , (6.41)

d 2ηm(t )

dt2 =−(ωm)2Cme iωmt − (ωm)2Dme−iωmt . (6.42)

Next, the heat source model is obtained in terms of coupled modes. The input
to the heat source (acoustic velocity in the immediate vicinity) is assumed to
be sum of the modes,

u′(t ) =
N∑

m=1
ηm(t )cos(mπx) =

N∑
m=1

(
Cme iωmt +Dme−iωmt)cos(mπx f ). (6.43)
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On substituting this in place of the input in the polynomial input-output rep-
resentation and using the definitions of the higher order transfer functions,
the corresponding output is obtained in terms of the couped modes as,

Q ′(t ) =
N∑

d1=1

(
Cd1 H1 (ωd1)e iωd1t +Dd1 H1 (−ωd1)e−iωd1t

)
cos(πd1x f )

+
N∑

d1=1

N∑
d2=1


Cd1Cd2 H2 (ωd1,ωd2)e iω(d1+d2)t

+Cd1 Dd2 H2 (ωd1,−ωd2)e iω(d1−d2)t

+Dd1Cd2 H2 (−ωd1,ωd2)e iω(−d1+d2)t

+Dd1 Dd2 H2 (−ωd1,−ωd2)e iω(−d1−d2)t

cos(πd1x f )cos(πd2x f )

+
N∑

d1=1

N∑
d2=1

N∑
d3=1



Cd1Cd2Cd3 H3 (ωd1,ωd2,ωd3)e iω(d1+d2+d3)t

+Cd1Cd2 Dd3 H3 (ωd1,ωd2,−ωd3)e iω(d1+d2−d3)t

+Dd1Cd2 Dd3 H3 (−ωd1,ωd2,−ωd3)e iω(−d1+d2−d3)t

+Dd1 Dd2Cd3 H3 (−ωd1,−ωd2,ωd3)e iω(−d1−d2+d3)t

+Cd1 Dd2Cd3 H3 (ωd1,−ωd2,ωd3)e iω(d1−d2+d3)t

+Dd1Cd2Cd3 H3 (−ωd1,ωd2,ωd3)e iω(−d1+d2+d3)t

+Cd1 Dd2 Dd3 H3 (ωd1,−ωd2,−ωd3)e iω(d1−d2−d3)t

+Dd1 Dd2 Dd3 H3 (−ωd1,−ωd2,−ωd3)e iω(−d1−d2−d3)t



 cos(πd1x f )
.cos(πd2x f )
.cos(πd3x f )

.

(6.44)

In this representation, the modes are coupled through the higher order trans-
fer functions. On substituting the time derivatives and heat source in terms
of the higher order transfer functions in Eq. (6.9) and harmonic balancing
(equating the exponentials of the same order), the equation for mode num-
ber m becomes,

−ωm
2Cm +2iξmmπωmCm +m2π2Cm = 2

(
1−γ)

Mac0p0γ
mπsin(mπx f )Qm, (6.45)

where Qm denotes the mth exponential term for the heat source model.

Let us assume using one mode (as done in a sinusoidal describing function
technique – one sinusoidal input to the heat source), then the equation for
this mode will be,
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−ω2C+2iξπωC+π2C = 2
(
1−γ)

Mac0p0γ
πsin(πx f )

(
C H1 (ω)cos(πx f )
+3C 2D H3(ω,ω,−ω)cos3(πx f )

)
.

(6.46)

The symmetry of the kernels is used, and the nonlinearity in the heat source
can be seen through the third order transfer function. It is known that C and
D are complex conjugate numbers and are defined as,

C = B

2
− A

2
i , D = B

2
+ A

2
i , (6.47)

with the modal coefficient

η(t ) = A sin(ωt )+B cos(ωt ), (6.48)

where A and B are real numbers. The unknowns of the equation are A,B and
ω. Two equations result by equating the imaginary and the real part of the
above expression (Eq. 6.46) to zero. There is a need for an extra equation. This
problem is handled by equating, for example, the real part of the coefficient of
the mode to zero (B = 0). This means the phase of the mode is kept at a fixed
value.

The set of equations for a two mode approximation is detailed.

The equation for the fundamental mode using Eq. 6.44 and Eq. 6.45 can be
obtained as,

−ω2C1+2iξ1πωC1+π2C1 =
2(1−γ)πsin(πx f )

Mac0p0γ


C1H1(ω)cos(πx f )
+2C2D1H2(2ω,−ω)cos(2πx f )cos(πx f )
+3C1

2D1H3(ω,ω,−ω)cos3(πx f )
+6C1C2D2H3(ω,2ω,−2ω)cos(πx f )cos2(2πx f )

 .

(6.49)

In the same manner, the equation for the second harmonic can be written as,
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−4ω2C2+4iξ2πωC2+4π2C2 =
4(1−γ)πsin(2πx f )

Mac0p0γ


C2H1(2ω)cos(2πx f )
+C1

2H2(ω,ω)cos2(πx f )
+6C1D1C2H3(ω,−ω,2ω)cos2(πx f )cos(2πx f )
+3C2

2D2H3(2ω,2ω,−2ω)cos3(2πx f )

 .

(6.50)

The unknowns of the problem are the complex conjugate coefficients C1/D1,
C2/D2 and the frequencyω. There are five unknowns (two for each of the coef-
ficients and one for the frequency). Four equations are obtained by equating
the real and imaginary parts of Eq. 6.49 and Eq. 6.50 to zero. Once more, an ad-
ditional equation for the frequency component can be obtained by equating
one of the imaginary parts of the coefficients to zero, i.e. ℑ(C1) = 0.

6.3.2 Interpretation of Modal Coupling

Now, let us take a three mode approximation. In this case, we consider the
harmonics−3ω, −2ω, −ω, ω, 2ω, 3ω. Then the right hand side of the equation
for the fundamental mode will have terms that are coupled through the higher
order transfer functions. In this case, the sum of the arguments for the higher
order transfer functions will be the fundamental harmonic. Such terms and
their meanings are expressed in detail as;

C2D1H2 (2ω,−ω)cos(2πx f )cos(πx f ) → Second mode couples with the
fundamental through the second order transfer function

C3D2H2 (3ω,−2ω)cos(3πx f )cos(2πx f ) → Third mode couples with the
second mode through the second order transfer function

C3D1D1H3 (3ω,−ω,−ω)cos(3πx f )cos2(πx f ) → Third mode couples with the
fundamental through the third order transfer function
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In general, the contribution of the terms that result in the coupling between
the k modes through the nth order transfer function for the fundamental
mode equation can be expressed as,

Sd1 . . .Sdr Hn (ωd1, . . . ,ωdr )︸ ︷︷ ︸
d1+...+dr=1

cos(πd1x f ) . . .cos(πdr x f ) for−k ≤ di ≤ k, i = 1. . .r,

(6.51)
where S is defined as,

Sdi =
{

Cdi , if di > 0
D−di , if di < 0

(6.52)

The advantage of this type of representation of the heat source is that it allows
us to find the contribution of the higher harmonics to the fundamental and it
takes various interactions between different harmonics into account.

6.3.3 Comparison with Time Domain Simulation and Describing Function

Another advantage of the low order model in the frequency domain is that it
requires solving a system of nonlinear algebraic equations instead of solving
ordinary differential equations with delay terms, which makes a big difference
in the computational time.

The computational time with the coupled mode frequency domain model is
drastically reduced from 10-13 hours (with time domain) to 5-8 minutes. Fig-
ure 6.11 shows the acoustic velocity when the limit cycle is reached, which
is obtained from time domain simulation, describing function method and
coupled modes frequency domain system model, for the heat source located
at 0.15L and 0.25L downstream of the tube inlet, respectively. In the above
plot, the discrepancy between the describing function and time domain sim-
ulation is large. In the second plot, the second mode instability is suppressed
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Figure 6.11: Top - Non-dimensional acoustic velocity at the limit cycle ob-
tained from the time domain simulation (Galerkin), frequency
domain coupled modes and describing function method for the
initial condition η1(0) = 0.02, duct length L = 5.65, heat source lo-
cation x f = 0.15, damping coefficients c1 = 0.0135,c2 = 0.0015
Bottom - heat source location x f = 0.25

(no contribution from the second mode) and describing function can approx-
imate the amplitude of the limit cycle, but not the shape. In both cases, the
coupled modes frequency domain system model captures the amplitude and
the shape of the nonlinear oscillation.
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6.3.4 Rayleigh Index and Energy Balance in the Nonlinear Regime

The energy gained from the heat source will be equal to energy dissipated by
the modes when the limit cycle is reached. The energy gained from the local
heat source can be directly related to the Rayleigh Index which is defined for
one cycle of the oscillation as [46, 114],

RI = 1

T

T∫
0

p ′Q ′d t . (6.53)

Next, the amount of gained energy distributed among the individual coupling
terms is discussed. Let us assume a three mode approximation. Substitution
of the modal representation of the pressure and the nonlinear heat source in
the definition of the Rayleigh Index results in an expression with 21 terms.
The first 7 terms represent the energy gained at the fundamental harmonic,
the second 7 terms represent the energy gained at the second harmonic, and
so on.

Energy gained at the fundamental harmonic:

RIω =ℜ


iγMaω

π
sin(πx f )



−D1C1H1 (ω)cos(πx f )
−3C1

2D1
2H3 (ω,ω,−ω)cos3(πx f )

−2C2D1
2H2 (2ω,−ω)cos(2πx f )cos(πx f )

−2C3D2D1H2 (3ω,−2ω)cos(3πx f )cos(2πx f )
−6D1C2

2D2H3 (ω,2ω,−ω)cos(πx f )cos2(2πx f )
−3D1C2

2D3H3 (2ω,2ω,−3ω)cos2(2πx f )cos(3πx f )
−6C1D1C3D3H3 (ω,3ω,−3ω)cos(πx f )cos2(3πx f )




. (6.54)

Energy gained at the second harmonic:
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RI2ω =ℜ


2iγMaω

π
sin(2πx f )



−D2C2H1 (2ω)cos(2πx f )
−2D2C1

2H2 (ω,ω)cos2(πx f )
−2D2C3D1H2 (3ω,−ω)cos(3πx f )cos(πx f )
−6D2C1C2D1H3 (ω,2ω,−ω)cos2(πx f )cos(2πx f )
−6D2

2C1C3H3 (ω,3ω,−2ω)cos(πx f )cos(2πx f )cos(3πx f )
−3D2

2C2
2H3 (2ω,2ω,−2ω)cos3(2πx f )

−3D2C2C3D3H3 (2ω,3ω,−3ω)cos(2πx f )cos2(3πx f )




.

(6.55)

Energy gained at the third harmonic:

RI3ω =ℜ


3iγMaω

π
sin(3πx f )



−D3C3H1 (3ω)cos(3πx f )
−2D3C1C2H2 (2ω,ω)cos(πx f )cos(2πx f )
−D3C1

3H3 (ω,ω,ω)cos3(πx f )
−6D3C1C3D1H3 (ω,3ω,−ω)cos2(πx f )cos(3πx f )
−3D3C2C2D1H3 (2ω,2ω,−ω)cos2(2πx f )cos(πx f )
−6D3C2C3D2H3 (2ω,3ω,−2ω)cos2(2πx f )cos(3πx f )
−3D3C3

2D3H3 (3ω,3ω,−3ω)cos3(3πx f )




.

(6.56)

The representation of the heat source in terms of the higher order transfer
functions makes it possible to find the effect of the coupling terms. First com-
ponent of the Rayleigh Index gives the energy that is gained by the heat source
at the fundamental harmonic. Fourth and sixth components specify the con-
tribution of the energy through the coupling of the second and third modes.
This means, the higher harmonic components can also contribute to the fun-
damental mode. As can be seen for the second element of first component of
Rayleigh Index, energy is driven to the higher harmonics with the nonlinearity
(see also the second element in the second component of Rayleigh Index, and
third element in the third component of the Rayleigh index).

If the system has low pass filter characteristics, the amplitude levels of the
higher order harmonics will be small and the coupling terms can be neglected.
This is the case where describing function method works. Heat source is gen-
erally a low pass filter, but the nonlinearity of the heat source at a specific fre-
quency and amplitude is what is important. When only one sinusoid acts as an
input to the heat source, it produces higher harmonics. If these components
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are not suppressed by the system acoustics, the coupling terms appearing in
Rayleigh Index cannot be neglected any longer.

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 15- Schematic of the coupling relation between the harmonics through the higher order 

transfer functions of the nonlinear local heat source for a three mode approximation (also 

shows the direction of the flow of the energy that is driven to higher harmonics from the 

fundamental mode and also form the higher harmonics to the fundamental mode) 
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Figure 6.12: Schematic of the coupling relation between the harmonics
through the higher order transfer functions of the nonlinear heat
source for a three mode approximation (also shows the direction
of the flow of the energy that is driven to higher harmonics from
the fundamental mode, and from the higher harmonics to the
fundamental mode)

Figure 6.12 shows the coupling relation between the harmonics through the
higher order transfer functions of the nonlinear local heat source for a three
mode approximation. This schematic representation also shows the direction
of flow of the energy that is driven to higher harmonics from the fundamental
mode, and from the higher harmonics to the fundamental mode.
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The individual elements of the Rayleigh Index for the 21 terms as defined in
Eq. (6.54), Eq. (6.55) and Eq. (6.56) are shown in Fig. 6.13 at the top and bot-
tom for the heat source located at 0.15L and 0.25L downstream of the tube
inlet, respectively, for a three mode approximation. In the plots, the contribu-
tions when only one sinusoid acts as the input to the heat source (sinusoidal
describing function), are also shown.

At the top, the second and the fifth terms of the Rayleigh index (energy gained
at the fundamental harmonic),

−3C1
2D1

2H3 (ω,ω,−ω)cos3(πx f ) , −6D1C2
2D2H3 (ω,2ω,−ω)cos(πx f )cos2(2πx f )

have negative contributions (stabilizing effect on the nonlinear oscillations).
The eighth and ninth terms of the Rayleigh Index (energy gained at second
harmonic),

−D2C2H1 (2ω)cos(2πx f ),−2D2C1
2H2 (ω,ω)cos2(πx f )

have positive contributions (destabilizing effect), while the eleventh term,

−6D2C1C2D1H3 (ω,2ω,−ω)cos2(πx f )cos(2πx f )

has positive contribution.

At the bottom, since the second mode instability is suppressed, the fifth, ninth
and eleventh terms of the Rayleigh Index have no contributions.

Figure 6.14 shows energy balance of the modes when the limit cycle is reached
for a three mode approximation and describing function. Energy gained at
fundamental, second and third harmonics with the coupling terms via higher
order transfer functions that are included is equal to the energy dissipated
by the first, second and third modes. The gained and damped energies are
represented by RI and D, respectively. As it is shown in table 6.1, the net energy
contributions at the second and third harmonics are positive, whereas for the
first harmonic it is negative when the heat source is located at x f = 0.15L. For
the second configuration (x f = 0.25L), the energy gained at the fundamental
harmonic is positive.

For thermo-acoustic systems, it is generally assumed that the energy contribu-
tion of the higher order modes can be neglected since the damping factors are
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Figure 6.13: Top- Individual elements of the Rayleigh Index for a three mode
approximation and describing function, for the duct length
L=5.65, heat source location x f =0.15L, and damping coefficients
c1=0.0135, c2=0.0015, Bottom- heat source location x f =0.25L

large at higher frequencies. It is observed that the coupling terms of the higher
order modes have a stabilizing effect (a negative contribution to the energy
gain) or destabilizing effect (a positive contribution to the energy gain). Con-
sideration of these coupling terms along with the damping can then provide
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an accurate analysis of the energy balance for the thermo-acoustic systems.

Table 6.1: Energy gained and damped at different harmonics
x f = 0.15 x f = 0.25

ω 2ω 3ω ω 2ω 3ω

RI 9.344×10−7 6.959×10−7 0.9341×10−7 23.56×10−7 26.7×10−7 2.90×10−7

D 10.05×10−7 6.339 ×10−7 0.850 ×10−7 20.76 ×10−7 29.21 ×10−7 3.19 ×10−7

Net Contribution -0.706 ×10−7 0.62 ×10−7 0.0841 ×10−7 2.8 ×10−7 -2.51 ×10−7 -0.29 ×10−7
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Figure 6.14: Top - Energy balance of the system when the limit cycle is reached
for a three mode approximation and describing function for the
duct length L=5.65, heat source location x f =0.15L, and damping
coefficients c1=0.0135, c2=0.0015, Bottom - heat source location
x f =0.25L
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6.4 Conclusions and Outlook

In this chapter, a nonlinear, low order model for thermo-acoustic systems in
the frequency domain has been considered. An approach has been developed
that can take into account the coupling of the modes due to the nonlinear-
ity. In this method, system variables (acoustic velocity and pressure) are ex-
pressed as a superposition of the modes. Nonlinearity in the heat source is
expressed in terms of higher order transfer functions, which have been de-
rived earlier in the “Nonlinear System Identification” chapter. The modes are
then coupled through the higher order transfer functions. The equations have
been derived using Galerkin method, but an extension of the network models
to the nonlinear regime is also possible with this approach (see Appendix C
for a derivation of the Nonlinear Network Models).

Simulation results have shown one case where the describing function ap-
proach fails to predict limit cycle, since the effect of the coupling terms of
higher order modes due to the nonlinearity could not be neglected. In this
case, the coupled modes system model gives the amplitude and the shape
of the nonlinear oscillation correctly. Moreover, a reduction in the computa-
tional time is achieved from 10-13 hours to 5-8 minutes in comparison to the
Galerkin time domain simulation. An energy balancing of the modes in the
limit cycle showed that the coupling terms may give either positive or nega-
tive energy contributions. Therefore, an accurate analysis of the energy bal-
ance for the thermo-acoustic systems requires to consider the coupling terms
along with the damping.

The approach has also some drawbacks since the higher order transfer func-
tions are obtained using polynomial type representation of the nonlinearity.
The challenges in this approach are described in the following cases:

• when the heat source introduces large delay terms,

• when a large range of frequencies are considered,

• when the approximation of the nonlinearity requires a higher order poly-
nomial degree.
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When the network models are extended to the nonlinear regime, then it is pos-
sible to add a jump condition in the area/temperature and investigate their
effects on the limit cycle amplitudes. A possible coupling of the gas dynamics
and the heat source nonlinearity can be investigated, since the system equa-
tions have been derived from the Galerkin method, and nonlinear gas dynam-
ics have been derived using Galerkin for second and third order nonlinearities
by Culick and co-workers [102, 142].
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7 Non-Modal Analysis of Thermo-Acoustic
Stability

Eigenvalues and eigenvectors play important roles in many applications of
physics and engineering (stability, vibration analysis, and molecular orbitals
in quantum mechanics). Systems with self adjoint operators/matrices have
orthogonal eigenvectors. As a result, if small disturbances imposed on the nor-
mal directions decay with time, i.e. if the system is “linearly stable”, then the
overall system response also decays with time [123,136]. A system is said to be
“non-normal” if its operator/matrices does not commute with its adjoint,

LLT 6= LT L, (7.1)

where L is the system operator/matrices. Systems governed by non-normal
operators/matrices have non-orthogonal eigenvectors. These systems show
transient amplification of the initial disturbance because of the non-
orthogonality [123, 136]. In Fig. 7.1, on the left is shown the eigenvectors of
a normal system. The individual eigenvectors decay with time and hence,
the overall response which is denoted by φ(t ) decays. On the other hand, as
it is illustrated on the right of the same Fig. 7.1, even though the individual
eigenvectors decay with time, the overall response grows in amplitude. In a
non-normal system, the short term behavior is important, and a small per-
turbation may exhibit transient growth of amplitude. The importance of the
non-normality has been shown in many applications, such as hydrodynamic
stability [116], magnetohydrodynamics [47], lasers [75], plasma physics [23],
and control theory [117]. When considering the stability of the shear flows, the
transition to instability at low Reynolds numbers is associated with the non-
normality [123]. In the context of the combustion instabilities, Sujith and co-
workers [8,10,69] have studied the non-normal nature of the thermo-acoustic
systems. Non-orthogonality of the eigenvectors for a thermo-acoustic system,
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Figure 7.1: Schematic of transient a) decay in normal eigenvectors, b) growth
in non-normal eigenvectors. (A decay of the non-normal eigenvec-
tors in time does not necessarily indicate a decay of the response
in time)

due to the heat source or general complex impedance boundary conditions,
has been shown by Nicoud et al. [94].

Let us assume the heat release response is a linear function of the acoustic
velocity perturbation as,

Q(t ) = Q̂u(t −τ). (7.2)

Non-dimensional momentum and energy equations for one-dimensional
acoustics with τ = 0 can be written as (see Galerkin time domain equations
in the previous chapter),

∂

∂t

(
u′
p ′

γMa

)
=

(
0 − ∂

∂x
− ∂
∂x +Q̂ 0

)
︸ ︷︷ ︸

L

(
u′
p ′

γMa

)
. (7.3)

Without heat release, i.e. Q̂ = 0, the system operator will be normal (LLT =
LT L). Increasing the interaction index from the heat source (Q̂) increases the
non-normality. In the derivation above, for the sake of simplicity, the delay
term is assumed to be zero. However, the combined effect of interaction index
and delay has to be taken into account.
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Figure 7.2: Schematic representation of transient growth and nonlinear driv-
ing mechanism

The combined effect of non-normality and nonlinearity is important for
thermo-acoustic applications. If the system under investigation has nonlin-
earities, then the disturbance can reach high amplitude levels (because of
transient growth due to the non-orthogonality of the eigenvectors), where
nonlinearities are significant, and cause “nonlinear driving”. In that case clas-
sical analysis with normal operators is not adequate for linear stability. A
schematic representation of the nonlinear driving is illustrated in Fig. 7.2. In
the figure, the threshold value where the nonlinearity kicks in is lower than the
maximum value of transient amplification.

In this chapter, we develop a systematic approach to investigate the non-
modal stability of thermo-acoustic systems. The thermo-acoustic system is
simulated in time domain using the Galerkin method to obtain a compact
representation of the governing equations of the system in state space form.
Sujith and co-workers have pioneered this type of system representation in
time domain in several non-normal studies of thermo-acoustics [8, 10, 129]. A
novelty in our approach is that the heat source is obtained using linear sys-
tem identification and unsteady CFD computations (CFD/SI approach). This
provides increased flexibility for the modeling of the heat source, i.e., no re-
striction on the time delay (refer to “Discussions and Conclusions” section of
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the “Linear System Identification” chapter). The heat source obtained from
CFD/SI approach has many constant discrete delays. The full system of cou-
pled thermo-acoustics is a delay differential equation (DDE) with many con-
stant delays. Another novelty of the proposed approach is that it can handle
large delay times. Eigenvalues of the system have been obtained from the so-
lution operator discretization. Pseudo-spectra diagrams have been used to
study the behavior of the eigenvalues under perturbations. Lower bounds on
the maximum growth factor (maximum amplification of perturbation energy
over all initial conditions and over all time instances) have been extracted
from the pseudo-spectra diagrams.

The approach is illustrated for the Rijke tube for two different heat sources;
a heat source model based on “King’s law” and the wire in pulsating flow,
which have been discussed in the previous chapters. The linear identification
scheme used for the wire in pulsating flow is the correlation analysis which
has been derived in “Linear System Identification” chapter.

In this chapter, first the compact form representation of the thermo-acoustic
system as delay differential equations (DDE) is considered. Eigenvalues of
the DDE is obtained using a solution operator discretization method. Then,
pseudo-spectra computation and extraction of information for the maximum
growth factor from pseudo-spectra diagrams are considered.

Results are shown for the Rijke tube with two different heat source models.

7.1 Thermo-Acoustics as Delay Differential System

Frequency domain system modeling approaches, such as the network model-
ing approach, neglect the transient effects and cannot be used for non-modal
stability analysis of thermo-acoustic systems. The Galerkin method is used for
the time domain simulation of thermo-acoustic system, which gives a com-
pact representation of the system’s equation.

The equation for the evolution coefficient of the j th mode with the heat
source included explicitly with Galerkin approach, is rewritten as,
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d 2η j

d t 2
+2ξ jω j

dη j

dt
+ω j

2η j = 2(1−γ)

Mac0p0γ
jπsin( jπx f )Q ′, (7.4)

where η j (t ) represents the evolution coefficient of the j th mode.

In the following equations, the simple model of the heat source based on
King’s law and the heat source model obtained from unsteady CFD and lin-
ear system identification (CFD/SI) are used.

The equations for the system model with the heat source based on King’s law
(with one delay term) is written in compact form as,

dχ(t )

dt
= A0χ(t )+ A1χ(t −τ), where (7.5)

χ(t ) ≡
[
η1(t ),

η̇1(t )

π
, . . . ,ηN (t ),

η̇N (t )

Nπ

]
, (7.6)

with A′s defined as,

A0 =



0 1 0 0 . . . 0 0
−ω1 −2ξ1 0 0 . . . 0 0

0 0 0 1 . . . 0 0
0 0 −ω2 −2ξ2 . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . 0 1
0 0 0 0 . . . −ωN −2ξN


, (7.7)

A1 =



0 0 0 0 . . . 0 0
s1 cos(πx f ) 0 s1 cos(2πx f ) 0 . . . s1 cos(Nπx f ) 0

0 0 0 0 . . . 0 0
s2 cos(πx f ) 0 s2 cos(2πx f ) 0 . . . s2 cos(Nπx f ) 0

...
...

...
...

...
...

...
0 0 0 0 . . . 0 0

sN cos(πx f ) 0 sN cos(2πx f ) 0 . . . sN cos(Nπx f ) 0


, (7.8)
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s j = k
p

3(1−γ)

Mac0 p0γ
jπsin( jπx f ), for j = 1. . . N . (7.9)

The equation for the system that models the heat source using CFD/SI ap-
proach is written in the compact form as,

dχ(t )

dt
= B0χ(t )+

L∑
l=1

Blχ(t − l∆t ), (7.10)

with coefficients B defined as,

B0 = A0, (7.11)

Bl =



0 0 0 0 . . . 0 0
βl 1 cos(πx f ) 0 βl1 cos(2πx f ) 0 . . . βl 1 cos(Nπx f ) 0

0 0 0 0 . . . 0 0
βl 2 cos(πx f ) 0 βl 2 cos(2πx f ) 0 . . . βl 2 cos(Nπx f ) 0

...
...

...
...

...
...

...
0 0 0 0 . . . 0 0

βl N cos(πx f ) 0 βl N cos(2πx f ) 0 . . . βl N cos(Nπx f ) 0


, (7.12)

βij = 2(1−γ)hi

Mac0 p0γ
jπsin( jπx f ); j = 1, . . . , N ; i = 1, . . . , M . (7.13)

The heat source model formulated in terms of the unit impulse response h
involves dealing with many fixed discrete delay terms l∆t , l = 0, . . . ,L. If all
delay terms are small, L∆t ¿ 1, a Taylor series expansion to first order in the
delay times l∆t can be used to convert the system to one without delay [10].

However, this approach is not general, as there is no a priori restriction on the
magnitude of the delay term. In thermo-acoustic applications involving, e.g.,
a flame as heat source, the delay terms may become quite large.
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7.2 Elements of the Non-Modal Stability Analysis

7.2.1 Eigenvalues

Eigenvalues of the system described by Eq. (7.10) are found to be the roots of
characteristic equation,

det(∆z) = 0,where (7.14)

∆(z) = zI −B0 −
L∑

l=1

Bl e−zl∆t . (7.15)

A system is asymptotically stable if all the roots (z) lie on the left half plane
Re(z) < 0. This transcendental equation has infinite roots, but the number of
eigenvalues to the right of any vertical line with Re(z) = r , where r is a real
number, is finite. Stability of the system can then be studied by a finite num-
ber of roots [43,66]. This nonlinear eigenvalue problem is solved iteratively, or
converted into a polynomial eigenvalue problem by approximating the expo-
nential term with a rational polynomial. If the system matrices are large and
their condition numbers are high, then the accuracy of these methods deteri-
orates.

As an alternative method, the delay differential equation is converted into a
partial differential equation. This is illustrated by taking a delay system with
one fixed delay and writing it as a partial differential equation. The delay dif-
ferential equation with one fixed delay term is,

ẇ(t ) = A0w(t )+ A1w(t −τ), t ≥ 0, (7.16)

w(t ) =φ(t ), t ∈ [−τ,0], (7.17)

where w is a state vector of dimension n, and A′s are matrices of dimension
n ×n. Considering the delay term as an extra dimension along with the time
dimension, the above equations are expressed as initial boundary value prob-
lem [66] with

∂v

∂x
= ∂v

∂t
, t ≥ 0, x ∈ [−τ,0], (7.18)
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as the partial differential equation and with the boundary value,

∂v

∂x
(t ,0) = A1v(t ,−τ)+ A0v(t ,0), t ≥ 0, (7.19)

and the initial value,
v(0, x) =φ(x), x ∈ [−τ,0]. (7.20)

Theorem 1 If w(t ) is the solution of the delay differential equation (Eq. (7.16),
Eq. (7.17)) and v(t , x) is the solution of the partial differential equation
(Eqs. (7.18), Eq. (7.19), Eq. (7.20)), then the following relation holds [66];

v(t , x) = w(t +x), x ∈ [−τ,0], t ≥ 0. (7.21)

Proof of Theorem 1: First it is shown that if w(t ) is the solution of the delay
equation and satisfies the relation in Eq. (7.21), then it satisfies the partial dif-
ferential equation. Eq. (7.18) is satisfied automatically because of symmetry of
w with respect to x and t .

v(t ,0) = w(t ), x = 0. (7.22)

This relation is applied in equation (37),

ẇ(t ) = ∂v

∂x
(t ,0), (7.23)

A0w(t )+ A1w(t −τ) = A0v(t ,0)+ A1v(t ,−τ), (7.24)

which gives the boundary value equation in Eq. (7.19).

v(0, x) = w(x), t = 0. (7.25)

Using this relation in Eq. (7.17), the initial value equation (Eq. (7.20)) is ob-
tained.

Now, if v(t , x) is the solution of the initial boundary value problem and satis-
fies Eq. (7.21), then it will satisfy the delay differential equation. This is shown
as,
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v(t ,0) = w(t ), x = 0 (7.26)

Considering this relation in the boundary value equation in Eq. (7.19) we ob-
tain,

∂v

∂x
(t ,0) = ẇ(t ), (7.27)

A1v(t ,−τ)+ A0v(t ,0) = A1w(t −τ)+ A0w(t ), t ≥ 0, (7.28)

which gives the delay equation in Eq. (7.16).

v(0, x) = w(x), t = 0. (7.29)

Using the above relation in the initial value equation in Eq. (7.22) for the par-
tial differential equation,

v(0, x) =φ(x), x ∈ [−τ,0], (7.30)

the initial value equation in Eq. (7.17) is obtained for the delay system and this
completes the proof.

For a given delay differential system it is thus possible to formulate an equiv-
alent partial differential equation. Next, we consider how the corresponding
solution operator can be discretized to compute the eigenvalues of the delay
system. The partitioning of the delay dimension into N +1 equidistant points
as,

ΩN = {mh | m =−N , . . . ,−1,0} , h = τ

N
, (7.31)

and a first order finite difference approximation along the delay dimension,
are considered.

The solution operator that satisfies the partial differential equation and the
boundary condition will be

L =
[

B ⊗ Im

A1 0. . .0 A0

]
, (7.32)
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which has the dimension of n(N +1)×n(N +1). The matrix B , which has di-
mension of N × (N +1), is given as

B = 1

h


−1 1 . . . . . . . . .
. . . −1 1 . . . . . .
...

...
...

...
...

. . . . . . . . . −1 1

 . (7.33)

Im is the identity matrix of dimension m ×m and ⊗ is the tensor product.

The extension to a case with many discrete fixed delays and an approximation
of the differential other than first order is discussed in [21]. In this study, the
Matlab toolbox TRACE-DDE [22] is used to compute the eigenvalues of the re-
sulting operator. The delay differential equations can also be written as an ab-
stract Cauchy problem, and the corresponding solution operator is called the
infinitesimal generator of the delay equation. An approximate discretization
of the operator is performed to get the eigenvalues of the delay system [14,21].

7.2.2 Pseudo-spectra of the delay system

For a linear matrix (operator), the pseudo-spectra exhibit the behavior of its
eigenvalues under perturbations. Systems governed by normal operators ex-
hibit resonance when the forcing frequency is close to the spectrum. However,
for non-normal systems, resonance may occur at frequencies far away from
the spectrum [135, 136]. Pseudo-spectra also provide the bounds on the evo-
lution operator [135, 136].

The characteristic equation for the system with many discrete fixed delays is
given by Eq. (7.15).

Using a perturbation matrix

∆̃(z) = δB0 +
L∑

l=1

δBl e−zl∆t , (7.34)

the ε-pseudospectra are defined as [123, 136]

Λε =
{

z ∈C| det
(
∆ (z)+ ∆̃ (z)

)= 0 with ‖δBi‖ ≤ ε
}

. (7.35)
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In the above equation, ||.|| and ε represent the norm of the matrix and the per-
turbation level, respectively. An equivalent representation of the above defini-
tion using the 2-norm of the matrices can be written [55] as,

Λε =
{

z ∈C | σmin (∆ (z))

1+∑L
l=1 e−zl∆t

≤ ε
}

, (7.36)

with σmin (∆ (z)) being the minimum singular value of the matrix ∆ (z). The
simplest approach to compute the pseudo-spectra is to find the minimum of
the singular value and plot the contours of the above equation on a complex
plane (two dimensional grid) [135].

7.2.3 Maximum growth factor and Kreiss’ theorem

The maximum growth factor Gmax(t ) is an important parameter indicating the
maximum amplification of perturbation energy over all initial conditions and
over all time instances within a time interval [0, t ].

The solution of the linear system

dχ(t )

dt
= Aχ(t ), (7.37)

in compact notation without a delay term can be expressed as,

χ(t ) = e Atχ(0). (7.38)

Within a time interval [0, t], the maximum growth factor is defined as [123],

Gmax = max
t

(
max
χ(0)

∥∥χ(t )
∥∥2∥∥χ(0)
∥∥2

)
= max

t

(∥∥e At
∥∥2

)
. (7.39)

From the definition of the 2-norm, the square of the norm can be represented
as [123], ∣∣∣∣χ(t )

∣∣∣∣2 =
N∑

i=1

(
η2

i +
η̇i

2

i 2π2

)
. (7.40)
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The non-dimensional perturbation energy at any time t is given by, [91]

E(t ) =
(
γMa

2

)2 ∣∣∣∣χ(t )
∣∣∣∣2

(7.41)

On substituting the above definitions for Gmax in Eq. (7.39), the maximum
growth factor is stated as,

Gmax = max
t

(
max
E(0)

Acoustic energy at time t

Initial acoustic energy

)
(7.42)

When the maximum growth Gmax factor reaches infinity, the system becomes
unstable. If it is less than one, the system is linearly stable (classical linear
stability). When performing a parameter variation in the system, the inter-
esting ranges of the parameter set will be the linearly stable regions with
1 < Gmax < ∞ (regions of potential instability) [91]. However in a delay sys-
tem, the compact representation in Eq. (7.37) cannot be obtained and the
computation of the maximum growth factor can be achieved using Kreiss’
Theorem [62, 123]. This theorem relates the maximum growth factor and the
pseudo-spectra by the relation and gives a lower bound on this quantity;

Gmax ≥ sup
ε>0

(
ε−1 sup

z∈Λε
ℜ(z)

)
. (7.43)

The right hand side of the above equation gives the maximum distance to the
real axis divided by the perturbation, for all perturbations greater than zero,
and is used as a lower bound on the approximation of the maximum growth
factor. Since the pseudo-spectra of the delay systems can be calculated, the
maximum growth factor for the Rijke tube with the heat source models from
identification and simple correlation (King’s law) can be compared for a range
of parameters.

7.3 Results

The eigenvalues of the system with the heat source model, obtained from
identification, have been calculated using the discretization of the solution
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operator of the equivalent partial differential equation for the delay differen-
tial system. The toolbox TRACE-DDE, which uses a Chebyschev collocation
scheme [22], has been utilized.
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Figure 7.3: Comparison of the eigenvalues of the system resulting from King’s
law heat source (circles) and from identified CFD heat source
(squares) with the duct parameters x f =0.25, c1=0.135, c2=0.05,
Ld =1

All the eigenvalues of the systems are on the left half plane indicating stability
of the systems. When the eigenvalues are compared with the system (models
of the heat transfer using King’s law) eigenvalues as in Fig. 7.3, the first eigen-
value pairs are found to be closer to the zero of the real axis while the second
eigenvalue pairs are at the same position. The first eigenvalue pairs near the
zero axis are -0.0154+/-1.781i for the CFD model, while for King’s law model,
the first two eigenvalue pairs are -0.0446+/-1.7275i , -0.0447+/-2.506i .

In Fig. 7.4, the pseudo-spectra is shown for the duct parameters and the var-
ious perturbation levels. The pseudo-spectra show symmetric behavior with
respect to zero of the imaginary axis, and in Fig. 7.5, a detail of the pseudo-
spectra is shown for the first two eigenvalue pairs that have negative imagi-
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Figure 7.4: Comparison of the pseudo-spectra of the systems resulting from
King’s law heat source (right) and from identified CFD heat source
(left) for perturbations of ε=10−1.8 , 10−1.6 , 10−1.4, 10−1.2 with the
tube parameters x f =0.25, c1=0.135, c2=0.05, Ld =1
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Figure 7.6: Maximum growth factor (lower bound calculated from pseudo-
spectra ) versus location of the heat source

nary parts. For the perturbation level of ε=10−1.4 (yellow colored contour), the
first eigenvalue pairs of both the systems and the second eigenvalue pair of
the system with King’s law model reach the right half plane. On incrementing
the perturbation level (brown colored contours), the distance of the contour
from the zero of the real axis increases and the lower bound on the maximum
growth factor is calculated from this distance. For perturbation ε=10−1.2, this
distance for the CFD model is 0.11 and for King’s law is 0.132, providing the
maximum growth factors from the Kreiss’ theorem as 0.11/10−1.2 = 1.75 and
0.132/10−1.2 = 2.1, respectively. These values are the lower bounds and greater
than one, and therefore transient growth does occur in these systems.

Next, the heat source location is changed and the maximum growth factor is
estimated from the pseudo-spectra for each of the heat source locations for
both systems. In Fig. 7.6, the maximum growth factor for changing the heat
source location is shown. The sensitivity of King’s law heat source model is
higher than that of the CFD heat source model.

7.4 Discussions and Conclusions

Thermo-acoustic systems have non-normal operators/matrices. These pos-
sess non-orthogonal eigenvectors. As a result of this, a transient amplifica-
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tion of the initial disturbance may grow to high amplitude levels, where the
nonlinearities are significant and cause “nonlinear driving”. Therefore, clas-
sical linear stability analysis based on orthogonal eigenvalues (growth rate of
eigenmodes) may give wrong predictions.

In this chapter, an approach to study the non-normal behavior of thermo-
acoustic systems is developed. The heat source is obtained from unsteady
CFD computations and linear system identification (CFD/SI) approach. As
discussed in the “Linear System Identification” chapter, this approach pro-
vides a lot of flexibility for modeling the heat source, i.e., no restriction on the
time delay. Moreover, linear models for more complex configurations of the
heat source can be obtained with this approach. Also, large delays resulting
from the heat source can be handled. The complete thermo-acoustic system
is simulated in time domain with the Galerkin method. This modeling of the
full system has the advantage that the system’s equations can be represented
in state space form.

Eigenvalues of the resulting delay differential system are obtained by the solu-
tion operator discretization method, where the delay system is converted into
an equivalent partial differential equation using delay as an extra dimension
along with time. Maximum growth factors, which represent the maximum am-
plification of perturbation energy over all initial conditions and over all time
instances, are estimated from pseudo-spectra. Pseudo-spectra diagrams show
the behavior of eigenvalues under perturbation, and the lower bounds for the
maximum growth factor can be drawn from these diagrams.

To illustrate the procedure, a Rijke tube is modeled with two different heat
sources, which include the heat source model based on King’s law and the
wire in pulsating flow. The latter is obtained from CFD/SI approach (refer to
“Linear Identification” chapter for details) and results in a representation with
many constant delay terms. A comparison of the pseudo-spectra for a set of
duct parameters as in Fig. 7.4 and Fig. 7.5 reveals that for some perturbation
levels, the first and second eigenvalue pairs of both the systems reach the right
half plane. Using Kreiss’ theorem the lower bounds estimated for the maxi-
mum growth factor are 1.75 and 2.1 for the systems with heat sources from
CFD/SI approach and based on King’s law, respectively. These values indicate
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transient growth in both systems. Next, the heat source location is changed
and maximum growth factor is calculated from pseudo-spectra for each of
the heat source locations. The sensitivity of heat source based on King’s law
is higher and has a maximum value when the heat source is located near the
downstream end of the tube. These results highlight some interesting features
of the non-normality in the Rijke tube.
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8 Summary and Conclusions

In this concluding chapter, a series of questions are raised and discussed to
highlight the salient aspects of the reported research and to clarify the ideas
that have been generated.

What is the aim of your thesis?

A nonlinear dynamic model of the heat source (a part of the complete thermo-
acoustic system) using system identification methods or physics based mod-
eling approach with POD has been developed. A low order thermo-acoustic
system model in the frequency model involving the coupling of the modes
has also been developed.

Why do you obtain nonlinear dynamic models for the heat source from sys-
tem identification and a nonlinear thermo-acoustic system model?

In linear network models of thermo-acoustic systems, each component of the
system is represented by its transfer function/matrices. System identification
can be utilized as an effective tool to obtain transfer functions/matrices of
thermo-acoustic elements. In this approach, transfer functions of the compli-
cated elements, like turbulent flame, is obtained using only the input-output
data set. Stability analysis of full thermo-acoustic system is then studied by
constructing the system matrices and analyzing its eigenvalues. It is a good
idea to extend the identification procedure and system model to the nonlin-
ear regime to predict limit cycle amplitudes.

Which nonlinear heat source models have you used?

Three different heat source models have been used. The first is a wire mesh as
found in a Rijke tube. This heat source is modeled as flow over cylinder that
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is kept at constant temperature for the CFD computations. Most of the non-
linear identification schemes have used the input-output data set generated
from this model. For the sake of numerical simplicity in processing with POD,
a heated flat plate in pulsating flow is used as the heat source model. As the
third heat source, a laminar premixed flame is used. The physics of the non-
linear mechanism for these model problems is well understood and they show
nonlinear behavior even at very low pressure perturbations.

Which nonlinear identification procedures have you used?

Nonlinear identification procedure is considered a functional approximation
problem. In time domain, universal functional approximators (neural net-
work and fuzzy logic) have been used. Nonlinear dynamic models obtained
from these identification methods describe the heat source for a range of fre-
quencies and amplitudes. The system is excited with a signal that covers a
range of frequencies as well as amplitudes (chirp with varying amplitudes,
broadband forcing with high amplitudes, and multi-level signals). This non-
linear dynamic model for the heat source is coupled to a time domain system
model of thermo-acoustics, such as the Galerkin time domain.

Frequency domain models of the heat source have also been considered. Non-
linear transfer function is obtained from nonlinear system identification. Har-
monic balance and harmonic probing are used to extend the equation error
identification (one-step ahead prediction model structure, ARX model struc-
ture) into frequency domain. In the harmonic balance approach, a system of
equations for the coefficients of the harmonic ansatz is obtained. In the har-
monic probing approach, nonlinearity is expressed in terms of higher order
transfer functions, which have been derived using recursive relations.

Higher order transfer functions are derived by converting the neural network
based identification procedure into frequency domain. First, an equivalent
representation is obtained in a polynomial type input-output nonlinearity by
expanding tanh in the layer of the neural network. Then, this polynomial rep-
resentation is converted into frequency domain to define the higher order
transfer functions.

How do you describe the heat source with POD for a range of amplitudes
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and frequencies?

Data set is collected for single sinusoidal excitations at different amplitudes
and frequencies. Snapshot of the data matrices is constructed. Singular value
decomposition of the snapshot matrices gives the POD modes. The governing
equations are projected onto POD basis to obtain a set of coupled ordinary
differential equations for the modal coefficients (describing the evolution of
POD modes). The POD modes describe the spatial dependence of the problem
(low order model) for the considered range of amplitudes and frequencies.
The desired input (acoustic forcing) and output (temperature, heat transfer
response) are included explicitly in the low order model. The pressure term
resulting from the incompressibility is included using a calibration technique.
This low order model of the heat source can be coupled with a time domain
simulation of full thermo-acoustic system.

Explain your system modeling approach in the nonlinear regime?

Heat source nonlinearity is represented in terms of the higher order transfer
functions. System variables (acoustic velocity and pressure) are expressed as
superposition of the modes. A set of algebraic equations results if system vari-
ables are used in the Galerkin time domain equations or thermo-acoustic net-
work equations (see Appendix C for a derivation). The modes are then coupled
through the higher order transfer functions.

What are the advantages of your system model?

It is a frequency domain method that requires solving only a set of algebraic
equations. It is much faster compared to a time domain simulation. It also
allows modal coupling. The widely used approach in the frequency domain
“sinusoidal describing function” is a one mode approximation which can-
not model the coupling between the modes. An energy balance between the
modes is performed when the limit cycle is reached. The Rayleigh index in
the nonlinear regime is analyzed. Moreover, jump conditions in the area and
temperature can be included.

What are the drawbacks of your system model?

Optimal initial conditions for the set of system of nonlinear equations are re-
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quired (general problem of nonlinear optimization). When the delay time is
large and polynomial order of the approximation is high, computation of the
higher order transfer functions requires post-processing of a large number of
parameters.

How do you contribute to non-normality in thermo-acoustic systems?

An approach has been developed to study non-normality in thermo-acoustic
systems that allows more flexibility in heat source modeling and enables han-
dling of large delay times of the heat source. The heat source model is obtained
with unsteady CFD computations and linear system identification (CFD/SI
approach). The complete thermo-acoustic system is simulated in time do-
main using the Galerkin method (a compact representation of the system
equations in state space form). Eigenvalues are found from the solution op-
erator discretization technique. Lower bounds of the maximum growth factor
is estimated from pseudo-spectra diagrams.
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A System Properties

A.1 Linearity

The method of superposition is applied to a system operator L which is said
to be linear.

yk(t ) = L (uk(t )) , for k = 1,2, ... (A.1)

where uk , and yk are the inputs and outputs, respectively. For arbitrary coef-
ficients bk ,

L

(
N∑

k=1

bkuk(t )

)
=

N∑
k=1

bkL (uk(t )) =
N∑

k=1

bk yk(t ) (A.2)

A.2 Time Invariant

A translation of time for the input results in the same translation for the out-
put. A linear/nonlinear operator P of a system acts on the input u as,

y(t ) = P (u(t )). (A.3)

P is time invariant if for a time translation τ on input, u(t +τ) results in

P (u(t +τ)) = y(t +τ). (A.4)
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A.3 Stability

A.3 Stability

It is sometimes called Bounded Input-Bounded Output (BIBO) stability.
Bounded Input means there exists K such that |u(t )| < K for all t .

Linear System

An LTI system, which can be represented with unit impulses (first order
Volterra kernels),

y(t ) =
∫ ∞

−∞
h(τ)u(t −τ)dτ, (A.5)

is stable if and only if

∫ ∞

−∞
|h(τ)|dτ<∞. (A.6)

The sufficiency condition is checked as,

|y(t )| =
∣∣∣∣∫ ∞

−∞
h(τ)u(t −τ)dτ

∣∣∣∣< K
∫ ∞

−∞
|h(τ)|dτ<∞. (A.7)

The necessary condition can be shown when the equation is not satisfied for
the case for which a bounded input can be found such that the corresponding
output is unbounded [121].

Let us assume the input to be

u(t −τ) = 1, when h(τ) ≥ 0, and (A.8)

−1, when h(τ) < 0.

The corresponding output then becomes,

y(t ) =
∫ ∞

−∞
|h(τ)|dτ=∞. (A.9)
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System Properties

Volterra System

A system, which is represented by a Volterra series of order n,

y(t ) =
∫ ∞

−∞
h1(τ1)u(t −τ1)dτ1︸ ︷︷ ︸

Impulse response

+

∫ ∞

−∞
. . .

∫ ∞

−∞
hn(τ1, . . . ,τn)︸ ︷︷ ︸

nth order kernel

u(t −τ1) . . .u(t −τn)dτ1 . . .dτn + . . . . , (A.10)

is stable if the kth order term of the above summation is

∫ ∞

−∞
. . .

∫ ∞

−∞
|hk(τ1, . . . ,τk)|dτ1 . . .dτk <∞, for k = 1,2, ..,n. (A.11)

This condition is sufficient but not necessary for the stability [121]. The suffi-
ciency condition is formulated as,

∣∣∣∣∫ ∞

−∞
. . .

∫ ∞

−∞
hk(τ1, . . . ,τk)u(t −τ1) . . .u(t −τk)dτ1 . . .dτk

∣∣∣∣≤∫ ∞

−∞
. . .

∫ ∞

−∞
|hk(τ1, . . . ,τk)||u(t −τ1)| . . . |u(t −τk)|dτ1 . . .dτk <

K k
∫ ∞

−∞
. . .

∫ ∞

−∞
|hk(τ1, . . . ,τk)|dτ1 . . .dτk <∞. (A.12)

A.4 Causality

If the system response does not depend on the future outputs, then the system
is said to be casual.

Let us consider the Volterra series representation (it contains LTI system rep-
resentation for the first order). The kth order component of the summation,
which is represented as,
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A.4 Causality

yk(t ) =
∫ ∞

−∞
. . .

∫ ∞

−∞
|hk(τ1, . . . ,τk)|dτ1 . . .dτk <∞, for k = 1,2, ..,n, (A.13)

is casual if the kth output, yk(t ), does not depend on the future input, u(t−τi ),
for τi < 0. This is possible when the corresponding kth kernel becomes equal
to zero if any of its arguments is less than zero. The necessary and sufficient
condition for the causality is then hk(τ1, . . . ,τk) = 0 if any τi < 0 for i = 1, ..,k.
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B Describing Function Table

Table B.1: Describing Function of Common Nonlinearities. The input to the
nonlinear element is assumed to be a sinusoid of amplitude A and
frequency ω [52].

Nonlinearity Describing Function

saturation or limiter N (A) = 2m
π

(
sin−1( δA )+ δ

A

√
1− (

δ
A

)2
)
, A > δ

ideal relay N (A) = 4D
πA

relay with dead zone N (A) = 4D
πA

√
1− (

δ
A

)2
, A > δ

184



Table B.2: Describing Function of Common Nonlinearities (Continued)

Nonlinearity Describing Function

rectangular hysteresis N (A) = 4D
πA

√
1−

(
δ
A

)2 − j 4Dδ
πA2 , A > δ

gain changing element N (A) = 2(m1−m2
π

(
sin−1( δA )+ δ

A

√
1−

(
δ
A

)2
)
+m2, A > δ

backlash N (A) = 1
π

(
π
2

√
2b
A −

(
b
A

)2 − j
π

(
2b
A −

(
b
A

)2
)

, A > b
2

negative deficiency N (A) = 4D
πA

(
π
2

√
1−

(
δ
A

)2
)
+ D

δ − j Dδ
πA2 , A > δ
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Describing Function Table

Table B.3: Describing Function of Common Nonlinearities (Continued)

Nonlinearity Describing Function

dead zone N (A) = m
π

(
π−2sin−1( δA )−2 δ

A

√
1−

(
δ
A

)2
)

, A > δ

preload N (A) = 4D
πA +m

y = xn

n = 3,5,7, ... odd nonlinearity N (A) = n(n−2)(n−4)...(3)
(n+1)(n−1)(n−3)...(4) An−1

y = x
1
3 N (A) = 1.16A

−2
3
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C Nonlinear Network Model

Linear network models of thermo-acoustics have been developed [35, 38, 45,
70,74,111]. An extension to the nonlinear regime, for the case where the main
source of nonlinearity is due to the heat source, is derived. heat source is ex-
pressed in terms of higher order transfer functions. A harmonic balancing ap-
proach in the frequency domain accounts for the coupling of the modes when
acoustic pressure and velocity are written as the sum of the modes.

The equations are derived for a one-dimensional acoustic field inside a res-
onator tube of length L with a compact heat source located at position x =
x f . A schematic representation of a horizontally located tube at open-open
boundary conditions is shown in Fig. C.1.

p '=0 p '=0

x=0 x= x f x=L

x

1 2

Figure C.1: Horizontally located resonator tube of length L at open-open
boundary conditions with a concentrated heat source at position
x = x f

Acoustic pressure at section 1 and 2 :

p1(x, t ) =
N∑

r=1

(
Ar e−i (k1r (x−x f )−ωr t ) + A−r e i (k1r (x−x f )−ωr t )

+Br e i (k1r (x−x f )+ωr t ) +B−r e−i (k1r (x−x f )+ωr t )

)
, (C.1)
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Nonlinear Network Model

p2(x, t ) =
N∑

r=1

(
Cr e−i (k2r (x−x f )−ωr t ) +C−r e i (k2r (x−x f )−ωr t )

+Dr e i (k2r (x−x f )+ωr t ) +D−r e−i (k2r (x−x f )+ωr t )

)
. (C.2)

The modal coefficients (Ar , A−r ), (Br ,B−r ), (Cr ,C−r ) and (Dr ,D−r ) are complex
conjugate pairs, and the pressures at sections 1 and 2 with the given represen-
tation are already real numbers.

Acoustic velocity at section 1 and 2 :

u1(x, t ) = 1

ρ1c1

N∑
r=1

(
Ar e−i (k1r (x−x f )−ωr t ) + A−r e i (k1r (x−x f )−ωr t )

−Br e i (k1r (x−x f )+ωr t ) −B−r e−i (k1r (x−x f )+ωr t )

)
, (C.3)

u2(x, t ) = 1

ρ2c2

N∑
r=1

(
Cr e−i (k2r (x−x f )−ωr t ) +C−r e i (k2r (x−x f )−ωr t )

−Dr e i (k2r (x−x f )+ωr t ) −D−r e−i (k2r (x−x f )+ωr t )

)
. (C.4)

Wave numbers k1 and k2 are defined as

k1r = ωr

c1
, k2r = ωr

c2
. (C.5)

Heat source is expressed as a function of velocity at the heat source location
in terms of Volterra kernels up to third order as :

Q ′(t ) =
L∑

m1=1
h1(m1)u(t −m1 +1)+

L∑
m1=1

L∑
m2=1

h2(m1,m2)u(t −m1 +1)u(t −m2 +1)

+
L∑

m1=1

L∑
m2=1

L∑
m3=1

h3(m1,m2,m3)u(t −m1 +1)u(t −m2 +1)u(t −m3 +1)
.

(C.6)

The following coefficients,

Lr = 1

ρ1c1
(Ar −Br ) , L−r = 1

ρ1c1
(A−r −B−r ) , (C.7)

and linear/higher order transfer functions are defined as,
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H1(ω) =
L∑

m1=1
h1(m1)e−iω(m1−1)∆t , (C.8)

H2(ω1,ω2) =
L∑

m1=1

L∑
m2=1

h2(m1,m1)e−iω1(m1−1)∆t e−iω2(m2−1)∆t , (C.9)

H3(ω1,ω2,ω3) =
L∑

m1=1

L∑
m2=1

L∑
m3=1

h3(m1,m2,m2)e−iω1(m1−1)∆t e−iω2(m2−1)∆t e−iω3(m3−1)∆t .

(C.10)

Then the nonlinear heat source is obtained as,

Q ′(t ) =
N∑

r1=1

(
Lr1 H1(ωr1)e−iωr1t +L−r H1(−ωr1)e iωr1t

)

+
N∑

r1=1

N∑
r2=1


Lr1Lr2 H2(ωr1,ωr2)e−iω(r1+r2)t

+Lr1L−r2 H2(ωr1,−ωr2)e−iω(r1−r2)t

+Lr2L−r1 H2(ωr2,−ωr1)e−iω(r2−r1)t

+L−r1L−r2 H2(−ωr1,−ωr2)e−iω(−r1−r2)t



+
N∑

r1=1

N∑
r2=1

N∑
r3=1



Lr1Lr2Lr3 H3(ωr1,ωr2,ωr3)e−iω(r1+r2+r3)t

+Lr1L−r2Lr3 H3(ωr1,−ωr2,ωr3)e−iω(r1−r2+r3)t

+Lr2L−r1Lr3 H3(ωr2,−ωr1,ωr3)e−iω(r2−r1+r3)t

+L−r1L−r2Lr3 H3(−ωr1,−ωr2,ωr3)e−iω(−r1−r2+r3)t

+Lr1Lr2L−r3 H3(ωr1,ωr2,−ωr3)e−iω(r1+r2−r3)t

+Lr1L−r2L−r3 H3(ωr1,−ωr2,−ωr3)e−iω(r1−r2−r3)t

+Lr2L−r1L−r3 H3(ωr2,−ωr1,−ωr3)e−iω(r2−r1−r3)t

+L−r1L−r2L−r3 H3(−ωr1,−ωr2,−ωr3)e−iω(−r1−r2−r3)t



(C.11)

Boundary Conditions

For a tube at open-open boundary conditions,

p1(0, t ) = p2(L, t ) = 0. (C.12)
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Nonlinear Network Model

In terms of modal coefficients

Ar e i k1r x f + A−r e−i k1r x f +Br e i k1r x f +B−r e−i k1r x f = 0, (C.13)

Cr e−i k2r (L−x f ) +C−r e i k2r (L−x f ) +Dr e i k2r (L−x f ) +D−r e
−i k2r (L−x f ) = 0.(C.14)

Pressure Jump across the Heater

p1(x f , t ) = p2(x f , t ), (C.15)

in terms of modal coefficients

Ar + A−r +Br +B−r =Cr +C−r +Dr +D−r . (C.16)

Velocity Jump across the Heater

u2(x f , t )−u1(x f , t ) = (γ−1)

ρ1c1
2

Q ′(t ). (C.17)

This is the most important part for the nonlinear modeling since the main
source of nonlinearity originates from the local heat source. A harmonic bal-
ancing (equating the exponentials of the same order) is used for the right and
left hand sides of Eq. (C.17)). The equation for the mode number s is drawn
as,

ρ1c1
2(

γ−1
) (

1

ρ2c2
(Cs −Ds)− 1

ρ1c1
(Ls)

)
= (C.18)

Ls H1(ωs)+
N∑

s1=1

N∑
s2=1


Ls1Ls2 H2 (ωs1,ωs2)︸ ︷︷ ︸

s1+s2=s

+Ls1L−s2 H2 (ωs1,−ωs2)︸ ︷︷ ︸
s1−s2=s

+Ls2L−s1 H2 (ωs2,−ωs1)︸ ︷︷ ︸
s2−s1=s



+
N∑

s1=1

N∑
s2=1

N∑
s3=1



Ls1Ls2Ls3 H3 (ωs1,ωs2,ωs3)︸ ︷︷ ︸
s1+s2+s3=s

+Ls1L−s2Ls3 H3(ωs1,−ωs2,ωs3)︸ ︷︷ ︸
s1−s2+s3=s

+Ls2L−s1Ls3 H3(ωs2,−ωs1,ωs3)︸ ︷︷ ︸
s2−s1+s3=s

+L−s1L−s2Ls3 H3(−ωs1,−ωs2,ωs3)︸ ︷︷ ︸
−s1−s2+s3=s

+Ls1Ls2L−s3 H3(ωs1,ωs2,−ωs3)︸ ︷︷ ︸
s1+s2−s3=s

+Ls1L−s2L−s3 H3(ωs1,−ωs2,−ωs3)︸ ︷︷ ︸
s1−s2−s3=s

+Ls2L−s1L−s3 H3(ωs2,−ωs1,−ωs3)︸ ︷︷ ︸
s2−s1−s3=s
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In this representation the effects of the higher order modes on the fundamen-
tal harmonic and the energy transfer from the fundamental to the higher order
modes is directly seen.

We have 2N equations based on the boundary conditions, N equations for
the pressure jump and N equations for the velocity jump across the heater
accounting for only the real parts. In total, the number of equations account-
ing for the imaginary parts is 8N . The unknowns are the complex conjugate
coefficients (Ar and A−r , Br and B−r , Cr and C−r , Dr and D−r ) and frequency
(ω). Each coefficient has 2 unknowns (real and imaginary parts), and the cor-
responding complex conjugate part is determined from these unknowns. For
example, if Ar = ar + j br with ar and br being real numbers, the complex con-
jugate part will be A−r = ar − j br . The number of unknowns will then be 8N for
the unknown modal coefficients and 1 for frequency ω. An additional equa-
tion is obtained for the frequency by assuming the imaginary part of one of
the modal coefficients to be zero, i.e. ℑ(A1) = 0.
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