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Abstract

Modern gas turbines are prone to thermo-acoustic instabilities due to the op-
eration under the lean regime, which is essential for emission reduction. Bias
flow liners can address this issue and suppress combustion instabilities by en-
hancing the system’s acoustic loss. To optimally design the bias flow liners,
several acoustic impedance models are proposed by authors that consider
a multitude of parameters. The majority of these models neglect the inter-
action effect between the orifices, while in practice, orifices are closely dis-
tributed, and the interactions between acoustic radiation from neighboring
orifices may influence their acoustic characteristics. The hole-to-hole inter-
action effect may vary the resonator’s resonance frequency due to the non-
planar wave creation in the orifices of the perforated plate, in the cavity, and
in near-wall regions in the combustor. By considering this effect, predicting
the resonance frequency of the resonator may become more accurate. This
thesis presents a three-dimensional analytical method, which is developed to
consider the non-planar wave creation in the cavity and the orifices in the
perforated plate. Present study employs the proposed three-dimensional an-
alytical method to determine the hole-to-hole interaction end-correction of
multi-orifice perforated plates.

Furthermore, the hole-to-hole interaction end-correction of a series of per-
forated plates with different orifice radii and spacing is obtained via the Fi-
nite Element Method (FEM). Several perforated plate samples with different
center-to-center hole spacing are studied using an impedance tube test rig.
Experimental results confirm that the resonance frequency is shifted towards
higher frequency with increasing holes’ spacing. The acquired model is vali-
dated with the experimental results and the end-correction models available
in the literature. The comparison confirms that the end-correction models
available in the literature cannot predict the hole-to-hole interaction effect,
which is observed in measurements. On the contrary, the proposed model can
reproduce the experimental measurements with high accuracy. The acquired
model shows that the acoustic end-correction length of orifices is related to
the porosity ratio and orifice radius of perforated plates.
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Kurzfassung

Moderne Gasturbinen mit mager-vorgemischter Verbrennung, die zur Emis-
sionsreduzierung erforderlich ist, sind anfällig für thermoakustische Ver-
brennungsinstabilitäten. Durch Brennkammerwände mit Kühlluftlöchern
(“Bias-Flow-Liner”) kann dieses Problem adressiert und Verbrennungsinsta-
bilitäten unterdrückt werden, indem sie die akustischen Verluste des Verbren-
nungssystems erhöhen. Um diese “Bias-Flow-Liner” hierfür optimal auszule-
gen, haben bereits mehrere Autoren verschiedene akustische Impedanz-
modelle vorgeschlagen, die eine Vielzahl von Parametern berücksichtigen.
Die meisten dieser Modelle vernachlässigen den Interaktionseffekt zwischen
den Kühlluftlöchern. In der praktischen Anwendung sind die Kühlluftlöcher
allerdings meist eng beieinanderliegend, sodass akustische Wechselwirkun-
gen zwischen benachbarten Öffnungen deren akustische Eigenschaften bee-
influssen können. Dieser Loch-zu-Loch-Wechselwirkungseffekt kann die Res-
onanzfrequenz des “Bias-Flow-Liners” aufgrund der nicht-planaren akustis-
chen Wellenausbreitung in den Lochöffnungen, der dahinterliegenden Kav-
ität sowie den wandnahen Bereichen in der Brennkammer verändern.
In der vorliegenden Arbeit wird eine dreidimensionale (3D) analytische
Methode vorgestellt, die entwickelt wurde, um die beschriebene nicht-
planare Wellenausbreitung zu berücksichtigen und somit die Genauigkeit
der Vorhersage der Resonanzfrequenz des “Bias-Flow-Liners” zu verbessern.
Die vorgeschlagene analytische 3D-Methode wird hierbei angewendet, um
die akustischen Loch-zu-Loch-Wechselwirkungseffekte von Lochplatten mit
mehreren Lochöffnungen in Form einer “Lochlängen-Endkorrektur” zu bes-
timmen.

Darüber hinaus wird diese Endkorrektur, zur Berücksichtigung der akustis-
chen Loch-zu-Loch-Wechselwirkung, für verschiedene Lochplatten mit
unterschiedlichen Lochöffnungsradien und -abständen mit Hilfe einer
Finite-Elemente-Methode (FEM) ermittelt. Ergänzend werden mehrere
Lochplattenkonfigurationen mit unterschiedlichen Lochabständen mittels
eines Impedanzrohr-Prüfstands untersucht. Die experimentellen Ergebnisse
bestätigen, dass sich die Resonanzfrequenz der untersuchten Lochplat-
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ten mit zunehmendem Lochabstand zu höheren Frequenzen verschiebt.
Das entwickelte Modell wird mit den experimentellen Ergebnissen und
den in der Literatur verfügbaren Endkorrekturmodellen validiert. Der Ver-
gleich bestätigt, dass die in der Literatur verfügbaren Endkorrekturmodelle
den Loch-zu-Loch-Wechselwirkungseffekt, der in experimentellen Messun-
gen beobachtet wird, nicht korrekt vorhersagen können. Das vorgeschlagene
Modell kann dagegen die experimentellen Messungen mit hoher Genauigkeit
reproduzieren. Des Weiteren kann auf Basis dieses Modells gezeigt wer-
den, dass die akustische Endkorrektur von Lochplatten abhängig von deren
Porosität und Lochradius ist.
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1 Introduction

Gas turbines are widely used to generate electricity in power plants or as air-
craft engines. The energy sector relies on gas turbines for electricity genera-
tion. The gas turbine plays an essential role even with the increasing share
of renewable energies in the global energy portfolio due to its rapid start-
up compared to the other power generation technologies. This short start-up
time ensures flexibility of power supply at the peak of consumption or in the
case of a temporary shortage of solar or wind power due to the intermittency
of their sources.

Strict emission regulations have been established to reduce the environmen-
tal impacts of gas turbine applications. It is aimed to reduce CO2 emission
up to 75% and NOx emission up to 90% until 2050, respectively [3]. The CO2

emission level has been decreased constantly as a result of the optimization
of energy systems to consume less fuel [4]. NOx emission reduction is a major
concern in the operation of gas turbines. One of the major factors in the NOx

emission reduction is to decrease the flame temperature.

Lean premixed combustion technology has been widely employed in gas tur-
bines in order to comply with the emission regulations. By adopting this tech-
nology, the combustion device operates with excess air (beyond the stoichio-
metric air-fuel-ratio of the mixture) to reduce the combustion temperature
and consequently formation of NOx. However, implementing this technology
makes the combustor exposed to combustion instabilities. Combustion insta-
bilities are pressure oscillations that result from a thermo-acoustic feedback
loop between acoustic pressure oscillations and the heat release. Depending
on the phase difference between the fluctuating heat release (q̇ ′) and acous-
tic pressure fluctuation (p ′), a thermo-acoustic loop establishes which can ei-
ther produce or consume work. When the acoustic pressure pulsations and
the heat release perturbation are in phase, work in the form of acoustic en-
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Introduction

ergy is fed into the acoustic field. This necessary condition is referred to as
Rayleigh criterion [5, 6] which is presented in Equation 1.1.

∫
T

p ′(t )q̇ ′(t )d t > 0 (1.1)

When the Rayleigh criterion is positive, self-excited oscillation may promote
and the combustor operates in a thermoacoustically unstable region. This
condition is necessary but not sufficient. Instability requires that the driving
forces of the flame exceed the acoustic losses in the combustion chamber. If
both conditions apply, instability occurs.

Combustion instabilities may lead to structural damages or even a flame
blow-off. Therefore, it is desirable to avoid combustion instabilities. One
method to avoid instabilities is to enhance the system’s acoustic losses (known
as passive damping). The predominant means of acoustic damping of gas
turbines is passive damping [7]. The most important passive elements are
Helmholtz resonators, quarter-wave tubes, and acoustic liners. Helmholtz res-
onators and quarter-wave tubes have already been integrated into combustor
systems [8–13]. One major shortcoming of these damping elements is the lim-
ited frequency range of optimal damping. Thus, several dampers with differ-
ent absorption characteristics would be required to cover the frequency range
corresponding with different operating conditions of the system. Moreover,
resonators’ size grows considerably at low frequencies that poses difficulties
to mount them on the engine, especially aircraft engines, due to their addi-
tional weight.

Perforated acoustic liners can be used as an alternative for the Helmholtz res-
onators and quarter-wave tubes [14]. In general, orifices or perforations can
contribute to damping acoustic pulsations. The orifices on an acoustic liner
are always supplying cooling airflow. This cooling airflow that is mainly de-
signed to cool down the combustor wall has been reported to significantly af-
fect the liner’s damping characteristics. It is demonstrated that acoustic waves
can be damped substantially when transmitted through the orifices in per-
forated liners with bias flow, which results in cooling air jets in the combus-
tor [15] because of the conversion of acoustic energy into the shedding vortic-
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1.1 Objectives

ity in the presence of a bias flow. The major advantage of perforated bias flow
liners over Helmholtz resonators and quarter-wave tubes is the capability of
the bias flow liner in broadband damping of the acoustic pressure pulsations.

1.1 Objectives

The optimal design of the acoustic liner is a key factor for developing low emis-
sion combustion systems in modern gas turbines and aircraft engines. In or-
der to design and evaluate the performance of perforated acoustic liners, sev-
eral acoustic impedance models are available in the literature. The amount of
literature that addresses acoustic characteristics of perforations is vast. Most
of the acoustic impedance models neglect the interaction effect between the
orifices. In other words, these models are developed for a single orifice on the
plate and extended to a pattern of orifices by considering the number of ori-
fices (area ratio). In application, perforations are often tightly distributed such
that the interactions between acoustic radiations from neighboring orifices
can affect their acoustical behavior. The hole-to-hole interaction effect may
change the resonance frequency of the resonator due to the non-planar wave
propagation in the cavity, the orifices in the perforated plate, and the near-
wall region in the combustor. Considering this effect may help to predict the
resonance frequency of the resonator accurately.

This thesis aims to model the hole-to-hole interaction in multi-orifice perfo-
rated plates to evaluate the effect of orifices’ distance on the acoustic char-
acteristics of the perforated plates backed by a cavity. To the author’s knowl-
edge, the hole-to-hole interaction effect on the acoustic impedance is not in-
vestigated and addressed in the literature. The effect of porosity is inappropri-
ately used to consider the hole-to-hole interaction effect in various acoustic
impedance models available in the literature, which are described in Chap-
ter 2 in further detail. This study aims to develop a three-dimensional (3D)
analytical approach to account for the non-planar wave creation in the cavity
and the orifices in the perforated plate.

Furthermore, a low order model for predicting the hole-to-hole interaction
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Introduction

end-correction is proposed that can be readily integrated into the available
acoustic impedance models. Additionally, to evaluate the significance of con-
sidering the hole-to-hole interaction effect on the resonator’s acoustic char-
acteristics in the presence of a bias flow, several perforated plates are studied
experimentally. To the author’s knowledge, this effect is not investigated ex-
perimentally, in the literature.

1.2 Outline of the Thesis

Chapter 2 presents a detailed overview of the acoustic impedance modeling
followed by the various modeling approaches that are available in the litera-
ture to predict the acoustic performance of perforated liners. In Chapter 3, the
essential theoretical background is collected, and a three-dimensional analyt-
ical approach is developed to account for the non-planar wave propagation in
the cavity and orifices on the perforated plate. The present study employs the
proposed three-dimensional analytical method to determine the hole-to-hole
interaction end-correction of multi-orifice perforated plates. The hole-to-hole
interaction end-correction from a series of perforated plates with different ori-
fice radii and spacing is obtained via the Finite Element Method (FEM) and
presented in Chapter 4. Chapter 5 presents the details about the analysis of
the measurements. This includes a detailed description of the properties of
the Impedance Tube Test Rig and the perforated plate specimens with dif-
ferent holes’ center-to-center spacing, which are tested experimentally. The
results are presented in Chapter 6, and the current findings as well as previ-
ous results from other studies are discussed, and the impedance models are
compared to the experimental results.
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2 Acoustic Modeling of Perforations

This chapter starts with a detailed overview of the acoustic impedance mod-
eling. Section 2.1 presents the concepts of internal impedance and Rayleigh
conductivity for a theoretical description of the acoustic properties of an ori-
fice, and demonstrates that it is required to correct the length of the ori-
fice by including and additional length correction term for an orifice with fi-
nite length. Section 2.2 introduces the concept of mass end-correction and
presents several end-correction models that are available in the literature and
used in acoustic impedance models. Section 2.3 introduces the hole-to-hole
interaction effect in multi-orifice perforated plates and presents that this ef-
fect is different from the mass end-correction, while several authors inappro-
priately used the mass end-correction instead of hole-to-hole interaction ef-
fect. Section 2.3 presents the theoretical work of Ingard [1], which leads to an
expression for the calculation of the hole-to-hole interaction end-correction
for two holes in a plate, and shows that a comprehensive analysis of the hole-
to-hole interaction effect in multi-orifice perforated plates is required to de-
velop a correct analytical approach. The work of Ingard [1] is used as the state
of the art to validate the methodologies that are proposed in Chapters 3 and 4.
Section 2.4 briefly describes Howe’s Rayleigh conductivity model, which is
used in the impedance models proposed by Jing et al. [16] and Belucci et
al. [8, 17] in Sections 2.5 and 2.6. These two impedance models are used in
Chapter 6 to evaluate the performance of the hole-to-hole interaction end-
correction expressions proposed in the current thesis.
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Acoustic Modeling of Perforations

2.1 Impedance Modeling of Perforations

Originally1, the concept of impedance was introduced to treat alternating
electrical currents [18]. Acoustic impedance is introduced similar to the
impedance concept as the ratio of acoustic pressure to the acoustic volume
velocity [19] or [20]

Z = p̂

q̂
. (2.1)

To describe the acoustic characteristics of a material, the specific acoustic
impedance is used,

z = p̂

û
(2.2)

with û the acoustic velocity normal to the surface. The characteristic
impedance z0 is the specific impedance of a fluid. The normalized spe-
cific impedance is defined by the ratio of the specific and the characteristic
impedance

ζ= z/z0 . (2.3)

The normalized specific impedance is expressed in complex form,

ζ= θ+ iχ (2.4)

where the real term represents the resistance and the imaginary term the reac-
tance. The resistance describes the dissipation of energy, while the reactance
represents the energy storage [21].

1The content of this chapter is partially published in the paper GT2021-58535 - Proceedings of ASME Turbo
Expo 2021 [2]
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2.1 Impedance Modeling of Perforations

Internal Impedance

Crandall [22, 23] considered the normalized specific impedance within a per-
foration with a unit length of l in a viscous fluid and without any end effects,

ζ= 1

σ
i klΓ(ksr0) (2.5)

where i kl represents the inviscid impedance of an infinite tube. In order to
convert the impedance of an individual perforation into the impedance of an
array of perforations, the impedance term is divided by the porosity σ (open
area ratio). The functionΓ introduces the viscous effects in which ks

2 =−iω/ν.
Crandall [22] derived the function Γ as

Γ(ksr0) =
[

1− 2J1(ksr0)

ksr0 J0(ksr0)

]−1

, (2.6)

where J0 and J1 are Bessel functions of the first kind. When the argument of the
Bessel function is in complex form, the resulting term is in complex form, and
in this case, the impedance includes real (resistive) and imaginary (reactive)
terms. Based on the value of the Stokes number, |ksr0|, Equation 2.5 has two
limiting values [23].

a) If |ksr0| < 2, Equation 2.5 yields [23]

ζ= 8νl

cσr 2
0

+ i
k

σ

(
l + 1

3
l

)
. (2.7)

The reactance 4l k/3σ has a total effective mass that is 1
3 larger than the mass

in the orifice per unit area [23].

b) If |ksr0| > 10, the approximation to the Bessel function ratio J1/J0 =−i is
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used [23]. Consequently, it is shown that

ζ=
p

2ωνl

cσr0
+ i

(
kl

σ
+
p

2ωνl

cσr0

)
, (2.8)

where both resistance and reactance terms are frequency dependent [23].

Rayleigh Conductivity

Rayleigh [6, 24] introduced the concept of acoustic conductivity based on
Ohm’s law in electricity. Therefore, the acoustic conductivity of a perforation
is defined by the volume flow through the orifice divided by the pressure dif-
ference, and denoted as Rayleigh conductivity KR .

Rayleigh presented the conductivity considering the oscillating pressure on
each side of a perforation as p̂1e iωt and p̂2e iωt . Then, the difference in the
pressure through the perforation (p̂1 − p̂2)e iωt produces the fluctuating vol-
ume velocity q̂e iωt across the orifice. For an incompressible flow and an
acoustically compact orifice2, therefore [6, 24]

∆p̂or i f i ce = iωρ
q̂

KR
, (2.9)

where ρ stands for the density and the Rayleigh conductivity (KR) is a com-
plex function. The acoustic volume velocity is defined as q̂ = Aû, and û is the
acoustic particle velocity that is shown in Figure 2.1.

The Rayleigh conductivity in an ideal fluid is defined by the geometry of the
perforation and for a circular perforation on a plate with an infinitesimal
thickness Rayleigh proposed [6, 24]

KR = 2r0 . (2.10)
2When the characteristic length of the orifice is less than the wavelength of sound (λÀ r0). When the fluid is

passing through the aperture due to a pressure difference, the incompressibility assumption will be satisfied if
the space through which the fluid passes is small compared to the wavelength.
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2.2 Mass End-Correction

 

Figure 2.1: Schematic view of an orifice presenting the quantities to deter-
mine Rayleigh conductivity of an orifice.

The Rayleigh conductivity for a perforation in a wall with finite thickness can
be defined as the area of the orifice divided by the effective length [6, 24]

KR = A

le f f
. (2.11)

Rayleigh derived a lower and upper limit of the conductivity [6, 24],

πr 2
0

l + 16
3πr0

< KR < πr 2
0

l + π
2 r0

. (2.12)

The upper limit of Equation 2.12 coincides with Equation 2.10 for a plate with
an infinitesimal thickness (l ≈ 0).

2.2 Mass End-Correction

Radiation of sound in a duct or orifice is a fundamental phenomenon in
acoustics. This phenomenon results from non-planar wave creation in the
vicinity of area discontinuity [25]. Modeling of the sound radiation has been
a research topic since 19th century with first attemps by Helmholtz [26]. For
a perforation with finite length, the effective length is greater than the geo-
metrical length of the perforation l . The additional length l ′ represents the
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attached mass of fluid that participates in the oscillation outside of the per-
foration, which is referred to as mass end-correction. This is depicted in Fig-
ure 2.1. The total effective length is obtained by adding the end-correction for
both ends to the geometrical length of the perforation as le f f = l +2l ′.

The mass end-correction is frequency dependent [27]. However, it can be
shown that the mass end-correction is approximately constant for low fre-
quencies when kr0 ¿ 1 (k being the wavenumber and r0 inner radius of the
orifice) [27–31]. Considering a duct or perforation with a radius of 2 mm and
the sound speed of 340 m.s−1, the assumption of low frequency is valid for
frequencies much lower than 27 kHz.

The end-correction terms presented in this section are derived for plane
waves with normal incidence. However, Allard [32] reported that for circular
or square orifices in a square pattern, the dependence of mass end-correction
on the incidence angle can be neglected. Similar observations are reported
from the experimental investigation of other configurations [33, 34].

In The Theory of Sound, Rayleigh [6] considered a cylindrical tube with the
radius of r0 and the thickness of l , which opens in a semi-infinite space.
He presents an analysis of the standing wave pattern generated by acoustic
wave propagation. This analysis is limited to low frequencies when kr0 ¿ 1.
Jaouen [35] states that analysis of Rayleigh [6] “has theoretically verified” the
hypothesis of G. Wertheim [36], stating that “the origin of the standing wave
pattern is not located at the boundary between the duct and the open space
but is translated by a correction to the length which enables acoustic radiation
of the duct in this open space” [35].

According to the axial velocity profile inside the duct (orifice), Rayleigh [6] es-
tablished the mass end-correction of the perforation at large wavelengths for
a constant velocity profile over the duct section

l ′ = 8

3π
r0 ≈ 0.85r0 . (2.13)

The mass end-correction of a perforation with a non-circular cross-section
which opens in a semi-infinite space at low frequencies can be re-written
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as [35]

l ′ = 8

3π3/2

p
A , (2.14)

where A represents the area of cross-section of the perforation.

Rayleigh [6] assumes that the effect of duct length (or plate thickness in a per-
forated plate) does not influence the end-correction, which is shown to be
correct for l /r0 À 1 [35, 37]. For a thin plate, where the plate thickness l tends
to zero, Helmholtz [26] and Rayleigh [6] demonstrated that the end-correction
for a circular perforation that opens in a semi-infinite space at low frequencies
is

l ′ = π

4
r0 ≈ 0.785r0 . (2.15)

The end-correction range can be determined from the Equation 2.12 as
0.785r0 < l ′ < 0.849r0. The slight difference between the end-correction ex-
pressions in Equations 2.13 and 2.15 has led Rayleigh [6] to consider the end-
correction as “independent, or nearly so, of the thickness of the duct”. Like-
wise, Jaouen [35] interpreted this small difference as “the weak interaction be-
tween the evanescent modes inside and outside the diaphragm.”

It is worth mentioning that the expressions presented in Equations 2.13, 2.14,
and 2.15 are proposed for a single perforation, which opens in a semi-infinite
space, with the assumption of low frequency excitation. Several authors used
the end-correction introduced in Equation 2.13 for one side of the orifice [1,
22, 23, 38–40].

Fok [41,42] proposed an end-correction expression for an infinitely thin (l ≈ 0)
circular perforation of radius r0 in a circular duct with the radius Rc at low
frequencies,

l ′ = π

4
r0ψ(ξ) ≈ 0.785r0ψ(ξ) . (2.16)
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The expression ψ(ξ) is obtained by the Taylor series expansion of Bessel func-
tions for variable ξ= r0

Rc
. The variable ξ is equivalent to the square root of the

porosity or open-area ratio (σ = πr 2
0 /πR2

c = r 2
0 /R2

c = ξ2). Hereafter the expres-
sion ψ(ξ) will be called “configuration function” because it relates the mass
end-correction with the perforation configuration

ψ(ξ) =
12∑

n=0
an(ξ)n , (2.17)

where:

a0 = 1, a1 =−1.40925, a2 = 0,
a3 = 0.33818, a4 = 0, a5 = 0.06793,
a6 =−0.02287, a7 = 0.03015, a8 =−0.01614,
a9 = 0.01729, a10 =−0.01248, a11 = 0.01205,
a12 =−0.00985.

Fok [41, 42] suggested using only powers of 0, 1, 3, and 5 instead of using all
terms of Equation 2.17, and rounded the coefficients to the second decimal to
facilitate the calculation of the ψ(ξ) as

ψ(ξ) = 1−1.41ξ−0.34ξ3 +0.07ξ5 . (2.18)

Both expressions in Equation 2.17 and 2.18 give the value equal to 0 when ξ= 1
(i.e. when r0 = Rc). In other words, when the orifice radius r0 is increasing and
approaching the tube radius Rc , the mass end-correction tends to zero. Nes-
terov [43] conducted an experimental investigation on the same configuration
as Fok [41, 42] and proposed a polynomial fit to his measurements based on
the Fok’s expression in Equation 2.17. Nesterov [43] used only powers of 0, 1,
and 3 on ξ

ψ(ξ) = 1−1.47ξ+0.47ξ3 , (2.19)

with the same expression for the end-correction as Fok’s, which is presented
in Equation 2.16. Nesterov [43] described the validity range of his formula
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as “the entire range of practical interest” and specified 0 ≤ ξ=p
σ≤ 0.9. The

mass end-correction expressions proposed by Fok [41, 42] and Nesterov [43]
give similar results. For low area ratio (where the orifice radius is significantly
smaller than the tube radius r0 ¿ Rc), both expressions in Equations 2.18 and
2.19 give values close to the mass end-correction calculated by Helmholtz [26]
and Rayleigh [6] for a diaphragm of radius r0 that opens in a semi-infinite
space at low frequencies (shown in Equation 2.15). For the porosity approach-
ing 1 (when the r0 → Rc), the mass end-correction tends to 0.

Initially, Ingard [44] proposed an expression of the mass end-correction for a
circular orifice in a cylindrical tube. Karal [45] derived this expression inde-
pendently, and in the same year, Ingard expanded his analysis to two other
configurations: circular orifice in a rectangular duct, rectangular perforation
in a rectangular duct [1]. These geometrical configurations are illustrated in
Figure 2.2.

Figure 2.2: Cross-section view of the configurations studied by Ingard [1].

The expressions of the mass end-correction proposed by Ingard [1] are pre-
sented in Table 2.1. The full derivations for these geometrical configurations
are presented on the APMR website [46].

The mass end-correction expression for a circular orifice in a cylindrical tube
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Table 2.1: Expressions of the mass end-correction at low frequency for differ-
ent perforation configurations derived by Ingard [1]. mn∗ stands for
a summation where mode (m = n = 0) is excluded and n∗ repre-
sents a summation where the mode (n = 0) is neglected.

Configuration Mass end-correction expression

Circular perforation in
a circular tube

l ′ = 4Rc
∑
n∗

J 2
1

(
kr,mnr0

)
(kr,mnRc )3 J 2

0

(
kr,mnRc

)
kr,mn being the solutions of J ′0(kr,mnRc ) = 0

Circular perforation in
a rectangular tube

l ′ = 4π

ab

∑
mn∗

νmn

J 2
1

(
r0

√(
πm

a

)2 + (
πn
b

)2
)

[(
πm

a

)2 + (
πn
b

)2
]3/2

ν0n = νm0 = 1/2 νmn = 1

Rectangular
perforation in a
rectangular tube

l ′ = 4a1b1

πab

∑
mn∗

νmn

[
sin(πma1/a)
πma1/a

sin(πnb1/b)
πnb1/b

]2

√
m2

aa1
+ n2

bb1

ν0n = νm0 = 1/2 νmn = 1

proposed by Ingard [1] and Karal [45] is

l ′ = 4Rc

∑
n∗

J 2
1

(
kr,mnr0

)
(kr,mnRc)3 J 2

0

(
kr,mnRc

) , (2.20)

where the values of the wavenumbers kr,mn are derived from rigid-wall bound-
ary condition, which requires that the derivative of J0 vanishes at the rigid-
wall, so that J ′0(kr,mnRc) = 0 (Jm stands for the Bessel function of of the first
kind and of order m). It is worth mentioning that Ingard [1] states that the
mass end-correction of a circular perforation in a cylindrical tube approaches
the same value as given in Equation 2.13, when ξ= r0

Rc
goes to zero.
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In the present study, the expression in Equation 2.20 is computed with more
than 104 modes, and to obtain the configuration function ψ(ξ), the mass end-
correction is divided by the value of the end-correction acquired by Rayleigh
as shown in Equation 2.13. It can be observed in Figure 2.3 that the configu-
ration function for the circular orifice in a circular duct gives similar results
as the expressions proposed by Fok and Nesterov shown in Equations 2.18
and 2.19. In addition, the configuration functions for a circular orifice in a
circular duct and a square orifice in a square duct (a = b and a1 = b1) are
shown in Figure 2.3. The results are quite close over the range of ξ so that
the curves can hardly be differentiated. Ingard [1] has already observed and
pointed out this result and stated that the mass end-correction approaches
zero when ξ approaches unity, except for the circular orifice in a square tube.
In other words, in that case, there is a “little space left for higher-order modes
to develop in the cavity around the orifice” even though the orifice diameter
is equal to the tube side [1].

0 0.2 0.4 0.6 0.8 1

 [-]

0

0.2

0.4

0.6

0.8

1

 [
-]

Fok: Eqn. (2.18)

Nesterov: Eqn. (2.19)

Ingard: Eqn. 3 (Table 2.1)

Ingard: Eqn. (2.20)

Ingard: Eqn. (2.21)

Jaouen: Eqn. (2.22)

Jaouen: Eqn. (2.24)

Figure 2.3: Configuration functions ψ and their fitted functions used in end-
corrections as a function of ξ.

In order to avoid time-consuming computation of the mass end-correction
expressions, Ingard [1] proposed an approximation as shown in Equation 2.21.
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This approximation is valid at a low perforation rate (porosity) for two config-
urations: circular orifice in a circular duct and square perforation in a square
duct

l ′ = 8r0

3π
(1−1.25ξ) = 8r0

3π
ψ(ξ) , (2.21)

where ξ= a1/a for a square orifice in a square tube and ξ= r0/Rc for a circular
orifice in a cylindrical duct. The validity range proposed by Ingard is ξ < 0.4,
which corresponds to a porosity range of σ< 0.16. Jaouen and Chevillotte [35]
proposed a fit of Ingard’s results for a square orifice in a square duct to over-
come the low porosity limitation. This fitted function has the validity range
of 0 ≤ ξ ≤ 1 and can be applied to a circular orifice in a cylindrical duct [35]
(as Ingard mentioned that this function can be used for both configurations
because of the close results),

l ′ = 8r0

3π
ψ(ξ) = 8r0

3π

(
1−1.33ξ−0.07ξ2 +0.4ξ3) . (2.22)

In Propagation of sound in porous media, Allard [32] introduced an expression
for a circular orifice in a square duct

l ′ = 8r0

3π
ψ(ξ) = 8r0

3π
(1−1.14ξ) , (2.23)

with the validity range of ξ < 0.4, which corresponds to a porosity range of
σ< 0.13 (where σ=πr 2

0 /(2a)2 =πξ2/4).

Jaouen et al. [47] experimentally characterized perforated plates and intro-
duced a fitted function to Ingard’s theoretical results for a circular orifice in a
square duct

l ′ = 8r0

3π
ψ(ξ) = 8r0

3π

(
1−1.13ξ−0.09ξ2 +0.27ξ3) , (2.24)

with the validity range of 0 ≤ ξ≤ 1.
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This section aimed to present the mass end-correction expressions which are
widely used in the literature. Before studying the hole-to-hole interaction ef-
fect, it is required to differentiate the mass end-correction from the hole-to-
hole interaction effect. Because several authors inappropriately used mass
end-correction expressions to represent the hole-to-hole interaction effect.
This section presented the origin of mass end-correction expressions and the
major assumption behind their derivation, which is considering a single ori-
fice in the plate. Therefore, none of the expressions that are presented in this
section can be used to consider the hole-to-hole interaction effect.

2.3 Hole-to-hole Interaction

In the previous section, several mass end-correction expressions are pre-
sented that are originally proposed for a single orifice in the plate. Several
authors used these end-correction expressions for multi-orifice perforated
plates and assumed that the propagation of sound in an orifice is acting in-
dividually and not depending on its neighboring orifices as the orifice dimen-
sions are smaller than the acoustic wavelength. Ingard [1] presented an analy-
sis that shows that the hole-to-hole interaction has an additional effect on the
mass end-correction, when there are multiple orifices in the plate.

Ingard [1] investigated the effect of hole-to-hole interaction by considering
two orifices in a plate that open in a semi-infinite space. He started his analysis
by considering an eccentric orifice that is not located in the center of the tube
and obtained the mass end-correction for this case

l ′11 = 4Rc

∑
mn∗

J 2
1

(
kr,mnr0

)
J 2

m

(
kr,mndi

)
(kr,mnRc)3

(
1− m2

(kr,mnRc )2

)
J 2

m

(
kr,mnRc

) , (2.25)

where di stands for the distance between the orifice center and the tube cen-
ter. The subscript 11 stands for the effect of the first orifice on itself. The ex-
pression for mass end-correction of a circular orifice in a cylindrical tube pre-
sented in Equation 2.20 is a particular case of the orifice eccentricity where
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the center-to-center distance is zero (di = 0). Therefore, the expression pre-
sented in Equation 2.25 is a general form of the expression in Equation 2.20.
Furthermore, Ingard [1] introduced the interaction impedance of two adja-
cent circular orifices in a circular tube at low frequency by calculating “the
pressure caused by the first orifice at the surface of the second orifice.” In-
gard [1] assumed the mass end-correction for each orifice in this configura-
tion is composed of the effect of the orifice on itself, which corresponds to
the mass end-correction of a single orifice, and the effect of the second ori-
fice (l ′ = l ′11+l ′12). Ingard [1] obtained the mass end-correction expression that
accounts for the effect of the second orifice on the first orifice

l ′12 = 4Rc

∑
mn∗

(−1)m J 2
1

(
kr,mnr0

)
J 2

m

(
kr,mndi

)
(kr,mnRc)3

(
1− m2

(kr,mnRc )2

)
J 2

m

(
kr,mnRc

) , (2.26)

where the subscript 12 stands for the effect of the second orifice on the first
orifice.

Ih [48] extended the theoretical approach of Ingard [1] by considering two
rectangular perforations in a rectangular tube and two perforations (one cir-
cular and one rectangular) in a rectangular tube. In addition to the situation
that orifices open in a semi-infinite space, he studied the “apertures in an axi-
ally finite tube” and introduced an expression for mass end-correction. To the
knowledge of the author, only Ingard [1] and Ih [48] theoretically investigated
the hole-to-hole interaction effect. However, these studies are limited to two
perforations in a duct.

Tayong [49, 50] experimentally investigated the effect of interacting orifices
for a multi-orifice perforated plate and proposed a “geometrical tortuosity
model” to consider the effect of the acoustic radiation of the perforated re-
gion, which is called “heterogeneity distribution effects.” However, the exact
definition of parameters such as tortuosity in his model is not known a pri-
ori and requires external input, which he acquired from experiments. Wang et
al. [51] investigated the effect of hole-to-hole interaction on the resonance fre-
quency of distributed Helmholtz resonators by a series of highly resolved com-
putational fluid dynamics simulations. They performed a regression analysis
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of the results and proposed a model to predict acoustic resonance frequency,

l ′ = 0.48r0
p
π+0.48

√
Aopen

(
0.78

√
σe f f −0.11

)
, (2.27)

where Aopen stands for the overall open area of all orifices and σe f f is the ef-
fective porosity, which is the ratio of the opening area of an orifice and the area
of a rectangular region associated to that orifice.

The model proposed by Wang is obtained from perforated plates that are lim-
ited to a specific orifice-tube radius ratio (ξ = r0/Rc = 0.022), while the effect
of ξ on the mass end-correction is reported by several authors [1, 41, 43, 52].

2.4 Howe’s Rayleigh Conductivity Model

Howe [53, 54] proposed a model based on Rayleigh conductivity [6, 24] for an
orifice, considering the shedding of vorticities from the rim of the orifice. He
treated a circular orifice with bias flow in a wall with an infinitesimal thickness.
He considered the acoustic absorption by vortex shedding neglecting the vis-
cosity except at the rims of the aperture. The Reynolds number is considered
to be adequately high so that the viscous dissipation is small, and its contri-
bution is limited to generate vorticity at the rims of the orifice. In the pres-
ence of mean flow (bias flow), the acoustic energy is transformed into energy
of fluctuating vorticity generated at the rim of the aperture and swept down-
stream, transferring the energy into heat. This energy conversion mechanism
considers the increase in the acoustic resistance of the orifice as the bias flow
velocity increases. The generated vortex is considered to have a convection ve-
locity equal to the mean flow velocity through the perforation, and the radius
of the vortex rings remains constant, traveling downstream. A summary of the
assumptions is presented as follows:

• Low frequency, such that the wavelength is greater than the radius of the
orifice: λÀ r0.
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• Low Mach number, such that the fluid can be regarded as incompressible
fluid: MB ¿ 1.

• Infinitely thin wall: l ≈ 0.

• High bias flow Reynolds number, such that viscosity is solely taken into
account at the orifice edges UB r0/νÀ 1.

For these constraints, Howe [53, 54] presented the conductivity of an orifice,

KR = 2r0(γ+ iδ) , (2.28)

where

γ+ iδ= 1+
π
2 I1(St )e−St + i K1(St )sinh(St )

St [π2 I1(St )e−St − i K1(St )cosh(St )]
. (2.29)

Equation 2.29 is a function of the Strouhal number only and calculated based
on the vorticity convection velocity and the orifice radius. Figure 2.4, shows
the dependency of the real and imaginary terms of Equation 2.29 on Strouhal
number. δ stands for the acoustic absorption, and the inertia of the orifice is
denoted as γ.

At higher Strouhal numbers, the shedding of vorticity has a negligible effect
since induced velocities due to successive vortex rings diminish rapidly. On
the other hand, at a low Strouhal number, generated vorticity can stretch
downstream. This behavior is illustrated by the imaginary part of Equa-
tion 2.29 with its maximum at the Strouhal number just beyond unity.

One shortcoming of Howe’s model is assuming an infinitesimal wall thickness,
which is not practical.
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Figure 2.4: Real term γ and imaginary term δ of the normalized Rayleigh con-
ductivity plotted as a function of the Strouhal number.

2.5 Jing’s Impedance Model

Jing and Sun [16] extended Howe’s Rayleigh conductivity model to include ori-
fices with a finite length and expressed Howe’s Rayleigh conductivity model in
terms of the normalized specific impedance ζ. For a circular perforation with
finite thickness in the presence of a bias flow, they considered the effect of
thickness by adding an additional term, i kl . The impedance yields

ζJi ng = kπr0δ

2
(
γ2 +δ2

) + i

(
kπr0γ

2
(
γ2 +δ2

) +kl

)
. (2.30)

The effect of viscosity is neglected in their model, and the thickness effect is
included only in the reactance term.

2.6 Bellucci’s Impedance Model

Bellucci et al. [8, 17] proposed an impedance model for perforated screens for
the range of the nonlinear regime (in the absence of the bias flow) to the lin-
ear regime (the velocity of the bias flow is higher than the acoustic velocity).
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Their impedance model is based on Crandall’s impedance model [22] which
is presented in Equation 2.5. However, the thermal conductivity losses are not
considered. Their assumptions can be summarized as follows:

• Helmholtz number of the orifice He < 0.08. 3

• Mach number inside the orifice MB < 0.02.

• Smaller orifice radius compared to the wavelength (the orifice is acousti-
cally compact).

• Sufficiently high Shear number. 4

They used different sub-models in the resistance term to include the bias flow
effect and the non-linearity due to high amplitudes. The resistance term of
Bellucci et al. [8] yields

θBel lucci = ε

cσ
G

(
UB

|û|
)
|û| , (2.31)

where ε, which stands for pressure loss coefficient, is calculated as follows:

ε=



1/C 2
d i f UB = 0, Stac ≤ (Stac)qs

0.6
(

3π
4

)
St 1/3

ac i f UB = 0, Stac > (Stac)qs

π
2

δSt
γ2+δ2 i f UB ≥ |û|

εnonli n(1−G)+εl i n(G− 4
3π )

1− 4
3π

i f 0 <UB < |û|

. (2.32)

In Equation 2.32, εnonli n in the forth expression corresponds to the first and
second expressions in Equation 2.32, depending on Stac . In the forth expres-
sion of Equation 2.32, εl i n refers to the third expression with γ and δ, which are

3Orifice length Helmholtz number kl ¿ 1 means that changes in the density due to pressure variation in time
is negligible.

4Shear number Sh = r0

√
ω
ν represents the hole radius r0 divided by the acoustic boundary layer thickness√

ν
ω .
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the real and imaginary parts of Howe’s Rayleigh conductivity, respectively. The
threshold of the quasi-steady assumption for the acoustic Strouhal number is
defined by (Stac)qs = 0.61/C 6

d .

In Equation 2.31, G(x) is proposed as:

G(x) =
 2

π

(
x ·arcsin(x)+

p
1−x2

3 (2+x2)
)

i f |x| ≤ 1

|x| i f |x| > 1
. (2.33)

When UB > |û|, Equation 2.31 reduces to the linear expression θBel lucci = ε
cσUB .

For large |û| and for UB < |û|, Equation 2.31 predicts a nonlinear behavior of
pressure losses [8, 17]. When bias flow is present, the resistance term in this
model is based on Howe’s Rayleigh conductivity model.

The impedance model of Bellucci et al. [8, 17] is based on Crandall’s
impedance model [22]. Additionally, they included different correction length
to Crandall’s impedance model, which yields

χBel lucci = k

σ

(
lΓ+ l ′Bel lucci

)
. (2.34)

Bellucci et al. [8, 17] used the asymptotic value of -i for J1/J0 in Equation 2.6,
and proposed expressions to calculate Γ based on the value of the Shear num-
ber as follows [55]:

Γ=
(4

3
− i

8

Sh2

)
Sh < 1, (2.35)

Γ=
[

4

3

(
1+ 1√

9+ Sh2

2

)
− i

8

Sh2

√
1+ Sh2

32

]
1 < Sh < 10, (2.36)

Γ=
[(

1+
p

2

Sh

)
− i

(p2

Sh

)]
10 < Sh . (2.37)
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Bellucci used the approximation of Γ function for higher shear numbers, ac-
cording to Equation 2.37. The function Γ accounts for the viscosity effects and
is composed of real and imaginary parts, which leads to considering the effect
of viscosity in both resistance and reactance terms, Equations 2.31 and 2.34
respectively.

In Equation 2.34, l ′Bel lucci accounts for the end-correction length, including
contributions from the radiation reactance (l ′r ad ), the orifice interaction (l ′i nt ),
the bias flow (l ′B ), and nonlinear effects due to high amplitude excitation (l ′nl ).
Considering the end-correction length for both sides of the orifice yields

l ′Bel lucci = l ′r ad · l ′i nt · l ′B · l ′nl , (2.38)

where

l ′r ad = 2 ·0.8216r0

(
1+ (0.77He)2

1+0.77He

)−1

, (2.39)

l ′i nt = 1−
√
σ

2
, (2.40)

l ′B = 0.3
(
6.0/St 2

)+1

6.0/St 2 +1
, (2.41)

l ′nl = 1−0.3/St o.6
ac . (2.42)

Bellucci et al. [8, 17] considered the hole-to-hole interaction effect using the
expression presented in Equation 2.40. This expression is proposed for a sin-
gle orifice and, therefore, is inappropriately used in Bellucci model to consider
the hole-to-hole interaction effect, as mentioned earlier in this chapter. To in-
clude the reduction of end-correction due to high-amplitude oscillations and
bias flow, the terms l ′nl and l ′B are fitted to the experimental measurements [8].

Bellucci et al. [8] included the effect of the back cavity in their proposed
impedance model by introducing an additional term, i cot(kLc), where Lc
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stands for the cavity length. In the presence of a back cavity and consider-
ing the plane wave propagation into the back cavity, their impedance model
yields

ζBel lucci = ε

cσ
G

(
UB

|û|
)
|û|+ i k

σ

(
lΓ+ l ′Bel lucci

)
− i cot(kLc) . (2.43)

Bellucci et al. [8] investigated the perforated plate with normal sound inci-
dence and compared the model prediction with experimental data. The re-
sults agree well with the measurements for both the zero bias flow regime and
linear regime (where the bias flow velocity exceeds the acoustic velocity) over
a wide range of orifice radii, wall thicknesses, and bias flow velocities.
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3 Modeling Approach

Following1 the discussion in Section 2.2, all the mass end-correction terms,
that are presented in Section 2.2, are developed with the assumption of a sin-
gle orifice in the center of a duct. These terms have been used inappropriately
for multi-orifice perforated plates by several authors [8, 23, 56]. The hole-to-
hole interaction end-correction expressions proposed by Ingard [1] and Ih [48]
are limited to two-hole configurations. Therefore, a comprehensive analysis
of the hole-to-hole interaction effect in multi-orifice perforated plates is re-
quired to develop a correct analytical approach.

This chapter presents the theoretical background required for the modeling of
hole-to-hole interaction effect, followed by the hole-to-hole interaction mod-
eling approach.

3.1 Theoretical Background

This section starts with the derivation of the one-dimensional acoustic wave
equation, followed by the three-dimensional acoustic wave equation, which
is essential for the modeling of the hole-to-hole interaction effect.

3.1.1 Acoustic Wave Equation

Fluid Dynamics Equations

The conservation laws for mass, momentum, and energy govern the motion of
a fluid. The continuity equation, which relates the fluid’s velocity to its density,

1The content of this chapter is partially published in the paper GT2021-58535 - Proceedings of ASME Turbo
Expo 2021 [2]
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is given by [20, 57, 58]

∂ρ

∂t
+∇· (ρu) = 0. (3.1)

Rewriting this equation by substituting the local time derivative ∂/∂t with the
substantial derivative [58–60]

D

Dt
= ∂

∂t
+u∇ . (3.2)

Equation 3.1 leads to [58]

Dρ

Dt
+ρ(∇·u) = 0. (3.3)

For an inviscid fluid, the conservation of momentum where gravity is ne-
glected can be cast in [20, 57, 58]

ρ
Du

Dt
=−∇p . (3.4)

This equation is known as the Euler equation that presents the relationship
between the fluid’s velocity and pressure.

The conservation of energy is expressed by the ideal gas law [58, 61]

p = ρRg T . (3.5)

By assuming that the acoustic wave is isentropic, the relation between the
density and the pressure can be given by [20, 58]

(
∂p

∂ρ

)
s

= c2 with
Ds

Dt
= 0. (3.6)
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The system of these three Equations 3.1, 3.4, and 3.6 describes the motion
of a compressible, ideal fluid and is commonly known as the system of Euler
equations.

Linear Acoustics Equations

The quantities such as pressure, velocity, and density can be expressed by the
sum of their mean and acoustic perturbation values:

p = p0 +p ′

u = u0 +u′

ρ = ρ0 +ρ′
. (3.7)

The Euler equations ( 3.1, 3.4, and 3.6) can be linearized by assuming that the
acoustic perturbations are smaller than the mean values

p ′

p0
¿ 1

u′

c
¿ 1

ρ′

ρ0
¿ 1. (3.8)

By using these assumptions, higher-order terms in Equations 3.1, 3.4, and 3.6
can be excluded. The acoustic equations using these approximations are given
by [20, 62]

Dρ′

Dt
+ρ0

(∇·u′)= 0, (3.9)

ρ0
Du′

Dt
+∇p ′ = 0, (3.10)

p ′ = c2ρ′ . (3.11)
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Acoustic Wave Equation

The acoustic wave equation can be derived from Equations 3.9, 3.10, and 3.11.

∇2p ′− 1

c2

D2p ′

Dt 2
= 0. (3.12)

The summary of the assumptions that are used in the derivation are:

• Inviscid fluid.

• Isentropic relation between pressure and density.

• Homogeneous medium (i.e., a medium with spatially uniform proper-
ties [21]).

• Linear acoustics (the amplitude of oscillation is small, in such a way that
the relation between any two perturbing quantities is not amplitude-
dependent [21]).

Equation 3.12 in stationary medium (u0 = 0) reduces to the well known acous-
tic wave equation [20, 63, 64]

∇2p ′− 1

c2

∂2p ′

∂t 2
= 0. (3.13)

Similar to the wave equation that is given for the acoustic pressure, the wave
equation can be written for all acoustic quantities such as velocity and density
because all coefficients remain constant [65].

3.1.2 Three-Dimensional Waves

To describe the wave propagation in a cylindrical tube, the wave equation 3.12
can be written in cylindrical coordinates. z is the axial coordinate, r is the ra-

30



3.1 Theoretical Background

dial coordinate, and the circumferential coordinate is denoted by θ. Therefore,
the three-dimensional wave equation in cylindrical coordinates gives

∂2p ′

∂z2
+ 1

r

∂

∂r

(
r
∂p ′

∂r

)
+ 1

r 2

∂2p ′

∂θ2
− 1

c2

D2p ′

Dt 2 = 0. (3.14)

This linear second-order partial differential equation can be solved by the sep-
aration of variables. A general solution for the time-harmonic wave propaga-
tion in a cylindrical tube with the rigid walls is given by (e.g. [66–69])

p̂mn(z,r,θ, t ) =(
p̂+

mne−i kz,mn z + p̂−
mne i kz,mn z) Jm

(
kr,mnr

)
e i mθe iωt . (3.15)

Equation 3.15 represents the so-called modal solution. The first and second
terms on the right-hand side of the Equation 3.15 describe the shape of the
mode in axial and radial directions. The third term represents the circumfer-
ential shape of the mode, and the fourth term gives the temporal mode shape.
The axial, circumferential, and temporal mode shapes are sinusoidal, while
the radial mode shape is given by Bessel functions. Jm stands for the Bessel
function of the first kind. The sound pressure of a time-harmonic wave is ob-
tained by the real part of the summation of an infinite number of modes

p ′(z,r,θ, t ) =∑
m

∑
n

p̂mn(z,r,θ, t ) , (3.16)

where m ∈ {. . . ,−2,−1,0,1,2, . . .} is the circumferential mode order and n ∈
{0,1,2, . . .} is the radial mode order. For m = 0 and n = 0 the sound field is
one-dimensional, which varies along the z-direction only. This particular case
is referred to as plane wave or fundamental mode, and all other modes are
known as higher-order modes.

The relation between axial and radial wave numbers in Equation 3.15 is

(ω
c

)2
= k2

z,mn +k2
r,mn , (3.17)
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where the axial wave number is given by

k±
z,mn = k

1−MB
2

−MB ±
√

1− (
1−MB

2
)(bmn

kRc

)2
 . (3.18)

The rigid-wall boundary condition requires that the radial component of the
acoustic velocity diminishes at the wall. Following Equation 3.10, the acoustic
pressure boundary condition at r = Rc is

∂p ′

∂r
= 0. (3.19)

Therefore, the derivative of Jm must vanish at the rigid-wall, such that for r =
Rc

J ′m
(
kr,mnRc

)= 0, (3.20)

with the radial wave number

kr,mn = bmn

Rc
, (3.21)

and bmn the n-th root of J ′m for the rigid-wall boundary condition.

The propagation of a mode in z-direction is defined by the axial wave num-
ber k±

z,mn. The propagation characteristics depends on the value of the square
root in Equation 3.18. Two different cases occur depending on the axial wave
number:

1. k±
z,mn is a real quantity when: 1− (

1−MB
2
)(bmn

kRc

)2 ≥ 0

2. k±
z,mn is a complex quantity when: 1− (

1−MB
2
)(bmn

kRc

)2 < 0

In the first case, the mode propagates along the duct without being attenuated
(in the inviscid case). In the second case, the imaginary part of k±

z,mn behaves
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as an attenuation coefficient. Therefore, the mode can not propagate, and its
amplitude will be decayed exponentially based on its axial distance from the
source. By increasing frequency to a threshold, this mode may not decay any-
more and can propagate. This threshold frequency, at which a mode starts
propagating, is referred to as "Cut-on" frequency. At this particular frequency,
the value of the square root in Equation 3.18 becomes zero, such that

fc,mn = bmn

2πRc
c
√

1−MB
2 . (3.22)

For each mode, the cut-on frequency is related to the tube diameter (radius),
the Mach number of the flow, the sound speed, and the bmn of that particular
mode. bmn is equal to zero for the plane wave (so called fundamental mode
(0:0)), and following the same analogy, the cut-on frequency is also zero, which
implies that the fundamental mode can propagate at all frequencies. The first
higher-order mode has the lowest cut-on frequency among the higher-order
modes. The cut-on frequency of the first higher-order mode (1:0) is referred
to as the frequency where the transition between one-dimensional and three-
dimensional sound propagation occurs. The non-propagating modes which
are being attenuated are known as evanescent modes or cut-off modes.

One major advantage of the decaying higher-order mode is that only a finite
number of higher-order modes can propagate at a specific frequency, and the
remaining modes that are not propagating can be neglected in most cases.

3.1.3 Plane Waves

At low frequencies below the cut-on frequency of the first higher-order mode,
the wave propagates in one dimension (z-direction). The quantities of the
acoustic field for a wave traveling in the z-direction are constant in any cross-
section of a constant-area duct. The acoustic wave equation 3.12 for plane
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waves is given by [20]

∂2p ′

∂z2
− 1

c2

D2p ′

Dt 2 = 0. (3.23)

The general solution is given by [20, 63, 64, 69]

p ′(z, t ) = f1

(
t − z

c

)
+ f2

(
t + z

c

)
, (3.24)

where f1 and f2 are functions with continuous first and second-order deriva-
tives. The equation presents two plane waves that are traveling with the speed
c in opposite directions.

Applying f1 and f2 approximated by a Fourier series to Equation 3.24 and tak-
ing the real part of the expression yields the well-known notation [38, 69]

p ′(z, t ) = (
p̂+e−i kz + p̂−e i kz)e iωt . (3.25)

Equation 3.25 represents the time-dependent acoustic pressure distribution
of a single frequency plane wave in a stationary medium.

By introducing a mean flow in the z-direction, the speed at which the wave is
propagating varies. In the direction of the mean flow, the mean flow velocity
is added to the propagation speed c, and it is reduced from the propagation
speed c in the opposite direction of the mean flow i.e. c ±u0. This convective
effect of the mean flow is considered in the wave number

k± = ω

c (1±MB )
. (3.26)

The superscript + describes in the direction of the mean flow and superscript
− describes in the opposite direction of the mean flow. Equation 3.25 be-
comes [69, 70]

p ′(z, t ) =
(
p̂+e−i k+z + p̂−e i k−z

)
e iωt . (3.27)
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3.2 Modeling for Two and Multiple Holes

This section presents the modeling approach for the hole-to-hole interaction
effect in a multi-orifice perforated plate.

Selamet et al. [71] developed a three-dimensional analytical approach to eval-
uate the acoustic absorption performance of circular asymmetric Helmholtz
resonators. This method is employed to study the influence of the neck off-
set from the center of the cavity on the resonance frequency and on acoustic
damping. In this section, a similar approach is implemented and extended to
multi-orifice perforated plates.

In the current thesis, a multi-orifices perforated plate, as shown in Figure 3.1,
is studied.

C

Ai

Bi

D

Lc

di

i

Lp

z

I II

ro

Rc

Figure 3.1: Schematic view of the domain consisting of a plate and a cavity.

Before presenting the modeling approach, it is required to introduce the basic
concepts that are used in the modeling as follows:

• As it is shown in Figure 3.1, the cavity domain is coupled with a set of
short tubes, which are the orifices in the perforated plate.
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• There is no restriction concerning the size and placement of the orifices.

• The idea behind the modeling is to employ the analytical solutions of the
wave equation in the cavity and in the tubes (orifices in the perforated
plate), and couple them at the interface plate z = 0.

• One main assumption is imposing a constant velocity on the cross-
section of all holes (Ah) at z = −Lp as the boundary condition, although
the velocity may not be constant over the hole’s cross-section and for all
orifices. Without making this assumption, it is required to include an ad-
ditional tube on the other side of the perforated plate, which includes
the excitation source, and couple the domain with the cavity domain via
a set of short tubes. The assumption of constant velocity is made to avoid
the excessive computational cost associated with the coupling of the ad-
ditional tube and the excitation source. Besides, it will be presented that
even with imposing such a boundary condition, the mass end-correction
can be obtained.

• The analytical solutions of the wave equation are for all types of modes
in the tubes and the cavity. This is the main point, because incorporating
higher-order modes in the cavity is essential for the coupling at the inter-
face plane Ah and (Ap−Ah). Without higher-order modes there will be no
solution after coupling which results in the calculation of end-correction.

• Finally, the axial mode is examined and from that mode the end-
correction is extracted for different hole patterns.

For the three-dimensional acoustic waves propagating in a quiescent fluid in
a cylindrical tube, the governing equation is the Helmholtz equation [69]

∇2p̂ +k2p̂ = 0, (3.28)

where p̂ stands for the fluctuating pressure and k = ω/c represents the wave
number. By employing the separation of variables, the general solution for
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p̂(r, z,θ) in the cavity (Figure 3.1) can be written as [69]

p̂cavity =C00e−i kz +D00e i kz+
∞∑

m∗

∞∑
n∗

(
Cmne i k I I

z,mn z +Dmne−i k I I
z,mn z

)
Jm

(
k I I

r,mnr
)

e i mθ (3.29)

where Cmn and Dmn are constants associated with the waves propagating in
the positive and negative z-direction, as shown in Figure 3.1. The ∗ on the
summation sign implies that the plane wave (m = 0,n = 0) is neglected in the
summation, while the plane wave is represented by the first two terms on the
right hand side of Equation 3.29. The reason that (m = 1,n = 1) are not used
instead of m∗ and n∗ in the summation is that by using (m = 1,n = 1), modes
(0 : 1) and (1 : 0) will be excluded from the summation, while m∗ and n∗ im-
plies that all the modes are considered in the summation except the funda-
mental mode (0 : 0). Jm is the Bessel function of the first kind of order m. Su-
perscript I I represents the cavity to differentiate it from the region of the holes
that is denoted by I . The rigid-wall boundary condition requires for r = Rc re-
quires

J ′m
(
k I I

r,mnRc

)= 0, (3.30)

where

k I I
r,mn = bm,n

Rc
. (3.31)

The axial wavenumber of the (m,n) mode

k I I
z,mn = k

[
1−

(
bm,n

kRc

)2]1/2

(3.32)

will be imaginary for any high-order mode when k < k I I
r,mn. Similarly, the solu-
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tion for p̂(r, z,θ) inside each orifice can be written as

p̂hole =Ai00e−i kz +Bi00e i kz+
∞∑

m∗

∞∑
n∗

(
Aimne i k I

z,mn z +Bimne−i k I
z,mn z

)
Jm

(
k I

r,mnr
)

e i mθ .
(3.33)

Aimn and Bimn are constants associated with the waves propagating in the
positive and negative z-direction inside the i -th orifice.

The rigid-wall boundary condition requires for r = r0

J ′m
(
k I

r,mnr0

)= 0, (3.34)

where

k I
r,mn = bm,n

r0
, (3.35)

with the axial wave number of the (m,n) mode

k I
z,mn = k

[
1−

(
bm,n

kr0

)2]1/2

. (3.36)

The axial particle velocity û(r, z,θ) is obtained from the momentum equation
iρωû =−∇2p̂. Inside the cavity

ûcavity = 1

ρω

[
kC00e−i kz −kD00e i kz−

∞∑
m∗

∞∑
n∗

(
k I I

z,mnCmne i k I I
z,mn z − k I I

z,mnDmne−i k I I
z,mn z

)
Jm

(
k I I

r,mnr
)

e i mθ
] (3.37)
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is obtained and similarly for inside the orifices

ûhole = 1

ρω

[
k Ai00e−i kz −kBi00e i kz−

∞∑
m∗

∞∑
n∗

(
k I

z,mn Aimne i k I
z,mn z − k I

z,mnBimne−i k I
z,mn z

)
Jm

(
k I

r,mnr
)

e i mθ
]

.
(3.38)

For the perforated plate shown in Figure 3.1, each cylindrical orifice’s sound
field can be expressed analytically by Equation 3.33. The oscillating mass in-
side orifices with velocity amplitude û0 is imposed as the boundary condition
on the cross-section of the hole (Ah) as follows:

ûhole = û0 at z =−Lp (3.39)

Substitution of Equation 3.38 into Equation 3.39 gives for each orifice

Ai00e i kLp −Bi00e−i kLp = ρcû0 (3.40)

and

Aimne−i k I
z,mnLp −Bimne i k I

z,mnLp = 0. (3.41)

At the cavity end-plate, the rigid-wall boundary condition gives

ûcavity = 0 at z = Lc (3.42)

and the substitution of Equation 3.37 into Equation 3.42 yields

D00 =C00e−2i kLc (3.43)
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and

Dmn =Cmne2i k I I
z,mnLc . (3.44)

At the area jump between the orifice and the cavity, continuity for pressure
requires

p̂hole = p̂cavity at z = 0 , on Ah (3.45)

and for the velocity

ûhole = ûcavity at z = 0 , on Ah (3.46)

and

ûhole = 0 at z = 0, on
(

Ap − Ah

)
. (3.47)

Equation 3.45 implies that pressure inside the orifice at each radial and cir-
cumferential coordinate on the orifice cross-section Ah on the interface plane
z = 0 is equal to the pressure inside the cavity on the interface plane z = 0.
This does not imply that all the orifices should have the same pressure on the
interface z = 0. Similarly, Equation 3.46 implies that velocity inside the ori-
fice at each radial and circumferential coordinate on the orifice cross-section
Ah on the interface plane z = 0 is equal to the velocity inside the cavity on
the interface plane z = 0. Equation 3.46 relates the acoustic velocity inside the
cavity and the orifices via the open area ratio (porosity). Equation 3.47 implies
that the acoustic velocity is zero on the plate surface (Ap) between the holes
(Ap − Ah).

To form a system of independent equations for calculating the coefficients of
the amplitude, Equations 3.45, 3.46, and 3.47 are coupled with the Fourier-
Bessel functions orthogonality for the velocity and pressure conditions [71].
The details of forming a matrix, including the description of boundary condi-
tions, are presented in Appendix A.
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Following the procedure shown in Appendix A, by solving the set of equations
for a finite number of higher-order modes, the pressure amplitudes for waves
Aimn, Bimn, and Cmn can be obtained. Because of the diminishing effect of the
higher-order modes (radial and circumferential) on the solution [71, 72], m
and n can be truncated, and for the geometries and frequencies studied here,
N = m = n = 5 were found to be sufficient [71,72]. After obtaining the pressure
amplitudes for waves Aimn, Bimn, and Cmn, the normalized end-correction for
each orifice can be obtained from [71]

δi =
p̂ I

00 − p̂ I I
00

iρωû I
00

(
π · r 2

0

)1/2
= (Ai00 +Bi00)−C00

(
1+e−2i kLc

)
i k (Ai00 −Bi00)

(
π · r 2

0

)1/2
. (3.48)

Subscripts 00 represent the fundamental mode (0,0). This non-dimensional
end-correction includes the acoustic radiation effect on one side of the ori-
fice. The end-correction in Equation 3.48 is normalized by the square root of

the orifice area
√
πr 2

0 . The procedure of obtaining Equation 3.48 is briefly de-
scribed in Appendix A. The normalized end-correction (δi ) is calculated for
each orifice separately. The average value of the normalized end-correction of
all orifices in the plate is considered as the representative value of the normal-
ized end-correction of the orifices in the perforated plate

δ= 1

i

i∑
n=1

δi , (3.49)

where i stands for the number of orifices in the plate and δi is the normal-
ized end-correction of each orifice. The relation between the end-correction
(l ′) (presented in Chapter 2) and the normalized end-correction (δi ) can be
written as

l ′ = δ
√
πr 2

0 . (3.50)

To investigate the hole-to-hole interaction effect, several perforated plates
with three different patterns of orifices (as shown in Figure 3.2) are considered
in this thesis, and the end-correction is calculated.
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P S Sa

Figure 3.2: Schematic view of the studied orifice patterns (P, S, and Sa denote
triangular, square, and rectangular patterns, respectively.

In this thesis, several orifice radii and spacing were studied numerically for the
triangular, square, and rectangular patterns in the ranges given in Table 3.1.
The diameter of perforated plates is 0.092 m, and the orifices have a circular
shape.

Table 3.1: Geometrical parameters of the cases investigated numerically.

Pattern Orifice radius Center-to-center Number
[mm] distance [mm] of cases

P 0.25-6.25 0.75-12.75 147
S 0.15-4.65 0.99-10.56 91

Sa 0.4-2.65 0.9-13 44
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4 Numerical Analysis (FEM)

The three-dimensional analytical approach presented in Chapter 3 leads to
the pressure and velocity distributions throughout the domain. By includ-
ing more higher-order modes (theoretically infinite number of higher-order
modes) in the calculation, the pressure and velocity distributions become
more accurate. In this chapter, the pressure and velocity distributions are ob-
tained using Finite Element Method (FEM). Therefore, this chapter presents
the FEM approach as an alternative for the three-dimensional analytical ap-
proach to obtain the pressure and velocity distributions, and the normalized
end-correction using FEM and three-dimensional analytical approach will be
compared.

This chapter starts with the description of the numerical setup and the simula-
tion procedure, followed by the analysis of the numerical results. Firstly, a two-
hole configuration is considered, because the only applicable end-correction
model in the literature (proposed by Ingard [1]) is only valid for two-hole con-
figurations, and current thesis aims to compare the results with Ingard’s find-
ings. After comparing the results of three-dimensional analytical approach
and the FEM with Ingard’s model for the two-hole configuration, a multi-
orifice perforated plate will be studied and compared to Ingard’s model. The
normalized end-correction is obtained using FEM for a multitude of perfo-
rated plates. Finally, the normalized end-correction is used to obtain a math-
ematical function using regression analysis and machine learning algorithms.
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4.1 Numerical Setup

To investigate1 the propagation of the acoustic waves through small orifices,
a three-dimensional, numerical solution in frequency space is obtained us-
ing FEM for the wave propagation described by the Helmholtz equation. Un-
der the assumption of linear acoustics, the propagation of an acoustic plane
wave in fluids at quiescent background conditions, excluding viscous and
thermal losses, can be analyzed by solving the Helmholtz equation. There-
fore, the Helmholtz equation in frequency space is solved in the computa-
tional domain shown in Figure 4.1, similar to the impedance tube used in ex-
periments (presented in Chapter 5) based on a stabilized FEM approach. A
MUMPS (Multifrontal Massively Parallel Sparse) direct solver is used to solve
the discrete variational finite element formulation of the Helmholtz equation
in frequency space. The computations are performed on an unstructured grid
consisting of quadratic tetrahedral elements2. The excitation is applied at the
inlet by the Normal Acceleration boundary condition and at all the remaining
boundaries, non-viscous wall-boundary conditions û.n̂ = 0 are imposed.

Figure 4.1: Schematic view of the domain investigated numerically.

The perforated plates, shown in Figure 3.2 with parameters in the ranges spec-
ified in Table 3.1 are investigated. The Multi-Microphone Method (MMM) [73]
is used for wave decomposition (presented in Chapter 5). This finally delivers

1The content of this chapter is partially published in the paper GT2021-58535 - Proceedings of ASME Turbo
Expo 2021 [2]

2The commercial software COMSOL Multiphysics is used.
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the specific acoustic impedance of the resonator which is given by [25, 74]

Z = ρc
(1+R)

(1−R)
. (4.1)

As mentioned in Chapter 2, impedance is a complex quantity and has real and
imaginary terms. To facilitate the physical interpretation of the impedance,
the acoustic boundary condition can be modeled as a mass-spring-damper
system. The sound wave applies unsteady force on the mass due to the os-
cillating pressure. Following the mechanical interpretation of the acoustic
impedance, the real part of the impedance represents the resistive damper
element and describes acoustic absorption or transmission at the boundary.
The imaginary part stands for the reactive spring or mass element that does
not dissipate sound, but introduces a phase shift between the pressure and
velocity at the boundary [25].

The maximum acoustic absorption of the resonator happens at the frequency
where the acoustic reflection coefficient is equal to zero. In other words, when
the incident wave is transmitted or fully absorbed at the boundary, the acous-
tic reflection coefficient (R) tends to zero. Since the FEM used in this chapter
excludes the viscosity and bias flow effects, the magnitude of the reflection
coefficient remains constant and equal to unity over the studied frequency
range, because there is no damping effect. Therefore, the above-mentioned
criterion for identifying the frequency, at which the absorption is maximum,
cannot be used because the reflection coefficient does not show any mini-
mum. The acoustic absorption coefficient is given by [51, 74]

α= 1−|R|2 = 4θ

(1+θ)2 +χ2
, (4.2)

where θ and χ stand for the normalized specific acoustic resistance and reac-
tance, respectively. Equation 4.2 shows that the maximum absorption coeffi-
cient happens when θ → 1 and χ→ 0. The optimum absorption takes place
at the frequency where acoustic reactance is zero, which also coincides with
the resonance frequency of the perforated plate backed by a cavity [51, 74]. In
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this chapter, the acoustic reactance is equal to zero (χ= 0), is used as the cri-
terion to identify the resonance frequency of the perforated plate backed by
a cavity. After obtaining the resonance frequency from FEM, this frequency is
used to calculate the acoustic end-correction using the Helmholtz resonator’s
resonance frequency formula given by

fr es = c

2π

(
A

V L′
p

)1/2

, (4.3)

with A, V , and L′
p being the open area of orifices, cavity volume, and effective

neck length (L′
p = Lp + 2l ′), respectively. All parameters in Equation 4.3 are

defined except the effective neck length (L′
p). After obtaining the effective neck

length, the acoustic end-correction can be calculated using

l ′ =
L′

p −Lp

2
. (4.4)

The acoustic end-correction for 282 perforated plates in the ranges listed in
Table 3.1, which are numerically investigated, is acquired from Equation 4.3.
The end-correction for each plate is divided by two to account only for one
side of the orifice and then normalized by the square root of the hole’s area√
πr 2

0 to obtain the normalized end-correction (δ). The normalized end-
correction obtained using this method is the average value of the normalized
end-correction values of the orifices in the perforated plate.

4.2 Two and Multiple Holes

This section presents the effect of acoustic radiation of neighboring orifices
in a multi-orifice pattern on each other. Before investigating this effect for
a multi-orifice pattern, the end-correction for a two-hole pattern (shown in
Figure 4.2 as A1) is obtained using the three-dimensional analytical method
presented in Chapter 3. Results are presented in Figure 4.3. Squares repre-
sent the end-correction of each hole in a two-hole pattern. An increase in
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end-correction is observed by increasing the number of higher-order terms
(m and n), which means considering more higher-order modes in the process
of calculating the normalized end-correction (described in Chapter 3). Since
the higher-order modes have a vanishing effect on the final solution, calcu-
lation of end-correction up to N = m = n = 5 is suggested to avoid the ex-
cessive computational cost associated with the increased number of higher-
order modes [71]. It is worth mentioning that depending on the configuration,
it might be necessary to calculate for N higher than 5. It should be mentioned
that in this pattern, there are two orifices, and increasing the number of holes
will require even more computational resources.

A1 E1

aa

Figure 4.2: Schematic view of the plates with two-holes (A1) and multi-orifice
(E1).

As mentioned earlier in Chapter 3, only the formulation proposed by Ingard
(described by Equations 2.25 and 2.26) is able to address the hole-to-hole in-
teraction effect in the two-holes pattern. The end-correction calculated by
Ingard’s formulation is presented by the blue dashed-line in Figure 4.3. The
three-dimensional analytical method shows marginal improvements com-
pared to Ingard’s formulation, which can be associated with Ingard’s low fre-
quency and infinite tube assumptions in his model [1]. Furthermore, the end-
correction of the two-hole pattern in Figure 4.2 acquired using FEM is shown
in Figure 4.3. The FEM solving the Helmholtz Equation (presented in Equa-
tion 3.28) results in the solution of the acoustic pressure inside the domain
(presented by Equations 3.29 and 3.33). This solution of the acoustic pres-
sure inside the domain can be obtained similarly by solving the equations
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Figure 4.3: Comparison of the normalized end-correction obtained for two-
holes (A1) and multi-orifice (E1) configurations by increasing the
number of higher-order modes (N = m = n = 5) included in the
three-dimensional analytical method [2].

proposed by the three-dimensional analytical method for an infinite number
of higher-order modes. The results shown in Figure 4.3 can be interpreted as
solving the equations of the three-dimensional analytical method for a the-
oretically infinite number of higher-order modes results in a similar acoustic
pressure distribution inside the domain (Equations 3.29 and 3.33) to the FEM
solution. Therefore, the FEM results are considered as the reference through-
out this chapter.

Furthermore, the average end-correction in a multi-orifice pattern shown in
Figure 4.2 as E1 calculated by the three-dimensional method is depicted in
Figure 4.3 by triangles. Similar to the two-holes pattern, the end-correction
increases for the first five modes and then converges quickly. As expected,
Ingard’s formulation for the two-holes pattern cannot predict the increased
end-correction for the multi-orifice pattern. The reason is that Ingard con-
sidered only two orifices on a plate. Ingard’s formulation was a significant
progress toward the investigation of the hole-to-hole interaction effect. How-
ever, his method is limited to two orifices and cannot be applied to configu-
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rations with multiple orifices. The end-correction of the E1 pattern acquired
using FEM is shown in Figure 4.3 by black dashed-line. Similar to the two-
holes pattern, the end-correction obtained from FEM is greater than the end-
correction obtained from the three-dimensional analytical method. By solving
the equations of the three-dimensional method for higher number of higher-
order modes, the value of end-correction becomes closer to the FEM result.
This observation again confirms that if the equations of the three-dimensional
analytical method are solved for infinite number of higher-order modes, the
resulting value of the end-correction will converge to the FEM result.

In Figures 4.4 and 4.5, the normalized specific acoustic reactance of several
plates obtained using FEM are presented. Figure 4.4 shows the results for the
perforated plates with the orifice radius of r0 = 1.25 mm and various center-
to-center spacing. Similarly, Figure 4.5 shows the results for the perforated
plates with the orifice radius of r0 = 1.75 mm and various center-to-center
spacing.
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Figure 4.4: Normalized specific acoustic reactance of perforated plates with
the orifice radius r0 = 1.25 mm and various center-to-center spac-
ing obtained from FEM [2].

All perforated plates in the ranges listed in Table 3.1 demonstrate similar be-
havior. As shown in Figures 4.4 and 4.5, acoustic reactance curves shift to
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Figure 4.5: Normalized specific acoustic reactance of perforated plates with
the orifice radius r0 = 1.75 mm and various center-to-center spac-
ing obtained from FEM [2].

lower frequencies as the distance between orifices decreases. By considering
the Imag(z)=0 as the criterion to identify the resonance frequency (discussed
earlier in this chapter following Equation 4.2), the shift in acoustic reactance
curves leads to a shift in resonance frequency. The resonance frequency for
each curve, which represents a perforated plate, is the frequency at which the
acoustic reactance (Imag(z)) is zero. This decrease in resonance frequency im-
plies that the end-correction increases by decreasing the orifices’ distance, ac-
cording to Equation 4.3. However, this is contrary to the findings of Fok [41]
and Ingard [1], while the same behavior is observed by Tayong [49] and Wang
et al. [51]. This difference results from the fact that the findings of Fok [41]
and Ingard [1] are obtained by assuming a single orifice in the center of the
tube, and their findings are inappropriately used by other authors and applied
to the multi-orifice configurations, while, these findings are only valid for the
configurations with a single orifice such as Helmholtz Resonators.

The results shown in Figures 4.4 and 4.5 represent the overall trend of reso-
nance frequency shift by varying the holes’ center-to-center spacing. To evalu-
ate effect of orifice spacing on the acoustic field inside the domain, the acous-
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tic velocity magnitude in the proximity of orifices from FEM is obtained for
two plates from P pattern (shown in Figure 3.2) with the same orifice radius
(r0 = 0.8 mm) and different orifice spacing. The results are shown in Fig-
ures 4.6 and 4.7.

Figure 4.6: Acoustic velocity magnitude contour in the vicinity of orifices with
radius r0 = 0.8 mm and orifice spacing a = 12.75 mm [2].

Figure 4.7: Acoustic velocity magnitude contour in the vicinity of orifices with
radius r0 = 0.8 mm and orifice spacing a = 2.25 mm [2].
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As shown in Figure 4.6, when the holes are located far from each other, the
oscillating mass of each hole is not significantly affected by the adjacent ori-
fices. In contrast, the oscillating mass of orifices is strongly influenced by the
neighboring holes when the orifices are tightly distributed, as shown in Fig-
ure 4.7. The acoustic velocity profile is affected farther downstream, and the
region with oscillating mass extends on both sides of the orifice (Figure 4.7).
Wang et al. [51] observed similar behavior. They described that the acoustic
velocity does not vanish so rapidly in the vicinity of the area discontinuity
when holes are closely distributed due to the combined momentum of the
interacting jet flows from neighboring orifices. Therefore, following these ob-
servations and according to the formulation proposed by Ingard (described
by Equation 2.26), the end-correction due to acoustic radiation for a pattern
of orifices can be considered as a function of the orifices’ radius and spacing.
Wang et al. [51] considered this phenomenon as superposition of two radia-
tion effects: the radiation of a single orifice and the radiation associated with
the perforation region.

To evaluate how the orifices’ radius and spacing affect the end-correction,
the normalized end-correction for all perforated plate in the ranges listed in
Table 3.1 are acquired from the FEM results using the resonance frequency
(Equation 4.3). The normalized end-correction for P and S patterns are pre-
sented in Figures 4.8 and 4.9, respectively.

The results show that increasing the distance of orifices decreases the nor-
malized end-correction and vice versa. In addition, decreasing the orifice ra-
dius increases the end-correction, similar to the findings available in the liter-
ature [1,35,48,49,51]. The normalized end-correction for the square pattern S
presented in Figure 4.9 shows similar behavior to the P pattern.

After having obtained the normalized end-correction (δ) for different orifice
patterns with various geometrical parameters, it is required to find mathemat-
ical functions representing the δ of the considered patterns. These functions
simplify the calculation of the normalized end-correction for those configura-
tions that are not included in this study and acts as an interpolation function.
The procedure of extracting such mathematical functions is described in the
following section. Two independent functions are proposed for triangular pat-
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Figure 4.8: The contour of interpolated normalized end-correction (δ) of per-
forated plates with triangular pattern (P) obtained from FEM [2].

tern (δP ) and square and rectangular patterns (δS,Sa).

4.3 Machine Learning

This section aims to obtain Machine Learning (ML) models and mathemat-
ical correlations that represent the normalized end-correction as a function
of geometrical parameters. As a result, the correlations obtained from regres-
sion analysis are compared to the models obtained using machine learning
algorithms.

This section begins with a brief introduction of several machine learning al-
gorithms that are used for interpolation. Following the introduction, the train-
ing data set is proposed, followed by the procedure of obtaining data-driven
models. The representative mathematical correlations obtained using regres-
sion analysis are described. Finally, the performance analysis of the obtained
models is presented.
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Figure 4.9: The contour of interpolated normalized end-correction (δ) of per-
forated plates with square pattern (S) obtained from FEM [2].

Machine Learning Algorithms

Gaussian Processes

Gaussian Processes describe probability distributions over a family of func-
tions and use Bayes’ rule to update the distribution of functions by observing
training data points. In other words, Gaussian Processes generate a Gaussian
posterior using a prior assumption and the training data points. Every real-
ization of a Gaussian Processes is not a set of numerical values but an entire
function. Indeed, Gaussian Processes (GP) model the underlying function and
not its parameters. Gaussian Processes (GP) are non-parametric models. The
non-parametric model does not imply that there are no parameters. In GP, the
parameters are the function itself. The non-parametric model in this context
means infinite number of functions. A Gaussian Process (GP) is defined by its
mean function m(x) and its covariance function k(x, x ′).

The mean function m(x) specifies the form of the prior mean function of the
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Gaussian Process regression model, and describes the expected value of the
distribution. There are different types of mean functions such as Zero, Con-
stant, and Linear. The form of mean function is more influential in the ex-
trapolation, while for the interpolation, it may not affect the outcome signif-
icantly. In the current study, the Zero mean function is selected because the
data points are selected to be located on the boundary of the domain. There-
fore, there is no need to extrapolate the results. The data set domain bound-
ary represents values of the geometrical parameters. In other words, outside
of the selected domain boundary defined by the geometrical parameters, the
configurations are not geometrically feasible (e.g., orifices locate outside of
the plate or the orifices become inasmuch close so that they intersect and no
longer represent individual circular orifices). The procedure for selecting the
training data set is presented in the following section.

It is expected that the data points with similar input values x, have similar re-
sponse values y . In Gaussian Processes, the covariance function describes the
variance in the response values y [75]. In other words, it determines how the
response at one point x is affected by responses at other points x ′. The covari-
ance function k(x, x ′) can be characterized by several kernel functions. The
kernel parameters that can be used for parameterization of the covariance
function are based on the standard deviation and the characteristic length
scale. The characteristic length scale describes the farthest distance between
two priors x and x ′ for the posteriors to become uncorrelated. Training of a
Gaussian Process implies the selection of a covariance function and its kernel
parameters. GPs are discussed further in detail in [75].

Support Vector Machines

In machine learning, Support Vector Machines (SVMs) are supervised learning
models widely used for classification and regression (known as Support Vec-
tor Regression) problems. Support Vector Machines (SVMs) are introduced by
Vladimir Vapnik [76]. In general, the objective in linear regression models is
to minimize the sum of squared errors (e.g., Ordinary Least Squares or OLS).
However, the Support Vector Regression (SVR) aims to reduce the error to a
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given magnitude and is not concerned about reducing the error of points that
fall within this range. In other words, using SVR gives flexibility in defining the
extent to which the error is acceptable in the training of the model. Indeed, the
SVM uses the “kernel trick” to transform the input data in a nonlinear manner
to a higher dimensional space where the data becomes linearly separable, and
hence easier to model. Then an appropriate fit to the data set will be found.

Since the Support Vector Regression (SVR) depends on the kernel functions,
it is classified as a non-parametric model. The SVR used in this study is lin-
ear epsilon-insensitive SVM regression (ε-SVM) that ignores prediction errors
less than the defined value ε. In other words, the objective in this method is to
fit a function that deviates from the observed response no greater than ε for
each prior (training point). The data points with error values greater than ε are
called the support vectors. In ε-SVM, only predictions that have the error val-
ues larger than ε (support vectors) are used during model training. This helps
the model training to improve predictions in regions with poor performance
and results in a more generalized model [77]. This method has three hyper-
parameters: ε, an error penalty (or box constraint C ), and the kernel length
scale. The role of the box constraint is to control the penalty applied on the
observations with an error value greater than ε. Setting a larger error penalty
results in a more flexible model, while a smaller value leads to a rigid model
which is less sensitive to over-fitting. The kernel length scale governs the scale
over which the predictor output changes significantly.

Interpolation

Splines are a piecewise interpolation method that considers a set of polynomi-
als of degree w that are smoothly connected to adjoining data points [78]. At
each point of the data set, two polynomials connect, and their corresponding
first derivatives have the same value. In the case of higher order of polynomi-
als, it is also required by the definition that all the derivatives up to the (w−1)st
are the same at the point. In this study, linear and cubic forms of interpolation
are used. The linear spline is the most simple form of interpolation and repre-
sents a set of straight-line segments between each adjacent data points. The
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cubic spline is the most widely used interpolation and improves the piecewise
interpolation by matching the data values, slopes, and the concavity of each
interpolating segment [79].

Training Data Set

To train data-driven models and perform regression analysis, a training data
set is required. The training data set is composed of the normalized end-
correction values obtained from FEM for all the configurations listed in Ta-
ble 3.1 (the procedure for obtaining the normalized end-correction from FEM
is described earlier in this Chapter). The data points representing the experi-
mental configurations are excluded because these data points will be used to
validate the numerical model with the experimental results. In addition, for
testing the numerical model, a testing data set is generated randomly after
training the models. The testing data set is generated after model training to
ensure that the data points that are used for evaluating the performance of
the model, are excluded from the training process. The number of testing data
points is approximately 15% of the training data points.

Training data points are selected carefully to cover the whole region defined by
the geometrical parameters. Therefore, extrapolation may become irrelevant,
and training of the model implies interpolation. This choice of training data
set helps avoid unreliable predictions associated with extrapolation, which are
heavily influenced by implicit model assumptions, such as hyper-parameter
tuning and influence of the mean function in the case of Gaussian Processes
(GP). To clarify the idea behind the boundary of geometrical parameters, six
perforated plates are shown in Figure 4.10. For these samples, the orifice ra-
dius is kept constant. If the orifices become so close to each other so that they
intersect, then they no longer represent individual circular orifices (shown in
Figure 4.10 top, for configurations P, S, and Sa). Similarly, if the distance be-
tween orifices increases so that the orifices are located on the periphery of
the plate, they also do not represent circular orifices, although the distance
between orifices in both situations is smaller than the plate radius (shown in
Figure 4.10 bottom, for configurations P, S, and Sa). Therefore, lower and up-
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per limits of the distance of orifice should be defined at each orifice radius and
for each configuration, separately. These extreme cases will form the bound-
ary of the geometrical parameters, beyond which the configurations are not
geometrically feasible and not relevant. For the purpose of training, the ex-
treme cases that are located on the boundary of the geometrical parameters
are identified and included in the training data set to facilitate the model train-
ing by transforming the model training into an interpolation problem.

P S Sa

Figure 4.10: Perforated plates that are considered as the boundary of the ge-
ometrical parameters. The samples on the top represent the sit-
uation where orifices are too close to each other such that they
intersect, and the bottom samples represent the situation where
orifices are inasmuch far from each other such that they are lo-
cated on the periphery of the plate.

In the current section, the training data set and the approach to obtain it
are described for configuration P only, to avoid repetition of the same pro-
cedure for configurations S and Sa. The training data set for the P configura-
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tion is presented in Figure 4.11. Circles represent the perforated plate sam-
ples, and the lines represent contour lines of the constant orifice radius. At a
constant orifice radius, decreasing the orifice spacing (a) increases the hole-
to-hole interaction end-correction (denoted here by δ as the normalized end-
correction). When the orifice radius (r0) is smaller, the maximum normalized
end-correction is greater compared to the larger orifice radii. The normalized
end-correction of the configurations with smaller orifice radius changes more
significantly compared to the configurations with larger orifices, when center-
to-center orifice spacing is decreased. In other words, the normalized end-
correction of the configurations with smaller orifice radii are more sensitive
to the center-to-center orifice spacing.

Figure 4.11: The training data set for the P configuration.

Normalized end-correction behavior depends on the orifice spacing and the
radius. According to Equations 2.25 and 2.26, the end-correction for a single
orifice is a function of radius ratio (r0/Rc). To consider the effect of orifice
spacing for different hole patterns, a circle with an equivalent area associated
with the orifices on the plate is considered, and the ratio between the orifice
radius and the equivalent circle radius (r0/Req ) is obtained. As shown in Fig-
ure 4.12, transforming the area associated with the orifices to an equivalent
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circle may facilitate the modeling of the effect of orifice spacing for different
orifice patterns.

Figure 4.12: The area associated with the perforation region is shaded.

As shown in Figure 4.12, the area associated with the orifices is expanded by
half of the center-to-center orifice spacing to include the effect of the outer-
most orifices in the plate. This associated area is considered to be equivalent
to a circle whose radius is Req (equivalent circle radius).

Figure 4.13: Representation of the equivalent circle and its radius.

The training data set with the transformed axes is shown in Figure 4.14 for P
configuration. The connecting lines show less curvature, implying a relatively
linear relationship between δ and the input variables.

Similarly, the training data set with the transformed axes is shown in Fig-
ure 4.15 for S and Sa configurations. The black circles represent the data points
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Figure 4.14: The training data set for the P configuration with the transformed
axes.

of S configuration, while the red circles represent the data points of Sa config-
uration.

Model Training

To train Machine Learning (ML) models with the training data set, the Regres-
sion Learner toolbox of MATLAB® is used. Hyper-parameters optimization is
used to find the model structure that gives the lowest error on the training data
set. For example, to train a Gaussian Process (GP), all of the available combi-
nations of the kernel and mean functions are used to obtain the most optimal
combination of hyper-parameters.

For the purpose of model training, the training data set is used in such a
way that r0/Rc and r0/Req are considered as input variables, and the nor-
malized end-correction (δ) as model output. After training models, the out-
put of each model, which is the normalized end-correction predicted by the
model (referred to as predicted response), is compared with the normalized
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Figure 4.15: The training data sets for the S and Sa configurations with the
transformed axes.

end-correction used for training (referred to as true response). Figures 4.16
and 4.17 show the predicted response and compare it with the true response
for each training data point and trained model for P, S, and Sa configura-
tions, respectively. Circles represent the data points, and the straight diagonal
line stands for the perfect prediction. The closer the circles are to the perfect
prediction line, the prediction of the model is closer to the normalized end-
correction values used for training. In Figure 4.16, most of the data points are
located on the perfect prediction line with relatively low scatter.

To present how close the normalized end-correction predicted by models are
from the true response (the normalized end-correction which is obtained
from FEM and used for the model training), residual for each data point is
calculated by

Resi dual = δPr edi cted −δTr ue

δTr ue
×100, (4.5)

where δPr edi cted and δTr ue stand for the predicted normalized end-correction
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Figure 4.16: Predicted response versus true response for P configuration.

by models and the normalized end-correction obtained from FEM, respec-
tively. The residuals for all data points and trained models for P configuration
are shown in Figure 4.18. In Figure 4.18 similar to Figure 4.16, data points of
GP and Spline (both cubic and linear) are in the proximity of the zero-residual
line, while the data points of the SVM are more scattered.

To evaluate the performance of each machine learning model, the Normal-
ized Root Mean Square Error (NRMSE) is used as the performance metrics.
NRMSE indicates the normalized error of the model with respect to the data
by evaluating how close the the model’s prediction are to the normalized end-
correction values obtained from FEM.

N RMSE =
√

1
n

∑n
1

(
ŷi − yi

)2

1
n

∑n
1 yi

×100. (4.6)

In Equation 4.6, n stands for the number of data points used for the models
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Figure 4.17: Predicted response versus true response for S and Sa configura-
tions.
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Figure 4.18: Data points’ residual of trained models for P configuration.
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training. As mentioned earlier, the normalized end-correction values obtained
from FEM are used for the models training. ŷ1, ŷ2, ..., ŷn are predicted val-
ues of the normalized end-correction by models (δPr edi cted ), while y1, y2, ..., yn

are the normalized end-correction values obtained from FEM and used for
the models training (δTr ue). NRMSE is a good measure of how accurately the
model predicts the normalized end-correction. Lower values of NRMSE in-
dicate a better fit of the model to the data. NRMSE values for the machine
learning models trained for P configuration are presented in Table 4.1.

Table 4.1: NRMSE [%] values of the machine learning models trained for P
configuration on the training data set.

GP SVM Spline cubic Spline linear

1.0183 2.8956 0.0118 0.0173

Similarly, the NRMSE values for the machine learning models trained for S and
Sa configurations are presented in Table 4.2.

Table 4.2: NRMSE [%] values of the machine learning models trained for S and
Sa configurations on the training data set.

GP SVM Spline cubic Spline linear

4.2127 5.6593 0.1073 0.1551

In addition to the models obtained from machine learning algorithms
(GPs, SVM, and Splines), mathematical correlations for the normalized end-
correction is obtained from the training data points using regression analysis.
These mathematical correlations are obtained independent from the machine
learning models. To obtain mathematical correlations, the numerical results
shown in Figures 4.8 and 4.9 are used.

The behavior of the normalized end-correction depends on the orifice spacing
and the radius. Therefore, the end-correction model may have the following
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shape:

δ= 0.48

(
1+C1

r0

Rc
+C2

r0

Req

)
, (4.7)

where C1 and C2 are coefficients. By including C1
r0
Rc

, the model considers the
end-correction of one orifice which its radius can be varied. The term C2

r0
Req

accounts for the variation in the orifice spacing in such a way that decreasing
orifice spacing will reduce the equivalent circle radius Req . The factor of 0.48
stands for the maximum value of the normalized end-correction of a single
orifice in the plate, which is introduced by Ingard [1]. The effect of hole-to-
hole interaction is considered as an additional effect on the normalized end-
correction. Therefore, Equation 4.7 includes superimposed effects of the end-
correction of a single orifice in the plate and the hole-to-hole interaction. The
coefficients C1 and C2 are obtained by regression analysis for the triangular
pattern (P) as

δP = 0.48

(
1−34

r0

Rc
+26.56

r0

Req

)
. (4.8)

Similarly, for square and rectangular patterns (S and Sa) as

δS,Sa = 0.48

(
1−50.41

r0

Rc
+38.19

r0

Req

)
. (4.9)

The difference in the coefficients results from the difference in the arrange-
ment of orifices in the studied patterns. For instance, in P pattern (triangular),
each orifice is surrounded by six orifices, while in S and Sa patterns (square
and rectangular), each orifice is surrounded by eight orifices.

The mathematical correlations obtained using regression (presented in Equa-
tions 4.8 and 4.9) are obtained independent of Machine Learning (ML) algo-
rithms. The obtained correlations will be compared with the trained ML mod-
els in the following section.
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Performance Analysis

This section presents the performance analysis of the trained machine learn-
ing models and the obtained mathematical correlations (presented in Equa-
tions 4.8 and 4.9). The random test data points, which are used to evaluate the
performance of each model in predicting the normalized end-correction, are
equivalent to approximately 15% of the training data points.

The normalized end-correction of the test data points is obtained using FEM,
after training the machine learning models, to ensure that the models’ train-
ing is not influenced by the test data set. These data points are used to assess
the performance of the trained models using ML and the mathematical corre-
lations obtained using regression (presented in Equations 4.8 and 4.9).

The NRMSE values of the machine learning models trained for P configura-
tion are presented in Table 4.3 to evaluate the performance of each model in
predicting the test data points. The NRMSE values of the ML models have the
same order of the magnitude and less than the NRMSE of the mathematical
correlation δP .

Table 4.3: NRMSE [%] values of the machine learning models trained for P
configuration applied to the test data set.

GP SVM Spline cubic Spline linear δP

1.2280 1.9836 1.1715 1.1718 7.1723

Similar to the configuration P, the test data points are used to evaluate the
performance of the trained machine learning models for the configurations S
and Sa. The NRMSE values are presented in Table 4.4 and show an increase
compared to the NRMSE values obtained for P configuration, except the δS,Sa

which has a lower NRMSE.

In summary, it can be concluded that the mathematical correlations obtained
by regression (presented in Equations 4.8 and 4.9) have relatively the same
level of accuracy compared to the ML models, according to the NRMSE val-
ues. A main drawback of the ML models is that these models cannot be eas-
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Table 4.4: NRMSE [%] values of the machine learning models trained for S and
Sa configurations applied to the test data set.

GP SVM Spline cubic Spline linear δS,Sa

3.2976 4.6558 3.4935 3.4905 4.3894

ily transferred to users, while the mathematical correlations can be used as
presented in Equations 4.8 and 4.9. The current section aimed to compare
the performance of mathematical correlations obtained by regression with
the ML models. Now that is shown that the mathematical correlations have
relatively the same level of accuracy in comparison with the ML models, the
mathematical correlations (Equation 4.8 and 4.9) will be used for further com-
parison with the experimental results in Chapter 6.
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5 Experimental Setup and Measurement
Techniques

This chapter1 aims to describe the measurement technique used in this work,
followed by the description of the test setup and the investigated perforated
plate configurations.

5.1 Plane Wave Decomposition

In acoustic measurements in the impedance tube, only plane waves are con-
sidered. The acoustic pressure recorded by a microphone is a superposition
of two waves propagating in opposite directions. This superposition is math-
ematically expressed by Equation 3.27 and is presented here again by

p̂(z) = p̂+e−i k+z + p̂−e i k−z . (5.1)

By knowing the p̂(z) from measurements at each axial location z1, z2, . . . , zm (as
illustrated in Figure 5.1), the complex amplitudes p̂+ and p̂− can be identified
by using the plane wave decomposition. Therefore, a system of equations can
be constructed as follows,

p̂ (z1) = p̂+e−i k+z1 + p̂−e i k−z1

p̂ (z2) = p̂+e−i k+z2 + p̂−e i k−z2

...

p̂ (zm) = p̂+e−i k+zm + p̂−e i k−zm

(5.2)

1The content of this chapter is partially published in the paper GT2021-58535 - Proceedings of ASME Turbo
Expo 2021 [2]
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Figure 5.1: Illustration of the two waves propagating in the opposite direction.

Rewriting the system of equations in the form of a matrix yields


e−i kz1 e i kz1

e−i kz2 e i kz2

...
...

e−i kzm e i kzm


︸ ︷︷ ︸

C

×
[

p̂+

p̂−

]
︸ ︷︷ ︸

x

=


p̂ (z1)
p̂ (z2)

...
p̂ (zm)


︸ ︷︷ ︸

D

(5.3)

The number of available measurement data points (m) and the number of
unknowns define the dimension of matrices presented in Equation 5.3. The
number of unknowns is 2 because of the unknown complex amplitudes p̂+

and p̂−, and m is equal to the number of pressure sensors. Thus, the dimen-
sion of C is [m ×2], the dimension of x is [2×1], and the dimension of D is
[m ×1]. By solving the following equation, a solution for Equation 5.3 is given
by [80]

x = C+D. (5.4)

C+ is the Moore-Penrose pseudoinverse of matrix C.

Equation 5.3 has a solution only if at least two independent equations exist.
According to the number of pressure sensors, two cases can be identified as
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follows:

• The number of pressure sensors is equal to the number of unknowns.
This is known as the two-microphone method.

• The number of pressure sensors is greater than the number of unknowns.
This is known as the multi-microphone method

5.2 Experimental Setup

Experiments are carried out on the impedance tube test rig illustrated in Fig-
ure 5.2. The test rig consists of a loudspeaker, a tube where the pressure sen-
sors are located, and an absorber module composed of the backing cavity and
a perforated plate. The airflow is supplied through the inlet ports on the cav-
ity periphery and is discharged through the outlet ports on the other side of
the tube. The inner diameter of the tube and the cavity is 0.092 m. Plane wave
propagation in the tube is assumed below the cut-on frequency of the first
higher-order mode of the impedance tube (approximately 1.7 kH z).

Loudspeaker Dynamic pressure sensors CavityPerforated plate

Outlet Inlet

Figure 5.2: Schematic view of the impedance tube used for characterization
of perforated plates.

Six dynamic pressure sensors are mounted along the tube, and the closest sen-
sor is located at 0.215 m with reference to the perforated plate to avoid near-
field effects. The acoustic pressure data are recorded and post-processed ap-
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plying the multi-microphone method [73,80,81] to obtain the reflection coef-
ficient R over the range of frequencies 200−700 H z.

An overview of the perforated plates is shown in Figure 5.3 and Table 5.1.

P1

S1

P2 P3

S2 S3

S1a S2a

a a

a

a a

ax ax

a

ay ay

Figure 5.3: Perforated plate samples that are studied experimentally.

In the present study, for each pattern (P, S, and Sa), it is tried to keep all ge-
ometrical parameters and operating conditions constant except the spacing

72



5.2 Experimental Setup

of the orifices (center-to-center distance) to evaluate the effect of the hole-to-
hole interaction on the damping characteristics of the perforated plates. For
instance, in the configuration P, all geometrical parameters are constant for
P1, P2, and P3, except the center-to-center orifice spacing.

Table 5.1: Geometrical parameters of the perforated plates that are studied ex-
perimentally.

Case r0 Porosity [%] Lp Center-to-center
Name [mm] of cases [mm] distance (a) [mm]

P1 0.8 1.1 4 2.5
P2 0.8 1.1 4 3.5
P3 0.8 1.1 4 8
S1 0.65 0.98 4 2.2
S2 0.65 0.98 4 5
S3 0.65 0.98 4 10

S1a 0.65 0.98 4 ax = 2.2 , ay = 5
S2a 0.65 0.98 4 ax = 5 , ay = 10

73





6 Results and Discussion

This chapter1 aims to evaluate the effect of the hole-to-hole interaction on
the acoustic characteristics of multi-orifice perforated plates backed by a cav-
ity. The experimental results of the configurations in the absence of bias flow
are presented, followed by the comparison with the impedance models’ pre-
dictions. Then, the experimental results in the presence of bias flow are pre-
sented, and the prediction of the impedance models are compared with the
experimental data and discussed.

6.1 Experimental validation without Bias Flow

This section starts by presenting the experimental results of configurations
in the absence of bias flow. For these experiments, the inlet and outlet ports
designed for supplying and discharging the airflow are blocked to avoid any
additional damping. The investigated perforated plates are illustrated in Fig-
ure 5.3. The acoustic reflection coefficient is acquired from the measured
acoustic pressures after post-processing of the raw data (described further in
detail in Chapter 5).

The magnitude and phase of the reflection coefficient for pattern P are shown
in Figure 6.1. Similarly, Figure 6.2 presents the magnitude and phase of the
reflection coefficient for patterns S and Sa. The squares in Figure 6.2 represent
S cases, while the cross markers represent Sa cases to differentiate between
these two configurations.

The experimental results in Figures 6.1 and 6.2 show that the resonance fre-
quency of the perforated plate backed by cavities shifts to higher frequencies

1The content of this chapter is partially published in the paper GT2021-58535 - Proceedings of ASME Turbo
Expo 2021 [2]
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Figure 6.1: Magnitude (top) and phase (bottom) of reflection coefficient for
the P pattern with the cavity length of Lc = 30 mm [2].

as the orifice spacing increases. According to Equation 4.3, the reason for this
increase in resonance frequency is the decreasing end-correction because all
the other geometrical parameters are kept constant except the distance be-
tween the orifices. These experimental observations are in accordance with
the results of the numerical analysis presented in Chapter 4 (shown in Fig-
ures 4.8 and 4.9). Similar observations are reported by Tayong [49] and Wang
et al. [51]. Wang et al. [51] explained this behavior by considering it as a result
of the "combined momentum of the jet flows" when the orifices are close to
each other. In contrast, this effect is less significant when the orifices are dis-
tantly spaced. However, Tayong [49] did not explicitly address this behavior
and associated it with the "heterogeneity distribution effect" without further
discussing this effect.
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Figure 6.2: Magnitude (top) and phase (bottom) of reflection coefficient for
the S and Sa patterns with the cavity length of Lc = 30 mm [2].

Similar to the behavior of the triangular pattern, the resonance frequency of
the square and rectangular patterns shifts to higher frequencies when the ori-
fice spacing increases. As shown in Figure 6.2, the resonance frequency of the
S1a case is located between the S1 and S2 cases. This behavior can be ex-
plained by considering the orifice spacing in the S1a case. In the x-direction,
the orifice spacing is similar to the S1 case, while in the y-direction, it is similar
to the S2 case. This geometrical characteristic may result in an end-correction
value between the S1 case and the S2 case, since all other geometrical param-
eters of the S and Sa configurations are kept constant except their orifice spac-
ing. The resonance frequency of case S2a follows a similar behavior and falls
between the S2 and S3 cases. The resonance frequency of S1a case is located
between the resonance frequency of S1 and S2 cases, while the resonance fre-
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quency of S2a case is close to the S3 case. The reason might be that by in-
creasing the orifice spacing, the hole-to-hole interaction effect decreases and
becomes less significant [2].

As shown in the experiments, the shift of the resonance frequency is solely
related to the normalized end-correction, because all geometrical parame-
ters kept constant, while the orifice spacing is the sole variable parameter.
Therefore, according to the findings of Ingard [1] and Ih [48], the normalized
end-correction is related to the orifice radius and orifice spacing. The acous-
tic impedance model proposed by Bellucci et al. [8] described in Section 2.6 is
used to validate the numerical results with the experiments. The overall struc-
ture of Bellucci’s impedance model is not altered. The only term that is modi-
fied in the current work is the end-correction term (l ′Bel lucci in Equation D.14).
A new end-correction term is proposed in the current work as

le f f = lh−h · lnl · lB , (6.1)

where the expressions lnl and lB account for the reduction of end-correction
due to high amplitude pressure oscillations and bias flow effects, respectively.
The expression lh−h account for the radiation reactance as well as the hole-
to-hole interaction effects. Since the effect of radiation reactance described
by l ′r ad in Equation 2.38 is related to the hole-to-hole interaction effect [1, 48],
these two effects are combined and presented by the expression lh−h as

lh−h = 2 · δ
(
π · r 2

0

)1/2[
1+ (0.77kr0)2

1+0.77kr0

] , (6.2)

where δ is the normalized end-correction and is obtained from Equations 4.8
and 4.9. As mentioned earlier, the normalized end-correction considers the
end-correction on one side of the orifice and is normalized by

(
π · r 2

0

)1/2
.

Therefore, to obtain the end-correction, the normalized end-correction (δ)
should be multiplied by

(
π · r 2

0

)1/2
and the factor 2 (to consider for both sides

of the orifice).
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The general expression is proposed for the total (effective) end-correction
as [2]

le f f = 2 · δ
(
π · r 2

0

)1/2[
1+ (0.77kr0)2

1+0.77kr0

] · lnl · lB . (6.3)

The expression (presented in Equation 6.3) includes the effect of radiation
reactance presented by Equation 2.39 and the hole-to-hole interaction ef-
fect in terms of the normalized end-correction δ. Thus, the normalized end-
correction acquired from the three-dimensional analytical method and the
FEM analysis can also be directly used in Equation 6.3. The final configura-
tion of the modified Bellucci model, where the normalized end-correction is
obtained from the mathematical correlations (δP and δS,Sa) is presented in
Appendix D.

It is mentioned earlier in Section 2.6 that the expression l ′nl (Equation 2.42)
accounts for the reduction of end-correction due to high amplitude pressure
oscillations, and this expression is fitted to the measurements [8]. Therefore,
Equation 2.42 may contain the hole-to-hole interaction effect because this ef-
fect was not taken into account in the derivation of the model for l ′nl [8]. In the
present work, the expression lnl is fitted to the experimental measurements
considering the hole-to-hole interaction effect. Figure 6.3 shows the reflection
coefficient curves of the S1 case from experiments with different excitation
amplitude levels.

The pressure levels specified in Figure 6.3 are the acoustic pressures at the
location of the perforated plate obtained from measurements. Experimental
results show that increasing the excitation amplitude increases the acoustic
absorption at first, and then by further increasing the amplitude, the absorp-
tion decreases while it becomes more broadband. These observations are in
agreement with the findings reported in the literature [81]. Figure 6.3 presents
only five excitation amplitude levels for the S1 case, while to fit the lnl expres-
sion, a multitude of excitation levels for P and S configurations were used. The
experimental data that are used for fitting the lnl expression and the proce-
dure to obtain the lnl expression are described further in detail in Appendix B.
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Figure 6.3: Magnitude (top) and phase (bottom) of reflection coefficient for
the S1 case with the cavity length of Lc = 30 mm and various exci-
tation amplitudes.

In this work, by considering the hole-to-hole interaction effect, the following
expression is obtained for lnl by calibrating coefficients of Equation 2.42 with
the experimental data for the triangular pattern (P) as [2]

l P
nl = 1− 0.15

St 0.2
ac

. (6.4)

And similarly, for the square and rectangular patterns (S and Sa) [2]

l S,Sa
nl = 1− 0.09

St 0.54
ac

. (6.5)
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The difference in the coefficients arises from the difference in the arrange-
ment of holes in the pattern P compared to the patterns S and Sa. As men-
tioned earlier, in P pattern (triangular), each orifice is surrounded by six ori-
fices, while in S and Sa patterns (square and rectangular), each orifice is sur-
rounded by eight orifices.

For validation of the proposed mathematical correlations (presented in Equa-
tions 4.8 and 4.9) with the experimental results, P1 and S1 cases are consid-
ered.

Reflection coefficient curves for P1 and S1 are shown in Figures 6.4 and 6.5,
respectively.
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Figure 6.4: Magnitude (top) and phase (bottom) of reflection coefficient for
the P1 case with the cavity length of Lc = 30 mm [2].

In Figures 6.4 and 6.5, black circles represent the experimental results, which
are obtained from direct measurement of acoustic pressure in the impedance
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Figure 6.5: Magnitude (top) and phase (bottom) of reflection coefficient for
the S1 case with the cavity length of Lc = 30 mm [2].

tube (presented in Chapter 5). Black dashed-lines represent the prediction of
Bellucci’s original model [8] (presented in Section 2.6). Blue solid lines repre-
sent the prediction of the modified Bellucci model, where the normalized end-
correction (δ) obtained from the three-dimensional analytical model (pre-
sented in Equation 3.49) is used for the calculation of the end-correction pre-
sented in Equation 6.3. Similarly, red solid lines represent the prediction of
the modified Bellucci model, where the mathematical correlations for the nor-
malized end-correction (δP and δS,Sa) presented in Equations 4.8 and 4.9, are
used for the calculation of the end-correction presented in Equation 6.3. Solid
black lines represent the prediction of the modified Bellucci model, where the
end-correction term introduced by Wang et al. [51] presented in Equation 2.3,
is used to obtain the total end-correction (presented in Equation 6.3). As the
effect of lnl is not taken into account by Wang, lnl expressions obtained in the
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6.1 Experimental validation without Bias Flow

current work (presented in Equations 6.4 and 6.5) are used to calculate the to-
tal end-correction. The FEM results are not directly used for the purpose of the
comparison the reflection coefficient curves, rather the mathematical correla-
tions obtained from FEM results are used for the purpose of validation against
the experiments.

The results are presented in Figures 6.4 and 6.5. For both configurations (P1
and S1), Bellucci’s original model predicts the resonance frequency higher
than the experiments. The underlying reason is that the end-correction model
used in Bellucci’s original model (Equation 2.40) is only valid for a single ori-
fice located in the center of a plate, and it does not account for the hole-
to-hole interaction effect [2]. The three-dimensional analytical method (pre-
sented in Equation 3.49), referred to as 3D method in Figures 6.4 and 6.5, sig-
nificantly improves the prediction of the resonance frequency with respect
to Bellucci’s original model (presented in Section 2.6). However, a slight de-
viation from the experiments can be noticed, which may be related to the
number of higher-order modes that are considered to calculate the end-
correction [2].

The prediction of the modified Bellucci’s model with the end-correction term
introduced by Wang et al. [51] (shown by solid black lines in Figures 6.4
and 6.5) for the resonance frequency of the S1 case is more accurate than the
P1 case. Underpredicting the resonance frequency of the P1 case might be ex-
plained by the fact that the triangular configuration is not studied in Wang’s
work, and the end-correction expression they proposed is based on the square
and rectangular configurations. The arrangement of orifices may influence
the effective porosity (σe f f ) and consequently the end-correction, as shown
in Equation 2.3.

A comparison of the predicted resonance frequencies for the perforated plates
shown in Figure 5.3 is presented in Table 6.1.

The resonance frequencies predicted by the mathematical correlations (pre-
sented in Equations 4.8 and 4.9) for both configurations are in good agreement
with the experimental results. On the contrary, Bellucci’s original model pre-
dicts a constant resonance frequency for all P and S cases, respectively. The
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Table 6.1: Predicted resonance frequency of the perforated plates investigated
experimentally.

Case Experiment Mathematical correlations 3D method Bellucci et al. [8] Wang et al. [51]
Name [H z] Eqns. 4.8 and 4.9 [H z] [H z] [H z] [H z]

P1 355 352 360 400 -
P2 380 375 392 400 -
P3 435 412 447 400 -
S1 340 339 350 387 334
S2 385 381 408 387 379
S3 400 402 440 387 401

S1a 370 360 381 387 354
S2a 395 393 423 387 390

reason is that the interaction end-correction expression considered in this
model (Equation 2.40) is not depending on the orifice spacing [2]. The three-
dimensional analytical approach shows improvement over Bellucci’s original
model and predicts the resonance frequency closer to the experiments.

6.2 Experimental validation with Bias Flow

This section presents the influence of the hole-to-hole interaction in the pres-
ence of a bias flow on two representative perforated plate configurations: tri-
angular and square patterns. The general influence of the bias flow is demon-
strated with configurations P1 and S1. Figures 6.6 and 6.7 present the reflec-
tion coefficient curves for several bias flow velocities for P1 case. In Figure 6.6,
squares represent the case without bias flow (as shown in Figure 6.1), and cir-
cles represent different bias flow velocities.

Without any bias flow, the P1 case exhibits a prominent absorption maxi-
mum of around 350 Hz (shown in Figure 6.6). Introducing a bias flow and
increasing its velocity shifts the maximum absorption to higher frequencies.
The shift in resonance frequency can be noticed in Figure 6.6, however, this
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Figure 6.6: Magnitude (top) and phase (bottom) of reflection coefficient for
the P1 case with the cavity length of Lc = 30 mm and various bias
flow velocities (UB ).

shift is more significant at higher bias flow velocities (shown in Figure 6.7). Si-
multaneously, the maximum level of absorption is first increased (shown in
Figure 6.6) and then reduced (shown in Figure 6.7), while the absorption be-
comes more broadband. This increase and decrease in the maximum level of
absorption by increasing bias flow velocity is in agreement with the observa-
tions reported in the literature [81].

In Figure 6.6, without any bias flow, the resonance damping behavior charac-
terized by aminimum of the reflection coefficient magnitude and a phase shift
equal to ±π, is shown by squares. The bias flow influences this resonance ef-
fect up to a sufficiently high bias flow velocity. As shown in Figure 6.6, increas-
ing bias flow velocity affects the magnitude of the reflection coefficient by in-
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Figure 6.7: Magnitude (top) and phase (bottom) of reflection coefficient for
the P1 case with the cavity length of Lc = 30 mm and various bias
flow velocities (UB ).

creasing the damping level due to the enhanced vortex shedding. While, the
phase is not significantly affected. Beyond a sufficiently high bias flow velocity
(UB = 1.4m/s) in Figure 6.7, the bias flow dominates and the phase shift starts
to decrease by increasing the bias flow velocity. The decrease in the phase shift
may be related to the reduced reactance when the bias flow velocity is increas-
ing. This behavior is somewhat related the Strouhal number, as mentioned by
Lahiri [81].

Figure 6.8 presents the reflection coefficient curves for several bias flow veloc-
ities for S1 case. For the S1 case, similar to the P1 case, introducing a bias flow
shifts the maximum absorption to higher frequencies while the absorption be-
comes broadband. Similar behavior is observed for all perforated plates stud-
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6.2 Experimental validation with Bias Flow

ied (shown in Figure 5.3). The results show that bias flow reduces the maxi-
mum absorption, while becoming more broadband compared to the condi-
tion without bias flow. These observations comply with the finding reported
in [8, 16, 81–85].
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Figure 6.8: Magnitude (top) and phase (bottom) of reflection coefficient for
the S1 case with the cavity length of Lc = 30 mm and various bias
flow velocities (UB ).

Before comparing the prediction of the models, it is necessary to evaluate
the bias flow end-correction expression l ′B proposed by Bellucci et al. [8]. As
mentioned in Section 2.6, the expression l ′B (Equation 2.41), which considers
the reduction of end-correction due to bias flow, is fitted to the experimental
data [8]. Thus, Equation 2.41 may contain the hole-to-hole interaction effect,
since this effect was not taken into account in the derivation of the expression
for l ′B [8]. Since in the current study, the effect of hole-to-hole interaction is
considered separately, the lB expression should be evaluated because the l ′B
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expression proposed by Bellucci et al. [8] (presented in Equation 2.41) cannot
be used. In the current study, the lB expression is fitted to the experimental
results. The experimental data that are used for fitting the lB expression and
the procedure to obtain this expression are described in Appendix C.

In the current work, the following expressions are proposed for lB by keeping
the original shape of the expression lB (Equation 2.41) and re-calibrating its
coefficients with the experimental data for the triangular pattern (P)

l P
B = 0.3

(
aP /St 2

)+1

aP /St 2 +1
; aP = 23

(
Req

R

)3

. (6.6)

Similarly, for the square and rectangular patterns (S and Sa)

l S,Sa
B = 0.3

(
aS/St 2

)+1

aS/St 2 +1
; aS = 2.4

(
Req

R

)2

. (6.7)

In Equation 2.41, Bellucci considered a constant value of 6 instead of param-
eters aP and aS in Equations 6.6 and 6.7. Since the center-to-center orifice
spacing affects the velocity profile in the vicinity of the orifices, the reduction
of the end-correction due to bias flow (represented by the expression lB ) may
be affected by the center-to-center orifice spacing, too. Thus, the effect of the
center-to-center orifice spacing (or in general, hole-to-hole interaction) is in-
cluded in the expression lB by parameters aP and aS . Introducing the term(

Req

R

)
, enables the expression proposed by Bellucci presented in Equation 2.41

to consider the effect of hole-to-hole interaction. These two expressions can
be integrated into the end-correction expression presented in Equation 6.3.

For comparison, the impedance model proposed by Bellucci [8] is used, and
the expressions lB that are obtained from the regression analysis (presented
in Equations 6.6 and 6.7) are integrated into the end-correction expression
(Equation 6.3). Then, the acoustic reflection coefficient is compared with the
experimental data and Bellucci’s original model. In addition, the impedance
model proposed by Jing et al. [16] (presented in Section 2.5) is used to predict
the acoustic behavior of the perforated plates backed by a cavity. In the fol-

88



6.2 Experimental validation with Bias Flow

lowing section, the end-correction model proposed by Wang et al. [51] is not
considered for the comparison because their model does not account for bias
flow.

Figures 6.9 and 6.10 present the comparison of the reflection coefficient
curves for the S1 case at the bias flow velocities UB = 1.1 m/s and UB = 4.5 m/s,
respectively.
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Figure 6.9: Comparison of the model predictions for the magnitude (top) and
phase (bottom) of reflection coefficient for the S1 case with the
cavity length of Lc = 30 mm at the bias flow velocity UB = 1.1 m/s.

In Figures 6.9 and 6.10, circles represent the experimental results, which are
obtained from direct measurement of acoustic pressure in the impedance
tube (presented in Chapter 5). Black dashed-lines represent the prediction of
Bellucci’s original model (presented in Section 2.6). Black dotted-lines repre-
sent the prediction of Jing model presented in Section 2.5. The solid black lines
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represent the prediction of the modified Bellucci model, where the mathemat-
ical correlation for the normalized end-correction (δS,Sa) presented in Equa-
tion 4.9, is used for the calculation of the end-correction presented in Equa-
tion 6.3.

In terms of the location of the resonance frequency and the magnitude of
damping, the general trend is accurately predicted by the modified Bellucci
model, where the mathematical correlation for the normalized end-correction
(δS,Sa) presented in Equation 4.9, is used for the calculation of the end-
correction presented in Equation 6.3. Bellucci’s original model predicts the
damping level in good agreement with the experimental results. However,
the resonance frequency is not accurate (with a deviation of approximately
70 H z). The reason for the over-prediction of the resonance frequency by orig-
inal Bellucci’s model is that the end-correction model used in this model is
not valid for multi-orifice perforated plates, and therefore, it lacks the hole-
to-hole interaction effect. Including this effect by using the expression l S,Sa

B

presented in Equation 6.7 improves the model’s prediction significantly. Sim-
ilar to Bellucci’s original model, Jing’s model over-predicts the maximum ab-
sorption frequency. The reason is that, although Jing’s model improved Howe’s
Rayleigh conductivity model by including the plate thickness, it does not con-
sider any end effect. Additionally, Jing’s model does not predict the magni-
tude of absorption accurately. This behavior can be explained by the resis-
tance term of Jing’s model, which considers the vortex shedding phenomenon
only. In contrast, Bellucci’s original model considers several resistance terms
(Equation 2.32). The selection criteria of these resistance terms is based on the
ratio of the mean bias flow velocity (UB ) and the acoustic velocity (u′), in the
presence of a bias flow. Figure 6.10 shows the comparison of the impedance
models at a bias flow velocity of UB = 4.5 m/s.

Similar to the lower bias flow velocity, the modified Bellucci model with the
mathematical correlation presented in Equation 4.9 for the calculation of the
end-correction, predicts the resonance frequency and the damping level ac-
curately. In comparison, Bellucci’s original model and Jing’s model locate the
maximum absorption at higher frequencies. Jing’s model predicts the mag-
nitude of the reflection coefficient in good agreement with the experiments
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Figure 6.10: Comparison of the model predictions for the magnitude (top)
and phase (bottom) of reflection coefficient for the S1 case with
the cavity length of Lc = 30 mm at the bias flow velocity UB =
4.5 m/s.

at this bias flow velocity, similar to Bellucci’s original model. It can be con-
cluded that Jing’s model can predict the absorption level accurately when the
bias flow velocity is sufficiently high. In contrast, Bellucci’s original model can
be used for all levels of bias flow. At the bias flow velocity of UB = 4.5 m/s, it
can be seen that both Bellucci’s original model and Jing’s model predict the
same level of absorption because they employ the resistance term of Howe’s
Rayleigh conductivity model. The difference in the absorption level might be
related to the reactance term of Bellucci’s original model, where function Γ

is a complex quantity and translates the effect of orifice length also into the
resistance term. Therefore, the resulting resistance term of Bellucci’s original
model differs slightly from Jing’s model.
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Figure 6.11 presents the comparison of the impedance models for the P1 case
at a bias flow velocity of UB = 4.5 m/s.
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Figure 6.11: Comparison of the model predictions for the magnitude (top)
and phase (bottom) of reflection coefficient for the P1 case with
the cavity length of Lc = 30 mm at the bias flow velocity UB =
4.5 m/s.

In Figure 6.11, circles represent the experimental results, which are obtained
from direct measurement of acoustic pressure in the impedance tube (pre-
sented in Chapter 5). Black dashed-line represents the prediction of the origi-
nal Bellucci model (presented in Section 2.6). Black dotted-line represents the
prediction of Jing model presented in Section 2.5. The solid black line repre-
sents the prediction of the modified Bellucci model, where the mathematical
correlation for the normalized end-correction (δP ) presented in Equation 4.8,
is used for the calculation of the end-correction presented in Equation 6.3.
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6.2 Experimental validation with Bias Flow

As the results show, the modified Bellucci model with the mathematical corre-
lation presented in Equation 4.8 for the calculation of the end-correction can
accurately predict the resonance frequency of the triangular pattern, similar
to the square pattern (S1). Again, Bellucci’s original model and Jing’s model
locate the maximum absorption with significant deviation from the experi-
ments. In addition, a deviation between the absorption level of the experi-
ments and all the models can be observed. Such deviation was not observed
in the S1 case. Because of the hexagonal arrangement of the orifices in the P1
case, the orifices are more closely distributed than in the S1 case, resembling
a larger orifice. Therefore, the resistance effect might be intensified in terms
of vortex shedding and visco-thermal damping. In addition, the orifices in the
P1 case are more tightly spaced compared to the S1 case.
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7 Summary

The presented study has demonstrated the influence of the non-planar wave
propagation and geometrical parameters such as orifice center-to-center dis-
tance on the resonance frequency of multi-orifice perforated plates backed by
a cavity.

As a result of this work, a three-dimensional analytical method was developed
to consider the non-planar wave propagation at the orifice-plate area discon-
tinuity in multi-orifice perforated plates. The results showed that the calcu-
lated end-correction first increases with the number of considered higher-
order modes and then converges quickly. One major shortcoming of this
method is the excessive computational cost associated with the number of
considered higher-order modes.

Furthermore, to investigate the propagation of the acoustic waves through
small orifices, a three-dimensional, numerical method in frequency space for
the computation of the wave propagation described by the Helmholtz equa-
tion using FEM was developed. Several perforated plates (triangular, square,
and rectangular orifice patterns) backed by a cavity are studied, and the effect
of hole-to-hole interaction is studied. For all investigated perforated plates
similar behavior is observed, i.e., acoustic reactance curves shift to lower fre-
quencies as the distance between orifices decreases. This decrease in reso-
nance frequency implies that the end-correction increases by decreasing the
orifice spacing. It is shown that the oscillating mass of each orifice is not
significantly affected by the adjacent orifices, when the holes are distantly
spaced, while, the acoustic radiation of orifices is significantly influenced by
the neighboring holes when the orifices are closely distributed.

The knowledge of the correct end-correction is essential for the accurate pre-
diction of the resonance frequency of the perforated plates backed by the cav-
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ity. Thus, mathematical correlations for the normalized end-correction (δP

and δS,Sa) are obtained using the FEM results.

Several perforated plate configurations (triangular, square, and rectangular
orifice patterns) backed by a cavity were investigated experimentally. Experi-
mental results showed that the resonance frequency location is sensitive to the
hole-to-hole interaction effect. The resonance frequency shifts to the higher
frequencies by increasing the orifice spacing for the perforated plates with the
same orifice radius and pattern. The observations showed that this shift in
the resonance frequency is associated with the variation in the end-correction
value due to the hole-to-hole interaction effect, as all the geometrical and op-
erating parameters are kept constant except the center-to-center orifice spac-
ing. Similar to the experiments without a bias flow, the same behavior is ob-
served in the experiments with the bias flow.

Moreover, the mathematical correlations for the normalized end-correction
(δP and δS,Sa) obtained from FEM results were integrated into an impedance
model. Similarly, the normalized end-correction obtained from the three-
dimensional analytical method was integrated into the impedance model.
The prediction of the impedance models with the mathematical correla-
tions (δP and δS,Sa) and the normalized end-correction obtained from three-
dimensional analytical method are compared with the experimental results.
The comparisons demonstrated that neglecting the hole-to-hole interac-
tion effect may result in an over-prediction of the resonance frequency. The
impedance model with the mathematical correlations (δP and δS,Sa) can ac-
curately predict the resonance frequency of the perforated plates backed by a
cavity, and can be easily applied to different orifice patterns and orifice radii in
a plate. Therefore, the impedance model with the mathematical correlations
(δP and δS,Sa) is applicable in the design of multi-orifice perforated plates for
acoustic attenuation in practical applications, such as perforated liners in gas
turbines.

96



Appendices

97





A Modeling Details

As mentioned in page 40, in this section the development of the equations that
describe the boundary conditions is presented.

For the pressure boundary condition, multiply both sides of Equation 3.45
with Jt (bt sr /r0)cos(tθ)d A and integrate over Ah to get, for t = 0 and s = 0
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For t = 0, s = 1,2,3, . . .∞
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For t = 1,2,3, . . .∞, s = 0,1,2, . . .∞
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For velocity boundary condition for t = 0 and s = 0

M∑
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where M stands for the number of orifices.

For t = 0, s = 1,2,3, . . .∞
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Similarly, for t = 1,2,3, . . .∞, s = 0,1,2, . . .∞,
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(A.6)

By forming a matrix set of Equations 3.40, 3.41, and A.1 to A.6 containing the
description of boundary conditions, the solution of the acoustic field inside
the domain may be determined. The pressure amplitudes for waves Aimn,
Bimn, and Cmn are unknowns. By solving this set of equations for a finite num-
ber of higher-order modes, the pressure amplitudes can be obtained.

As mentioned in Chapter 2, the multi-dimensional effects associated with the
evanescent higher-order modes created at area discontinuities can be con-
sidered by introducing an acoustic length correction (l ′). In the following, the
procedure of obtaining Equation 3.48 is briefly described.

Considering the domain shown in Figure 3.1, at the area jump between the
orifice and the cavity, the continuity of sound pressure requires [45]

p̂ I
00 + p̂ I

h = p̂ I I
00 + p̂ I I

h at z = 0 , on Ah (A.7)

where the subscripts 00 and h represent the fundamental mode (0,0) and
the higher-order modes, respectively. Below the cut-on frequency of the first
higher-order mode, only the fundamental mode (0,0) can propagate, and the
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Modeling Details

discontinuity can be equivalent to the equation [52]

p̂ I
00 − p̂ I I

00 = zû I
00, (A.8)

where z is lumped specific impedance and û I
00 the acoustic velocity of the fun-

damental mode at the orifice-cavity interface (z = 0). The lumped impedance
can be written as [69]

z = iωρl ′ = p̂ I
h − p̂ I I

h

û I
00

= p̂ I
00 − p̂ I I

00

û I
00

, (A.9)

where the l ′ is the acoustic length correction of the orifice, and can be calcu-
lated using the following formula [52, 71, 86]

l ′ = p̂ I
00 − p̂ I I

00

iωρû I
00

= (Ai00 +Bi00)−C00

(
1+e−2i kLc

)
i k (Ai00 −Bi00)

. (A.10)

In the current study, the length correction of each orifice (l ′) is normalized by

the square root of the orifice area
√
πr 2

0 . The normalized end-correction for
each orifice (δi ) can be calculated using the following formula

δi =
p̂ I

00 − p̂ I I
00

iωρû I
00

(
π · r 2

0

)1/2
= (Ai00 +Bi00)−C00

(
1+e−2i kLc

)
i k (Ai00 −Bi00)

(
π · r 2

0

)1/2
. (A.11)
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B Re-calibration of the Coefficients of the
Expression lnl

As mentioned in page 80, the coefficients of the expression lnl are re-
calibrated using the experimental data. This section presents the experimen-
tal results that are used for re-calibration of the coefficients of the expression
lnl , followed by describing the procedure to obtain the expression lnl for the
triangular, square, and rectangular patterns separately.

Figure B.1 presents the reflection coefficient curves of sixteen excitation am-
plitude levels for the S1 case, which are obtained from direct measurement of
acoustic pressure in the impedance tube.

For the purpose of re-calibrating the coefficients of the expression lnl , the data
set is selected accurately so that the data set which is used for validation is ex-
cluded from the regression data set. Then, approximately 75% of the data set is
used for the regression and the remaining data points are used to evaluate the
accuracy of the fitted expression. This regression data set includes the lowest
and highest excitation levels. The same procedure is applied to the P config-
uration. The experimental results, which are obtained from direct measure-
ment of acoustic pressure in the impedance tube, are used for re-calibrating
the coefficients of the expression lnl for P configuration are presented in Fig-
ure B.2.
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Re-calibration of the Coefficients of the Expression lnl
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Figure B.1: Magnitude (top) and phase (bottom) of reflection coefficient for
the S1 case with the cavity length of Lc = 30 mm and various exci-
tation amplitudes obtained from direct measurement of acoustic
pressure in the impedance tube.
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Figure B.2: Magnitude (top) and phase (bottom) of reflection coefficient for
the P1 case with the cavity length of Lc = 30 mm and various exci-
tation amplitudes obtained from direct measurement of acoustic
pressure in the impedance tube.

105





C Re-calibration of the Coefficients of the
Expression lB

As mentioned in page 88, the coefficients of the expression lB are re-calibrated
using the experimental data. This section presents the experimental results
that are used for re-calibration of the coefficients of the expression lB , fol-
lowed by describing the procedure to obtain the expression lB for the trian-
gular, square, and rectangular patterns separately.

Following data sets are the experimental results, which are obtained from di-
rect measurement of acoustic pressure in the impedance tube, used for re-
calibration of the coefficients of the expression lB .

Similar to the procedure of re-calibrating of the coefficients of the expression
lnl , the data set used for regression is selected carefully so that the validation
data set was excluded from the regression data set. These data sets are ex-
cluded to avoid validating the lB expression with the underlying data set that
the lB is obtained from. Therefore, approximately 80% of the whole data set is
used for regression and the remaining data points are used for validation.
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Re-calibration of the Coefficients of the Expression lB
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Figure C.1: Magnitude (top) and phase (bottom) of reflection coefficient for
the P2 case with the cavity length of Lc = 30 mm obtained from
direct measurement of acoustic pressure in the impedance tube.
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Figure C.2: Magnitude (top) and phase (bottom) of reflection coefficient for
the P3 case with the cavity length of Lc = 30 mm obtained from
direct measurement of acoustic pressure in the impedance tube.

109



Re-calibration of the Coefficients of the Expression lB
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Figure C.3: Magnitude (top) and phase (bottom) of reflection coefficient for
the S2 case with the cavity length of Lc = 30 mm obtained from
direct measurement of acoustic pressure in the impedance tube.
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Figure C.4: Magnitude (top) and phase (bottom) of reflection coefficient for
the S3 case with the cavity length of Lc = 30 mm obtained from
direct measurement of acoustic pressure in the impedance tube.
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Re-calibration of the Coefficients of the Expression lB
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Figure C.5: Magnitude (top) and phase (bottom) of reflection coefficient for
the S1a case with the cavity length of Lc = 30 mmobtained from
direct measurement of acoustic pressure in the impedance tube.
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Figure C.6: Magnitude (top) and phase (bottom) of reflection coefficient for
the S2a case with the cavity length of Lc = 30 mmobtained from
direct measurement of acoustic pressure in the impedance tube.
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D Final Configuration of the Acoustic
Impedance Model

As mentioned in page 79, in the current section, the final configuration of the
modified Bellucci model, where the normalized end-correction is obtained
from the mathematical correlations (δP and δS,Sa), is presented. All equations
presented in the current section are introduced throughout the current work.
Thus, the equations in the current section are copied from the main text.

The modified Bellucci’s model in the current study, is based on Bellucci’s orig-
inal model presented in Section 2.6. The resistance term of Bellucci et al. [8]
yields

θBel lucci = ε

cσ
G

(
UB

|û|
)
|û| , (D.1)

where ε, which stands for pressure loss coefficient, is calculated as follows:

ε=



1/C 2
d i f UB = 0, Stac ≤ (Stac)qs

0.6
(

3π
4

)
St 1/3

ac i f UB = 0, Stac > (Stac)qs

π
2

δSt
γ2+δ2 i f UB ≥ |û|

εnonli n(1−G)+εl i n(G− 4
3π )

1− 4
3π

i f 0 <UB < |û|

. (D.2)

In Equation D.2, εnonli n in the forth expression corresponds to the first and
second expressions in Equation D.2, depending on Stac . In the forth expres-
sion of Equation D.2, εl i n refers to the third expression with γ and δ, which are
the real and imaginary parts of Howe’s Rayleigh conductivity, respectively. The
threshold of the quasi-steady assumption for the acoustic Strouhal number is
defined by (Stac)qs = 0.61/C 6

d .
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Final Configuration of the Acoustic Impedance Model

In Equation D.1, G(x) is proposed as:

G(x) =
 2

π

(
x ·arcsin(x)+

p
1−x2

3 (2+x2)
)

i f |x| ≤ 1

|x| i f |x| > 1
. (D.3)

When UB > |û|, Equation D.1 reduces to the linear expression θBel lucci = ε
cσUB .

For large |û| and for UB < |û|, Equation D.1 predicts a nonlinear behavior of
pressure losses [8, 17]. When bias flow is present, the resistance term in this
model is based on Howe’s Rayleigh conductivity model.

The impedance model of Bellucci et al. [8, 17] is based on Crandall’s
impedance model [22]. Additionally, different correction lengths are added to
Crandall’s impedance model, which yields

χmodi f i ed Bel lucci = k

σ

(
lΓ+ le f f

)
. (D.4)

In the current study, the original function Γ, introduced by Crandall [22] (pre-
sented in Equation 2.6), is used as

Γ(ksr0) =
[

1− 2J1(ksr0)

ksr0 J0(ksr0)

]−1

. (D.5)

In Equation D.4, le f f accounts for the end-correction length, including contri-
butions from the radiation reactance and the hole-to-hole interaction effects
(lh−h), the bias flow (lB ), and nonlinear effects due to high amplitude excita-
tion (lnl ). Considering the end-correction length for both sides of the orifice
yields

le f f = lh−h · lnl · lB , (D.6)
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where

lh−h = 2 · δ
(
π · r 2

0

)1/2[
1+ (0.77kr0)2

1+0.77kr0

] . (D.7)

The normalized end-correction (δ) in Equation D.7 is obtained using the FEM
results for triangular pattern (P) as

δP = 0.48

(
1−34

r0

Rc
+26.56

r0

Req

)
, (D.8)

and for square and rectangular patterns (S and Sa) as

δS,Sa = 0.48

(
1−50.41

r0

Rc
+38.19

r0

Req

)
. (D.9)

The expression lnl for triangular pattern (P) is obtained as [2]

l P
nl = 1− 0.15

St 0.2
ac

, (D.10)

and similarly, for the square and rectangular patterns (S and Sa) [2]

l S,Sa
nl = 1− 0.09

St 0.54
ac

. (D.11)

The expression lB for P pattern is obtained as

l P
B = 0.3

(
aP /St 2

)+1

aP /St 2 +1
; aP = 23

(
Req

R

)3

, (D.12)

and for the square and rectangular patterns (S and Sa)

l S,Sa
B = 0.3

(
aS/St 2

)+1

aS/St 2 +1
; aS = 2.4

(
Req

R

)2

. (D.13)
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Final Configuration of the Acoustic Impedance Model

In the presence of a back cavity and considering the plane wave propaga-
tion into the back cavity, the final configuration of the modified Bellucci
impedance model yields

ζmodi f i ed Bel lucci = ε

cσ
G

(
UB

|û|
)
|û|+ i k

σ

(
lΓ+ le f f

)
− i cot(kLc) . (D.14)
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