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Coexistence Curves of CO,, N,O, and CCIF, in the Critical Region
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The coexistence curves of COy, N0, and CCIF; are analyzed in the critical region. The curves were
obtained by refractive index measurements which are virtually free of gravity effects and contain much
detail near T'.. After proper weight assignment, it is established that the top of the coexistence curve is
asymptotically symmetric: pt=p,4B#; that the exponent g is independent of the range, varies little
from substance to substance, and is insensitive to impurities; and that the data are in agreement with
the law of the rectilinear diameter. “Best” values for 8, B, and for the slope of the diameter are presented.
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An analysis of earlier coexistence curves for COz and N»O, including a weight assignment, is presented; there

is agreement between the older and newer data.

I. INTRODUCTION

A lively exchange of views on the shape of the top of
the coexistence curve of gases took place around the
turn of the century. Van der Waals! first stated that
for his equation of state the top is parabolic, but later,
that it was of the fourth degree. Van Laar® then showed
that, as a consequence of the fact that van der Waals’
equation possesses a Taylor expansion in density and
temperature at the critical point, the top must be
parabolic. The critical point is defined by (a£/dp)r=0,
(32P/3p%)r=0, while higher density derivatives and
also 32P/3pdT are nonzero. Van Laar proceeded by
postulating that the liquid and gas densities along the
coexistence curve, ot and p—, respectively, can be
written in terms of powers of the reduced temperature
t=(T—1,)/T, as follows:

o plLEE | P B 10 a (1)
By applying the Maxwell construction to the Taylor

expansion of the van der Waals equation, van Laar
deduced values for the exponent 8 and the coefficients
B%. Thus, he found that =3 and established the
symmetry character of the terms in the expansion:
Bit=—B;, Bst=B,, etc. He also noted that these
findings, depending only on the existence of a Taylor
expansion, did not depend on the particular form of the
van der Waals equation. Consequently, all equations
analytic at the critical point and for which (aP/dp)r,
(2P/apt) y are zero but (9*£/dp*)p, %P /dpdT nonzero,
will have coexistence curves of the following form:

U By | ¢ | By | £ftee0), (2)

where the plus again refers to the liquid and the minus
to the gas density. Thus

(pr—pg) /2p.=B1 |t |"2+Bs | t fl2 4200,  (3)
(pr+p6)/2p:=Ba | t |+ Bs | £ [*4+--. (4)

Equation (4) expresses the well-known law of the

ot=p, (15 i ¢
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rectilinear diameter whereas (3) states that the top of
the coexistence curve is a parabola.

Van Laar? also noted that if not two but four deriva-
tives of pressure with respect to density were put equal
to zero at the critical point, 8 would be 1/4. This special
case has later been studied hy Planck® and Bachr.!
Baehr calculated a number of coefficients in the expan-
sion (1) with g=3. For this case, the diameter is
obviously not straight but it is a parabola asymptoti-
cally.

Tt is well known that the classical predictions, =73 or
1 are in conflict with experiment. Verschaffelt,’ around
1900, found that the coexistence curves of CO, and Hy
have 8 approximately 1/3. An extensive paper by
Goldhammer,® in 1910, presents reasonable descriptions
of coexistence curves of 12 substances using 8=1%,
much to the distress of van Laar.? This experimental
fact cannot be taken lightly. Tt is inconsistent with
classical theory. Either, as van Laar tried to argue, the
cubic character found by Verschaffelt and Goldhammer
breaks down when the eritical point is approached, or,
contrary to classical theory, a Taylor expansion of the
equation of state of real fluids does not exist at the
critical point. From the wealth of data accumulated on
coexistence curves, no clear evidence for a change of
power law behavior when the critical point is ap-
proached has been found and the analysis presented
here is no exception. However, the second option,
nonanalyticity at the ecritical point, has become
generally accepted only in the last decade.” Once this
possibility is admitted, however, the nice symmetry
features of the classical case are lost and we might, in
general, have a coexistence curve equation as bad
looking as

prepBLEB B | (ke (5)

where

[BifE=fo < 95E. B

Theoretical models for nonanalytic critical points,
such as the lattice gas version of the Tsing model, are
not very suggestive in the study of the coexistence
curves of gases since they have a built-in symmetry,
ot p~=2p,., which is absent in real gases. One of the
purposes of this paper will be to demonstrate that, in
spite of the nonanalyticity, certain symmetry features
established by van Laar for the classical case seem to be
present in real gases as well, namely Bit=-—5,
Bt =81, and very likely By=B,", .7 =08:".

These conclusions could be reached only after a
careful error assessment and weighing procedure had
been established for several sets of precise coexistence
curve data obtained by refractive index measurements.
Also a detailed study of ranges of asymptotic validity
of the terms in (5) was made. The symmetry character
of (5) results in a simple procedure for determining
best values of By, 81, and B, for the substances studied.
The values are reported, and some comments on their
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universality are made. The effect of impurities on the
value of 8; will be shown to be minimal. The results of
the optical experiments will be compared with some
coexistence curves obtained by more classical methods
and these two sets of results will be found to agree.

II. THE EXPERIMENTAL DATA

The coexistence curves we have analyzed are those
of CO;, NoO (pure and impure), and CCIF;. The most
extensive body of data on those substances was obtained
by Schmidt and Straub® at the Technische Universitit
in Miinchen. For comparison, we have also analyzed
coexistence curve data on CO, obtained by Michels and
co-workers,? and data on N:O measured by Cook.?

The experimental method used by the Miinchen
group is the determination of the refractive index of
the two coexisting phases. The method has been dis-
cussed elsewhere®; briefly, a narrow beam of parallel
sodium light is passed through a sample of gas enclosed
in a carefully thermostated pressure vessel with two
parallel windows. A prism is immersed in the fluid, the
deflection of the light being a measure of the refractive
index of the fluid. Density gradients present in the
fluid near the critical point because of gravity result in
height dependence of the angle of deflection of the
beam. If there are two phases present, a sharp shift in
the angle of deflection occurs at the interface, enabling
a precise determination of both indices of refraction
right at the interface; thus, the fact that density
gradients are induced by gravity in the bulk of each
phase in near-critical states is not a source of error in
this experiment, in contrast with most other deter-
minations of orthobaric densities.

The refractive index data obtained by this method
for CO,, N2O (pure and impure), and CCIF; are sum-
marized in Table I. The temperatures are on the
I.P.T.S. ‘48 as recorded in the experiment.

The coexisting densities of CO, determined by
Michels? were obtained in the course of PVT deter-
minations as intercepts of isotherms with vapor pres-
sure; the coexisting densities of Ny measured by Cook!®
were obtained by varying the volume of a known
amount of fluid until the other phase began to form.
These sets of data will be summarized later in Secs. IX
and X, respectively. Cook recorded his temperatures
on LP.T.S. 27 or '48; there is uncertainty ahout the
scale used by Michels.

IIT. METHOD OF ANALYSIS

The measured refractive indices can be related to
densities using the Lorentz—Lorenz relation

(n2—1) /(n*+2) = (4w /3) p. (6a)

Iere # is the refractive index, & the polarizability of a
molecule, and p the density p=N/V. The Lorentz—
Lorenz equation is a generalization to nonzero electric
field frequency of the Clausius—Mosotti equation

(e—1)/(e+2) = (4ra/3)p. (6h)
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TarLE I. Experimental refractive index data.
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T (2 nr, ]

COs Series I T.(obs) =31.030°C

#n(obhs) = 1.1062

31.027 1.11066 1.10240
31.026 1.11135 1.10213
31.024 1.11172 1.10155
31.023 1.11210 1.10136
31.021 1.11230 1.10080
31.019 1.111280 1.10015

[30.974 1.1181 1.0952]
30.465 1.130834 1.082781

[29.792 1.138496 1.0758857
28.430 1.148333 1.066719
25.687 1.161106 1.056453
22.752 1.170953 1.049101

CQy Series 11 T.(obs) =30.991°C

30.989 1.11087 1.10451
30.988 1.11158 1.10405
30.987 1.11200 1.10334
30.984 1.11355 1.10271
30.982 1.11371 1.10207
30.978 1.11463 1.10109
30.970 1.11576 1.10006
30.958 1.11733 1.09864
30.950 1.11787 1.09810
30.926 1.11949 1.09669
30.884 1.12165 1.09429
30.833 1.12381 1.09218
30.706 1.12728 1.08886
30.662 1.1283 1.0879
30.541 1.13059 1.08578
30.312 1.13410 1.08248
29.734 1.14047 1.07654
29.115 1.14556 1.07195
28.597 1.14904 1.06895
27.828 1.15343 1.06517
26.683 1.15898 1.00049
25.480 1.16398 1.05646
23.543 1.17076 1.05127
21.508 1.17681 1.04674
CCIF, Te(ohs) =28.715°C
#e(ohs) = 1.0996

28.685 1.1079 1.0918

28.650 1.1105 1.0894

28.473 1.1160 1.0839

27.860 L1755 1.0750

26.770 1.1345 1.0068

25.035 1.1439 1.0589

21.770 1.1554 1.0496

Z (DF) nr ng

N0 pure T.(ohs) =36.416°C

#n.({obhs)= 1,1154
36.415 1.1195 1.1111
36.411 1.1203 1.1105
36.410 1.1211 1.1102
36.408 1.1216 1.1096
36.367 1.1264 1.1048
36.291 1.1308 1.1005
36,127 1.1359 1.0956
36.013 1.1385 1.0932
34,900 1.1518 1.0807
32.540 1.1667 1.0679
30.426 1.1758 1.0606
28.404 1.1827 10552
26.130 1.1897 1.0501
250515 1.1918 1.0485
24,125 1.1949 1.0464
23,835 1.1956 1.0461
NyO with 1,19, H.0

36.101 1.1374 1.0934
35.170 1.1499 1.0821
34.198 AL 1.0754
32.274 1.1677 1.0663
30.387 1.1756 1.0001
28.459 1.1823 1.0551
26.510 1.1880 1.0506
24583 1.1932 1.0469
22 737 1.1197 1.0433

N2O with 0.39 mole%; air

35.728 1.1382 1.0927
34.978 1.1479 1.0833
33.962 1.1562 1.0760
32.021 1.1672 1.0668
29.528 1. 1775 1.0586
25.836 1.1889 1.0499
23.280 1.1955 1.0453

This generalization is justified in the absence of dis-
persion, i.e., in the absence of low-lying optical levels.
The Clausius-Mosotti equation, on the other hand, is
also approximate. It has been obtained for a system of
nonpolar spherical molecules with constant polariza-
bility « while neglecting fluctuations in the local
field.” None of the conditions for the validity of (6a)

are fulfilled for the gases discussed here. The molecules
of CO,, N20O, and CCIF; are all nonspherical; NoO has a
small, CCIF; an appreciable dipole moment; CO, has
nonnegligible dispersion; moreover, density-dependent
fluctuation corrections to the rhs of (6) are expected
theoretically™ and have been found experimentally for
COz ™ and other gases™; finally, there are reasons to
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believe that the molecular polarizability « itself could
be density dependent as well”™ The experimental
evidence,*'* however, suggests that at least for non-
polar gases the density-dependent corrections to (6)
are no more than a few percent and vary slowly,
whereas temperature-dependent corrections are prac-
tically negligible. I'or an analysis of asymptotic behavior
near the critical point the use of (6) without correction
terms seems therefore justified. A more serious question
is whether the quantity (#*—1)/(#*+2)p might be
anomalous at the critical point. As Larsen, Mountain,
and Zwanzig!" pointed out, critical opalescence indicates
that at least the imaginary part of the refractive index
is anomalous, while the homogeneity of the medium
assumed in deriving (6a) is certainly not present near
the critical point. However, their estimate of the size
of the anomaly in # shows that it is negligible for
practical purposes, namely no more than 13107 in n.
Henceforth we will consider the quantity LL=
(n2—1)/(n*+2) as being proportional to the density.
A check on this assumption is made by comparing with
coexistence curve data obtained by more traditional
methods. The agreement is good (Secs. TX, X).

The data analysis, after weights are properly as-
signed (Sec. IV), will go in four steps. Ilirst, the
quantities LL;— LL¢, LLec— LLg are fitted separately
to temperature functions of the form By|¢|fL Tt is
shown that Bit=—By, Bit=pr, asymptotically,
when the range is reduced. Next, it is shown that the
diameter LIz~ LLg is straight within error. Then, it is
shown that the next term in (5) has roughly the same
coefficient on the two sides. Thus, in taking the differ-
ence LLp—LLg, this term cancels and a large asymp-
totic range for the leading term Bi|{ [ in (5) is
obtained. Best values for By, 1 are obtained by a least-
squares analysis of the difference LL;— LLq.

IV. THE ASSIGNMENT OF ABSOLUTE WEIGHTS

In the analysis we propose to carry out proper weight
assignment is imperative, In the Miinchen experiments
the distance to the critical temperature varies from 10°C
to a few millidegrees; temperature errors propagated
into the LL values greatly diminish their accuracy near
T.. In the weight assignment we have assumed that
there are two independent sources of error: namely
those in the refractive index and those in the tempera-
ture measurement characterized by standard deviations
o and o7, respectively. The standard deviation of the
LL values is then calculated using propagation of error.

By differentiating (6) and substituting approximate
values nr~1.1, #eg~1.05 we find for the standard
deviation of LL the value 0.38n¢, due to errors in
measurement of 7. Thus

Var,{LL} = (0.58%0,)2, (7a)
Varn | LL;—LLg} =Var,{LL;+LLg}

= ((}.58)2(751_,2—*-‘}2(;2) O'ﬂ‘z, (71’))
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where the subscript # denotes contributions to the
variance of the quantity in braces due to errors in %,

However, a temperature measurcment with s.d. or is
made simultaneously. Since LL;, LL; vary with
temperature roughly as By | ¢ [81, (3), we have, due to
temperature errors alone,

op{LLy} =op{LLg} = BB | ¢ [P 'a,
=H(LLi—LLg) B/ L ]).
Thus, from (7) and (8)
Var{LL}=Var,{LL|Varp{LL}
(D582 (L Bl (i @

However, since the two refractive indices n;, ng are
measured almost simultaneously there is a correlation
between the variations in LLz and L1Lg caused by tem-
perature error: there is partial cancellation when the
sum LL;-} LLq is formed, but not when the difference
is formed. We have roughly taken this effect into
account by assuming Var,{LL;+LL¢} to be one-half
that of \;‘7&1‘!{ LLL—LLg] i

Summarizing, we have weighted sums and differences
according to the following variances:

(8)

Var{LL, £ LL:)

= (0.58)*(nr’+ne*) ou*+1 (LLr— LLe)*(Bla */#),
- [ LL;—LLg)

Tk
Gl 1;7(:9.578)2(%1,2-{‘-1”(;2) 0742"1- ; (I,LL“*LL(;) 2 (,81?(1','2/52) ]
LLg ;

(10)

What we refer to as the estimated errors of the
experimental values are the square roots of the variances
(9) or (10). The weights used in the fits are the inverses
of the variances (9) and (10). We have used o, = 11071
and o7 =0.001°C, Tt is stressed that if absolute weights
are properly assigned, the standard deviation of the
proper model function should be near unity and the
experimental points should rarely deviate more than
two times their estimated error.

The least-squares fitting routine used throughout is
that of Ref. 15.

V. THE LEADING TERM B,%| ¢ i*

We have studied the behavior of LL—LLg=
Byt | ¢ |f" as a function of the temperature range from
critical. The Miinchen data will be shown to permit
only minor variations in the value of 7, (Sec. VII);
therefore, we have only used the optimum value here.
The data for CO, series 11 and for N,O are sufficiently
plentiful to permit an analysis. In Tables 1T and TIT,
we show as functions of |7 |mes, values of In|Bi" |,
Bit, In| By |, Bi~, their standard deviations and the
standard deviation of the fit; this is done for three
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Liquid (ELr~LLg)/1LLg

Gas (LLU—LL(,r) /LL(;

s.d.

[l | mas(Z0) LL¢ InB;*+ s.d. &t s.d. s.d. InB;~ s.d. B~ s.d.
312 0.7058 2.25 0.74694-0.0066 0.35960.0014 1.19 0.58984-0.0034 0.33494-0.0007
0.7048 2.4 0.743340.0071 0.357640.0015 1.30 0.59554-0.0037 0.336740.0008
0.7038 2.65 0.73974+0.0076 0.355740.0017 1.44 0.60124-0.0041 0.33860.0009
1.81 0.7058 il 0.72394-0.0062 0.35560.0012 0.82 0.60104-0.0032 0.33684-0.0006
0.7048 1.66 0.718640.0068 0.3334-£0.0013 0.85 0.60844-0.0034 0.339040.0007
0.7038 1.82 0.71354+0.0074 0.35124-0.0014 0.92 0.6159-+0.0037 0.3411£0.0007
1.04 0.7038 0.98 0.7024-4-0.0057 0.3522-£0.0010 0.85 0.060244-0.0048 0.337140.0008
0.7048 1.08 0.69530.0062 0.3497+£0.0011 0.87 0.6118-+0.0049 0.339540.0009
0.7038 1.19 0.6882+0.00068 0.3472-£0.0012 0.92 0.6213+£0.0052 0.341940.0009
0.62 0.7058 0.82 0.68691+0.0071 0.35000.0011 0.90 0.60474+0.0074 0.3374-£0.0012
0.7048 0.87 0.677240.0074 0.3471£0.0012 0.90 0.61660.0075 0.3402£0.0012
0.7038 0.94 0.6677+0.0079 0.34434-0.0013 0.92 0.6287-+0.0077 0.34304-0.0012

0.22 0.7058 0.75 0.6673£0.0122 0.347320.0017 0.94 0.5962-+0.0146 0.33624-0.0021
0.7048 0.73 0.6515+0.0117 0.34360.0017 0.95 0.6143+0.0151 0.3399+0.0021
0.7038 0.72 0.636040.0115 0.3400=£0, 0016 0.98 0.632840.0157 0.343640.0022

0.11 0.7058 0.81 0.6725+0.0202 0.347940.0027 0.97 0.6149+£0.0232 0.3385+0.0031
0.7048 0.79 0.65154:0.0194 0.34360.0026 0.96 0.63840.0233 0.342940.0031

0.7038 0.77 0.631240.0187 0.3393-£0.0025 0.95 0.6625+0.0235 0.347340.0031

TasLe I11. Asymptotic range of LI~LLq: N,O.
tmax (%) Liquid (LLr-LLg)/LLe Gas (LLo—LLg)/LL¢

[l (90 LLg s.d. InB;+ s.d. Bt s.d. s.d. InB;~ s.d. B s.d.
4.1 0.7544 2.67 0.744240.0070 0.3632-£0.0018 2l 0.553140.0053 0.33254-0.0014
0.7534 2.83 0.742140.0074 0.3616£0.0019 2.26 0.5571£0.0057 0.3340-£0.0013
0.7524 3.01 0.7401=+0.0078 0.3600£0.0020 2.42 0.561740.0062 0.33544-0.0016
3.0 0.7544 2.55 0.7369=0.0078 0.36184+0.0019 1.46 0.5618-£0.0043 0.33424-0.0011
0.7534 2.70 0.7344+0.0082 0.360140.0020 1.63 0.5663-£0.0048 0.3358:0.0012
0.7524 2.87 0.7319-0.0086 0.35844-0.0021 1.81 0.57084-0.0054 0.337340.0013
2.6 0.7544 2.04 0.7206-:0.0083 0.3588-+-0.0018 1.04 0.5718£0.0041 0.33600. 0009
0.7534 2.16 0.717240.0087 0.35694+0.0019 1.20 0.577340.0047 0.33784-0.0010
0.7524 2.29 0.713840.0092 0.355140.0020 157 0.582840.0054 0.3395+£0.0012
1.94 0.7544 1.04 0.7081-£0.0083 0.3567+£0.0017 1.04 0.574840.0050 0.33654-0.0010
0.7334 1572 0.704040.0086 0.354740.0018 1.19 0.581040.0058 0.3384+0.0012
0.7524 1.82 0.69994-0.0091 0.352740.0019 1.35 0.587240.0066 0.3403+0.0014
1.25 0.7544 1897 0.6919-£0.0088 0.354140.0016 0.96 0.5817=£0.0064 0.33764-0.0012
0.7534 1.29 0.6865-£0.0089 0.352040.0016 1.09 0.5892£0.0073 0.339740.0014
0.7524 1.33 0.68120.0091 0.3498+£0.0017 1.23 0.596840.0084 0.34184-0.0015
0.49 0.7544 1.05 0.6671-0.0135 0.3505-40.0021 0.94 0.5934£0.0115 0.339340.0018
0.7534 0.95 0.6582-£0.0121 0.3478-£0.0019 1.02 0.6045£0,0127 0.3420-£0.0020
0.7524 0.87 0.6494-+0.0109 0.34514+0.0017 1.13 0.6158£0.0142 0.344640.0023
0.13 0.7544 0.80 0.721340.0246 0.35784-0.0034 0.83 0.6309L0.0244 0.34444+0.0034
0.7534 0.79 0.7017+0.0238 0.3537-£0.0033 0.84 0.6523£0.0251 0.34844-0.0035

0.7524 0.79 0.68264-0.0234 0.3496-£0.0033 0.86 0.6741-£0.0262

0.3525-:0.0037
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choices of LLg, the center one being the optimum
(Sec. VIT). For the larger values of | # |max, there are
sizeable systematic differences in exponents and
coefficients on gas and liquid side. Also, the standard
deviation of the fit decreases when | |ma.x goes from
several percent to 1%. For ranges smaller than 0.39
the coefficients | Bit |, | Bi | and the exponents 81T, 81~
become equal within error for gas and liquid. For the
exponent, the approach to equal values with shrinking
temperature range is shown for CO; in I'ig. 1 and for
NyO in Fig. 2.

VI. THE DIAMETER

The exponent Bt in (5) is not necessarily equal to
G In view of the limited temperature range of the
experimental data, it has proven impossible to ascertain
whether 8:t equals 8~ or not. However, starting from
the likely premise that the exponents are equal on the

T T T
€O, I

35+ ¢

i
B, % 3 @
34 Q 4

2 9
9

oLl -LLg
olle-Llg

B3 EHLE S 7l
OPL _WPG 1 1 |
i

(o loi i o o™

Fic. 1. The apparent values of g% of CO; in LL—LLc=
By | ¢|f! as functions of the reduced temperature range | ¢ |max-
Error bars denote ==1 s.d. For | #[max<3>107% the exponents
for gas and liquid side become equal within error. The point
marked M represents the 8 value derived for Michels’ CO, data.

two sides, and using the fact that the leading term is
symmelric, it [ollows immediately from (3) that

VLLy+LLg) = LLe{1+3(Bit+Br) [t f--}. (11)

As was discussed in the Introduction, for classical
equations of the van der Waals type :=281=1 corre-
sponds to the law of the rectilinear diameter (the
special classical case with g1=1 has a curved diameter).
There is no @ priori reason why the law of the rectilinear
diameter should hold for a nonclassical critical point.
We have carefully investigated the optical data with
this point in mind. The data for LL,+LLg are listed
in Tables IV-VI1I. We will demonstrate that a straight
line fits these data within errors. If a curved diameter of
the form | ¢ ['== is admitted, as was recently found in
model calculations'® and also on thermodynamic
grounds,”” the present data, if anvthing, seem to
favor slightly negative values of a, contrarv to the
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T T 1 T
36 Ny O % IT =
L
T i. 5 Boc
A
34 e L -Llg % a
O Lle-LLg % 55 S
B S §%
S
33 =
| | 1 1
1o ol [ g2 10!

Fic. 2. As Fig. 1, but for NyO. The point marked C represents
the 8 value derived from Cook’s N.O data.

general finding that « is slightly positive and perhaps
as large as 1/8.

A. CO; Series I

The difference between experimental and calculated
values of LL;+LLs when fitting with a straight line
and using 7,.=31.030°C is shown in Fig. 3. There
is a slight evidence of systematic behavior, barely out-
side the experimental error. It suggests that the
diameter might curve upward (o negative). This

T T T
2x107 |- T T C9a L A
o IO I
o 1 o e '**H*f'*"%* o
2 e o] L T = |
2XI0 co, I o
2x1074 |- I I |
3t ] I ST Lees T, %
l ii . e ¥ e %8 o
o exignt 1 1
=t
§ LU +LLg=2LLc+2B, 1l
a8
® x| e -
.|- Il TD (5 a} o EIr[l o 10 in_
T 1‘1 T = é @ o i
-2xi04 - —
oxio L CCZ Fy 3
1 ] ? 1 l?
J B~ A FRETS
-2xio™4 - il
0.01° ol o 10°
I 1 1 1 1 1 1 1
10® ot fops 1072
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of | £| for the four sets of data. Bars denote estimated errors of
the experimental data.
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TaBLE IV. CO, Series I.

(LLL+LLg) (LLp—LLg)/LLg
Temperature (°C) Ll Llg Value 10° err 105 res Value 10 err 101 res
31.027 0.07223 0.06696 0.13919 29 4 0.0758 58 34
31.026 0.07267 0.06678 0.13946 25 Sl 0.08406 49 46
31.024 0.07291 0.06641 0.13932 20 17 0.0933 37 12
31.023 0.07315 0.06629 0.13944 18 29 0.0986 34 14
31.021 0.07328 0.06593 0.13921 16 6 0.1056 29 —4
31.019 0.07359 0.06552 0.13911 15 —4 0.1161 27 26
30.465 0.08503 0.05435 0.13938 9 0 0.4410 13 —10
28.430 0.09602 0.0439%4 0.13997 9 —22 0.7486 13 3
25.687 0.10399 0.03725 0.14124 9 —4 0.9592 13 —2
22,752 0.11009 0.03245 0.14254 9 9 1.1160 13 2
Te.=31.030 2LLy=0.13915 In2B;=1.3528
+7 +25
Slope ¢=0.121 By=1.935
=5 B1=0.3450
a*=a/2LL-=0.87 =+6
sd.=1.22 s.d.=0.62
TaBrLe V. CO: Series TT.
(LLL+LLg) (LLp—LLg)/LLg
Temperature (°C) LLy, LLg Value 105 err 108 res Value 10t err  10% res
30.989 0.07237 0.06831 0.14067 34 —29 0.0576 06 —42
30.988 0.07282 0.06801 0.14083 27 —13 0.0682 53 —31
30.987 0.07309 0.06756 0.14064 24 —32 0.0784 46 —4
30.984 0.07407 0.06716 0.14123 18 2 0.0981 34 25
30.982 0.07417 0.06675 0.14092 16 —4 0.1054 29 10
30.978 0.07476 0.06612 0.14088 14 —8 0.1226 25 40
30.970 0.07548 0.06546 0.14094 12 —3 0.1422 20 20
30.958 0.07648 0.06455 0.14103 11 5 0.1692 17 53
30.950 0.07682 0.06420 0.14102 10 5 0.1790 16 21
30.926 0.07785 0.06330 0.14115 10 16 0.2064 15 —12
30.884 0.07922 0.06176 0.14098 10 —2 0.2477 14 9
30.833 0.08059 0.006040 0.14099 9 —3 0.2864 14 S
30.706 0.08278 0.05827 0.14105 9 —2 0.3478 13 9
30.662 0.08343 0.05766 0.14108 9 —0 0.3657 13 9
30.541 0.08487 0.05628 0.14116 9 3 0.4057 13 —10
30.312 0.08709 0.05415 0.14124 9 2 0.4673 13 —19
29.734 0.09109 0.05031 0.14141 9 -3 0.5786 13 —25
29.115 0.09429 0.04734 0.14163 9 =5 0.6661 13 —17
28,597 0.09647 0.04539 0.14186 9 -1 0.7246 13 =22
27.828 0.09921 0.04294 0.14214 9 —2 0.7984 13 —23
26.683 0.10267 0.03989 0.14255 9 —5 0.8907 13 —7
25.480 0.10577 0.03726 0.14303 9 —3 0.9721 13 10
23.543 0.10997 0.03387 0.14384 9 4 1.0798 13 16
21.508 0.11371 0.03090 0.14461 9 3 1.1749 13 22
T,=30.991°C 2LLa=0.14096 In2B,=1.3642
+2 +29
Slope a=0.116 B;=1.957
a*=a/2LLo=0.82 +6

s.d.=0.68

s.d.=1.42
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TaBrLE VI. NaO,

(LLr+LLg) (LLp—LLlg)/LL¢
Temperature (°C) LLy LLg Value 10° err 108 res Value 10% err 104 res
36.415 0.07785 0.07251 0.15037 44 —32 0.0709 82 120
36.411 0.07836 0.07213 0.15049 19 —19 0.0827 34 —49
36.410 0.07887 0.07194 0.15081 19 12 0.0920 33 —6
36.408 0.07919 0.07156 0.15074 17 6 0.1013 29 2
36,367 0.08223 0.06849 0.15072 10 1 0.1823 15 —13
36.291 0.08501 0.06574 0.15075 10 1 0.2557 13 24
36.127 0.08822 0.06260 0.15082 9 2 0.3401 13 15
30.013 (. 08986 0.06106 0. 15091 9 7 0.3822 12 22
34.900 0.09819 0.05300 0.15119 9 —8 0.5997 12 —27
32.540 0.10746 0.04471 0.15217 9 —3 0.8328 12 —25
30.426 0.11308 0.03996 0.15304 9 1 0.9705 12 —15
28,464 0.11733 0.03644 0.15377 9 -3 1.0737 12 9
26,130 0.12162 0.03310 0.15473 9 1 1.1749 i 15
25.315 0,.12291 0.03206 0.15496 9 —7 1.2058 12 9
24,125 0.12480 0.03068 0.15548 9 —2 1.2492 12 8
23.825 0.12323 0.03048 0.15571 9 10 1.2575 12 i
7,=36.417 2LLs=0.15068 In2B,=1.3454
+2 +25
Slope a=0.121 B,=1.920
=1 B1=0.3482
a*=a/2LL:=0.80 +7
s.d.=0.63 s.d.=1.39
is confirmed by fitting with a variety of values of a. B. CO, Series II

The standard deviation decreases when « turns nega-

tive (Fig. 4). Since this run contains relatively few A typical deviation plot for fitting LLr+LLg to a
points, and since there is some trouble with some of straight line using all points and taking T.=30.991°C
these (Sec. VII), too much should not be read into isshown in Fig. 3. All points are within two times their
these results. estimated error from the straight line. There are

Tanre VII. CCIT'; 99.349%, pure.

(LL: T iD) (L, =Ll I
Temperature (°C) ML Lig Value 105 err 10° res Value 10% err 10 res
28.685 0.07047 0.00016 0.13063 10 -3 0.1579 17 —16
28.650 0.07213 0.05861 0.13074 10 7 0.2069 15 30
28.473 0.07563 0.05507 0.13070 9 —4 0.3147 14 —38
27.860 0.08166 0.04932 0.13097 9 0 0.4951 14 —5
26.770 0.08734 0.04400 0.13133 9 —4 0.6635 14 14
25.035 0.09325 0.03885 0.13210 9 8 0.8327 14 33
21.770 0.10044 0.03278 0.13321 9 =4 1.0357 14 —25
T.=28.720°C 2LLa=0.13065 In2B,=1.3726
+3 +84
Slope a=0.112 B;=1,972
=3 B1=0.3540
a*=a/2LLc=0.86 +18

s.d.=0.60 sdi=2.1
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F16. 4. Standard deviation of the fit LI+ LLg=2LLo(1+4
By | t[=) for various choices of « and for the four sets of data.
If anything, a slightly negative value of & seems to be favored.

sufficient data to vary the range. Slope and intercept of
the straight line behave as shown in Table VIII, and
are essentially constant within their error. If functions
of the form | ¢ | are admitted, the standard deviation
shows a tendency to decrease with decreasing o,
favoring slightly negative values of this quantity
(Fig. 4).
C. N.O
Fitting the sum LL;+LL; for all 16 data points

results in the deviation plot Fig. 3. The points are fitted
roughly within one standard deviation. On varying the

Tasre VIII. Diameter of CO, Series IT, 7. =30.991°C,
Vary range.

7" min |2 s

(e (%) 2LLe s.d. Slope s.d.
21.508 G 0.140958-£0.000018 0.11614-0.0016
25.480 1.81 0.140967-£0.000019 0.11284-0.0028
27.828 1.04 0.140970-£0.000022 G.11154-0.0054
29.115 0.62 0.140074£0.000025 0.10652-0.0107
30.312 0.223 0.140969-£0.000032 0.117540.0330
30.662 0.108  0.1409772£0.000040 0.0899+0.0722
30.833 0.052 0 0.1006=£0. 200

.140975-40. 000054
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temperature range, one obtains intercepts and slopes as
shown in Table IX. They are constant within error.

The standard deviation of the fit again decreases
slightly if forms like | £ "=, with « slightly negative,
are tried. This is shown in Fig,. 4.

D. CCIF;

The seven values of LL;+LLg are fitted by a
straight line perfectly; see the deviation plot Fig. 3.
In view of the scarcity of data, the range could not be
varied appreciably. Admitting a form 7] the
standard deviation is minimal for a slightly positive
(Fig. 4).

E. Conclusions

We conclude that the present data agree with the
hypothesis of a straight diameter within their level of
accuracy (1X10=*in #, 0.001° in 7). I the diameter is
described by | ¢ [ the data secem slightly biased to-
wards negative values of «. These conclusions do not

Tasire IX. Diameter of N;O, T.=36.417°C. Vary range.

T min [ G

e (%) 2LL: s.d. Slope s.d.
23.835 4.06 0.150683-£0.000024 0.12134-0.0010
25.315 3.59 0.150691=£0.,000023 0.12013-0.0012
28.464 2 0.150691£0.000025 0.11994-0.0021
32.540 il 25 0.150699+0.000028 0.1158-0.0054
36.013 0.130 0.150675-£0.000041 0.1751=0.053

0.041 0.

36.291 15067440.000067 0.1906==0.25

depend on the choice of T, since the behavior of L1+
LLg is quite insensitive to this choice. Best values for
slope and intercept are summarized in Tables IV-VII.
It is seen that the reduced slope a*= ( Byt+By~) /2 is of
order unity.

It is not possible, from the present set of data, to
resolve the question whether, in (5), Bst=B,—. There
is a strong indication, however, that they are of about
the same size. In forming the difference, LL.— LLg,
we will find (Sec. VII) that the leading term in the
expansion (5) fits the data over the entire range of
temperatures. For guses like Ar, for which a larger
temperature range is available, we have found!® that the
asymptotic range for the difference pr—pg is approxi-
mately 99 in . However, in fitting gas and liquid sides
separately, the asymptotic range is no more than 0.3%
in 7. Consequently, the next terms in the expansion,
Bg* |t | and By~ | £ 8+ must nearly cancel out when
the difference is taken.

VII. BEST VALUES OF B, 8y, Bs

After assigning weights (Sec. IV) the sum LL;+LLg
was fitted to a straight line over the whole range of
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temperature (0.04 in £). The best value of the intercept
2 LL¢ so obtained was independent of the choice of 7%;
it was used to reduce the difference LL;—LLg. The
reduced difference was then fitted as follows:
In[(LL.—LL¢)/LLe]=In2Bi+fi1n [ ¢]. (12)
The fit was performed for several values of 7.. In the
cases of CO, and N.O we found that a minimum
standard deviation occurred for 7', at most 0.001° from
that observed directly. In CCIF; for which no data
very near critical were taken, the minimum standard
deviation occurred for 7T, 0.005° above the ohserved
value. The values of LL;, LLg, the sum, the reduced
difference, the estimated errors, and the residual of the
fits are listed in Tables TV-VII for the four data sets.
Also, optimum values for T, LL¢, the slope, By, and £
are given with their respective standard deviations.
The standard deviations of all the fits are scen to be
near unity. The residuals of the fits are plotted in Fig. 5.
Most points are fitted within one or two times their
estimated standard deviation. In the case of COs,
series I, we had to reject the points at 30.974 and
29.792°C because they were out by six and four standard
deviations, regpectively, when fitting the difference.

The cocfiicient B; varies little, from 1.920 for N,O
to 1.972 for CCIF;. The values found for 8; lie between
0.345 and 0.354. However, taking into account the
changes in By on varying 7, and range for a single
substance, the conclusion that £ depends on the
substance seems unwarranted. The reduced slopes are
all between 0.8 and 0.9.

We have made sure that the optimum wvalues thus
obtained are independent of the range. The fits were
repeated decreasing the value of | £ [max. The results are
summarized in Tables X and XI1. Although, for CO,
Series IT, we note a decrease in $; slightly exceeding the
error (0.348 to 0.342 for | |mex from 39 to 0.29),
in all other cases there are no variations appreciably
cxceeding the error. From the refractive index data alone
we conclude that the expression (LLp—LLg)/LLc=
2By | ¢ |1 is valid within error over 0.04 in £. From other
coexistence curves'® extending over larger ranges, it is
found that |/ . may be around 0.09 for the asymp-
totic expression. -

VIII. THE EFFECT OF IMPURITIES

In addition to the data on pure substances, for NaO
two runs with known amounts of impurities were made,
namely, one with 0.39 mole 9 air and one with 1.1
mole 9 water.

The air impurity will be present in the gas phase
mainly, while the water impurity will tend to concen-
trate in the liquid phase. The change in refractive index
occurring when the temperature is raised is partly due
to redistribution of the impurity between the phases.
Tt is interesting to investigate how the critical behavior
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Fic. 5. Residuals of the fit (LL,— LLg)/LLe=2B|t|P for
the four sets of data. Bars denote estimated errors of the experi-
mental data.

is affected by impurities. We have analyzed the data
exactly as those for pure substances. The results are
shown in Tables X1I and X111. The critical temperature
is defined as the temperature at which the refractive
indices become equal when the filling density is such
that the meniscus disappears in the center of the cell,
Experimentally, it was observed in the case of the air
impurity to be about 36.164°C. Fitting the data for the
difference, we find that the standard deviation is
minimal at 36.174°, compared to 36.417° for pure N.O
(Table XII). This large change in the value of 7,
0.24° for 0.4%, impurity, does not affect the values of
By and g greatly, as is scen in Table XTV.

The results of the fit for the case of the water impurity
are shown in Table XII1. Here, the critical temperature
is slightly increased (to 36.494°), but again, the value
of 81 is almost unchanged. However, the coefficient By
shows a sizeable change (Table X1V). We conclude
that the prime effect of impurities is a change of T;
although the coefficient B; may be affected by their
presence, the cxponent By is quite insensitive to im-
purities. Although exponent renormalization is in
general expected for a gas-liquid system with constant
over-all impurity content,” our dilution parameter
| T0—T, |/T0, being smaller than 1073, is not large
enough to make renormalization experimentally
visible.?
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BErLLT, (1) i s
Substance [ lanar () s.d. 2LLg Slope s.d. In2B 8

CO.1 7,.=31.030°C 2.72 1522 0.13915 0.121 0.62 1.353 (.3450
+7 +5 +3 +6

1.76 1.11 0.13918 0.112 0.65 1.351 0.3448

+7 +7 +4 +8

0.85 0.71 0.13925 0.084 0.70 1.350 0.3447

+35 +10 +6 +12

CO. IT T.=30.991°C 3.12 0.68 0. 14096 0.116 1.42 1.364 0.3475
=+2 +2 +3 -0

1.81 0.68 0.14097 0.113 1.29 1.358 0.3463

+2 +3 +4 +7

1.04 0.71 0.14097 0.111 1.04 1.347 0.3447

+2 +5 44 +7

0.61 0.74 0.14097 0.107 1.04 1.340 0.3437

+2 +11 +6 +10

0.22 0.80 0.14097 0.117 1.00 1.327 0.3418

+3 +233 411 +16

0.11 0.85 0.14098 0.090 1.05 1.339 0.3433

+4 +72 +18 +24

0.052 0.93 0.14098 0.10 1.13 1.352 0.3449

+5 =+0.20 +35 442

0.021 0.78 0.14087 153 1.05 1.2064 0.3352

46 +5 +69 +77

TagLe XTI, Vary range of £. N,O and CCIF;.
LLp+LLg (LLp,—LLg)/LLe
Substance Vi () s.d. 2L1L¢ Slope s.d. In2B i

N0 T.=36.417°C 4.1 0.63 0.15068 0.121 1.39 1.345 0.3482
+2 +1 +2 +7

3.0 0.58 0.15069 0.120 1.47 1.346 0.3483

+2 =+1 +3 48

2.6 0.61 0.15069 0.120 1.47 1.342 0.3476

=42 +2 +4 +9

1525 0.64 0.15070 0.116 1429, 1.332 0.3459

+3 +5 +06 +11

0.13 0.60 0.15067 0.18 1.05 1.371 05 S5l

+4 +5 +22 +31

0.041 0.15067 0.19 1.426 0.3576

+7 +0.26 +57 469

CCIF; T.,=28.720°C 2.3 0.13065 0.112 1.373 0.3540
+3 +3 +8 +18

152 0.130064 0.117 1.387 0.3564

+3 +5 +10 420

0.65 0.13066 0.106 1.383 0.3558

+3 +10 +18 +31
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Tasre XII. N20O. 0.399 air impurity.

(LLL+LLg) (LLp—LLq)/LLg
Temperature (°C) LLg LLg Value 108 err 105 res Value 1% err 104 res
35.728 0.08967 0.06074 0.15040 9 12 0.3855 12 2
34.978 0.09575 0.05468 0.15044 9 —14 0.5472 12 3
33.962 0.10093 0.04996 0.15090 9 -7 0.6791 12 -9
32.021 0.10777 0.04400 0.15176 9 4 0.3497 12 —3
29.528 0.11413 0.03866 0.15279 9 9 1.0056 12 16
25.836 0.12113 0.03297 0.15410 9 -3 1.1746 12 5
23.280 0.12517 0.02996 0.15512 9 —1 1.2685 12 11

T:=36.174°C

2LLe=0.15011

In2B;=1.3643

+6 +21
Slope a=0.121 By=1.957
=+3 B1=0.3542
a*=a/2LLe=0.81 +5
s.d.=1.08

s.d.=0.82

IX. THE MICHELS DATA FOR CO,

The coexisting densities reported by Michels ef al.?
and summarized in Table XV were obtained by
extrapolating isothermal PV data to the density at
which the pressure equals the vapor pressure. Since
isotherms near critical are very flat, the error in the
density values at the intercept becomes large. This
presents a rather complicated weighting problem. The
experiment was carried out in a bomb of sizeable
vertical dimensions. Thus we expect the highest point,
at 31.01°C, to be beset with a large density gradient
due to gravity and have therefore excluded it from the
analysis. From experience with other substances, we
expect the point at 2°C (¢=0.095) to be bhorderline as

far as the asymptotic behavior Ap=By* | f[f is con-
cerned and have therefore excluded it from the fit. If it
is included it is always out by several standard devia-
tions.

Tn the absolute weight assignment, we have accounted
for errors in density, temperature, and pressure along
the isotherm, for errors in temperature and pressure
along the vapor pressure curve, and for the declining
slope of the isotherms when the critical point is ap-
proached. We have not accounted for the error in
extrapolating the isotherms. The variance of the
density along an isotherm due to errors in p, P, T is,
by propagation of error,

\‘rﬁl'i;oul{p} = O'_D2+ (('ip/c')T) 2P0'T2"|‘ (Bp/aP) 27'0‘,02. (13)

Tasre XTIIT. N,O. 1.19%, water impurity.

(LLp+LLg) (LLr—LLg)/LL¢

Value

Temperature (°C) LI LLg Value 10° err 106 res 10t err  10% res
36.101 0.08916 0.06119 0.15035 9 —9 0.4793 16 —0
35.170 0.09700 0.05391 0.15001 9 12 0.7383 16 32
34.198 0.10162 0.04958 0.15120 9 4 0.8916 16 =%
32.274 0.10808 0.04367 0.15175 9 —13 1.1035 16 —9
30.387 0.1129 0.03963 0.15260 9 0 1.2562 16 —11
28,459 0.11708 0.03637 0.15346 o +13 1.3828 16 —17
26.510 0.12058 0.03343 0.15401 9 —5 1.4931 16 —11
24,583 0.12376 0.03101 0.15477 9 —1 1.5891 10 —0
22.737 0.12663 0.02884 0.15547 9 -1 1.6753 16 32
T.,=36.494 2LLe=0.15029 In2B,=1.6073

+3 +28
Slope a=0.117 B,=2.50
2% B1=0.3511
e*=a/2LLo=0.78 Ly
s.d.=1.02

s.d.=1.23
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TaerLe XIV. The effect of impurities.

s.d. of
Substance 7. (°C) fit In2B, s.d. Bi s.d.
Pure N,O 36.417 1.39 1.34544-0.0025 0.3482+0.0007
N:0, 0.39% 36.174 0.82 1.3643+0.0021 0.354240.0005
air (36.164 0.93 1.3596+0.0023 0.3528+0.0006)
N.0,1.1%  36.494 1.23 1.607340.0028 0.351140.0007
H.0 (36,484 1.42

1.602840.0032 0.3498=+-0.0009)

Similarly, for the vapor pressure

Var{ Py} = ap+ (dP/dT) % spor. (14)

Then, the variance of the intercept is readily seen to be
Var{ poex} = Var{ pisom | +Var{ Pyap} (9p/0P)%. (15)

It may be written as
Vﬂ.'l'{ Pcoex} = V—S.Tnm:x { PP] ‘I‘Varcoex { PI‘} + Varcoex { PP} )
(16)

where

Vareex{pp} =0,
Varowe{pT'} = (8p/3P) e[ (8P/0T)2,+ (dP/dT)? o Jor?,
Valosex] 0P} = 2(3p/dP) 2pop?.

Here g, or, op have to be estimated from the experi-
mental precision. We have assumed op=0.006°C,
op=107% atm, ¢,=2X10~? amagat. The derivatives are
directly obtained from the experimental PVT data.
Since (dp/dP)r diverges at the critical point, Var{pT'}
and Var{pP} become large for data close to critical;
Var{pT} dominates. The estimated errors of the
individual points are shown in Table X V1.

Once the wvariance of the coexisting densities is
obtained, the absolute weight of pp+pe is given by

wiprt+pef =[Var{ps}+Var{pe} I (17)

with Var{p}, Var{pe} from (16). Similarly the weight
of In[ (pr—pg) /pc] is given by

w{In[(pr—pa) /pc]} = (pr—pg)?/ (Var{pr} +Var{pg}).
(18)

Error estimates for pr+pq, (pr—pg)/p. are readily
obtained from these weights. Since Var{pz} and
Var{ps} become large near critical, the error in
(p.—pc) /pc also increases markedly when | ¢ | becomes
small.

We experienced considerable difficulty in fitting the
data. On fitting the sum, the point at 19.874° was
always out by several standard deviations. Not finding
any physical reason for rejecting it, we have presented
fits with and without this point. On varying the value
of T,, the fit improves markedly when 7., is decreased
below the literature value of 31.04°C. However, the

AND
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residual of the highest point became very large at the
same time. Thus we present three fits, each of which
is for optimized 7,. These are fits to all seven points
from 10.8-30.4°, to six points, 30.4° omitted, and to
six points, 19.9° omitted, respectively (Table XVII).
Although the quality of the fits leaves much to be
desired, the values of p,, slope, By, and £ do not vary
much. A fair average is shown in Table XVIII which
also includes a comparison with the optical data.

The intercomparison between the optical and the
PVT data is rather revealing. The values of 81 obtained
by these two wvastly different methods in different
temperature ranges are in fine agreement. In comparing
T. values from optical and PVT data it should be noted
that the value of T, reported by Michels e al.? is valu-
able only within the framework of their own data, since
their temperature scale is not well defined with respect
to I.P.T.S. However, the optimum values of 7, ob-
tained by us for Michels’ coexistence curve are con-
siderably lower than the value 31.03°C they report as
the point at which liquid and vapor densities become
equal, The difference between their and our result
may be due to the fact that they included the point at
31.01°C and, most likely, gave all points equal weight.
In the optical experiments, the value of T, is determined
directly. The difference in 7, of 0.04° [or the two
samples must be due to small impurities. (See also
Sec. VIII.)

There are small differences in B; between Michels’
and the refractive index data which we feel to be within
reason, in view of the spread in By of the optical data.
The differences in slope, however, seem to be real;
they are probably caused by ignoring the density
dependence of the function LL/p (cf. Sec. TIT). The
experimental data for the dielectric constant and
refractive index of CO; 2 indicate that (e—1)/(e+2)p
and (#*—1)/(n*+2)p pass through a maximum at
densities slightly higher than critical. Thus, the sum
of LLr+LLs at pg=100 amagat, pr=400 amagat
(~20°C) is about 0.59% lower than its value at the
average density 250 amagat. Since the value of LL;+
LLg varies by only 39, between the critical point and

TaprLe XV. Coexistence curve of CO., Michels’ data.»

L) pr (amagats) pg (amagats)
[2.853 461.8 54.04]
10.822 433.6 70.21
19,874 393.0 97.62
25,070 359.8 122.67
25.298 357.7 124 .47
28.052 3317 146.46
29.929 301.0 172,30
30.409 290.3 182.22
[31.013 259.0 216.4]

* A. Michels, B. Blassie, and C. Michels, Proc. Roy. Soc. (London)
A002, 358 (1937).
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TaBLE XVI. Estimated errors of coexisting densities of CO,, Eqgs. (15), (16).
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Estimated
Temperature  (Var{pp})2  (Var{pT})12 (Var{pP})1/2 error in p p (amagats)
2.853 0.02 0.030 0.001 0.036 461.8
10.822 0.02 0.032 0.001 0.037 433.6
19.874 0.02 0.042 0.002 0.046 393.0
25.070 0.02 0.083 0.005 0.086 359.8
25.298 0.02 0.092 0.006 0.094 257.7
28.052 0.02 0.16 0.012 0.159 331.7
29.929 0.02 0.67 0.056 0.67 301.0
30.409 0.02 0.94 0.080 0.94 290.3
2.853 0.02 0.015 0.004 0.025 54.04
10.822 0.02 0.022 0.004 0.030 70.21
19.874 0.02 0.049 0.008 0.054 97.62
25.070 0.02 0.095 0.013 0,098 122.67
25.298 0.02 0.098 0.014 0.101 124.47
28.052 0.02 0.16 0.020 0.16 146.46
29.029 0.02 0.53 0.061 0.53 172.30
30.400 0.02 0.61 0.069 0.62 182,22
Tagsre XVII. Tit coexistence curve CO, (Michels).
pr+pe (amagats) (pL—pa)/p
BEE) Value Err. Res. Value Err. Res.
10.822 503.81 0.05 —0.04 1.5337 0.0002 —0.0001
19,874 490.62 0.07 0.23 1.2466 0.0003 0.0007
25.070 482 .47 0.13 —0.20 1.0008 0.0005 0.0008
25.298 482.17 0.14 —0.16 0.9843 0. 0006 —0.0020
28.052 478.16 0.23 —0.08 0.7818 0.0010 —0.0010
29.929 473.30 0.86 —2.14 0.5432 0.0036 —0.0045
30.409 472.52 1E01%) —2.21 0.4561 0.0047 0.0136
Optimum 7, 30.98°C 2p,=473.854-0.22 In2B;=1.37394-0.0020
Slope a=452+4 Bi=1.975%
a*=a/2p,=0.058 B1=0.3486=0. 00068
s.d.=2.22 s.d.=2.46 (min)
10.822 503. 81 0.05 —0.04 1.5333 0.0002 0.0000
19.874 490. 62 0.07 0.22 1.2464 0.0003 0.0003
25.070 482.47 0.13 —0.21 1.0006 0.0005 0.0008
25.298 482,17 0.14 —0.17 0.9841 0.0006 —0.0019
28.052 478.16 0.23 —0.09 0.7816 0.0010 0.0007
29.929 473.30 0.86 —2.16 0.5431 0.0036 0.0027
Optimum 7', 30.92°C 2p,=473.9940,22 In2B;=1.369%040.0016
Slope a=4521+4 B, =1,966
a*=a/2p,=0.95 B1—0.346640.0005
s.d.=2.29 s.d.=1.95 (min)
10.822 503.81 0.05 —0.002 1.5346 0.0002 0.0000
25.070 482 .47 0.13 —0.003 1.0014 0.0005 0.0075
25.298 482 .17 0.14 0.038 0.9849 0.0006 —0.0013
28.052 478.16 0.23 0.15 0.7823 0.0010 —0.0008
29,929 473.30 0.86 —1.90 0.5435 0.0036 —{0.0059
30.409 472.52 1SS —1.96 0.4564 0.0048 0.0102
Optimum 7, 31.00°C 2p.=473.59+0.17 In2B,=1.377340.0020
Slope a=45643 B1=1.982

a*=0/2p. =0 061
s.d.=1.45

£1=0.34984-0.0007

s.d.=2, 28

{min)
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TasLe XVIIT. Parameters of the coexistence curve of CO..
Averages are for fits with varying sets of data points (Table

XVII). Errors indicated span extremes among these fits.

Refractive index

Michels CO. I CO, 11
pc=236.940.2 amagats
Reduced slope=0.96-4-0.01 0.87 0.82
In2B8;=1.37340.004 1.3528 1.3642
B,=1.97440.008 1.935 1.957
B1=0.34840.002 0.3450 0.3475
T.=30.974-0.05°C

31.030 30.991

20°C we expect the reduced slope of LL,+LLg to be
about 159 lower than that of pr+pe. In agreement
with this, our analysis gives 0.85 for the slope of the
optical data and 0.96 for that of the Michels data.

X. THE COOK DATA FOR N,0

The coexisting densities of NyO reported by Cook
and summarized in Table XTX were determined in a
glass burctte filled with a known amount of gas and
sealed with mercury, The liquid volumes were obtained
by decreasing the pressure on the compressed liquid
until a small gas bubble formed. Similarly, the gas
volumes were obtained by increasing the pressure on
the unsaturated gas until the liquid first appeared.
The burette was calibrated using the coexisting densities
of CO, determined by Michels; temperature control
and measurement were to 0.01°C.,

Absolute weight assignment was achieved by as-
suming that density determinations were subject to
error characterized by a standard deviation o, (not
necessarily independent of p) while temperature
measurcments have a characteristic standard deviation
ar. Using propagation of error, we then have

Var{p} = Var{pp} +Var{pT}, (19)

where Var{pp] is simply equal to o2 Var{pT] is
obtained using the asymptotic relation hetween a
saturation density p and temperature: |p—p,|=
By | t|P as follows

Var{pT'} =[Bor(p—p.) /(T—T.) (20)

From (19) and (20) errors and weights of quantities
of interest are obtained. For instance, the weight
assigned to In[ (p—p)/p.], 7 being the density at the
diameter, is given by

o052 - [+ @ T e

Even if o, or are constant, the weight assigned to
points near critical decreases rapidly due mainly to the
temperature-dependent term in (21). This fact is often
overlooked in graphical log-log analyses of coexistence
curves,

In fitting the Cook data we have assumed that

AND VICENTINI-MISSONI

or=0.01°, ,=10"% (constant relative error). We have
obtained best values for the diameter by fitting all
sums of coexisting densities. The best value of p, so
obtained was used to reduce the density differences.
Since pairs of densities were not obtained at all tem-
peratures, we have followed the practice of fitting
| p—p |=By |t |1, where 5 is the value of the diameter
calculated at /. The results of the fits are summarized in
Table XX. Since the closest point is over 2° from
critical, the fit is not very sensitive to the choice of 7.
A minimum standard deviation in the fit of the differ-
ence is obtained for T, about 36.34°C; the standard
deviation increases by 109, when 77, is varied by 0.12°C
around the optimum. The best parameters, and their
variations when T, changes by 0.12°C, are shown in
Table XXT and compared with the best values derived
from the Miinchen data. Except for the slope, the
agreement between the two sets of data is as good as
could be desired. The apparent low slope of the refrac-
tive index data may have the same explanation as in
the case of CO., namely that the LorentzLorenz
function LL/p goes through a maximum near the
critical density and is lower both in gas and liquid
phase below 7.

XI. DISCUSSION AND CONCLUSIONS

Refractive index data, recently obtained in the
coexisting phases of CO,, N0, and CCIF3, are particu-
larly useful for studying the asymptotic behavior of the
coexistence curve near the critical point. Unlike more
classical methods in which bulk densities are deter-
mined, refractive index determinations probe a thin
slab of fluid right near the interface; thus they are not

TarLe XIX. Coexistence curve of NoO. Cook’s data.a

Temperature
(°C) pr (g/em®)  pg (g/cm?)
20.00 0.789 0.159
21.00 0.782
22.00 0.775 0.171
23.00 0.766
24.00 0.752 0.183
25.00 0.746 0.190
26.00 0.731 0.197
27.00 0.723 0.205
28.41 0.218
28.45 0.707
30.00 0.689 0.234
31.00 0.671 0.246
32.00 0.655 0.260
33.00 0.638 0.277
34.00 0.295
34.02 0.617
36.39

#* 1. Cook, Trans. Faraday Soc. 4%, 716 (1953).
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Tarre XX. Fit coexistence curve of N:O (Cook).
prtea
Temperature =2p Err. Res. (pr.—p) /pe Err. Res. (p—pa) /pc Err. Res.
20.00 0.948 0.0016 0.0001 0.6970 0.0035 0.0003 0.6967 0.0007  0.0000
21.00 0.6845 0.0035 0.0030
22.00 0.946 0.0016 0.0035 0.6720 0.0034  0.0004 0.6042 0.0008 0.0014—
23.00 0.6550 0.0034  0.0060
24.00 0.935 0.0016 0.0021— 0.6270 0.0033  0.0046— 0.6317 0.0008  0.0001
25.00 0.936 0.0015 0.0015 0.6167 0.0032 0.0034 0.6133 0.0009  0,0000
26.00 0.928 0.0015 0.0038— 0.5865 0.0032 0.0073— 0.5948 0.0009  0.0010
27.00 0.928 0.0015 0.0011— 0.5718 0.0031  0.0013— 0.5742 0.0009 0.0011
28.41 0.5412 0.0010  0.0000—
28.45 0.5407 0.0031  0.0034
30.00 0.923 0.0015 0.0019 0.5054 0.0030 0.0049 0.5011 0.0011  0.0005
31.00 0.917 0.0014 0.0014— 0.4686 0.0030  0.0029— 0.4716 0.0011-  0.0001
32.00 0.915 0.0014 0.0007 — 0.4362 0.0029 ° 0.0024— 0.4377 0.0012  0.0008—
33.00 0.915 0.0014 0.0020 0.4015 0.0029 0.0013 0.3971 0.0013  0.0031—
34.00 0.3543 0.0014  0.0008
34.02 0.3581 0.0028  0.0057

2p.=0.90406--0.00176
Slope a=0.830-+40.055
Red. slope a*=a/2p,=0.92

s.d.=1.55

Optimum 7.=306.34
InB;=0.665540.0044
By=1.94540.007

3 =0.34914+0,0013

s.d.=1.24

affected by the presence of density gradients set up by
gravity in the highly compressible medium, except for
some curvature of the beam which is negligible up to a
few millidegrees from the critical point. A second
advantage, shared with other methods of wvisual
observation, is the direct determination of the critical
temperature. Furthermore, the analysis was simplified
by the fact that liquid and gas densities were deter-
mined at the same temperature. A drawback of the
method is that refractive indices have to be converted
to densities. However, we have shown that the use of
the Lorentz-Lorenz relation introduces only small
errors in the analysis.

In the data analysis, weight assignment had to be
done with care since even small temperature errors cause
large density variations when the critical point is
approached. Standard deviations of 0.001°C in tem-
perature and 0.0001 in refractive index were assumed

Tapre XXI. Parameters of the coexistence curve of N,O.
Errors indicate parameter change for 4-0.12° in 7.

Cook Refractive index

po=0.4524:0.001

Reduced slope=0.9240.07 0.80
InB1=0.66640.017

B;=1.9540.03 1.920
B1=0.349-4-0.0006 0.348
T:=36.34+0.12°C

36.42

and propagation of error was used to estimate errors in,
and give absolute weight assighment to, quantities of
interest such as LL= (n*—1)/(n2+2), LL;+LLg, etc.

The questions we have tried to answer are those
regarding the asymptotic behavior of the coexistence
curve, and the form of the next term, in the
nonclassical ~ expansion LL—LLoc=B* |t |4
BoE | ¢ [B2*- - - where + refers to the liquid and — to
the gas. We have fitted the data using the leading term
only and decreasing the range of | ¢]; the asymptotic
expression fits the LL— LLg data within their estimated
error only for |/ |u.x<0.003 and it is symmetric, i.e.,
Bit=—Bi, Bit =81, within their combined standard
deviations of about 39 in By and 159 in 8:. However,
on forming the difference LL—LLg, the asymptotic
expression is found to be valid over the full range of the
present data, |f|m.<=0.04; in fact, from other data
cxtending over larger ranges | ¢ [max is found to be as
large as 0.09, This indicates that there is near-can-
cellation of higher-order terms, and since it is plausible
that Bst and 8~ are the same, the coefficients Byt and
By~ cannot be very different. Assuming equality of
8.t and B, some conclusions can be drawn from the
present data on the values of Bst+ B;~ and of 8;. This
is done by forming the sum LLp+LLe in which the
leading term in the expansion drops out. The sum varies
only a few percent over the range of the present data,
about 10° below 7', and its temperature dependence is
in accordance with the law of the rectilinear diameter,
i.e., a straight line fits the data on the sum to within one
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or two times their estimated standard errors, its slope
being near unity in reduced units. However, by per-
mitting 8; to be slightly larger than unity, the fit can
be somewhat improved in most cases.

Best values for B; and 8; are obtained from fits of
the difference LLr—LLg over the whole range. The
values for B; are quite close together, from 1.92 to
1.97, but this may be accidental since B; is known to
vary widely; thus, Bi=1.43 in He, T,=5.2°K, and it is
2.15 for steam, T, =647°K. The values obtained for §;
from the fit over the whole range are 0.34504-0.0006
(COy, series I); 0.3475+£0.0006 (CO., series II);
0.34822:0.0007 (N;O) and 0.3542:0.007 (CCLF;).
However, when the range of ¢ is somewhat reduced, the
values of 8 vary by about 0.002 so that those for CQ,
and N,O must be considered equal. For CCIF; the data
are scarce and not very close to 7,; a larger error in 77,
is present and the value of 8 is correlated with the
choice of 7¢; thus we hesitate to conclude that this §;
value is higher. The values of the exponents obtained
here are quite close to those obtained for many other
gases and reinforce the intuition that 8y is universal.

The present data are sufficiently detailed to permit
study of the asymptotic hehavior. However, if older
data for CO; and N,O, with few points near 7, are
analyzed, the results for the asymptotic term are in
quite good agreement. This shows that for the co-
existence curve the asymplotic character can be
ascertained in the rather large range of | [max=0.09.
The difference in slope of diameter between the optical
and the older data is probably due to slight density
dependence of the function (n2—1)/(n242)p.

Some of the refractive index data were taken on
samples with known amounts of impurity. The prime
elfect of impurity is a shift in 7. The effect on By is
noticeable, but the exponent ; is virtually unchanged.

The present data, with a temperature precision of
0.001° and a precision in 7 of 10—, do not permit com-
plete analysis of the term beyond the leading one in the
temperature expansion of the coexisting densities.
However, knowledge of this term would be suggestive
in current theoretical developments, With data of the
same precision, one might gain more insight in this

AND VICENTINI-MISSONI

second term by enlarging the range of temperature.
However, real progress will come only if another break-
through in experimental precision can be achieved.
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