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Dynamic Lightscattering

1 Introduction

As the name implies, dynamic lightscattering analyses the temporal behaviour of light
scattered by a sample fluid, enabling a number of properties of the sample to be deter-
mined. The theoretical foundations of this method were layed in the beginning of the
century; but the high resolution required to detect and measure the small frequency shifts
and narrow spectral linewidths of the scattered light impose stringent demands on both
the light source and detection system.

Only with the development of the laser in the 1960’s and the concurrent widespread
use of photomultipliers as detection elements, did measurements become feasable. The
continuous improvement of these components and the introduction of the digital correlator
as a means of measuring spectral linewidths, has improved the accuracy and simplified
the operation of method. Today, dynamic lightscattering finds many and increasing
applications in the flelds of physics, chemistry and biology such as the measurement
of diffusion and diffusion-related properties or molecular characteristics and structural
changes in fluids.

2 Overview

The process primarily involved in dynamic light scattering is known as rayleigh scattering.
As discussed in the introductory chapter on scattering processes, rayleigh scattering deals
with particles which are small compared to the wavelength of incident light such that
their interaction does not appreciably change the phase or amplitude of the light wave.
Typical scatters are the molecules of the fluid itself, but microscopic suspended particles
also fullfill the rayleigh critereon. The effect was first observed by Tyndall (1869) who
studied the scattering of light on aerosols, and was able to explain the color of the sky
and the polarization of scattered light. Rayleigh (1871,1881) cast these observations into
theoretical form and showed that the scattered light intensity was proportional to the
square of the particle diameter and inversely proportional to the fourth power of the
wavelength of light.
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Fig. 1: Rayleigh scattering mechanism




Classical electromagnetic wave theory can be used to describe the scattering process
involved. In the presence of an electric field E , the individual molecules are polarizised,
the positive and negative charges being dxstorted , alligning themselves in the direction
of the applied field. A resulting dipole moment P parallel to the direction of the field
is induced, creating an oscillating dipole which radiates electromagnetic energy Es in
all directions. The magmtude of the resultant radiation field Es is dependent on the
molecular polarizibility @, Es = o - E. This polarized scattered light is of the same
frequency as the incident light, a characteristic of rayleigh scattering.

In classical rayleigh theory, the molecules are treated as independent scatterers. Thus
the resultant intensity of scattered light is simply the sum of the individual contributions
of the molecules. While this theory can predict the scattered intensities of dilute gases
quite accurately, 1t fails in the fluid region, the predicted intensities being more than an
order of magnitude larger than actually measured. The explanation lies in the fact that
the individual scattering contributions in fluids and dense gases interact, making an exact
estimate of the overall intensity very difficult. This problem was solved in the early 1900’s
by Smoluchowski (1908) and Einstein (1910) who developed the "fluctuation theory of
light scattering”. The concept can be demonstrated by a simple ”gedanken experiment”.
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Fig. 2: Demonstration of the fluctuation theory of light scattering.
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If we assume the molecules of a substance to be motionless and ordered in a strict lattice
structure, an incident monochromatic light beam of frequency w, will produce no resultant
scattering intensity I, due to destructive interference (Fig. 2a). By observing a scattering
center at any point P in space, we will always find another which is half a wavelength
apart such that both contributions cancel. The light beam is only visible in the forward
direction.

If the molecules are next assumed to be randomly orientated as they would be in any
typical fluid, but still motionless, then there is some resultant scattered intensity of con-
stant value. This intensity is however less than that predicted by the rayleigh theory
since there is still a great amount of destructive interference. The frequency spectrum of
the scattered light S(w) reveals a sharp line at the incident light frequency wq if rayleigh
scattering is the only process involved (Fig. 2b).

In fluids however, the molecules are constantly in random motion, known as thermal
- or Brownian Motion. Light scattered off these molecules will fluctuate in intensity.
The resultant spectrum is still centered about the incident frequency but now broadened
somewhat due to the characteristics of the molecular motion (Fig. 2c).

If we now observe a volume element v in Fig. 2c, small enough to be considered micros-
copic, but large enough to contain a sufficient number of molecules, the thermal motion
will cause the number density to fluctuate in time, even for fluids in a macroscopic state
of equilibrium.

By considering a large number of molecules as are in the element v, we may overlook
its particle nature and treat the fluid as a continuum. The paths and positions of the
molecules need not be taken into account and macroscopic thermodynamic properties
such as density can be used to describe the fluctuations. Thus we measure small density
fluctuations about macroscopic equilibrium values in fluids

o(t) = po + Ap(t), (1)

where go denotes the constant macroscopic equilibrium density and Ag(t) the fluctuating
component. Other thermodynamic properties such as pressure, entropy and temperature
fluctuate as well. These fluctuations are in essence dissipative (that is, decaying towards
"macroscopic equilibrium”), the forces governing these processes are characteristic pro-
perties of the fluid. The concept of a continuum and small fluctuations about equilibrium
values allows us to apply the hydrodynamic equations of motion (laws of conservation of
mass, momentum and energy) to investigate the temporal behaviour of the fluctuations
in fluids. This yields transport properties as thermal diffusivity a, the diffusion coefficient
D for mixtures, the sound absorption coefficient 8 and the speed of sound Cs. Finally,
Onsagers law of reciprocal relations states that the laws governing the fluid behaviour on
a microscopic scale are identical to those laws governing the macroscopic thermodynamic
behaviour, so that by investigating the temporal behaviour of microscopic fluctuations
we can extract the transport properties of the fluid.

The fluid may also be seeded with suspended particles small enough to fullfill the rayleigh
criterion. Depending on their mass, the particles follow the thermal motion of the fluid
molecules in a dampened form. A temporal investigation of light scattered off these
particles reveals their respective diffusion coefficients through the fluid, and finally, the
size and mass distribution of the particles themselves.
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3 Light Scattering Theory

The application of dynamic light scattering has been extended to several fields of science.
Depending on the experimental characteristics and on what property is to be measured,
the assumptions and theoretical approaches differ, making a general treatment of light
scattering theory far too large a task within the scope of this contribution. For this
reason we restrict ourselves to translational diffusion, treating an important application:
the measurement of thermal diffusivity of fluids.

Even with these restrictions, the theoretical considerations involving light scattering are
rather extensive in nature which is why we only emphasize the important aspects here,
with the objective of supplying an overview. A detailed derivation can be found in
standard literature such as Berne & Pecora (1976), Chu (1974), Cummins & Pike (1977)
and Pecora (1985).

3.1 Scattering Geometry. Assumptions

Although light scattering theory can be described by a molecular approach, eg. Fixmann
(1955) and Zwanzig (1964), fluctuation theory is more commonly used since it treats the
fluid as a continuum, allowing the use of macroscopic thermodynamics. The results are
consistent with molecular theory for the applications treated here.

Figure 3 depicts a model of the geometry used in light scattering theory. Usually the
laser beam is focused into the fluid and the scattered light is observed at a far point P
at an angle @ by means of a detector.

Fig. 3: Light scattering geometry

The scattering volume V is defined by the optics of light source (by how narrow the laser
beam can be focussed down to a point), and by that of the detection system (characterized
by the solid angle 2). V consists of a large number of imaginary microscopic volumes v
which, in analogy to Fig. 2c, contain the actual molecules that produce the scattering.
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The fluid is assumed to be isotropic. v is still small compared to the incident wavelength
(v < A%), so that the incident electric field is homogenous over the volume. Since v
is treated as a continuum (the molecules in fluids and dense gases being packed closely
together), the molecular polarizibility responsible for rayleigh scattering is replaced by
the corresponding macroscopic property, the dielectic constant ¢. The thermal motion of
the molecules causes the dielectric constant of v to fluctuate as (¢(t) = 9 +Ae(t)), with &g
being the macroscopic dielectric constant and Ae(t) signifying the fluctuation of €. Ac is
assumed to be scalar, meaning that we do not consider depolarized light scattering. The
resultant scattered intensity at the far point P is the sum of all scattering contributions
of the microscopic volumes v, each of which is treated as an independent scatterer; ie. the
scattering contributions of each element v are uncorrelated. Generally, the fluctuations
in the dielectric constant Ae(r,t) are a function of temperature T and density g of the
fluid. However, for gases and fluids in a moderate range of temperatures, the temperature
dependence can be neglected and Ap(r,t) is only a function of g. Thus, fluctuations in
the dielectric costant, which ultimately case fluctuations in the scattered light intensity,
directly reflect the microscopic density fluctuations within the fluid.

3.2 Temporal and spatial behaviour of scattered light

Classical wave theory can be used to describe the temporal and spatial behaviour of
rayleigh scattering. The electromagnetic radiation obeys Maxwells-Equations

v-D=0 (2a)
v-B=0 (2b)
vxE=—?§ (2¢)
vaz%) (2d)

whereby we assume no isolated charges and currents (the volume charge density p and
free current density o are zero). D denotes the electric displacement and B the magnetic
field respectively. Since the detector, responding to light intensity I, is usually a square
law detector (I = | E |?), we are primarily interested in variations of the electric field.
The incident electromagnetic wave is written in its complex form

E(F,t) = Eo(F,t) - e'FF=w0) (3)

Eo(7,t) is a complex amplitude, k the wave vector with | & |= 2r and w the angular

frequency of the wave. The scattering geometry is that of figure 3 with the incident wave
k; being polarized perpendicular to the scattering plane. The resultant scattered field E,

at a far point P is the superposition of all fields radiated from volume elements d*r(v)
at a position 7 with respect to the scattering center (random walk in three dimensions).
Es can, after a rather lengthy calculation, be expressed as

—Eok?

Bs(Rt) = Tpe,

. giks R-wit) / ' Ae(F, t)d°r. (4)
v

5



incidentlight scattering volume
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light

Fig. 4: definition of the scattering vector S

g, shown in figure 4, represents the scattering vector and defines the scattenng geometry.
It results from the difference between the incident and scattered wave vectors § = k; —k,.
The product ¢- 7 = (k -k s) - T is the phase delay that results from the path difference
between light scattered from a volume element v at 7 relative to one at the origin (Fig.5
and Fig.3).

Fig. 5: section of the scaitering geometry

If we assume elastic light scattering, then | k; |=| k, | and the "value” of g (see fig.4)
becomes:

47n . ,0©
(5

| @] = — - sin 5

2 sin(3), Q

where Ap, is the wavelength of light in vacuum and n the refractive index of the fluid. The
scattered field (Es) therefore consists of a monochromatic carrier wave Eq - ei(ks R—wit)
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modulated in amplitude and phase by the integral. [ e'?" . Ae(,¢)d®r which constitutes
A%

the fluctuating signal. The integral is actually the spacial fourier transform of the diel-
ectric constant fluctuations Ae(7,t) into ¢“space (the component of the fluctuations in ¢
direction)

Ae(q,t) = / Ae(F,t) - T d3r. (6)
v
Equation 4 can therefore be written as
— ~Eok? i p_w.
R t — s . l( .R w.t). "t
E (R’ ) 47TR€0 € AE(q, ) (7)

The information of the fluctuating dielectric constant, and, since Ae is only a function
of the density p, of the density fluctuations Ap(q;?) is thus contained in the temporal

fluctuations of the scattered light signal E,(R, t).

3.3 Correlation Functions

The afore-mentioned microscopic fluctuations represent a stochastic process resulting from
the random motion of the molecules or particles. The signal possesses typical characte-
ristis of a noise pattern. To obtain the information on transport properties present in
the fluctuating density signal we can analyse its temporal behavior by digital correlation.
Another possibility is to decompose the signal into its frequency components by fourier
transformation with a spectrum analyser, obtaining its power spectrum. Most experi-
ments today are performed with digital correlators since these instruments are fast and
introduce no noise of their own, thus possessing an efficiency of 100%. Modern spectrum
analysers can obtain the spectral information with a comparable speed, however they
invariably introduce a bandwidth error into measurements. We therefore concentrate on
the concept of time correlation functions and digital correlators in this section. A typical
fluctuating signal, in this case the fluctuating part of the microscopic density Ag(t) in
fluids, is shown in figure 6.

Provided the system is in macroscopic equilibrium (g = const), the signal will fluctuate
about a mean value < Ap > given by

T
_ 1
<Ap>= lzmT_.OOT/Ag(t)dt, (8)
0

in this case < Ag > = 0. T is the integration time. Generally, at a certain time #;, Ap
will differ from the same signal a variable time 7 later, Ag(t;) # Ao(t; +7). if T is chosen
to be small (1 — 0), then the signal will not have changed appreciably during = and the
correlation between both terms is large. If 7 is increased, the deviation is more likely to
increase, and if this comparison is repeated often, the correlation is lost. A measure of
this correlation can be expressed in a correlation function G(7) which is defined as

T
} 1
G(T) =< Ag(tl) . Ag(tl + T) >= hm;r'_.mi; / AQ(tl) . Ag(tl + T)dt (9)
0
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t, t+7 p(t)=p(0)+2p(t)

Fig. 6: Fluctuating density signal

The brackets < > denote the temporal averaging. If this process is repeated very often
(T — 00), then the correlation function becomes independent of the starting time ¢, and
only a function of r.

G(r) = < Ap(0)- Ag(r) > (10)

G(r) is a measure of the mutual relationship in a signal. If the signal is completely
random, then the correlation function will remain flat (ie. uncorrelated), even after long
times T' — co. For nonperiodic signals as is the case here, G(7) is a decaying function
for 7 varying from 0 to infinity (Figure 7).

G(v)
i{t) F <i (H2>l
Ci{ih}
G(hy _

Fig. 7: Typical correlation function of a non-periodic signal
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If we correlate the signal over a long period (T — oco) for 7 — 0 (ie. almost no time lag
between the two signals to be correlated), then the value of the correlation function is
simply the square of the signal

G(T)r—o = < Ap(0)- Ap(0) > = < Ap(0)? > . (11)

For long delay times 7 — oo, the signal contributions are totally uncorrelated with their
respective averages being the mean value of the fluctuation

T—=00<Ap0)>=<AAp(r)>=<Ap>. (12)
Thus the correlation function drops to the square of the mean signal

G(T)rmoo =< 0p(0)-Ao(T)> =< Ap>< Ap>=< Ap>2. (13)

Usually, the correlation function is required in its normalized form ¢(7), as shown in figure

8, which is simply G(7) divided by its initial value G(0).
G(r) _ <A0(0)-Ag(r)>

g(r) = G0 = < A0(0) > with 0 < g(7) < 1. (14)
9(T) 4
L
0
Te T

Fig. 8: Normalized correlation function with characteristic decay time

The exact form of the correlation function depends on the physical process under study.
As will be shown in the next section g(7) is usually a decaying exponential function for
dissipative fluctuations about equilibrium

9(r) = ezp(—1/7c) (15)

The value 7. is the characteristic decay time of the exponential function (figure 8) and
contains the actual information on the transport coefficient. g(7) represents the statistical
mean behaviour of the microscopic density fluctuations.
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In practice, digital correlators are used to measure g(7). These instruments, which are
basically fast CPUs, possess a large number of sampling channels or stores (I), which
represent distinct points of the correlation function. The delay time 7 is discretisized as
intervalls of At and counted by a running parameter j with j = 1...I (number of channels)

T = AL = 1...0). (16)

At represents the fundamental sample time of the correlator. Thus, each successive chan-
nel represents an increasing time lag 7 in the correlation function. The actual correlation
is achieved by means of shift registers (one for each channel). The momentary value of
the signal ¢(¢) arriving at the correlator, is multiplied by the delayed signal distribution in
each shift register i(t + jAtj = 1...I) before being added to the contents of the individual
sampling channels. Figure 7 schematically demonstrates idealized measurements with a
7-channel correlator. The correct setting of the sample time At is very important when
correlating, as this defines the "time window” within which the fluctuation should decay
to zero.

Another method of extracting information from the density fluctuations is to fourier
transform G(7) into its frequency components (1 — w)

Sae(w) = 51; / < Ag(0)- Ag(T) > edt, (17)

obtaining the power spectral density of the signal. This transformation is known as the
Wiener-Khintchine theorem and is shown in figure 9.

-,

Fig. 9: Typical power spectrum

The form of this curve, arising from dissipative fluctuations (ie. an exponential decaying
correlation function), is a Lorentzian distribution centered at the incident laser frequency
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wo with a linewidth I'. T is a direct measure of the dissipative process involved. Since the
power spectrum and the corresponding correlation function are fourier transform pairs,
' is directly related to the characteristic decay time

1
= =, 18
- (18)
In practice, spectrum analysers are used to obtain the integrated power density of the
signal at a set frequency w. By tuning the filter through a frequency range, the power

spectral density is measured.

3.4 Hydrodynamic fluctuation theory

Up to this point, we have shown that the fluctuating electric field (or intensity of scattered
light) contains information on density fluctuations in a fluid arising from the collective
motion of the molecules. Temporal investigation of the signal by means of correllation, or
frequency decomposition by spectrum analysis, reveals the characteristic behaviour of the
fluctuations. What is still required is the connection between the microscopic fluctuations
and macroscopic transport phenomena. In this derivation, we are considering fluctuations
arising from the collective motion of large numbers of molecules (volume elements v),
allowing us to treat the fluid as a continuum. Molecular interactions such as collision
times and interparticle distances are thus avoided, only relatively long-lived and long-
ranged fluctuations being considered. Macroscopic laws, such as the hydrodynamic laws
of motion should then be able to describe the temporal behaviour of the fluctuations. The
basis of this theory is the regressional hypothesis of Onsager (1931) which states that the
spontaneous fluctuations amongst the individual microscopic volume elements v ”regress”
back to equilibrium according to the same equations which describe the macroscopic
relaxational process.

The laws of hydrodynamics are the laws of conservation of mass, momentum and energy
stated here in their general form:

% +div(e) =0 (mass) (19a)
(o) e e
—5 + div(pdw) + gradP + div(7) =0 (momentum) (19b)
g%tg + div(piie) — A V2 T + div(pi@) + div[7- @] =0 (energy) (19¢)

where « is a velocity vector, 7 the stress tensor, e is the sum of the internal and kinetic
energies and A the thermal conductivity. The fluctuations of these properties are deter-
mined for instance by substituting oo + Ap for the density p or @y + A# for the velocity .
By assuming that these fluctuations are small about equilibrium values, the above equa-
tions can be linearized, resulting in 5 equations (conservation of momentum is a vector
equation) with 7 variables. Two of the scalar variables can be eliminated by applying
local equilibrium thermodynamic equations of state. Usually density and temperature
are chosen as the independent variables. The resulting linearized hydrodynamic equa-
tions are solved by Fourier-Laplace analysis (Mountain 1966), the fluctuations such as
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density Ap(7,t) being space- (7 — ¢) and time-transformed (¢ — s), obtaining Ag(q,s).
The correlation function of these fluctuations describes the light scattering spectrum. For
density fluctuations the solution is obtained in the form of a correlation function and by
Laplace inverting (s — t) as

o(r) = < Ao(7,0) - Ap(q,7) >
< Ap(q,0) - Ap(q,0) >

= [C” » cv] -exp(—ag®t) + (c;_v - ezp(—Bq°T)cos(Cigr). (20)
?

Cv

¢p and ¢, denote the specific isobaric and isochoric heat capacities respectively. a is the
thermal diffusivity, 8 the sound absorption coefficient and C, the local speed of sound.
The spectral density can be obtained by a fourier transform (r — w) of equation 20,
according to equation 17. The result is presented schematically in figure 10.

S(w) M Rayleigh

Is

Stokes
Brillouin

Anti-Stokes
Brillouin

A 4

Fig. 10: Spectrum of light scattered off density fluctuations

The spectrum of light scattered from density fluctuations is the sum of three Lorentzian
distributions. The strongest contribution results from the central or Rayleigh line, which
peaks at the incident light frequency. The broadening of this spectrum, as expressed by
its half-width at half-maximum, is a direct measure for the rate of diffusion, which, for
pure fluids is the thermal diffusity a (the half-width is in general denoted by T as in
figure 9). The rayleigh contribution to the spectrum is often interpreted as local entropy
fluctuations at constant pressure.

The next two terms represent a doublet, also known as the Brillouin doublet. This contri-
bution can be interpreted as local adiabatic pressure fluctuations which give rise to sound
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waves travelling through the fluid. Light scattered off these waves is slightly frequency
shifted in both directions in analogy to the doppler-effect, the amount of frequency shift
being dependent on the local speed of sound and the scattering vector. This scattering
process is known as Brillouin scattering and has been briefly described in the general
scattering section of this book. As with the Rayleigh spectrum, the Brillouin spectrum
also possesses a dissipative element (the sound waves decay), a measure of which is the
sound absorption coefficient §. Thus the thermal diffusity a, diffusion coefficient D (for
mixtures), the speed of sound C, and the sound absorption coefficient 3 can be obtained
by investigating the spectrum of light scattered off local density fluctuations in fluids.
In this contribution we only deal with the Rayleigh spectrum investigating diffusion and
diffusion related properties.

4 Experimental Methods

There are two methods which can be employed in dynamic light scattering experiments;
those which directly measure the intensity of the scattered light are known as the single
beam, self-beat or homodyne method while those which superimpose a second reference
beam or a local oscillator with the scattered light are called dual beam or heterodyne
method. Essentially the major components used in both setups are identical, the primary
difference lies in the optical detection of the light.

4.1 Homodyne Method

Figure 11 shows a typical experimental setup of a light scattering apparatus employing
the homodyne detection method. We will first treat the major components before dealing
with the characteristics of the light detection.

Frequency stabilised (etalon) argon-ion lasers are often used as light sources in such
experiments due to their high stability and output power, typical required power values
lying between 1 - 600mW, depending on the scattering ability of the fluid. For experiments
with large scattering intensities, such as light scattered off particles or when investigating
the critical region of fluids, lower light levels of a few milliwatts suffice, making helium-
neon lasers applicable.

As the theory of light scattering assumes Gaussian statistics of the incident light, the laser
beam is usually directed through a beam expander before it is focussed into the scatte-
ring volume, the beam being polarized with the polarization vector perpendicular to the
scattering plane. The intensity of the scattered light is then observed at the variable
angle © by means of a photomultiplier tube. Recent advances made with avalanche pho-
todiodes which posess a higher quantum efficiency and other advantages such as compact
dimensions, also make these instrument usefull for detection (Lightstone 1988).

In order to reduce self correlation effects (after-pulse and dead time effects) which ap-
pear at short delay times 7, two photomultipliers can be used in cross correlation, the
disadvantage being a reduction of the signal due to beam splitting.

The important factor which determines the signal to noise ratio S/N and thus the de-
tection capability of the light scattering apparatus is the amount of power scattered into
a single coherence area Acon. Acon defines an area over which signal contributions
arising from different parts of the scattering volume V are correlated, and is inversely
related to the dimensions of V. The laser beam should therefore be focussed down to
small diameters, typically < 0.1mm. The elements of the optical system, pinhole (5), lens
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Fig. 11: Ezperimental setup in light scattering ezperiments

(3) and aperture (4) determine the number of coherence areas detected by the photo-
multiplier and thus the light intensity, as well as the angular resolution of the aparatus.
These elements have to be chosen carefully as large apertures reduce the informational
content of the signal as manifested by a smaller spread of the exponential function. Alt-
hough S/N itself is not influenced by these measures, the evaluation of the exponential
function becomes more prone to error and run times increase substantially in this case
(eg. Cummins 1977).

Different optical systems with varying angular, on- and cross-axis resolutions can be used
to project the light generated in the scattering volume onto the surface of the photomul-
tiplier (Cheung 1988). Dual pinhole, single imaging lense or dual imaging lense systems
are typically employed. After amplification and passing through a discriminator, the sig-
nal i(¢) is fed into a digital correlator in the form of discrete photocount events within
a certain sampling intervall A¢. Improvements in correlation techniques and correlator
features (such as size, speed, number of channels) are continous. In particular, the ability
of correlators to work in parallel (or more) modes with logarithmic time scales allows a
simultaneous determination of many diffusive processes with different time scales, par-
ticle sizing being a typical application. The obtained correlation function g(7) is then
analyzed, usually by a nonlinear least-squares fit, resulting in a direct determination of
diffusivity.
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The derivation of light scattering theory in sections 3.2 to 3.4 has shown that the corre-
lation function of the density fluctuations is an exponential function, the characteristic
decay time 7. being related to diffusivity 7. = 1/aq?. Furthermore, the electric field and
the density fluctuations are directly related as

Ao(R,t) ~ Ae(R,t) ~ Eo(R,t). (21)

The normalized correlation function of the scattered electric field therefore directly mea-
sures diffusivity

<| E,(0) | - | Ey(7) |>
<| E,(0) [>>

Photomultipliers however, are square-law detectors and only respond to intensity fluctua-
tions

= exp(—ag®T). (22)

qi(r) =

Is(t) = Es(t)-Es (t), (23)

the ”*” denoting the complex conjugate value of the field. Thus it is not the so-called
first-order correlation function g;(7) that is measured in homodyne experiments, but the
second-order correlation function g2(7)

<|Es(0) |- | Es(r) ’> _ < Is(0)-Is(r)>
<| Es(0) |2>2 - Iz

g2(r) = (24)
with <| Es(0) [?>2= IZ.

The informational content of g1(7) is not lost in g2(7), provided that the scattered light
has a Gaussian distribution; which requires that the total scattered intensity arises from
a large number of statistically independent subregions (as assumed in section 3.1). The

statistical properties of the higher moments are then only a function of the first - order
correlationfunction.

92(7) = 1 4+ q1(r)% (25)
The correlation function now takes the form
g2(r) = 1+ [ezp(—ag’T)]® = 1+ exp(—2aq’t), (26)
or, if not normalized,
Ga(t) = I% + Ikezp(—2aq’r). (27)

In homodyne experiments, we therefore measure the square of the signal E}(é,t) and
the resulting exponential decay is multiplied by a factor of 2. The homodyne method is
generally employed when the scattered light intensities are high and no other stray sources
of light are present. This condition can be achieved by means of an additional pinhole
(6) which effectively screens out these sources such as the flare of the cell windows.
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4.2 Heterodyne method

l,
scattering volume laser

N beam
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Fig.12: Optical paths of the heterodyne method

At low fluctuation intensities, signal enhancement is achieved by superimposing a second
coherent beam or local oscillator of constant intensity with the scattered light beam.
While this can be done in numerous manners such as beam splitting before and after
scattering, an effective method is to include light scattered from the interior window
surface in the field of view of the pinhole (Fig.12).

The electric field arriving at the detector is then the sum of the scattered field Es and the
local oscillator Eo. Again, since photomultipliers respond to intensity, the second-order
correlation function (not normalized) becomes:

Ga2(t) = <| Es(0) + Ero(0) |* - | Es(7) + Ero(7) |*> . (28)

Multiplying out this expression results in 16 terms. By assuming Ero to be constant,
that is E1o(0) = ELo(7), and ELo and Egs to be statistically independent, equation 28
1s reduced to three terms

Gy(r) = <I[o >+ < 2o(Es(0)E3(1)) > + < Is(0)Is(r) > . (29)

< I}, > or simply I?, is the background term. The correlation function < (Es(0)
Es(t)) > is, from hydrodynamic theory, equal to Is exp(—ag®7) , and the last term is
the afore-mentioned homodyne correlation function (eq. 27). The resulting correlation
function can therefore be written as

Ga2(r) = (Iro + Is)* +2IL0Isexp(—aq®t) + I2exzp(—2ag®T), (30)

which is the addition of two exponential functions, a heterodyne term (2Iy 0 lsexp
(—ag®7)) and a homodyne term (IZezp(—2aq®r)), differing in their decay rates by a factor
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of two. Since the signal detected at the photomultiplier is always a superposition of light
scattered off other objects (cell walls, windows, dust etc.), equation 30 represents the
general form of the correlation function for both methods. The simultaneous evaluation
of two exponential functions is always difficult and prone to error. Thus, the homodyne
technique assumes that the intensity of stray light 1o is negligible (Is > I10) reducing
eq. 30 to eq. 27, while the heterodyne method assumes (Iro > Is) reducing eq. 30 to

Ga(r) = (Is+ ILO)2 + 2ILOISexp(—aq27'). (31)

This condition can be assured by varying the intensity of I o with respect to Ig, for
example by shifting the scattering volume closer to the window surface.

Heterodyning can be a very effective method for measuring diffusivities and diffusion
coefficients at further distances from the critical point, especially in the liquid region. In
those regions where intensity fluctuations are very weak, a gain in the statistical accuracy
of an order of magnitude may be achieved [47]. Heterodyning however requires coherent
mixing of the scattered light and reference beam signals. The sensitivity is comparable to
that of a Michelson interferometer. While the allignment problem can be circumvented
by positioning the scattering volume and local oscillator source very close together, the
sensitivity to intensity fluctuations in Iy and external vibrations remains. These sources
of error are difficult to avoid completely. Due to the weak signal I's, run times lie between
1-3 hours.

5 Measurement of thermal diffusivity

As was already mentioned in the beginning of this contribution, dynamic light scattering
offers numerous applications in physics, chemistry and biology, a detailed overview being
given for example by Pecora(1988). Since even a brief treatment of these applications
would exceed the scope of this contribution, we will only describe an application from the
field of physics, the measurement of thermal diffusivity a of pure fluids.

The behaviour of microscopic density fluctuations can be described, as shown, by the hy-
drodynamic equations of motion. The resulting spectrum consists of entropy fluctuations
at constant pressure (Rayleigh spectrum) and pressure fluctuations at constant entropy
(Brillouin spectrum). The fluctuations in entropy represent a purely dissipative mode of
heat transfer. Since entropy is primarily a function of temperature T, the decay of these
fluctuations is expressed by the instationary fourier heat law

0
SAT(71) = ay? (AT(R1) (32)
which is basically the law of conservation of energy (eq. 19c) assuming p = const.. The
solution of this equation, after performing the necessary Fourier- transform into g-space

and integrating the differential equation, is the exponential function

A(g,t) = AT({,0)ezp(~ag’t). (33)

The decay of temperature gradients in macroscopic as in microscopic systems follows a
simple exponential behaviour. The measurement of the characteristic decay time 7. by
means of correlation directly yields the thermal diffusivity
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Te = —. (34)
Substituting for the scattering vector ¢, we obtain

1
C T nEEsn(F 9

which is the equation determining thermal diffusivity. 7. is obtained from a regressional
analysis of the correlation function. The scattering angle © has to be determined along
with the refractive index n of the fluid, although the error made by assuming n = const =
1 is under 1% for © < 10° C (Kruppa(1991)). The incident wavelength of light Az is
usually kept constant.
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Fig. 13: Thermal diffusivity measurements of the refrigerant R152a

Figure 13 shows typical measurement of the alternative refrigerant R152a along the co-
existence curve and several sub- and supercritical isotherms plotted against the reduced
density o/p.. o. denotes the critical density of the fluid. Measurements were made
using both methods described earlier. In the extended critical region characterized by
0.3 < ¢/0c < 1.8, where scattering intensities are relatively large, the homodyne method
was employed. The measurements lying outside this region were obtained by the hetero-
dyne method. The accuracy of these measurements is dependent upon the investigated
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region of state and lies between 0.5% and 2.0 %. In the gas region at lower densities
(typically /0. < 0.2), this method is subject to increasing errors due to low density
fluctuations and resulting low scattered light intensities and therefore cannot be applied.

When compared with other conventional methods of measuring thermal diffusivity or
thermal conductivity, such as the instationary hot wire technique or the parallel plates
method, dynamic light scattering offers three major advantages.

1) The investigated substance is in a state of thermodynamic equilibrium with no
temperature gradients being present in the fluid.

2) The measurement is absolute. No lengthy calibrations are necessary, since only
the decay time and not the spread or the position of the exponential function is
required.

3) The time required for a measurement point is relatively short, even for heterodyne
experiments.
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