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Abstract-—Shape factors for steady heat conduction from single bodies and for various configurations of

such bodies are often presented in heat transfer textbooks. These presentations are not always clear.
Using a single sphere in an infinite medium as an example, a scheme is developed to obtain the shape

factor for the hemisphere, for two spheres, a sphere near an isothermal surface and near an adiabatic surface.
This scheme can also be applied to other bodies such as ellipsoids, circular discs, pieces of wire and

ribbons.

The introduction of a “shape resistance™, as the reciprocal of the shape factor, and of a “distance func-
tion”, characterizing the influence of the mutual distance of the bodies, simplifies the presentation of the

scheme.

The overall shape resistance of a configuration can be obtained additively from the shape resistance of

a single body and from the distance function.

Shape resistance and distance function for various bodies are presented in diagrams.

NOMENCLATURE
A, area;
Z } axis of ellipsoid ;
D, distance;
%, distance function;
h, planting depth, D/2;
k, thermal conductivity;
1, length ;
n, length in normal direction;
&, shape resistance;
r, radius;
&, shape factor;
t, temperature,
9, non-dimensional temperature ratio, {t —¢,)/
(ty —1t3);
¢, heat flow.
Indices

1, boundary one;

2, boundary two;

a, adiabatic plane;

B ellipsoid body

i,  isothermal plane;

r, normalized with radius;
s, sphere;

I, referring to source;

II, referring to sink, source.

INTRODUCTION
IN RECENT years, shape factors for steady heat con-
duction have found their way into heat transfer text-
books. Such factors were first mentioned by Lang-
muir et al. [ 1]. They offer the advantage of transferring

all difficulties encountered in calculating heat flows
through odd geometries into the determination of
one single factor. Moreover, a shape factor, deter-
mined once, for a certain geometry can be successfully
used for ail physical phenomena occurring in the
same geometry and governed by the Laplace
equation.

From Fourier’s equation for steady heat conduc-
tion

ot
d¢p = — k—dA 4]
én
and with a non-dimensional temperature ratio

I =(t —1))/t; — ) 2

t, and t, being the given temperatures of the boun-
daries, we obtain the equation

¢ = — k(t; — t,) [(09/0n) dA. 3
A

In this equation (3) three factors are discerned: a
property k, a temperature difference (t; — ¢;) and an
integral. This integral only depends on the shape of
the body and is therefore named shape factor & :

& = [ (69/n) dA. @)

In some cases, shape factors presented in heat transfer
literature are ambiguous or even incorrect. On the
other hand, in mathematical or electric field literature
a number of solutions of Laplace’s equation are given
for odd geometry problems in a complex form together
with other physical parameters, thus masking the
shape factor.

It will be shown here that shape factors for spherical
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bodies and their various configurations, in many
cases follow a simple scheme. From the shape factor
of a single sphere in an infinitely extended medium,
factors for the hemisphere in a semi-infinite medium
can be derived, or for two spheres’ arrangements, or
for spheres buried in the ground with isothermal or
adiabatic surface. For this purpose the introduction
of a shape resistance and a distance function is con-
venient and renders vivid results.

Bodies originating from point sources follow the
same scheme.

1. SINGLE SPHERE IN AN INFINITELY EXTENDED
MEDIUM

From Laplace’s equation the shape factor for two
concentric isothermal spherical shells, of temperature
t; for the inner and ¢, for the outer shell, can be calcu-
lated from equation (4) as

(=)
S =4nf/| — - — ). (5
1 7

Extending the radius r, of the outer shell (i.e. the
outer isotherm) into infinity, we obtain the shape
factor of a single isothermal sphere in an infinitely

extended medium as
K, = dmr (6a)

or in non-dimensional form

‘Sps
(7> = (&), = 4.

The reciprocal of this factor will be called ‘“‘shape
resistance” of a sphere, &, :

(6b)

Ry =1/ = 1/4nr (7a)
or in non-dimensional form
rR, = 1F), = 1/4n (7b)

2, HEMISPHERE IN THE SURFACE OF A
SEMI-INFINITELY EXTENDED MEDIUM

This case immediately follows from section 1 by
dividing a single sphere arrangement into two halves.
From one half of a sphere consequently only half the
heat is conducted away giving a shape factor for the
hemispherical arrangement

Ly =35 =1 4nr* (8a)
and a shape resistance
Ry =2-R,. (8b)

* Purposely the factor 4= is kept in all equations in order
to indicate the spherical origin and to prevent confusion with
cylindrical geometries where 2 is a characteristic factor.

It is important to note that the two isotherms ¢, and
t, necessary for the solution of the heat conduction
problem are formed, for one side, by the hemispherical
shell with a given radius r = r,, and for the other, by
a hemispherical shell located at infinity r — co.
The plane dividing the original spheric arrangement,
usually considered as the surface of the ground con-
taining the hemisphere, originates from streamlines
and therefore must be an adiabatic plane. As an
isothermal surface, occasionally presented in litera-
ture, it would bring about the intersection of two
isotherms and a thermal short circuit.

3. TWO SFHERES IN AN INFINITELY EXTENDED
MEDIUM

From equations (3), (4) and (6a), with temperature
t, being taken zero at infinity, the temperature field
around a single sphere is-characterised by

¢ 1
t= ———. 9
k 4nr )
The temperature field around two spheres in a mutual

distance D = 2h is obtained by superposition as

t=t1+t“=——1—-1(ﬁ+i@) (10)

dn k\ i

ry and 7y being radius vectors.

Assuming a point source and a point sink of
opposite equal capacity ¢, = — ¢y = ¢, the tem-
perature anywhere in the field is

; o1 N 1
" kd4n T

Such a field giving heat flow lines as streamlines and
isotherms as equipotential-lines is presented in Fig. 1.

For the case of opposite equal capacity, shown here,
the isotherms flatten in the section where the two
spheres face each other and they stretch in the averted
parts, thus forming a pear-like pattern.

For the different case of two sources of equal
capacity the isotherms flatten in the averted sections
and stretch where the spheres face each other, until
they finally merge. In some distance around the two
sources then the isotherms will be ellipsoid-shaped.

From Fig. 1 it is observed that two spherical iso-
therms are obtained when the distance D is large
compared to the radius r. For a distance-radius ratio
D/r = 5 the surface temperatures t; and t, of the
spheres can be calculated in good approximation by
introducing for the radius vectors v, ~ Dandr, ~ D
respectively, giving

1/1 1 1 /1 1
t1=—?— S — andtzz—?— — — —{12)
kdn\r D kdz\D r

(11)
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Fic. 1. Field lines around two spheres of opposite equal
capacity.

The heat conducted between the two spheres is

dxr

d = — ki, —fz)m

(13)
and, by comparison with equations (3) and (4), shape
factor and shape resistance are

dnr

T

1
Ry, =2— (1 —#/D). (14
4rr
The influence of the distance D can be characterized
separately by a so-called “‘distance-function”
11

= ——. 15
4r D (13
Introducing this into the shape resistance of equation
(14) we obtain

Ros = 2R — D) (16)

Thus the overall resistance #,, may be considered as
being composed of two partial resistances: the resist-
ance &, imposed by each single sphere and the distance
function, which reduces this sphere resistance, to
account for the fact that heat is conducted across a
finite distance and not across an infinite distance for
which %, was derived. The factor 2 may indicate that
two spheres are involved in our problem.

In literature, the case of small distance-radius ratios
2 < Dfr < 5 is also treated and in [2, 3] electrical

potentials are calculated. From these, the shape
factor is determined as the series

4dnr r F 2 \3 A
e
N\
S ] w

Comparison of shape factors calculated from equa-
tion (14) and (17) brings deviations of not more than
about 1 per cent, even for small ratios of D/r (< 2).

For very large values D/r or a very large distance
D of the two spheres, the shape factor in (14) and (17)
will approach the value of the hemispherical case.
This appears reasonable imagining flow lines and
their increasing lengths for the averted sections of the
spheres.

4. SPHERES OPPOSITE TO A PLANE
In literature, these cases are described as spheres
buried in the ground in some distance k to the surface.
With the sphere, in any case, forming an isotherm,
two variations have to be distinguished: the plane
surface of the ground representing an isotherm or an
adiabate.

4.1 Isothermal plane

From Fig. 1 it is obvious that half way, i = D/2,
between the source and the sink a straight, plane
isotherm is located. Taking this plane isotheri as the
surface of the ground with heat being conducted from
the sphere to this surface, the length of all streamlines,
of the two sphere case, now is cut in half. If now the
temperature ¢, is associated to the plane, the heat
flow will be twice as large as for two spheres and

consequently the shape factor will be twice as large.

Foy=2-F, =4nr/(l — /D). (18)

The shape resistance for an isothermal sphere near
an isothermal plane is

Ry =% Ry=R, — Dy, (19
In comparison to the two spheres’ case with a resist-
ance given in equation (16), the overall shape resist-
ance in equation (19) is composed of the single
difference of the shape factor of a single sphere and a
distance function thus vividly demonstrating that
only one sphere is considered now. The distance
function has to be formed with D = 2h.

4.2 Adiabatic plane
Different from the source and sink arrangement
used so far, now two sources of equal capacity

¢, = ¢, = ¢ shall be considered. From equation
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(11) with the approximation r, ~D and r, &~ D
respectively the heat flow from either source to the
infinite distant sink is calculated as

Anr
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Thus, the shape factor read from equation (20)
applies to the isothermal sphere at a distance of
h = D/2 of an adiabatic plane. This shape factor is

b= — kt— ) (20) &L q = 4nr/(1 + r/D) (21a)
1+ 7D . .
and the shape resistance is
Half way, h = D/2, between the two sources, again a
straight plane is formed, which, originating from R = Al_ A +rD)=R, + T, (21b)
streamlines now, is an adiabatic surface. 4 : *
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Comparing to equations (16) and (19), now the overall
resistance is the sum of the single sphere resistance
and the distance function. This addition of resistances
may be explained with the compression of stream-
lines near the adiabatic boundary.

For large planting depths h, according to equation
(15), the distance function becomes negligible and the
resistance for both the isothermal and the adiabatic
plane approach the value of the resistance of a single
sphere.

5. BODIES ORIGINATING FROM POINT SOURCES

Point sources, lined up in a straight line will form
a line source of finite length.

The isotherms around such a source have the shape
of an elongated ““cigar-like” ellipsoid. Long ellipsoids
with small shorter axes (b/a > 1) can well be con-
sidered as pieces of a cylindric wire or as pieces of a
flat ribbon. ‘

Rotating an elongated ellipsoid around its shorter
axis produces a compressed ‘“‘discus-like” ellipsoid.
With its shorter axis b = 0, this ellipsoid turns into a
flat circular disc, and with axes @ = b, a sphere is
obtained.

Potential field solutions for such single bodies in

an infinitely extended medium and respective two
body arrangements are given in literature [2-8).
From those, a non-dimensional shape resistance and
a non-dimensional distance function was determined
and is presented in Figs. 2 and 3.

In Fig. 2 a non-dimensional shape resistance a#
is plotted vs the ratio of the axes of the ellipsoid
bodies, or for wires, vs the length—radius ratio.

In order to read the shape resistance directly from
Fig. 2, the ordinate values of aZ are multiplied by 4.
This gives, e.g. for the flat disc with b/a = 0anda = r

{
4nrR = 1-5708 = —and R = —.
2 gr

In Fig. 3, the non-dimensional distance function /%
or r % is plotted versus a non-dimensional distance
D/ or D/r. The normalization is based upon the
greatest length occurring in the considered body.
Ordinate and abscissa values have to correspond in
their normalizing length, [ or r.

From Figs. 2 and 3 the overall shape resistance for
various bodies originating from point sources can be
calculated following the scheme given for the example
of spheres and compiled in Table 1.

Table 1.

Geometric arrangement

Shape factor

Shape resistance

— T

r Ly Ry
single body in non-dimensional non-dimensional
’ infinite medium Ly 1
: (L =— rRy = -
7 r (’VB)r
5 =00
r, é i rf semib.ody _in . Ryp = 2Ry
semi-infinite S5 =378
r, w00 medium ]
1 Bop = Oy — 7)
sl L g =
two bodies in AR, — D)
infinite non-dimensional non-dimensional
medium )
(%2 = 5 — Ay - 12
28) MR, — D) rR,p = 20k — rDp)
yﬂl - 2‘928 1
body near an ] Ry = E}@m 2
isothermal plane = =Ry — Dy
r \/995 — Dy
Tl
PSS S ST
s 3
body near an 1
. . = Ry =
% adiabatic plane Ba Ry + D, Ba = Ry + Dy




272

As indicated in Table 1, in the two body case, the 2. K. Kiipfmiiller, Einfithrung in die theoretische Elektro-
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UNE METHODE DE FACTEUR DE FORME POUR DES CONFIGURATIONS DE
SOURCES PONCTUELLES

Résumé—Des facteurs de forme pour la conduction thermique dans des corps de forme variée sont présentés
de plus en plus fréquemment dans les livres. Ces présentations ne sont pas toujours claires.

Prenant pour exemple une sphére unique dans un milieu infini on développe une méthode pour obtenir le
facteur de forme pour I'hémisphére, pour deux sphéres, pour une sphére prés d’une surface isotherme et
prés d’une surface adiabatique.

Cette méthode peut étre appliquée a d’autres corps tels que des ellipsoides, des disques circulaires, des
trongons de fils et de rubans.

L'introduction d’une “résistance de forme” comme inverse du facteur de forme et d’une “fonction de
distance™, simplifie la présentation de la méthode. La résistance globale de forme d’une configuration peut
étre obtenue de fagon additive a partir de la résistance de forme d’un élément et de la fonction de distance.

On présente par des diagrammes la résistance de forme et la fonction de distance pour différents corps.

EIN FORMFAKTORSCHEMA FUR PUNKTQUELLEN-ANORDNUNGEN

Zusammenfassung —Formfaktoren der stationiren Wirmeleitung von Einzelkdrpern und verschiedener
threr Anordnungen werden immer haufiger in Lehrbiichern der Warmeiibertragung angegeben. Diese
Angaben sind nicht immer eindeutig.

Am Beispiel einer Einzelkugel im unendlich ausgedehnten Medium wird ein Schema zur Ermittlung
des Formfaktors angegeben, fir die Halbkugel, fiir zwei Kugeln, einer Kugel vor einer isothermen und
vor ¢iner adiabaten Wand.

Dieses Schema lisst sich auch auf andere Kérper, wie Ellipsoide, Kreisscheiben, Drahtstiicke und
Bénder anwenden.

Die Einf“hrung eines “Formwiderstandes” als dem Reziprokwert des Formfaktors und einer “Abstands-
funktion” als Charakteristkum des gegenseitigen Abstandes der Korper erleichert die Schematik. Der
Gesamtformwiderstand einer Anordnung kann additiv aus dem Formwiderstand des Einzelkdrpers und
der Abstandsfunktion erhalten werden.

Formwiderstand und Abstandsfunktion sind fiir verschiedene K6rper in Diagrammen wiedergegeben.

METOL ®OPM-QOAKTOPA [IJIfI KOHOUI'YPAIIUN TOYEYHBLIX HCTOYHMNKOB

AnHoranna—B yueOHurax no TemynooGMeny Bee ualle npuBOIATCA JopM-parTopsl A
CTAIMOHAPHOH TEILIONPOBOJHOCTH OAMHOYHBIX TeJ DARIMYHLIX KOH(UIypauuit B fopme; He
BCeT[a NOHATHON YUTATEJO.

Ha npumepe ogunounoii cpeprt B GeckoHeunoil cpeme paspadaTeBaeTCA CXeMa NOJIyYeHNsA
thopm-parTopa A moaycdeps, aByx chep, cdepnl BEa3M N30TePMUYECKO TOBEPXHOCTU U
chepnt BOAMBHM anunafaTnyecKol 1IOBEPXHOCTH.

DTOT METOJL TAK:Ke MOMKHO IPMMEHMTE [AJId TAKUX TeJ, KAK DIUIMIICONIEI, KpyI/ble TUCKH,
KYCHU IPOBOJIOKKM W JI€HTHI.

Beemenne mnomaTuii conporuBnesus Qopmul (00pATHOH BeUUHHKL dopm-pakTopa) u
(PYHKLIU pacCTOAHNA, XapaKTepuay oIieil BIAMAHNS PACCTOSHIIA MesTY TeIaMn, 3HAYNTEIbHO
YIPOLIAeT METONKY .

4. E. Weber, Electromagnetic Fields, Vol. 1, Mapping of
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CymmaprOe 8HaYeHNe CONPOTURIEHHA QOPMBL A CHCTEMB MI060H KOHPUIYpaIMH MOMKHO
HOJIyYUTb, MCHOJAb3YyA 3HAYEHHME COMPOTUBIeHUsT (OPMB OXUHOUYHOTO Tena u  PYHKIUH
paccToAHNA.

Conporusnenne Popmpl u GYVHKINMA pPACCTOAHWA [IS pasHLIX TeJ NpeacTaBleHH HAa

rpadurax.

HM.T. 17/2—H



