NOTE ON KIANG'S FORMULA FOR THE CRITICAL EXPONENT & IN WATER

J. STRAUB

Institute A für Thermodynamik, Technische Hochschule, Munich, Germany

Received 3 March 1970

Kiang's formula predicts δ near 6 in H₂O whereas experiments give a δ around 4.2.

Kiang [1] recently proposed a formula relating the critical exponent δ defined by P - $P_{\rm C} \sim (\rho - \rho_{\rm C})^{\delta}$ at T = $T_{\rm C}$ to the compressibility factor $P_{\rm C}/\rho_{\rm C} k_{\rm B} T_{\rm C}$:

$$P_{\rm c}/\rho_{\rm c} k_{\rm B} T_{\rm c} = \zeta (2 + 1/\delta)/\zeta (1 + 1/\delta)$$
 (1)

where P is the pressure, ρ the particle density and ζ the zeta-function. Eq. (1) follows from the droplet model for the liquid gas transition [2], if its formulas are applied also to droplets with few molecules only. $(\zeta(x) = \sum_{l} l^{-x})$, where l here counts the number of molecules within the liquid droplet.) A priori one should therefore not expect eq. (1) to be valid because the droplet model assumptions are made for large droplets only [2]. But this relation is in good agreement with experimental results for some simple liquids (CO₂, Xe, H₂, He) and is accurate [1] within 5 to 10% in the Van der Waals gas and for some lattices of the three-dimensional and the twodimensional Ising model ($\delta = 3$, 5.2, and 15, respectively). If the critical behavior of quantities like ρ - ρ_c or the curvature of the vapor pressure curve $\mathrm{d}^2P_{\mathrm{vap}}/\mathrm{d}T^2$ is calculated from the droplet model then only large droplets enter the results; but in [3] also $(\rho$ - $\rho_{\rm C})/\rho_{\rm C}$ at $T_{\rm C}$ and $(T_{\rm C}^2/P_{\rm C}){\rm d}^2P_{\rm vap}/{\rm d}T^2$ were calculated; thus the 'dangerous' zeta-functions enter also in some

numerical factors, and these were found [3] to agree approximately with experiment [4]. Thus as long as no better theory exists the accuracy of eq. (1) can be checked by experiment only. For H_2O it predicts [1] $\delta = 6.2$.

We present in fig. I H₂O isotherms at $T_{\rm C}$ from [5] together with corresponding data [6,7] for CO₂. They show $\delta=4.2$ in H₂O in a region which is for CO₂ sufficiently near the critical point to fix δ . According to [8] $\beta=0.35$ for H₂O $(0.2 \le \rho - \rho_{\rm C} \le 0.7; \rho_{\rm gas} - \rho_{\rm liquid} \sim (T_{\rm C} - T)^{\beta}$ at the coexistence curve). Thus the critical isotherm in fig. 1 seems not to be measured in a transition region between a Van der Waals region $(\beta=\frac{1}{2}, \delta=3)$ and the critical region. In addition scaling laws predict [8] $\delta=4.4$ in H₂O.

We conclude that δ in H_2O is nearer to the values usually observed in other phase transitions than to the higher values predicted by eq. (1) for polar gases. A possible explanation might be the long range dipole forces in H_2O . If the droplet model assumptions are extrapolated to very small droplets this approximation can be worse in H_2O than in other gases with a shorter molecular interaction range.

We thank Mr. D. Stauffer for suggestions.

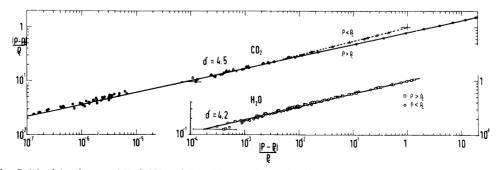


Fig. 1. Critical isotherm of H₂O [5] and CO₂ [6,7]. The H₂O values are shifted by a factor 10 in ρ - ρ_c/ρ_c .

References

- 1. C.S. Kiang, Phys. Rev. Letters 24 (1970) 47.
- M.E.Fisher, Physics 3 (1967) 255;
 M.E.Fisher and B.U.Felderhof, preprint series.
- 3. C.S.Kiang, preprint, Oct. 1969; D.Stauffer, Thesis, Munich 1970.
- 4. M. Vicentini-Missoni et al., J. Res. N. B.S. 73A (1969) 563.
- S. L. Rivkin et al., Teploenergetika 9 (1962) 57,
 10 (1963) 66, 11 (1964) 72, 13 (1966) 59;
 J. Tanishita et al., 7th Intern. Conf. on Properties of steam, Tokyo, 1968.
- of steam, Tokyo, 1968.
 6. A.Michels et al., Proc. Roy. Soc. (London) Ser. A 160,358;
 - M.P. Wukalowitsch, Teploenergetika 15 (1968) 81.
- 7. J. Straub, Thesis, Munich 1965; in preparation.
- 8. J.M.H.Levelt Sengers, 7th Intern. Conf. on Properties of steam, Tokyo, 1968.

* * * * *

0