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Abstract — A two-dimensional time-dependent numerical computation method has been developed to
determine laminar free convection in closed cavities and forced convection in ducts and open cavities. The
transport equations for energy and vorticity are solved with the aid of the ADI-method, but the more recently
established method of cyclic reduction is applied to the Poisson equation. The resulting implicit method
remains stable up to a Rayleigh number of 10!%, Due to the acceptable large time step, the method is
particularly qualified for transient problems with extremely slow changing properties. A transformation
relation, g(x, ¢), is proposed for sufficiently accurate determination of thermal and hydrodynamic boundary
layers near the vertical side walls in cavities. The benefit of the present numerical computation technique has
been demonstrated by solving two problems of free convection in a rectangular cavity, namely with
differentially but uniformly heated side walls and with only one side wall non-uniformly heated.
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L. INTRODUCTION

For MaNy heat transfer problems, the governing
differential equations are far too complicated to be
solved by analytical techniques. Therefore, a detailed
and sufficiently accurate description of the resulting
temperature and velocity patterns can only be
achieved by numerical computation. Well known
examples are the heat waste of hot fluid through
internal heat transfer processes in thermal energy
storage systems {(Scholl [1], Straub et al. [2]), tem-
perature equalization processes in air-conditioning
systems (Moog [3]) and seasonal temperature distri-
butions in lakes due to eddy and thermal mixing
processes (BloB '[4]).

Especially in the field of engineering, it is common
practice to describe complicated physical problems
with simple and often crude models, with the advan-
tages that an analytical or numerical solution can be
easily derived. As these models are based either on
some drastic simplifications of the full governing
equations or on simple overall energy balances with
the unknown transfer processes approximated by
semi-empirical correlations the results are often lim-
ited and of modest value.

On the other hand, anaiytical solutions of the full
nonlinear basic equations have become known for
only a very few problems [5]. In recent years the
method of matched asymptotic expansions has been
developed (Van Dyke [6], Nayfeh [7]), and success-
fully applied to free convection problems in shallow
cavities (Cormack er al. {8]).

Experimental investigations are usually restricted to
the study of laboratory models whereby the similarity
conditions are often hard to meet.

Therefore, for most advanced problems the only
acceptable solution method is a numerical com-
putation technique. The literature on numerical com-
putation methods has been rapidly expanding in
recent years but very few of these methods are of
moderate value as the convergence and stability
criteria are not sufficiently satisfied in fluid problems
with high Rayleigh numbers of 10° and more, or if the
convergence and stability criteria are fully satisfied, the
time step and/or the mesh size becomes so small that
the needed computation time is far beyond any
reasonable limit. Hence, there is still a strong demand
for fast numerical computation techniques which
avoid these difficulties.

For instance, steady state numerical methods for
recirculating flows which have appeared in the litera-
ture in recent years are usually restricted to low
Rayleigh number flows and become instable for Ra
> 10° (Rubel and Landis {9], Fromm [10, 11], De
Vahl Davis [12], McGregor and Emery [13]). The
transient method by Wilkes [14] for elliptical differen-
tial equations is also restricted to Ra < 103,

A review of various numerical techniques has been
given by Torrance [15]. He also points to the problem
of artificial viscosity which leads to non-energy and/or

continuity conserving formulas and, therefore, to
erroneous results. The more recently developed meth-
ods are reviewed in the excellent book by Roache
[16].

In this paper, a fast numerical computation method
for transient two-dimensional problems of free and
forced convection is described.

2. MATHEMATICAL FORMULATION

Neglecting the dissipation and pressure term in the
energy equation one obtains, subject to the usual
Boussinesq approximation, the governing equation for
an incompressible fluid with constant properties (ex-
cept density) (see e.g. [17, 18]

Vu =90, (1)
du 1 -
— = ——Vp+vV2u+gegr*p, )
dt Po [y
dr
— = aV?T, (3)
dr

where the equation of state is reduced to a simple
density—temperature relation
p 1
e @)
po 1+ BT~Ty)
For two-dimensional problems, it is convenient to
define a stream function ¢ which satisfies the equation
of continuity identically

oy ay

U=—, v=— —.
dy O0x

&)

Elimination of the pressure from the equation of
motion and introducing the vorticity @ gives

v du
ow=———. (6)
ox dy

The equations of motion are reduced to the transport
equation of vorticity

dw

Vi + ﬁaT {(7)
— = yWw —.
dt g dx

Before proceeding further, it is convenient to bring
these equations into dimensionless form. With

(x*,y*) = (x, yy/L,

(u*s U*) = (u9 U)/MO,

p* = p/poud,
t=a t/L?
0 =(T—-TH(T, — T)
one obtains
w=—Viy, ®)
dw a6
— =Pr-Vio + Gr-Prt-—, %)
dr dx
dé
— = V3@, (10)
dr
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where the asterisks have been omitted to simplify
matters.

As there is no characteristic velocity in pure free
convection problems we assume u, = a/L. Hence the
Reynolds number Re = u,L/v becomes identical with
the Prandtl number, Pr = a/v and the Péclet number,
Pe = u,lL/a, becomes equal to unity.

Equations (5) and (8)—(10) are the governing differ-
ential equations for free convection problems. To solve
this set of equations is not a simpie matter as the
vorticity equation is coupled to the elliptic Poisson
equation through the nonlinear convection terms.

For a numerical solution procedure these equations
are usually directly transformed into finite difference
equations with the aid of a proper differencing scheme.
But to account for the vertical boundary layers near
the side walls one would have to introduce an ex-
tremely dense grid which leads to a tremendous
number of algebraic equations having to be solved.
Generally, this situation can be improved either by
mapping the flow area under consideration with a
non-equidistant grid, i.e. small mesh size in the boun-
dary region and larger grid distances in the core flow
region or by introducing suitable transformation
equations, p(x) and g(y), which accumulate the grid
points in the boundary layer region. With a proper
transformation equation, the second method allows
arbitrary boundary layer decomposition and is, in our
experience, simpler to deal with than non-equidistant
mesh sizes.

With arbitrary transformation relations p(x) and
q(y) one obtains for the first derivative of a dummy
variable I”

or or op or
6x_6p

5x_6p. ®
(1)
or ar oq _or

d oq oy oq

and, from this, for the second derivatives

&r  ér or
=5 At +—"B, (12)
éx*  op? ép
o’r _o'r , ar
=— A}+—B

W e

Substituting (11) and (12) into (8)—(10) one obtains the
following set of transformed equations

8 é o2 o
—w=A§—lf+Bx—w Aﬁ‘f+By—w, (13)
dp ap oq oq
o ow dw
—+Au—+ A4, v—
ot ap o4
P (Azazm + A262w>
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et T o
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It should be noted that the non-transformed equations
are easily re-established by setting

A,=4,=1 and B,=B, =0

Therefore, the transformation relation can be simply
switched off for problems where it is not needed.

3. NUMERICAL PROCEDURE

3.1. Energy and vorticity equation

The energy and vorticity transport equations are of
the same ‘elliptic type’. They pose a boundary value
problem and can be treated with one of the integration
techniques briefly outlined in this chapter.

Well established explicit methods are the Euler-
method (one-step), Heun-method (two-step) and
Runge-Kutta-method (multi-step). To satisfy the
strong stability criteria of these explicit methods ex-
iremely small time steps are usually required which
lead to considerable computation times. Hence, these
methods are not suitable for slow changing transient
processes. For instance, applying the Euler-method to
the problem considered in Chapter 4.1 leads to a
compulation to real time rate of approximately 10: 1.

Some success is gained by introducing semi-

analytical methods. In two-dimensional transient prob-
lems, the differential equations are separated into two
of three independent variables. The resulting coupled
ordinary differential equations are then solved with the
procedure by Runge—Kutta or Stoer—Bulirsch [19],
respectively. These methods are very accurate but still
time consuming due to the large number of coupled
differential equations.
3.1.1. The ADI-method. Probably, the best known and
widely used implicit method is the Crank-Nicolson
method. Contrary to the point-by-point solution tech-
nique of the explicit methods, simple implicit methods
use advance values in the spatial derivatives, thereby
requiring the simultaneous solution of a large number
of algebraic equations. Furthermore, application of
implicit methods to two-dimensional problems, leads
to a set of equations which can be solved by inversion
of the resulting pentagonal matrix.

Contrary to this, the ADI-method (alternating
direction implicit method) by Peaceman and Rachford
[20] splits the time step to obtain a multi-dimensional
implicit method which requires only the inversion of a
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tridiagonal matrix. This tridiagonal matrix can be
solved with the Thomas algorithm [21] which is
merely a special adaptation of the Gaussian elimina-
tion procedure; see Richtmeyer and Morton [22].
Credit is given to the ADI-method because relatively
large time steps are permitted. Furthermore, it has a
second order accuracy of O(At2, Ax2, Ay?) and its
‘weak’ stability conditions are easy to satisfy. (For
further details see Roache [16].)

Equation (14) and (15) may be written in a com-
bined form for a dummy variable as

ar @F 5F
— et Au—— + A
ot Bp 6q
orr T oar or
S L L i B,-+B—)+, 17
“( gt T B ¥ B )R B (T

with @ = 1 and § = 0 for the energy and « = Pr and

B = GrPr?A,00/0p for the vorticity equation.
Splitting the time step At leads to

m+ 152 _ ad 5rn+1;2 sre

+ 4u" + At ——
Az/2 op dq

5 521“"“’2 , 621-11
= (Ax 6p2 + Ay 6q2
5rn+1,l

op

+B B 5rﬂ)+ B (18a)
X y 5q

and

m+1/2 n+ 1

rn+1 _
+Axun+112 _+Ayvn+i“2
Ar/2 op oq

5Fn+ 1/2

5r~n+ 1/2 6rn+ 1
+ B,
dp dq

rn+1'2

6rn+ 1
5q°

+ By )+.3"+”2, (18b)

where the time derivatives have been approximated by
a simple Euler step.

The nonlinear convective terms cause the main
difficulties in separation in order to achieve a stable
numerical method. This can be overcome by using the
second-upwind-differencing-method, Lilly [42]. One
obtains

r+1:2
(Axu 6_),-‘,- x A0 [k — [uk TS
AL [k - |u'};|)FTI}’f
+ (ke + [uk | — uf, + |uf I7Y
=} + [up XY 7]/4Ap, (19a)
where
Ug = Ujpq j+ U jp

Uy =u g+ iy j
i i
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and

o \"
\Ayt)g;"'/ .

i

) [k =

|U§1)r?.j+1
+(v’,'¢+|u','(|—v','l+|v','“|)r?‘j

— (W} + [P DIT,-(]/4Ba,

where

(19b)

U= (vi4j+1 + U.‘.j),
vy = (v ; + vij-4)

The second derivatives of the diffusion terms are
approximated by centered space evaluation with an
error of O(Ax?),

62 n+1:2
(A2 ) x AL
5[’ il
ATH2 = 207742 4 TEEE2)ApY,  (200)
8Ty
Az—) ~ AX()
( y 5q2 i ’
‘(r?.jﬂ - ZF?.}- + r?‘j—l)/qu' (20b)

The first derivatives of the ‘diffusion terms’, a con-
sequence of the transformation, are also approximated
by centered space evaluation but not given here.

The buoyancy term is again approximated by
centered space evaluation but with temperatures at
time level nand n + 4, respectively. This procedure has
a strong stabilizing effect on the overall numerical
method. Hence,

(A 59)"
. x5p i

)

> AL Oy, — 011 )28p. (1)
Substituting these approximations into (18a) and
(18b) and rearranging the equations one obtains

finally for the x-component

Rn I—n+1 .2 + Sn rn+1 i2 + Tn r?:ll/j Un

(22a)
and for the y-component
RIGVZ.TIAL, 4 SE%A2.Ty%!
+ TPy Tk, = U2 (22b)

These equations are valid for every nod {z, j}. Given
a line with N grid points one obtains for every line ja
tridiagonal matrix of size (N — 2) - (N — 2). The same
is analogically true for every row i. A schematic
diagram of the procedure is given in Fig. 1. Due to the
favourable separation process with the 5 point basic
grid no auxiliary points outside the boundaries are
needed.

3.1.2. Stability criteria of the ADI-method. The time
step At and the mesh sizes Ax and Ay have to be chosen
in such a way that all coefficients of the finite difference
equation are positive and that the principal diagonal is
still dominant. Richtmyer and Morton {22] have
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shown that these criteria are sufficient to achieve a
stable numerical method. The first condition is satis-
fied hy introducing the second upwind differencing
method [23]. In addition, this method has the advan-
tage that the convection terms, which count for
numerical instability, can be physically interpreted.
Thereby, a physical quantity enters a control volume
with the linear mean velocity of the flow in the
direction of the fiow.

The second criteria requires that some norm of the
matrix is less than unity, Schwarz [24]. The dominance
of the principal diagonal is also ensured if the cell-
Reynolds number is less than 2 (Thoman and Szewc-
zyk [25]). These last two conditions are identical, but
result from different physical reasoning, Roache [16].
The cell-Reynolds number may be obtained from the
simplified equation

or ar ér or  of(x,y)

AuS = A~ +aB,— + :
ﬁ!+ *ox *x % *Pxax Jy
(23)

Analogous to the procedure outlined above one
obtains from (23) for the elements of the tridiagonal
matrix

Py (e A, — 2B — A2
“2Ax T AxE
FZ£+2a-A2~ (24)
' A'L' x sz’
Fiyi—(u A _a-B)—l—_a-AZ.L_
' * A% * Ay

The demand for positive coefficients gives

1
—a-A2—5>0 (25

e A 2Ax Ax?

a-B.)-

and, hence, one obtains for the cell-Reynolds number

Solution -

— Ditferencs -

scheme

qix, W, ) —— -

FIG. 1. Schematic diagram of the numerical solution method.
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Re Eu-A,—a-B,

AT 2B Ay <0,
z x- A2 *

(26)

which, for the nontransformed equations, becomes

u-Ax
< 2.

Re, = (26a)

o

One should keep in mind that u and Ax are
dimensionless values. Furthermore, the cell-Reynolds
number is equal to 4 for two-dimensional problems
{Roache [16]). But due to the time splitting equations
(22a) and (22b) are essentially one-dimensional which
requires Re, < 2.

If (26)is taken to fix the mesh size Ax the permissible
time step At follows then from the demand for a
dominant principal diagonal.

3.2. Poisson equation

The Poisson equation must be solved twice for each
time step. The velocity components u and v are then
derived from the definition of the stream function .
This immediate ‘pull-off’ of the velocity components is
of essential significance for the exact determination of
transient processes. Other methods, as the evaluation
of "+ 12 and 1" "1 via extrapolation from v", v* and
w1, 1"~ or the ‘drop back’ of the velocity com-
ponents at a full time step have also been studied but
are found to be much less efficient (Briley [26], Aziz et
al. [27]).

Approximation of (14) through centered space
evaluation yields

—of = A (Wi, — 200, + Wy /AR

+ Aﬁ(f) : [‘/’?.,H - 2'”.1» + 1/’?4— 1]/A‘12

+ B.(i)- ['I’?H.j - Wi 1_}.]/2Ap

+ By(j): ['l’:!.j+l - ;!.j-l]/ZAq‘ 27)
This form is based on the well known 5 point grid [28]
and has a truncation error of O{Ax?).

The Gauss—Seidel iteration method is properly the
best known method to solve {27) (Zurmiihl [29]). This
iteration process is usually truncated if the difference of
the results of two following iterations steps is less than
a certain limit

Wzt —

,_J.} <&

Extensions of the Gauss-Seidel method are the
method by Southwell [30] and some relaxation meth-
ods. Thereby, the iteration process is considerably
accelerated if an optimum value of the relaxation
parameter, Q $ 1 is used (under or over relaxation).
On the other hand, the iteration process is also
precipitated by formulating the problem as a pseudo-
transient one, i.e. adding an artificial time-dependent
term dy/dt*. The differential equation is then in-
tegrated with respect to this artificial time until a
steady state solution is achieved. This integration can
be carried out using the already discussed Euler
(explicit) or ADI-method (implicit).
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Due to intensive research in recent years direct
inversion methods are now coming into use. These
methods are extremely accurate. They need con-
siderably less computation time and are, compared to
common ADI-methods, more than 20 times faster. A
review of known direct inversion methods is given by
Dorr [31] whereas Schumann [32] reviews fast elliptic
solvers which have been developed very recently.

Some of these methods are limited with respect to
suitable boundary conditions and/or the number of
grid points in both coordinate directions, but all of
them invert the basic pentagonal matrix in an ex-
tremely short time.

It appears to us that a reasonable compromise
between the necessary computation time, the optimal
freedom with respect to boundary conditions and the
suitable number of grid points is obtained with the
method of cyclic reduction by Schumann and Sweet
[33, 34] which solves the general Poisson equation

*r

ax?

or ar
+ b(x)— + ()T + —— = f(x,y). (28)
dx ay?

For instance, the subroutine POISSX inverts a
matrix with 128 x 33 grid points in about 0.3 s. Due to
the special form of (28) the original pentagonal matrix
with unsymmetric side-diagonals is converted into a
symmetric tridiagonal matrix. The elements of this
tridiagonal matrix are again tridiagonal matrices
whereas the side-diagonals are occupied with unit
matrices. It is this reduction process which leads to the
fast inversion of the original matrix. Further details
may be found by Schumann [32].

a(x)

3.3. A transformation equation

Using transformation equations p(x) and g(y) the x
and y coordinate can be separately transformed.
However, fast Poisson solvers are restricted to equa-
tions of the same type as (28) and therefore allow
transformation with respect to one of the coordinates

3

1,0 ’

—_— -

Projection gix)

| € = Deformation
‘ parameter

0 0,2 04 06 0,8 10

X - Coordinate — =

FI1G. 2. The transformation relation 4(x; &) for different values
of the deformation parameter.
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only. Even though this is a limitation of the methed, it
can be easily met for many problems, especially
boundary layer flows,

For free convection in cavities we recommend the
relation

_S '1 . 7 /2x 1)~ /t' s
P(X)——E[ + an(g(?— 1.- dn(is);.

(29)

Figure 2 shows a graph of this equation for various
values of the deformation parameter : where the
optimum of « is a function of the ratio length to width
of the cavity. The parameter S allows the lincar
transformation of shallow cavities with W/H > 1 into
square ones.

4. APPLICATIONS

The numerical procedure described in Chapter 3 has -
been tested by determining the solutions for some
already known problems. For instance, the governing
equations reduce to those describing one- and two-
dimensional transient heat conduction problems by
setting Gr = 0 and § = 0. The deviation from known
analytical solutions is less than 0.1 %/ as test runs have
indicated. Furthermore, the predicted thermo- and
hydrodynamical entrance flow between parallel plates
is accurate to within 1%, compared to the solution
given by Schlichting [35]. Finally, the calculated
velocity and temperature profiles for free convection
flow in vertical gaps deviates from the analytical
solution by Bird et al. [17] by less than 0.5%,.

In addition, the steady state solution for the problem
considered in Chapter 4.1 has been recalculated using
the computation method by Gosman [37]. Both
results are in agreement to at least 6 decimal places for
Ra < 10°. No comparison was possible for higher
Rayleigh numbers as the procedure by Gosman did
not converge.

We conclude from the results of these test runs that
the numerical method described in this paper is highly
accurate and especially suitable for free convection
problems.

4.1. Free convection in a square box with different but
uniform side wall temperatures

We consider a closed square two-dimensional box
which contains a Newtonian fluid, and is shown
schematically in Fig. 3. The side walls are held at
different but uniform temperatures 7, and T,, with
T. < T,. The top and bottom are insulated, and all
surfaces are rigid non-slip boundaries. The initial
temperature is constant throughout the box and equal
to 8, = 0.5. At 1 = 0, the temperature of the left side-
wall falls suddenly to 6, = 0 and that of the right side-
wall rises to 6, = 1. Both temperatures remain at this
new level for ever.

The appropriate governing equations for this prob-
lem, subject to the usual Boussinesq approximation,
are those given in the previous chapters.

For non-slip boundaries it follows immediately
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perature patterns at time t = 2500, 5000, 10 000 and

20000s, for Pr = 0.733 and Gr = 2 x 10%.

from (5) that = const. The vorticity at a non-slip
boundary is obtained by a Taylor series out from the
wall and is independent of the wall orientation [16],

_ 2(ll/w+1 - l//w) - — 2'//w+1 :
An? An?

~

o, = (30

Although the truncation error of (30) is O(An), the
resulting numerical procedure is essentially more
stable, as it would be with the boundary condition by
Woods [36]

_ 3¢w+1
An?

w + %(Uw+ 1 (31)
which is accurate to O(An?).

The adiabatic wall is not represented by the usually
used reflection of grid points at the wall, but rather by
setting 8, = 0, ;. Hence, the heat capacity of a layer

with thickness of half a mesh size is neglected. This may

be accepted if a sufficiently large number of grid points
is used (Gosman [37]).

The calculations were carried out using 21 x 21 grid
points. The Grashof number has been chosen equal to
2x10* and the time step equal to 2s. The predicted
vorticity, stream-function and temperature patterns
are shown in Figs. 4 and 5, respectively for different
times and for two Prandtl numbers equal to 0.733 (air)
and 6.983 (water).

The steady state solution is approximately ap-
proached after 1h for Pr = 6.983 and after 2h for
Pr = 0.733. As a result of the symmetrical temperature
Jjumpatt = 0 one observes at first two convection rolls
which are growing into the core region with time and
finally disappear into one roll.

The core region is horizontally well mixed and
vertically stably stratified for Pr = 6.983. Both the
thermal and hydrodynamic boundary layers become
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FIG. 5(a). Transient vorticity, stream-function and temperature patterns at time ¢ = 200, 400, 300 and 16005,
for Pr = 6.983 and Gr = 2 x 10*.

thicker with decreasing Prandtl numbers and the
temperature profile approaches the conduction sol-
ution as Pr — 0 or Gr — 0. It is interesting to note the
two maximas in the y-pattern at Pr = 6.983 which do
not appear at Pr = 0.733. These maximas yield to a
recycling flow half way between top and bottom, and
were already predicted by de Vahl Davis [12] and
Cormack et al. [38] and experimentally verified by
Elder [39] for W/H = 1 and by Merker ez al. [40] for
W/H = 1.5. Elder has estimated that this recycling
flow starts at approximately Ra ~ 10° which is in
excellent agreement with the present results.

Comparing the -patterns at different times shows
that the stream function increases at first until reaching
a maximum and decreases at larger times ; i.e. the effect
of the local Grashof number on the flow pattern
decreases with time due to mixing and internal tem-
perature balancing.

The convergence behavior of the numerical method
is checked by runs with different time steps and mesh

sizes. Altering the time step results in minor changes of
the transient patterns and has no detectable effect on
the steady state solution. Figure 6 shows the absolute
error as a function of mesh size (decomposition h). The
errors obtained with a 21 x 21 grid are: Ay/y = 0.23,
Aw/w = 0.20 and A6/0 = 0.025. The reference point
for these errors and the ‘exact’ solution can be
estimated if numerical solutions with three different
mesh sizes are known. These are shown below.

Assuming that the steady state solutions f; ; at each
grid point (x;, y;) converge parabolically to the exact
solution f¥ . with decreasing mesh size, one has for
three different mesh sizes where 1/h follows a geometri-
cal series

Grid 11x11 21x21 41 x4l

1/h 10 20 40
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FIG. 5(b). Transient vorticity, stream-function and temperature patterns at time ¢ = 2500, 5000, 10000 and
200005, for Pr = 6.983 and Gr = 2 x 10,

with ¢ = 1/2, or

Grid

19x19 31 x31

51x51

1/h

18 30

50

with ¢ = 3/5.

Hence, by neglecting higher order terms

flo :fi.l +fk h,;lh
fzo =f* +fk h’io,
Jao =f* + £ h’fw-

(32)

The mesh size or decomposition rates are related

hi=q h_, (33)
The difference of the two following solutions is

d, = fi0 — f1o =f,‘h'{0(q“ —1),
(34)
dy = fay = fro :ﬁ‘h’ioqk(qk — 1)
Hence
d
a2 35
7= (35)
and, therefore, for the wanted exponent k
k = (In(d,) — In(d,))/In(g). (36)

The exact solution can now easily be calculated from
equation (32).
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FIG. 6. Absolute errors vs grid spacing.

The average error over all grid points is shown in
Fig. 6 for different decomposition rates k. It can be seen
that the vorticity and stream function converge with
exponent k = 2, whereas the temperature field con-
verges with k = 1.5. The vorticity and stream function
show large errors at large mesh size steps whereas the
temperature shows relatively small errors even at large
mesh sizes. This is in agreement with the well known
fact that the temperature field reacts weakly to changes
in the flow field. Some transient numerical methods
take advantage of this weak dependence and solve the
temperature equation every nth time step only.

Figure 6 also shows the results obtained with the
transformation relation. Principally, the numerical
error decreases with increasing deformation rate ¢. As
there is practically no effect for & < 0.2 one visualizes
substantially reduced errors for moderate values, i.e.
& ~ 0.5. Increasing ¢ further concentrates the number
of grid points in the boundary layer region. Since the
total number of grid points is constant, only a few
points remain in the core region. Hence, as the
boundary layer region will be calculated more and
more accurately, the core region suffers. Therefore, it is
clear that there exists an optimal value for ¢ which is
approximately 0.8 in the present case.

The numerical calculations have been performed on
a CDC-Cyber 175. The necessary computation time as
a function of the number of grid points is given in Fig.
7. This figure shows that using the transformation
relation increases the computation time by approx-
imately 30%. In general, time increases linearly with
the number of grid points. This favourable behavior
(otherwise quatric or cubic increasing) is due to the
ADI-method which is used to integrate the energy and
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vorticity equation. Furthermore, the computation
time is approximately equally distributed between the
three basic equations as test runs have shown.

4.2. Free convection in a square box with one side wall
nonuniformly heated and the other held adiabatic

Again, we consider a closed square and two-
dimensional box, but now, only one side wall is heated
at its lower half and cooled at its upper with different
but uniform temperatures T, and T,. On the left side
wall, the top and bottom are again insulated and all
surfaces are rigid non-slip boundaries. This arrange-
ment can be treated as a crude model of a room heated
by aradiator and cooled off by a window (closed!),and
is shown schematically in Fig. 8. The initial tempera-
ture is constant and equal to unity.

During the first 500 s the temperature of the side wall
is maintained uniformly at 8, = 0. At 1 = 500s the
temperature of the lower half rises suddenly to
6, » = 1 and remains there for all further times.

Figure 9 shows the predicted vorticity, stream
function and temperature patterns for different times
and for the case where Ra = 5.6 x 10°. The upper line
represents the patterns after 500s, which are self-
evident and may therefore not be discussed further.
After having changed the temperature at the lower
half, one finally ends up with a periodic state; i.c. one
obtains two convection rolls, one in the upper and one
in the lower part of the box. These rolls grow and decay
periodically with time, as is shown in the second and
third line of Fig. 9. The diagrams show approximately
the maximum and minimum size of the rolls. A similar
behavior has been observed by Igarashi [41] who
studied free convection in a square box due to a line
source at the bottom. We do not feel that this periodic
state is a direct consequence of our limitation to a two-
dimensional box. Taking three-dimensional effects
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into account may alter the periodic state but does not
let it disappear. One should notice that the vertical
density stratification is unstable with a high density
fluid above a low density fluid. Therefore, it is most
likely that the observed periodic state results from the
involved stability problem.

Figure 10 shows the frequency of oscillations as a
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function of the Rayleigh number. The calculated
frequencies follow the parabolic relation very closely

f/fo = /Ra/Ra. 37

The numerical calculations for this example have been
carried out with a 21 x 21 grid but without utilization
of the transformation relation.
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FIG. 9. Transient vorticity, stream-function and temperature patterns at different times.
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5. CLOSING COMMENTS

The numerical method described in this paper has
some benefits compared to already known procedures.
Through the adaptation of the ADI-method for the
vorticity and energy equation and of the method of
cyclic reduction for the Poisson equation, it has
become possible to study extremely slow transient
processes. Test runs have shown that the computation
time necessary to simulate free convection in closed
containers of moderate size (volume 1 m?) over a time
period of approximately 5 days is somewhat below 1 h.
Furthermore, the method is applicable to Rayleigh
numbers up to 10!, This is essentially due to the use of
the method of second upwind differencing. The
method of fast cyclic reduction used to integrate the
Poisson equation calculates the velocity components
at every half time step. This procedure increases the
accuracy of transient solutions considerably. The
transformation relation previously discussed is ex-
tremely useful in cavity problems with boundary layers
at the vertical walls. Finally, the flow area has not
necessarily been restricted to rectangular cavities.
More general geometries can be treated by introducing
well-chosen running statements for the dummy run-
ning indices.

However, it should be kept in mind that the present
method is restricted to laminar flow. Therefore, it
should be carefully checked whether the considered
flow is still laminar or already turbulent as the
Rayleigh number approaches higher values. If the
temperature differences are small but the geometrical
dimensions of the cavity are large the observed flow
may be still laminar even at high Rayleigh numbers.
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CALCUL NUMERIQUE DE CONVECTION NATURELLE BIDIMENSIONNELLE
ET VARIABLE DANS LE TEMPS, A L'INTERIEUR DE CAVITES

Résumé — On développe une méthode de calcul numérique pour déterminer la convection naturelle laminaire
4 deux dimensions et variable dans le temps pour des cavités fermées, et de la convection forcée dans les tubes
et les cavités ouvertes. Les équations de transport de I’énergie et du tourbilion sont résolues 4 1'aide de la
méthode ADI, mais la méthode la plus récente de réduction cyclique est appliquée a 'équation de Poisson. La
méthode implicite résultante est stable jusqu'a un nombre de Rayleigh de 10'2. A cause d’un grand pas de
temps possible, la méthode est particuliérement qualifiée pour des problémes transitoires avec des
propriétés changeant lentement. Une transformation ¢ (x,£) est proposée pour la détermination assez
précise des couches limites thermique et hydrodynamique prés des parois verticales des cavités. L’intérét de
cette technique numeérique est illustré en résolvant deux problémes de convection naturelle dans une cavité
rectangulaire, avec des parois chauffées différenment mais uniformément et avec une seule paroi chauffée non
uniformément.

NUMERISCHE BERECHNUNG ZWEIDIMENSIONALER, ZEITABHANGIGER
FREIER KONVEKTION IN HOHLRAUMEN NACH EINER
FORTGESCHRITTENEN METHODE

Zusammenfassung — Eine zweidimensionale, zeitabhéingige numerische Rechenmethode wurde entwickelt,
um die laminaire freie Konvektion in geschlossenen Hohlrdumen und erzwungene Konvektion in Leitungska-
nilen und offenen Hohlrdumen zu bestimmen. Die Transportgleichungen fiir die Energie- und Wirbelfunk-
tion werden mit Hilfe der ADI-Methode gelst, auf die Poisson-Gleichung jedoch wird die erst vor kurzem
entwickelte Methode der zyklischen Reduktion angewandt. Die resultierende implizite Methode bleibt bis
zu einer Rayleigh-Zahl von 102 stabil. Infolge des zulissigen groBen Zeitschritts ist die Methode besonders
fur instationdre Probleme mit extrem langsam verdnderlichen Werten geeignet. Eine Transformationsbezie-
hung g(x, e} wird zur ausreichend genauen Bestimmung der thermischen und hydrodynamischen Grenz-
schichten vorgeschlagen. Der Nutzen der beschriebenen numerischen Rechentechnik wurde bei der Losung
von zwei Preblemen freier Konvektion in einem rechteckigen Hohlraum demonstriert, wobei einmal die
Seitenwande unterschiedlich, aber gleichmiBig, beheizt waren und einmal nur eine Seitenwand ungleich-
miBig beheizt wurde.
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YCOBEPUWEHCTBOBAHHBIM YMCJIEHHBIA PACUYET JABYXMEPHOM
HECTAUMOHAPHON CBOBOJHON KOHBEKLHH B [OJIOCTAX

Ansorauna — Pa3paboran IByXMepHbIii HEeCTALHOHADHBIR YHMCIEHHBIE METON pac4éTa NaMHHADHOMN
cBOOOIHOH KOHBEKLUHH B 3aKPBITBIX HOJOCTSX M BBIHYXKIEHHOW KOHBEKUMH B KAHaNaX M OTKPITHIX
NONOCTAX. YPaBHEHUs TePeHOCa SHEPTHM M 3aBUXPEHMHOCTH PEWAIHCh NPHGIHXEHHBIM Pa3HOCTHBIM
MeTOAOM, a ypapHeHHe [lyaccona pewajoch ¢ nOMOLBIO pPa3pabOTAHHOrO CPAaBHHTENLHO HEJABHO
MeToAa UMKIMueCKoH peaykumu. [lonydeHHbIll B pe3ynbTaTe HesiBHBNI MeTOA YCTOHYHBO paboTaer
BIJIOTH 10 3HaueHmii aucia Penea ~ 10'2. Biaroaaps BOSMOXHOCTH HCHOAB3I0BaHHS GOJBIIOTO LIaTa
no spemMeHu mMeTon HanGosee 3hdeKTHBEH A4 pellleHHs HECTALHOHAPHBLIX 3a1ad4, B KOTOPbIX CBOHCTRA
H3IMCHSIOTCH KpaiHe MeauteHHo. [lpennoxeHa 3aBUCHMOCTD g(x, £) VIS JIOCTATOYHO TOMHOTO ONpese-
JICHUSA TETUIOBLIX H MMAPOAHHAMMKYECKHX TOIPAHHYHBIX CJIOEB Y BEPTHKAIBbHBIX HOKOBBIX CTEH MOJIOCTEM.
[IpermyiHecTBO MPEANONEHHOTO YHCIEHHOIO METOJa PacéTa NpOMILTIOCTPHPOBAHO HA MPHMEPE
pellicHAA ABYX 3afa4 ¢BOOONHOM KOHBEKUMH B IPAMOYOJbHOH MOJOCTH: ¢ PABHOMEPHO HATPETHIMH
[0 Pa3NHYHBIX TEMMEPATYp GOKOBBIMH CTEHKAMH H C OAHONH HEPABHOMEPHO HAIPETOH CTEHKO.
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