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ABSTRACT F, G, H = perturbation functions
In the well known "Bénard-problem" where F = Fourier number
) ) ; o
the density is taken to be inverse 2
proportional to the temperature and the g = gravitational constant, m/s
basic temperature distribution is given by
the steady linear conduction profile the Gr = Grashof number
onset of convection is described by one
parameter only, the critical Rayleigh H = depth of layer, m
number. Using a parabolic temperature -
density relationship the present analysis ierfc = conjugate integral error-
shows that the influence of the density function
anomaly of water can be described by two
parameters when the basic temperature K = wave number
profile is a steady-state one; and by
three parameter when it is a time -~ depen- L, M = number of terms
dent one. The two additional parameters
are the nonlinearity N which is a measure N = nonlinearity
for the deviation of the real density 2
distribution from the linear one and the o) = pressure, N/m
startparameter ¥ which essentialy depends
on the initial isothermal temperature. For Pr = Prandtl number
a semi-infinite water layer the marginal . 2
stability limits are calculated for two q = heat flux, W/m
cases: a) constant temperature and b)
constant heat flux at the lower boundary. Ra = Rayleigh number
For a normal fluid the calculate critical
Rayleigh numbers, Ra, = 213 and Ra, =135, t = time, s
are in excellent agreement with experimental
data. For water the theory predicts a strong T = temperature, °c
stabilizing effect of the density anomaly
for low and moderate heat flux rates w = (u,v,w) = velocity, m/s
whereas a week destabilizing is observed at
very high rates. X, Y, 2 = length coordinate, m
B = volumetric exp. coeff., K !
NOMENCLATURE by = startparameter
a = thermal diffusivity, m2/s ® = temperature
B1 = 64,817 - 10 6, first therm.exp. N) = temperature scale, K L
coeff., K"1 5
-6 J = kinematic viscosity, m“/s
B2 = -7,798 - 10_~, second therm.exp. 3
coeff., K2 Q = density, kg/m
C,/D, = coefficient € = 999,831 kg/m3
D = d/dZ = deviation : G = eigenvalue
erf = errorfunction T = time



trial functions

Sy

v = Nabla operator
VZ = Laplace operator
<i3 = two-dimensional Laplace
operator
Subscripts
C = critical
1,m,p,q = indizees
o] = reference state
ref = reference scale
w = wall
Superscripts
— = vector
vV = static quantity
A\ = perturbated quantity
—_— = basic state
i = differentiation with respect
to 2
INTRODUCTION

The well known Bénard problem where a
horizontal layer of fluid is heated from
below or cooled from above and its ex-
tensions have been widely studied. The
results are summerized by Chandrasekhar (1)
and more recently by Koschmieder (2).

In the classical problem the basic tempera-
ture distribution is the steady-state
conduction profile, the temperature gradi-
ent being constant. However, in many
situations (in particular, in geophysical
problems) the onset of convection in a
fluid in the presence of a nonlinear
temperature profile (time-dependent or
resulting from internal heat generation)
and/or with nonlinear temperature-density
relationship (usualy water near freezing
point) is of practical importance.

For a volumetrically heated fluid layer,
Sparrow et al (3) have shown by means of
linear stability analysis that the critical
Rayleigh number depends on the heat flux
conditions at the upper and lower boundary
and on a s=cond parameter describing the
nonlinearity of the basic temperature
profile. Suo—-Anttila et al (4) used the
Landau method to determine the heat trans-
fer to the upper and lower surface.
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Theoretical studies of the onset of con-
vection with a nonlinear basic temperature
profile were carried out by Curie (5) and
Nield (6). As only the stability of the
layer with respect to infinitesimal small
disturbances is considered, the quasi-
static assumption has been made. Further-
more, the actual time~dependent basic
temperature profile has been approximated
by a stepwise linear profile.For the case
of a time-varying lower surface temperature
Curie (5) predicted a minimum Rayleigh
number of 1340 (both boundaries rigid),
which is considerabkly smaller than the
critical value for a linear profile.Using
Galerkins method, for the case of constant
heat flux at the lower boundary Nield (§)
obtained a minimum critical Rayleigh
number of 601 for both boundaries rigid
and 185 for lower boundary rigid and the
upper boundary free.

The influence of the density anomaly of
water at 4 ©C has been studied by seviral
authors. Veronis (7) obtained 6,72 N
for the critical Rayleigh number by ana-
lytical means when the upper surface 4
temperature was held at 4 ©C and 2,72
when it was at 8 ©C. The temperature of
the lower surface was 0°C and both sur-
faces were stress-free boundaries. An
experimental study where the fluid layer
was heated from below and the upper sur-
face was held at uniform temperatures
between 0 ©C and 20 ©C was carried out

by Legros et al.(8). The effect of
buoyancy on the melting and freezing
process was studied by Boger and
Westwater (9), Yen (10), Yen and Galea
(11) , Zu-Shung Sun et al.(12), Seki et al.
(13), Tankin and Farhadieh (14), Farhadieh
and Tankin (15) and Forbes and Cooper (16).
In these papers the Rayleigh number is
defined by using internal gquantities
(usualy the depth of the unstable layer)
which are not known in advance. Therefore,
some difficulties arise if one tries to
compare these results with the classical
Bénard problem for vanishing density ano-
maly. Merker et al. (17) avoided this
problem by defining all dimensionless
parameters with external guantities. They
found that the critical Rayleigh number
depends on the hydrodynamic and thermal
boundary conditions and on the nonlinearity
N, which is a measure for the deviation

of the actual density profile from the
linear one. The calculated marginal
stability limits agree very well with
experimental results and become identical
with those for the classical Bénard prob-
lem if N -== O,

Little work has been done on the onset of
convection in a semi-infinite water layer
with a time-dependent temperature profile
and a nonlinear density-temperature
relationship. Onat and Grigull (18) studiec
the onset of natural convection in an
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semi-infinite air layer heated from below
with constant heat flux. A modified Ray-
leigh number was defined and a week depen-
dence on the Prandtl number was found. In
a more recently paper by Genceli and Onat

(19) new data are reported and the average
value of the measured critical Rayleigh
number was found to be 145 with a very
week dependence on the heat flux rate. No
marginal stability limit was found in an
analytical study using linear stability
analysis and the quasi-static assumption.
In an interesting paper on variational
method, Pnueli (20) predicted that hexa-
gonal cells are the prefered shapes in an
semi-infinite layer.

In the present paper the marginal stability
limits for a semi-infinite horizontal water
layer near freezing point cooled or heated
from below with time-dependent basic tempera-
ture profile are calculated. The temperature-
density relationship of water near the
density maximum is approximated by a para-
bolic expression. We admit that this
approximation is valid in the range O e

to 8 ©C only but it is believed that some
typical features of the present problem can
be shown using this simplified equation of
state.

MATHEMATICAL FORMULATION

We consider a horizontal water layer of a
depth H (later on we will concentrate on
the case H-+ @) which may be heated or
cooled from below by a constant heat flux
qw or by maintaining the lower surface at
an uniform temperature To with Tw:i T .
Both, the lower and upper surfaces aré
considered to be rigid no-slip boundaries.

The appropriate governing egquations, sub-
ject to the usual Boussinesq approximation,
are

Wy wvw = LEG- L+ VYW ()
0

%¥ +NT = a‘V'T (2)

v-w =0 (3)

where the static pressure 'ap/‘é z =-Q.9 has
already been subtracted from the equation
of momentum. The parabolic expression for
the temperature-density relation is given

by
R/e,=

according to Merker

{4+ BT + BT
(21).

(4)

A similar relation was used in (16,17)
whereas relations with a quadratic term
only (7) or cublc relations have also been
applied (12,13)%

"One should be keep in mind that eqn. (4)
is valid for normal fluids, B>=0, if one
substitutes B4 -B.

The corresponding boundary conditions are

at all t: u=v=w=0
at all t: T=TO

t<0: T=Tq

on z=0,H
on z=H

(5)

t=0: on z =0

Non-dimensionalizing, the definitions

for the scaling

using

- -] -
Lyes = Hr tr e = H /a, Uref = a/H
T = )= a) (Tw - To)

and defining the perturbation wvariables in
the usual way

VR =% &),
T (X t) =T (z,t) + T (§,t) (7)
P (X t) = I_) (z,t) + P (X,t)

one can reduce egn. (1) to (4) and, after

eliminating the pressure and by neglecting
products and powers of the perturbation
variables one obtains the linearized per-
turbation equations

(- Prv)v w——RaPr(1+X+N@)V &
(’aT V)@—_@W

where the temperature distributions ®ana
8 for the pure conduction case are known.
For small values of the cooling or heating
time, respectively (Fourier number is con-
sidered to be small) one obtains for

(8)
(9)

a) Tw = const: @(Z,Fo ) = erf(#a) (10)
b) éw = const: 0O(z,Fo ) =% 2 ierfC(E%%)

(1)

Subsequently we limit our attention to
the case of a semi-infinite layer, H-» @.

From the argument z/2¥Fo in egn. (10) and
{(11) it can be seen that a new length
scale for this case, H+» oo, may be con-
structed with Lyef = VatK. In doing so we
assume that the growth-rate of any per-
turbation is much greater than the
growth-rate of the basic conduction pro-
file. It is clear that this quasi-static
assumptlon is asymptoticaly valid in the
limit qw——-o or |Ty = Tol=0, respectively
and it may in fact be justified a posteri-
ori by the theory which is presented in
this paper.

Seeking solutions of (8) and(9)
seperatlng variables
F(z) « H(x,y)-exp (G7T)
é G(z) * H(x,y)-exp (GT)
results in
16 -pr (p%-x2)1 (D%-k%)F
=k° Ra Pr(1+y+ N®)G

by

w (12)

(13)
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6 - ®®-x¥H16=-0F (14)
where the function H (x,Yy ) must satisfy
the wave equation

VZH + sz

(0] (15)

For Greel1 = O all perturbation will be
damped and the basic state remains stable
whereas for Gpgeel11> 0O perturbations will
grow and the basic state is called unstable;
G reell = O refers to neutral stability. If
Gr ell = 0 but Glmag # G an oscillating
mOthn occurs (overstability) and if Qreell

imag = O the basic state is called
marglnag stable and the principle of ex-
change of stability is wvalid. For the
boundary conditions for F(z) and G(z) it
follows from egns. (5)

z O: F' = F = 0 and

z = @ :F' F=G=0 (16)
By applying a similar procedure to egn (8)
and (9) as that given in the appendix by
Chandrasekhar (1) it can be shown that
there may be domains where overstability
occurs. However, we calculate marginal

stability limits by setting &= O.

METHOD OF SOLUTION

The unknown eigenfunctions F(z) and G(z)
are approximated using Galerkins method,

L
F(z) = 2, C; @ (2)
1=1

17)
M
G(z) = %; D W,
where @, (z) and‘P (z) are linearly in-

dependent trial fullctions which must
satisfy the boundary conditions on z = O
and z = @ . Substituting (17) into (13)
and (14) and setting G=0 results in a
residual, because (17) is not a suitable
solution of (13) and (14). Equations for
the coefficients C; and D_ can be estab-
lished by requiring that These residuals
be orthogonal to each of the approximating
functions, Denn (22)

Z Ci1Ay,p * k2 RaZDm m,p = ©

L (18)
D + C.L = Q
I{:— o, ; 171,q
where

SUNCOL §(Q) o + 2k b, &, + K e, )dz
o= §CHy v NG Ymdz

B = ?(%‘, Yoo + K Y Ym)dz
T =i
Ll,q = g@ ch‘ LPLdZ

Since the error-function erf(x) in the
solution of the conduction profile
behaves asymptotically like exp (- -x2) as
X+ 00, we assume trial functions of the
form

¢, (2) = 21 exp (-12%)
[a) z™ exp (-mz?) (19)
(z}) =< -
Lym lb) (1+22) z" ! exp (-mzz)

Substituting (19) in (18), truncating the
approximations(17) after the first term,
L =M =1, and carrying out all the
necessary integrations leads to algebraic
equations of the form

a) T, = const : Ra = £, (k, T N) (20)
b) éw = const : Ra = f2 (k"J" N) (21)
Note, that in contrast to the ordinary

Bénard problem the reference temperature
D is different for both cases.

RESULTS FOR NORMAL FLUIDS

From (20) and (21) follows with N= K‘: 0
for a normal fluid

=]
]

const: Ra_ = 213, k_ = 1,475
c c

g, = const: Ra, = 135, k, = 1,172

(22)

Figure 1 shows that the calculated critical
Rayleigh number for éw = const corresponds
excellently with experimental data by
Genceli and Onat (19) even though only the
first term in (17) was considered in the
analysis. Furthermore, the small slope
between the theoretical and experimental
results justifies the gquasi-static
assumption.

RESULTS FOR WATER

For case a, figure 2 shows the critical
Rayleigh number Ra  as a function of

the nonlinearity N€and figure 3 the time
tc as a function of the heat flux rate

q,, for various values of the startpara-
méter y and the initial temperature 1,
respectively. It can be seen that the
density anomaly has a very strong stabili-
zing effect. Only for heat flux rates
greater 10 w/m2 a week destabilizing
effect is visible. However , it should
be noted that for ¢ _ = const convection
occurs in any case after the critical
time t..
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For case b, figure 4 shows the critical 9.
Rayleigh numer as a function of the
nonlinearity N and figure 5 the time tC

as a function of the temperature diffe¥ence
|Tw - Tol for various values of the start-
parameter ¥ and the initial tem erature-ro, layer of water formed by melting ice
respectively. For heating and <4 OC and from below, Physics of Fluids, Vol.11,
for cooling and Tg™>4 ©C the stratification p. 1263-1270, 1968

is stable, this result is trival. The 11. Yen, Y.-C., Galea, F., Onset of con-
effect of the density anomaly is very simi- vection in a water layer formed

lar to that case a; there is a week des- continously by melting ice, Physics of
tabilizing effect for ITW - Tol= 1. Fluids, Vol. 12, p. 509-515, 1969

Sun, 2.-S., Tien, C., Yen, Y.-C.,
Thermal instability of a horizontal
layer of liquid with maximum density,
AIChE J., Vol. 6, p. 910-914, 1969
Seki, N., Fukusako, S., Sugawara, M.,

A criterion of onset of free convection
in a horizontal melted water layer with
free surface, J. Heat Transfer, Trans.
ASME, Vol. 99, p. 92-98, 1977

Tankin, R.S., Farhadieh, R., Effects

of thermal convection currents on
formation of ice, Int.J. Heat Transfer,
Vol. 14, p. 953-961, 1971

Farhadieh, R., Tankin, R.S., A study

of the freezing of sea water, J. Fluid
Mech., Vol. 71, p. 293-304, 1975
Forbes, R.E., Cooper, J.W., Natural
convection in a horizontal layer of
water cooled from above to near free-
zing, J. Heat Transfer, Trans. ASME,
Vol. 97, p. 92-98, 1975

Merker, G.P., Waas, P., Straub, J.,
Grigull, U., Einsetzen der Konvektion
in einer von unten gekiihlten Wasser-

Boger, D.V.,
of buoyancy
process, J.

Westwater, J.W., Effect

on the melting and freezing
Heat Transfer, Trans.ASME
Vol. 89, p. 81-89, 1967

10. Yen, Y.-C., Onset of convection in a

12.

However, as the expansions (17) are
truncated after the first term the calcu-
lated critical Rayleigh numbers may be

still ~ 10 % too large. 13.

CONCLUSION 14.

Using linear stability analysis the onset
of convection in a semi-infinite water
layer taking the density anomaly into
account has been studied. For a normal
fluid the results are in excellent agree-
ment with experimental data. The results
are in qualitative good agreement with
experimental or analytical studies on
finite water layer and a time-dependent
temperature profile.
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16.
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