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AROUND GAS BUBBLES IN A LIQUID MATRIX
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Abstract

Transient Marangoni convection under micro- and earth
gravity conditions around a gas bubble floating in a
liquid-filled rectangular box with adiabatic side walls,
while the bottom and top walls are maintained at dif-
ferent temperatures, is simulated with a 2-dimensional
model. Employing two numerical methods, a finite diffe-
rence scheme with explicit time steps and a fully implicit
control volume finite element method, the enhancement
of the heat transfer in the liquid matrix due to Maran-
goni convection is investigated in parallel. To simplify the
calculations, the bubble is fixed at a certain location in
the container, while the necessary transient force to hold
the bubble in place is determined. For a test fluid with
Pr = 1.93, the transient overall heat transfer and fluid
flow are examined for several configurations of bubble
and container in terms of the dimensionless numbers Nu
and Ma. Contrary to the very common view that the gas
bubble would reduce the heat transfer due to its insula-
ting behaviour, the energy transport is rather augmented
by the Marangoni convection acting on the free surface of
the bubble. Our numerical simulations show that Maran-
goni convection can fully replace buoyancy-induced heat
transfer mechanisms in a microgravity environment. In
contrast to former assumptions, Marangoni flow is, in ge-
neral, not negligible. The transient development of fluid
flow and heat transfer has fully been calculated, however,
due to lack of space, only the final steady-state results are
presented here.

Keywords: Transient numerical simulation - Marangoni
convection - Surface phenomena - Heat transfer and fluid
flow

1 Introduction

On a liquid surface, Van der Waals forces are responsi-
ble for surface tension, which strongly depends on the
temperature of the liquid. For most liquids, the tempe-
rature gradient of surface tension is negative, and a flow,
termed Marangoni or thermocapillary convection may be
induced on plain or curved diquid-liquid or liquid-gas in-
terfaces. Already in 1878, Marangoni [9] noted, “if, for
some reason, a variation of surface tension occurs along
a free surface, the fluid begins to move in the direction
of increasing surface tension”. For many years this ef-
fect has not been paid much attention to. Earlier inve-
stigations, especially in materials processing (6], [7], [11]
and subcooled boiling under microgravity conditions [16],
(18], [21] clearly demonstrated that Marangoni convec-
tion can fully replace buoyancy dominated heat transfer
mechanisms. Numerical simulations of Marek & Straub
(10] revealed that, even under earth gravity conditions,
Marangoni flow cannot be overcome by natural convec-
tion in certain configurations. Depending on the boun-

dary conditions, thermocapillary flow can either augment
or counteract natural convection.

In many technical systems, it is highly desirable that con-
vection substantially contributes to heat and mass trans-
fer. Particularly, Marangoni convection can affect floating
bubbles or droplets in a liquid matrix exposed to a tem-
perature gradient. In 1959 Young et al. [20] investigated
the motion of bubbles by adjusting a vertical tempera-
ture gradient in a fluid in such a way that the buoyancy
of the bubble was compensated by the Marangoni force.
However, the heat transfer was not considered. At first
sight, one would expect a gas bubble floating in a li-
quid to significantly reduce the overall heat transfer due
to its insulating behaviour. Taking thermocapillary flow
into consideration, the question arises, if heat transfer
through a liquid can be augmented by inserting a gas
bubble.

The aim of our study is to investigate the heat transfer
by thermocapillary convection around a gas bubble, fro-
zen at a definite location in a rectangular enclosure with
a vertical temperature gradient. Variable gravity conditi-
ons make it possible to study the interaction of buoyancy
and surface tension-driven convection. The system under
consideration is governed by the conservation laws for
mass, momentum, and energy. As no analytical solution
1s possible, the governing equations are integrated nume-
rically using a control volume finite difference method
with explicit time steps, and for comparison purposes,
a transient, fully implicit CV-FE method. In a first ap-
proximation, we reduce the three-dimensional problem
to two dimensions by considering only a cross-section of
the bubble. The special combination of a circular and a
rectangular geometry excludes the use of a regular com-
putational grid.

2 Nomenclature

B width of the cavity

Bo= Ra/Ma Bond number

cp isobaric specific heat capacity

F force

Fo= 21 Fourier number

g gravitational acceleration (in y-
direction)

h,H height of the cavity

L characteristic length (L=H for
cases 1,2,3 — L=h for cases 4,5)

Ma=-%2 . LAT Marangoni number for the box

n

Nu = uﬂ%wn local Nusselt number

P pressure

Pr=t=1% Prandtl number

R bubble radius
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Ra = 9:-8p-AT L3

v-a

Rayleigh number for the box
t time

T temperature

u x-velocity

ur radial velocity on the bubble
surface

[3
A

azimuthal velocity on the bub-
ble surface

y-velocity
thermal diffusivity

thermal expansion coefficient

]

dynamic viscosity
thermal conductivity
kinematic viscosity
density of the liquid
shear stress

surface tension

e YR Y >3 wm o
Sla o

temperature coefficient of sur-
face tension

b
H
=

=T -T temperature difference in the

box
subscripts:

b bottom wall
cold cold wall
gas

hot wall
liquid
Marangoni
radial

top wall

reference value

’Go»wg—:g‘m
Lad

azimuthal

3 Physical Model

As a first approximation of the problem of thermocapil-
lary flow around an enclosed gas bubble, the configura-
tion of a rectangular container with an ideally spherical
air bubble floating in a liquid, as sketched in Fig. 1, is stu-
died. Assuming rotationally symmetrical flow around the
bubble, the three-dimensional fluid flow and heat trans-
fer is regarded only in a cross-section through the centre
of the bubble (Fig. 1). This truncation to two dimensi-
ons yields an enormous gain in computing time and me-
mory, while all important three-dimensional effects can
be shown.

Due to the relative small values for the transport proper-
ties 7 and A and the density g of the gas, heat transfer
and fluid flow are neglected in the bubble, and are only
considered in the liquid as an interaction of Marangoni
and natural convection.

Conservation Laws

Using the Boussinesq approximation [5}, originally pro-
posed by Overbeck [12], for the properties of the surroun-
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Figure 1: Computational domain of the three-dimensio-
nal heat transfer problem with corresponding boundary
conditions

ding liquid, the following coupled conservation laws apply
(4):
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Boundary and Initial Conditions

The governing boundary conditions for the cross-section
in Fig. 1 are:

Thermal boundary conditions: As the thermal conducti-
vity of air is small compared to that of the surrounding
liquid, the surface of the bubble is assumed to be adia-
batic. Moreover, heat transfer by radiation is neglected,
since the maximum temperature differences of 3.4 K in
the system are small; heat is only transported by con-
duction and convection in the liquid. The bottom and




top walls of the enclosure are kept at constant, but dif-
ferent temperatures, while the side walls are assumed to
be perfectly insulated: :

T(y=0)=Tw A T(y=H)=T
%I=0 A ??—T=OI g—T=O (5)
T z=0,z=B/2 r = z

Hydrodynamic boundary conditions: We assume non-
slip conditions at all rigid walls. Furthermore, no mass
is transported over the interface of the bubble:

u=v=0 AN u=0 AN u =0
r=B/2,y=0,y=H =0 r=R
v du adv
_— = N — =0 N —_— =0 6
Jz dz 0z (6)

Applying Newton’s law of viscosity and considering the
fact that r; € n, a balance between viscous shear stres-
ses and surface tension forces on the free surface in azimu-
thal direction yields the so-called Marangoni boundary
condition [16]:

71+Tszﬂz§%~§£ﬁ~ﬂ B " 7 (7)

190 10T do _ [du, tw]
r=R

Initially, the liquid in the container is at rest and the
temperature distribution is described by a linear profile in
y-direction with isothermal cross-sections for y = const.,
equivalent to steady-state heat conduction in a box with
isothermal top and bottom, and adiabatic side walls.

Other Thermophysical Properties

We used water at a mean temperature of 365 K as a
test fluid in our calculations, even if, for some other re-
asons, Marangoni convection is not always observed in
water [16]. The small temperature differences up to 1.7
K from the mean temperature of the liquid in a range of
0 < Ma < 250000, and the great distance to the critical
point justify the use of a constant temperature gradient
of surface tension. A series of calculations was performed
to examine the influence of a constant and a variable tem-
perature coefficient of surface tension. The deviations in
the steady-state overall Nusselt number between calcu-
lations with j—; =42 (T) and 42 = const. are less than
0.01 %. The thermophysical properties of the test liquid
are shown in Tab. 1.

cp 4206.9 R
A 0.673 =
n | 308.64-107° | Xs
0 963.84 £g
Bp| 7116107 | L

421-1.8892-107* | .

Table 1: Thermophysical properties of the test liquid
(Pr =1.93)
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4 Mathematical Model

Implicit and semi-implicit numerical methods are fre-
quently preferred to explicit schemes in transient fluid
flow calculations, since time steps of arbitrary size can
be chosen. However, their computational effort is greater,
and sometimes an iterative solution is necessary. Explicit
methods, on the other hand, can easily be implemen-
ted, and their computational simplicity can make up for
the limitation of the time step by stability criteria. Here,
two numerical methods were implemented in parallel. On
the one hand, a finite volume scheme with explicit time
steps, power-law differences, and the SIMPLE algorithm
for the pressure-velocity coupling was employed. On the
other hand, an extended fully implicit TCV-FE method
(Transient Control-Volume Finite-Element Method), ba-
sed on the ideas of Baliga et al. [3] and Prakash et al. [14],
with exponential differences and the SIMPLE algorithm
was developed for the 2-dimensional laminar heat trans-
fer and fluid flow problem.

Computational Grid

Resorting to a well-tested explicit finite difference com-
puter code for transient heat transfer and fluid flow pro-
blems in rectangular domains, the circular geometry of
the bubble and the rectangular cavity in Fig. 1 were
discretized using “blocked-off regions” [13] in connection
with regular triangular elements. Temperature and pres-
sure are calculated in the centre of a control volume
of this grid, which is therefore denoted “energy grid”
(Fig. 2). For velocities, a “staggered” or “displaced grid”
according to Harlow & Welch (8], and Patankar [13]is uti-
lized. To approximate the spherical shape of the bubble
as accurately as possible, and to minimize the discreti-
zation errors in the calculation domain, the right half of
the sectional areas in Figs. 1 and 3 is discretized with 50
grid points in horizontal and, for flat containers, with 50
nodes in vertical direction; for cubic enclosures 100 grid
points were provided in vertical direction.
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Figure 2: Numerical grid with 50 * 100 control volumes
and approximation of the bubble surface with regular tri-
angular elements (left), and grid for the TCV-FE method
(right)

In the TCV-FEM formulation, the domain of interest is
divided into three-node triangular elements, while the
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curved bubble surface is piecewisely approximated by
straight lines. All primitive variables T,u,v,p are stored
at the nodes of the triangular elements. To avoid the pro-
blem of a checkerboard pressure field, a co-located varia-
ble arrangement, based on the work of Prakash et al. {14],
was chosen. To resolve the steep velocity gradients at the
bubble surface due to Marangoni convection very accu-
rately, a local refinement of the grid (Fig. 2) turned out
to be very profitable.

5 Results

Decaying Flow Behaviour

Varying Ma and Ra via the temperature gradient in the
container, we performed case studies of Marangoni con-
vection and the corresponding heat transfer around the
bubble for some selected configurations (Fig. 3) both un-
der micro- and earth gravity conditions.

y
H=B=0.04m g
H=2*h )—* X l

._B—
Thot
L 7 g
| an EE- =
— +«
o
Teold Thot
Case 1: ga0 Case 3: g=9.81
C 2: g=9.81%
ase g 15 ﬂ< o
aT dy

ay >0

//’//
Teold
Case 4: g0 Case 5: g~0
aT aT
- > — >0
dy 0 oy

Figure 3: Overview of studied configurations

Case 1: Pure Marangoni convection (M) around a
spherical bubble in the centre of a cubic con-
tainer under microgravity (g = 0).

Case 2: Marangoni flow acting against buoyancy con-
vection (M—B) around a spherical bubble fro-
zen in the centre of a cubic container under
earth gravity (%>0).

Case 3: Marangoni convection acting in the direction
of buoyancy flow (M+B) around a spherical
bubble frozen in the centre of a cubic container
under earth gravity %% <0).

Case 4: Pure Marangoni convection (M} around a he-
mispherical bubble on the bottom wall of a flat
container under microgravity (g=0).

Case 5: Pure Marangoni convection (M) around a he-
mispherical bubble on the top wall of a flat
container under microgravity (g=0).

For all cases studied, the average computing time on a
CRAY Y-MP 4/432 supercomputer amounted to about
1000 CPU-seconds for a given Marangoni number. Due to
lack of space here, only steady-state results are presented
for cases 2 through 5, although the transient development
of the flow and temperature fields has fully been investi-
gated.

Thermocapillary convection expands from the bubble’s
interface both into the interior of the bubble and into the
surrounding liquid by viscous shear stresses. As stated
above, the fluid flow and heat transfer inside the gas bub-
ble are negligible for most air-liquid-combinations. The
rigid container walls give rise to a recirculating flow in
the liquid, illustrated in Figs. 4, and 6-9 together with
the corresponding isotherms. All velocity vectors are re-
lated to the occurring maximum velocity in the system,
thus comparisons between different flow patterns cannot
necessarily be drawn.

The temperature field around the bubble is strongly cou-
pled with the flow field. When the Marangoni number
or the temperature difference between bottom and top
walls of the container, respectively, is increased, the in-
fluence of thermocapillary convection on heat transfer
grows, and the isotherms accumulate near the heated and
cooled walls. The number of isotherms originating from
the bubble decreases with increasing Marangoni number
(Figs. 4, and 6-9), which is in accordance with [16]. The
computations thus clearly account for the effect that Ma-
rangoni convection around gas bubbles reduces its own
driving temperature gradients.

The behaviour of Marangoni convection under earth gra-
vity conditions is very noticeable. In case 2, a stable
vertical density stratification is initially present in the
enclosure. The displacement of the isotherms in Fig. 8
demonstrates the effect Marangoni convection exerts on
buoyancy flow. For g—; < 0, fluid particles are driven
against the direction of natural convection, and this flow
pattern still prevails, when the number of isotherms ori-
ginating from the free surface is reduced at higher Ma-
rangoni numbers. Recently, Straub et al. {16] presen-
ted some experimental results for this phenomenon. On
the other hand, compared to micro-gravity conditions
(Fig. 4), buoyancy displaces the bulk flow towards the
bubble surface. In case 3, an unstable density stratifi-
cation is chosen as initial condition in the box, so that
Marangoni and buoyancy convection augment each other.
Due to the reversed temperature gradient in the enclos-
ure, surface tension-driven convection acts in the oppo-
site direction compared to cases 1 and 2. Fig. 9 illustrates
that, even for small Marangoni numbers, the recirculating
flow pattern prevails over a large part of the liquid.

The accumulation of isotherms at the heated and cooled
walls is equivalent to an increase in the local and global
Nusselt numbers at those walls. In order to demonstrate
the enhancement of the heat transfer in the box by ther-
mocapillary convection, the steady-state Nusselt number
Nu at the isothermal bottom and top walls is depicted as
a function of the Marangoni number Ma for the cases 1
through 5 in Fig. 10.
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Figure 4: Predicted velocity fields and isotherms for case 1 (M): Ma=10 (left), Ma=5000 (middle), Ma=100000 (right},

Ra=0
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Figure 5: Transient development of the Nusselt number at the isothermal bottom and top walls for case 1, ¢ = 0, Ma=10
(left top), Ma=>5000 (right top), Ma=25000 (left bottom), Ma=100000 (right bottom).

N 7’“—:

Figure 6: Predicted velocity fields and isotherms for case 4 (M): Ma =10 (left),

(right), Ra= 0

Figure 7: Predicted velocity fields and isotherms for case 5 (M): Ma=10 (left), Ma=5000 (middie), Ma=50000 (right),

Ra=~0
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Figure 8: Predicted velocity fields and isotherms for case
2 (M-B): Ma=10000, Ra=5.7-10° (top), Ma=100000,
Ra=5.7-10° (bottom).

M+B

Yi?

M+B

Figure 9: Predicted velocity fields and isotherms for case
3 (M+B): Ma=1000, Ra=5.7-10* (top), Ma = 5000,
Ra=2.8-10° (bottom).

To examine the influence of the gas bubble on the tran-
sient development of the heat transfer in the box, we uti-
lized a temperature field constant in z- and z-directions

Nu [-]

Figure 10: Overall steady-state Nusselt number Nu at
the isothermal walls of the container as a function of the
Marangoni number Ma for the cases investigated (Pr =
1.93).

with a constant gradient in y-direction for the whole cal-
culation domain for =0, as it prevails in the steady-state
case of pure heat conduction in the liquid-filled contai-
ner without bubble. For small Marangoni numbers, the
absolute velocities in the liquid are very moderate, hence
diffusive heat transfer is dominant over convective energy
transport. The insulating eflect of the air bubble reduces
the heat transfer in the enclosure to 67.5% (Nuo=0.675)
of the value for pure steady-state heat conduction in a
box of the same size without bubble only filled with li-
quid {Nu=1.0). This behaviour is depicted in Fig. 5. For
an easier understanding, we scaled all Nusselt numbers
with the reference value of Nup=0.675 for steady-state
heat conduction in a box with bubble shown in Fig. 1.
Thus, Nu =1 refers to Nup = 0.675. The reduction of
heat transfer by 32.5% in the case of pure heat conduc-
tion (Ma — 0) was obtained by both the two-dimensional
flow calculation described above (Fig. 4) and by employ-
ing the TCV-FE scheme. Furthermore, the calculated re-
sults agree with an investigation by Riedle et al. [15].

For a growing Marangoni number, convection domina-
tes over heat conduction resulting in an increase of the
Nusselt number at the heated and cooled walls for t >0
(Fig. 5). As shown in Fig. 10, the steady-state Nusselt
number Nu at the isothermal container walls increases
with growing Marangoni number Ma, when a certain time
is reached. However, for higher Marangoni numbers this
increase of the Nusselt number is getting smaller. The re-
ason for this behaviour is the reduction of the important
temperature gradients near the free surface by Maran-
goni convection itself, which occurs to a much greater
extent for high Marangoni numbers.



6 Force on the Bubble

As mentioned earlier, the movement of bubbles or drops
in a fluid matrix under a temperature gradient is known
from the experimental {19],[20] and theoretical [17] works
of other authors. For most liquid-liquid and liquid-gas
combinations, a bubble migration towards the warmer li-
quid is observed under microgravity. This transient bub-
ble motion could have been simulated with our program
as well, however, the generation of a new grid at each
time step would have consumed large amounts of CPU
time. Thus, the bubble is regarded as fixed at a certain
location in the enclosure, and the force necessary to hold
the bubble in place is determined. The following stress
components act on the bubble surface:

o Hydrostatic and hydrodynamic pressure resulting
from the fluid flow outside and inside the bubble

o Tangential shear stress on the liquid and gas sides
of the bubble

o Normal shear stress resulting from velocity gradients
and the viscosity of the liquid and the gas

A more detailed description of bubble forces has been
worked out by Szymczyk [17] and is not be repeated here.

Assuming a rotationally symmetric fluid flow around the
bubble and neglecting the gas forces inside the bubble
because of its small density and viscosity, a bubble force
F can be easily obtained by integrating along the in-
terface with the trapezoidal rule and adding up all the
force components. As shown in Fig. 11, the steady-state
force on the fixed bubble of case 1 is a function of the
Marangoni number Ma. For higher Marangoni numbers,
the increase of the bubble force is getting smaller, be-
cause the temperature gradients necessary for the fluid
flow near the free surface are reduced by Marangoni con-
vection itself. On the earth, for the cases 2 and 3 (Fig. 3),
and a range of 0 < Ma < 250000, the buoyancy on the gas
bubble is a dominant force component, while other com-
ponents become negligible. On the other hand, Young et
al. [20] pointed out that the situation may completely be
different for smaller bubbles.

1.5

»107°

1.0

FORCE [N]

Figure 11: Force F acting on the fixed bubble of case 1
as a function of the Marangoni number Ma.
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7 Conclusion

In the previous section, the enhancement of the heat
transfer in a rectangular container by thermocapillary
convection was established quantitatively in terms of the
steady-state Nusselt number Nu and the Marangoni num-
ber Ma for some selected bubble-container configurations
and a liquid with Pr=1.93. Two numerical methods were
employed to ensure the validity of the presented results.
The obtained findings once more clearly emphasize the
importance of thermocapillary convection for the heat
transfer in liquids both under micro- and earth gravity.

Future investigations will focus on a universal description
of the enhancement of heat transfer by Marangoni con-
vection with dimensionless quantities Marangoni, Fou-
rier, Rayleigh, Nusselt, Prandtl, and Froude obtained
from the dimensionless conservation laws for energy and
momentum.

Parameters not, or only partially considered yet, are the
size of the bubble (ratio R/H), its location in the con-
tainer, the physical properties of the liquid (Pr), the ra-
tio of natural and Marangoni convection (Bond number
Bo = Raf/Ma), and the geometry of the container (ratio
H/B).
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