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SUMMARY

Numerical analysis has been performed for predicting the dispersion of continuous released neutral gases (i.e. stack
gases) from elevated or near-ground sources within regions of complex topography. The three-dimensional non-steady
governing transport differential equations are solved by means of the numerical finite volume method, using a
collocated variable arrangement. The turbulence effects on the flow property transport are simulated by the
two-equation k-€ turbulence model. Comparisons between calculated and measured data are presented, showing
good agreement between them. The method is employed to predict continuous releases within a fictitious industrial
plant. The height of the source, the atmospheric stability class, the topography and the wind speed and primary
direction are varied, in order to point out the effect of topography on the pollutant’s dispersion.
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INTRODUCTION

The spreading of neutral or buoyant gases exciting industrial stacks within the atmospheric boundary
layer is a phenomenon, that has gained great attention in recent years, owing to the growing concern
about environmental pollution. It is mainly influenced by

o meteorological parameters (i.e. wind velocity, atmospheric stability class etc.)
o source data (i.e. mass flux, source height etc.)
« topography of the source’s neighbourhood.

In cases where the emitted gases spread over flat terrain or the source is much higher than the
surrounding buildings, the resulting concentration distribution can be calculated quite reliably with
gaussian-like plume models. When the stack’s height is comparable to the height of the surrounding
buildings, the distribution patterns are much more complicated, since recirculations, vortices induced by
the buildings etc. have a great impact on the flow field and further spreading.

The way the environmental flow field is affected by a given topography depends strongly on the
concrete geometrical conditions and it is almost impossible to make any general assumptions and
recommendations. Owing to the complexity of the flow it is necessary to treat the problem by solving the
governing Navier—Stokes equations and equations for the scalar transport, while applying suitable models
for the evaluation of further phenomena (ie. turbulence modelling).

This paper presents a method, which can stimulate the flow and spreading of continuously released hot
gases exiting an elevated or near-ground source for a given set of topographical, meteorological and
source data. The flow field in the topographically complex terrain is calculated by solving the steady-state
Navier-Stokes equations by means of the numerical finite volume method (a standard k—e model
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(Launder and Spalding, 1974) is employed to take turbulence effects on the flow variables transport into
account) and the transport of scalar quantities (i.e. enthalpy and mass fraction of pollutant) is calculated
by solving the appropriate transport differential equations for these quantities.

THEORETICAL ANALYSIS

Goveming equations

The mathematical effort is complicated by considering flows within complex topographies, which
demonstrate large recirculation regions and consequent distortion of the primary flow. Since the
obstacles (buildings) have limited extensions and recirculations are expected in all three space directions,
the problem’s solution should consist of the numerical treatment of the fully elliptic steady-state
Navier-Stokes equations. Furthermore, in order to include the highly turbulent nature of the pheno-
mena, a Reynolds average process is imposed on all instantaneous governing equations. That is, the
instantaneous value of any turbulent flow property & is represented by the sum of a time average
component & and a fluctuating component ¢ (i.e. ® = & + ¢). Therefore, the governing equations can
be expressed in the tensor notation as follows. .

o Continuity
a(pl)
ax;

=0 ®

¢ Momentum
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The last term on the right-hand side stands for body forces. The specific body forces f; include only the
gravitational vector g. This buoyancy term, when modelled using the Boussinesq approximation, can be
written as:

N
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where N is the number of the mixture components; i.e. buoyancy effects due to both temperature and
mass fraction gradients are being considered during the solution procedure. The turbulence correlation
u;u; is the time average of u;u; and represents the Reynolds stresses, which have to be modelled to
close the above set of equatlons. In the present analysis the k—e-model (Launder and Spalding, 1974) is
adopted to complete the closure problem of turbulent flow. From the generalized Boussinesq eddy
viscosity concept, by analogy with the laminar flow, the Reynolds stresses can be expressed as

—_— oU, U\ 2
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where §;; is the Kronecker delta function and u, is the turbulent viscosity
k2
o= pcp—e-

The differential governing equation for k can be expressed as
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The modelled equation for € is

a(plUe) 5 de k — ay €’
ox; =_ﬁ;(( +—~)ax) c‘ew'lax —CZPT ®)

Since the flow can be nonisothermal and the fluid is a mixture of air and dispersing stack gas there are
two more unknowns, besides the six from the above equations (U, V, W, P, k and €), necessary in
order to complete the problem’s closure, ie. the enthalpy k& (or equivalently the temperature T) and
the mass fraction C of the dispersing heavy gas. The equations for the conservation of these two scalar
quantities can be written as follows:

e Temperature

UT ,
———-a(gx ) 7”—-((”’ "‘)-g%)+psr ()

e Mass fraction of a mixture component

uc ' :
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The values for the model constants are (Launder and Spalding, 1974):
C1 Cz C O, O Pr‘ Sc,

i

143 192 009 1225 10 09 09

Since pressure variations are only small during the spreading, the molecular properties are assumed to
be depending only on temperature. For single mixture components the density is being calculated by
the ideal gas equation of state, while the remaining relevant properties (i.e. molecular viscosity, specific
heat capacity and thermal conductivity) are calculated by a ‘power low’ assumption g =g¢,,.(T/T,.)",
q being an arbitrary property and gq,,, its reference value at the reference temperature T,,. The
exponent m receives different values for different properties according to McEligot e al. (1970) The
mixture’s properties are calculated from formulas provided by Bird et al. (1970)

Boundary conditions

The set of elliptic partial differential equations mentioned above can be solved with the following
boundary conditions:

o Symmetry planes: All gradients normal to the plane and the normal velocity itself are set to 0.

o Ouilet planes: The gradients of all variables normal to an outlet plane are set to 0. The location of an
outlet plane should be far enough downstream from recirculation regions, so that the flow is directed
outwards from the calculation domain over the entire plane (flow must have one-way dominated
behaviour).

e Inlet planes: All variables receive prescribed values at an inlet plane. The profiles for the normal
velocity U (wind) and temperature T at the inlet plane are prescribed as functions of the height z
above the ground:

z \" aT
U=U,,,(;':;) T=T,.,+3;2
The exponent m and the temperature gradient d7/dz are determined by the assumed atmospheric
stability class (Pasquill, 1961). The tangential velocities ¥ and W are set to 0. For k a relative
turbulence intensity Tk is assumed (typical values Tu =1%...15%). For isotropic turbulence Tk is
related to k via k = 3(TuU)?. The distribution of € is deduced from the assumed uniform turbulent
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transport length scale k' /¢, which is assigned as 0-01L,,, L.,., is a characteristic length scale of the
flow domain.

Walls: The normal and tangential velocities are set to 0. For the other variables so-called wall functions
(Peric and Scheuerer, 1989) are employed, in order to calculate their profiles normal to the wall.

Numerical method

The whole set of partial differential equations for continuity, momentum, scalars and turbulence model
quantities with their initial and boundary conditions are first reduced to algebraic difference equations
using the finite-volume method (Patankar, 1980) by integrating them over small discrete control volumes
formed in the arranged numerical grid. A collocated grid arrangement is used, i.e. all variables are stored
in the centre of the control volume. In order to avoid chequerboard pattern oscillations, when solving the
pressure correction equation, which are likely to occur when using this variable storage scheme
(Patankar, 1980), a special interpolation procedure for the calculation of the velocities at the cell faces is
adopted (Hsu, 1981; Rhie, 1981, 1983).

The values of convective and diffusive fluxes through the cell faces are calculated by using upwind and
central differences respectively and weighing their contributions to the coefficients of the resulting
algebraic equation for each point P by means of the deferred correction scheme (Khosla and Rubin,
1987). The general structure of the final finite volume equation for a general variable @ is:

AP¢P= ZAN¢N+SU+S’¢P (8)
N

Ap, Ay are the finite volume coefficients for the point P and its six neighbours, SU and S§” are the
integrated source terms, S” being the linearized part. Equation (8) is solved with the iterative SIP*
method (Stone, 1968). The equation set, consisting of equation (8) written down for each unknown (U, V,
W, P, T, C, k and e) is solved with the SIMPLEY algorithm (Patankar and Spalding, 1972).

COMPUTATIONAL RESULTS AND DISCUSSION

The computations are validated by comparison with experimental data (from Slawson and Casnady (1967,
1971)) for a steady-state gas release out of a high stack over flat terrain. Figure 1 compares, on a centre
plane through the stack, the computed iso-concentration lines with the measured plume trajectory
(marked with o). The calculation domain has 82 grid points in the x-direction (parallel to the main
spreading direction), 36 grid points in the y-direction (perpendicular to the x-axis and parallel to the
ground) and 56 grid points in the z-direction (negative z-axis in direction of the gravitational vector g).
The numerical grid has a non-uniform spacing, being finer around the stack’s exit and becoming coarser
with increasing distance from the exit. About 2000 iterations are necessary to obtain a convergent
steady-state solution. The agreement between computed and measured data appears to be good.

The following computational results show the effect of the atmospheric stability class (atmospheric
stratification) on the dispersion of gaseous emissions. The calculation of Figure 1 (atmospheric stability
class C, i.e. neutral stratified environment) was repeated under variation of the stability class. One run
was performed for an unstably stratified environment (Pasquill class A) and another for a stably stratified
environment (Pasquill class F). Figure 2 shows the extensions of the same iso-concentration line (4000
ppm) for the three diffegnt stability classes. The iso-line reaches its largest downstream extension for the
stably stratified environment (lowest turbulence intensity, i.e. lowest mixing tendency with the surround-
ing air) and has the smallest extension for the unstable class, owing to the enhanced mixing with the air

in this latter case. The numerical result is also consistent with gaussian plume model predictions for
dispersion over flat terrains.

* Strongly implicit procedure.
tSemi-implicit method for pressure linked equations.
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Figure 1. Computed iso concentration contours on a centre place. Simulation with the present method of a measurement
performed in Stone (1968) and Patankar and Spalding (1972). Comparison with the measured (o) plume trajectory

In order to evaluate the influence of a complex near-source topography on the spreading of stack
gases, calculations were performed using as a reference case the topography of a fictitious industrial plant
with a chimney only slightly higher than the surrounding buildings (28 m v. 15-24 m). Figure 3 illustrates
as a paradigm the pollutant’s concentration on the ground for the basic topography and Pasquill class C.
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Figure 2. Iso-concentration lines on a centre plane for three different atmospheric stability classes (A: unstable, C: indifferent, F:
stable stratification)
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The wind velocity 20 m above the ground is 5 m/s, whereas the gases’ exit velocity is 4 m/s. The stack’s
exit is within the wake of the upstream located buildings and is being greatly influenced by the vortices
and recirculations induced by those buildings. This leads to a great overall enhancement of the
turbulence and the flow’s complexity and to a simultaneous reduction of the atmospheric stability class’s
significance on the dispersion process. This thesis is being emphasized by the numerical results
summarized in Table 1. The location of the maximal ground concentration relative to the stack’s location
(x=0, y=0) and the value of this maximum are shown for three different test runs with the basic
topography of Figure 3 and three different atmospheric stability classes (A, C and F). The differences
between the values are very small, underlining the reduction of the stability class’s significance for the
dispersion process.

The concrete topographical facts have a great influence on the spreading. Table 2 summarizes the
same quantities as Table 1 for four different test runs with topography variations. Test run (i), a
reference case, uses the basic topography from Figure 3. In test run (ii) the building on the stack’s luv
side (marked as building V in Figure 3) has been omitted, while in test run (iii) the building on the stack’s
lee side (marked as E in Figure 3) has been left out. Finally in test run (iv) the stack’s height has been
increased, now being 45 m instead of 28 m, while the rest of the topography remains unchanged. The
results imply, that the omission of the building on the stack’s luv side allows that emitted gases to spread
further and mix better with the surrounding air than in the reference case, since the influence of a.
downwards directed vortex, close to the stack’s exit, is now no more present. Omitting the building on the
stack’s lee side causes the gases to fall on the ground earlier and with an increased peak concentration
value, since an upwards directed vortex, induced by the impact of the primary flow on the front side (luv
side) of the building, that lifted and carried the gases further during the reference case, is now missing.
Increasing the stack’s height moves the source out of the vortex-affected regions of the calculation
domain and allows a further spreading and better mixing of the emitted gases with the surrounding air.

Figure 4 shows the pollutant’s ground concentration for the basic topography and Pasquill class C, but
with the wind coming from another direction (west instead of north in the previous computations). The
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Figure 3. Top view of the terrain of a fictitious industrial plant; iso-concentration lines on the ground for Pasquill class C
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Table 1. The value of the maximal ground concentration and
its Jocation for different Pasquill classes; basic topography

Pasquill C X Y,

class (ppm) (m) (m)
A 11700 45 0
C 11700 50 0
F 11 500 48 -10

Table 2. The value of the maximal ground concentration and its location for

different topographies
Test Comments C X Y,
run (p;-f) ) m
) basic topography 11700 45 0
(i) luv building omitted 9100 80 0
(iii) lee building omitted 12300 45 -8
@iv) higher stack 4400 135 -10

distribution pattern is once again quite different, because of the relative topographical changes (the
building on the stack’s luv is now higher than in Figure 3 and causes the pollutant to fall down earlier).

The computations were performed on a 100 X 72 X 32 non-uniform numerical grid on the CRAY
Y-MP supercomputer system of the Technical University of Munich and each required about 3000
iterations to converge.
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Figure 4. Ground concentration distribution for the basic topography and Pasquill class C. Wind direction changed by 90°.
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CONCLUDING REMARKS

A method is presented, capable of calculating the dispersion of neutral or buoyant gases exiting a stack
over topographically complex terrains. A finite-volume scheme is used for the numerical treatment of the
governing equations. The turbulent nature of the flow is accounted for by a standard k-e model.
Calculations were performed for different topographies and meteorological conditions. They underline
the significance of the concrete topography on the spreading in cases where the emitting stack is not
much higher than the surrounding buildings. The topography’s influence exceeds by far the influence of
the natural turbulence in the environmental flow (expressed in terms of an atmospheric stability class) on
the spreading. A strong correspondence has been demonstrated between the distortion of the primary
flow by the buildings and the pollutant concentration distribution. The presented simulations clearly
indicate the complexity of the flow and of the concentration distribution patterns for emissions within
topographically complex terrain. They demonstrate the method’s feasibility and capability of producing
correct results, within the ranges of engineering accuracy requirements.
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NOMENCLATURE

O

mass fraction of mixture component k

body force in i-direction

gravitational vector

turbulent kinetic energy

length scale

exponent for wind velocity profile

pressure

Prandtl number

turbulent Prandtl pumber

source term in temperature equation

source term in mass fraction equation
Schmidt number

turbulent Schmidt number

time

temperature

turbulence intensity

velocity in x-, y- and z-direction

space co-ordinates

expansion coefficient due to mass fraction differences of component k(= —(1/pXdp/3C,))
thermal expansion coefficient (= —(1/pXap/aT))
dissipation rate for turbulent kinetic energy k
dynamic viscosity

eddy viscosity

density

general tranported quantity
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