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Numerical analysis has been performed for predicting the dispersion of heavy gas clouds
released without initial momentum (i.e. dense gas puffs) within regions of complex topography.
The three-dimensional non-steady differential equations governing transport are solved by
means of the numerical finite volume method, using a collocated variable arrangement with
a fully implicit integration over time. The turbulence effects on the flow properties are simulated
by the two-equation k-e turbulence model. Comparisons between calculated and measured
data are presented, showing good agreement between them. The method is also used to
predict a chlorine release within a fictitious industrial plant. The location of the release site,
the atmospheric stability class and the wind direction are varied, in order to show the effect

of topography on the cloud dispersion.
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A typical accident scenario for industrial plants is the
sudden release of a certain amount of hazardous gas,
which is either stored or being transported. The released
gas (usually colder, i.e. denser, than the ambient air)
forms a dispersing cloud due to advection by wind and
diffusional as well as turbulence effects. Exact knowledge
about such dispersion processes is very important for
evaluating safety risks in industrial plants.

In recent years, many so-called box models have
been developed' in order to evaluate the dispersion
of heavy gas clouds. They all contain empirical
constants whose values have been estimated from
experimental data. The heavy gas dispersion is usually
described by mass conservation assumptions and restric-
tions. However, none of these models takes into
account the topography of the surrounding terrain, a
fact that makes them irrelevant for practical situations
- a release is much more likely to occur within a
terrain of highly complex topography (industrial plants,
ship terminals etc.) than over a flat area.

The exact evaluation of heavy gas cloud dispersions
over non-flat terrain requires exact knowledge about
the environmental flow field within that region and
over and around the discrete obstacles (buildings etc.)
that are situated there. However, the complexity of
the flow makes it necessary to treat the problem by
solving the governing Navier-Stokes equations and
equations for the scalar transport, while applying
suitable models for the evaluation of further phenom-
ena (i.e. turbulence modelling).
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This article presents a solution procedure for
heavy gas dispersion phenomena, that takes into
account the topography of the terrain around the
release site. In the assumed release scenario, a certain
mass of heavy gas is released at time ¢ = 0 at a certain
location within the calculation domain. The release
may be continuous or sudden and the source may be
elevated or near the ground. In the case of a sudden
release, no initial momentum is assumed for the
released heavy gas; i.e. from the calculation’s point
of view, the mass fraction of the heavy gas at the time
of the release is set to 1.0 and the temperature is set
equal to that of the heavy gas within the source, but
no changes are made to the velocities or turbulent
quantities of the flow field. Due to wind advection,
diffusion and turbulent effects, the heavy gas disperses
within the calculation domain, and flows preferably
around and in some cases over the buildings and
obstacles situated in it (low obstacles). The method
predicts the temporal development of the dispersion
and estimates the flow field quantities and concen-
tration distribution at any given time for all discrete
points of the calculation domain.

Theoretical analysis

Governing equations

Since the obstacles (buildings) have limited extensions,
and recirculations are expected in all three space
directions, the problem’s solution should consist of
the numerical treatment of the fully elliptic non-steady-
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state Navier-Stokes equations. Furthermore, in order
to include the highly turbulent nature of the phenom-
ena, a Reynolds average process is imposed on all
instantaneous governing equations. The instantaneous
value of any turbulent flow property @ is represented
by the sum of a time-average component ¢ and a
fluctuating component ¢ (i.e. @ = @ + ¢). Therefore,
the governing equations can be expressed in the tensor
notation as follows.

o Continuity
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® Momentum
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The last term on the right-hand side stands for body
forces. The specific body forces f; include only the
gravitational vector g. This buoyancy term, when
modelled using the Boussinesq approximation, can be
written as:

o1 = oo l1-BT-Tol 1+ 3 G- Ceo)

where N is the number of the mixture components,
i.e. buoyancy effects due to both temperature and
mass fraction gradients are being considered during
the solution procedure. The turbulence correlation
ua; is the time average of uu; and represents the
Reynolds stresses, which have to be modelled to close
the above set of equations.

In the present analysis, the k—e model* is adopted
to complete the closure problem of turbulent flow.
From the generalized Boussinesq eddy viscosity con-
cept, in analogy with the laminar flow, the Reynolds
stresses can be expressed as:
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where §; is the Kronecker delta function and g, is the

turbulent viscosity:
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The differential governing equation for k& can be

expressed as:
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The modelled equation for e is:
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Since the flow can be non-xsothermal and the fluid is
a mixture of air and dispersing heavy gases, there are
two more unknowns, besides the six from the above
equations (i.e. the three components of the velocity
vector U; (= U, V, W), the pressure P (implicitly
introduced by Equation (1) via the dependency of the
gas density p on P), k and €), which are necessary in
order to complete the problem’s closure, i.e the
enthalpy 4 (or equivalently the temperature T) and
the mass fraction C of the dispersing heavy gas. The
equations for the conservation of -these two scalar
quantities can be written as follows.

® Temperature
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® Mass fraction of a mixture component
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The values for the model constants* are shown in
Table 1.

Boundary conditions

The set of elliptic partial differential equations men-
tioned above can be solved with the following boundary
conditions.

® Symmetry planes: All gradients normal to the plane
and the normal velocity itself are set to 0.

® Qutlet planes: The gradients of all variables normal
to an outlet plane are set to 0. The location of an
outlet plane should be far enough downstream from
recirculation regions so that the flow is directed
outwards from the calculation domain over the
entire plane (the flow must have one-way dominated
behaviour).

® Inlet planes: All variables receive prescribed values
at an inlet plane. The profiles for the normal
velocity U (wind) and temperature T at the inlet
plane are prescribed as functions of the height z
above the ground:

Table 1 Model constants

C; C, C. o, O Pr, Sc,

1.43 1.92 0.09 1.225 1.0 0.9 0.9

392 J. Loss Prev. Process Ind., 1994, Volume 7, Number 5



Heavy gas cloud dispersion within topographically complex terrain: G. A. Perdikaris and F. Mayinger

The exponent m and the temperature gradient
87/3z are determined by the assumed atmospheric
stability class®. The tangential velocities V and W
are set to 0. For k, a relative turbulence intensity
Ty is assumed (typical values Tu = 1-15%). For
isotropic turbulence, Tu is related to k via k =
3/2(Tu U)2. The distribution of € is deduced from
the assumed uniform turbulent transport length
scale k'/e, which is assigned as 0.01 L,,,, where
L. is a characteristic length scale of the flow
domain.

® Walls: The normal and tangential velocities are set
to 0. So-called wall functions® are employed for the
other variables, in order to calculate their profiles
normal to the wall.

Numerical method

The whole set of partial differential equations for
continuity, momentum, scalars and turbulence model
quantities with their initial and boundary conditions
are first reduced to algebraic difference equations
using the finite-volume method’ by integrating them
over small discrete control volumes formed in the
arranged numerical grid. A collocated grid arrangement
is used, i.e. all variables are stored in the centre of
the control volume.

In order to avoid checkerboard pattern oscillations
when solving the pressure correction equation, which
are likely to occur when using this variable storage
scheme’, a special interpolation procedure for calcu-
lation of the velocities at the cell faces is adopted®-°.

The values of convective and diffusive fluxes
through the cell faces are calculated using upwind and
central differences, respectively, and weighing their
contributions to the coefficients of the resulting
algebraic equation for each point P by means of the
deferred correction scheme!'. The general structure
" of the final finite volume equation for a general
variable @ is:

ApDp =D AyDy + SU + SPD, (8)
N

where Ap, Ay are the finite volume coefficients for
the point P and its six neighbours, and SV and S? are
the integrated source terms, S¥ being the linearized
part. Equation (8) is solved with the iterative strongly
implicit procedure (SIP method)!?. The equation set,
consisting of Equation (8) written down for each
unknown (U, V, W, P, T, C, k and ¢), is solved using
the semi-implicit method for pressure-linked equations
(SIMPLE) algorithm'?,

Results and discussion

Figure 1 shows a comparison between the calculated
results and experimental data' for a steady-state heavy
gas dispersion (Freon R12) out of a very short stack
and around a surface-mounted obstacle. The figure
shows measured and calculated heavy gas concentration
values on the side walls of the obstacle, located 24 cm

downstream of the heavy gas source. The calculation
domain had 62 grid points in the x-direction (parallel
to the main spreading direction), 52 grid points in the
y-direction (perpendicular to the x-axis and parallel to
the ground) and 17 grid points in the z-direction (the
negative z-axis is in the direction of the gravitational
vector E) The numerical grid is equi-distant, with a
uniform spacing of 12 mm in all space directions.
About 2500 iterations are necessary to obtain a
convergent steady-state solution. The obstacle is shown
unfolded on a z-plane parallel to the ground. The
main direction of the flow is from left to right. All
computed as well as measured values are very small
(less than 2 vol%, a limiting value that can also be
obtained from the theoretical model in Reference 15).
The agreement appears to be good, and the computed
values are symmetric along a centre plane through the
calculation domain, while the measured values are
slightly inconsistent with the symmetrical character of
the test case.

Figures 2 and 3 show the simulated temporal
development (10s, 70s, 130's, 180 s) of a suddenly
released heavy gas cloud (chlorine) on a z-plane
parallel and about 2.5 m above the ground within a
fictitious industrial plant with 25 discrete buildings.
(Figure 4 shows a top view of the topography of the
investigated fictitious plant.) The iso-concentration
lines correspond to the limit of lethality for chlorine
(40 ppm)*. The release of 50 m?® of chlorine occurred
at different locations for the two test runs (marked as
® in Figure 4) and the wind direction (from left to
right in both figures) changed from south in Figure 2
to west in Figure 3. Although the calculation domain
is much shorter in the latter case, one can see that it
takes almost the same time in both cases until the
40 ppm iso-concentration line disappears from the
calculation domain. This is due to the main orientation
of the buildings, i.e. located with their shorter or
longer sides perpendicular to the wind direction
(Figures 2 and 3, respectively). When the longer sides
are perpendicular to the wind direction, there is a
greater resistance to the cloud dispersion. Figure 2
shows how streets with a main axis parallel to the
main wind direction allow the gas cloud to form a
leading current and make its dispersion easier.

The test run with the wind blowing from the
south was repeated with variation of the atmospheric
stability class. The first run was performed for an
unstably stratified environment (Pasquill class A), the
second for a neutral environment (Pasquill class C)
and the third for a stably stratified environment
(Pasquill class F). Figure 5 shows the time plot of the
chlorine concentration at a fixed location (marked as
X on Figure 4) for the three test runs. All three time
plots are almost identical. This implies that the
turbulence enhancement caused by the buildings lies
orders of magnitude above the natural turbulence of
the environmental flow (expressed by the stability
classes), so that the latter has almost no influence on
the dispersion of the cloud over topographically
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Figure 1 Comparison between computed (®) and measured (1) values for the Freon R12 concentration on an obstacle’s side walls
{continuous R12 release; experimental data from Reference 14, computations using the present method)
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Figure 2 Temporal development of the 40 ppm chlorine iso- Figure 3 Temporal development of the 40 ppm chiorine iso-
concentration line on a z-plane at height 2.5 m above ground; concentration line on a z-plane at height 2.5 m above ground;
wind coming from the south: (—} 10s; (----} 70's; {---) 130 s; wind coming from the west: {(—} 10s; {----) 70s; {---) 130 s;
(---) 180 s after release {- - -} 180 s after release
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Figure 4 Top view of the topography of the fictitious industrial
plant
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Figure 5 Time plots of the chlorine concentration at the location
marked as X (see Figure 4) for three different atmospheric
stability classes (A: unstable; C: indifferent; F: stable
stratification); wind coming from the south

complex terrain. The dispersion is ruled entirely by
the flow regime, induced by the specific topography.
All these calculations were performed on a Cray Y-
MP computer at the Technical University of Munich
and required almost four hours of processor time each.

Concluding remarks

A method is presented which is able to calculate the
dispersion of heavy gas clouds over topographically
complex terrains. The numerical treatment of the non-
steady three-dimensional governing equations was
performed by means of the finite-volume method. The

turbulent nature of the flow was accounted for by the
k—e model (with no special empirical adjustment for
environmental flows), which is shown to contribute
significantly to the accurate calculation of the variations
in flow field quantities.

The prediction can be performed for different
topographies, meteorological conditions, source data
and released gases. During the development of the
method, great attention was paid to making the
procedure flexible and suitable for many different
release scenarios. The calculations require huge compu-
tational effort, which makes the method unsuitable for
faster-than-real-time predictions during an accidental
release. It should be used while planning a new plant,
in order to evaluate the safety hazards for different
potential accidents and to increase the safety situation,
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Nomenclature

Cy Mass fraction of mixture component k
L Body force in i-direction

g Gravitational vector

k Turbulent kinetic energy

L Length scale

m Exponent for wind velocity profile

P

Pressure
Pr Prandtl number
Pr, Turbulent Prandtl number
S Source term in temperature equation
Se Source term in mass fraction equation
Sc Schmidt number
Sc, Turbulent Schmidt number
t Time
T Temperature
Tu Turbulence intensity
U, v, w Velocity in the x-, y- and z-directions
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X, ¥,z Space coordinates € Dissipation rate for turbulent kinetic energy &
a Expansion coefficient due to mass fraction differences 7 Dynamic viscosity
1 ap I Eddy viscosity
of component k{=——- —+ Densit;
P 2Cx 12 ® General d quanti
B Thermal expansion coefficient <= . ‘—) 5%) eneral transported quantity
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