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ABSTRACT

Several turbulence models have been tested for pre-
dicting low Reynolds number free convection boundary-
layer flows on a vertical, heated surface. 1In the
present study, only turbulence models were considered
that can be used to calculate buoyancy driven wall
poundary-layers without an a priori assumption with
regard to profiles of velocity, temperature and the
eddy diffusivity. Eight turbulence models are studied
in the framework of stationary, two dimensional,
Reynolds averaged boundary-layer equations of con-
tinuity, momentum and energy. These equations include
the turbulent shear stress and heat transfer which are
predicted by eddy-diffusion formulations (three mixing-
length, k-€¢ and k-¢-T 2 model) and stress models
(Reynolds stress model, algebraic and "corrected”
algebraic stress model). The numerical results are
compared with recently reported experimental data. All
the models predict the heat transfer and mean flow
characteristic reasonably well. The simplest models,
however, using the mixing-length hypothesis, are not
able to predict the transition from laminar to tur-
bulent flow, whereas models based on solving transport
equations for turbulent quantities calculate the tran-
sition ranges very well. This study shows that the low
Reynolds number k-€ model by Lam and Bremhorst is the
best tool to calculate turbulent vertical convective
flows considering the quality of the results and the
computer cost.

1. INTRODUCTION

The accurate modeling of turbulent free convection
from a heated, flat plate is considered to be a logical
first step towards the numerical simulation of more
complex buoyancy affected turbulent flows. The parabo-
lic forms of the differential equations allow a com-
parison between the quantities predicted by several
turbulence models without high computer cost. It was
not the aim of this study to develop a new turbulence
model special for natural convection flow. This study
shall show how well turbulence models optimized for

turbulent flow without heat transfer or forced convec-
tion flow predict a rather uncomplicated natural con-

vection flow without tuning the model constants, wall

function or closure hypothesis.

Cheesewright and Ierokiopitis (1982) and Miyamato
et al. (1982) have recently measured temperature and
velocity simultaneously at essentially the same point
in the flow. Using LDV techniques and very small ther-
mocouples allowed them to obtain turbulent stress and
heat flux distributions in addition to mean flow quan-
tities. With this data, the numerical results can be
compared with experimental data. The successful com-
putation of Plumb and Kennedy (1977) and To and
Humphrey (1986) encouraged this study.

2. NUMERICAL PROCEDURE
2.1 Mean Transport Equations

The starting point for the turbulence modeling
effort in this study are the stationary, two-
dimensional, Reynolds averaged boundary-layer equations
of continuity, momentum and energy. The Boussinesg-
approximation is used because the available experimen-
tal data are obtained in air with low overheat ratios

%I € 0.2. The conservation equations are
o
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This system of differential equations for the mean flow
quantities (u, Vv, T) includes the turbulent shear

=T -ToT
stress u v and heat transfer v T which must be pre-
dicted by suitable closure hypotheses resulting from
the turbulence modelsr.



2.2. Turbulence Models

Table 1 shows the five tested turbulence models.
The first three models follow the eddy-viscosity for-
mulation, whereas with the last two models all tur-
bulent second moments are calculated.

Table 1: Numbers of differential and algebraic

equations.
Model Differential eq. Algebraic eq.
mixing-length
u, T v,
model
k-€ model a, T, k, € v,
k-€¢-T'° model |G, T, k, e, T'? v,
Algebrai [+ u [ [ vt
stress u, T, k, € ., vv.,uv,
d L}
model u'T ' V’T', T 2
g, T, u'u', v'v',
Reynolds
stress w‘w', uv, u’T', )
model > >
1 ' 1]
vT, T, €

2.2.1. Eddy-Viscosity Formulation

Maintaining an analogx with laminar flow, the tur-
bulent fluxes u v and v T are assumed to obey gra-
dient type relations as follows,

(4)

The turbulent viscosity v_ is assumed to be propor-
tional to a velocity scale and a length scale. A very
simple way to obtain the turbulent viscosity is the
mixing-length hypothesis. In this study three dif-
ferent mixing-length models (MMA, MMB, MMC) are com-
pared without solving differential equations at a fixed
turbulent Prandtl number Prt = 0.9,

Version A:
(Noto and Matsumoto, 1975)

v, = 0.4vy*[1 - exp(-0.0017(y*)2)] ;

(5)
S

with y* = % (6!) , and T =V =

Version B:
(Escudier, 1966)

2|3u
= _— <
vt (0.41y) 3y for y/6 € 0.22
(6)
213u
vt = (0.096) ay for y/6 > 0.22;

&: boundary thickness

Version C:
(Cebeci and Khattab, 1975)

T C exn(— 2|3y - Q4%
Via = 10.4v(1 - exp(-y/a))7I5Cl 5 A = 26 v(Tw)
orsq2 |30 -
Vip = 10.07561% |50 (7)
ve = min(vivg)

The standard models try to bridge the gap between the
full turbulent region and the wall using wall-laws for
the mean flow quantities. This treatment doesn't allow
transition calculations from laminar to turbulent flow
nor does it yield good heat transfer results. In the
present study, only low-Reynolds number turbulence
models were considered, that can be used to calculate
boundary lavers without -an a priori assumption with
regard to profiles of velocity and temperature.

A more sophisticated way to determine the turbulent
viscosity is to use k-€ models. The model of Lam and
Bremhorst (1981) was developed for application to
forced convective flow. Two transport equations for
the kinetic energy of turbulence (k) and the dissipa-
tion rate of kinetic energy of turbulence (€) must be
solved. The turbulent viscosity calculated from k and
€ is damped near the rigid surface by a wall function
fu whicg is a function ofgtwo turbulent Reynolds number
Re, = k /(ve) and Re_ = k™-y/v. Two wall functions
(f, and £, ) are usex in the transport equation of €
{see Table 3).

k
v, =¢c, f ps (8)

The model of Plumb and Kennedy (1977) includes a
third transport equation for the mean squared tem-

perature fluctuations T'© to account for the contribu-
tion of buoyancy to the turbulent kinetic energy and

dissipation rate. 1In the k-e- and k-, e- and 7%

equations, wall terms were added to assign a boundary
condition to ¢y = O at the wall and to account for the
nonisotropic behavior near the wall.
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2.2.2 Stress models

Equations governing the transport of the Reynolds
stresses and turbulent heat fluxes can be derived by
manipulating the momentum and energy equations. The
modeling of the unknown terms in these equations
follows from the work of Launder and his colleagues
(Launder, 1975; 1986; Kebede et al., 1985; Gibson and
Launder, 1978; Gibson, 1978; Rodi, 1980; 1982) and is
carefully outlined in Heiss (1987). The transport—

12

equations for u'u', v'v', w'w', u'v', u'T', v'T', T
and € must be calculated because of the strong depen-
dence of these quantities on each other. This model
with 8 differential equations to determine the tur-
bulent quantities is known as Reynolds Stress Model
(RSM). The systems of the equations, the wall func-
tions and the model constants are shown in the Appen-
dix.

Assuming local equilibrium (convection = diffusion)
in the transport equations of correlations of fluc-
tuating quantities results in algebraic expressions.

In addition to the differential equations for k and €,
a system of six algebraic equations must be solved
(Algebraic Stress Model, ASM).

Unfortunate]xl the summation of the Reynolds

-TT - .

stresses uu , vv and w w yields only 2k for local

equilibrium of the dissipation rate €, the production
rium ol '

term, -u v (3du/dy), and the buoyancy induced ternm,

ghu T To avoid this inconsistency, it is assumed the

behavior of advection-diffusion in the equations of the

normal Revnolds stresses is the same as in the k-

equation. Then, the algebraic equations for u'u', v'v'

and w'w' can be corrected (ASMcorr) by

(advection - diffu51on)u-uv

n

(advection - diffusion)k .

[

LUyt %% + ghu'T' - €)

xie

and with similar correction terms for the v'v'- and
w'w'- equations.

The system of the algebraic equations and the
correction terms are shown in the Appendix.

2.3 Numerical Schenme

A finite difference procedure was chosen for
obtaining a numerical solution of the differential

Table 2: Model constants for the k-€ model of Lam and Bremhorst (KEM)
and the k—e—T'2 model of Plumb and Kennedy (KETM).
Constant ok o€ UT c“ cg cw ce] cez c€3 cT] cT2
KEM 1.00}1.30 - 0.09 .00 |0.00{1.4411.9210.00 - -

KETM 1.0011.30{0.90}0.09

Table 3: Turbulent Prandtl number, wall functions and boundary condition for €
k—e—'I"2 model k-¢ model
(KETM) {KEM)
Prt 2.5 - 2.0(y/6) 0.9
£, exp[-2.5/(1+Re /50)] | [1 - exp(—0.0]GSRey)]z(l + 20.5/Re )
3
fl 1 1+ (0.05/fu)
f 1 -0 Sexp(—Rez) 1 - cxp(—Rez)
2 . t t
ae
b. c. for € €, =0 5e lw 0




Pqua£i0n$ presented in the previous section. All
calculations were performed using an upwind dif-
‘erencing scheme in the streamwise direction, x, and
rower-Law scheme in the cross-stream direction, vy,
described by Patankar (1980). The discretization
cquations, implicit in the forward step, were solved
using a TDMA (TriDiagonal-Matrix Algorithm). A nonuni-
“orm grid consisting of 52 nodes in the cross-stream
Zirection, y, generated grid-independent results. The
srid was expanded from the wall using a factor 1.25,
znd the first 5 nodes were located in the viscous
sublayer (y*¥ < 4). The forward step was 10 times the
creadth of the inner control volume (Ax = 10 - Ayl).

2.4 Boundary Conditions

The boundary conditions for hcated, vertical, flat
:late flow are shown in Fig. 1.

T-T, W'ﬂ' - u'T

g -0/ J—

“ -T'?2-0

d¢ | oT

ay ™ T ~-T, + dxo ox

-
R R R .

S —" ] S
ey 0 u, v, T (Ostrach)
init* Cinit
u'u' =k vV o= w'w - %kini(

u'v' =« u'T" «v'T' =T'220

Tigure 1. Boundary conditions and calculation domain.

Along the solid wall and the outer edge of the
>oundary layer, the streamwise velocity component and
z11 turbulent quantities were set to zero, except € at
~he rigid wall. According to Plumb and Kennedy this
coundary condition was set equal to zero for the

f‘€—T'2 model. For the other models the first deriva-
~ion of € was set equal to zero following Patel et al.
11985). Furthermore, a few calculations with
€ = 2v(§5§)2 and € = 2v(82k) have shown that the

3y ‘w w aiz w
influence of the different boundary conditions is very
small (less than 5% in the heﬁE transfer). However,
the numerical solution with (5— = 0 was more stable.
The wall temperature Tw was coXsYant and the environ-
nent temperature T_was slightly increased with the
height according to the experimental condition,
{dTo/dx = 2 K/m). Velocity and temperature distribu-
tions along the upstream boundary were specified by
imposing Ostrach's (1952) laminar flow solution. To
initiate tgrbulence according to Plumb and Kennedy at
Gr_ = 4.10, a small amount of turbulent viscosity was
assumed (vt nt - 0.01v) to exist and the correspond-
ing values 6% einit and ki were calculated from an
approximate balance between shearing production and
rate of dissipation and from eq. (8)

€init ~ Vt,init' ay
€ % s
init t,init
= th 0.
Kinte = (V¢ tnie o ) W 01

u
For the_ Reynolds stress model, uu =k, . andvyv =
— 1 : init
ww =3 kinit were imposed.

For all models the influence of the wall functions
was eliminated in the outer region. Lxcept in the
region between the wall and the location of the velo-
city maximum the wall functions fy, f, and f, were set
cqual to 1 and fg and fy were set equal to O.

3. RESULTS

The results predicted by the three mixing-length

models (MMA, MMB,MMC), k-€ model (KEM), k-':~;'-’Z model
(KETM) and the three stress models (RSM,ASM,ASMcgrp)
are presented in the following subsections. The
results are compared with the experimental data
reported by Cheesewright and Ierokipiotis (1982) and
Miyvamoto et al. (1982).

Figure 2a shows the nongimensional streamwise velo-

_city profile [uy = 2(gBATx)™?] for the three mixing-

length models of Gry = 5.67 x 1010 as a function of the
nondimensional traverse coordinate, { = < Nu,. All
three models predict the location of the velocity maxi-
mum well, however, model MMB and MMC show an overshoot
of the velocity maximum, and an undershoot of the velo-
city in the outer region because the two models yields
too small turbulent viscosity.

.25

20 — MMA
PO Ihs
i i —m - - MMB
| fezaliNg — e MMC
s AN O  Cheesewright and
u l'D ; lerokipious

uy " Gr, = 5.67x10"°
3]
cs
.60
¢ 1c.0 20.¢ 30.0 40.0
{ —
Figure 2a: Streamwise velocity profiles calculated by

nixing-length models version A, B, and C.

Figure 2b shows the velocity profiles calculated by
the KEM and KETM models. The KEM prediction is con-
sistently good for all values of the transverse coor-
dinate. As a result of a higher turbulent energy, the
velocity predicted by KETM is too small everywhere.

Figure 2c¢ shows the velocity profiles for the three
stress models. All the predictions of velocity are in
reasonable agreement with LDV measurements, however,
the velocity maximum, calculated by RSM, is located too
far from the wall, and the velocity, predicted by ASM,
falls below the experimental data in the outer region.



"he reason is the u v distribution. Although u v
calculated by RSM agrees much better with experimental
data (Fig. 4e) in the region ¢ < 6 than these calcu-
iated by ASM or. ASMiq4rr, the slope of the velocity pro-
file is too small in the near wall region.

.25

.20t —— KLM
---- KETM

Cheesewright and
fcrokipiots

Y
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Gr, = 5.75x10%®

v
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.68
0 10.0 20.0 30.0 40.0
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Tigure 2b: Streamwise velocity profiles calculated by
k-€ model (KEM) and k-e-T'? model (KETM).
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Pigure 2c: Streamwise velocity profiles calculated by
Reynolds stress model, algebraic stress
model and corrected alebraic stress model.

The numerical calculations of the Nusselt number
Zependence on Grashof number shown in Figures 3a-3c
zgree with the experimental data very well in the fully
ceveloped turbulent region with the exception of MMB
and MMC. The transition from laminar to turbulent flow
is indicated by the change in heat transfer. Because
of the inadequacies of the lacking transport equations
for turbulent quantities, the mixing-length models are
not able to predict a smooth transition. Although the
other models initialize the turbulence at Gry = 4 x
108, the transition occurs at Gry > 109.

Figures 4a-4f show the mean temperature profiles,
the mean squared temperature fluctuation, the Rey-

nolds stresses and the turbulent heat fluxes calculated-

by the stress models at Gr* = Gr_ » Nu_ = 6.68 + 1013
and compare the experimentgl resﬁlts réported by Miya-
moto et al. (1982) and the numerical results from To
and Humphrey (1986). They used an uncorrected
algebraic stress model similar to the ASM in this

étudy. All profiles show good agreement with the
experimental data except the v T distribution. But

—T-T i -
using the low measured v T Vvalues in the energy
equation yields very poor Nusselt numbers. The reason

for this discrepancy could be the very low horizontal
velocity v (lower than 1 mm/s), the ‘'beam dancing' in
the y direction caused by inhomogeneous refractive
index, and the distance between the thermocouple and
the measuring volume of the LDV, which was 2 mm in
streamwise direction according to Miyamoto et al.

12
(1982). Therefore, it is very hard to measure T
103
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Figure 3a: Heat transfer along the plate calculated by
mixing-length models.
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" Figure 3b: Heat transfer along the plate calculated by
k-€ and k—(:—'l“2 model.
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Figure 3c: Heat transfer along the plate calculated by
the stress models.
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Pigure 4c:

Mean temperature distribution calculated by
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Figure 4d: Turbulent heat flux u T calculated by
stress models.
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Figure 4e: Turbulent shear stress calculated by stress
models.
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Turbulent heat flux v'T' calculated by
stress models.
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4. DISCUSSION

As shown above, all the models yield reasonable
results. Unfortunately, the mixing-length models
where one does not solve differential equations for the
turbulent quantities, are not able to predict the tran-
sition from laminar to turbulent flow. Further, the
other models need to introduce a small amount of tur-
bulent viscosity at some point create a numerical tran-
sition. Figure 5 shows the influence of introducing
turbulence at different points. All these models need
the knowledge from experiments to locate where the
transition should occur. However, the transition
region in the experiments are also dependent on
existing disturbances.

10?
Nu o
2 - .
Poio Gripy = 1108
Grypy = 4-108
o= Grpy o= 1e10°
........ Grpy = 410°
o Cheescwright and
lerokipiotis
10!
1o 10°% 1010 1o
—_ Gr,
Figure §5: Influence of introducing turbulence at dif-

ferent points calculated by KETM.

The mixing-length model, the k-€ model and_th e
k-€- T model use the gradlent assumption for u v .

According to Cheesewright and Dastbaz (1983), there is
a region between the wall and the velocity maximum
uhere u v and the velocity gradient are both positive
<y < v, in Fig. 6). Thus, equation (4) is only

%1sf1ed for negative turbulent viscosity which is
numerically and physically unrealistic. As a result,
the stress models predict the production of u v due to
buoyancy correctly.

-u Vv
Y <Y <y, Vo= —= <0
l du/dy
uv
v ; _
1 s N 7]
L Uy
[ -
vl u
i
A
7
s
Ve ]
< H
Sy Y
SN~ 1 2
y
FPigure 6: Mean velocity and u'v' profile according to

Cheesewright and Dastbaz (1983).

The turbulent Prandtl number, which does not
arise in the stress models, is a cri{10a1 parameter in

the mixing-length models, k-€¢ model and k-e—T model.

Plumb and Kennedy chose the distribution of Pr
yield the best agreement with experiments. Ehough
has a significant effect on the heat transfer
na%ural convection experimental data are completely

lacking in the literature.

Using the Reynolds averaged boundary-layer
equations the mean velocity depends only on the gra-

dient of u v (besides v and T) and the heat transfer

- T .
depends only on the gradient of v T Calculations
were performed, so that the two quantities, u v and
v T , were tuned to agree with the experiment data by
adjusting several constants. However, the results
(mean velocity and heat transfer) were very poor.
There is a need for more experimental data to improve
the turbulence models, especially in the near wall
region.

This study shows that the model of Lam and
Bremhorst (1981) is the best tool for calculation of
turbulent vertical convective flow considering the
quality of the results and the computer cost, if the
Reynolds stresses and the turbulent heat flux are not
of interest.
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APPENDIX

Reynolds Stress Model (RSM)

u u -equation

duuu’), Avuu) _

9x y
3 k ——r du_ u ——r 3u
3y [(cs e VvV ¢ ) 3y ] 2u v ay +
—r—r 2 3 uu
2gBuT-§e[(1—fs)+2fsk ] -
€ —rT 2 4 —r—r 31 ——
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Algebraic Stress Model (ASM)
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"corrected" Algebraic Stress Model (ASMcorr) additional

terms for (A.8-A.10)
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Model-Constants for RSA, ASN and ASNcorr
constant c Cr Crr Ce N Cyg C, 25
value 0.24 0.11 0.13 0.15 2.20 0.60 0.55 .30
constant | cq Css | C1r | Cirs| C2r | C21s| Car 3TS
value 0.55 0.00 3.00 0.50 0.50 0.00 0.50 .00
constant C4uT c4vT c€1 c€2 c63 Cea R
value 1.20 1.20 1.44 1.92 0.30 2.00 0.8
Wall functions: ,
f1 =1 ; f, =1 - O.Sexp(-Ret)

1]
fs = exp(—Ret/40) ; f, = :

with Re =




