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Abstract

The interaction of buoyancy and Marangoni flow in a vertical cylindrical floating zone of aspect ratio 1
with an adiabatic free lateral surface and isothermal top and bottom walls is studied numerically in a
transient three-dimensional simulation under zero-, micro- and earth-gravity conditions. In zero-gravity,
a rotationally symmetric toroidal flow pattern evolves. The flow mode and the corresponding isotherms
remain qualitatively unchanged in the different gravity environments. Although natural convection itself
forms a single roll, no significant distortion of the symmetric toroidal flow mode occurs, when buoyancy
and surface tension-driven flows interact. Most investigations of Marangoni flow in liquid bridges focus
on the flow field, while the heat transfer is less emphasized. In this study, the enhancement of steady-
state heat transfer is examined for Marangoni and buoyancy convection acting in the same or in opposite
direction. Finally, the dependence of the overall heat transfer rate on the strength of the thermocapillary
convection is established. In a range of 1< Ma <107 no transition from the steady thermocapillary flow
to stable oscillations is observed.

Introduction

When a liquid-liquid or liquid-gas interface is exposed to a temperature gradient, a flow
termed (thermal) Marangoni, surface tension-driven or thermocapillary convection is in-
duced. These gradients give rise to variations in surface tension, and via viscous shear
stresses fluid particles are set into motion. Due to the dominance of buoyancy over
Marangoni convection on earth in many applications, this form of natural convection
was not paid much attention to for a long time. However, with the technical feasibility
of experiments on board orbiting spacecrafts and sounding rockets or in drop towers,
an increased interest has been redirected towards Marangoni flows. Under micro-gravity,
containerless crystal growth methods have been focused on, such as floating zone melting
or Czochralski growth. Numerical simulations are a decisive tool to reduce the number of
expensive space experiments, to plan and facilitate new experimental set-ups, and to fos-
ter the development of those new production techniques. On the other hand, experiments
provide vital information for designing, verifying, and improving computer models. Fre-
quently, big discrepancies between numerical predictions and experimental observations
occur. Although both techniques have constantly been improved, they still have different
starting-points. Every numerical simulation is based on an idealized model of a given
real configuration. Inhomogeneities, geometrical peculiarities or physical mechanisms not
understood yet are difficult to model, while the available computer speed and memory is
another limitation. Conversely, in experiments, only a limited number of measuring points
with finite resolution can be realized, the necessary devices often disturb the flow, and un-
desired side effects often occur. Moreover, changes, e. g. in temperature, can be brought
about only in a finite time, while this is possible in no time in numerical calculations.
Parameters not considerable in advance may be of decisive influence. For example, the
numerical studies of Straub and Schneider [24] revealed that the smallest disalignments of
an experimental set-up can influence the onset of convective motion in a fluid enormously.



All in all, numerical and experimental investigations are both indispensable and should
support each other.

Marangoni convection in cylindrical floating zones has been studied both numerically [1],
(2], [17], [26] and experimentally [3]-(7], [14], [16], [21] under g- and 1-g. Chun [2] and
Wilcox and Chang [26] employed a two-dimensional steady-state vorticity stream-function
approach in their numerical studies, while more recently Rupp et al. {17] simulated tran-
sient Marangoni convection in a GaAs floating zone with a three-dimensional finite dif-
ference scheme. Two-dimensional steady-state methods are convenient to use due to their
efficiency in memory, computing time, and costs. To make them applicable, thermofluid-
dynamic problems are often simplified and reduced to two dimensions. This can be reliable
for symmetrical geometries and boundary conditions, or if the third dimension is assumed
to be infinitely extended. However, if the flow is actually three-dimensional, vital informa-
tion is lost. In general, oscillations of the flow and temperature fields are three-dimensional
and time-dependent, as shown by the numerical studies of Kirchartz [10], Mihel¢i¢ and
Wingerath [13], and Rupp et al. [17] and the experimental findings of Chun and Wuest
[5], Monti et al. [14], Preisser et al. [16], and Schwabe et al. [21]. Conclusions regarding
oscillatory convection from two-dimensional calculations are therefore questionable. Re-
sults of two-dimensional simulations are only valid within the scope of their models. Only
when two-dimensional flow modes are obtained from three-dimensional calculations, it
can safely be concluded that the flow is two-dimensional, indeed.

In the vertical liquid column under consideration (Fig. 1), pure surface tension-driven
convection (0-g) forms a two-dimensional axisymmetric toroidal vortex [7], [16], [21], while
natural convection itself (1-g) produces a non-symmetric three-dimensional single roll
[8], [18]. Varying the gravity level in our simulations, a superposition of both kinds of
convection implies three-dimensional temperature and flow fields. Chun and Wuest [5],
Schwabe et al. [19], and Schwabe and Scharmann [20] were the first to give experimental
evidence that steady Marangoni flow becomes oscillatory and three-dimensional, after a
critical Marangoni number has been exceeded. We therefore utilize a three-dimensional
numerical model for our calculations.
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Figure 1: Geometry of the liquid column with boundary and initial conditions
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Physical and Mathematical Models

The aspect ratio of a liquid bridge of diameter D and height H (Fig. 1) is defined as:

H
A='D" (1)

In the following, a floating zone with A=1 is considered.

The non-slip condition applies for both rigid walls, while the lateral face is regarded as
non-deformable free surface subject to the Marangoni boundary conditions. The aim of
our study is to study the interaction of thermocapillary convection and buoyancy flow
in a configuration as simple as possible. Therefore, the deformation of the lateral surface
occurring under earth-gravity conditions is not taken into account:

%% (= —Ro.sp) = L. 00 0T
e (r=R,p,z,t) —v,(r=R,p,z,t) = o Bo
v, 1 8o T

or (r=R,p.2.1) = n 0T 8z (2)

Initially, the fluid between the two disks is at rest, and a hydrostatic pressure distribution
is assumed:

-

v(r,p,2,t=0) = 0 (3)
p(ryp,2,t=0) = po+0-9:-(20—2) (4)

Concerning the thermal boundary and initial conditions, two cases are studied:

e Case 1: Initially, a linear temperature profile in axial direction due to pure heat
conduction prevails, and the bottom and top disks are maintained at different tem-
peratures constant with time:

2
T(r,p,2,t=0) = To+AT- (1——5)

H
T(r,p,z2=0,t) = To+ AT
T(r,p,z2=H,t) = To— AT (5)

e Case 2: The system is initially isothermal, when suddenly the temperature of the
bottom disk is raised by 2 AT, while the temperature at the top wall remains Tj:

T(r,p,2,t=0) = T
T(r,o,z=0,t) = To+2AT
T(r,p,z=H,t) = Tp (6)



In both cases, the overall temperature difference is 2 AT, and the lateral surface is sup-

posed to be adiabatic:
aT

5:(7‘=R,<P,Z,t)=0 (7)
The fluid flow and the heat transfer in the liquid bridge is governed by the well-known
conservation laws for mass, momentum, and energy [11]. Due to the alignment of the free
surface in z-direction, axial temperature gradients are responsible for the thermocapillary
flow. Therefore, the height H is used as a characteristic length to obtain the following
dimensionless numbers:

3 .
* Rayleigh: Ra = %= By ;/].Ia 28T, Marangoni: Ma = lg% ' 2Aa_].17.7 =
2 :
e Bond: Bo= 292 "g_ A 1%5 o Nusselt (local): Nu = —%% . mH
ar
e Prandtl: Pr = % (8)

All fluid properties except density, which is considered in an extended Boussinesq approx-
imation [11], are regarded as constant. A test fluid with Pr=1.92 is chosen.

A primitive-variable approach on a staggered grid, based on a finite control-volume hy-
brid difference scheme and explicit time steps, is utilized for the numerical integration
of the conservation equations. The MAPLE algorithm [12] is employed for treating the
pressure-velocity coupling. The cylinder axis is dealt with in the manner suggested by
Schneider [18]. Further details of the computational procedure are given in [11] and [12].
The calculations were performed on a CDC Cyber 995 and a CRAY Y-MP 4/432 super-
computer.

Results

In case 1, an axisymmetric toroidal flow mode, well-known from liquid bridges on TEXUS
flights [7], [16], [21], evolves under zero-gravity conditions (Fig. 2). Although the Prandtl
number is not substantially greater than unity, the temperature field develops much slower
with time than the flow field. At the bottom, cold fluid heats up, as it flows from the center
of the disk towards the free surface thus being accelerated, while at the top wall, warm
fluid is cooled down and decelerated when flowing from the outside towards the axis.
This behaviour is reflected in Fig. 3 in terms of the radial development of the Nusselt
number at the bottom and top disks with time. At the bottom, the Nusselt number
exhibits a maximum on the axis and a minimum near the free surface, whereas this is
reversed at the top. With the flow approaching its steady-state, the center of the vortex
migrates towards the warm side to the lower third of the zone; its relative radial position
of r/R = 0.75 agrees excellently with the observations of Preisser et al. [16] for A=0.68.
Furthermore, the radial distribution of the axial velocity at z = H/2 depicted in Fig.
4 corresponds qualitatively fairly well with the findings in [16]. The basic flow mode is
already established after a few seconds, as the location of v, =0 is the same for t =6 s
and ¢ = 50 s. The temperature at the free surface at z = H/2 remains almost constant
with time, while the changes in the bulk are much greater (Fig. 5). This behaviour is also
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reflected in Figs. 6 and 7 showing the temperature and the axial velocity distributions
along the free surface. The maximum axial velocity occurs near the walls due to the steep

temperature gradients.
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Figure 2: Transient development of velocity and temperature fields (Case 1, Ma =5000,
Ra=1.8-1073¢ Bo=3.6-1071°, Pr=1.92)
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Figure 3: Nusselt numbers at the bottom and top as a function of the dimensionless
radius in a cross-section ¢ = const. for different times
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Figure 4: Transient development of the radial distribution of the axial velocity at z=H/2
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Figure 5: Transient development of the radial temperature profile at z= H/2
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Figure 6: Transient development of the temperature along the free surface
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Figure 7: Transient development of the axial velocity along the free surface

For a Marangoni number of Ma = 5000, the steady-state heat transfer at three different

gravity levels or Bond numbers, respectively, is given in terms of the Nusselt number at
the warm and cold disks in Tab. 1:

Gravity level 0-g Ug 1-g l-g l-g
Remarks | pure MC | MC 11 BC | MC 11 BC | MC 1] BC | pure BC
B 3.6 E-40 | 3.6 E-02 3.6 E00 3.6 E00 00
Ra 1.8 E-36 1.8 E02 1.8 E04 1.8 E04 1.8 E04
Ma 5.0 E03 5.0 E03 5.0 E03 5.0 E03 0.0 E00
Nu 6.922 6.928 7.44 6.29 2.65

Table 1: Integral steady-state Nusselt numbers for different gravity levels
(MC=Marangoni convection, BC=buoyancy convection)
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In accordance with the experiments of Schwabe et al. [21], the velocity and temperature
distributions in the different gravity environments do not deviate significantly from each
other. Despite the occurrence of a single non-axisymmetric roll for pure buoyancy flow
in cylinders of A=1 [8], [18], the distortion of the rotationally symmetric thermocapil-
lary flow mode by the buoyancy-driven convection is almost imperceptible, even under
1g-conditions. Marangoni and buoyancy flow act in the same direction, when the config-
uration of Fig. 1 is heated from below and cooled from above. With a surprisingly weak
interaction, the heat transfer rate is thus increased by only about 7% under earth-gravity
(Fig. 9). On the other hand, surface tension and buoyancy forces counteract in a float-
ing zone heated from above and cooled from below (Tab. 1). The steady-state average
Nusselt number reduces by about 9% compared to 0-g conditions (Fig. 9). These results
demonstrate that, for the given configuration, Marangoni convection is very dominant
over natural convection, even under earth-gravity. This is in excellent agreement with
experimental observations [16],{19] and numerical investigations [1], [3], [26].

In the initially isothermal case 2, the toroidal vortex gradually migrates from the bottom
to the top (Fig. 8). The abrupt rise of the bottom temperature by 2 AT results in an
increased heat transfer at the bottom. Although the transient development of the flow
and temperature fields is very different from the one of case 1, the same steady-state heat
transfer (Nu = 7.44) is obtained, as the Marangoni number is the same for both cases.
Moreover, the identity of the Nusselt numbers is a further indication that our numerical
code works correctly. However, due to the temporary inactivity of the top disk, it takes
more time to reach steady-state conditions in case 2.
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Figure 8: Transient development of velocity and temperature fields (Case 2, Ma = 5000,
Ra=1.8-10*, Bo=3.6, Pr=1.92)

For comparison purposes, pure buoyancy flow with Ra = 1.8-10* has been simulated in
a cylindrical enclosure with rigid walls under 1-g (Tab. 1). The corresponding Nusselt
number amounts to only about 1/3 of the value for pure Marangoni flow. This ratio once
more clearly demonstrates the dominance of thermocapillary flow in the liquid bridge
considered.
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The dependence of the heat transfer on the strength of the Marangoni convection already
established in [11] has been extended up to Ma =107 (Fig. 9). For Marangoni numbers
Ma < 200, the Nusselt number does not deviate significantly from unity, which repre-
sents pure heat conduction. At higher Marangoni numbers, the velocities in the floating
zone rise due to an increased driving force. For Ma > 10°, a gradual decline in the heat
transfer occurs, as the driving temperature gradients are reduced to a greater extent at
high Marangoni numbers, as shown by Straub et al. [23], [25]. The displacement of the
isotherms in Figs. 2 and 8 from the bulk towards the heated and cooled walls by Marangoni
convection agrees qualitatively well with the experimental results of Preisser et al. [16]
and Schwabe et al. [21].

Y7 10 1ot 10°  10*  10*  10* 107
Ma (-)
Figure 9: Overall heat transfer (IVu) as a function of the strength of the thermocapillary
convection (Ma) in a liquid bridge of A=1 under micro-gravity
A BCT1MC(l-gy © pureBC(1-g)
B BCT1lMC(l-g) ® pureMC (u-g)

In numerous experiments [5]-[7], 9], [14], [16], [20]-[22] a transition from steady Marangoni
convection to oscillatory flow has been observed, when a critical Marangoni number is
exceeded. Besides, oscillations have also been obtained in the numerical calculations of
Chang et al. [1] and Rupp et al. [17]. Although the range of the investigated Marangoni
numbers has been extended to 1 < Ma < 107 compared to a former study [11], only
damped oscillations due to the transient nature of the phenomenon were observed (Fig.
10). No stable oscillations as in the experiments occurred. According to [18], the transient
development of the flow can also be described by the maximum dimensionless velocity
(Fig. 11), as it represents the upper limit for all fluid velocities. In Figs. 10 and 11 the
transient behaviour of heat transfer and fluid flow is shown for Ma =500, Ma = 5000, and
Ma =50000. It is obvious that the flow field changes more rapidly than the temperature
field. Furthermore, a time-lag in the Nusselt numbers at the top and bottom disks, which
vanishes in the steady-state, is observed. The time for reaching steady-state conditions
and the frequency with which the oscillations are damped increase with the Marangoni
number.

The physical mechanism inducing stable oscillations in floating zones is still not completely
clarified. Chun [7] concludes that the oscillations are induced by waves of temperature
perturbations travelling circumferentially around the free surface. Monti et al. [14] assume
that the appearance of turbulence is, among others, the reason for the oscillations. By
performing experiments under earth- and micro-gravity, Schwabe and his coworkers [21]



found that this form of instability is not due to a coupling of buoyancy and thermocapillary
flow. Kamotani et al. [9] suggest that the S-shaped temperature profile along the free
surface, also observed by Chun [6] and in this study (Fig. 6), together with its flexibility
is responsible for the oscillations.
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Figure 10: Transient behaviour of the integral Nusselt numbers at the bottom and top
for three different Marangoni numbers
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Figure 11: Dimensionless maximum velocity in the system as a function of time for three
different Marangoni numbers

Chun and Wuest [5] assumed that the critical Marangoni number for the transition to
oscillatory Marangoni convection depends on the aspect ratio A and the Prandtl number
Pr. However, Kamotani et al. [9] showed that these two are not the only parameters to
characterize the onset of oscillatory flow. An overview of critical Marangoni numbers in
floating zones for different aspect ratios and Prandtl numbers, deduced both experimen-
tally and theoretically, is given in Tab. 2. According to Preisser et al. [16], the critical
Marangoni number is reduced by about 10%, when the free surface is thermally insulated.
Although no relation in Tab. 2 is strictly valid for Pr=1.92 and A=1, it can be assumed
that the critical Marangoni number is of the order 10* for the given configuration. In any
case, the investigated range of Marangoni numbers includes the critical value. Despite
several numerical modifications, no stable oscillations could be detected. More recently,
Napolitano and Monti [15] performed space experiments, where no oscillations could be
observed at Ma = 4 - 10*. They derived that the dynamic Weber number, and not the
Marangoni number is the characteristic criterion for oscillations. However, since the phys-
ical mechanism of oscillatory Marangoni convection is not fully understood yet, further
studies, both experimentally and numerically, are necessary.
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[Reference | Year [ Fluid J Pr [ A Ma, ]
[5] 1979 | CH;0H 6.8 |0.73 0.876 5 Ma, £ 1.073-10¢ T
[20] 1979 | NaNO3 9.24 | 0.62 Ma. ~ 1.6 - 10*

[21] 1982 | NaNO3 8.9 |0.57 Ma, ~ 7-10°
[16] 1983 | NaNO3 89 |[<o0.58 Ma,=7.4+14-10
[17] 1989 | theoret. >1 |06 Ma, = 2884 - Pro-638
Si, theoret. 0.02 | 0.6 Ma,. = 300
GaAs, theoret. | 0.068 | 0.6 Ma. = 1800
[22] 1990 | Si, extrapol. 0.03 | 0.5 Ma, ~ 90
>1 |05 Ma, ~ 1417 - pro-716 }
NaNO; 7 0.33< A<1.33 | Ma. ~555- A+6670 %
NaNO, 7 >1.33 Ma, ~ 9836- A — 5704 1

Table 2: Critical Marangoni numbers for floating zones

tn [5] the Marangoni number is calculated with the radius R, while here the height H is used.

own correlations derived from data in [22]

List of symbols

a thermal diffusivity
A aspect ratio
Bo Bond number
Cp isobaric specific heat capacity
D diameter of the disk
gz axial gravitational acceleration
H zone height
Ma Marangoni number
Nu Nusselt number
Nu average Nusselt number
P pressure
Pr Prandtl number
r radial coordinate
subscripts:
c critical value
T radial component
z axial component

Ra

<y

Br
AT

A

a € n

)

10

radius of the cylinder

Rayleigh number

time

temperature

vector of velocity = (v, vy, v,,)T,
axial coordinate

volume coeflicient of expansion

temperature increment (AT > 0)

dynamic viscosity
kinematic viscosity
density

azimuthal coordinate

surface tension

azimuthal component

reference value
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