SURFACE TENSION AND REFRACTIVE INDEX OF SIX REFRIGERANTS FROM TRIPLE POINT UP TO THE CRITICAL POINT

W. Rathjen and J. Straub

Lehrstuhl A für Thermodynamik Technische Universität München Federal Republic of Germany

ABSTRACT

We report measurements on surface tension σ and refractive index n of the refrigerants SF₆ (R 846), CCl₃F (R 11), CCl₂F₂ (R 12), CClF₃ (R 13), CBrF₃ (R 13B1), and CHClF₂ (R 22) throughout the entire temperature range of liquid-vapor equilibrium

temperature range of liquid-vapor equilibrium.

The capillary constant a² was determined by means of the capillary rise method; the refractive index by measuring the angle of refraction of a light beam passing through a prism and the sample. In order to obtain better information on the liquid-vapor densities which were needed to calculate 6 from a² but are often inaccurate near the critical and triple point we relate the refractive index n to the Lorentz-Lorenz function LL. The experimental results for a², n and 6 are presented as functions of temperature. We investigated the validity of simple power laws a² = a₀ T and and a more

exact formulae. For the weakly polar substance a simple power law for δ is a sufficiently accurate approximation (within 1%) for many purposes. For all substances the temperature dependence of δ can probably be described more accurately by $\delta = \delta_0 \mathcal{T}^{\prime\prime}$. (1 + b₁ \mathcal{T}^{\prime}). For the substances measured in this work μ is found to be in the range 1.28 < μ < 1.29, b₁ increases with increasing permanent dipole moment and δ is in the range 0.5 < δ < 1.0.

INTRODUCTION

The surface tension σ between the liquid and vapor phases of a pure substance decreases with increasing temperature until the critical point, where the liquid and vapor phases become identical and σ vanishes. At the critical point

$$T = T_c$$
 $\phi = 0$ $\frac{\partial \phi}{\partial T} = 0$ $\frac{\partial^2 \phi}{\partial T^2} = \infty$ (1)

This behaviour is asymptotically described by a simple power law.

$$\delta = \delta_o \left(1 - T/T_c \right)^{JL} \tag{2}$$

According to Guggenheim's formulation (1) of the principle of corresponding states, the exponent μ should have an universal value of $\mu=11/9=1.22$ for all substances. Assuming this value to be true and Eq. (2) to be valid in a wide temperature range a large amount of work has been done in the past to relate the proportionality constant 6 to the critical state parameters $P_{\rm C}$, $f_{\rm C}$, $T_{\rm C}$ and to other thermophysical and molecular properties of a specific substance. The resulting equations are often used to calculate surface tension where no experimental data are available.

Modern theories of critical phenomena (2,3,4) support the hypothesis of universality but predict μ = 1.28, a value consistent with new experiments.

Later, we will consider the question what is the form of a universal function $\sigma = f(T)$ describing the temperature dependence of the surface tension in the entire range of two phase equilibrium.

The surface tension is of considerable significance in technical process like boiling and condensation as well as in the study of phase transition and critical phenomena (particularly through relations to other critical exponents). Thus it is desirable to obtain more experimental information about the surface tension for both technical and scientific reasons. Therefore we have measured the surface tension(and incidentally refractive indices) of six well known refrigerants: SF₆ (R 846), CCl₃F (R 11), CCl₂F₂ (R 12), CClF₃ (R 13), CBrF₃ (R 13B1) and CHClF₂ (R 22). SF₆ is a nearly spherical, nonpolar molecule, whereas CHClF₂ has a somewhat high permanent dipole moment. (u_d = 1.48 D). The influence of the dipole moment is of particular interest in this case.

We have used a capillary rise method. The primary experimental quantity we measured is the capillary constant \mathbf{a}^2 defined by

$$\alpha^2 = \frac{2 \cdot \delta}{9 \left(S_L - S_V \right)}$$

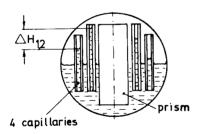
To calculate 6 the liquid vapor density difference must be known. As equations of state are often inaccurate near the critical point we attempted to obtain better data on $f_{\ell} - f_{\nu}$ by measuring the refractive index n simultaneously with the capillary constant.

n is related to the density by the Lorentz-

 $(M = molecular weight, N_A = Avogadros con-$

stant, $\alpha = polarizability$).

LL should nearly be a constant, independent of temperature and density. To the extent that this is true, LL might be determined at temperatures where reliable density data are available. Then Eq. (3) can be used to calculate the density near $T_{\rm c}$. This procedure is often used to study the shape of the coexistence curve near T_C. One uses the relations


$$S_L - S_V = \frac{1}{LL_0} \left[\frac{n^2 - 1}{n^2 + 2_L} - \frac{n^2 - 1}{n^2 + 2_V} \right]$$
 (4)

$$S_L - S_V = S_c B_o \left(1 - T/T_c\right)^{B}$$
 (4a)

We may ask questions about the behaviour of g_i - g_i which are similar to those raised about g_i . They concern the validity of the one term power law, the value of β_{ν} and a universal form for the function $\beta_{\nu} - \beta_{\nu} = f(T)$. In this work $\beta_{\nu} - \beta_{\nu}$ is evaluated only in so far as it is relevant to the calculation of δ (in the range $T_{\rm C} - T$ 0.5 - 1K). No special effort has been paid to measuring the refractive index closer to the critical point.

EXPERIMENTAL METHOD AND APPARATUS

The capillary rise method applied in this work was proposed by Sugden (5). The principle is sketched in Fig. 1.

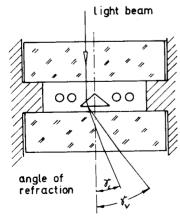


Fig. 1 Schematic view of the experimental method.

The vertical distance △ H between the interfaces in two capillaries with different internal diameters is measured by means of a cathetometer. Assuming the contact angle to be zero, the height difference ΔH is related to the "capillary constant" a^2 by

$$\alpha^2 = \frac{\Delta H_{1,2}}{1/b_1 - 1/b_2}$$
 (5)

where b₁ and b₂ are the radii of curvature at the lowest point of the menisci. They are not measured but must be iteratively evaluated by Sugdens method. The radii of the capillary tubes have been determined by measuring the length and the weight of a certain amount of mercury sucked inside each capillary tube. The constancy of the radius of each tube has been checked by ascertaining that the length of the column of mercury does remain constant when measured at different positions within the tube. In this way the radii could be determined with an accuracy of 0.0002 mm. The reading precision of the cathetometer was better than 0.002 mm. The principal error is due to the subjective localization of the meniscus in a capillary tube: $\Delta(\Delta H) \leq 0.01$ mm. The possible maximum error can be summarized

$$\Delta \alpha^2 = 4.8 \cdot 10^{-3} \cdot \alpha^2 + 1.2 \cdot 10^{-3} \cdot \text{mm}^2$$
 (6)

The first term refers to the uncertainty in the capillary radii and the second to $\Delta(\Delta H)$, which is the most important term as $T \rightarrow T_C$. The measurements of the refractive index

were carried out at a wavelength, $\lambda = 5.461\, \cdot \, 10^{-5}$ cm with a mercury vapor lamp. The light passes through an adjustable slit on a collimating telescope. The parallel beam which emerges then passes through the sample. An autocollimating telescope, which was connected to optical circular table, was used to position the prism and to observe the angle of refraction. The precision of angle measurement was better than + 2", corresponding to an uncertainty within $\Delta n/n < 10^{-4}$. The overall uncertainty is estimated to be within $\Delta n/n < 3 \cdot 10^{-4}$. The temperature has been measured with a 100 Ω platinum resistance thermometer calibrated by means of a standard thermometer, which was previously calibrated at the Physikalisch-Technische Bundesanstalt, Braunschweig.

The precision of the temperature mea-

surement is better than 1 mk, the relative accuracy is better than 0.01 K for temperatures above room temperature and 0.05 K at very low temperatures.

The apparatus developed to work at temperatures from -190 K to + 200 K and pressures up to 120 bar is shown in Fig. 2

- The most essential elements are:
 a stainless steel pressure vessel (1) with high strength copper flanges, windows of fused quartz (4) and in the center four capillaries (2) and a prism (3). The internal diameter is 48 mm,
- a vacuum housing of aluminium (7)
- a movable and heatable radiation shield (10).

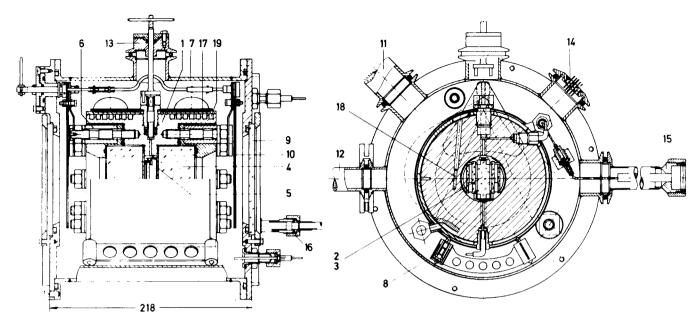


Fig. 2 Apparatus, (1) pressure vessel, (2,3) capillaries and prism, (4) windows, (5) sealing, (6) compensation of thermal expansion, (7) aluminium housing, (8) prop, (9) windows, (10) radiation shield, (12) handling of valve, (14) electrical contacts, (15) LN₂ - inlet, (16) N₂ - outlet, (17) electrical heating, (18) thermometer well, (19) bifilar canals.

At low temperatures the pressure vessel is cooled by a controlled steam of nitrogen flowing through bifilar channels (19). At high temperatures the vessel is heated electrically (17). An electronic control circuit holds the temperature constant to within ± 1 mk. Isothermal conditions which are essential especially near the critical point are achieved by heating the radiation shield such that no temperature differences is measured between shield and vessel. In order to eliminate heat transfer to the housing by conduction and convection the housing is evacuated to less than 10⁻⁷ bar.

The sealing elements (5) consist of teflon coated Viton-O-rings or metal-O-rings.

EXPERIMENTAL RESULTS AND DATA ANALYSIS

In Table 1 the characteristic data of the investigated substances are compiled.

<u>Table 1</u> Some characteristic data of the measured gases

Gas	mol. Weight	dipole moment Debye	T _s 1) °C	т _с °С	P _C bar	9 c 3 g/cm³
SF ₆ (R846)	146.02	0	-50.6	45.48	37.72	0.734
ū			30.6	43.40	37.72	0.734
CCl ₃ F (R11)	137.38	0.68	-111	198	44.9	0.554
CCl ₂ F ₂ (R12)	120.92	0.70	-158	111.78	42.4	0.558
CClF ₃ (R13)	104.47	0.65	-181	28.778	38.2	0.578
CBrF ₃ (R13B1)	148.93	0.65	-168	67.035	40.63	0.745
CHC1F ₂ (R22)	86.48	1.48	-160	96.12	50.33	0.525

except for SF no data of the triple point could be found therefore the melting temperature are given.

Exept for CCl_3F the critical temperatures have been measured in this work by visual observation of the reappearance of the meniscus. The relative uncertainty is less than 0.015 K.

In general the measurement were carried out from near triple point until ($T_C - T$) > 0.5 - 1 K. Because of a failure of a seal the experimental run for CCl₃F could only be performed up to $T_C - T = 13$ K. (185 °C).

The purity of the gases as delivered by Hoechst Company is stated to be 99.98%. They were further purified by freezing in liquid nitrogen and pumping out non-condensable gases.

The thermophysical properties are taken from Ref. (6-12). The primary experimental results namely the capillary constant a^2 and refractive index n are plotted in Fig. 3 and 4. The data are given in the appendix.

The functional representation of the data is given in two steps: First, to obtain information on the critical exponents and amplitudes the data are fitted to one term power laws in successively extended temperature ranges. Secondly more complicated functions are used to fit the data from critical point to triple point.

To evaluate the coefficients and exponents in the functions linear and nonlinear least squares techniques are applied as proposed by Bevington ($\frac{13}{2}$) and van der Voort ($\frac{14}{2}$). The essential quantities to test the goodness of fit are

$$\chi^{2} = \sum_{i=1}^{M} W_{i} \left(y_{i \exp} - y \left(\alpha_{y_{i}} \chi_{i} \right) \right)^{2} = minimum \tag{7}$$

$$\chi_{\mu}^{2} = \chi^{2}/(M-N) \tag{7a}$$

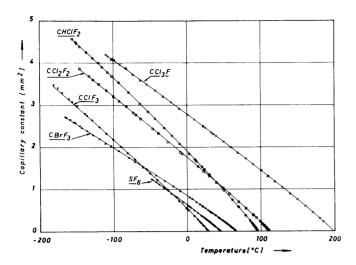


Fig. 3 Capillary constant a² as function of temperature

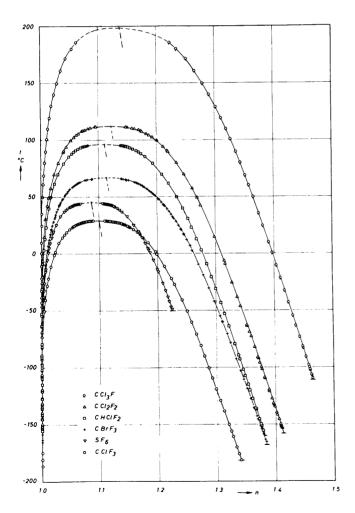


Fig. 4 Refractive index n as function of temperature

M = number of data points y_i , N = Number of parameter $a_{i'}$ to be optimized, W_i = weighing factor, Yiexp experimental value, y $(a_{i'}, x_i)$ fitting function, x_i independent variable. As weighing factor we used

$$W_i = 1/\delta_i^2 \tag{8}$$

where ${\delta_i}^2$ signifies the variance of a particular data point; ${\delta_i}$ (the standard deviation) is given for instance by Eq. (6). The influence of the standard deviation ${\delta_i}$ (T) can be assumed to be negligible. The influence of the uncertainty of T_C is evaluated by varying T_C in its range of uncertainty. To discuss errors we introduce three quantities: (1) The standard deviation of the fit (SD) defined by

$$SD^{2} = \frac{1}{M-N} \sum_{i} (y_{iexp} - y_{calc.})^{2}$$
 (9)

(2) the relative standard deviation (SD $_{\mbox{\scriptsize r}})$ or mean relative error defined by

$$SD_r^2 = \frac{1}{M-N} \sum_{n=1}^{\infty} \left(\frac{y_{iexp} - y_{calc}}{y_{calc}} \right)^2$$
 (10)

and (3), the standard deviation of the parameter a y- defined by

$$SD(a_{i}) = \sum_{i} \left[\sigma_{i}^{2} \left(\frac{\partial a_{i}}{\partial y_{i}} \right)^{2} \right]$$
 (11)

The results of the analysis are reported in the next sections.

Capillary constant a²

In order to test the validity of the one term power law

$$\alpha^2 = \alpha_o^2 \mathcal{T}^{\phi}$$
 (12)

 $\mathcal{T}=$ (1 - T/T_c), the experimental data have been fitted to the linearized Eq. (12).

$$ln\alpha^2 = ln\alpha_0^2 + \phi ln\mathcal{F}$$
 (13)

The temperature range of the approximation is successively extended from near T_C to \mathcal{T}_{max} = 0.01, 0.1 ... 0.68 (triple point of CCl₂F₂). In Fig. 5 it is clearly to be seen that except for CHCLF₂ and very close to T_C ($\mathcal{T}\!\!\rightarrow\!\!$ 0) where the scatter is too large, in extending the temperature range of the fit \emptyset remains constant, thus indicating that for these 5 nonpolar or weakly polar substances Eq. (12) is valid in the entire temperature range. For the polar

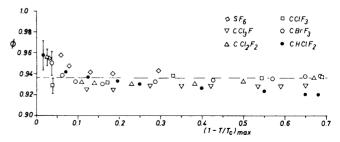


Fig. 5 Variation of the exponent \emptyset on extending the temperature range of the fit.

substance CHClF₂ \emptyset systematically decreases from \emptyset = 0.942 (0.003 \checkmark $\mathcal{T} \rightthreetimes$ 0.07) to \emptyset =0.92 (0.003 < τ < 0.68). Therefore in Eq. (12) a second term must be added. The general form of this two term function was assumed to be

$$\alpha^2 = \alpha_0^2 \mathcal{T}^{\phi} (1 + \alpha_1^2 \mathcal{T}^{\phi_1}) \tag{14}$$

First we attempted to optimize Ø₁ but no reasonable and comparable results were obtained. Therefore \emptyset_q was fixed to be 1. The most probable parameter of Eq. (14) and (12) are listed in Table 2.

For the weakly polar substances, the addition of a second term decreases \emptyset only slightly. The change is comparable to the standard deviation for \emptyset . The average error SD_r is improved only for CHClF₂. This is to be expected because the data for this fluid show large deviations from a one term power law.

Refractive indices, shape of the coexistence curve

6.8592

The main purpose of the refractive index measurements was to obtain the parameter B_O and β of Eq. (4) which should be used near T_C. Therefore first the parameter B_{ON} and β of Eq. (15)

$$\frac{\binom{n^2-1}{n^2+2}}{\binom{n^2+2}{2}} - \left(\frac{n^2-1}{n^2+2}\right)_{V} = Bon \cdot \mathcal{T}^{B}$$
 (15)

were determined in successively extended temperature ranges. It turned out that in the relevant temperature range 0.002 < \mathcal{T} < 0.1 ß remains nearly constant and the deviations of the experimental values from Eq. (15) are within experimental error. This indicates that a simple power law is suitable to describe the shape of the coexistence curve in these limits. B_{On} and β are listed in Table 4.

It is noteworthy that despite the differences in permanent dipole moment among the various fluids in comparable temperature ranges, the exponent ß has nearly the same value of 0.341 < B < 0.347 (0.002 < \mathcal{T} < 0.09). CCl₃F can not be included in this comparison due to the lack of data near $T_{\rm C}$. The uncertainty in $T_{\mathbf{C}}$ is probably greater than 0.1 K.

As we intend to use Eq. (4) near T_{C} to determine $f_{i} - f_{\nu}$ we will have to show, that it is justified to consider the Lorentz-Lorenz function, as defined by Eq. (4) to be constant in a small temperature range.

Table 2 Result of the linear and nonlinear approximation of the capillary constant a^2 in the entire temperature range 0.003 $< T < (T_c - T_t)/T_c$										
Gas	a 2 mm 2	SD(a _o ²)	ø	SD(Ø)	a 2 a 1	SD(a ²)	SD _r	Xu2		
S F ₆	3.9313	0.015	0.943	0.0017	-0.00224	- 0.0032	1.71	0.97		
C Cl ₃ F (R11)	6.2337 6.1975	0.0075	0.928	0.001	- o.oo835	-	0.400	1.04		
C Cl ₂ F ₂ (R12)	5.6146 5.4533	0.012	o.936 o.9261	0.0017	- o.o463	- o.o144	1.4	0.94		
C Cl F ₃ (R13)	4.8465 4.7430	0.018	0.9379	0.0013	0.0472	- o.o11	1.37	1.6		
C Br F ₃ (R13B1)	3.8785 3.7576	0.0058	0.9380	0.001	0.04688	- o.o1	0.92	1.45		
CH C1 F ₂ (R22)	6.551 6.8416	0.014 0.0317 0.059	o.921 o.9359 o.937	0.0015	- -0.0647 \$\tau\$	- 0.0066 0.1	3.29 1.98 3	1.79 1.0 1.4		

In Table 3 $\ensuremath{\mathrm{LL}}_D$ - values are compiled for different temperatures. These values were determined from Eq. (4), with $S_{\ell} - S_{\nu}$ calculated from equations of state given in the literature.

Table 3 Values of the LL-function ${ m LL}_{ m D}$ for different temperatures. LL in ${ m cm}^3/{ m g}$										
Tc - T	s F ₆	с с1 ₃ ғ	c cl ₂ F ₂	C C1 F ₃	C Br F ₃	CH Cl F ₂				
o(LL _C)	0.07925	o.16153	0.14143	o.11375	0.09989	0.13824				
10	0.07964	0.1600	0.1413	0.11364	0.09806	o.13749				
20	0.07983	o.15995	0.1410	0.1136	0.09795	0.13745				
50	0.07767	0.15978	0.1390	0.1135	0.09752	o.13682				
100	-	o.15892	0.13844	0.1127	0.09666	o.135 4 5				
^T t	0.07754	o.15712	0.13744	o.1125	0.09747	o.13591				
LL Dm	0.079445	0.1608	0.14137	0.1137	0.09898	0.1379				
(o-1oK)	+0.0002	<u>+</u> 0.0008	+0.00007	±0.00005	+0.00098	+0.0004				
LL _{Lit}	0.0775 ¹⁾		o.1392 ²⁾	o.1151 ²⁾	0.097922)	o.13773 ²⁾				
1) perfect gas O ^O C, 1 bar, Ref.(15) ; 2) perfect gas Ref.(16)										

At T_c ($T_c - T = 0$) a value of the Lorentz-Lorenz function was determined by extrapolating the quantity 1/2 $[(n_L^2-1)/(n_L^2+2) + (n_v^2-1)/(n_v^2+2)]$ to T_C and then devided by the most probable critical density (Table 1). Thus we are assuming the rectilinear diameter is a straight line. In this way we obtained a

we call $LL_{\mathbf{C}}$. In Table 3 it is to be seen, that the change of the LL-function down to T_+ is indeed quite small, less than 3.5 %.

value for LL at the critical point which

From $T_C - T = 10 \text{ K}$ to T_C the equations of state from literature become very inaccurate. An estimate of the magnitude of the errors is 3 - 5 %. Therefore, if we introduce in Eq. (4) an average value ${
m LL}_{
m Dm}$ given by

$$LL_{Dm} = \frac{1}{2} \left(LL_{C} + LL_{D(\alpha t T_{C} - T = 10K)} \right)$$
 (16)

then, near $\rm T_C$, with this equation the liquid vapor density differences $~{\it S}_{L}~-~{\it S}_{\nu}$ can be calculated more accurately than from the original equations of state.

Combining Eq. (4) and Eq. (15) the actual equation for $\beta_L - \beta_V$ becomes

$$S_L - S_V = S_c \cdot B_o \mathcal{T}^B$$
(17)

with $f \cdot B_0 = B_{on}/LL_{Dm}$ In Table 4 we compile B_{on} , β and the important dimensionless quantity Bo, where g is taken from Table 1.

The estimated uncertainties in $B_{\rm O}$ combine the uncertainties in $\mathcal S_c$ and in the temperature variation of the Lorentz-Lorenz function.

The absolute values of the refractive indices are conveniently approximated by a polynomial with exponents i/3. More than

Table 4 Shape of the coexistence curve in temperature range $0.003 < 7 < 0.1$, $\xi_{B_0} = B_{on}/LL_{dm}$ (C Cl ₃ F $\gamma > 0.028$)									
	Bon	SD(B _{on})	Во		β	SD(/3)			
s F ₆	0.2225	0.0004	3.8359	+0.04	0.3433	0.0004			
с с1 ₃ ғ	0.3344	0.001	3.7538	<u>+</u> 0.055	0.3345	0.001			
C Cl ₂ F ₂	0.3055	0.001	3.8728	<u>+</u> 0.04	0.3468	0.001			
с сі т _з	0.2513	0.001	3.8244	<u>+</u> 0.03	0.3451	0.001			
C Br F ₃	0.2813	0.0005	3.8145	<u>+</u> 0.045	0.3414	0.0005			
C H Cl F ₂	0.2830	0.0004	3. 9 090	<u>+</u> 0.04	0.3457	0.0004			

5 terms gave no significant improvement. The coefficients are given in Table 5.

Tab	Table 5 Refractive index as function of temperature										
	$n_L - n_c = \sum_{1}^{5} a_i \cdot (1 - T/T_c)^{i/3}, n_c - n_v = \sum_{1}^{5} b_i \cdot (1 - T/T_c)^{i/3}$										
	SF ₆	CC1 ₃ F	CC1 ₂ F ₂	CC1F3	CBrF ₃	CHC1F ₂					
n _c	1.08831	1.13792	1.12117	1.10130	1.11407	1.11065					
a,	0.159816	0.313976	0.215331	0.186174	0.211926	0.203528					
a 2	0.016277	-0.431007	0.048057	-0.040298	-0.033964	0.007481					
a ₃	0.195167	1.585269	2.640448	0.405345	0.447844	0.352516					
a4	-0.307545	-1.982831	-0.482539	-0.559194	-0.683392	-0.560331					
a ₅	0.193775	0.950640	0.323240	0. 3 07527	0.405058	0.338677					
SD	0.0001	0.0001	0.00017	0.00014	0.00016	0.000059					
sd _r	0.0093	0.0075	0.014	0.012	0.013	0.0045					
•											
ъ,	0.162728	0.302887	0.220799	0.188934	0.221233	0.206475					
b ₂	-0.032776	-0.400746	-0.03098	-0.100843	-0.143615	-0.045014					
b ₃	0.198624	1.216364	0.240774	0.451697	0.538919	0.269038					
b ₄	-0.536543	-1.852319	-0.708136	-0.900824	-1.015679	-0.727313					
b ₅	0.298201	0.878711	0.400644	0.464992	0.516123	0.410401					
SD	0.00011	0.000073	0.00016	0.00015	0.000053	0.00006					
SDr	0.01	0.0071	0.015	0.015	0.005	0.006					
8											

Surface tension

In order to obtain information on the critical parameter of the surface tension 6 and μ , the one term power laws of a^2 and $g - g_{\nu}$ are combined in their range of validity

$$\sigma = \frac{1}{2} g \alpha^2 (S_L - S_V) \equiv \sigma_0 \mathcal{T}^M$$
 (18)

$$d_o = \frac{1}{2} g \, \alpha_o^2 \, \xi \, B_o \tag{19}$$

$$\mu = \emptyset + \beta \tag{20}$$

The results are given in Table 6 together with equations derived below.

To calculate the surface tension in the entire temperature range the required densities are determined in the following way:

- at high temperatures by means of refractive index measurements using Eq. (17), the parameter of which are given in Table 4,

- at medium temperatures from equations of state,
- at very low temperatures, beyond the range of validity of the equations of state the refractive indices could again be used. The improvement on using the refractive indices are not very significant. Therefore the details of the procedure is not discussed here.

The experimental data of $\ensuremath{\sigma}$ are then fitted to the following equation.

$$6 = 6_0 T^{\mu} (1 + b_1 T^{\delta}) \tag{21}$$

After extensive preliminary investigations on possible forms of functions, Eq. (21) turned out to be the most simple and effective form to describe the surface tension of simple fluids as well as the unusual behaviour of the surface tension of the highly polar and associating substance H₂O. There may be a physical reason for adding only one second term to describe of in the polar fluids. One may imagine the surface tension to be composed of two contributions, one due to dispersive and one due to polar intermolecular forces.

Similar corrections terms to asymptotic power laws were recently proposed by Wegner $(\underline{17})$. They are very likely to be valid especially near T_C . In the present case the simple power law for δ holds in a wide temperature range. It is still interesting to see what value the second exponent δ will have. According to Wegner's asymptotic expansion near T_C the exponent of the correction terms should also be universal.

The results of the nonlinear fit procedure are compiled in Table 6. For each substance three analysis were carried out. In the first row the simple power law derived above was used, in the second row the most accurate approximation in the whole temperature range was used and in the third row the simple power law fitted again with equal weights to the entire temperature range. In this large range the simple power law is a satisfactory approximation to the data for simple nonpolar or weakly polar and non-associating substances. The errors of this third equation are about 1 - 2% for $T_C - T > 20$ K, except for the highly polar substance CHClF2. In the latter case the two term equation leads to a significantly better approximation

DISCUSSION OF RESULTS AND CONCLUSION

In this work we have determined the temperature dependence of the capillary constant and the surface tension. It has been shown that for substances with either zero or a small permanent dipole momemt a simple power law is a representation within experimental error of the capillary constant data from triple point to critical point. The surface tension of these substances can only approximately be described by a one term power law, with deviations of about 1 - 2 % outside the critical region. For many technical calculations this might be sufficient.

	6 =	OO TM	and	6 = 00	T"(1	+ b, T 6)
Subst.	T _C	(T _C - 1	r)/T _C	ර _ග 10 ⁻³ N/m	м	ь ₁	6
s F ₆	45.48	0.0025	o.1 o.29	54.28 54.88 54.44	1.286 1.289 1.289	- -0.0296 -	- 0.5
C Cl ₃ F	198.0	0.028	o.1 o.65 o.65	63.24 (67,06) 62.07	1.263 (1.271) 1.252	- (-0.091) -	- (o.5
C Cl ₂ F ₂	111.78	0.0021	o.1 o.67	59.63 61.20 56.98	1.283 1.285 1.268	- -0.094 -	0.58
C Cl F ₃	28.778	0.0026	0.1	52.53 53.95 50.56	1.283 1.287 1.274	- -0.093 -	0.66
C BrF3	67.035	0.005	o.1 o.68	54.05 54.74 52.63	1.279 1.282 1.27o	- -0.069 -	- 1.09
CH ClF ₂	96.12	0.0027	o.1 o.68	69.03 69.93 64.23	1.283 1.285 1.270	- -o.154 -	- 0.87 -
H ₂ O ¹⁾	374.00	0.02	0.58	247.73	1.272	-0.640	0.92

The data of σ are plotted in Fig. 6. The solid line represents the one term power law fit in the entire temperature range. The larger deviations for CHClF₂ are clearly to be seen.

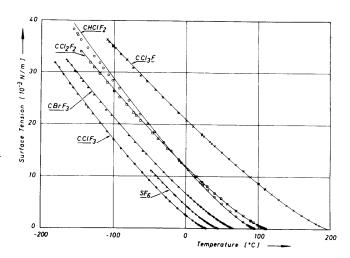


Fig. 6 surface tension

As expected from theoretical insight into phenomena occuring in interfacial regions (18), a permanent diple moment significantly contributes to the temperature dependence of $\boldsymbol{6}$. On the basis of our results and the data of water we may conclude that a sole additional term (b₁ $\boldsymbol{7}$) is sufficient to take

this contribution into account. The coefficient b_1 increases with increasing dipole moment and the exponent δ is found to be in a small range of 0.5 $< \delta <$ 1.1.

But it is not clear whether this second term can be identified with Wegner's corrections to asymptotic power laws (17). Following Wegner, δ should be a universal exponent and nearly 0.5; we found higher values. Until now, it is not known, how close to the critical point the measurements have to be carried out in order to answer this question.

Furthermore, it is of interest to see that σ_o and μ of the two term function are nearly the same as σ_o and μ obtained by approximizing σ_o only near σ_o . Hence, in their range of experimental uncertainties, they may be identified as critical parameter.

Our results concerning the exponent \emptyset of the capillary constant a^2 are to be compared with results of Gielen for Ar, O_2 , N_2 , CH_4 and CO_2 (19). He obtained: 0.927 $< \emptyset < 0.93\overline{6}$ which is in good agreement with 0.928 $< \emptyset < 0.943$ measured in this work.

The critical exponent μ we found to be 1.279 $< \mu <$ 1.29. The differences between the highest and lowest values of these exponents are not unsignificant and probably outside their experimental uncertainty. On the other hand no trend due to the molecular structure becomes evident.

In view of the fact that these simple power laws are valid in such a large temperature range we may state that both \emptyset and μ are the true critical exponents and are probably universal.

Furtheron we have shown that the value $\mu = 1.22$ proposed by Guggenheim is too low. In order to predict the surface tension on the basis of the principle of corresponding states for nonpolar substances μ should assumed to be 1.28 as a compromise.

ACKNOWLEDGEMENTS

This research was supported by the Deutsche Forschungsgemeinschaft, contract Str. 117/10.

REFERENCES

- 1 Guggenheim, E.A., "The Principle of Corresponding States", <u>Journal of Chemical Physics</u>, Vol. 13, No. 7, July 1945, pp.253 261.
- 2 Levelt Sengers, J.M.H., and Sengers, J.V., "Universality of Critical Behavior in Gases", Physical Review A, Vol. 12, No. 6, Dec. 1975, pp. 2622 - 2627.
- 3 Fisk, S., and Widom, B., "Structure and Free Energy of the Interface between Fluid Phases in Equilibrium near the Critical Point", <u>Journal of Chemical Physics</u>, Vol. 50, No. 8, 1969 pp. 3219 3227.
- 4 Wu, E.S., and Webb, W.W., "Critical liquid-vapor Interfaces in SF6", II, "Thermal Excitations, Surface Tension and Viscosity", Physical_Review_A, Vol. 8, No. 4, 1973, pp.2077-2084.

- 5 Sugden, S., "The Determination of Surface Tension from the Rise in Capillary Tubes", Journal of the Chemical Society, Vol. 119, 1921, pp. 1483 1492.
- 6 Mears, W.H., Rosenthal, E., and Sinka, J.V., "Physical Properties and Virial Coefficients of SF6", <u>Journal of Physical Chemistry</u>, Vol. 73, 1969, pp. 1254-1261.
- 7 Ley-Koo, M., Green, M.S., "A Comment on Measurements of Coexisting Densities of SF₆ of Weiner, Langley and Ford", to be published
- 8 Rombusch, U.K., and Giesen, H., "Neue Mollier i, lg P Diagramme für die Kältemittel R 11, R 12, R 13 und R 21", Kältetechnik-Klimatisierung, Vol. 18, 1966, pp. 37 40.
- 9 Watson, J.T.R., "Thermophysical Properties of Refrigerant 12" Her Majesty's Stationary Office, 1975, England.
- 10 Dvorak, Z., and Petrak, J., "Beitrag zur Ermittlung von thermodynamischen Eigenschaften der Kältemittel R 22, R 502 und des Ammoniaks", Klima- und Kältetechnik, Vol. 10, 1975, pp. 319 324.
- 11 Kondo, H., Watanabe, K., Tanashita, J., "Equations of State for Several Fluorocarbon Refrigerants", Bulletin of the JSME, Vol. 17, No. 108, June 1974, pp. 776-
- 12 Oguchi, K., Tanishita, J., Watanabe, K., Yamaguchi, T., and Sasayama, A., "Experimental Study of PVT-Properties of Fluorocarbon Refrigerant R 13 (CClF₃)", Bulletin of the JSME, Vol. 18, No. 126, Dec. 1975, pp. 1448 1464.
- 13 Bevington, Ph.R., "Data Reduction and Error Analysis for the Physical Sciences," McGraw-Hill Book Company, New York, 1969
- 14 Van der Voort, E., and Doprema, B., "A new Algorithm to minimize Functions", Eur rapport, 4777e, 1972
- 15 Gmelins Handbuch der Chemie
 16 Herkt, W., Müller, G., and Winter,
 R., "Interfometrische Bestimmung des
 optischen Brechungsindexes n einiger Frigene",
 Optica Acta, Vol. 22, No. 8, 1975, pp. 667 672.
- 17 Wegner, F., "Corrections to Scaling Laws", Physical Review B, Vol. 5, No. 11, June 1972, pp. 4529 4536.
- June 1972, pp. 4529 4536.

 18 Padday, J.F., "The Theory of Surface Tension", in <u>Surface Science and Colloid Science</u>, Wiley Interscience, New York, 1969.
- 19 Gielen, H.L., "Metingen van de Parameter van Sugden van de Temperatuur", Thesis, Kathalieke Universität te Leuven 1974.
- 20 Release on "Surface Tension of Water Substance", issued by International Association for the Properties of Steam, Sept. 1975.

APPENDIX

303.229

Table 7 Experimental values of the capillary constant a^2 (T in K, a^2 in mm²) CCl₃F (R 11) SF ጥ Т ጥ 0.22612 303.346 163.615 4.20189 306.235 2.34815 224.640 1.24050 226.656 1.21787 304.048 0.21775 166.245 4.16142 308.844 2.31083 171.124 4.10050 313.049 2.26568 304.514 0.21067 231.220 1.16589 235.236 1.11095 305.363 0.19893 171.363 4.08090 323.127 2.12986 0.18652 175.258 333.269 1.99654 306.165 4.06690 241.080 1.04091 0.96361 182.258 3.95940 342.129 1.86683 247.306 306.206 0.18532 1.73333 191.196 3.87139 353.159 257.534 0.82729 307.627 0.16139 0.15194 308.411 190.479 3.87220 362.981 1.59372 259.383 0.80665 1.44228 373.926 267.838 0.69018 309.059 0.14601 199.794 3.72260 0.13201 210.108 3.58680 374.765 1.43963 274.489 0.60600 310.095 310.269 0.12592 218.729 3.48970 382.917 1.31618 276.695 0.58457 278.302 0.11694 230.451 3.34744 383.423 1.29994 0.55673 310.727 240.664 3.20226 392.323 1.17947 282.802 0.49408 311.930 0.10391 251.808 1.04571 3.06755 402.140 287.649 0.43424 314.658 0.06186 291.860 0.37576 2.91290 412.941 0.88736 315.039 0.05719 262.690 292.971 0.36237 315.780 0.04506 273.891 2.76822 422.824 0.75737 283.322 2.65489 433.639 0.59773 294.938 0.33915 316.082 0.04075 0.45013 0.31818 296.756 316.157 0.03881 295.257 2.50545 443.316 317.181 0.02287 295.646 2.48286 453.112 0.30393 298.260 0.29392 298.149 2.45713 457.807 0.22707 299.148 0.27924 317.679 0.01622 299.892 0.27452 317.693 0.01558 471.15 301.228 0.25500 317.817 0.01470 302.539 0.23671 318.63 $CClF_3$ (R 13) CCl₂F₂ (R 12) Т т т 127.630 3.86644 313.269 1.15292 92.126 3.47807 246.089 0.98508 3.68891 322.435 1.02456 97.922 3.40832 251.402 0.89188 140.554 261.961 0.71806 330.617 0.88792 103.685 3.29649 145.901 3.60551 3.15069 271.934 0.54551 153.625 3.49903 343.002 0.69926 112.877 0.53913 272.606 164.121 3.35253 353.048 0.54707 117.435 3.08359 362.755 0.38912 123.504 2.97502 274.717 0.50823 173.675 3.20591 282.897 181.234 3.09453 363.461 0.37752 134.878 2.79813 0.36513 2.96923 367.129 0.32648 137.632 2.75161 287.376 0.28127 191.160 2.81777 372.680 0.23328 144.570 2.64707 289.996 0.23048 200.556 2.48050 0.18009 292,096 0.19377 204.259 2.76988 375.287 154.571 210.404 2.67451 377.213 0.14475 164.049 2.32657 294.440 0.14562 296.187 0.11659 378.490 173.054 2.18497 227,066 2.43846 0.12114 380.317 0.08800 183.323 2.01635 298.785 0.06676 234.681 2.33021 0.04800 247.595 2.12454 380.497 0.08423 192.654 1.86097 299.745 1.71225 264.341 1.87956 380.969 0.07705 202.528 300.540 0.03146 266.761 1.84189 381.730 0.06175 213.041 1.53804 300.607 0.02912 1.37565 300.788 0.02681 288.095 1.54350 383.305 0.03319 222.752 232.575 1.21699 301.141 0.01883 295.859 1.41907 384.101 0.01854

384.93

Ω

1.31407

301.928

	CBrF ₃ (R 1:	3B1)			CHC1	F ₂ (R 22)	
T	a ²	T	a ²	T	a ²	T	a ²
107.776	2.72076	298.163	0.54280	117.713	4.57388	293.494	1.53785
109.671	2.70019	301.808	0.49880	122.255	4.50016	296.691	1.47331
114.726	2.66059	304.502	0.46520	123.335	4.46963	297.145	1.46928
119.634	2.59290	305.691	0.45100	127.694	4.39077	303.744	1.35041
121.820	2.58073	306.124	0.44760	136.792	4.25802	313.031	1.15929
127.952	2.50345	307.652	0.42870	145.675	4.11589	322.915	0.97228
130.579	2.45878	307.795	0.42510	153.386	4.00298	334.775	0.74750
137.743	2.38354	310.679	0.39240	158.288	3.90352	342.854	0.58107
145.868	2.29071	312.689	0.36890	165.661	3.77760	352.479	0.37790
154.728	2.19612	315.671	0.32950	171.396	3.67999	358.538	0.24979
162.608	2.08933	316.945	0.31280	180.649	3.53839	361.046	0.19415
170.347	2.02694	318.646	0.29120	193.958	3.30181	362.510	0.16189
180.688	1.91096	321.257	0.26100	209.486	3.02902	363.706	0.13466
194.557	1.74898	322.060	0.25000	220.566	2.84007	365.143	0.10157
202.667	1.64895	324.077	0.22390	230.098	2.67330	366.152	0.07852
213.460	1.51769	325.490	0.20510	242.382	2.45434	366.860	0.05831
218.476	1.47711	327.004	0.18630	252.948	2.26964	367.226	0.05348
231.415	1.32752	328.540	0.16690	263.409	2.07797	367.512	0.04577
242.893	1.19425	330.295	0.14330	276.492	1.84211	367.751	0.03968
254.417	1.06120	332.074	0.11760	276.548	1.83721	368.081	0.02924
263.682	0.94886	332.999	0.10240	284.355	1.70396	368.279	0.02481
276.668	0.80160	333.983	0.08900	286.263	1.66292	369.27	0
280.387	0.76350	334.977	0.07690				
285.716	0.69050	335.516	0.07020				
290.720	0.63540	336.597	0.05620				
293.712	0.59920	338.389	0.02820				
295.075	0.58100	340.185	0				

Table 8 Experimental values of the refractive index (T in K)

				SF ₆				
T	$^{ m n}_{ m L}$	^{n}v	Т	$^{\mathrm{n}}$ L	n _v	T	$^{\mathtt{n}}{}_{\mathtt{L}}$	nv
224.640 226.656 231.220 235.236 241.080 247.306 257.533 259.383 267.838 274.489 276.695 278.302 282.802 287.649 291.860 293.032	1.22440 1.22315 1.22020 1.21754 1.21358 1.20920 1.20168 1.20015 1.19332 1.18776 1.18544 1.18401 1.17954 1.17438 1.16961 1.16961	1.00232 1.00252 1.00302 1.00351 1.00436 1.00540 1.00759 1.00808 1.01050 1.01274 1.01365 1.01433 1.01633 1.01633 1.01900 1.02156 1.02234	299.148 306.165 310.269 311.930 313.270 314.658 315.780 316.083 316.157 316.339 316.748 317.019 317.181 317.532 317.570	1.16014 1.14886 1.14045 1.13632 1.13245 1.12790 1.12653 1.12346 1.12175 1.12069 1.11848 1.11727 1.11581 1.11329 1.11301	1.02724 1.03485 1.04112 1.04436 1.04742 1.05123 1.05238 1.05500 1.05621 1.05654 1.05738 1.05937 1.06080 1.06178 1.06419	317.619 317.679 317.692 317.699 317.705 317.742 317.817 317.836 317.844 317.889 317.890 317.960 317.980	1.11268 1.11208 1.11191 1.11198 1.11200 1.11195 1.11138 1.11107 1.11050 1.11064 1.11020 1.11023 1.10943 1.10848 1.10747 1.10741	1.06457 1.06526 1.06542 1.06535 1.06530 1.06525 1.06581 1.06609 1.06669 1.06640 1.06698 1.06683 1.06875 1.06957
270,032		1.02234	317.370			318.134	1.10750	1.06935
				CCl_2F_2 (R	11)			
T	$^{ m n}_{ m L}$	^{n}v	T	$^{ m n}_{ m L}$	^{n}v	Т	$^{ m n}_{ m L}$	$^{\rm n}{}_{ m v}$
163.615 166.245 166.818 171.124 171.363 173.443 175.258 182.568 190.479 191.196 199.794 210.108 218.729	1.46483 1.46314 1.46306 1.46043 1.46007 1.45771 1.45771 1.45329 1.44836 1.44797 1.44267 1.43633 1.43114	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00010 1.00036 1.00010	230.451 240.664 251.808 262.690 273.891 283.322 295.257 298.149 306.235 308.844 313.049 323.127 342.129	1.42391 1.41762 1.41074 1.40394 1.39705 1.39111 1.38337 1.38155 1.37607 1.37451 1.37151 1.36484 1.35136	1.00006 1.00012 1.00022 1.00038 1.00059 1.00087 1.00128 1.00145 1.00192 1.00205 1.00236 1.00309 1.00503	353.159 362.981 373.926 382.917 392.323 402.140 412.941 422.824 433.639 443.316 453.112 457.806	1.34318 1.33562 1.32677 1.31918 1.31073 1.30162 1.29032 1.27912 1.26552 1.25135 1.23431 1.22368	1.00659 1.00825 1.01045 1.01265 1.01538 1.01869 1.02325 1.02841 1.03541 1.04363 1.05470 1.06221

CCl₂F₂ (R 12)

Ŧ	$\mathtt{n}_{\mathbf{L}}$	$^{\mathrm{n}}\mathrm{v}$	T	n _L	n v	T	$^{ m n}_{ m L}$	n _v
119.947 120.525 120.753 121.222 122.614 123.438 127.630 131.735 133.624 140.554 141.835 145.901 152.338 153.625 164.121 164.590 171.694 171.820	1.41064 1.41032 1.41032 1.41006 1.40923 1.40853 1.40603 1.40304 1.4019 11.39892 1.39775 1.39665 1.39437 1.39005 1.38234 1.38274 1.38274 1.38274 1.37784	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	173.675 177.435 181.234 182.101 191.160 200.556 204.259 209.749 210.404 227.066 234.681 247.595 264.341 266.761 288.095 295.859 303.229 313.269 315.820	1.3767 1.37416 1.37187 1.37124 1.36544 1.35949 1.35712 1.35359 1.35316 1.34217 1.33709 1.32821 1.31647 1.31463 1.29863 1.29233 1.28615 1.27736 1.27489	1.00000 1.00000 1.00001 1.00000 1.00001 1.00002 1.00003 1.00018 1.00002 1.00048 1.00082 1.00143 1.00268 1.00296 1.00569 1.00569 1.00724 1.00881 1.01137 1.01209	322.435 330.617 343.002 353.048 362.755 363.461 367.129 372.680 375.287 377.213 378.490 380.497 380.497 380.497 380.969 381.730 382.699 383.305 384.101 384.328	1.26864 1.26038 1.24646 1.23348 1.21857 1.21742 1.21078 1.19894 1.19204 1.18664 1.18223 1.17468 1.17449 1.17238 1.16880 1.16219 1.15773 1.14999 1.14708	1.01436 1.01754 1.02369 1.03068 1.03922 1.03983 1.04406 1.05218 1.05755 1.06157 1.06525 1.07103 1.07166 1.07349 1.07662 1.08182 1.08580 1.09318 1.09595
				CClF ₃ (R	13)			
T	$^{ m n}_{ m L}$	^{n}v	T	$\mathtt{n}_{\mathtt{L}}$	$^{\rm n}{}_{ m v}$	T	$\mathtt{n}_{\mathbf{L}}$	n _v
92.126 97.922 103.685 112.877 117.435 123.504 134.878 137.632 144.570 154.571 164.049 173.054 183.323 192.654	1.33967 1.33601 1.33226 1.32628 1.32330 1.31933 1.31190 1.30553 1.29889 1.29253 1.28631 1.27921 1.27251	1.00005 1.00004 1.00006 1.00008 1.00010 1.00012 1.00016 1.00017 1.00020 1.00019 1.00020 1.00033 1.00065 1.00110	202.528 213.041 222.752 232.575 246.089 251.402 261.961 271.934 272.606 274.717 282.897 287.376 289.996 292.096	1.26524 1.25732 1.24949 1.24123 1.22849 1.22350 1.21215 1.19982 1.19632 1.19632 1.18403 1.17546 1.16996 1.16510	1.00189 1.00291 1.00430 1.00626 1.00992 1.01191 1.01634 1.02232 1.02278 1.02416 1.03133 1.03689 1.04070 1.04402	294.440 296.187 298.785 299.745 300.540 300.607 300.788 300.953 301.141 301.366 301.558 301.644 301.825 301.865	1.15871 1.15334 1.14329 1.13787 1.13236 1.13189 1.13042 1.12911 1.12706 1.12423 1.12147 1.11964 1.11439 1.11439	1.04912 1.05341 1.06186 1.06645 1.07142 1.07185 1.07322 1.07444 1.07631 1.07895 1.08162 1.08323 1.08837
				CBrF ₃ (R	13B1)			
T	n _L	ⁿ v	T	$^{ m n}_{ m L}$	n _v	T	$^{\mathrm{n}}{}_{\mathrm{L}}$	^{n}v
107.776 109.671 114.726 119.634 121.819 127.952 130.579 137.743 145.868 154.728 162.608 170.347 180.688 194.557 202.667 212.942 213.460 218.476 231.415	1.38398 1.38247 1.37901 1.37554 1.37420 1.36965 1.36809 1.36325 1.35175 1.34639 1.34108 1.33403 1.32439 1.31872 1.31124 1.31070 1.30703 1.29728	1.00007 1.00000 1.00006 1.00001 1.00002 1.00000 1.00000 1.00003 1.00008 1.00008 1.00018 1.00042 1.00064 1.00110 1.00115 1.00143 1.00244	242.893 254.417 263.682 276.668 280.387 285.716 290.577 290.720 293.712 295.075 298.163 301.808 304.503 305.691 306.124 307.652 307.795 310.679 312.689	1.28830 1.27883 1.27085 1.25966 1.25614 1.25074 1.24556 1.24540 1.24211 1.24064 1.23690 1.23248 1.22906 1.22763 1.22695 1.22500 1.22471 1.22066 1.21775	1.00375 1.00552 1.00742 1.01085 1.01208 1.01394 1.01597 1.01604 1.01740 1.01808 1.01964 1.02171 1.02340 1.02447 1.02447 1.02554 1.02560 1.02777 1.02938	315.671 316.945 318.646 321.257 322.060 324.077 325.489 327.004 330.295 332.074 332.999 333.984 334.977 335.516 336.052 336.597 337.179 338.143	1.21314 1.21105 1.20824 1.20374 1.20222 1.19830 1.19543 1.19190 1.18403 1.17617 1.17617 1.17617 1.17694 1.16694 1.16501 1.16501 1.16204 1.15903 1.15379	1.03203 1.03326 1.03500 1.03792 1.03890 1.04146 1.04344 1.04580 1.05537 1.05537 1.05759 1.06017 1.06308 1.06491 1.06676 1.06893 1.07155 1.07629

CHC1F₂ (R 22)

122.255 1.37580 1.00003 230.098 1.30850 1.00084 342.854 1.20919 1.0306 123.335 1.37501 1.00000 242.382 1.30023 1.00147 352.479 1.19313 1.03989 127.694 1.37236 1.00004 252.948 1.29287 1.00221 358.538 1.18010 1.04892 136.792 1.36669 1.00000 263.409 1.28532 1.00327 361.046 1.17351 1.05383 137.364 1.36630 1.00008 276.492 1.27573 1.00486 362.510 1.16904 1.05731 145.675 1.36140 1.00000 276.548 1.27569 1.00490 363.706 1.16500 1.06502 153.386 1.35667 1.00000 284.355 1.26957 1.00619 365.143 1.15923 1.06532 158.288 1.35369 1.00000 286.263 1.26802 1.00652 366.152 1.15448 1.06937 171.396 1.34916 1.00000 293.494 1.26201 1.00804 366.860 1.15060 1.07271	T	$^{ extsf{n}}_{ extsf{L}}$	$^{\mathrm{n}}\mathrm{v}$	T	$\mathtt{n}_{\mathtt{L}}$	$^{\rm n}{ m v}$	\mathbf{T}_{\cdot}	$^{ m n}_{ m L}$	$^{\rm n}{ m v}$
	122.255 123.335 127.694 136.792 137.364 145.675 153.386 158.288 165.661 171.396 180.649 184.049 193.958	1.37843 1.37580 1.37501 1.37236 1.36669 1.36630 1.36140 1.35369 1.35369 1.34916 1.34565 1.33997 1.33789 1.33167	1.00001 1.00003 1.00000 1.00004 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	230.098 242.382 252.948 263.409 276.492 276.548 284.355 286.263 293.494 296.691 297.145 303.744 313.031	1.31477 1.30850 1.30023 1.29287 1.28532 1.27573 1.27569 1.26802 1.26802 1.26201 1.25929 1.25890 1.25306 1.24427	1.00054 1.00084 1.00147 1.00221 1.00327 1.00486 1.00490 1.00652 1.00804 1.00879 1.00893 1.01067 1.01366	334.775 342.854 352.479 358.538 361.046 362.510 363.706 365.143 366.152 366.860 367.523 367.512 367.751	1.22023 1.20919 1.19313 1.18010 1.17351 1.16904 1.16500 1.15923 1.15448 1.15060 1.14830 1.14636 1.14460	1.02413 1.03006 1.03989 1.04892 1.05383 1.05731 1.06062 1.06532 1.06937 1.07271 1.07472 1.07647 1.07803 1.08063

reprinted from

Proceedings of the Seventh Symposium on Thermophysical Properties Edited by Ared Cezairliyan, 1977

published by

THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS 345 East 47th Street, New York, N.Y. 10017
Printed in U.S.A.