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For a gas bubble floating in a liquid-filled rectangular enclosure, the effect of thermocapil-

lary convection on fluid flow and heat sransfer Is studied in @ cross section with a

two-di sional model. A ¢ ient finite difference scheme is applied for the aumerical

calculations. For a fluid with Pr = 1.93, the overall heat transfes in the liquid is presented

Jor selected configurations in terms of the dimensionless numbers Nu and Ma. Contrary to

the common view that an enclosed gas volume wowld reduce the heat transfer duc to its

insulating behavior, the energy transport is rather augmented by the thermocapillary
convection acting on the free surface. For higher Marangoni numbers, oscillatory flow

behavior occurs.

When a free surface is subjected to a temperature gradient, a flow termed
Marangoni (1), surface tension driven or thermocapillary convection is induced.
Before the first microgravity experiments had been performed, thermocapillary
convection was not given much attention, as it was regarded to be negligible in
comparison with buoyancy convection. Recently, considerable interest has been
shown in thermocapillary flow, especially in materials processing [2-4). Experi-
ments of subcooled boiling under microgravity conditions [5] clearly demonstrated
that Marangoni convection can fully replace the buoyancy-dominated heat transfer
mechanisms of Earth’s gravity. As space experiments are generally expensive,
numerical simulations can help cut costs and facilitate the realization of new
experiments.

In some technical systems, it is highly desirable that convection substantially
contribute to both heat and mass transfer, while in others, such as building
materials, air insulation is used to reduce heat losses. In particular, Marangoni
convection can affect floating bubbles or droplets in a liquid exposed to a
temperature gradient. Young et al. [6] investigated the motion of bubbles by
adjusting a vertical temperature gradient in a fluid in such a way that the buoyancy
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NOMENCLATURE
a pressure coefficient Y constant
b mass source At time step
B width of the cavity AT temperature diffesence in the
cp isobaric specific heat capacity box (=1, — T,)
do/dT  temperature cocfficient of ] dynamic viscosity
surface tension A thermal conductivity
Fo Fourier number (= ar/L?) n universal exponent
8 gravilational acceleration v kinematic viscosity
(in y direction) I density of the liquid
h, H height of the cavity u surfuce tension
L characteristic length (L = H T shear stress
forcases MM - BM+ B L=h o, relaxation factors
for cases My, and M)
Ma Marangoni number for the box Subscripts
[= —Ado/dTXLAT/an)]
Nu local Nusselt number {= L[T(y b bottom wall
+Ay) - T(y)/(ATAYy)) ¢ critical
P pressure cold cold wall
Pr Prandil number (= v/ = 5¢, /A) g gas
R cylinder radius hot hot wall
Ra Rayleigh number for the box i liquid
(=g8B, AL /va) M Marangoni
Re Reynolds aumber for the box mux maximum
(=wy, oL/ nb ncighboring points
s security fuctor ose ascitlation
[ time P central point of a contiol volumie
T temperalure T tadial
u x velocity t top wall .
u, radial velocity un the cylinder 0 reference value for Nuid propertics
surface [T, - 30, v 1))
u, azimuthal vclocity on the " azimuthal
cylinder surface
v y velocity Superscript
Wox maximum velocity (for evatuation
of the Reynolds number) ‘ corrective teem
(= max{{ul + {0l M estunated term or value for the
a thermal diffusivity old time level
B, thermal cxpansion cocfficient hd correcied term

of the bubble was compensated by the Marangoni force. However, the heat
transfer was not considered. At first sight, one would expect a gas bubble floating
in a tiquid to significantly reduce the heat transter due 1o its insulating behavior.
Taking thermocapillary flow into consideration, the question ariscs, can heat
transfer through a liquid be augmented by inscrting a gas bubble?

The aim of our study is to evaluate the heat transfer by thermocapillary
convection around a gas bubble, frozen at a definite location in a rectungular
enclosure with a vertical temperature gradicnt. Variable gravity conditions make it
possible to study the interaction of buoyancy and surfuce tension driven convee-
tion. Numerical simulations of Marck and Straub [7] revealed that, cven under
Earth’s gravity conditions, Marangoni flow cannot be overcome by natural convee-
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tion in certain configurations. Depending on the boundary conditions, thermocapil-
lary flow can either augment or counteract natural convection. Contrary to former
assumptions, Marangoni flow is, in general, not negligible.

PHYSICAL MODEL

As a first approximation of the problem of thermocapillary flow in a cross
section around an enclosed gas bubble in a liquid with adjacent temperature
gradient, the configuration of a rectangular container with an enclosed cylinder of
infinite length (Figure 1) is studied. This truncation to two dimensions yields an
enormous gain in computing time and memory, while estimations of the enhance-
ment of heat transfer by thermocapillary convection can be transferred to the
three-dimensional geometry with bubble.

Furthermore, as the cylinder is assumed to be horizontally centered in the
two-dimensional (2D) box and the boundary conditions are symmetrical to the y
axis, heat transfer and fluid flow are only computed in the right half of the 2D box
(Figure 1).

At a real gas-liquid interface, thermocapillary convection expands both into
the gas and into the liquid phase. Due to the relatively small values for the
transport properties 7 and A and the small density p of the gas, heat transfer and
fluid flow are neglected inside the cylinder and are only considered in the liquid as
an interaction of Marangoni and natural convection.

CONSERVATION LAWS

The system of an cenclosed gas cylinder in a rectangular cavity filled with
liquid is governcd by the conscrvation laws for mass, momentum, and energy.
Using the Boussinesq approximation [8} for the properties of the surrounding
liquid, the following coupled conservation laws apply [}

Mass
1 dp du v

— =+ v Z 0 )
0, 9t dx  dy

adiabatic boundary

u=0
v=0
N u=0}_ -
v u=0
ax =0 “v=0
je o]

_ | u=0
6vu—0"" u, = vy
ax =0

u=0
v=0

Figure 1. Computational domain in the three-dimensional heat transfer
problem with boundary conditions.
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Energy
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—tu— At o— = a,| —5 + —5 2
ar - ax UGy Tl T gyt
X momentum
du du Jdu 1 dp d’u  d'u
—tu—tv—=—-— — 4 p|— + —5 3)
at dx dy 0, 9x dx ay
y momentum
v v v o(T) 1 ap AT LT
—tUu—tv— =g - — — 5+t —35 (€)}
at dx dy 0y 0, 9y dx ay
INITIAL AND BOUNDARY CONDITIONS
For ¢ = 0 the liquid around the gas cylinder is assumed to be at rest:
wlx,y, 1 =0 =0A0v{x,y,t=0)=0 %

and a temperature field is chosen constant in the x direction with a constant
gradient in the y direction, Eq. (6), as in the case of steady state heat conduction
without a gas cylinder.

Tlr,y, 6 =0) =T, + (T, - 'm,i 6)

The governing boundary conditions for the 2D cylinder in the container
model of Figure 1 are the thermal and the hydrodynamic boundary conditions.

Thermal Boundary Conditions

As the thermal conductivity of air is small in comparison with that of the
surrounding liquid, the surface of the cylinder is assumed to be adiabatic. More-
over, heat transfer by radiation is neglected, since the maximum temperature
differences of 3.4 K in the system are small; heat is only transported by conduction
and convection in the liquid. The bottom and top walls of the enclosure ure kept at
constant but different temperatures, while the side walls are assumed to be
perfectly insulated:

aT
T(y=0)='l‘b/\’1‘(y=ll)='l‘,/\—a:=() A— =0 )

-0, x-8/2 ar - R
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Hydrodynamic Boundary Conditions

We assume nonslip conditions at all rigid walls. Furthermore, no mass is
transported over the cylinder surface:

av
u=0v=0kens2,y-0,y~1 Att = Oliuy Au, = 0, g A—= OL (8)
ax =0

Applying Newton’s law of viscosity and considering the fact that 7, < 7, a balance

between viscous shear stresses and surface tension forces on the free surface in the
azimuthal direction yields the so-called Marangoni boundary condition [5);

2

1 do 1 0T do du, u
17( ) 9)

ar r

r—=R

Initially, the liquid in the container is at rest, and the temperature distribution is
described by a linear profile in the y direction with isothermal cross sections for
y = const, equivalent to steady state heat conduction in a box with isothermal top
and bottom and adiabatic side walls.

TEMPERATURE COEFFICIENT OF SURFACE TENSION

The temperature dependence of surface tension o = o(T) is the important
impetus for thermocapillary convection. In general, the temperature coefficient of
surtuce tension du/dT in Eq. (9) is negative. However, for some liquid metals and
alloys {10}, and some aqueous solutions of alcohols [11], positive gradients are
reported.

Busced on van der Waals’s equation [12], Rathjen and Straub [13] developed a
universal relation for the temperature dependence of surface tension with fluid-
specific constants ay, y, v, and T,. Straub et al. [14] evaluated these constants in a
separate study for water:

= Ty ! ao
o= (ru(l - 7—L) I+ 'y(l - Tc)

Differentiation yiclds the temperature coefficient of surface tension as a function
of T:

m

d T
¢ "“( an

ar T\

! (1 )
© T-T tyll+p

We used water at a mean temperature of 365 K as a test fluid in our calculations,
even if for some other reason, Marangoni convection is not always observed in
water [S) One reason for the use of this test fluid is that the thermophysical
properties are easily available, in particular, the propertics of surface tension are
well known for a wide region. It is also interesting to investigate to what extent
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Marangoni flow in pure water could be induced because it is known from
experimental work [15] that Marangoni flow in water is highly affected by the
purity of the liquid surface. Furthermore, the Prandul number of this test fluid is
about 2, which is representative for many fluids in practical use. Nevertheless, it is
necessary in the future to examine in detail the influence of the Prandtl number on
heat transfer and fluid flow.

The small temperature differences up to 1.7 K from the mean temperature of
the liquid, and the great distance to the critical point, justify the use of a constant
temperature gradient of surface tension for the given conditions. A scrics of
calculations was performed to examine the influence of a constant and a variable
temperature coefficient of surface tension. The deviations in the steady state
overall Nusselt number between calculations with do/dT = da/dT(T) and
do/dT = const are less than 0.01%.

The thermophysical properties of the test liquid are shown in Table 1.
Constant properties are used because the biggest temperature differences in the
system under consideration did not exceed 3.4 K in a range of 0 < Ma < 250,000.

MATHEMATICAL MODEL

As no analytical solution of the problem under consideration is possible, the
governing equations are integrated numerically using a control volume finite
difference method. Implicit and semi-implicit numerical methods are frequently
preferred to explicit schemes in transient fluid flow calculations, since time steps of
arbitrary size can be chosen. However, their computational effort is greater, and
sometimes an iterative solution is necessary. Explicit methods, on the other hand,
can easily be implemented, and their computational simplicity can make up for the
limitation of the time step by stability criteria. In particular, when the focus is on
the transient development of a flow, explicit methods are preferable. Moreover,
our experience of several years with explicit finite diffcrence schemes favored the
use of this method.

COMPUTATIONAL GRID

The special combination of a circular and a rectangular geometry excludes
the use of a regular computational grid. Resorting 10 a well-tested computer code
for transient heat transfer and fluid flow problems in rectangular or cylindrical

Table 1. Thermophysical Propertics of the Test Liquid (Pr = 1.93)

Value Unit of Mcasure
<y 4206.9 1/kgK
A 0.673 W/mK
n 308.64 X 107 Ns/m?
0o 963.84 ky/m?

B, 7.116 X 107¢ 1/K
do/dr —1.8892 x 107 ¢ N/mK
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calculation domains [7, 16] with finite control volumes, various difference schemes
(17, 18], and explicit time steps, the circular geometry of the cylinder and the
rectangular cavity in Figure 1 were discretized using “blocked-off regions” [17] in
connection with regular triangular elements. Temperature and pressure are calcu-
lated in the center of a control volume of this grid, which is therefore denoted
“energy grid” (Figure 2). For the velocities, a “staggered” or “displaced” grid [17) is
utilized. Based on the procedure described by Patankar [17) for rectangular control
volumes, modified balances for energy and momentum can easily be obtained for
the nonrectangular clements.

CHOICE OF GRID SIZE

For the selection of the grid size, contradictory arguments had 1o be consid-
ered. On the one hand, an cfficient simulation regarding the computing time is
desirable; on the other hand, a precise approximation of the cylinder surface and
discretization of the whole calcutation domain are necessary for accurate results.

‘Therefore, test simulations starting with 10 X 20 up to 80 X 160 control
volumes in the rectangular calculation domain of Figures 1 and 2 were performed
lo establish the necessary grid refinement. The temperature distribution and the
velocity profile around the cylinder became grid independent for a grid with
40 X 80 control volumes or finer for several examined configurations, Marangoni
numbers, and gravity levels, presented as case studies below. For higher Marangoni
numbers, oscillations occurred in the velocity and temperature profiles. Even these
oscillations, observed in terms of the transicnt development of the integral Nusscht
number at the heated and cooled walls, were grid independent for grids 40 X 80 or
finer.

Nevertheless, for security purposes, a grid of 50 X 100 control volumes was
eventually chosen for the simulations (discussed below). With this grid, the average
computing time on a Cray Y-MP 4 /432 supercomputer amounted to about 1000
CPU seconds for a given Marangoni number.

STABILITY CRITERIA OF THE EXPLICIT METHOD

In the discretized explicit form of the conservation laws for energy and
momentum, the size of the time step Ar has to be chosen within a fixed limit.
Otherwise, physically unrealistic results or instabilities in the computer code are
induced. The diffusive stability criterion derives from the second law of thermody-
namics (17, 19], while the convective limit is given by the Courant-Friedrichs-Lewy
(CFL) condition [19]. The admissible time step At,,, is the minimum time step

resulting from both criteria [19]. We additionally employed a security factor $ for
the choice of the time step:

1
At = 3 LY. (12)

Examining the influence of this security factor on the calculated results and the
required computing time, pure thermocapillary convection around a gas cylinder
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Figure 2. “Encigy grid™ with 30 % 100
control volumes.

was studicd with $ as a paramcter until steady state conditions were reached. For
increasing 8§ (S = 1) (he value of the overall Nusselt nomber in the system
stabilized, especially for § = 3.0. The computing time exhibits a0 minimum for
S§ = 1.25. For § > 5, a large consumption of CPU time was obscrved because ol
frequent calls of the subroutines for energy and momentum,

Owing to the rapid convergence of the solution Tor 8 > 3.0 and the large
consumption of CPU time for § > 5.0, we chose a sceurity tactor of § -~ L0 for the
determination of the time step.

PRESSURE-VELOCITY ITERATION

The numerical integration of the momentum cquations involves the difficulty
that only the pressure for the old tme level p* s availuble, which is in general,
different from the pressure for the new time level. According to Patankar [17], an
equation for the pressure correction p’ is obtained from the momentum and mass
conservation equations. Instead of solving the complete pressure correction equa-
tion like Patankar, Wengle [18] proposes that the influence ol the mass source b is
more decisive than that of the unknown pressure corrections ol the ncighboring
grid points p,. Neglecting the laner, p) can be direetly caleutated:

b

Py = — (13)
ap

The required computing time for the pressure-velocity method proposcd by Wen-
gle is relatively small when explicit timie steps are used.
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With corresponding relaxation factors w, and w,, updated values for the

pressure p** and the velocities «** and v** are calculated from the correction
values:

prr=pt o, p AU =0t ol AT =0+ e 14)

For implicit schemes, underrelaxation is necessary with w, < 0.8 and w, < 05[17}
in order 10 enable convergence of the pressure-velocity iteration. On the other
hand, underrelaxation slows down the rate of convergence due to its dampening
effect. A speed-up is highly desirable, which is possible by overrelaxation with an
explicit method. For our explicit scheme, good convergence was obtained for
w, > L0 and w, > LO. A hybrid relaxation proposed in the Mapik algorithm by
Marck and Straub [20] reduces the number of necessary iterations by employing
alternately underrelaxation (w < 1) and overrelaxation (w > 1), depending on the
convergence or divergence of the previous iteration step.

OTHER PRESSURE-VELOCITY ALGORITHMS

Scarching for an cfficient pressure-velocity correction, we investigated (wo
more algorithms for solving the pressure correction equation, where the pressure
corrections of the acighboring points are considered: the simpre algorithm with
tridiagonal matrix algorithm (YDMA) solver {21, 22} und the siMPLEC algorithm
with TDMA solver {21, 23]

The iterative solution of the pressure correction equation with the TDMA-
simeia: algorithm consumed only half of the computing time of the MAPLE algo-
rithay in the carly stage of the flow for obtaining results of comparable accuracy.
However, when the fluid ficld approached its steady state, the computational effort
of the TPDMA method increased enormously. As the savings in computing time
existed only in the beginning of the computation, the siMpLE algorithm with TDMA

solver was not employed. A similar result occurred for the TDMA-simpLEC algo-
rithm.

RESULTS

Decaying Flow Behavior

Varying Ma and Ra via the temperature gradient in the container, we
performed case studies of Marangoni convection and the corresponding heat
transfer around the gas cylinder for some selected configurations (Figure 3), under
both microgravity and Eartl’s gravity conditions.

Case M: Pure Marangoni convection (M) around a gas cylinder in the center of a
2D container under microgravity (g = 0).

Case M — B: Marangoni {low acting against buoyancy convection (M — B) around
a gas cylinder frozen in the center of a 2D container under Earth's gravity
(oT/ay > 0).
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Figure 3. Overview of studicd configurations: cases M, M - B, M + B, M,
and M,.

Case M + B: Marangoni convection acting in the direction of buoyancy flow
(M + B) around a gas cylinder frozen in the center of a 2D container under
Earth’s gravity (37 /3y < 0).

Case M,: Pure Marangoni convection (M) around a semicircular cylinder on the
bottom wall of a flat container under microgravity (g = 0).

Case M,: Pure Marangoni convection (M) around a semicircular cylinder on the
top wall of a flat container under microgravity (g = 0).

Due to lack of space here, only steady state results are presented for cases
M — B through M,, although the transient development of the flow and tempera-
ture fields has been fully investigated.

The rigid container walls give rise to a recirculating flow in the liquid,
illustrated in Figures 4-6 together with the corresponding isotherms. All velocity
vectors are related to the maximum velocity occurring in the system; thus compar-
isons between different flow patterns cannot necessarily be drawn.

The temperature ficld around the cylinder is strongly coupled with the flow
field. When the Marangoni number or the temperature difference between bottom
and top walls of the container, respectively, is increased, the influence of thermo-
capillary convection on heat transfer grows, and the isotherms accumulate near the
heated and cooled walls, which is equivalent to an increase in the local and global
_Nusselt numbers at those walls. ‘The number of isotherms originating from the
< cylinder surface decreases with increasing Marangoni number (Figures 4-6), which
is in accordance with Ref. [5]. The computations thus clearly account for the effect
that Marangoni convection reduces its own driving temperature gradicnts,

. The behavior of Marangoni convection under Earth’s gravity conditions is
. very noticeable. In case M — B, a stable vertical density stratification is initially
i present in the enclosure. The displacement of the isotherms in Figure 5a demon-
trates the effect that Marangoni convection exerts on buoyancy flow. For du/dT
< 0, fluid particles are driven against the direction of natural convection, and this
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flow pattern still prevails when the number of isotherms originating from the free
surface is reduced at higher Marangoni numbers. Recently, Straub et al. [5}
presented some experimental results for this phenomenon. On the other hand,
compared with microgravity conditions (Figure 4), buoyancy displaces the bulk flow
toward the cylinder surface. In case M + B, an unstable density stratification is
chosen as the initial condition in the box, so that Marangoni and buoyancy
convection augment each other. Due to the reversed temperature gradient in the
enclosure, surface tension driven convection acts in the opposite direction in
comparison with cases M and M — B. Figure 5b illustrates that, even for small
Marangoni numbers, the recirculating flow pattern prevails over a large part of the
liquid.

For small Marangoni numbers, the absolute velocities in the liquid are very
moderate; hence diffusive heat transfer is dominant over convective energy trans-
port. The insulating effect of the gas cylinder reduces the heat transfer in the
enclosure to 67.5% of the value for pure steady state heat conduction in a box of
the same size without a cylinder and only filled with liquid, which was defined as
the initial condition for Fo = 0 carlier. This behavior is depicted in Figure 7
(Ma = 10). We scaled all Nusselt numbers with the reference value for steady state -

lel

7‘:0“

(b)

Thol

Tco“

(U]

Figure 4. Predicted velocity fields and isotherms for case M: (a) Ma = 10, (b) Ma = 5,000, (c)
Ma = 10,000, (d) Ma = 100,000, Ra = 0.
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Figure 5. Predicted velocity ficlds and isotherms for (a) case M — I: Ma = 10,000, Ra = 5.7 X 10°
(kcfi), Ma = 100,000, Ra = 5.7 x 10¢ (right), and (b) case M + B: Ma = 1,00, Ra = 5.7 x 10*
(left), Ma = 5,000, Ra = 28 x 10° (righu).

heat conduction in a box with a cylinder, shown in Figure 1 (Nu = 1L.0). The
reduction of heat transfer by 32.5% in the case of pure heat conduction (Ma — 0)
was obtained by both the 2D flow calculation described above (Figure 4) and by
employing a control volume finite element method proposed by Baliga and Patankur
[24]. Furthermore, the calculated results agree with an investigation by Ricdle et al.
[25]).

For a growing Marangoni number, convection dominates heat conduction,
resulting in an increase of the integral Nusselt number at the heated and cooled
walls for Fo > 0 (Figure 7). For Ma > 5 x 10%, an overshooting of the flow at the
beginning of the calculations causes damped oscillations in the Nusselt numbers at
the bottom and the top, vanishing in the steady state. Jt should be pointed out that
the amplitude of the oscillation is higher on the cold side of the cavity than on the
hot side. This effect may be explained by the fact that the flow is pushed toward
the cold side.
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In order to demonstrate the enhancement of the heat transfer in the box by ‘,,
thermocapillary convection, the steady state integral Nusselt number Nu at the
isothermal bottom and top walls is depicted as a function of the Marangoni
number Ma for cases M through M, in Figure 8. Nu at the isothermal container
walls increases with growing Ma for all cases investigated. However, for higher Ma
this increase in Nu becomes smaller. The reason for this behavior is the reduction

of the important temperature gradients near the free surface by Marangoni
convection itself, which occurs to a much greater extent for high Marangoni
numbers.

Tho(

M,

Tw‘d
Thal

M,

Teona

That

M,

Tcolll

'lihol

M,

Tcol.l
L (b) !

Figure 6. Predicted velocity ficlds and isotherms for (a) case My: Ma = 10 (left top), Ma = 10,000 o
(right t0p), Ma = 50,000 (lcft bottom), Ma = 250,000 (right bottom), Ra = 0, and (b) casc M;: !
Ma =10 (left top), Ma = 5,000 {right top), Ma = 25,000 (Icfi bottom), Ma = 50,000 (right bottom),
Ra = 0.
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Figure 7. Transicot development of the Nussel number at the
isothermal bottom and 1op walls for case M and several Marangoni
numbers.

Oscillatory Flow Behavior

For Marangoni numbers Ma > Ma,, (Table 2a), ncither a steady state flow
pattern nor a constant temperature distribution in the calculation domain could be
obtained for cases M, M + B, and M. In the transicnt plot of the Nussclt nunber
Nu = Nu(t), a stable oscillation around a mean value Nu (Figures 94 and 9b6)
occurred for these cases. Therefore, the average value Nu, calculated for ihe steady
state case, was used for the curves in Figure 8. The Nusselt numbers for the bottom
and top walls averaged in such a manner were identical, indicating that the first law
of thermodynamics is satisficd for the whole container.

At first sight, one might suppose that the oscillatory behavior is induced by
the explicit method applicd. Therefore a series of modifications of the source code

10!
D
o]
4
10°
10! 10? 10° 10* 108
Ma [-]

Figure 8. Overall sicady state Nusselt number Nu at the isotherimal
walls of the container as a function of the Maurangoni number Ma for
the cuses investigated (Pr = 1.93).
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Table 2. Reynolds Numbers Re for the Container and Corresponding Marangoni Numbers
Ma (a) for the Onsct of Oscillatory Flow (Ma ) in Cases M, M + B, and M, and
(b) for the Sitable Flow Modes of Cases M — B and M, (Ma = 250,000)

Case Ma Re Case Ma Re
M 250,000 507.7 M-B 250,000 491.0
M+B 5,000 530 M, 250,000 811.2
M, 100,000 605.8
(a) (b)

was performed; however, the oscillations were not affected by any of the following
factors: the use of various security factors S in the time step module; variation of
the admissible mass source b, per control volume; employing central difference,
upwind, or hybrid finite differences instead of the employed power law scheme [17}
in the discretized energy and momentum equations; employing a finer grid; or

20 ——:Bottom ——-:Top W

.00 .025 .08 075 10 128
Fo [~]
18 ——:Bottom  ———:Top
-~
|
—
=]
P
(b)
0
.00 .05 15 .20

Fo [~]

Figure 9. Oscillatory transient development of the Nusselt number at the
isothermal walls for (a) case M, Ma = 250,000, g = 0 and (b) casc M + B,
Ma = 10,000, Ra = 5.7 X 10%.




516 J. STRAUB ET AL

using double-precision variables on the Cray Y-MP 4/432. Henee, round-off
errors, discretization crrors, and errors deriving from improper time steps can be
excluded as possible reasons for the oscillatory behavior.

As the Reynolds number Re in the enclosure did not exceed 1,000 (Fuble 2),
the fuid flow is supposcd 1o be Jaminar for all cases studicd. From Table 2 no
direct relationship between Re, or the maximum velocity in the container Woan s
and the observed oscillutions can be derived.

As Roache [19] points out, the numerical integration of the governing
equations of unsteady heat transfer and uid Now yickls unstable solutions for
vanishing diffusive dampening terms a and o (> O, - 0), when central
differences and explicit ime steps are used. In the problem under consideration,
the dampening terms in the conservation laws are missing at the free surface of the
liquid, 100, but for the cmployed power law, upwind, and hybrid schemes, no
instability cffects have been reported so far.

Real physical clfects should be tuken into account, as well, Marangoni
convection is strongly coupled with the temperature ficld on the free surface of the
gas cylinder, and reduces, on the other hand, the emperature gradicnts by the
induced flow. This mechanism can theorctically cause oscillations in the tempera-
ture and flow ficlds in the vicinity of the free surlace, as simulated uumerically
here for a few cases and Marangoni numbers. Morcover, the work of other suthors
about oscillatory thermocapitlary conveetion supports the above findings. Villers
and Platten [26) observed oscillatory flows in o 2D box with a free surlface boih
experimentally and aumcrically for high Ma and Ra numbers. For liquid columns,
several works refer to the existence of oscilfatory thermocapillary convection, ey,
[27-29]. However, the physical bauckground for the tormation of oscillations has not
been clear up to now. Nevertheless, numcerical instabilities should not be excluded
completely. They can appear in free-surface regions, in general, and at locations
where the Marangoni condition acts abruptly, like at the head and bottom of the
gas bubble. Here, the strong coupling of cnergy and momentum cquations can
stimulate oscillations.

CONCLUSION

In the previous section, the enhancement of heat transfer in a rectungnlar
container by thermocapillary convection was established quantitatively in terms of
the steady state Nussclt number Nu and the Marangoni number Ma for some
selected cylinder-in-container configurations and a liquid with Pr = 1,93, The
obtained findings once more clearly emphasize the importance of thermocapiblary
convection on heat transter in liguids both under microgravity and Lanith's gravity.

Future investigations will focus on a universal description of the cnhincee-
ment of heat transfer by Marangoni convection with dimensionless qQuanlitics
Marangoni, Fourier, Rayleigh, Nusselt, Prandtl, and Froude obrained from the
dimensionless conservation laws for encrgy and momentum.

Parameters not, or only partially, considered as yet are the size of the
oflinder and the box (ratio R/H), its location in the container, the physical
properties of the liquid (Pr), the ratio of natural and Marangoni convection (Bond
number Bo = Ra/Mu), and the geometry of the container Gatio 11/18).
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Furthermore, the oscillatory flow behavior in the liquid is to be examined
more exactly; the physical background for the oscillations especially must be
clucidated systematically. At present, work is in progress to derive comparisons
between the results obtained with the presented explicit numerical method and
solutions  delivered by a transient program code using control volume finite
clement discretization with implicit time steps, developed after the concepts of
Baliga and Patankar [24] and Prakash and Patankar [30]. The comparisons show
very good agreement between the two different numerical methods, and support
the above findings.
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