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Abstract

The goal of this work is to provide a reliable and time-efficient computational
tool for the prediction of high-frequency thermoacoustic instabilities in lean-
premixed gas turbine combustors. A stability analysis strategy is proposed,
which unfolds into three steps: #1 assessment of the linear thermoacoustic
stability, #2 analysis of limit-cycle oscillations as well as identification of non-
linear saturation effects and #3 consideration of modal interactions between
multiple unstable acoustic eigenmodes. Particular focus is put on the correct
incorporation of the influence of acoustically induced vorticity disturbances
on the thermoacoustic stability behavior to these three analysis steps. This is
achieved by the integration of new models as well as by removing numeri-
cal errors in stability computations. Fundamental numerical studies together
with the application of decomposition methods provide detailed physical in-
sight into the dynamical behavior of high-frequency thermoacoustic systems
and support the development process of the stability prediction tool.
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Kurzfassung

Das Ziel dieser Arbeit ist die Bereitstellung eines zuverlässigen und
effizienten Berechnungsverfahrens zur Vorhersage von hochfrequenten
thermoakustischen Instabilitäten in mager vorgemischten Gasturbinen-
brennkammern. Dafür wird eine Strategie zur Durchführung einer Stabili-
tätsanalyse vorgeschlagen, welche sich aus drei Stufen zusammensetzt: #1
Beurteilung der linearen thermoakustischen Stabilität, #2 Analyse von Os-
zillationen im Grenzzyklus sowie die Identifikation von nicht-linearen Sät-
tigungsmechanismen und #3 die Berücksichtigung von modalen Interak-
tionen zwischen mehreren instabilen akustischen Eigenmoden. Besonderer
Fokus liegt dabei auf dem korrekten Einbezug des Einflusses von akustisch
induzierten Wirbelstärke-Fluktuationen auf das thermoakustische Stabili-
tätsverhalten in diesen drei Analyseschritten. Dies wird durch die Integra-
tion von neuen Modellen sowie durch das Beseitigen von numerischen
Fehlern in Stabilitätsberechnungen erreicht. Fundamentale numerische Stu-
dien zusammen mit der Anwendung von Zerlegungsansätzen geben einen de-
taillierten physikalischen Einblick in das dynamische Verhalten von hochfre-
quenten thermoakustischen Systemen und unterstützen damit den Entwick-
lungsprozess des Berechnungsverfahrens.
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1 Introduction

Every human being strives for the improvement of its own living condi-
tions. This natural phenomenon has been strongly connected to increasing
energy consumption to satisfy the continuous up-scaling level of personal
requirements [1]. Since the mid-19th, the wide application of electrical energy
has rapidly accelerated the development of living standards and wealth [2].
Nowadays, electricity has become an indispensable part of our everyday
lives. The explosive increase of electricity demand was and is mostly met
by using fossil fuels [3]. However, it was already recognized decades ago
that these technologies not only harm the environment locally in terms of
pollutants [4], but also influence the global climate in a negative manner [5,6].
These effects may have severe implications for humanity in the future [7].
In order to prevent a break-even-point, where the positive gradient of living
conditions is cancelled by the worsening of environmental conditions, alter-
native electricity generation technologies are required. At the moment, the
continuous replacement of fossil power plants by renewable ones represents
the most promising answer to this global problem [8]. However, providing a
functioning infrastructure for the supply of sustainably produced electricity
has proven to be a crucial aspect [9]. One major challenge is that power pro-
duction with renewables is subject to fluctuations due to intermittent weather
influences [10,11]. The associated uncertainties in the grid stability must thus
be counterbalanced to ensure a reliable power supply. A technical solution
to this issue represents the integration of state-of-the-art gas turbines into
the renewable power supply infrastructure [12]. The operational flexibility
of gas turbines, for instance fast start-ups and shut-downs, on-demand
load changes and wide operating windows allows quick response to power
fluctuations in the electric grid. Additionally, their operation is in compliance
with environmental regulations. In particular, the so-called lean-premixed
combustion technology ensures low pollutant emissions, most notably nitro-
gen oxide (NOx), while its high efficiency levels –even in part-load operation–
reduce the relative amount of greenhouse gases produced [13]. Gas turbines
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emerged as a key technology to achieve the climate targets defined in the Paris
Agreement of 2015 [14]. Therefore, putting more effort in the development
of new gas turbine combustion concepts or in the advancement of existing
systems contributes to a successful green energy transition. This counteracts
global climate change and local environmental pollution, which in turn helps
to keep or even improve living conditions for each individual person.

The present thesis is generally allocated in the gas turbine combustion field.
Specifically, it deals with high-frequency thermoacoustic instabilities, which
are one of the major challenges of lean-premixed combustion technology re-
search. These instabilities may manifest in large amplitudes of pressure and
heat release rate oscillations, which can damage burner hardware and/or limit
the operational window of the gas turbine. In order to avoid or mitigate them,
accurate prediction tools need to be established, which represents the re-
search topic of this thesis.

1.1 Thermoacoustic Instabilities and Control Strategies

In particular, lean-premixed combustors are susceptible to develop thermoa-
coustic instabilities [15–17]. As displayed in Fig. 1.1, thermoacoustic instabili-
ties are the result of an undesirable constructive, self-sustained feedback loop
between the natural acoustics of the combustion chamber, i.e. its acoustic
eigenmodes [18], and the flame’s unsteady heat release rate [19]. Generally,
an unsteady heat release rate q̇ represents a source of sound. It leads to a tem-
poral change of the specific gas volume v at a certain pressure value p and
thus, performs work w on the gas [17, 20]:

dv

dt
∝ q̇ → w ∝

∮
pq̇dt (1.1)

In Fig. 1.1, several mechanism that cause fluctuations of the heat release in gas
turbines are shown: stochastic ones caused by turbulence in the flame region
constantly generate broadband combustion noise, which in turn excites the
combustor’s acoustic eigenmodes. Corresponding acoustic waves travel up-
and downstream and impinge on the combustion chamber boundaries, i.e.
walls as well as in- and outlets. There, the waves are (partially) reflected into
the chamber, where they interact with the flame as well as with the bulk flow.
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Figure 1.1: Thermoacoustic feedback loop in a gas turbine combustion system.

The first interaction scenario (cf. "deterministic heat release rate oscillations"
in Fig. 1.1) indicates that acoustic waves directly induce heat release rate
oscillations [21, 22]. Under certain conditions, which will be explained below
this paragraph, heat release rate oscillations amplify the natural acoustics
of the chamber. In turn, these reinforced waves are reflected at the bound-
aries and interact with the flame. As a result, a constructive thermoacoustic
feedback loop is established. Another indirect path towards heat release
fluctuations is given by the interaction of acoustics with the combustor’s
aerodynamics [23–26]: hydrodynamic instabilities in the bulk flow but also
the interaction of acoustic velocity oscillations with shear-layers provokes the
shedding of coherent vortex perturbations. While convecting downstream,
these vortices change the flame surface and entrain burned reaction products,
which creates pockets of lower and higher fresh gas concentration. These
perturbations cause fluctuations of the reactants consumption and ultimately
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1.1 Thermoacoustic Instabilities and Control Strategies

of the heat release rate, which indirectly closes the thermoacoustic feedback
loop. A third option to close the feedback loop relevant for technically and
non-premixed combustion systems is acoustic modulation of the equivalence
ratio [25, 27]. As this thesis focuses on perfectly-premixed systems, equiva-
lence ratio fluctuations are absent, which explains why this closure path is
not present in the feedback loop schematic of Fig. 1.1.

The generation of heat release rate fluctuations in confined systems –such as
gas turbine combustors– does not automatically lead to a thermoacoustic in-
stability. As indicated at the beginning of this section, a constructive thermoa-
coustic feedback loop represents the necessary (but still not sufficient) condi-
tion to induce an instability. Constructive in this context means that the acous-
tic waves emitted by the unsteady heat release rate process interact coherently
with the acoustics of the chamber. The opposite, i.e. a destructive feedback
loop, would result in waves of decreased amplitude with less energy. The inter-
ference between acoustics and heat release rate fluctuations can be described
with the Rayleigh integral RI in Eq. (1.2) [28]:

W ∝ 1

Tp

∫
V

∫ Tp

0
p ′q̇ ′dtdV = RI > Dnet,a = 1

Tp

∫ Tp

0

(∫
V

DadV +
∫

S
Ia ·ndS

)
dt .

(1.2)
Depending on the phase shift between pressure and unsteady heat release,
constructive, neutral or destructive interference occurs (if the shift < 90◦,
= 90◦ or > 90◦ respectively). This means that either acoustic energy is supplied
(RI > 0), remains constant (RI = 0) or is removed (RI < 0) within one acoustic
period Tp. If constructive interference arises and the energy supplied by the
feedback loop exceeds the sum of acoustic dissipation Da in the chamber
and acoustic intensity Ia leaving or entering the domain normally through its
boundary surfaces S (n is the normal vector), i.e. RI > Dnet,a, a self-excited
thermoacoustic instability forms. Then, amplitudes of acoustics and heat
release rate perturbations mutually start to grow exponentially in the linear
regime.

A thermoacoustically unstable eigenmode can be associated with high ampli-
tudes of pressure and heat release rate oscillations. These potentially harm the
operational integrity of the combustor and decrease its life cycle or even lead
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to catastrophic failure of the gas turbine [29]. Thermoacoustic instabilities
must either be avoided across the entire operational range of the combustion
system or their pulsation amplitudes must be limited to an acceptable level.

In state-of-the-art lean-premixed gas turbines combustors, essentially two
passive control strategies are applied to prevent or minimize thermoacoustic
oscillations [20, 30, 31]:

• The first strategy seeks to artificially increase dissipation of acoustic
waves, i.e. the term Dnet,a in Eq. (1.2), at critical resonant frequencies. This
counteracts the feed of energy W due to the constructive thermoacoustic
feedback loop [32]. In practice, this strategy is realized by the implemen-
tation of damping devices [33], such as λ/4 absorbers [34] or Helmholtz
resonators [35]. However, these dampers increase the system complex-
ity, especially because they often require cooling air to avoid overheating
and/or mistuning [30, 36].

• The second strategy is a design optimization approach [37]. It aims to
thermoacoustically "optimize" a given combustor by minimizing the un-
desired interaction between an acoustic eigenmode and the unsteady
heat release rate [20, 31, 38]. As a result, the strength of the feedback loop
between acoustics and heat release is weakened such that dissipative ef-
fects dominate, i.e. Dnet,a >W .

In industrial combustor configurations a combination of both strategies is
possible to obtain the desired stability behavior. A third option, namely an
active control strategy, might be followed as well [29,39]. However, this option
is rarely used due to lower reliability and higher costs compared with passive
control strategies [20].

The application of these approaches to the design process of new combustors,
or retrofitting of existing concepts, requires in-depth knowledge about critical
eigenmodes as well as understanding of the physical mechanisms promoting
thermoacoustic instabilities:

• Increasing dissipation of acoustic modes by damping devices requires
detailed information on which acoustic eigenmodes tend to be unsta-
ble in the frequency band of interest [30, 36]. Knowing this, the damper
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device geometry can be optimized to maximize acoustic dissipation at
these distinct, critical frequencies. Furthermore, knowing the associated
spatial distributions of the acoustic fields at these eigenfrequencies, i.e.
the eigenmode shapes, allows precise positioning of the damping devices
at the combustion chamber walls [30]. This is essential for their effective
operation.

• Unstable eigenfrequencies and the corresponding eigenmode shapes
represent the starting point for the design optimization approach. Ad-
ditionally, a design optimization approach demands a profound knowl-
edge of the physical mechanisms, which modulate the heat release or
contribute to acoustic damping [37, 40, 41]. Next, relevant effects need
to be described in a mathematical sense, for instance analytically or
by adequate numerical models, to predict the thermoacoustic behav-
ior [22,29,42–48]. This allows systematic attenuation of the feedback loop
by means of re-designing the combustor geometry, flame shape and/or
redesign the operational window to avoid operating points with ther-
moacoustic instabilities. Additionally, similar measures can be taken to
optimize, i.e. maximize, naturally occurring, acoustic damping effects.

In real gas turbines the prediction of thermoacoustic instabilities is a com-
plex problem. A large number of different phenomena taking place simulta-
neously must be considered by a successful control strategy. These reach from
the root-cause and onset of a thermoacoustic instability up to interactions be-
tween multiple unstable eigenmodes.

1.2 Thermoacoustic Stability Prediction

The qualitative and quantitative prediction of thermoacoustic instabilities
represents the fundamental basis for the systematic application of counter-
measures, i.e. the control strategies introduced in Section 1.1. Conceptually, a
thermoacoustic stability analysis may be separated into three steps, shown in
Fig. 1.2:

1. The linear stability assessment seeks to predict the acoustic eigenmodes
in the frequency band of interest which tend to develop thermoacousti-
cally unstable behavior at the specified operating conditions of the gas
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Figure 1.2: Analysis steps of a complete thermoacoustic stability analysis with
characteristic pressure trace and frequency spectrum showing the
evolution of a thermoacoustic instability.

turbine combustor [37,40,43,49,50]. More specifically, this step provides
information about whether the acoustic modulation of the flame leads
to the onset of an instability and how fast acoustic and heat release rate
amplitudes grow in time. The onset of an instability can be predicted by
evaluating Eq. (1.2):

W > Dnet,a. (1.3)

An acoustic eigenmode becomes unstable, if the energy supply W ex-
ceeds net acoustic dissipation Dnet,a, and remains stable if net dissipa-
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tion dominates. The pressure time trace in Fig. 1.2 shows an example
of the evolution of a thermoacoustic instability including the time span,
which can be captured by a linear stability analysis: At the beginning, the
pressure data only shows stochastic fluctuations (cf. 1 in Fig. 1.2), which
are associated with broadband combustion noise. During this state, the
evaluation of Eq. 1.3 reveals that acoustic losses dominate. Acoustic os-
cillations, which are induced by the combustion noise, are damped and
vanish. The system is stable in a thermoacoustic sense. Then, the operat-
ing conditions of the combustor are changed, for instance by increasing
the thermal power. Due to the corresponding higher heat release rate,
acoustic waves induced by the combustion noise now excite stronger
heat release rate perturbations q̇ ′. The Rayleigh integral in Eq. (1.3) of
one or more eigenmodes becomes greater than the associated net dis-
sipation Dnet,a. The onset of a thermoacoustic instability occurs (cf. 2 in
Fig. 1.2), which goes along with the exponential growth of acoustic ampli-
tudes (red dashed line in Fig. 1.2) and likewise amplitudes of heat release
rate fluctuations. This early stage of an instability can be described by
linear perturbation equations [17, 19]. The linear stability analysis step is
thus limited to the instant of time, when the amplitude envelope can no
longer be approximated by an exponential function without exceeding a
predefined threshold error (cf. 3 in Fig. 1.2).

2. The analysis of limit-cycle oscillations with non-linear saturation effects
completes the investigation of the pressure time trace of a single unstable
eigenmode. Limit-cycle oscillations represent the final state in the evolu-
tion of thermoacoustically unstable eigenmodes [44]. As shown in Fig.
1.2, acoustic amplitudes (and heat release rate fluctuations) remain at a
constant level (cf. 5 in Fig. 1.2), which may be unacceptably high when
considering the operational limits of the gas turbine. In this state, the left
hand side (l.h.s.) equals the right hand side (r.h.s.) of Eq. (1.3). The tran-
sition from exponential growth towards zero growth of amplitudes in the
limit-cycle (cf. 4 in Fig. 1.2) is characterized by a non-linear saturation
behavior [45, 51–53]. This process is ascribed to two potential scenarios
or a combination of them:

– Non-linear decrease of the energy supply associated with the flame-
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acoustics interaction, which involves a non-linear decrease of the
Rayleigh integral in Eq. (1.2), and/or

– Non-linear increase of dissipative effects.

The first scenario comprises the attenuation of the thermoacoustic feed-
back loop either by non-linear behavior of heat release or acoustic pres-
sure oscillations [45, 54]. Non-linearity of heat release rate oscillations
comprises the relative reduction of flame modulation in the acoustic field
and/or a phase-shift relative to the acoustic pressure oscillation. The lat-
ter induces a reduction of the constructive interference between acoustic
pressure and heat release rate fluctuations. Non-linearity in the acoustic
pressure field is often precluded in gas turbine applications, since am-
plitudes remain small compared to the mean, operating pressure even
in the limit-cycle [44]. The second scenario, i.e. the increase of damping
effects, implies that dissipative mechanisms non-linearly depend on am-
plitudes of the acoustic field.
It is a difficult task to identify the entirety of relevant effects, which fi-
nally lead to saturation towards the limit-cycle, and may vary for each
combustor, operating condition and frequency range of interest. How-
ever, knowing whether a thermocacoustic instability occurs or not, and if
so, how strong the limit-cycle pulsations are, allows the implementation
of the countermeasures introduced in Section 1.1. Additionally, the un-
derstanding of non-linear combustor dynamics also represents a crucial
aspect for the third analysis step.

3. Analysis steps 1 and 2 only account for the evolution of a single, un-
stable eigenmode. However, a complete thermoacoustic stability anal-
ysis needs to consider potential interaction phenomena between all
eigenmodes which exhibit a linearly unstable behavior [55]. In theory,
multiple unstable eigenmodes may coexist [56, 57] while interacting or
some dominant modes provoke the suppression of others [58]. The ex-
emplary frequency spectrum at the bottom of Fig. 1.2 shows three pres-
sure peaks (gray line) that represent three unstable modes. For instance,
analysis step 1 revealed that the Rayleigh integral in Eq. (1.3) exceeds
net dissipation at these three eigenfrequencies implying the formation
of three limit-cycles. However, the measured frequency spectrum (black
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line) only contains one peak, which is associated with the pressure trace
in Fig. 1.2. The other two peaks in the expected frequency spectrum (gray
line) are suppressed and do not appear, which indicates that the sur-
viving eigenmode suppresses the others. This limit-cycle constellation
can change if the dominant mode is damped exclusively, for example by
Helmholtz resonators. Consequently, the amplitude of one of the other
two linearly unstable modes may then grow to an unacceptable level in
this new limit-cycle, which would have to be dealt with.
Without considering potential interaction mechanisms between unsta-
ble modes, the application of control strategies to avoid thermoacoustic
instabilities may fail completely. In the worst case, implemented damp-
ing devices or the complete system design could be optimized for only
one unstable eigenmode and then promote the existence of limit-cycle
oscillations of another acoustic eigenmode.

A precise execution of each single step of the complete thermoacoustic sta-
bility analysis reduces the effort and complexity of the next step. Accurately
predicting the linearly unstable modes in step #1 may decrease the number of
relevant physical effects which need to be considered in the non-linear anal-
ysis part of step #2. In addition, identification of the number of eigenmodes
interacting with each other can be restricted to the unstable ones in step #3.
Finally, the careful preclusion of irrelevant non-linear saturation effects in step
#2 may reduce the complexity of interaction phenomena in step #3.

1.3 High-Frequency Thermoacoustic Oscillations

The research of this thesis particularly focuses on thermoacoustic oscillations
in the high-frequency regime of lean-premixed gas turbine combustors. These
oscillations increasingly often occur after commissioning of modern gas tur-
bine combustors, which is a consequence of the continuous efficiency as well
as operation range increase [59, 60]. The high-frequency regime is character-
ized by the non-compactness of acoustically relevant elements in the combus-
tion system [37, 61]. The denotation non-compact refers to the ratio between
characteristic length scales of these relevant elements, which are for instance
the flame (λf), geometric features or even single vortices, and the wavelength
λ of an acoustic eigenmode. This ratio is denoted as Helmholtz number He,
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Figure 1.3: a) Longitudinal acoustic eigenmode with a compact flame; b) first
transversal acoustic eigenmode with a non-compact flame.

• A small value of He number indicates that the acoustic element does not
"see" any gradients of the acoustic field, i.e. it is spatially invariant and
rendered as compact. Then, the element can be assumed to act as a point
source. In the context of this work, this situation is associated with the
low-frequency range and is illustrated in Fig. 1.3 a). There, the character-
istic length scale of the flame λf is small compared to the acoustic wave-
length of the longitudinal eigenmode and thus Hef ¿ 1

• Contrary to this, in the high-frequency range the length scale of the
acoustic element and the wavelength are of same order, i.e. He ≈ 1. An
acoustic element of this type is denoted as a non-compact one. This sce-
nario is shown in Fig. 1.3 b), where the flame is now exposed to the os-
cillating pressure field of the first transversal eigenmode of the combus-
tor. In this case Hef ≈ 1. Acoustic gradients across the now, vertical char-
acteristic flame length can no longer be treated as negligible, which re-
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quires the inclusion of local interactions between the acoustic field and
the flame.

The imprecise formulation of "small" and "high" values for the previously in-
troduced He number suggests that the limiting value, which separates com-
pact and non-compact situations, is problem specific. Generally, the denota-
tion "high-frequency" is not restricted to any type of acoustic mode shape.
As long as a problem is characterized by non-compactness, associated acous-
tic oscillations are denoted as high-frequency in this thesis. However, non-
compactness of acoustic elements is often associated with multi-dimensional
acoustic modes, for instance transversal or radial ones. These modes can only
exist, if their oscillation frequency f equals or exceeds the corresponding ge-
ometric cut-on frequency f cut-on in a given combustor [17], i.e.

f ≥ f cut-on. (1.4)

1.4 Research Goals and Objectives of this Thesis

The main goal of this thesis is to contribute to the design optimization strategy
introduced in Section 1.1 by improving the predictability of high-frequency
thermoacoustic instabilities from a numerical and theoretical perspective.
This comprises the stability analysis concept, which was introduced in Sec-
tion 1.2, as a whole. Hence, the present work seeks to advance the linear
thermoacoustic stability assessment, to identify and understand non-linear
saturation effects leading to limit-cycle oscillations in the high-frequency
range as well as to model and describe multi-modal interactions. For this
purpose, a lean-premixed, atmospheric, swirl-stabilized, lab-scale gas turbine
combustor, which is presented in Chapter 3, is used as validation for the de-
veloped models and simulations. The high-frequency acoustic eigenmodes of
interest in this combustor are the first (T1) and second (T2) transversal modes.

In this thesis, special attention is given to acoustically induced vorticity per-
turbations and their impact on the evolution of thermoacoustic oscillations.
This specific research focus is motivated by the yet barely investigated influ-
ence of this perturbation type on transversal eigenmodes in high-frequency
thermoacoustic systems. Thematically, this topic completes the classification
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of this thesis, which was presented in this introduction chapter and is sum-
marized in Fig. 1.4.

green energy transition: compensation of fluctuations in the electric grid 

gas turbines for power generation

lean-premixed combustion systems

thermoacoustic oscillations

high-frequency range

prediction of instabilities

impact of acoustically induced
vorticity perturbations

thematic classification of this thesis

Figure 1.4: Thematic classification of this thesis.

Typically, vortex perturbations may significantly contribute to damping. How-
ever, they can also contribute to the amplification of acoustics either via
vortex-mean flow coupling effects [62, 63] or via modulation of the heat re-
lease as indicated in Fig. 1.1. Thus, they must be considered in thermoacous-
tic stability predictions. While the driving potential of vortex shedding is fairly
well understood in the low-frequency range [23–26], Schwing et al. [64] found
that vortex perturbations do not (or only weakly) amplify high-frequency ther-
moacoustic oscillations of the first transversal eigenmode in a lean-premixed,
swirl-stabilized combustor. In contrast, Berger et al. [61] revealed in their re-
heat combustor experiment that vortex perturbations are likely the primary
driver of a transversely oscillating acoustic eigenmode. Obviously, their im-
pact is rather case dependent and non-generalizable, which complicates ther-
moacoustic predictions and thus requires further research effort. Similarly,
acoustic damping associated with vorticity disturbances has mostly been in-
vestigated for longitudinal modes at rather low frequencies. In this context,
Howe [65–68] and Bechert [69] provided fundamental physical insight into the
phenomenon of acoustically induced vortex shedding from sharp edges and
showed quantitatively that this can contribute to sound attenuation. To the
author’s knowledge, the dissipative impact of this effect –and of acoustically
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induced vorticity perturbations in general– on multidimensional eigenmodes
at higher frequencies has not yet been addressed in the open literature. These
gaps in knowledge yield the following research objectives for the three steps of
thermoacoustic stability predictions introduced in Section 1.2 and specify the
structure of this thesis:

1. Linear stability assessment (Chapters 4 and 5): for this task, a
hybrid Computational Fluid Dynamics/Computational Aero Acoustics
(CFD/CAA) approach is used, which has already been applied in several
research projects at the author’s institute [37, 49, 50]. However, this anal-
ysis framework has yet not reached a sufficiently accurate level in terms
of reliable prediction capabilities. Enhancement of the prediction capa-
bilities of the hybrid CFD/CAA methodology unfolds into the following
specific research tasks:

– Development of a numerical method to decompose CAA solution
fields computed with linearized disturbance equations into acous-
tic and vortical parts to perform detailed energetic analyses.

– Minimization of undesired numerical errors in the computational
approach, which are caused by the presence of convectively trans-
ported vortices in CAA solutions fields.

– Adaption of existing acoustics-flame modulation models to incorpo-
rate the impact of vortex perturbations in the linear stability analysis
framework.

– Validation of the advanced CFD/CAA framework against experimen-
tal data in the frame of a linear stability analysis with the T1 eigen-
mode.

2. Non-linear saturation and limit-cycle oscillations (Chapter 6): the root-
cause of limit-cycle oscillations in high-frequency thermoacoustic sys-
tems has yet not been identified [70]. This provides the motivation to in-
vestigate the influence of vorticity perturbations on the non-linear, dy-
namical behavior of such systems, which comprises the following tasks:

– Establishment of a CFD approach to mimic high-frequency,
transversal oscillations in gas turbine combustion chambers to ob-
serve the amplitude-dependent evolution of the bulk flow.
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– Computation of amplitude-dependent T1 driving and damping rates
by adapting the linear analysis framework (cf. research objective #1),
where the CFD results serve as the input.

– Identification of the root-cause of T1 limit-cycle oscillations in the
investigated non-compact thermoacoustic system.

3. Multi-modal interactions (Chapter 7): to complete the thermoacoustic
stability prediction, the interaction of T1 and T2 acoustic eigenmodes
is analyzed in the time-domain via extension of an available Reduced-
Order-Model (ROM) approach [48]. This comprises the following tasks:

– Identification and discussion of relevant interaction mechanisms
between unstable eigenmodes in the concerned combustion system.

– Integration of identified non-linear saturation mechanisms (cf. re-
search objective #2) into the ROM framework to enhance its physical
correctness.

– Analyses of the dynamical behavior of the T1 and T2 modes via nu-
merical computations with the ROM.

The present thesis represents the direct continuation of the Ph.D. project of
Dr.-Ing. T. Hummel [37], which forms the basis of this work. His thesis also
deals with non-compact thermoacoustic systems. It provides information on
flame modulation mechanisms and vorticity damping models in the context
of linear stability analysis as well as on the ROM approach and non-linear in-
teractions of degenerate acoustic modes. Additionally, a comprehensive sum-
mary on recent work and research highlights at the author’s institute is pre-
sented, which is thus not repeated in this thesis.
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2 Theoretical Fundamentals

This chapter introduces the theoretical fundamentals relevant for the research
objectives specified in Section 1.4. Starting from the Navier-Stokes Equations
(NSE) in Section 2.1, which describe unsteady flow motions in gas turbine
combustors in the most general manner, different levels of simplifications are
applied to these including their linearization. In Section 2.2 the linearized dis-
turbance equations are transformed into their frequency domain representa-
tion. Then, acoustic boundary conditions are introduced in Section 2.4. In the
last Section 2.5, insight into the numerical solution of the linearized distur-
bance equation via the Finite Element Method (FEM) is given.

2.1 Governing Equations of Gas Turbine Flows

Flow problems in gas turbine combustors are commonly captured by con-
servation equations for a one-species fluid, which is specified by the mass-
averaged properties of fuel and oxidizer [17, 19]. Then, the flow dynamics can
be captured by the equations of mass and energy conservation , i.e. Eqs. (2.1)
and (2.3), together with the ideal gas law p/ρ = RT as well as with the Navier-
Stokes Eqs. (2.2) (NSE), which ensure momentum conservation1

∂ρ

∂t
+∇· (ρu

)=mρ (2.1)

ρ

(
∂u

∂t
+ (u ·∇)u

)
+∇p =∇·τττ+mu (2.2)

∂p

∂t
+u ·∇p +γp∇·u =(

γ−1
)(

q̇ +τττ : (∇u)+mp

)
. (2.3)

Density ρ(x, t ), velocity u(x, t ) and pressure p(x, t ) are the spatio-temporal
solution variables, which are collected in the solution vector φφφ = [ρ,u, p]T.
Equation (2.3) captures the volumetric heat release rate q̇ associated with the
chemical reaction process/combustion. The ratio of specific heats is denoted

1For the sake of brevity, the full set of Eqs. (2.1)-(2.3) is denoted as Navier-Stokes Equations (NSE).
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as γ and τττ is the stress tensor defined as

τττ=µ
(
∇u+ (∇u)T − 2

3
(∇·u)I

)
, (2.4)

where µ is the dynamic viscosity and I the unity matrix. Additional sources
of mass, momentum and energy are represented by the terms mρ, mu and
mp. These are set zero in this thesis, except where otherwise specified (see for
instance Chapter 6).

Based on this fundamental system of non-linear, coupled partial differential
equations a variety of simplified sets of equations can be derived. Figure 2.1
gives an overview of the ones used in this thesis with the assumptions made to
obtain them. The subsequent sections introduce these equations and provide
information on their relevance for this work.

URANS simulations

RANS simulations

LNSE simulations

LEE simulations

APE simulations

NSE simulations

favre-averaging

steadiness

linearization

no viscosity

no Lamb vector

bi-directionally
coupled

one-directionally
coupled

Figure 2.1: Overview of systems of equations used in this thesis.
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2.1.1 Reynolds-Averaged Equations

Numerically solving the NSE without a combustion model2 would gain insight
into all the physical phenomena of interest at once. However, resolving even
the smallest turbulent time and length scales using Direct Numerical Simula-
tions (DNS) is connected to a massive computational effort [71]. Large Eddy
Simulations (LES) reduce computation times of DNS by applying a sub-grid
scale model that avoids direct resolution of scales smaller than the thresh-
old [72]. Some examples for LES dealing with thermoacoustic instabilities can
be found in Refs. [73–75]. In this work, the effect of turbulence in the bulk flow
is fully modeled, which further decreases the computation times. Therefore,
the solution vector is decomposed into a time-dependent, mean part φ̄φφ(x, t )
and a stochastic, turbulent perturbation partφφφ′

t(x, t ), i.e.

φφφ= φ̄φφ+φφφ′
t. (2.5)

By inserting this decomposition into Eqs. (2.1)-(2.3) and performing Favre
averaging [76], the Unsteady-Reynolds-Averaged-Navier-Stokes (URANS)
equations are obtained, which allow the computation of the mean part φ̄φφ. The
effect of turbulence is fully absorbed within the averaged part and thus, no
eddies are resolved. Notice that either species transport equations or a com-
bustion model must be added to Eqs. (2.1)-(2.3) to account for the heat release
of the flame in CFD simulations. For the sake of clarity, this is only indictated
by q̇ in the energy Eq. (2.3). An explicit formulation of the Favre-averaged
NSE can be found in Ref. [77]. The consideration of unsteadiness in these
equations allows for imposing deterministic fluctuations such as harmonic
ones, which mimic acoustic oscillations. For instance, this approach was
applied in Ref. [78] to investigate the interaction between combustion of a
single injector flame in a rocket engine and transversal velocity oscillations.
A similar approach is used in Chapter 6 of the present thesis to analyze
the amplitude-dependency of flame and bulk flow as a response to forced
oscillations at the T1 resonant frequency in the swirl-stabilized combustor
introduced in Chapter 3. With reference to Fig. 2.1, the URANS equations
represent a bi-directionally coupled system of equations, which means in the
context of this work that the bulk flow and imposed harmonic perturbations

2Instead transport equations for each species must be solved together with the compressible, unsteady NSE.
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2.1 Governing Equations of Gas Turbine Flows

can influence each other.

The steady state of a flow problem, i.e. ∂φφφ
∂t = 0, can be computed by Reynolds-

Averaged-Navier-Stokes (RANS) simulations. As will be explained in Section
2.1.2, this solution can be used as the input for Linearized Disturbance Equa-
tions.

The (U)RANS equations are commonly employed in Computational Fluid Dy-
namics (CFD) solvers [79], which represents a standard tool in engineering
disciplines. Thus, detailed information on (U)RANS CFD simulations can be
found in the literature (e.g. in Ref. [80]) and are not repeated at this point. All
(U)RANS CFD simulations are carried out with ANSYS Fluent 18.0 in this the-
sis.

2.1.2 Linarized Disturbance Equations

Apart from CFD simulations with the URANS equations, so-called disturbance
equations can be used to calculate the spatio-temporal propagation of coher-
ent disturbances. Instead of decomposing solution variables into mean and
turbulent parts (cf. Eq. (2.5)), they are separated into a mean and a determin-
istic perturbation partφφφ′(x, t ) [17, 19], i.e.

φφφ= φ̄φφ+φφφ′. (2.6)

Inserting this approach into Eqs. (2.1)-(2.3) yields a one-directionally cou-
pled system of disturbance equations, which is solved for the perturbation
variablesφφφ′ only. These equations underlie the assumption that disturbances
do neither influence the mean part φ̄φφ spatially nor temporally, i.e. the mean
flow is invariant with respect to the disturbance flow field. This implies that
the mean flow fields need to be provided as input quantities and thus, must a
priori be known. One option to obtain them might be experimental data, for
instance spatially resolved, time-averaged OH* chemiluminescence [81] and
particle image velocimetry recordings to include the distribution of the heat
release rate and of the velocity field. However, this is linked to optical accessi-
bility to the combustor and additionally requires high-fidelity measurement
techniques. A cost and time efficient method with a high degree of detail
is provided by RANS CFD simulations [50]. As introduced before, the RANS
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equations only provide the steady-state solution of the NSE, which a priori
excludes any coupling to time dependent oscillation fields. Performing a CFD
RANS simulation followed by an import of the mean flow solution variables
φ̄φφ to a system of disturbance equations represents essentially the CFD/CAA
methodology, which is applied in this thesis and is explained in more detail in
Section 4.1.

Amplitudes of the flow perturbations observed in gas turbines are small com-
pared to their corresponding mean flow quantities even in the limit-cycle3

[17, 19, 44], i.e.

ρ′ ¿ ρ̄, p ′ ¿ p̄, ‖u′‖¿ c̄. (2.7)

This allows negligence of perturbation terms of second (and higher) order and
thus of non-linear effects. Inserting Eq. (2.6) into the Eqs. (2.1)-(2.3) and ex-
ploiting the linearity assumption of Eq. (2.7) yields a system of linear equa-
tions for the disturbance density ρ′ (x, t ), velocity u′ (x, t ) and pressure p ′ (x, t )4:

∂ρ′

∂t
+ ū ·∇ρ′+ρ′∇· ū+u′ ·∇ρ̄+ ρ̄∇·u′ = 0 (2.8)

ρ̄

(
∂u′

∂t
+ (ū ·∇)u′+ (

u′ ·∇)
ū
)
+ρ′ (ū ·∇) ū+∇p ′ =∇·τττ′ (2.9)

∂p ′

∂t
+ ū ·∇p ′+u′ ·∇p̄ +γp̄∇·u′+γp ′∇· ū = (

γ−1
)

q̇ ′ (2.10)

Equations (2.8)-(2.10) are denoted as the Linearized-Navier-Stokes Equations
(LNSE) and describe the amplitude-independent spatio-temporal evolution
of flow perturbations around the reference state φ̄φφ. The linearized heat release
rate term q̇ ′ quantitatively accounts for the impact of flame dynamics on the
disturbance variables [37]. For this purpose, the heat release term in Eq. (2.10)
needs to be expressed by local Flame Transfer Functions (FTFs).

Discarding any viscous effects, i.e. µ = 0, which is a commonly applied
assumption in thermoacoustics [40], yields the Linearized-Euler Equations

3Notice that the mean speed of sound represents the characteristic variable to judge the smallness and thus
linearity of velocity perturbations.

4Viscous heating (τττ : (∇u)) in Eq. (2.10) is neglected in all simulations carried out in this thesis.

21



2.1 Governing Equations of Gas Turbine Flows

(LEE):

∂ρ′

∂t
+ ū ·∇ρ′+ρ′∇· ū+u′ ·∇ρ̄+ ρ̄∇·u′ = 0 (2.11)

ρ̄

(
∂u′

∂t
+ (ū ·∇)u′+ (

u′ ·∇)
ū
)
+ρ′ (ū ·∇) ū+∇p ′ = 0 (2.12)

∂p ′

∂t
+ ū ·∇p ′+u′ ·∇p̄ +γp̄∇·u′+γp ′∇· ū = (

γ−1
)

q̇ ′ (2.13)

In a non-homentropic mean flow, the LNSE and LEE describe the propagation
of acoustic (subscript a), vorticity (subscript v) and entropy (subscript e) per-
turbations, which are also denoted as sub-modes, such that the disturbance
solution variables satisfy:

ρ′ =ρ′
a +ρ′

v +ρ′
e (2.14)

u′ =u′
a +u′

v +u′
e (2.15)

p ′ =p ′
a +p ′

v +p ′
e (2.16)

This decomposition was introduced by Chu et al. [82] and indicates that
there exists a variety of potential interaction processes between the three sub-
modes and the bulk flow [17], which affect their individual stability behavior.
As introduced in Chapter 1, this thesis particularly focuses on interactions be-
tween acoustic and vorticity perturbations. This restriction discards entropy
disturbances in the analyses of the present work, which is a justifiable as-
sumption [83–86]: in highly turbulent flows, entropy waves have negligible in-
fluence on the combustor dynamics, especially in premixed systems at high
frequencies. This applies to the A2EV combustor introduced in Chapter 3. An
approach to avoid entropy sub-modes is to restrict density perturbations to be
of isentropic nature. This implies that density perturbations associated with
the entropy sub-mode ρ′

e are discarded [19]:

ρ′ = p ′

c̄2
+ ρ′

e︸︷︷︸
=0

(2.17)

Then, the solution variables of Eqs. (2.14)-(2.16) are simplified to:

ρ′ =ρ′
a +ρ′

v =
p ′

a +p ′
v

c̄2
(2.18)

u′ =u′
a +u′

v (2.19)

p ′ =p ′
a +p ′

v. (2.20)
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The suppression of entropy disturbances goes along with two beneficial
consequences: First, the number of differential equations, which need to be
solved, reduces by one due to the algebraic relation of Eq. (2.17). Specifically,
the continuity Eqs. (2.8) and (2.11) become redundant and do not need to
be considered in thermoacoustic computations as discussed by Romero et
al. [87]. Second, spurious entropy produced in lean-premixed systems is
avoided. Non-physical entropy occurs in the full set of the LNSE (2.8)-(2.10)
and LEE (2.11)-(2.13) due to insufficiently resolved flame dynamics, such as
the movement of the flame front in the perturbation field [84]. More detailed
information on the spurious entropy production can be found in Ref. [88],
where so-called Linearized Reactive Flow simulations are performed to cor-
rectly account for the unsteady flame dynamics. However, this approach has
yet only been applied to a laminar flame anchored in a duct.

A further simplification can be introduced to the isentropic LNSE/LEE by fil-
tering out convectively transported vorticity perturbations. The correspond-
ing equations are denoted as Acoustic Perturbation Equations (APE) and were
introduced by Ewert et al. [89]. The APE can be derived by applying the vector
identity

(ū ·∇)u′+ (u′ ·∇)ū =∇(
ū ·u′)+ (

Ω̄ΩΩ×u′)+ (
ΩΩΩ′× ū

)
(2.21)

to the isentropic LNSE/LEE (2.9)-(2.10)/(2.12)-(2.13), where Ω̄ΩΩ = ∇× ū and
ΩΩΩ′ = ∇× u′ are the mean and perturbation vorticity, respectively. Removing
the terms associated with the vorticity vectors, which are consolidated in the
linearized Lamb vector, yields the desired form of the isentropic APE:

ρ̄

(
∂u′

∂t
+∇(

ū ·u′))+ p ′

c̄2

1

2
∇ (ū · ū)+∇p ′ = 0 (2.22)

∂p ′

∂t
+ ū ·∇p ′+u′ ·∇p̄ +γp̄∇·u′+γp ′∇· ū = (

γ−1
)

q̇ ′ (2.23)

One of the main outcomes of this thesis is a combined APE and LNSE/LEE
computation approach with the Finite Element Method (FEM), which allows
for an isolated quantification of phenomena associated with acoustically
induced vorticity perturbations. This does not only provide physical insight
into the contribution of this phenomenon to the thermoacoustic stability but
also helps to advance the prediction of instabilities.
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Notice that on the isentropic LNSE/LEE and APE, further simplifications can
be carried out, for instance by neglecting mean pressure gradients for iso-
baric conditions, or by assuming a fluid at rest, which would lead to the wave
equation. The consequences of the latter simplification is are discussed in
Refs. [90, 91].

2.2 Linearized Equations in Frequency-Domain

Numerically solving the linearized systems of equations introduced in Section
2.1 is still connected to a significant computational effort. This is due to the
characteristics of the linearized equations, which capture acoustic (propagat-
ing at the speed of sound) but also convective phenomena (propagating at the
mean flow velocity) and thus are governed by a large disparity of time scales.
This may restrict the simulation to small time step sizes potentially leading to
considerable computational effort [92]. Additionally, boundary conditions for
the disturbance equations generally depend on frequency, which complicates
analysis in time domain as disturbances with a wide spectrum of frequencies
might be present in practical systems [93].

These problems motivate the transformation of the linear isentropic distur-
bance equations from the time into the frequency domain. Then, frequency-
dependent boundary conditions can be implemented in a straightforward
manner and integration in time can be avoided, which drastically reduces the
computational costs. Therefore, it is assumed that acoustic and vorticity per-
turbations harmonically oscillate in time, while the amplitudes of the pertur-
bations can grow or decay exponentially:

φφφ′ (x, t ) = φ̂φφ (x, s)e st . (2.24)

The complex valued frequency-domain solution variables s and φ̂φφ (x, s) are re-
lated to time-domain variablesφφφ′ (x, t ) by the Laplace transform L

{
φφφ′ (x, t )

}
L

{
φφφ′ (x, t )

}
= φ̂φφ (x, s) =

∫ ∞

0
e−stφφφ′ (x, t )dt , (2.25)

where s = sr + i si is the Laplace variable5. Real and imaginary parts of s, i.e.
sr and si, denote the growth rate and angular eigenfrequency. φ̂φφ (x, s) repre-

5Notice that the Laplace transform can be replaced by the Fourier transform if the real part of s is zero.
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sents the complex-valued amplitude distribution of pressure p̂ (x, s) and ve-
locity û (x, s) for a certain Laplace variable. Considering that the Laplace trans-
form of a first order time derivative is L

{
∂
∂tφφφ

′ (t )
} = s φ̂φφ (s), the isentropic

LNSE, LEE and APE can be rewritten as a function of s as well as of p̂ (x, s)
and û (x, s). However, the Laplace variable is usually expressed in terms of a
complex-valued angular frequency ω, i.e. s = iω = i (2π f − iν), with ν as the
growth rate and f as the oscillating frequency. Then, the isentropic LNSE in
frequency-domain are obtained:

ρ̄ (iωû+ (ū ·∇)û+ (û ·∇)ū)+ p̂

c̄2
ū ·∇ū+∇p̂ =∇· τ̂ττ (2.26)

iωp̂ + ū ·∇p̂ + û ·∇p̄ +γp̄∇· û+γp̂∇· ū = (
γ−1

)
ˆ̇q. (2.27)

Accordingly, the isentropic LEE (2.12)-(2.13) and APE (2.22)-(2.23) read in fre-
quency domain

ρ̄ (iωû+ (ū ·∇)û+ (û ·∇)ū)+ p̂

c̄2
ū ·∇ū+∇p̂ = 0 (2.28)

iωp̂ + ū ·∇p̂ + û ·∇p̄ +γp̄∇· û+γp̂∇· ū = (
γ−1

)
ˆ̇q (2.29)

and

ρ̄ (iωû+∇ (ū · û))+ p̂

c̄2

1

2
∇ (ū · ū)+∇p̂ = 0 (2.30)

iωp̂ + ū ·∇p̂ + û ·∇p̄ +γp̄∇· û+γp̂∇· ū = (
γ−1

)
ˆ̇q, (2.31)

respectively.

Writing the frequency-transformed disturbance equations in matrix notation
and rearranging the system matrices in the form of an eigenvalue problem
represents the method of choice in this thesis to predict the linear thermoa-
coustic stability of an eigenmode of interest. Solving the eigenvalue problem
gives the eigenfrequency ωi, which directly provides an answer to the energy
balance of Eq. (1.3) in terms of the growth rate ν. More information on this
topic is introduced in Chapter 5.

2.3 Disturbance Energy

Coherent perturbation fields inside a given volume V can be associated with
a disturbance energy density E . Its volume-integrated, temporal evolution

25



2.3 Disturbance Energy

provides information on the stability of the disturbance field and can be de-
scribed by intensity I leaving or entering the domain through its surfaces S in
boundary normal direction (n is the boundary normal vector) and the excita-
tion Q as well as dissipation D inside the domain volume [94, 95]:∫

V

∂E

∂t
dV +

∫
S

I ·nS =
∫

V
QdV −

∫
V

DdV , (2.32)

Based on the LEE continuity and momentum Eqs. (2.11)-(2.12) together with
the isentropicity Eq. (2.17), isentropic formulations for E , I, Q and D can be
derived. The conservation Eq. (2.32) for the disturbance energy is obtained
by multiplying the continuity Eq. (2.11) and the momentum Eq. (2.12) with
p ′/ρ̄+ū·u′ and u′+p/′(ρ̄c̄2)ū, respectively, adding both results subsequently and
applying Eq. (2.17) [96]. The definitions for energy density, intensity, excitation
and dissipation in frequency space read:

E = p̂2

2ρ̄c̄2
+ ρ̄û2

2
+ ρ̂ (ū · û) (2.33)

I =
( p̂

ρ̄
+ (û · ū)︸ ︷︷ ︸

=ĥ

)(
ρ̄û+ ρ̂ū︸ ︷︷ ︸

=m̂

)
(2.34)

Q = γ−1

ρ̄c̄2
p̂ ˆ̇q (2.35)

D = ρ̄((
Ω̄̄Ω̄Ω× û

) · û︸ ︷︷ ︸
=0

+(
Ω̂̂Ω̂Ω× ū

) · û
)+ ρ̂ (

Ω̄̄Ω̄Ω× ū
) · û

︸ ︷︷ ︸
=DΩΩΩ

+m̂ ·
p̂
c̄2∇p̄ − p̂∇ρ̄

ρ̄2
. (2.36)

The intensity vector I in Eq. (2.34) is the product of disturbance enthalpy ĥ and
fluctuating mass flow m̂. Equation (2.35) captures the effect of the unsteady
heat release rate on the temporal evolution of the perturbation field and is
proportional to the Rayleigh index introduced in Eq. (1.2). The dissipation of
disturbance energy inside the volume of interest is described by Eq. (2.36). The
first three terms DΩΩΩ in Eq. (2.36) are associated with acoustically induced vor-
ticity perturbations. These volumetric sources/sinks describe interactions be-
tween the mean flow or the mean vorticity field, ū and Ω̄ΩΩ respectively, and the
disturbance fields. The last term in Eq. (2.36) is associated with the coupling of
isentropic acoustic/vorticity perturbations with the non-homentropic mean
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flow6. Notice that the first term of Eq. (2.36) vanishes identically as
(
Ω̄̄Ω̄Ω× û

)
gives a vector perpendicular to û. Physically, this means that the force vector(
Ω̄̄Ω̄Ω× û

)
does not perform work on the disturbance field. However, this term

is not simply discarded in Eq. (2.36) as it describes the energy transformation
process between acoustic and vortical disturbance fields in shear-layers of the
bulk flow (a detailed analysis on these energy transformation processes is pro-
vided in Appendix A). Specifically, vortical energy can be created on the ex-
pense of acoustics (or vice versa), which would decrease (increase) the acous-
tic energy density over time. This counteracts (supports) the acoustic energy
supply caused by the thermoacoustic feedback loop shown in Fig. 1.1. This
transformation process indicates that energy density E , intensity vector I as
well as the excitation and dissipation terms Q and D can be split into contri-
butions associated with acoustics and vorticity (keep in mind that the entropy
sub-mode is suppressed). The corresponding decomposition of E , I, Q and
D into vortical and acoustic sub-modes is obtained by inserting Eqs. (2.14)-
(2.16) into Eqs. (2.33)-(2.36) [17]7:

E =Ea +Ev, (2.37)

I =Ia + Iv, (2.38)

Q =Qa +Qv. (2.39)

D =Da +Dv. (2.40)

The decomposition of the energy balance of Eq. (2.32) with Eqs. (2.37)-(2.40)
into acoustic and vortical parts is one of the main novelties in this thesis as
it provides detailed insight into physical but also numerical phenomena. For
instance, this method allows detailed analyses of the transformation process
between the acoustic and vortical sub-modes and its relevance in thermoa-
coustic stability predictions with the LNSE/LEE (cf. Appendix A). In Section
5.1.1, the decomposition methodology is applied to assess the impact of nu-
merical stabilization schemes (details in Section 2.5) on the acoustic and vor-
tical sub-modes and in Chapter 6, it is used to identify the root-cause of limit-
cycle oscillations in high-frequency thermoacoustic systems. All these inves-
tigations demand for a decomposition of velocity and pressure solution fields

6This term vanishes for homentropic mean flows, i.e. ∇p̄ = c̄2∇ρ̄.
7Inserting Eqs. (2.18)-(2.20) into Eqs. (2.33)-(2.34) additionally yields mixed terms, i.e. Ea,v and Ia,v. However,

their physical interpretation is still not fully understood [17] and are thus not considered further in this thesis.
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into acoustic and vortical parts to evaluate associated energy density, inten-
sity, amplification and dissipation fields of Eqs.(2.37)-(2.40). This is achieved
via a Helmholtz decomposition, which is introduced in Section 4.3.

2.4 Boundary Conditions

Either analytically or numerically, solving linearized disturbance equations in
frequency domain represents a boundary value problem. This section intro-
duces acoustic boundary conditions for isentropic disturbance equations to
obtain unique solutions for the acoustic sub-mode. Special focus is put on
the coexistence of hydrodynamical, vortical (convectively transported by the
mean flow) and acoustic perturbations (propagating at the speed of sound) at
the boundary conditions.

2.4.1 Impedance Boundary Conditions

The complex-valued impedance Z (ω) represents the most general way to de-
scribe boundary conditions for acoustic disturbances. It relates acoustic pres-
sure to velocity perturbations

Z (ω) = 1

ρ̄c̄

p̂

û ·n
, (2.41)

For better comprehensibility, the impedance can be viewed as a measure
for the fraction of an incident acoustic wave which is reflected into the do-
main. Thereby, a reflection coefficient R can be deduced as a function of the
impedance Z :

R = Z −1

Z +1
. (2.42)

The characterization of the acoustic reflection behavior at the domain bound-
aries is difficult as the value of Z is unknown in most practical cases. However,
there exist several value pairs for p̂ and û ·n which are commonly used to ap-
proximate the acoustic behavior at the domain boundaries:

• Slip walls (û·n = 0): then, Z →∞ and R = 1, which means that an incident
acoustic wave is fully reflected without a phase shift.

• Pressure boundary (p̂ = 0): here, Z = 0 which means that an incident
acoustic wave is fully reflected but with a phase shift of π.
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• Anechoic boundary (p̂ = ρ̄c̄û·n): an incident acoustic wave is completely
absorbed at the boundary, which is recognizable as R = 0 or Z = 1.

• Energetically neutral boundary (m̂ ·n = 0 or ĥ = 0) [97]: with reference to
Eq. (2.34), the acoustic intensity becomes zero, i.e. I ·n = 0, which pre-
vents any intensity to enter or exit the domain. In particular this type of
boundary condition is useful, if both, in- and outlet(s) are energetically
neutral. Then, acoustic amplification and/or dissipation inside the do-
main volume is the sole root-cause affecting the temporal change of the
acoustic disturbance energy. In this case, the energy balance of Eq. (2.32)
reduces to ∫

V

∂E

∂t
dV =

∫
V

QdV −
∫

V
DdV (2.43)

In other words, this type of boundary condition allows quantification of
the thermoacoustic stability without the impact of the domain bound-
aries.
The zero mass flow and enthalpy conditions can be related to the
impedance Z via

m̂ ·n =
(
ρ̄û+ p̂

c̄2︸︷︷︸
=ρ̂

ū
)
·n = 0 → 1

ρ̄c̄

p̂

û ·n︸ ︷︷ ︸
=Z (ω)

=− c̄

ū ·n
=− 1

M ·n
, (2.44)

ĥ = p̂

ρ̄
+ û · ū = 0 → 1

ρ̄c̄

p̂

û ·n︸ ︷︷ ︸
=Z (ω)

=−ū ·n

c̄
=−M ·n, (2.45)

where M is the Mach number vector. Notice that the zero mass flow and
enthalpy conditions reduce to slip wall and pressure boundaries respec-
tively only if M = 0. This indicates that û ·n = 0 and p̂ = 0 are not energet-
ically neutral conditions in the presence of a mean flow field.

It is important to emphasize that the impedance boundary condition is only
applicable to acoustic oscillations propagating with the speed of sound, but
not to convectively transported vorticity (or entropy) disturbances. Attention
must thus be given to boundary conditions for the vorticity sub-mode and in
particular to the outlet boundary: vortices either enter the computational do-
main through the inlet or are generated somewhere inside of it8. They travel

8At the inlet, a zero vorticity condition can be imposed, i.e. ∇×Ω̂ΩΩ= 0.
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downstream towards the outlet along the streamlines of the bulk flow. Physi-
cally, the vortices are not (partially) reflected but simply exit the domain. Gen-
erally, the impedance boundary condition at the outlet cannot reproduce this
behavior, which results in non-physical behavior in the vicinity of the outlet.
To circumvent this, two strategies are followed in this thesis:

1. Transversal modes considered in this work are cut-off downstream of the
flame. This occurs due to an increasing value of the cut-on frequency
f cut-on. This characteristic frequency was already introduced in Eq. (1.4)
and can play an important role for the specification of boundary condi-
tions. For T1 and T2 eigenmodes in cylindrical combustion chambers, it
is

f cut-on
T1/T2 (x) = sT1/T2c̄ (x)

2πRc (x)
, (2.46)

where sT1/T2 is the first/second root of the Bessel function of the first kind.
More interestingly, the cut-on frequency increases locally either for an
increasing temperature and thus increasing speed of sound c̄ (x) or a de-
creasing combustion chamber radius Rc. In regions where the cut-on fre-
quency value exceeds the oscillating frequency of the T1/T2 eigenmode,
the acoustic sub-modes can no longer propagate freely and they decay
exponentially towards a zero value. In combustor applications, the flame
provokes a temperature elevation and thus an increase of the cut-on fre-
quency across it. Transversal modes decay in downstream direction, i.e.
towards the outlet, which is visible in Fig. 1.3 b). If the outlet is at a suffi-
cient distance to the flame, the acoustic eigenmode may have been dis-
appeared almost completely, which energetically decouples this bound-
ary from the rest of the acoustic domain. Hence, no acoustic intensity
crosses the outlet as p̂a and ûa are zero anyway. This allows the specifi-
cation of boundary conditions, which are more appropriate for convec-
tively transported vorticity perturbations without disrupting the acoustic
energy balance. In this thesis, a pressure outlet is implemented, i.e. p̂ = 0,
through which the vortices can exit the domain towards the environment
at ambient pressure level.

2. Acoustically triggered, convectively transported vortices in high-
frequency systems are relatively small compared to the acoustic wave-
length. This goes along with sharp velocity gradients, which in turn
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provoke fast dissipation, either due to viscous or artificial/numerical
diffusion. This is analyzed in more detail in Section 5.1.1.2. If the outlet
is at a sufficient distance to the origin of vortex shedding, the vortices
have been dissipated before they reach this boundary. This allows the
specification of pure acoustic, i.e. impedance boundary conditions, at
exits.

2.4.2 Azimuthal Periodicity of Transversal Modes

A three-dimensional simulation with linearized disturbance equations can be
reduced to a two-dimensional one if the combustor geometry of interest to-
gether with all the corresponding mean flow quantities exhibits continuous
rotational symmetry. Then, solution variables of the LNSE/LEE/APE can be
written as9

φ̂φφ (r,θ, x)
∣∣∣
θref

= φ̂φφ (r, x)e i bθ
∣∣∣
θref

(2.47)

with |b| as the azimuthal mode order. For T1 and T2 modes, b =±1 and b =±2,
respectively10. In this thesis b =−1 and b =−2 in all analyses, which represent
the in swirl-direction rotating T1 and T2 modes (details on the loss of degen-
eracy of transversal modes can be found in Ref. [37]). Inserting Eq. (2.47) into
the LNSE/LEE/APE for all disturbance variables and division by e i bθ yields
the simplified systems of equations. Notice that information about pseudo-
periodic boundary conditions for combustors with discrete periodicity in cir-
cumferential direction is provided in the Appendix B. There, the azimuthal
mode order |b| is discussed in more detail, too.

2.5 Finite Element Method for Disturbance Equations

In order to solve complex partial differential equations –such as the linearized
disturbance equations in frequency domain– numerical tools are often the
method of choice11. Due to the capability to resolve complex geometries
(which is often the case in practical combustion systems) and to work well
with unstructured meshes, the Finite Element Method (FEM) is used in this

9Spatial derivatives of solution variables in azimuthal direction read ∂φ̂φφ(r,θ,x)/∂θ
∣∣
θref

= i b φ̂φφ (r, x)e i bθ
∣∣
θref

.
10The sign provides information about the direction of rotation, i.e. clock- or counter clockwise.
11Parts of this section were published in Ref. [98]
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work to assess the linear stability of thermoacoustic systems, although its ap-
plication to fluid dynamic problems is less common [99, 100]: The reason for
this are numerical instabilities, which arise due to the presence of convec-
tive operators. These may lead to node-to-node oscillations, especially in re-
gions of steep gradients of the solution variables. In contrast to structural or
static heat transfer problems, where no convective transport is present, the
discretization of the convection operator leads to non-symmetric system ma-
trices. Then, the difference between the FEM solution and the exact solution
diverges and spurious solutions may occur [99]. The one-dimensional convec-
tion diffusion equation is a famous example that demonstrates the weakness
of the FEM for convectively dominated equations. For this simplified equa-
tion, analytical as well as the corresponding FEM approximation can be ob-
tained by classical "paper and pen" work [99]. The latter is a function of the
Peclet number

Pe = ūH

2d
, (2.48)

which relates convective to diffusive effects and may be viewed as an indicator
for the occurrence of spurious FEM solutions. In Eq. (2.48), ū denotes the
mean velocity, H the finite element size and d a diffusivity coefficient. For
Pe < 1, numerical solutions without spurious oscillations can be obtained,
i.e. the numerical solutions are stable and vice versa. A comparison between
the solution of the standard FEM approximation and the analytical one
reveals that the deviation between both is ascribed to an underestimation
of diffusion, which originates from the FEM discretization procedure. To
avoid unstable solutions, either the mesh element size must be decreased
or diffusion must be (artificially) increased to obtain a stable FEM solution,
which otherwise would be unstable, i.e. Pe > 1.

With reference to the LEE (2.28)-(2.29), it is obvious that artificial diffusion
is necessary to obtain non-spurious solutions, since no natural diffusion is
considered in the LEE, i.e. d = 0 and thus Pe =∞. Even the LNSE (2.26)-(2.27)
may need to be stabilized, if the viscosity µ encountered in these equations is
not sufficient to produce stable FEM solutions. Interestingly, FEM computa-
tions with the APE (2.30)-(2.31) produce stable solutions without the addition
of artificial diffusion although they capture the effect of the mean flow on
the acoustic field. This can be explained by the absence of convectively
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transported vortices in APE solutions fields, which is the result of removing
the linearized Lamb vector terms in these equations.

In this work, a combination of the Streamline-Upwind-Petrov-Galerkin
(SUPG) [101] and the Pressure-stabilizing-Petrov-Galerkin (PSPG) [102] arti-
ficial diffusion schemes is employed as part of the FEM setup rendering it as
stabilized Finite Element Method (sFEM). Application of the stabilization tech-
nique to the LNSE/LEE/APE results in the following system of linear equa-
tions [103]: ∫

V

[
Rû

(
ψû +

ψ′
û︷ ︸︸ ︷

τRû,stab

)]
dV = 0 (2.49)∫

V

[
R p̂

(
ψp̂ +τR p̂,stab︸ ︷︷ ︸

ψ′
p̂

)]
dV = 0 (2.50)

Equations (2.49)-(2.50) represent a stabilized set of linearized, isentropic dis-
turbance equations (in frequency space) in weak formulation, where ψû and
ψp̂ are weighting functions associated with the solution variables û and p̂.
Rû and R p̂ denote the residuals of LNSE/LEE/APE momentum and energy
equations, respectively. For the LNSE (2.26)-(2.27) and LEE (2.28)-(2.29) the
SUPG/PSPG stabilization terms (subscript "stab") read12

Rû,stab = ρ̄
(
(ū ·∇)ψû + (ψû ·∇)ū

)+∇ψp̂ (2.51)

R p̂,stab = ū ·∇ψp̂ +ψû ·∇p̄ +γp̄
(∇·ψû

)
. (2.52)

The stabilization parameter τ in Eqs. (2.49)-(2.50) is defined as [37, 49, 50]

τ=ατmax

(
H(x)

ū(x)+ c̄(x)

)
, (2.53)

where ατ allows global adjustment of the magnitude of artificial diffusion.
This tuning variable can be set arbitrarily to achieve the desired impact of
numerical stabilization. The local impact of artificial diffusion depends on
the respective size of the element H , the mean flow velocity ū and the speed
of sound c̄.

In this thesis, computations with the sFEM are performed with COMSOL Mul-
tiphysics 5.2a.

12The APE momentum stabilization term yields accordingly, i.e. Rû,stab = ρ̄∇(
ū ·ψû

)+∇ψp̂
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2.6 Acoustically Induced Vortex Shedding

In the previous sections of this chapter, some aspects of acoustically induced
vortex shedding have already been introduced. This section provides infor-
mation on the origin of the convectively transported vorticity perturbations
to complete the picture13.
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Figure 2.2: a) Formation process of vortex disturbances; b) acoustic (red) and
vortical (blue) velocity streamlines; c) superimposed streamlines; d)
interaction between acoustic velocity and the mean shear-layer.

The periodic shedding of convectively transported vortex disturbances orig-
inates from regions of strong mean vorticity. This is particularly the case at
sudden area expansions, where the mean flow separates and a shear-layer
forms [65]. Figure 2.2 a) explains the formation process of acoustically in-
duced vortex shedding in the time-domain. The schematic shows the tempo-
ral evolution of the superimposed velocity u(x = xe, t ) and vorticityΩΩΩ(x = xe, t )
directly at the edge location (subscript e): The starting point is given by an ax-

13Parts of this chapter were published in Ref. [104]
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ial, steady-state flow ū 1 , which passes the corner at x = xe. Intuitively, it sep-
arates at the edge and induces a mean vorticity field 2 . The additional pres-
ence of acoustic velocity oscillations u′

a exposes harmonic perturbations to
the steady-state flow in a superimposed manner, i.e. u (xe, t ) = ū (xe)+u′

a (xe, t )
3 . Consequently, the strength of shed vorticity ΩΩΩ (xe, t ) = Ω̄ΩΩ (xe) +ΩΩΩ′ (xe, t )

has to follow the instantaneous harmonic changes of the edge velocity 4 .
Within the first half of the period, the acoustic particle velocity points up-
stream and reduces the total velocity with respect to its mean value 5 . As a
response to that, a vortex perturbation is generated, which rotates in opposite
(here counter-clockwise (CCW)) direction compared to the induced clockwise
(CW) rotating mean velocity 6 . This vortex mutually reduces the superim-
posed vorticity and associated rotational velocity. Within the second half of
the period, the acoustic velocity points downstream and enhances the super-
imposed velocity at the edge 7 . Now, a CW rotating vortex is shed to increase
the overall vorticity 8 . The result is the periodic formation of CCW and CW
rotating vortex disturbances. Notice that the length scale of a vortex λv can be
approximated by

λv = 1

2

‖ū‖
fa

, (2.54)

and shows that it decreases with increasing acoustic oscillation frequencies.

Figure 2.2 b) displays the disturbed, rotational velocity field ûv (blue stream-
lines), which is induced by CW and CCW rotating vortices shed from an area
expansion. These vortices are triggered by acoustic velocity oscillations ûa

(red streamlines) of the T1 mode of the swirl-stabilized combustor introduced
in Chapter 3 of this thesis14. Figure 2.2 c) displays the original, combined ve-
locity solution15, which can be reconstructed by adding vortical and acoustic
velocities, i.e. û = ûa + ûv. These results are obtained by a Helmholtz decom-
position, which can be applied to LNSE/LEE solutions. Detailed information
on this procedure are presented in Section 4.3 of this work.

The generation of the vortex disturbances is connected to a conversion of
acoustic momentum into rotational momentum resulting in a reduction of
acoustic (kinetic) energy and thus pressure amplitudes as well. This can coun-

14The streamlines show the real parts of radial and axial velocities.
15Obtained from a LEE simulation.
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teract thermoacoustic driving and support stable operation of a gas turbine
combustor. The region of acoustic energy reduction is mainly restricted to
the vicinity of the shear-layer’s origin, i.e. downstream of the burner mouth’s
edge, as Howe stated [65–67]. On the one hand, this is due to an acoustic ve-
locity singularity at the sharp edge. In this context, the (infinitely) sharp edge
enforces (infinitely) high amplitudes of acoustic velocity (directly) around the
edge. As shown in Fig. 2.2 b), the acoustic velocity (red streamlines) follows
the geometry contour inducing large amplitude values directly at the location
of the sharp edge. Thus, the magnitude of acoustic velocity is considerably
higher near the sharp edge compared to the rest of the flow domain. The high
amplitudes of acoustic velocities cause a strong interaction with the mean
vorticity field, of which the magnitude is the highest directly downstream
of the mean flow separation point as well. The situation is displayed in Fig.
2.2 d). This implies that the transformation of acoustic energy into vortical
energy primarily occurs close to the corner. A detailed analysis of the energy
transformation process between acoustic and vortical sub-modes caused by
vortex shedding is provided in Appendix A.

Notice that the amount of acoustic energy transformed into vortical energy
decreases, if the sharp corner is rounded. In this case, the velocity singular-
ity vanishes and acoustic velocity amplitudes decrease, which reduces the in-
teraction with the mean vorticity field in the vicinity of the rounded corner.
To establish maximum acoustic dissipation due to vortex shedding, the cor-
ner should thus be manufactured as "sharp" as possible. Finally, it is men-
tioned that the formation of convectively transported vortices is not restricted
to shear-layers of the bulk flow only. Generally, vortices can be generated in
regions, where the acoustic velocity field is exposed to non-zero values of the
mean vorticity field. Next to shear-layers, this can be the case in boundary-
layers of the mean flow. However, it can be expected that the amount of acous-
tic energy consumed to produce the vortices is low compared to the amount
consumed in the vicinity of the shear-layer origin. This is constituted by rela-
tively low acoustic velocity magnitudes away from sharp corners.
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3 A2EV Combustor

The A2EV swirl-stabilized, lab-scale test rig represents an atmospheric, can-
type combustor, which was developed at the Thermodynamics Institute
of the Technical University of Munich [37, 61, 105–107]. A schematic of the
combustor is displayed in Fig. 3.1 including the geometrical dimensions in
millimeters. The corresponding flow fields in the combustion chamber are
obtained by reactive RANS CFD simulations. Exemplary distributions for ra-
dial, azimuthal and axial velocities as well as for temperature and heat release
rate are shown in Fig. 3.1. More detailed information on the CFD simulations
is provided in Section 5.2. Notice that the thermoacoustic analysis is restricted
to the combustion chamber only.

The perfectly premixed, preheated fuel/oxidizer flow consisting of natural
gas and air enters the A2EV swirl generator, after having passed the plenum
(not included in the schematic). The counter-clockwise rotating, swirling
fluid streams through the mixing tube and enters the optically accessible
combustion chamber, where the combustion reaction takes places. Then, the
reaction products leave through the exhaust section.

In this work, the following operational conditions are investigated:

• Preheated inlet gas temperature in the range of 423K ≤ T̄in ≤ 723K in steps
of 100K,

• Inlet mass flow between 60g/s ≤ ¯̇min ≤ 120g/s in steps of 20g/s and

• Air excess ratio between 1 ≤λ≤ 1.8 in steps of 0.2.

The combination of the latter two parameters allows variation of the thermal
power in between the range of 97kW ≤ Pth ≤ 350kW. In total, 80 different
operational points are deduced by variation of the three parameters. For
these, experimental benchmark data is readily available, which provides
information about the thermoacoustic stability of the T1 eigenmode of the
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combustor. About half of the operational points undergo a self-excited ther-
moacoustic instability at this eigenfrequency [22, 81].

Exemplary frequency spectra of time series recorded from a (marginally) sta-
ble ( ¯̇min = 120g/s, T̄in = 623K, λ = 1.8) and a thermoacoustically unstable
( ¯̇min = 120g/s, T̄in = 623K, λ= 1.2) operational point are presented in Fig. 3.2 a)
and b), respectively.

A-AA

A

B-B
T1 eigenmode T2 eigenmode

a)

b)

max

min

p'[Pa]0

B

B

Figure 3.2: a) Frequency spectrum of a (marginally) stable operational point;
b) frequency spectrum of an unstable operational point.

The stable operational point (Fig. 3.2 a)) reveals four peaks in the high-
frequency range :

• The first two peaks are associated with the non-degenerate T1 modes at
fT1 ≈ 2800Hz. The loss of degeneracy occurs due to the swirling mean
flow. The result is two rotating T1 modes. One rotates in the swirl direc-
tion, the other in the counter swirl direction. These modes are closely
spaced in frequency, which complicates the distinction in the spectrum
of Fig. 3.2 a). Typically, the in-swirl rotating mode is associated with
the higher frequency [37]. The corresponding mode shape is displayed
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• The non-degenerate T2 eigenmode pair appears at fT2 ≈ 4500Hz. In this
case, the frequency gap between the modes is larger. In contrast to the
T1 mode, the T2 mode is characterized by four circumferential pressure
anti-nodes instead of only two in the case of a T1 mode. The T2 pressure
mode shape is displayed in Fig. 3.2 a).

The frequency spectrum of the unstable operational point in Fig. 3.2 b) re-
veals that only the T1 mode is unstable, specifically the one rotating in swirl-
direction [37]. Notice that the frequency shift between unstable and stable op-
erational point occurs due to the temperature increase caused by the lower air
excess ratio. The two T2 mode peaks are not visible, which either indicates that
it is stable in a thermoacoustic sense or it is unstable but suppressed by the T1
mode due to modal coupling effects.
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4 Methods for Thermoacoustic Stability
Predictions

The methods introduced in this chapter serve as the fundamental analysis
basis for the thermoacoustic stability predictions in Chapters 5-7. First, the
CFD/CAA methodology is presented followed by the growth rate equation.
Lastly, the Helmholtz decomposition is applied to the field of thermoacous-
tics, which establishes the possibility to separate LNSE/LEE solutions fields
into acoustic and vortical parts. Notice that the provision of such a decompo-
sition method represents one of the research goals of this thesis.

4.1 Computational Fluid Dynamics/Computational Aero
Acoustics Methodology

The basic idea and simultaneously the main advantage of the CFD/CAA
methodology consists in the sequential computation of different time and
length scales, which tremendously reduces computational costs. Using one-
directionally coupled systems of equations for the CAA part, as introduced in
Section 2.1 with Fig. 2.1, allows effective computation of disturbance scales,
which are considerably larger than turbulent length and time scales but
smaller than time scales of the ensemble-averaged mean flow. In this sense,
the mean flow fields and thus the effect of turbulence are determined in a sep-
arated, first computation step via a (U)RANS CFD simulation. This mean flow
data serves as the input for the CAA part1. Then, a modal analysis in terms
of an eigenfrequency simulation with linearized disturbance equations in the
frequency domain (cf. Section 2.2) is carried out. This second computation
step directly provides information on the stability of an eigenmode in the form
of a growth rate. Specifically, discretizing the governing disturbance equations
in the context of the sFEM yields system matrices which can be rearranged in

1Notice that CFD and FEM meshes can differ.
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the form of a generalized eigenvalue problem [37, 50], i.e.

[iωiE+ (A+Astab)]φ̂φφi = 0. (4.1)

E, A and Astab denote the system matrices associated with temporal and spa-
tial derivatives in the disturbance equations as well as with the SUPG/PSPG
stabilization scheme introduced in Section 2.5. Numerically solving Eq. (4.1)
gives the eigenvalue iωi and the corresponding eigenvector φ̂φφi of eigenmode
i . Eigenvalue and eigenvector in combination represent an eigensolution of
Eq. (4.1), where the eigenvector is the characteristic eigenmode shape repre-
senting the amplitude distributions of the solution variables p̂ and û. As men-
tioned in Section 2.2, the angular eigenfrequency ωi consists of a real and an
imaginary part. It hosts information about the oscillating frequency f and the
temporal amplitude evolution of the solution variables in terms of the growth
rate ν:

ωi = 2π f − iν. (4.2)

With reference to Eq. (2.24), the value of the growth rate determines how fast
amplitudes of disturbances solution variables grow (or decay) in time (cf. the
red line in Fig. 1.2). Physically, the net growth rate ν consists of driving (β)
and damping (α) contributions but also contains the effect of energy fluxes
leaving or entering the domain through in- and outlets (νI) as well as the non-
physical, dissipative impact of the numerical stabilization scheme (νstab), i.e.

ν=α+β+νI +νstab. (4.3)

Notice thatα< 0 andβ> 0 in this thesis. The sign of the growth rate subtracted
by the non-physical part νstab determines the linear thermoacoustic stability
limit of an eigenmode of interest at predefined operational conditions [37,49]:

ν−νstab > 0 → unstable (4.4)

ν−νstab ≤ 0 → (marginally) stable (4.5)

According to the Eqs. (4.4)-(4.5), three stability states can be identified (cf. Eq.
(1.2)):

1. The eigenmode is unstable, if the net supply of disturbance energy ex-
ceeds its reduction due to dissipative mechanisms.
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2. The eigenmode is marginally stable, if the net supply of disturbance en-
ergy is zero.

3. The eigenmode is stable, if dissipative effects dominate the driving mech-
anisms.

In summary, the task of linear thermoacoustic stability assessments with the
CFD/CAA method comes down to consideration of all (relevant) effects which
change the acoustic energy in the control volume. In order to retrieve accurate
and reliable stability predictions results, the artificial growth rate part orig-
inating from the numerical stabilization scheme must either be minimized,
i.e. νstab → 0, or compensated in the analysis by quantification of νstab and
subtraction from the net growth rate, i.e. ν−νstab. Otherwise, the magnitude
of thermoacoustic growth rates may be underestimated.

4.2 Growth Rate Equation

Cantrell and Hart [108] introduced an growth rate equation, which represents
an alternative way to determine the stability of an eigenmode. It reflects the
growth rate in terms of the volume-integrated, period-averaged (denoted by
〈...〉2) and normalized change of the oscillating energy density E of an eigen-
mode, i.e.

ν= 1

2

∫
V

d〈E〉
dt dV∫

V 〈E〉dV
. (4.6)

The growth rate Eq. (4.6) can be combined with the energy balance of Eq.
(2.32), which allows the decomposition of the growth into three parts associ-
ated with sources and sinks inside the computational volume and intensity
leaving or entering through the domain boundaries, νQ, νD and νI respec-
tively:

ν= 1

2

∫
V 〈Q〉dV −∫

V 〈D〉dV −∫
S〈I ·n〉dS∫

V 〈E〉dV
= νQ +νD +νI. (4.7)

Successively inserting the energy Eqs. (2.33)-(2.36) into Eq. (4.7) allows com-
putation of the three growth rate contributions in a separated manner. This is
not possible by straightforwardly performing an eigenfrequency analysis with

2For practical guidance on the period-averaging of thermoacoustic signals, visit Section 2.7. of Ref. [37].
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the CFD/CAA method introduced in Section 4.1 as the resulting growth rate
contains the contribution of the intensity inherently. Hence, the main advan-
tage of the growth rate Eq. (4.6) consists of the possibility to distinguish be-
tween different phenomena affecting the stability of an eigenmode. This can
be exploited to determine individual growth rates for each physical effect. In
this thesis, the first three terms DΩΩΩ of Eq. (2.36) are of particular interest as
these are associated with acoustically induced vorticity perturbations. By ne-
glecting the contributions of the excitation term Q, the last term in the dissi-
pation term D and the intensity I in the energy balance of Eq. (2.32), a growth
rate equation is obtained which exclusively describes the dissipative impact
of vorticity perturbations on the thermoacoustic stability, i.e.

ν=1

2

∫
V 〈ρ̄

( =0︷ ︸︸ ︷(
Ω̄̄Ω̄Ω× û

) · û+(
Ω̂̂Ω̂Ω× ū

) · û
)+ ρ̂ (

Ω̄̄Ω̄Ω× ū
) · û〉dV∫

V 〈E〉dV
=

=αDΩΩΩ =αDΩΩΩ,1︸ ︷︷ ︸
=0

+αDΩΩΩ,2 +αDΩΩΩ,3

(4.8)

The three damping rate partsαDΩΩΩ,1-αDΩΩΩ,3 are related to the three cross-product
terms in the numerator of Eq. (4.8). Recall that αDΩΩΩ,1 vanishes identically as
shortly explained in Section 2.3. Detailed information on αDΩΩΩ,1 is provided
in Appendix A. Ultimately, the decomposed solution variables of Eqs. (2.18)-
(2.20) can be inserted into Eq. (4.8) to investigate the stability of acoustic and
vortical sub-modes separately as a function of the volumetric sinks/sources
DΩΩΩ. Specifically, normalizing the acoustic and vortical dissipation parts with
the respective period-averaged, volume-integrated acoustic (Ea) and vortical
energy densities (Ev) gives the two corresponding damping rates

αDΩΩΩ,a =1

2

∫
V 〈DΩΩΩ,a〉dV∫

V 〈Ea〉dV
, (4.9)

αDΩΩΩ,v =1

2

∫
V 〈DΩΩΩ,v〉dV∫

V 〈Ev〉dV
. (4.10)

For evaluations with the growth rate Eq. (4.8), solution fields for disturbance
pressure p̂ and velocity û are required. These are straightforwardly obtainable
from eigenfrequency simulations with the CFD/CAA approach introduced in
Section 4.1. In conclusion, a CFD/CAA eigenfrequency simulation needs to
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be carried out first. The resulting eigenmode shape consisting of acoustic and
vortical parts is used to calculate individual acoustic and/or vortical growth
rate parts with the growth rate Eq. (4.8).

In order to access the growth rates of acoustic and vortical sub-modes in Eqs.
(4.9)-(4.10), the pressure and velocity disturbance fields need to be split into
acoustic and vortical parts as proposed in Eqs. (2.18)-(2.20). This is achieved
by a Helmholtz decomposition, which is presented in Section 4.3.

4.3 Helmholtz Decomposition of Disturbance Fields

Helmholtz’ decomposition theorem [109] is commonly used in fluid dynam-
ics to compute solenoidal and irrotational parts of velocity fields [110]. In
this thesis, it is applied to solution fields of the LNSE/LEE in the frequency
domain to obtain explicit access to their acoustic and vortical sub-modes.

For reactive cases with mean density gradients (∇ρ̄ 6= 0), the acoustic velocity
field does generally not satisfy the irrotationality condition, i.e. ∇× ûa 6= 0.
Physically, this can be explained by the refraction of acoustic waves at den-
sity gradients in the flame region. This phenomenon induces a rotational
component in the acoustic velocity vector ûa if the mean density gradient
and the incident acoustic wave are arranged in angle to each other. Apply-
ing the Helmholtz decomposition to the LNSE/LEE velocity vector û with
the goal to determine acoustic and vortical parts, is thus incorrect as the
acoustic velocity field does not represent the irrotional part of the LNSE/LEE
velocity field only. Hence, an alternative disturbance quantity is required
which describes acoustic and vortical motions. In addition, the acoustic part
of this quantity must be irrotational in the presence of mean density gradients.

With reference to Appendix C, the disturbance mass flow field m̂ satisfies
these requirements and thus, represents a suitable quantity to decompose an
isentropic LNSE/LEE solution field into its acoustic and vortical sub-modes.
Application of Helmholtz’ decomposition theorem, which states that any
(smooth) vector field is represented by the sum of the gradient of a scalar po-
tential and the curl of a vector potential [110], allows writing of the LNSE/LEE
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mass flow vector as

m̂ = m̂a +m̂v =∇Φm̂ +∇×χχχm̂. (4.11)

Acoustic and vortical mass flow parts correspond to the scalar potential Φm̂

and the vector potential χχχm̂, respectively. To either solve for the scalar or the
vector potential, either the divergence or the curl is applied to Eq. (4.11) yield-
ing the equations

∇·m̂ =∇·m̂a =∇·∇Φm̂ =∆Φm̂ (4.12)

∇×m̂ =∇×m̂v =∇×∇×χχχm̂. (4.13)

In Eqs. (4.12)-(4.13), irrotationality of the acoustic and solenoidality the vorti-
cal mass flow field is exploited, i.e.

∇×m̂a =∇×∇Φm̂ = 0, (4.14)

∇·m̂v =∇·∇×χχχm̂ = 0. (4.15)

The decomposed solution variables m̂a and m̂v can be obtained, if either Eq.
(4.12) or Eq. (4.13) is solved numerically. Specifying acoustic boundary con-
ditions (cf. Section 2.4.1), which can be explicitly formulated as a function
of the scalar potential, allows computation of Φm̂ via solving the Poisson Eq.
(4.12) [110]. Notice additionally that the determination of the scalar potential
goes along with a reduced computational effort compared to the computation
of the vector potentialχχχm̂: for a three-dimensional case, three equations need
to be solved in order to obtain the vector potential, while only one equation is
required to obtain the scalar potential. In this thesis, the isentropic LNSE/LEE
in combination with the Poisson Eq. (4.12) are solved numerically with the
sFEM. This introduces the scalar potential Φm̂ as a further solution variable,
which is directly coupled to the LNSE/LEE solution fields. The equation for
the scalar potentialΦm̂ in weak formulation reads∫

V

[
(∇·m̂)ψΦm̂ +∇Φm̂ ·∇ψΦm̂

]
dV −

∫
S

(n ·∇Φm̂)ψΦm̂dS = 0, (4.16)

where
∫

V ∆Φm̂ψΦm̂dV = −∫
V ∇Φm̂ · ∇ψΦm̂dV + ∫

S(n · ∇Φm̂)ψΦm̂dS is applied
to the second order derivatives of the Poisson Eq. (4.12) [99]. Hence, the
Helmholtz decomposition is not treated as a post-processing step, which fa-
cilitates and accelerates the computation of acoustic and vortical sub-modes
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as separated post-processing steps can be avoided.

After having determined Φm̂ of a LNSE/LEE solution via numerically solving
Eq. (4.12), acoustic and vortical mass flow fields can directly be computed by

m̂a =∇Φm̂ = ûaρ̄+ p̂a

c̄2
ū → m̂v = m̂−m̂a. (4.17)

The corresponding velocity fields are obtained from Eq. (4.17) and by exploit-
ing Eq. (2.19) i.e.

ûa =
m̂a − p̂a

c̄2 ū

ρ̄
→ ûv = û− ûa. (4.18)

Finally, the acoustic pressure p̂a, which is also required to compute ûa in Eq.
(4.18), and the vortical pressure can be computed via

p̂a =− (iωΦm̂ + ū ·∇Φm̂) → p̂v = p̂ − p̂a. (4.19)

For the derivation of Eq. (4.19), the interested reader is referred to the Ap-
pendix C.2.

Figure 4.1 presents decomposed LNSE disturbance fields of the T1 eigenmode
of the A2EV combustor configuration introduced in Chapter 3. Notice that
the root-cause of the irregular pattern visible along the shear-layer in the
acoustic sub-mode results in the mid column of Fig. 4.1 is caused by the
interaction of acoustics and vortices with the non-homentropic mean flow
field. As pointed out in Ref. [87], this interaction would generate entropy
waves, which are not resolved in this work due to the isentropicity Eq. (2.17).
Thus, this irregular pattern reveals regions where "isentropic mass flow" is
transformed into "entropy mass flow".

The Helmholtz decomposition of a LNSE/LEE mass flow field provides access
to the acoustic part m̂a. This part is linked to the acoustic pressure p̂a and
velocity ûa through Eq. (4.17). Although the acoustic mass flow field is irro-
tational (cf. Eq. (4.14)), this does generally not apply to the acoustic velocity
field, i.e. ∇× ûa 6= 0. This is demonstrated in the following by taking the curl of
the acoustic mass flow field m̂a in Eq. (4.20). Next, Eq.(4.20) is solved for ∇×ûa,
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LNSE solution acoustic sub-mode vortical sub-mode

min max
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ˆ

ˆ

0

min max
0
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0

ˆ

ˆ
min max

0

Re{p}[Pa]

Figure 4.1: Results of the mass flow Helmholtz decomposition of the T1 eigen-
mode of the A2EV combustor: pressure (first row) with radial (sec-
ond row), azimuthal (third row) and axial (fourth row) velocity dis-
tributions for the original LNSE solution (left column) and for the
decomposed acoustic (mid column) as well as vortical (right col-
umn) sub-modes.

which gives Eq. (4.21):

∇×m̂a =∇×∇Φm̂ =∇×
(
ρ̄ûa + p̂a

c̄2︸︷︷︸
=ρ̂a

ū
)
= 0 (4.20)

→ ∇× ûa = Ω̂ΩΩa =−1

ρ̄

[
∇ρ̄× ûa︸︷︷︸

≈∇p̂a
iωρ̄

+ρ̂a∇× ū︸ ︷︷ ︸
=Ω̄ΩΩ

+∇ρ̂a × ū
]

(4.21)

Equation (4.21) confirms that the acoustic velocity field is governed by acous-
tic vorticity perturbations Ω̂ΩΩa, if the angle between the acoustic velocity field
and the mean density gradient is non-zero (first term in Eq. (4.21)). This term
indicates that rotation is introduced by the baroclinic effect [17], which is
recognizable if the acoustic velocity field is expressed as a function of the
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acoustic pressure3. Similarly, rotation is produced, if the acoustic density
gradient and the mean velocity vector are not parallel allocated (third term in
Eq. (4.21)). Additional rotation is induced, if acoustic density perturbations
are exposed to a shear-layer in the bulk flow (second term in Eq. (4.21)).
Equation (4.21) reveals that the acoustic velocity field is only irrotational in
the absence of mean density gradients4 and of a bulk flow. Then, Eq. (4.21)
becomes the zero vector, which indicates that the acoustic velocity field is
irrotational.

For isothermal conditions and low Mach numbers (M ¿ 1), this implies that
mass flow Helmholtz decomposition can be replaced by the Helmholtz de-
composition of the LNSE/LEE velocity field û as ∇× m̂a ≈ ρ̄∇× ûa ≈ 0. In this
case, the LNSE/LEE velocity vector can be written as

û = ûa + ûv =∇Φ+∇×χχχ, (4.22)

with the new scalar and vector velocity potentials Φ and χχχ. With reference to
Eqs. (4.11)-(4.16), Eq. (4.22) can be solved for Φ, which gives the acoustic and
vortical velocity and pressure fields of the associated LNSE/LEE solution in a
decomposed manner:

ûa =∇Φ → ûv = û− ûa (4.23)

p̂a =−ρ̄ (iωΦ+ ū ·∇Φ) → p̂v = p̂ − p̂a. (4.24)

Notice that the equation for the acoustic pressure p̂a in Eq. (4.24) (cf.
Refs. [89, 111]) can be deduced from the linearized APE momentum Eq. (2.30)
(details in the Appendix C.2).

Notice that all LNSE/LEE solution fields associated with an isothermal mean
flow field, i.e. ∇ρ̄ = 0, are decomposed by applying the Helmholtz decompo-
sition to the velocity field û in this thesis. An example of LEE decomposition
results of the T1 eigenmode of a non-reactive, isothermal A2EV combustor
configuration is presented in Fig. A.3 of Appendix A.1. A comparison between
the mass flow and velocity decomposition is provided in Appendix C.

3This is justifiable in the case of zero or small Mach numbers.
4An exception would be a longitudinal eigenmode in a straight duct with temperature jump. Then ∇ρ̄ ∥ ûa

and thus ∇ρ̄× ûa = 0 in Eq. (4.21).
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4.4 Model Order Reduction

The CFD/CAA method introduced in Section 4.1 is limited to linear pertur-
bations, which means that is only capable of describing the early stage of
a thermoacoustic instability. As illustrated in Fig. 1.2, this early stage ends,
when the temporal amplitude evolution can no longer be approximated by
an exponential curve (cf. 3 in Fig. 1.2). The inclusion of non-linear effects
to the CFD/CAA method would require convolution operations, which is not
straightforward. To avoid this, non-linear saturation effects and limit-cycle
oscillations (cf. 4 and 5 in Fig. 1.2, respectively) as well as multi-modal
interactions are modeled in the time-domain via non-linear equations. In
this thesis, the isentropic APE (2.22)-(2.23) in the time domain are expanded
to account for non-linear mechanisms. The APE have the advantage over the
LEE/LNSE that no artificial diffusion scheme is required to produce stable
solutions. The contribution of further dissipative mechanisms (such as of
vortex shedding) can be considered by modifying the APE growth rate. Flame
driving can be modeled directly in the time domain simulation. More details
are provided in Chapter 7.

Directly solving the modified APE in the time domain is theoretically possible
and would provide the desired information on the non-linear thermoacous-
tic dynamics. However, this approach is impractical as the large discrete sys-
tem sizes of the A2EV combustor (which result from highly resolved meshes
in this thesis, see for instance Fig. 5.7) –and particularly of industrially rele-
vant combustors– deny an efficient numerical computation of the envelope
amplitude of the disturbance solution variables. To circumvent this problem,
Hummel [37] applied the so-called modal truncation theory to non-compact
thermoacoustic systems. He developed a Reduced Order Model (ROM), which
allows efficient computation of non-linear oscillations in combustion cham-
bers with arbitrarily complex geometries. The starting point for the model or-
der reduction is given by the linear state-space system

dφφφ′

dt
+E−1Aφφφ′ = E−1Bu (4.25)

y = Cφφφ′+D, (4.26)

which describes the dynamical behavior of the full order system in the time-
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domain. Equation (4.25) can be obtained by inversely Laplace transform the
eigenvalue problem of Eq. (4.1) and left-multiplication by the inverse of E.
The addition of the input matrix B allows the incorporation of spatially dis-
tributed momentum and energy sources/sinks hosted by the input signal vec-
tor u. Output signals y of the solution variables p ′ and u′ are retrieved by Eq.
(4.26), where C is the output matrix. D denotes the feedthrough matrix, which
is omitted (D = 0). The four main tasks to obtain the ROM from Eqs. (4.25)-
(4.26) comprise:

1. Transformation of the state-space system matrix E−1A into its corre-
sponding canonical normal form Ã. In this equivalent representation, the
eigenvalues (or rather the eigenfrequencies iωi) form the new diagonal
system matrix, i.e. Ã = diag(iωi).

2. Projection of the full system matrix in canonical normal form onto a re-
duced one, i.e. Ã → Ãr, by limiting the eigenspace to the eigenmodes in
the frequency range of interest. As a result, the number of degrees of free-
dom in the ROM reduces to the number of considered eigenmodes.

3. Creation of suitable in- and output matrices to model non-compact
flame driving as well as amplitude-dependent acoustic dissipation via
feedback loops in step #4.

4. Establishment of (non-)linear feedback loops between the output vector
y and the input vector u as well as between the output vector y and the
ROM system matrix Ãr to model (non-)linear flame driving and damping
in the time-domain simulations, respectively.

The outcome of this procedure is the reduced order state-space model

dηηη

dt
= Ãrηηη+ B̃ru (4.27)

y = C̃rηηη, (4.28)

where the state vector ηηη describes the temporal amplitude evolution of the
eigenmodes considered in the reduced eigenspace. B̃r and C̃r are reduced in-
and output matrices originating from the ROM creation process. Equations
(4.27)-(4.28) serve as the basis for thermoacoustic computations in the time
domain in Chapter 7. In the frame of this work, #4 of the ROM creation
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process is adapted to account for the pressure amplitude-dependency of the
mean flow investigated in Chapter 6. This modification seeks to advance the
physical accuracy and ultimately the predictive capabilities of the ROM with
regard to limit-cycle oscillations and interactions between multiple unstable
acoustic eigenmodes. This translates into the task to express the ROM system
matrix Ãr and the input vector u as a non-linear function of the ROM output
vector, i.e. Ãr = Ãr(y) and u = u(y).

To validate the modifications, the non-linear interaction between the in-swirl
direction rotating T1 and the T2 modes of the A2EV combustor are inves-
tigated and compared with measurements. Notice that the reduced system
matrix Ãr is a [2x2] diagonal matrix made up of the T1 and T2 eigenvalues in
this case. In contrast to this, the corresponding (full order) system matrices
E and A of the fully discretized computational domain in Eq. (4.1) have the
size [nxn]. n is the number of degrees of freedom and depends on the mesh
resolution, the spatial descretization order and the number of governing
equations. Typical values of n are in the range of 104 to 106 degrees of free-
dom, which stresses the performance improvement with the ROM.

For more detailed information on the derivation of the ROM and on the the-
ory of modal truncation the interested reader is referred to the dissertation of
Hummel [37] and to Lunze [112], respectively.
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5 Linear Stability Assessment

As pointed out in Section 1.2, a crucial aspect of the design, operation
and control of a thermoacoustic system is given by the prediction of its
linear stability limits. One approach to describe linear amplifying flame-
as well as damping mean flow-acoustics interactions might be the utiliza-
tion of linear, one-dimensional network models with compact elements
characterized by one-dimensional transfer functions [29, 113]. However, for
high-frequency oscillations this approach fails due to the non-compactness
ascribed to the multi-dimensional wave propagation. In consequence, two-
or three-dimensional simulations with the LNSE or LEE, which inherently
account for any thermoacoustic non-compactness, have moved into the
focus recently [49, 50].1 Specifically, eigenfrequency analyses have been ex-
pected to yield the desired thermoacoustic stability information in terms of
growth rates [37, 50, 114]. However, the predictive capabilities of this hybrid
Computational Fluid Dynamics/Computational Aero Acoustics (CFD/CAA)
methodology have not yet reached a sufficient level and are thus improved as
part of this work. In this context, the present thesis seeks to provide a reliable
and time-efficient thermoacoustic stability prediction tool. Furthermore, the
tool must be applicable to industrially relevant combustor configurations
and must solely use numerical computation approaches to avoid expensive,
experimental investigations for the realization of thermoacoustic control
and/or retrofit strategies.

To achieve this goal, the existing CFD/CAA tool is extended. The impact of
the SUPG/PSPG numerical stabilization scheme on acoustics and on hydro-
dynamic vortices is investigated in Section 5.1.1. Based on these investiga-
tions, a methodology is introduced to eliminate the non-physical part νstab

in LNSE/LEE growth rates (cf. Eq. (4.3)), which is caused by artificial diffusion.
In Section 5.1.2, a local flame transfer function (FTF) is proposed to model the

1A detailed discussion about, and an analysis on the suitability of these equations for thermoacoustic stability
predictions is provided in Appendix A.
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thermoacoustic driving potential of vortex-flame interactions. In Section 5.2
of this chapter, the performance of the advanced CFD/CAA model is judged
from the comparison of thermoacoustic stability prediction results with ex-
perimental observations. In addition, a methodology is established, which al-
lows a detailed assessment of specific physical effects with respect to their rel-
evance for the thermoacoustic stability.

5.1 Extension of the Thermoacoustic Prediction Tool

This section introduces the elimination method as well as the vortex-flame
FTF to improve the predictive capabilities of the existing CFD/CAA tool for
thermoacoustic stability analyses [37, 50].

5.1.1 Quantification and Elimination of Numerical Damping

The necessity for numerical stabilization (subscript "stab") with artificial dif-
fusion represents one main shortcoming of CAA simulations with the sFEM2.
Specifically, the growth rate ν obtained from eigenfrequency analyses with
the LEE/LNSE hosts a non-physical contribution νstab originating from the
artificial diffusion scheme in addition to the physically meaningful damping,
driving and growth rates, α, β and νI (see Eq. (4.3)). The quantification of the
undesired, but necessary part νstab is not straightforward and represents the
main goal of this section. As will be shown, the contribution of both rates, α
and νstab, to the overall growth rate ν can be of the same order of magnitude.
This may lead to a drastic overestimation of dissipation in the system and
thus to a potentially incorrect thermoacoustic stability assessment.

The study in the present section seeks to advance the understanding on
how the SUPG/PSPG stabilization scheme influences eigensolutions of the
isentropic LEE and LNSE. The Helmholtz decomposition (see Section 4.3) of
eigenmode shapes into acoustic and convectively transported vortical com-
ponents reveals the impact of the SUPG/PSPG stabilization scheme on each
perturbation field separately. Then, a methodology is presented to quantify
the effect of numerical stabilization on the disturbance field in terms of the

2Parts of this section were published in Ref. [98]
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growth rate νstab. This result can be subtracted from the original, "polluted"
LEE/LNSE growth rate ν yielding a corrected growth rate νcorr. The latter rep-
resents the "physical" part only which is associated with damping and driving
inside the domain volume as well as with energy fluxes crossing the domain
boundaries (cf. Eq. (4.3)), i.e.

νcorr =α+β+νI = ν−νstab. (5.1)

For reasons of clarity, the following analyses are conducted with the LEE in-
stead of the LNSE as the utilization of the LNSE would result in a "mixture" of
artificial and physically meaningful diffusion. As will be shown in Section 5.2,
the extraction of the damping rate associated with the physical diffusion part
from the overall, "polluted" LNSE growth rate requires an additional compu-
tational step. This step can be omitted in the case of LEE simulations.

5.1.1.1 Numerical Setup

In order to analyze the effect of artificial diffusion on acoustic and vorti-
cal sub-modes, the atmospheric and isothermal (T̄ = 298K, p̄ = 101325Pa,
Min = 0.2) experiment of Ronneberger [115] is numerically investigated in-
stead of the A2EV combustor. The advantage over transversal eigenmodes in
the A2EV combustor is that the principal direction of acoustic wave propa-
gation and convection of vortices occurs in axial direction. Then, complex,
multi-dimensional evaluations can be avoided, which facilitates analyses on
the effect of artificial diffusion. Furthermore, the isothermal, non-reactive
conditions are predestined for this proof-of-concept study as any effect of
combustion on acoustic and vortical sub-modes can a priori be excluded.
Finally, vortex shedding and vorticity-mean flow interaction remain the sole
physical mechanisms inside the combustor volume affecting the stability of
the acoustic sub-mode next to the non-physical one attributed to the numer-
ical stabilization scheme:

νcorr =αDΩΩΩ+νI = ν−νstab. (5.2)

However, notice that the subsequently proposed quantification and elimina-
tion method is applicable to reactive cases with mean density gradients as
well. This will be demonstrated in Section 5.2 by application of the method to
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the linear stability assessment of the T1 mode of the A2EV combustor.

A schematic of the setup of the experiment of Ronneberger is shown in Fig. 5.1.
This rather simple area jump geometry consisting of two axisymmetric pipes
is optimum to investigate longitudinal eigenmode shapes.
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Figure 5.1: Computational domain hosting the investigated longitudinal
eigenmode shape in terms of pressure (upper half) for ατ = 20 with
corresponding boundary conditions and the underlying mean ve-
locity field (lower half - dimensions in [mm]).

The upper half of Fig. 5.1 shows the longitudinal pressure mode shape ana-
lyzed in this section together with the boundary conditions. For this proof-of-
concept study, two sets of boundary conditions are used:

1.) In- and outlet boundary conditions are energetically neutral (cf. Section
2.4.1). This is achieved by specifying m̂ ·n = 0 at the inlet and ĥ = 0 at the
outlet (case 1 in Fig. 5.1).

2.) The system is excited at the outlet and is closed at the inlet. This is
achieved by specifying p̂ = 1 at the outlet and û ·n = 0 at the inlet (case 2
in Fig. 5.1)3.

Boundary case 1 is used for the eigenfrequency analyses in Sections 5.1.1.3-
5.1.1.4. The absence of intensity I (cf. Eq. (2.34)) at in- and outlets leaves
damping due to artificial diffusion (νstab) and vortex shedding as well as
vorticity-mean flow interactions (αDΩΩΩ) as the sole contributions to the LEE
growth rate in Eq.(5.2). This is exploited to demonstrate that the LEE growth

3The system is excited (either at one or multiple locations) at a frequency f of interest (in this case, the
frequency of interest exactly matches the eigenfrequency of the longitudinal eigenmode shown in Fig. 5.1, i.e.
f = Re{ωi}/2π). Mathematically this can be achieved by introducing a load vector B on the r.h.s. of Eq. (4.1), i.e.
iωEφ̂φφ+ [A+τAstab]φ̂φφ= B.
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rate is composed of these two growth rate parts in an additive manner.

Boundary case 2 is used in the frame of a forced frequency response analysis
in Section 5.1.1.2 to study the effect of numerical damping on LEE eigenmode
shapes. This is done by investigating the acoustic and vortical intensity Ia/v

along the axis, which provides information on the axial transport of distur-
bance energy E . The closed inlet prevents the decay of the acoustic intensity
Ia from the outlet towards a zero value at the inlet, which facilitates the
interpretation of results.

The close-up view in Fig. 5.1 shows the FEM mesh in the vicinity of the area
jump. The grid in the corner region is highly refined. The eigenmode shape
shown in the upper half of Fig. 5.1 is obtained by solving the eigenvalue prob-
lem of Eq. (4.1) with the stabilized LEE (ατ = 20) and boundary case 1. In accor-
dance with the CFD/CAA methodology, the mean flow fields are determined
in a separate steady-state, incompressible RANS CFD simulation. The result-
ing flow fields serve as the input to the isentropic LEE (2.28)-(2.29). The lower
half of the axisymmetric configuration displays the absolute value of the mean
velocity field, which amounts to Min = 0.2 at the inlet. Notice that slip-walls
are assumed in the CFD simulation to avoid mean vorticity production in the
boundary-layer along the walls.

min max
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min max

0

Figure 5.2: Decomposed acoustic (upper halves) and vortical (lower halves)
disturbance fields for ατ = 20.

Applying the velocity Helmholtz decomposition to the overall LEE field in Fig.
5.1 leads to the sub-modes presented in Fig. 5.2: the top half represents the
pure acoustic part and the lower half the complementary vortical part. The
original LEE pressure field in Fig. 5.1 can be reconstructed by adding up the
acoustic and vortical pressure fields shown on the left side of Fig. 5.2. In Sec-
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tion 5.1.1.2, this decomposed eigenmode shape is used to analyze the impact
of the numerical stabilization scheme on the acoustic and the convective,
vortical sub-mode. In addition, the subsequently presented methodology to
quantify the damping rate due to artificial diffusion is applied to this eigenso-
lution as well.

5.1.1.2 Impact of Artificial Diffusion on Acoustic and Vortical Sub-Modes

In this section the impact of artificial diffusion on eigensolutions of the LEE
is analyzed from a global perspective via investigating the dependency of
acoustic and vortical intensity (cf. Eq. (2.38)) on the tuning variable ατ. Recall
that this parameter allows adjustment of the amount of artificial diffusion
introduced to the LEE.

Inserting the vortical-acoustic decomposition approaches of Eqs. (2.15)-(2.16)
into the eigenvalue problem of Eq. (4.1) gives

iωiE(φ̂φφi,a +φ̂φφi,v)+ [
A(φ̂φφi,a +φ̂φφi,v)+τAstab(φ̂φφi,a +φ̂φφi,v)

]= 0. (5.3)

Equation (5.3) indicates that the employed stabilization scheme acts sepa-
rately on acoustic and vortical sub-modes. This allows analysis of its impact
on each of the sub-modes and implies a decomposition of the artificial diffu-
sion growth rates into

νstab = νstab,a +νstab,v (5.4)

with νstab,a and νstab,v acting on acoustic and vortical sub-modes only.

The decomposed solution fields shown in Fig. 5.2 are used to compute the
period-averaged, axial acoustic and vortical intensities, 〈Ia,x〉 and 〈Iv,x〉 (cf. Eq.
(2.34)):

〈Ia,x〉 =
〈[ p̂a

ρ̄
+ ûa · ū

][
ρ̄ûa,x + ρ̂aūx

]〉
, (5.5)

〈Iv,x〉 =
〈[ p̂v

ρ̄
+ ûv · ū

][
ρ̄ûv,x + ρ̂vūx

]〉
. (5.6)

Eqs. (5.5)-(5.6) describe the axial acoustic and vortical energy flux density or
in other words, the transport of acoustic and vortical energy Ea and Ev in ax-
ial direction. Figure 5.3 a) presents the spatial distribution of axial acoustic
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(upper half) and vortical (lower half) energy flux densities in response to the
downstream, acoustic excitation (p̂ = 1, boundary condition case 2). The flux
density fields in Fig. 5.3 a) are radially integrated. The integrated result of 〈Ia,x〉
and 〈Iv,x〉 are plotted against the axial coordinate x in Fig. 5.3 b) for three dif-
ferent values of the global stabilization parameterατ. Reddish and bluish lines
represent acoustic and vortical energy density fluxes, respectively.
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Figure 5.3: a) Acoustic (upper half) and vortical (lower half) energy flux den-
sities for a global tuning parameter value of ατ = 20; b) integrated
fluxes along the axis.

Acoustic energy is transported by the mean flow through the inlet into the do-
main. This is possible because the inlet boundary is not specified to be ener-
getically neutral. Due to the absence of mean vorticity inside the smaller, up-
stream pipe (promoted by slip walls in the CFD simulation), i.e. −0.5m ≤ x ≤
0m, no vorticity perturbations and thus vortical energy is transported. At the
area jump (x = 0m), the mean flow separates and a shear-layer develops. The
acoustic field couples with the shear-layer, which provokes the consumption
of acoustic energy to generate the convectively transported vortex perturba-
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tions. This explains the decrease of the acoustic energy flux (reddish lines in
Fig. 5.3) over the area jump and the transport of vortical energy for x ≥ 0m
in downstream direction. The decrease of the acoustic energy flux is (almost)
equal for the three ατ values revealing that the transformation process from
acoustic into vortical energy is (almost) unaffected by the numerical stabi-
lization scheme. The bluish lines in Fig. 5.3 b) reveal that the vortical energy
flux vanishes completely while convecting downstream through the computa-
tional domain. Increasing ατ values accelerate the dissipation process, which
demonstrates that numerical damping is responsible for the decay of the vor-
tical perturbations. From an energetically point of view, this implies that the
energy supplied by the acoustic field to generate/shed the vortices is fully dis-
sipated by numerical damping. To illustrate this, the energy balances for the
vortical sub-mode in the control volumes 1 (V1) and 2 (V2) displayed in Fig. 5.3
are given in Eqs. (5.7)-(5.8). Notice that the border plane between the control
volumes is placed at the location of the maximum vortical flux density value,
i.e. max

(∫ 〈Iv,x〉r dr
)→ xmax, which is also depicted in Fig. 5.3:[
〈Iv,x〉

]x=xmax

x=0
+

∫
V1

DΩΩΩ,v +Dstab,vdV1 = 0, (5.7)[
〈Iv,x〉

]x=0.7

x=xmax

+
∫

V2

DΩΩΩ,v︸︷︷︸
≈0

+Dstab,vdV2 = 0, (5.8)

In control volume 1 (cf. Eq. (5.7)), the vortical energy flux at x = 0 is zero. The
volumetric source DΩΩΩ,v describes the vortical energy supplied by the acoustic
field through energy transformation and by the bulk flow through the interac-
tion of shed vortices with the mean velocity field. In control volume 1, a small
fraction of the vortical energy is dissipated by artificial diffusion (cf. the term
with Dstab,v in Eq. (5.7)). The larger portion leaves control volume 1 towards
control volume 2. In control volume 2 (cf. Eq. (5.8)), no vortical energy is sup-
plied (DΩΩΩ,v ≈ 0), but only dissipated by numerical diffusion. Remember that
the transformation from acoustic into vortical energy primarily occurs in the
vicinity of the sharp corner. Combining Eqs. (5.7)-(5.8) shows that the energy
supply from the acoustic and the mean flow field is dissipated by the numeri-
cal stabilization scheme, i.e.∫

V1

DΩΩΩ,v +Dstab,vdV1 +
∫

V2

DΩΩΩ,v︸︷︷︸
≈0

+Dstab,vdV2 = 0 =
∫

V

∂〈Ev〉
∂t

dV (5.9)
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Thus, the temporal change of vortical energy density 〈Ev〉 is zero in the total
computational domain. As a result, the LEE growth can be written as

ν= νa + νv︸︷︷︸
=0

=αDΩΩΩ,a +νstab,a +νI,a +αDΩΩΩ,v +νstab,v︸ ︷︷ ︸
=0

. (5.10)

where νstab,a is the artificial diffusion growth rate, which acts on acoustics only.
The growth rate νI,a is associated with acoustic energy fluxes leaving or enter-
ing the domain through in- and outlets. Recall that this growth rate vanishes
for energetically neutral in- and outlet boundary conditions. In order to deter-
mine the physically meaningful acoustic growth rate νcorr =αDΩΩΩ,a +νI,a from a
LEE growth rate ν, the quantification of νstab,a is required.

5.1.1.3 Quantification of Numerical Damping

The task of this section comprises the quantification of the non-physical
growth rate νstab,a in eigenfrequency analyses with the LEE. The goal of the
quantification approach is to determine the corrected LEE growth rate νcorr by
subtraction of νstab,a from the "polluted" LEE growth rate ν. In the present and
the following Section 5.1.1.4, the boundary condition case 1 is applied. This
simplifies Eq. (5.10) to

ν=αDΩΩΩ,a +νstab,a. (5.11)

since νI,a = 0.

The proposed quantification methodology is based on the combination of
eigenfrequency simulations with the source-free, isentropic LEE and APE.
Recall that the APE solely describe the acoustic propagation while the con-
vectively transported, vortical sub-mode is suppressed. In other words, the
source-free APE are equivalent to the LEE without considering the mechanism
of acoustically induced vortex shedding. Hence, the growth rates computed
with the LEE and APE are expected to solely differ by the impact of the cross-
product terms ρ̄[(Ω̄ΩΩ× û)+ (Ω̂ΩΩ× ū)] and ρ̂(Ω̄ΩΩ× ū) (cf. Eq. (2.21)), if numerical
stabilization is identical in both systems of equations. This is assumed to be
fulfilled, if

• the boundary conditions and mean flow fields are the same for both sys-
tems of equations,

67



5.1 Extension of the Thermoacoustic Prediction Tool

• mesh topology and size remain identical,

• the tuning variable ατ is equal and

• the cross-product terms only weakly perturb the (natural) acoustic LEE
sub-mode.

The first condition seeks to keep the numerical LEE and APE setups identical.
The second and third conditions enforce equal distributions of the stabi-
lization parameter τ (x) of the SUPG/PSPG stabilization scheme. The last
requirement establishes similarity between the acoustic solution fields of LEE
and APE and is fulfilled if f ÀαDΩΩΩ,a in LEE eigenfrequency simulations. Then,
the vorticity terms barely affect the acoustic LEE mode shape, which thus
resembles the APE mode shape.

The LEE and APE growth rates can be written as

νLEE =αDΩΩΩ,a +νstab,a (5.12)

νAPE = νstab,a. (5.13)

By satisfying the four conditions, the numerical stabilization part νstab,a can be
assumed to be equal in Eqs. (5.12) and (5.13). Then, the corrected LEE growth
rate νcorr can simply be determined by

νcorr =αDΩΩΩ,a = νLEE −νAPE. (5.14)

5.1.1.4 Verification of the Quantification Method

The goal of this study is to demonstrate the validity of the proposed quan-
tification method. Therefore, the method is applied to the longitudinal
eigenmode shape of the area jump setup shown in Fig. 5.1. For the following
eigenfrequency analyses, energetically neutral in- and outlets are specified
(boundary conditions case 1).

Two mesh configurations are investigated to judge the influence of the spa-
tial grid resolution on the computed growth rates. The fine mesh setup con-
sists of 4.23× 105 elements and is shown in the close-up window of Fig. 5.1.
The maximum element size in the coarse mesh setup is constant in the en-
tire computational domain. Thus, the sharp corner is not highly resolved. The
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number of elements is reduced by a factor of approximately ten to 4.7×104.
Figure 5.4 shows the growth rate results, which are computed for a range of
0 ≤ατ ≤ 80. Squares, crosses and dots represent the growth rates of "polluted"

coarse meshfine mesh

Figure 5.4: Growth rates plotted against increasing ατ values for the fine and
coarse meshes.

LEE, APE and corrected LEE growth rates for several values of the stabilization
parameter ατ, respectively. As stated in Eq. (5.14), the corrected rates (dots)
are simply obtained by subtracting the APE (crosses) from the "polluted" LEE
rates (squares). The following conclusions can be drawn, which hold for the
fine and coarse mesh configuration:

• The impact of artificial diffusion on APE growth rates (crosses) tends to
vanish in the limit of ατ → 0. This confirms that the source-free, isen-
tropic APE do neither capture acoustically induced vortex shedding nor
any other physically meaningful, dissipative effects4 but solely comprise
the impact of the SUPG/PSPG stabilization scheme. This is also in agree-
ment with the observation that the APE growth rate values are always
higher than the polluted LEE growth rates in Fig. 5.4.

4Notice that this holds only for homentropic mean flow conditions.
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• For both meshes, LEE (squares) and APE (crosses) growth rates show a
consistent trend for increasing values of ατ. This observation confirms
that the four conditions introduced in Section 5.1.1.3 are fulfilled. Simi-
larity between the isentropic LEE and APE is established and the numer-
ical stabilization scheme acts (nearly) equally in both systems of equa-
tions.

• The almost constant corrected LEE growth rates (dots) computed for
both meshes reveal independence of the proposed methodology on the
specified ατ values and thus on the numerical stabilization scheme (but
not on the mesh; details below). With reference to Eq. (5.12), this verifies
that "polluted" LEE growth rates consist of two parts, which can be add
up: one part (νstab,a) represents the artificial damping originating from
the SUPG/PSPG stabilization scheme, while the other part (αDΩΩΩ,a) pro-
vides information on the physically meaningful damping associated with
the cross-product terms in the LEE.

The comparison of the results obtained with the two meshes reveals the fol-
lowing:

• The dependency of LEE and APE growth rates on numerical stabiliza-
tion is stronger in the coarse mesh case. This corresponds to the expec-
tations as the stabilization parameter τ (x) is proportional to the local
mesh size H . In addition, the finer mesh case is more stable in a numer-
ical sense and thus, requires naturally less artificial diffusion to produce
non-spurious eigensolutions. This can be explained with reference to the
Peclet number in Eq. (2.48), which becomes smaller the higher the mesh
resolution is.

• In the coarse mesh case, the growth rate curves of the APE (crosses) and
"polluted" LEE (squares) monotonically decrease towards a minimum at
ατ ≈ 17. After having passed the minimum, growth rates increase again,
which implies that less acoustic energy is dissipated by artificial diffu-
sion. The three regions, i.e. the (i) growth rate decrease, (ii) growth rate
minimum and (iii) growth rate increase, can be associated with (i) under-
damped, (ii) ideally damped and (iii) over-damped oscillator behavior.
A similar trend cannot be observed in the fine mesh case, which indi-
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cates that the effect of numerical damping is weak and the sensitivity of
numerical damping to variations of ατ is low.

• Quantitatively, numerical stabilization causes a growth rate of νstab,a ≈
−3 rad

s for the fine mesh (cf. crosses in Fig. 5.4). Subtracting this value
from the "polluted" LEE growth rate yields a corrected rate of νcorr =
αDΩΩΩ,a ≈ −17 rad

s , which represents the damping due to vortex shedding.
Hence, numerical stabilization falsifies the physically meaningful growth
rate part by ≈ 18%. This error drastically increases for the coarse mesh
configuration. In the worst case (ατ ≈ 17), dissipation is overestimated by
approximately 250% relative to the dissipation due to vortex shedding.

• The computations with the LEE and APE with the two mesh cases pro-
duce slightly different corrected growth rates due to vortex shedding
(∆νcorr ≈ 4 rad

s ). This indicates that the coarse mesh has not reached a
sufficient resolution to correctly capture the acoustical/vortical energy
transformation process. This observation emphasizes that the presented
quantification approach can only establish independence of the numeri-
cal stabilization scheme, but no mesh independence. The utilization of a
coarsely resolved computational domain may lead to an inaccurate res-
olution of physically relevant effects –such as the vortex shedding mech-
anism. This numerical error cannot be compensated by the method pro-
posed in this section. A classical grid convergence study is thus recom-
mended in any case to judge the mesh independence of the growth rates.
Notice that the fine mesh case shows the converged growth rate results.

In Section 5.2, the proposed quantification method is applied to the A2EV
combustor configuration introduced in Chapter 3. It is demonstrated that the
impact of numerical stabilization can also be eliminated in a fully discretized,
three-dimensional domain. This will confirm that the proposed method is ap-
plicable to practical and reactive cases, too.

5.1.2 Modeling of Vortex-Flame Interactions

In the work of Zellhuber [116], Schwing [106], Hummel [37] and Berger [61],
the displacement and deformation of the flame was found to be the main
driver of the thermoacoustic instabilities at the T1 eigenfrequency in the
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A2EV combustor. Recent work of Berger [61] revealed a further mechanism,
which drives the T1 eigenmode in a reheat combustor: in the shear-layers
of the High Frequency Transverse Reheat Combustor (HTRC), he observed
an alternating pattern of positive and negative fluctuations of the OH*-
chemiluminescence intensity, which can be related to heat release rate
fluctuations. These pockets originate at the area expansion of the combustion
chamber inlet and convect downstream with the mean flow velocity. Together
with the measured length scale of these pockets, which resembles the vortical
length scale λv in Eq. (2.54), it is likely that that the intensity disturbances are
related to acoustically induced vortices.

This section seeks to incorporate the thermoacoustic driving potential of
acoustically induced vortices to the existing CFD/CAA framework. Therefore,
a FTF is developed and included to the pressure equation to model local
heat release rate fluctuations induced by the interaction of the convectively
transported vortices with a premixed flame. Therefore, the vortex-flame
FTF is expressed as a function of the isentropic solution variables u′ and
p ′. The main novelty of this model consists of the integration of the mass
flow Helmholtz decomposition to the modeling task. Recall that this decom-
position provides exclusive access to the rotational velocity component u′

v

associated with the convectively transported vortices.

The proposed model is based on the idea that the acoustically induced vor-
tices periodically alter the local flame speed. This is assumed to take place as
the vortices induce a rotational velocity field u′

v around the vortex core. The
rotational velocity field can be described by the Rankine vortex model [117]:
this model assumes a rigid-body rotational flow in the vortex core region and
irrotational flow outside of the core region. With respect to the angular veloc-
ity this means that it is constant in a certain radius r from the vortex center.
After having passed this critical radius it converges towards a zero value in the
environment for r →∞. A street of clock- and counterclockwise rotating vor-
tices induces thus an oscillating velocity field u′

v along the shear-layer, such as
displayed in Fig. 5.5.
The modeling task comprises the extension of the existing flame displacement
and deformation FTFs introduced in Ref. [37] by an additional term, which de-
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Figure 5.5: Rotational velocity along the shear-layer caused by acoustically in-
duced vortices.

scribes heat release rate disturbances as a function of the local, rotational ve-
locity ûv. The starting point is given by the expression for the volume-specific
local heat release rate

q̇ (x, t ) = YfHfρus (x, t )σ (x, t ) , (5.15)

where Yf denotes the fuel mass fraction, Hf the lower heating value, ρu the
density of the unburned air-fuel mixture and s (x, t ) the local flame speed.
σ (x, t ) is the flame surface density, i.e. the flame surface per unit volume. For
premixed flames, Yf and ρu are constant.

Phenomenologically, the shed vortices perturb the flame front, which modu-
lates the heat release rate. In this work, the heat release rate modulation by
vortices is described by fluctuations of the flame speed s ′ (x, t ), which are in-
duced by the vortical velocity field u′

v. σ = σ (x) is temporally constant and
represents the laminar flame surface density. Hence, linearization of Eq. (5.15)
results in

q̇ (x, t ) = YfHfρuσ (x)
(
s̄ (x)+ s ′ (x, t )

)= ¯̇q (x)+ q̇ ′
s (x, t ) . (5.16)

where q̇ ′
s are heat release rate fluctuations associated with fluctuations of the

flame speed. This modeling framework implies that any change in the rota-
tional flow velocity u′

v must translate into an in- or decrease of the flame speed
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s to prevent the deformation and displacement of the laminar flame surface
area by convectively transported vortices. Then, the flame front remains at
rest, i.e. it is quasi-steady with respect to temporal fluctuations in the rota-
tional velocity field u′

v. Notice that this approach is in accordance with the
CFD/CAA methodology, which cannot describe temporal changes of the flame
surface area without the introduction of an additional transport equation for
σ (x, t ). The quasi-steadiness assumption implies to write

s ′ (x, t ) = u′
v,n = nf ·u′

v =− ∇Θ
‖∇Θ‖ ·u′

v, (5.17)

where u′
v,n is the part of the rotational velocity, which is orthogonal to the flame

front. This quantity is obtained by scalar multiplication of u′
v with the flame

normal vector nf
5, which is equivalent to the negative, normalized gradient of

the progress variable Θ [118]. Hence, heat release rate perturbations caused
by flame speed fluctuations can be expressed as a function of u′

v, i.e.

q̇ ′
s =−YfHfρuσ (x, t )

∇Θ
‖∇Θ‖ ·u′

v. (5.18)

Notice that this quasi-steady modeling approach was also proposed in
Refs. [25, 119] to describe the impact of vortices on the thermoacoustic stabil-
ity. However, the main difficulty, for instance in the work of Hirsch et al. [119],
was the determination of the vortical velocity field u′

v,n. They used analytical
calculations based on the Biot-Savart law together with simplifying assump-
tions for the flow path of the vortices to access the desired (but simplified)
velocity field u′

v. This analytical approach can be circumvented by applying
the mass flow Helmholtz decomposition, which directly yields the rotational
velocity field associated with the convectively transported vortices. Hence, the
combination of the existing quasi-steady approach with the Helmholtz de-
composition tremendously simplifies the application of the quasi-steadiness
vortex-flame interaction model. In addition, the degree of detail enhances as
the Helmholtz decomposition provides access to any rotational velocity field
of arbitrary complexity without the need of simplifications.

The final task comprises the integration of the FTF in Eq. (5.18) to the

5Pointing from the product to the educt side.
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CFD/CAA framework. This is achieved by rearranging Eq.(5.16) to

q̇ (x, t ) = YfHfρuσ (x) s̄ (x)︸ ︷︷ ︸
= ¯̇q(x)

(
1+ s ′ (x, t )

s̄ (x)

)
= ¯̇q (x)+ ¯̇q (x)

s ′ (x, t )

s̄ (x)
, (5.19)

where the mean flame speed s̄ is obtainable from CFD simulations. Insert-
ing Eq. (5.17) into Eq. (5.19), transformation into the frequency domain and
adding the disturbance part to the existing displacement and deformation
FTFs [37], ˆ̇q∆ and ˆ̇qρ, gives the overall heat release rate fluctuation

ˆ̇q =
(
− ¯̇q

∇Θ
‖∇Θ‖ · ûv

s̄︸ ︷︷ ︸
ˆ̇qs

−∇ ¯̇q · ûa

iω︸ ︷︷ ︸
ˆ̇q∆

+ ¯̇q
p̂a

ρ̄c̄2︸ ︷︷ ︸
ˆ̇qρ

)
. (5.20)

The first term in Eq. (5.20) allows for the inclusion of heat release rate per-
turbations caused by vortex induced flame speed fluctuations to the linear
thermoacoustic stability analysis framework. Successively replacing the heat
release rate term ˆ̇q in the energy Eq. (2.27) by the three FTFs ˆ̇qs, ˆ̇q∆ and
ˆ̇qρ allows determination of the associated driving rates βs, β∆ and βρ via
eigenfrequency analyses (see Section 5.2).

flame contour

qs[W/m³]ˆ
min max

0

rotational velocity

Figure 5.6: Computed heat release rate fluctuations ˆ̇qs caused by acoustically
induced vortices in the A2EV combustor.

Figure 5.6 presents the application of the vortex-flame FTF ˆ̇qs for representa-
tive operational conditions (see the mean fields in Fig. 3.1). The heat release
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rate fluctuations in Fig. 5.6 are produced by vortices, which are triggered by
the T1 eigenmode in the A2EV combustor. The spatial extent of the heat
release rate fluctuations and thus of the vortex street is essentially determined
by viscosity. Hence, viscous dissipation of vortices is an important factor to
account for the thermoacoustic driving potential of these heat release rate
fluctuations in a physically meaningful manner. Artificial diffusion would
erroneously shorten or elongate the vortex street depending on the value
of the stabilization parameter ατ. This disqualifies the LEE for the task of
modeling vortex-flame interactions. Instead, the LNSE are used to prevent
the non-physical influence of the stabilization scheme on the dissipation
of vortices. With reference to the Peclet number of Eq. (2.48), this indirectly
implies the need of a FEM mesh, which is resolved sufficiently high to produce
a stable FEM solution without the addition of artificial diffusion on top of the
physical one.

In Section 5.2, the impact of the heat release rate fluctuations ˆ̇qs on the linear
thermoacoustic stability of the T1 eigenmode in the A2EV combustor is
computed in terms of driving rates for 80 operational points.

Notice that Romero [87] proposes the complementary vortex-flame driving
model, which is based on the modulation of the flame surface density σ by
coherent vortices while the flame speed is assumed to be constant. He ex-
presses flame surface density disturbances σ′ as a function of fluctuations in
the progress variable, i.e. σ′ = f (Θ′). Therefore, an additional transport equa-
tion for Θ′ must be solved. In comparison to the quasi-steady vortex-flame
model proposed in this section, this increases the computational effort but
might be more accurate from a physical point of view. A detailed comparison
between the two models and their performance in thermoacoustic stability
analyses is pending and must be addressed as part of future research.

5.2 Linear Stability of the T1 Eigenmode in the A2EV Combus-
tor

This section presents the CFD/CAA model, which incorporates the findings
and methods of Section 5.1. The outcome of this model is thermoacoustic
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growth rates, which can be decomposed into the following contributions

νT1 −νstab,a = νT1,corr =αDΩΩΩ,a +α∇s̄ +αµ+αBLµ/th +β∆+βρ+βs (5.21)

with

• the numerical stabilization part νstab,a, which must be eliminated in the
analysis as it is associated with non-physical artificial diffusion intro-
duced by the SUPG/PSPG stabilization scheme (see Section 5.1.1),

• the damping rate αDΩΩΩ,a caused by the cross product terms ΩΩΩ×u in the
LNSE/LEE,

• the damping rate α∇s̄ describing the interaction of acoustics with the
non-homentropic mean flow field (cf. the last term in Eq. (2.36)) [87],

• the damping rate αµ associated with viscosity inside the domain (cf. the
term ∇· τ̂ττ in Eq. (2.26)),

• the damping rate αBLµ/th associated with visco-thermal losses in the
acoustic boundary layer [120],

• the driving rates β∆ and βρ due to flame displacement and deformation
introduced by Hummel [22, 37] and

• the driving rate βs associated with flame speed fluctuations (see Section
5.1.2).

Knowledge about the individual relevance of these contributions for the
stability of a thermoacoustic system allows the validation and specific appli-
cation of design optimization strategies to systematically mitigate or reinforce
single driving or damping mechanisms, respectively.

Each contribution in Eq. (5.21) can be computed via a difference approach
similar to the methodology proposed in Section 5.1.1.3 to eliminate the impact
of numerical stabilization in LEE growth rates. In this section, LNSE, LEE and
APE eigenfrequency simulations are jointly used to determine the individual
growth, driving and damping rates in Eq. (5.21). Each rate is associated with a
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characteristic simulation setup. For demonstration, the subsequently applied
notation is explained for the following example:

ν= νLNSE

∣∣∣ατ=0

ˆ̇q= ˆ̇qs

(5.22)

Equation (5.22) indicates that the growth rate ν is obtained from an LNSE
eigenfrequency simulation. In this simulation, ατ = 0, which implies that the
numerical stabilization scheme is deactivated. If no indication with respect to
the value of ατ is given, it is non-zero and the numerical stabilization scheme
is active. In the subsequent Section 5.2.1, values of ατ = 1 and ατ = 0.1 are
used for a two- and a three-dimensional computational setup. Furthermore,
driving due to vortex-flame interactions is considered via the local FTF ˆ̇qs.
Two other options for ˆ̇q are the flame displacement and deformation FTFs ˆ̇q∆
and ˆ̇qρ. Notice that ˆ̇q = 0 highlights that the flame is assumed to be passive.

Next, the computation of the single contributions in Eq. (5.21) is presented:

• For reactive cases such as the A2EV combustor, the growth rate asso-
ciated with the effect of numerical damping on the acoustic sub-mode
νstab,a must be determined via two APE eigenfrequency simulations. This
procedure is necessary as the APE capture the dissipation of acoustics
due to the interaction with the non-homentropic mean flow in addition
to the non-physical damping caused by artificial diffusion6. In both sim-
ulations, the flame is assumed to be passive, i.e. ˆ̇q = 0. In the first simula-
tion, the SUPG/PSPG stabilization scheme is activated recognizable as no
indication with respect to the value of ατ is given in Eq. (5.23). In the sec-
ond computation step, ατ = 0 is imposed, which yields the damping rate
α∇s̄ due to the non-homentropicity of the mean flow only. Subtraction
of the two corresponding growth rates gives the numerical stabilization
part νstab,a:

νstab,a = νAPE

∣∣∣
ˆ̇q=0

−νAPE

∣∣∣ατ=0

ˆ̇q=0
= νAPE

∣∣∣
ˆ̇q=0

−α∇s̄ . (5.23)

Recall that numerically stable APE solutions are obtained even if ατ = 0.
This is possible as convectively transported vortices are absent in the APE
solutions fields.

6Recall that only one simulation is required in the case of isothermal conditions. This is possible as acoustic
dissipation caused by non-homentropicity is absent in these cases.
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• The vorticity damping rate can be computed according to Eq. (5.14):

αDΩΩΩ,a = νLEE

∣∣∣
ˆ̇q=0

−νAPE

∣∣∣
ˆ̇q=0

= νLEE

∣∣∣
ˆ̇q=0

−νstab,a −α∇s̄ (5.24)

Two independent eigenfrequency simulations with the LEE and APE are
carried out, where the value of ατ is identical in both simulations. No
unsteady heat release model is considered, i.e. ˆ̇q = 0. Remember that this
is possible as the APE and LEE solely differ by the absence of the vorticity
cross-product terms in the APE.

• The growth rate of the LNSE with a passive flame ( ˆ̇q = 0) and a non-
zero value of ατ adds up from the superposition of the vorticity damping
rateαDΩΩΩ,a, the damping rate associated with non-homentropic mean flow
α∇s̄ , the damping rate αµ caused by viscous dissipation inside the do-
main and of the non-physical part νstab,a. In order to compute αµ, the re-
maining three contributions are subtracted from the overall LNSE growth
rate7:

αµ = νLNSE

∣∣∣
ˆ̇q=0

−νstab,a −αDΩΩΩ,a −α∇s̄ . (5.25)

• In a post-processing step, the damping rate associated with visco-
thermal losses in the acoustic boundary-layer is computed based on
the approach of Searby [120]: the period-averaged rate of change of the
acoustic energy density 〈dEa

dt 〉 for an APE eigenmode is expressed in terms
of viscous (subscript µ) and thermal (subscript th) acoustic energy flux
densities leaving the domain walls. Specifically, they read〈dEa

dt

〉
= 〈(Iµ,a + Ith,a

) ·n〉 =

=
〈1

2
(û · û)

√
ωaρ̄µ

2
+ 1

2

(
γ−1

) p̂2

γp̄

√
ωaλth

cpρ̄2

〉
,

(5.26)

where cp is the specific heat capacity and λth the thermal conductivity
of the gas mixture. The corresponding damping rate is obtained by ap-
plying the growth rate equation introduced in Section 4.2. Specifically,
integration of Eq. (5.26) along the walls and normalizing the result by the

7Alternatively, the stress tensor term could be added to the APE momentum Eq. (2.22), while ατ = 0. The
difference in growth rates appearing in two eigenfrequency simulations corresponding to an active (µ 6= 0) and
an inactive (µ= 0) stress tensor term gives αµ.
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volume-integrated acoustic energy density gives the damping rateαBLµ/th,
which is associated with visco-thermal losses in the acoustic boundary-
layer:

αBLµ/th =
1

2

∫
S〈

(
Iµ,a + Ith,a

) ·n〉dS∫
V 〈Ea〉dV

. (5.27)

• The displacement and deformation rates can be computed via APE
eigenfrequency simulations, where the impact of numerical damping is
set to zero by specifying ατ = 0. The unsteady heat release rate in the en-
ergy equation is modeled by the FTFs [22, 37]

ˆ̇q = ˆ̇q∆+ ˆ̇qρ =−∇ ¯̇q · ûa

iω
+ ¯̇q

p̂a

ρ̄c̄2
. (5.28)

To extract the corresponding driving rates from an APE growth rate, the
damping rate associated with the non-homentropic mean flow must be
subtracted:

β∆ = νAPE

∣∣∣ατ=0

ˆ̇q= ˆ̇q∆
−α∇s̄ (5.29)

βρ = νAPE

∣∣∣ατ=0

ˆ̇q= ˆ̇qρ
−α∇s̄ . (5.30)

• The vortex-flame driving rate can be determined by two LNSE eigenfre-
quency simulations. In the first computation, the unsteady heat release
rate in the energy equation is modeled via the FTF introduced in Section
5.1.2

ˆ̇q = ˆ̇qs = ¯̇q
− ∇Θ

‖∇Θ‖ · ûv

s̄
. (5.31)

In the second step, no unsteady heat release is considered, i.e. ˆ̇q = 0. Sub-
traction of the LNSE growth rate which does not contain the effect of the
vortex-flame FTF from the growth rate which does, provides the driving
rate βs:

βs = νLNSE

∣∣∣ατ=0

ˆ̇q= ˆ̇qs

−νLNSE

∣∣∣ατ=0

ˆ̇q=0
. (5.32)

Finally, it is emphasized that the proposed difference methodology is only
valid and applicable, if the single driving and damping mechanisms do only
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weakly perturb the natural, unaffected acoustic sub-mode8. Otherwise, the
acoustic (sub-)mode shapes in the independent LNSE/LEE/APE eigenfre-
quency simulations may not be similar, which would prohibit the additive su-
perposition of growth rates. The applicability of the difference method can be
justified if the condition

2π fi,refÀν. (5.33)

is satisfied. Interpretatively, Eq. (5.33) states that growth rates can be sub-
tracted if the oscillating frequency of the unperturbed, reference eigenmode i
is large compared to the damping/driving rate of the perturbed case.

The mean flow fields required to compute the damping and driving rates of
Eq. (5.21) are obtained by reacting, steady-state, RANS CFD simulations. In
order to increase the spatial resolution in the combustion chamber, the RANS
CFD simulations comprise two steps:

1. First, each operational point is simulated for isothermal conditions. A
quarter of the entire combustor geometry including the A2EV swirler,
mixing section, combustion chamber and exhaust tube is simulated. The
isothermal profiles of axial, radial and azimuthal velocities as well as tur-
bulent kinetic energy and dissipation are extracted at the inlet plane to
the combustion chamber.

2. The extracted profiles serve then as inlet velocity boundary condition for
a second, quasi-two dimensional and highly resolved reactive CFD simu-
lation consisting of one cell in azimuthal direction. Notice that rotational
symmetry of the profiles is assumed, which was found to be a justifi-
able simplification. Combustion is modeled by an extended version of
the Flamelet Generated Manifold (FGM) approach [77, 121] with the GRI
3.0 kinetics mechanism [122].

Details on the RANS CFD simulations as well as on the mesh convergence
study are presented in Appendix D.

8The unperturbed acoustic sub-mode is represented by the APE solution with ατ = 0 in this case.
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5.2.1 T1 Growth Rate Results

In this section, the linear thermoacoustic stability behavior of the T1 eigen-
mode in the A2EV combustor is computed for the 80 operational points intro-
duced in Chapter 3. For each operational point, experimental data is available
in a binary manner, i.e. whether it was observed to be thermoacoustically sta-
ble or unstable. According to Section 5.2, the decomposed contributions of Eq.
(5.21) to the overall T1 growth rate of one operational point is obtained by two
LNSE, one LEE and four APE eigenfrequency simulations. In total, 560 eigen-
frequency simulations are carried out to retrieve the linear thermoacoustic
stability limits across the entire operational range, which are presented in this
section.

5.2.1.1 Methodological Improvements

The linear stability assessment of the T1 mode of the A2EV combustor with
the CFD/CAA method was already addressed in the dissertation of Hummel
[37]. The next few sentences highlight the advancements of the CFD/CAA
model introduced in this thesis with respect to the legacy version used by
Hummel:
In the work of Hummel [37], measured OH*-chemiluminescence images were
used to obtain the mean heat release input fields. This approach has been re-
placed by reactive CFD RANS computations. Now, consistent mean flow veloc-
ity, temperature and heat release rate fields, i.e. all coming from the same sim-
ulation, are available for the CAA part. Compared to the work of Hummel [37],
driving rates associated with flame deformation and displacement are com-
puted with the APE instead of a Helmholtz-type system of equations, which
neglects the effect of the mean flow velocity. However, it was found that the
mean flow has a negligible impact on these driving rates. Additionally, visco-
thermal losses in the acoustic boundary-layer as well as acoustic dissipation
due to viscosity inside the domain are now included in the linear stability anal-
ysis of this thesis. Furthermore, the effect of the non-homentropic mean flow
field is considered, which was not addressed before. The new vortex-flame
FTF presented in Section 5.1.2 now incorporates the thermoacoustic driving
potential of acoustically induced vortices. Significant modifications and im-
provements have been introduced for the computation of damping rates asso-
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ciated with acoustically induced vorticity perturbations and their interaction
with the mean flow. In the dissertation of Hummel [37], they were obtained
by a modeling approach based on reflection coefficient computations with
the Helmholtz equation as no method was available to eliminate the impact
of numerical stabilization in the growth rates of LEE eigenfrequency compu-
tations. The introduction of the methodology to eliminate the effect of nu-
merical damping (cf. Section 5.1.1.3) raised the predictive performance of LEE
eigenfrequency computations to a satisfactory level and allowed replacement
of the reflection coefficient method. The advanced CFD/CAA framework pre-
sented in Section 5.2 improves thus the predictive capabilities of linear ther-
moacoustic stability analyses by the physically correct inclusion of a variety of
relevant effects, while numerical errors are minimized.

5.2.1.2 Computational Setup

In order to demonstrate the applicability of the CFD/CAA method to practical
cases, the thermoacoustic stability analysis for the T1 eigenmode is performed
twice: The first analysis comprises a simplified two-dimensional domain of
the A2EV combustor. As explained in Section 2.4.2, a three-dimensional
domain can be reduced to a two-dimensional one, if the combustor geom-
etry of interest together with all the corresponding mean flow quantities
exhibits continuous rotational symmetry. This allows a drastic decrease of the
mesh element size H for given computational resources. The susceptibility
of this numerical setup to produce spurious solutions and the impact of
the employed artificial diffusion scheme mutually decrease. The values of
the Peclet number in Eq. (2.48) and of the stabilization parameter in Eq.
(2.53) reduce with smaller values of H . The highly resolved analysis with the
two-dimensional domain represents the reference case as it is barely affected
by numerical stabilization. However, it has little industrial relevance, as real
combustors often exhibit complex geometries, where no simplifications con-
cerning rotational symmetry of the geometry can be exploited. In these cases,
available computational resources often limit the mesh resolution. Then,
numerical stabilization is responsible for a significant part of the resulting
growth rates as shown in Fig. 5.4. To demonstrate the applicability of the
advanced CFD/CAA setup for practical cases, the stability analysis for the T1
mode in the A2EV combustor is repeated. In this analysis, the azimuthal peri-
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odicity simplification is dropped and the fully discretized, three-dimensional
domain is considered. Both, highly and weakly resolved cases, are subjected
to the elimination procedure proposed in Section 5.1.1.3 to exclude the non-
physical growth rate ascribed to the SUPG/PSPG artificial diffusion scheme.
The stability results of both numerical setups are compared with each other
to validate the predictive capabilities of the stability assessment framework
for technically relevant, i.e. fully discretized, applications.

H=8E-3m

H=5E-4m
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ˆ
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Figure 5.7: Two- and three-dimensional computational domains with mesh
sizes and boundary conditions.

Figure 5.7 presents the two configurations and provides information about
mesh element sizes as well as the specified boundary conditions for the solu-
tion variables û and p̂. In- and outlet are specified to be energetically neutral
(m̂ ·n = ĥ = 0) precluding any acoustic energy fluxes through these bound-
aries. The walls are of slip wall type (û · n = 0). The mesh resolution at the
area jump, i.e. where the acoustically induced generation of vortices physi-
cally occurs, significantly influences the quality of LNSE and LEE solutions. An
insufficient resolution of this region leads to an inaccurately resolved energy
transformation process between acoustic and vortical perturbation fields. To
provide optimal starting conditions for the thermoacoustic stability analysis,
most of the available computational resources are invested in the sharp area
jump region, shown in Fig. 5.7. The total number of mesh elements amounts
to approximately 102 · 103 and 730 · 103 for the two- and three-dimensional
cases, respectively. The values for the stabilization parameter are set to ατ = 1
for eigenfrequency analyses with the two-dimensional domain and toατ = 0.1
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for simulations with the three-dimensional domain.

5.2.1.3 Thermoacoustic Stability Results

The thermoacoustic stability behavior predicted with the two (left column)-
and three dimensional (right column) domains in Fig. 5.7 is compared with
each other in Fig. 5.8. The individual contributions to the net growth rate
νT1,corr are plotted for the 80 operational points against an increasing power
density (see Chapter 3). Recall that variations of the power density are caused
by changes of the mean inlet mass flow and the air excess ratio. Experimental
data for each of the operational points is available, which provides informa-
tion about the thermoacoustic stability of the T1 mode in a binary manner:
the filled circles in Fig. 5.8 indicate stable, the open circles unstable operation.

The blue damping rate clouds in the first row represent the dissipation of
acoustic energy associated with acoustically induced vorticity perturbations.
Mathematically, they correspond to the cross-product terms in the dissipa-
tion Eq. (2.36). This effect significantly contributes to acoustic damping and
thus counteracts thermoacoustic driving mechanisms. Physically, the (linear)
increase of dissipation with power density appears due to an increase of the
inlet mass flow rate ¯̇min and a decrease of the air excess ratio λ. Higher inlet
mass flow rates lead to increased mean flow velocities in the A2EV combustor,
which mutually increases the strength of the mean vorticity field. In turn, this
induces a stronger interaction of acoustic and vorticity perturbations with
the mean flow, which ultimately results in an increase of acoustic damping.
Lower air excess ratios, i.e. richer air-fuel mixtures, lead to a radial flame
contraction towards the axis. In Chapter 6, the sensitivity of the damping rate
αDΩΩΩ,a is investigated with respect to a radial flame contraction9. It is shown
that a stronger radial flame contraction leads to stronger acoustic dissipation,
which explains the increase of dissipation for richer operational conditions.

The magenta-colored damping rate clouds in the second row are asso-
ciated with interactions between the acoustic disturbance field and the
non-homentropic mean flow field. Similar as for the blue dots, acoustic

9In Chapter 6, a single operational point is investigated only. There, the flame contraction is caused by the
pulsation-amplitude dependency of the mean flow field instead of variations of the air excess ratio.
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Mesh resolution insufficient to capture the
interaction between convectively transported 

vortices and the flame

3D domain2D domain

Figure 5.8: Computed T1 growth rates. Open and closed circles indicate the
thermoacoustic stability behavior observed in the experiment.
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dissipation increases with power density, which is caused by the increasing
temperature across the flame. However, the gradient is weaker compared
to the trend of the blue dots. As this thesis focuses on acoustically induced
vorticity perturbation and their impact on the thermoacoustic stability, a
detailed analysis is skipped at this point. Further information can be found in
Refs. [49, 87].

Light and dark green dots provide information on the impact of viscous losses
inside the domain and of visco-thermal losses in the acoustic boundary-layer
on the thermoacoustic stability. Compared with blue and magenta-colored
damping rate clouds, their trends are nearly constant with thermal power.
Their relevance in terms of absolute value is lower compared to the previous
two effects; however, both effects should be considered in precise stability
analyses as they might be relevant for other eigenmodes or combustion
systems, such as for the HTRC, for instance [87].

The red dots represent the sum of driving rates of flame displacement and
deformation. These rates increase with power density, which is intuitive as the
FTFs ˆ̇q∆ and ˆ̇qρ directly depend on the mean heat release rate in the chamber
and its gradient, which also increases for higher power densities. A detailed
comparison between these driving rates, which are based on numerically
computed heat release fields, and driving rates based on experimentally
measured OH*-chemiluminescence images is presented in Appendix D.3.

The orange dots are the driving rates associated with the heat release rate
modulation caused by convectively transported vortices (see Section 5.1.2).
Their thermoacoustic driving potential is lower than the one of flame dis-
placement and deformation. This has two reasons: Firstly, the mean heat
release rate in the outer shear-layer of the A2EV combustor almost vanishes
completely as shown in Fig. 5.9. Heat losses and flame stretch reduce the
reactivity of the gas mixture in this region, which results in a weak interaction
between shed vortices and the flame.
Secondly, the length scale λv of shed vortices is small due to the relatively
low mean flow velocities and the high T1 oscillation frequency (cf. Eq. (2.54)).
This results in a pattern of small, positive and negative valued heat release
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Figure 5.9: Interaction between shed vortices and the heat release rate.

rate fluctuations (cf. Fig. 5.6), which sum up to weak driving in an integral
sense. Notice that this observation does not generally apply to high-frequency
systems. Berger [61] and Romero [87] experimentally and numerically showed
in the HTRC experiment that vortex-flame interaction can dominate ther-
moacoustic driving of transverse acoustic eigenmodes.
As explained in the corresponding modeling Section 5.1.2, the application of
the proposed FTF is linked to highly resolved meshes. The fully discretized,
three-dimensional A2EV combustor (see Fig. 5.7) does not have a sufficient
mesh quality10 to resolve the small-scale vortices. This explains the lack of
these driving rates in Fig. 5.8.

The gray dots represent the non-physical growth rate caused by the
SUPG/PSPG stabilization scheme. These growth rates were subtracted
from the LEE and LNSE growth rates to obtain the damping rates αDΩΩΩ,a (blue
dots) and αµ (light green dots). The impact of the numerical stabilization
scheme on computed growth rates strongly depends on the mesh resolution.
This was discussed in more detail in Section 5.1.1. In the two-dimensional
reference case, artificial diffusion growth rates take values close to zero. Thus,
the numerical stabilization scheme does (almost) not falsify the thermoa-
coustic stability analysis. In this case, the proposed elimination procedure
(see Section 5.1.1.3) could be avoided without falsifying the thermoacoustic
stability results drastically. In contrast to this, the utilization of the "polluted"

10A further mesh refinement was not possible as available computational resources restricted the analysis to
the three-dimensional mesh presented in Fig. 5.7.
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LEE and LNSE growth rates obtained with the fully discretized domain must
be seen –at least– critical. Here, artificial dissipation falsifies thermoacoustic
growth rates by approximately 40 − 50rad/s depending on the operational
point. This value is of the same order of magnitude as the physically mean-
ingful damping rate αDΩΩΩ,a. Without the elimination of this non-physical
contribution, acoustic dissipation is tremendously overestimated due to the
SUPG/PSPG stabilization scheme. This would lead to a wrong interpretation
of the thermoacoustic stability. The comparison study in Fig. 5.8 demon-
strates that even eigenfrequency simulations with fully-discretized domains
governed by a relatively low mesh resolution can yield reasonable results,
if the proposed quantification method is applied. However, remember that
numerical errors due to an insufficient resolution of physical effects caused
by a coarse mesh can still mitigate the validity of these results. This must be
considered in interpretations of the thermoacoustic growth rates.

The black dots represent the overall thermoacoustic growth rates of the T1
mode, which are corrected by the non-physical impact of artificial diffusion.
Each black dot is computed according to Eq. (5.21) and represents the sum of
the individually determined damping and driving rates. Regarding Fig. 5.8 this
means that each black dot is obtained by adding up the colored dots above
at the same level of power density (but not the gray dots as these are the
non-physical numerical damping growth rates). Notice that the growth rates
computed with the two- and three-dimensional domains differ by the vortex-
flame driving rates (orange dots), which are not considered in the three-
dimensional case. Recall that the filled and open circles indicate whether the
T1 mode was observed to be stable or unstable in the experiment. In the two-
dimensional case, the thermoacoustic stability analysis predicts unstable be-
havior for all operational points. This can be recognized by the net growth
rate clouds (black dots in the left column of Fig. 5.8), which are above the
zero line. However, experimental observations revealed that a thermoacoustic
instability occurs only for about half of the operational points. In the three-
dimensional case, which lacks the vortex-flame driving rates, several filled cir-
cles are below the zero line, which indicates agreement with the experiment.
Nevertheless, the measured stability trend is reproduced consistently mean-
ing that the unstable operational points (open circles in Fig. 5.8) are associated
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with higher thermoacoustic growth rates than the stable ones (filled circles in
Fig. 5.8). From this observation it can be concluded that the overall driving
rate βT1 = βs +β∆+βρ increases stronger than the the overall damping rate
αT1 = αDΩΩΩ,a +α∇s̄ +αµ+αBLµ/th (cf. Eq. (5.21)). Furthermore, it is emphasized
that the individual damping and driving rates in Eq. (5.21) exhibit absolute
values up to approximately 150rad/s but add up to overall growth rates (black
dots in Fig. 5.8) close to the stability limit. This indicates that the CFD/CAA
model proposed in this thesis almost reaches satisfactory predictive capabil-
ities; however, with a small discrepancy to the experiment. From a technical
perspective, the T1 growth rates in Fig. 5.8 can be viewed as conservative ther-
moacoustic stability prediction results with a small safety buffer. The found
discrepancy or rather safty buffer might be due to the lack of physical ef-
fects, which have yet not been considered in the analysis: Firstly, the inter-
play between acoustic and vortical disturbances with entropy waves across
the premixed flame is precluded because of the isentropicity assumption of
Eq. (2.17). To incorporate these interactions physically correct, the isentropic-
ity assumption must be dropped and the movement of mean flow field in the
flame region must be considered in linearized disturbance equations. Oth-
erwise, spurious entropy is generated [84, 88]. Secondly, detailed geometri-
cal features (e.g. grooves, small pockets,...), which are not captured by the
idealized computational domain of the combustion chamber, might increase
acoustic dissipation. Notice that an overestimation of driving due to flame dis-
placement and deformation caused by inaccurate CFD simulations can be ex-
cluded as a potential source of error as net the driving rates associated with
computed and measured flame brushes are (nearly) identical (see Appendix
D.3). However, a similar validation approach to judge the suitability of the CFD
heat release rate field for the computation of flame-vortex driving has not yet
been conducted and is left to future work at this point.

5.3 Summary and Future Work

In this chapter, the predictive capabilities of a hybrid Computational Fluid Dy-
namics/Computational Aero Acoustics method are enhanced. This is achieved
by a correct incorporation of acoustic dissipation to the modal analysis frame-
work, which is caused by acoustically induced vorticity perturbations. The
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main results and findings are summarized in the following:

• A methodology is established to eliminate the non-physical contribu-
tion of the SUPG/PSPG numerical stabilization scheme in growth rates
obtained by eigenfrequency studies with the Linearized Navier-Stokes
Equations and Linearized Euler Equations. The results are corrected
growth rates, which solely contain the physical part associated with dissi-
pation due to acoustically induced vortex disturbances. The application
of this methodology overcomes a main shortcoming of the CFD/CAA ap-
proach with the stabilized Finite Element Method and significantly im-
proves its predictive capabilities for thermoacoustic stability analyses.

• A local flame transfer function is developed to compute driving rates,
which describe the effect of vortex-flame interactions on the thermoa-
coustic stability.

• Detailed insight into the growth rate results is provided by decomposing
the net thermoacoustic growth rate into its individual contributions. This
allowed assessment of the relevance of each growth rate part.

• It is demonstrated that the improved CFD/CAA method is applicable to
industrial relevant gas turbine combustors.

• From the comparison of computed thermoacoustic growth rates of the
T1 eigenmode in the A2EV combustor with the experimentally observed
stability behavior, it is concluded that the predictive capabilities of the
CFD/CAA method almost reached a satisfactory level. However, a small
mismatch compared with the experiments remains. This gap must be
closed in future work packages by identification of further relevant ef-
fects affecting the thermoacoustic stability.
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6 Non-Linear Saturation and Limit-Cycle

The non-linear saturation mechanism has been subject to research in the
thermoacoustics community for many years1. In 1997, Dowling [44] extended
the linear flame response model of Bloxsidge et al. [124], which is based on
velocity perturbations at the flame holder of a blow-down combustor experi-
ment, by non-linear effects to reproduce limit-cycle amplitudes measured by
Langhorne [125]. In 2002, Lieuwen et al. [52] experimentally studied the non-
linear flame response of a premixed combustor as a function of the amplitude
of imposed pressure oscillations. Balachandran et al. [54] used different mea-
surement methods to investigate the non-linear increase of heat release rate
perturbations as a response to acoustic velocity forcing at the inlet of a bluff
body combustor. All methods showed deviations from a linear trend even for
moderate amplitudes and saturation towards a constant level for higher am-
plitude levels. Noiray et al. [45] used this data to show that the saturation of
the heat release rate fluctuations q̇ ′

NL can be approximated by a hyperbolic
tangent pressure function multiplied by a constant calibration factor κ. For
the sake of simplicity, they used the third order Taylor expansion of the hy-
perbolic tangent, which yields a cubic heat release rate saturation term as a
function of acoustic pressure p ′, i.e.

q̇ ′
NL (t ) ∝−κp ′3 (t ) (6.1)

This term has been established in the thermoacoustics community in past
years to model the limit-cycle. For instance, Ghirardo et al. [47] and Moeck et
al. [46] applied the cubic function in their work to model limit-cycle oscilla-
tions of spinning and standing azimuthal as well as synchronized azimuthal
and axisymmetric acoustic modes in an annular combustor, respectively.
The same function was adopted by Hummel et al. [48] in their ROM to
describe non-compact thermoacoustic oscillations of the T1 eigenmode
in the A2EV combustor. Although the utilization of the saturation term in
all these analyses yielded reasonable results and unlocked fundamental

1Parts of this chapter were published in Ref. [123].
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physical understanding of various non-linear phenomena in thermoacoustic
systems, its practical and physical significance should not be overestimated.
Specifically, without having benchmark data available, the calibration factor
κ can be set arbitrarily to achieve any limit-cycle amplitude. Hence, the
reliable prediction of amplitude-levels is precluded and a precise applica-
tion of countermeasures to mitigate limit-cycle oscillations is not possible.
Additionally, the transfer of the perception of heat release saturation as
the root-cause for limit-cycle oscillations to high-frequency, non-compact
thermoacoustic systems has not yet been verified. It has only been proven
for compact flames exposed to longitudinal modes at rather low-frequencies
(see e.g. Refs. [52–54, 125]). Instead, recent work of Berger et al. [70] at the
author’s institute revealed a constant flame response in terms of amplitude-
independent T1 flame driving rates in the A2EV combustor system. They
separately investigated the flame displacement and deformation modulation
mechanisms [22, 81] and identified corresponding non-linear contributions
to the driving rates for each of them. The non-linear behavior appears due
to an amplitude-dependent, radial flame contraction. More specifically, a
decrease of deformation and an increase of displacement driving rates was
observed for increasing pressure amplitudes. However, the superposition
of both trends balanced out to constant flame driving. This observation
contradicts the state-of-the-art perception of heat release rate saturation and
indicates alternative paths to the formation of high-frequency limit-cycle
oscillations in the A2EV combustor.

The motivation of this chapter is identification of these alternative paths.
Hence, the perception of saturation of the flame driving potential is not
followed in this thesis. Instead, the research focus is put on the amplitude-
dependent increase of its counter-player, namely the impact of dissipative
effects. In the context of this thesis, the generation of acoustically induced
vorticity perturbations and their coupling with the mean flow is numerically
investigated at several acoustic pressure amplitude levels. A qualitative com-
parison of the flame’s driving behavior computed in this work with the results
of Berger et al. [70] validates the presented analysis framework.

The chapter is structured as follows: First, the analysis strategy with some de-
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tails on the numerical setup is presented. In the results section, the flame
contraction is analyzed and its root-cause is identified. Then, amplitude-
dependent driving and damping rates are computed and discussed. Finally,
the effect mainly responsible for the increase of acoustic damping is revealed
and analyzed.

6.1 Analysis Strategy for Non-Linear Oscillations

The proposed analysis strategy is based on the hybrid CFD/CAA approach,
which was introduced in Section 4.1. In this chapter, it is adapted to compute
amplitude-dependent damping and driving rates. Specifically, computations
with the URANS equations replace the RANS simulations. With reference to
Fig. 6.1, the conceptual framework is explained in the following three sub-
sections.

6.1.1 CFD Simulations

The starting point for the investigations is a compressible CFD simulation
with the URANS equations (information on the operational conditions: ¯̇min =
120g/s, T̄in = 623K, λ = 1.2). Perfectly premixed, lean combustion is captured
by the extended version of the Flamelet Generated Manifold model developed
by Klarmann et al. [77, 121, 126], which includes effects of flame stretch and
heat losses. Due to the circumferential variability of the T1 mode, axisymme-
try cannot be exploited to reduce computational costs in time-domain CFD
simulations. Hence, the chamber is fully discretized by a structured mesh (see
Appendix E). The computation consists of two phases (cf. the diagram in Fig.
6.1).
Phase I : a steady-state solution is obtained via an URANS simulation after 250
time steps. Notice that the steady-state can alternatively be computed via a
RANS simulation.
Phase II: at time step 251 the source term function

mp ′ (r,θ, x, t ) = Ap ′ (t − tref)δp ′ sin
[
2π fT1 (t − tref)+θrot

]
(6.2)
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Figure 6.1: Computational framework.

is activated in the energy
equation (cf. Eq. (2.3)), which
produces harmonic pressure
oscillations at the chamber’s T1
resonance frequency fT1. The
spatial distribution function
δp ′ = f (r, x) indicates that the
source term acts in a restricted
volume only and is zero else-
where (cf. Fig. E.1 in Appendix
E). Its amplitude linearly in-
creases with time starting from
a zero value, which is realized
by the term (t − tref). Ap ′ de-
notes the constant gradient
and can be set arbitrarily to
produce any desired envelope
amplitude. In this study, the
source term in Eq. (6.2) pro-
duces maximum T1 pressure
pulsations in between −8.0kPa
and 8.0kPa within 12500 time
steps, which is equivalent to a
physical time span of 0.125s.
The corresponding pressure
time trace is displayed in the
second dashed box of Fig. 6.1.
Notice that this gradient is
similar to those measured in
the A2EV combustor (cf. Fig.
5 in Ref. [70]). To mimic the T1
mode’s rotation in swirl direc-
tion, which occurs in the real
combustor due to the swirling
flow and the associated loss of
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degeneracy [127], circumferential variability of the source term must be in-
cluded. This is achieved by the azimuthal phase angle θrot in the sine-function,
where θrot ∈ [−π,π]. In the second dashed box of Fig. 6.1, snapshots of the
rotating pressure field at individual time steps within one oscillating period
are presented. Notice that the T1 resonance frequency fT1 is determined in
a pre-study via a frequency response analysis. For this purpose, a modified
source term similar to the one in Eq. (6.2) is used, which allows simultaneous
excitation at several frequencies with a constant forcing amplitude (see Eq.
(E.1) in Appendix E). The resulting T1 resonance frequency appears as a peak
in the corresponding frequency spectrum at fT1 = 2750Hz. This frequency
value in combination with the time step size of ∆t = 0.00001s yields a tem-
poral resolution of TPT1/∆t ≈ 36 time steps per oscillation period TPT1 for the
simulation analyzed in this study. Details on the frequency response analysis
and on the URANS CFD mesh are provided in the Appendix E.

6.1.2 CFD Post-Processing: Period-Averaging

Relevant CFD solutions fieldsφφφ (r, x, t ) are period-averaged in one r − x plane
to access slowly varying mean as well as oscillating quantities at a certain time
step n, φ̄φφn (r, x, t ) andφφφ′

n (r, x, t ) respectively:

φφφ′
n (r, x, t ) =φφφn (r, x, t )− ∆t

TPT 1

∑n

k=n−TPT 1
∆t

φφφk (r, x, t )︸ ︷︷ ︸
=φ̄φφn(r,x,t )

(6.3)

The decomposition of the radial velocity field into its mean and fluctuating
part is shown in the third dashed box of Fig. 6.1. The bulk flow and pertur-
bation fields are used to explain the physical root-cause of the amplitude-
dependent flame contraction, which is reproduced in the CFD simulation (cf.
the fourth dashed box in Fig. 6.1) in accordance with OH*-chemiluminescense
images measured by Berger et al. [70]. Notice that data extraction in one rep-
resentative r − x cut plane is sufficient to fully reconstruct the oscillating as
well as the period-averaged fields in the chamber. This is possible due to the
continuous rotational symmetry of the mean fields, which was found to be a
valid assumption.

97
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6.1.3 CAA Simulations

To perform CAA simulations, period-averaged velocity, temperature, heat
release rate and viscosity CFD fields at several pressure amplitude levels
are successively interpolated on the two-dimensional computational grid
shown in Fig. 5.7. The corresponding linear eigenvalue problem of Eq. (4.1)
based on linearized disturbance equations in the frequency domain is solved
numerically with the FEM for each of the mean flow data sets. The governing
equations in this study are the isentropic LNSE (2.26)-(2.27). These are solved
in a highly resolved, two-dimensional mesh, which allows computation of
stable FEM solution without the addition of artificial diffusion (cf. Section
2.5). Hence, optimum numerical conditions are established to fundamentally
investigate the amplitude-dependent acoustic dissipation potential of acous-
tically induced vorticity perturbations.

Conceptually, the presented approach is similar to the well-known "Flame De-
scribing Function" framework applied by Noiray et al. [128] to a compact ther-
moacoustic system. They express the flame response not only as a function of
frequency, which is commonly referred to as the "Flame Transfer Function",
but also as a function of the acoustic velocity amplitude at a reference po-
sition in the combustor. Then, the describing function is used to compute
amplitude-dependent eigenfrequencies. Their study follows the generally ac-
cepted perception that flame saturation is the root-cause of limit-cycle oscilla-
tions; however, this perception is dropped in this work and the focus is set on
the amplitude-dependent increase of damping in a non-compact thermoa-
coustic system. Hence, a term like "Damping Describing Function" framework
would be more appropriate to classify the presented framework although the
"Damping Describing Function" is not explicitly available. Instead, it is inher-
ently included in the mean field data extracted from the CFD simulation at j
distinct pressure amplitude levels. These fields are used to parameterize the
eigenvalue problem in Eq. (4.1) as a function of the URANS CFD pressure am-
plitude p̂CFD determined at the probe location shown in the first and second
two dashed boxes of Fig. 6.1, i.e.[

iωT1,jE
(
p̂CFD,j

)+A
(
p̂CFD,j

)]
φ̂φφT1,j = 0. (6.4)

Mathematically, the parameter p̂CFD non-linearly modifies the system matri-
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ces E and A of Eq. (6.4) in an a priori unknown manner, which thus requires
benchmark data at several fixed points to approximate the behavior. In the
context of this study, the benchmark data is represented by the period-
averaged CFD fields at some T1 pressure amplitude levels, which are the j
fixed points.

In order to compute the desired thermoacoustic driving and damping rates of
Eq. (6.4) individually at each fixed point, βj =β∆,j+βρ,j andαDΩΩΩ,a,j respectively,
the methodology introduced in Section 5.2 is applied. For this study, three in-
dependent eigenfrequency analyses are carried out:

1. The first simulation is performed with the isentropic LNSE (2.26)-(2.27),
where the flame is assumed to be passive ( ˆ̇q = 0).

2. Then, an eigenfrequency computation is performed with the isentropic
APE, where unsteady heat release is now modeled by the flame displace-
ment and deformation FTFs, ˆ̇q∆ and ˆ̇qρ respectively (cf. Eq. (5.28)). In this
study, the stress tensor is added to the r.h.s. of the APE momentum equa-
tion, i.e.

ρ̄ (iωû+∇ (ū · û))+ ρ̂
(

1

2
∇ (ū · ū)

)
+∇p̂ =∇· τ̂ττ. (6.5)

Consequently, the APE momentum Eq. (6.5) contains the effect of viscos-
ity on the acoustic velocity field2.

3. A final simulation is performed with Eqs. (6.5) and (2.31), where no un-
steady heat release is considered in the latter equation, i.e. ˆ̇q = 0.

With reference to Section 5.2, the damping rate αDΩΩΩ,a as well as the driving

2For the sake of clarity, the flame-vortex FTF ˆ̇qs (see Section 5.1.2) is not considered in this study. Recall that
the focus of this chapter is put on the amplitude-dependent increase of acoustic dissipation as well as on dis-
placement and deformation driving rates for which experimental results of Berger et al. [70] are available.
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rates β∆ and βρ are obtained by subtraction (cf. Eq. (5.22)), i.e.

αDΩΩΩ,a = νLNSE

∣∣∣ατ=0

ˆ̇q=0
−νAPE

∣∣∣ατ=0

ˆ̇q=0
, (6.6)

αrest =α∇s̄ +αµ = νAPE

∣∣∣ατ=0

ˆ̇q=0
, (6.7)

β∆ = νAPE

∣∣∣ατ=0

ˆ̇q= ˆ̇q∆
−νAPE

∣∣∣ατ=0

ˆ̇q=0
, (6.8)

βρ = νAPE

∣∣∣ατ=0

ˆ̇q= ˆ̇qρ
−νAPE

∣∣∣ατ=0

ˆ̇q=0
. (6.9)

6.2 Results and Discussion

This section presents the results obtained by following the analysis strategy
introduced in the previous Section 6.1.3. First, the amplitude-dependent
flame contraction is analyzed and its root-cause is identified, which was not
possible in the frame of the experiments of Berger et al. [70]. Next, driving
rates based on the flame displacement and deformation source terms of
Eq. (5.28) are computed at several pressure amplitude levels. The trends are
discussed with respect to experimental results. This seeks to validate the
numerical framework and to justify the computational approach as well as
the analysis of amplitude-dependent damping rates, which is discussed in
the subsequent step.

Notice that measured line-of-sight OH*-chemiluminescence images of the
A2EV combustor for various T1 pressure amplitudes and corresponding driv-
ing rates can be found in the work of Berger et al. [70] and are thus not repeated
in this thesis. These experiments are based on low- and high-swirl configura-
tions of the A2EV combustor, while a medium-swirl configuration is analyzed
in this study. However, the results of this study are expected to be extrapolable
to the low and high swirl configurations.

6.2.1 Root-Cause of Non-Linear Flame Contraction

The period-averaged heat release rate distributions at five T1 pressure am-
plitude levels are shown in the upper halves of the plots in Fig. 6.2 a). In
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the lower halves, difference images are displayed, which are obtained by
subtracting the steady-state field at 0kPa from each of the five fields, i.e.
∆ ¯̇qj = ¯̇q

(
p̂CFD,j

) − ¯̇q (0kPa). Visual inspection of Fig. 6.2 a) already reveals
that the heat release maximum ¯̇qmax, which is marked by crosses, contracts
towards the chamber’s axis for increasing pressure amplitudes. At the same
time, the flame root ¯̇qroot, which is marked by vertical dashed lines, shifts fur-
ther downstream. Notice that the measured OH*-chemiluminescence images
of low- and high-swirl configurations of the A2EV combustor in Ref. [70] show
a similar contraction. Additionally, Schimeck et al. [129] reported a reduction
of the flame angle for increasing acoustic amplitudes in their swirl-stabilized
combustor experiments while the axial flame extent increased. This exactly
resembles the trends of Fig. 6.2 a).

0 kPa 1.24 kPa 2.66 kPa 5.36 kPa 7.97 kPa

0

max

q[W/m³]

min

max

Δq[W/m³]
Δx

Δx
Δr

0

qroot
qmax

0 kPa
7.97 kPa

radius at
educt side:

a) b)

Figure 6.2: a) Period-averaged heat release fields at several pressure amplitude
levels (upper halves) and difference images (lower halves); b) flame
contour with radii of cross-sectional areas at the educt side.

The downstream shift of the flame root and heat release maximum is a
consequence of the radial contraction and can illustratively be explained by
inspecting the gray shaded flame contour planes in Fig. 6.2 b). Due to the
flame contraction, the radius of the cross-sectional area reduces at the educt
side, which is indicated by the two arrows. As period-averaged mass flow and
density do not change, the educt bulk flow must accelerate to compensate for
the decrease of the cross-sectional area. The increased axial flow momentum
pushes the stagnation point, and thus the flame, further downstream.

The root-cause of the flame contraction itself can be identified in the vicin-
ity of the combustion chamber’s inlet, where the bulk flow separates from the
area jump and creates a shear-layer. Figure 6.3 a) shows three snapshots of the
total axial velocity ux = ūx +u′

x at different instants of time within one oscilla-
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Figure 6.3: a) Formation of a backflow zone within one oscillation period
near the combustion chamber inlet; b) difference images of the az-
imuthal mean vorticity vector component.

tion period. At instant 1 , the pressure at the probe location is zero, while the
radial acoustic velocity is maximum and positive in the upper half of the r −x
plane. In this situation, acoustics flows from the mixing tube around the cor-
ner of the area jump into the combustion chamber, which is indicated by the
little arrow in the graph of Fig. 6.3 a). The total axial velocity ux thus, increases.
At instant 2 , the pressure is maximum and the radial acoustic velocity is zero
yielding ux = ūx. At instant 3 , the pressure is zero again, but the radial acous-
tic velocity is now negative and points towards the axis. The perturbed fluid
flows from the chamber upstream into the mixing tube and decreases the to-
tal axial velocity. The high perturbation velocity in the vicinity of the corner
of the area jump in combination with the relatively low bulk flow velocity in
the boundary layer promotes the occurrence of backflow zones directly up-
stream of the edge, which is clearly visible in snapshot 3 of Fig. 6.3 a). The
bubble with negative axial velocities leads to blockage, which forces the flow
to separate from the wall and to redirect towards the axis. As a consequence,
the flow detachment angle deviates as the flow can no longer leave the wall
contour tangentially. This blockage appears periodically but only within one
half of an oscillation period. Within the other half (cf. instant 1 in Fig. 6.3 a)),
the flow is only accelerated, but not redirected. In a period-averaged sense,

102



Non-Linear Saturation and Limit-Cycle

this leads to a mean deviation of the detachment angle with respect to the
steady-state situation, i.e. at p̂CFD = 0 kPa. The impact of this mechanism on
the period-averaged fields becomes stronger with increasing pressure ampli-
tudes as the acoustic velocity mutually increases. This, in turn leads to a spa-
tial expansion of the backflow bubble and enlarges the blocked zone. Figure
6.3 b) displays the resulting detachment angle deviation via difference images
of the mean shear-layer at two pressure amplitude levels. Specifically, the im-
ages are obtained via evaluating the period-averaged azimuthal vorticity fields
for the two amplitude values and by subsequently subtracting the steady-state
field at zero pressure amplitude, i.e. ∆Ω̄θ,j = |Ω̄θ

(
p̂CFD,j

) | − |Ω̄θ (0kPa) |. From
left to right and thus, for increasing amplitude values, the shear-layer shifts
further in the direction of the axis, which goes along with the observed flame
contraction illustrated by the gray and black contours.

6.2.2 Amplitude-Dependent Driving and Damping Rates

The amplitude-dependent driving and damping rates are computed accord-
ing to Section 6.1.3 and are plotted against increasing pressure amplitude
values in Fig. 6.4 a). With reference to Eqs. (6.6)-(6.9), the green line with
dots in magenta represents the growth rate αrest of effects that can neither
be attributed to flame displacement (red dotted line, β∆) and deformation
(red dashed line, βρ) nor to the generation of acoustically induced vorticity
perturbations and their coupling with the mean flow (blue line, αDΩΩΩ,a). Specif-
ically, αrest contains the effects of viscosity (light green dots in Fig. 5.8) and
the non-homentropic mean flow field (magenta-colored dots in Fig. 5.8). The
red continuous line is the net driving rate β, which is the superposition of red
dashed and dotted lines.

The deformation driving rates reduce slightly by approximately 6rad/s while
the displacement rates reveal an increasing trend of approximately 7rad/s

across the investigated pressure amplitude range. In total, the deviations
compensate each other, which finally leads to constant driving. The red
line in Fig. 6.4 b) shows the percentage deviation of the net driving rates
relative to the acoustically unperturbed case at 0kPa and confirms that flame
driving remains almost constant for all amplitude levels. This agrees with the
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a) b)

est

Figure 6.4: a) Absolute and b) relative evolution of vorticity damping rates (blue
line), flame driving rates (red lines) and remaining growth rate con-
tributions (green-magenta colored line) vs. increasing amplitudes.

experimental results of Berger et al. [70] and thus validates the computational
framework of this study. This also indicates once more that flame saturation is
not the root-cause of high-frequency, thermoacoustic limit-cycle oscillations
in this combustor. Instead, the blue curve in Fig. 6.4 a) reveals significantly
decreasing damping rates and thus increasing dissipation of acoustic energy
associated with the Lamb vector terms in Eq. (2.36). With reference to Fig.
6.4 b), the damping rate magnitudes increase by approximately 40% within
the inspected pressure amplitude spectrum. The remaining effects due to the
non-homentropic mean flow and viscous stresses act in a dissipative manner
on T1 oscillations, which can be seen by the corresponding negative damping
rate values of the green-magenta-colored curve in Fig. 6.4 a). For increasing
amplitude levels, their dissipative impact attenuates by approximately 22%
(cf. Fig. 6.4 b)), which counteracts but cannot compensate the damping
increase associated with the acoustically induced vorticity perturbations.
This observation infers that limit-cycle oscillations of the unstable T1 mode
in the A2EV combustor might be the result of an overall growth of acoustic
dissipation.

Figure 6.5 a) shows the eigenfrequency map of the parameterized eigenvalue
problem given by Eq. (6.4). Each point in this graph represents an eigenfre-
quency at a certain pressure amplitude, which is composed of the oscillation
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frequency f and the net T1 growth rate ν=αrest+αDΩΩΩ,a+βρ+β∆. After a slight
increase, the net growth rate monotonously decreases from ν≈ 20rad/s towards
a value of ν ≈ 9rad/s at p̂CFD ≈ 5.36kPa. At the same time, the T1 oscillation
frequency reduces by approximately 49Hz. Then, the eigenfrequency "turns
a loop", i.e. the growth rate and frequency values grow before they decrease
again towards a value of ν = 7.58rad/s and f = 2718Hz at p̂CFD ≈ 8.0kPa. How-
ever, limit-cycle oscillations are characterized by a net growth rate of ν= 0rad/s,
which could not fully be reproduced. Notice that the inclusion of losses in the
acoustic boundary layer, which produce a damping rate of αBLµ/th ≈ 4rad/s ac-
cording to Fig. 5.8, does still not lead to the expected zero growth rate value,
but to a value very close to it. Nevertheless, the evident decrease of the net
growth rate reveals that amplitude-dependent-dissipation mechanisms may
play a major role to explain the formation process of limit-cycle oscillations in
high-frequency thermoacoustic systems.

8.0

0

pCFD[kPa]ˆ

4.0

7.58 rads

a) b)

Figure 6.5: a) Eigenfrequency map of the parameterized eigenvalue problem of
Eq. (6.4); b) heat release rate maximum and root displacement vs.
increasing amplitudes.

Next, particular attention is given to the root-cause of the amplitude-
dependent dissipation increase associated with the cross-product terms
(ΩΩΩ×u) in the LNSE, i.e. the evolution of the blue curve in Fig. 6.4 a). A dis-
cussion on the effects represented by the green-magenta colored curve is left
to future work at this point and the reason for constant driving was already
addressed in the work of Berger et al. [70]. First however, the focus is briefly
on the drop of the T1 oscillation frequency f displayed in Fig. 6.5 a). Notice
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that a frequency reduction of similar order was measured in the experiment
of Ref. [70]. Three pressure ranges can be distinguished:

• 0kPa-3.35kPa: The slight frequency decrease can be related to the flame
shift quantified in Fig. 6.5 b). Heat release maximum (dashed line in Fig.
6.5 b)) and flame root (dotted line in Fig. 6.5 b)) equally shift downstream,
while the radial contraction (continuous line in Fig. 6.5 b)) remains small.
From this, it can be deduced that the period-averaged flame brush acts
like a rigid body as it simply moves downstream without significant de-
formation. In consequence, the T1 mode can propagate further down-
stream as the cut-on region increases (cf. Eq. (2.46)). This in turn reduces
the axial wave number which ultimately leads to the observed frequency
decrease.

• 3.35kPa-6.02kPa: As can be seen in Fig. 6.5 b), the heat release rate max-
imum remains at the same axial position while the cold fresh gas flow
keeps pushing the flame root further downstream. Due to this spatial
compression, the radially averaged temperature decreases in this region.
This reduces the speed of sound and thus the cut-on frequency, which al-
lows the T1 mode to propagate further downstream. Again, the axial wave
number diminishes leading to the relatively strong frequency drop.

• 6.02kPa-7.97kPa: The frequency increase occurs due to the radial flame
contraction, which compensates the decrease associated with the ax-
ial flame shift. The radial displacement results in an enlargement of the
outer recirculation zone, which is filled with hot combustion products.
This leads to rising radially averaged temperatures in between the flame
root and the position of heat release rate maximum. This mutually re-
sults in an elevation of the cut-on frequency f cut-on, which finally yields
the increasing T1 oscillation frequencies.

6.2.2.1 Discussion on Acoustic Dissipation Caused by Vorticity Disturbances

As explained in Section A.2, acoustic dissipation associated with the blue
curve in Fig. 6.5 a) and thus with the Lamb vector term (ΩΩΩ×u) is caused by
the interaction of vorticityΩΩΩ= Ω̄ΩΩ+Ω̂ΩΩwith the velocity field u = ū+ û. With ref-
erence to Eqs. (2.21) and (2.36), the three terms related to vorticity occurring
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in the LNSE (2.26) read:[
ρ (ΩΩΩ×u)

]′ ≈ [
ρ̄(Ω̄ΩΩ× û)+ ρ̄(Ω̂ΩΩ× ū)+ ρ̂(Ω̄ΩΩ× ū)

]
e iωT1t (6.10)

Recall that the first term describes the transformation of acoustic energy into
rotational kinetic one and vice versa (see Section 2.6 and Appendix A for de-
tails). This appears primarily near the sharp area jump corner at the combus-
tion chamber inlet as both, magnitudes of the mean vorticity and of velocity
perturbations are high relative to rest of the combustion chamber. The ab-
solute value of the period-averaged vorticity vector (at 0kPa) is shown in the
lower half of Fig. 6.6 and confirms that the highest values are allocated in the
outer shear-layer near the chamber inlet.

min

small-scale vortex
perturbations

large-scale vortex
perturbations

max

0

Ω [1/s]outer mean
shear-layer

λv

max

Re{Ωθ}[1/s]ˆ0

Figure 6.6: Azimuthal component of the vorticity perturbation vector (upper
half) and absolute value of the period-averaged vorticity vector
(lower half) with streamlines of the bulk flow and flame contour
(gray contour line) at 0kPa CFD pressure amplitude.

The result is the acoustically induced shedding of the small-scale, clock- and
counterclockwise rotating vortices illustrated in the upper half of Fig. 6.6.
These are shed from the corner, convect downstream with the bulk flow ve-
locity and finally dissipate due to viscous effects. The second term ρ̄(Ω̂ΩΩ× ū)
describes the interaction of generated vorticity perturbations with the bulk
flow velocity. The third cross-product term ρ̂(Ω̄ΩΩ× ū) produces a rotational ac-
celeration of acoustic density fluctuations. The impact of the latter term on
the LNSE eigensolution, i.e. eigenfrequency and -vector, is negligibly small
due to its second order dependency on the small Mach numbers in this com-
bustion chamber. However, these three terms do not explain the large-scale
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vorticity perturbation visible in the upper half of Fig. 6.6. It appears only in
the flame region and originates from another vorticity source, namely by the
baroclinic effect. This can easily be shown revisiting the APE (2.30), where the
cross-product terms are absent. Taking the curl of Eq.(2.30) and applying the
vector identity ∇×∇(...) = 0 yields the corresponding vorticity perturbation
equation

iωΩ̂ΩΩ= iωΩ̂ΩΩl-s = iωΩ̂ΩΩa =−∇ρ̄×∇p̂

ρ̄2
. (6.11)

The r.h.s. of Eq.(6.11) represents the baroclinic effect, which is equally present
in the LNSE momentum Eq. (2.26). Obviously, this type of vorticity is acous-
tically triggered by pressure gradient fluctuations and only occurs in regions
where the mean density changes. For isothermal conditions, this type of vor-
ticity is thus absent as ∇ρ̄ = 0. It is oscillating with the frequency f but is not
transported by the bulk flow as any convection terms are absent in Eq. (6.11)
although the corresponding momentum Eq. (2.30) does consider translation
by convection via the term ∇(ū · û). The two latter characteristics can easily be
confirmed by visual inspection of the upper half of Fig. 6.6: large-scale vor-
tices are solely present in the flame region (gray contour), i.e. in regions of
strong mean density gradients, but not downstream of the flame. For reac-
tive cases with mean density gradients, this confirms that the acoustic veloc-
ity field does generally not satisfy the irrotationality condition of Eq. (4.14),
i.e. ∇× ûa 6= 0 as stated in Section 4.3. This also explains why the mass flow
Helmholtz decomposition must be applied to reactive cases instead of the ve-
locity Helmholtz decomposition. The generation of baroclinic, acoustic vor-
ticity Ω̂ΩΩa in Eq. (6.11) can illustratively be explained by the non-uniform in-
/decrease of the speed of sound across mean density gradients, which can
lead to the refraction of acoustic waves. This induces a rotational component
in the acoustic velocity field ûa, if the acoustic velocity vector (which can be
rewritten in terms of the gradient of the acoustic pressure ∇p̂a) is not aligned
with the mean flow density gradients. In conclusion, vorticity disturbances in
reactive cases are not only generated by the "classical" shedding mechanism
from sharp edges (cf. Section 2.6), but also by refraction of acoustic waves at
density gradients. Both vorticity types are fundamentally different as the first
type is a classical, hydrodynamic vortex, which convects downstream with the
mean flow, while the second type is of acoustic nature.
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Although the generation of the large-scale vorticity in the acoustic veloc-
ity field is not linked to the cross-product (ΩΩΩ×u) but to the baroclinic ef-
fect described by Eq. (6.11), this type of vorticity can interact with the mean
flow in the LNSE (2.26) via the second term on the r.h.s. of Eq. (6.11), i.e.
ρ̄([Ω̂ΩΩs-s+Ω̂ΩΩl-s]×ū). This affects the T1 damping rateαDΩΩΩ,a and thus the thermoa-
coustic stability behavior. Now, there is the question of how the three cross-
product terms and more specifically, which vorticity perturbation type, i.e.
small-scale hydrodynamic or large-scale acoustic one, contribute to the net
damping rate αDΩΩΩ,a. This knowledge would reveal the physical phenomenon
responsible for the amplitude-dependent increase of dissipation. To gain in-
sight, the growth rate Eq. (4.9) is used. The numerator in Eq. (4.9) is replaced
by Da, which reads in the context of the present study

Da =− ρ̄ (
Ω̄ΩΩ× ûv

) · ûa︸ ︷︷ ︸
Term 1

− ρ̄ (
Ω̂ΩΩs-s × ū

) · ûa︸ ︷︷ ︸
Term 2

− ρ̄ (
Ω̂ΩΩl-s × ū

) · ûa︸ ︷︷ ︸
Term 3

− ρ̂ (
Ω̄ΩΩ× ū

) · ûa︸ ︷︷ ︸
Term 4

.
(6.12)

Notice that the subscripts a and v on the r.h.s. of Eq. (6.12) denote acoustic
and hydrodynamic, vortical velocity fields. The latter is associated with con-
vectively transported vortices but not with the acoustic type of vorticity Ω̂ΩΩa.
Remember that these velocity fields are the direct outcome of the mass flow
Helmholtz decomposition introduced in Section 4.3. The four terms in Eq.
(6.12) allow individual quantification of the dissipation of acoustic energy as-
sociated with Eq. (6.10). After having evaluated the acoustic energy density Ea

Ea =
p̂2

a

2ρ̄c̄2
+ ρ̄ û2

a

2
+ ρ̂a (ū · ûa) , (6.13)

four damping rates corresponding to terms 1-4 in Eq. (6.12) can be computed.
These are presented in Fig. 6.7:

The net damping rate αDΩΩΩ,a (see also in Fig. 6.4 a)) is represented by the thick,
continuous line with the circle markers. It is the sum of the values of the four
thin lines. The close-up view reveals that terms 1,2 and 4 do contribute with
less than ±5rad/s to overall damping. As mentioned before, term 4 (triangles
in Fig. 6.7) is of second order dependency on the Mach number, which is low
everywhere in this combustor. As expected, its dissipative impact is negligi-
bly small. Terms 1 and 2 are both associated with the "classical", small-scale
vortices shed from the area jump edge (see Section 2.6 and Appendix A). The
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Figure 6.7: Decomposed damping rates computed with Eq. (6.12) vs. increasing
CFD pressure amplitudes.

reason for their low contribution can be explained by the small scale of the
vortices themselves: as shown in Fig. 2.2 a), the vortex street consists of clock-
and counter-clockwise rotating regions. This alternating pattern is mutually
reflected in terms 1 and 2 as of acoustic energy dissipation and supply regions.
In an integral sense, they sum up to a value close to zero. Notice that this ob-
servation cannot be generalized or simply transferred to another combustion
system or acoustic mode but must be validated for the respective case. The
characteristic length scale λv of one of these small vortices can be approxi-
mated by Eq. (2.54). Hence, high mean flow values at the area jump corner or
low oscillation frequencies lead to larger vortices and a "coarser" alternating
pattern, which may sum up to a relevant damping contribution [61, 66]. If the
mean flow velocity is kept constant, this comes down to a low-pass filter be-
havior towards higher frequencies of these convectively transported vortices.
With reference to Fig. 6.6, the small vortex length scale of λv ≈ 6.3mm associ-
ated with the T1 mode in the A2EV combustor obviously results in low corre-
sponding damping rate contributions as presented in Fig. 6.7. The following
two conclusions are drawn:

• The "classical" vortex shedding mechanism (squares and crosses in
Fig. 6.7), which is mainly responsible for acoustic dissipation in low-
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frequency systems [66], has a minor influence on the thermoacoustic sta-
bility of the studied high-frequency combustor.

• In the A2EV combustor, large-scale vorticity perturbations, which are
produced in the acoustic velocity field by the baroclinic effect, and their
interaction with the period-averaged velocity field (term 3 in Fig. 6.7) are
the main source of acoustic dissipation with respect to the four cross-
product terms of vorticity and velocity in Eq. (6.12). For increasing acous-
tic pressure amplitudes, this effect becomes stronger, which explains the
growth rate decrease observed in the eigenfrequency map presented in
Fig. 6.5 a). Notice that this implies that the baroclinic vorticity distur-
bances are the main contributors to the damping rates αDΩΩΩ,a in the sim-
ulated 80 operating points of Section 5.2.1 (cf. the blue dots in Fig. 5.8).

6.2.2.2 Investigation of the Amplitude-Dependent Dissipation Increase

The root-cause of the amplitude-dependent dissipation increase can be at-
tributed to the radial flame contraction as well as to its axial shift in down-
stream direction: physically, −ρ̄(Ω̂ΩΩl-s × ū) = −ρ̄LLL l-s represents a volume-
specific force vector performing work in the acoustic velocity field ûa. No work
is performed, if both vectors are perpendicular to each other. In contrast, the
acoustic flow is accelerated, i.e. energy is supplied, or decelerated, i.e. en-
ergy is reduced/dissipated, if the vector points in the same or in the oppo-
site direction as the acoustic velocity vector, respectively. Mathematically, this
is described by the scalar product Da,Term 3 = −ρ̄LLL l-s · ûa in Eq. (6.12), which
provides information on the angle constellation between the vectors −LLL l-s

and ûa. In the A2EV combustor, the amplitude-dependent flow field evolu-
tion provokes a re-alignment of these two vectors towards a stronger opposite
orientation, which results in the observed increase of acoustic dissipation. Ex-
plicitly writing the scalar product in cylinder coordinates

Da,Term 3 =−ρ̄LLL l-s · ûa =−ρ̄Ll-s,rûa,r︸ ︷︷ ︸
Term 3,r

− ρ̄Ll-s,θûa,θ︸ ︷︷ ︸
Term 3,θ

− ρ̄Ll-s,xûa,x︸ ︷︷ ︸
Term 3,x

(6.14)

and visualizing its period-average in Fig. 6.8 a) (upper halves of the plots
shown on the left) demonstrates that the region of acoustic losses (blue areas)
enlarges with increasing amplitude levels. This can especially be observed in
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the outer shear-layer, while the center region at the flame root remains almost
unaffected.
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Figure 6.8: a) Regions of acoustic dissipation associated with large-scale vor-
ticity perturbations (upper halves) and its azimuthal contribution
(lower halves) with isolines; b) radial (upper halves) and axial
(lower halves) derivatives of the mean density lines with isochors
for two pressure amplitude levels; c) individual contributions of the
three vector components in Eq. (6.14) to the damping rate associated
with large-scale vorticity perturbations.

Analyzing each term individually in Eq. (6.14) and plotting the corresponding
damping rates in Fig. 6.8 c) reveals that the azimuthal term is mainly respon-
sible for the increase of dissipation in this combustor ("Term 3,θ" in Fig. 6.8
c)). Visual inspection of the lower halves of the plots in Fig. 6.8 a) with the iso-
lines indicates this, too. Further inspection of the corresponding Lamb vector
component yields

Ll-s,θ = Ω̂l-s,xūr − Ω̂l-s,rūx = 1

iωT1ρ̄2

(
∂ρ̄

∂r
− ∂ρ̄

∂x

)
1

r

∂p̂

∂θ
, (6.15)

where the vorticity Eq. (6.11) is exploited. Equation (6.15) shows that the az-
imuthal component of the volume specific force vector −ρ̄LLL l-s depends on
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the difference between radial and axial derivatives of the period-averaged
density. Three scenarios are possible:

1. (∂ρ̄
∂r −

∂ρ̄

∂x ) > 0: the force component −ρ̄Ll-s,θ points in the opposite direc-
tion as the azimuthal acoustic velocity component ûa,θ. Acoustic energy
is decreased/dissipated.

2. (∂ρ̄
∂r −

∂ρ̄

∂x ) = 0: the force component −ρ̄Ll-s,θ does not affect the azimuthal
acoustic velocity component ûa,θ. The acoustic energy is remains unaf-
fected.

3. (∂ρ̄
∂r −

∂ρ̄

∂x ) < 0: the force component−ρ̄Ll-s,θ points in the same direction as
the azimuthal acoustic velocity component ûa,θ. Acoustic energy is sup-
plied.

In conclusion, the higher the positive difference between radial and the axial
density derivatives is (case 1), the stronger is the azimuthal contribution to
acoustic damping. With reference to Fig. 6.8 b), where radial (upper halves)
and axial (lower halves) density gradients are presented for two pressure am-
plitudes, this can be observed in the A2EV combustor for growing acoustic
amplitude levels as the axial density gradient drops in the outer shear-layer,
while the radial one remains almost unaffected. This occurs due to the flame
contraction, which results in a decrease of the flame angle (FA) depicted in the
right plot of Fig. 6.8 b).

6.3 Summary and Future Work

The numerical reconstruction of the amplitude-dependent flame contraction,
which was measured for the first transversal eigenmode of the A2EV combus-
tion system, provided detailed insight into the root-cause of this phenomenon
and into the associated impact on thermoacoustic driving and damping rates.
The following conclusions can be drawn:

• The flame contraction appears due to the occurrence of a backflow re-
gion directly upstream of the combustion chamber inlet, which is cre-
ated periodically each time the oscillating flow velocity and the bulk flow
motion point in opposite direction. This provokes the re-directing of the
flow towards the chamber center in a period-averaged sense leading to
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the observed mean flame contraction. This mechanism reinforces with
increasing acoustic pressure, and thus velocity amplitudes, as the back-
flow region enlarges.

• Associated computed flame driving rates resemble the amplitude-
independent behavior observed in the A2EV experiments. This disqual-
ifies the perception of heat release rate saturation as the root-cause of
limit-cycle oscillations in this high-frequency thermoacoustic system.

• Acoustic dissipation associated with acoustically induced vorticity per-
turbations reveals a significant amplitude-dependent increase, explain-
ing the formation of a limit-cycle in the investigated system.

• Large-scale, acoustically induced vorticity perturbations, which are gen-
erated by the baroclinic effect, are found to be mainly responsible for
the amplitude-dependent increase of acoustic dissipation. The "classi-
cal" vortex shedding mechanism from sharp edges has a weak influence
on the stability of the investigated transversal eigenmode.

Future work could comprise the identification of further amplitude-
dependent damping mechanisms to deepen the understanding of the origin
of limit-cycle oscillations in high-frequency thermoacoustic systems.

• Special focus shall be put on the amplitude-dependent increase of acous-
tic dissipation caused by the non-homentropic mean flow field. This
analysis was skipped in this thesis but might provide deeper insight into
the root-cause of the limit-cycle.

• In addition, acoustic damping caused by non-linear shedding of convec-
tively transported vortices should be addressed. This may become im-
portant, if acoustic velocity amplitudes are of the same order of magni-
tude as the bulk flow velocity, i.e. ‖ûa‖/‖ū‖ ≥ 1. This non-linearity cannot
be captured by the analysis approach presented in this chapter as linear
disturbance equations are not capable of describing the non-linear be-
havior by nature. Instead simulation with the so-called Perturbed Non-
conservative Non-linear Euler equations can be carried out to determine
the relevance of this phenomenon in thermoacoustic systems.
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Additionally, the proposed analysis method needs to be applied to other com-
bustion chamber geometries, for instance rectangular or annular ones, to ver-
ify the transferability of the results of this thesis to other combustor types.
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7 Multi-Modal Interactions

The frequency spectrum of a time series recorded from a thermoacoustically
unstable operational point often exhibits only one distinct peak despite the
presence of multiple (linearly) unstable modes [55]. The implication from
this observation is the existence of modal energy transfer and competition
mechanisms, which lead to the suppression of all remaining modes by
the dominant one. However, in theory even multiple unstable modes can
coexist if they synchronize. Synchronization of self-sustained oscillators
is a well-known and extensively studied field in non-linear dynamics and
also occurs in the field of thermoacoustics [46, 130, 131]. A comprehensive
summary on the phenomenon of synchronization is provided in Ref. [132].
In the context of thermoacoustics, two (or more) coupled acoustic modes
oscillating at different frequencies f1 and f2 synchronize towards a common
oscillation frequency f1 6= f1,sync = fsync = f2,sync 6= f2, which is different to the
ones of the uncoupled modes. With reference to Section 1.2, the third and
last step of a comprehensive thermoacoustic stability analysis comprises the
consideration of non-linear interactions between linearly unstable acoustic
eigenmodes. Knowledge about the non-linear coupling mechanisms provides
a complete picture of the dynamics of thermoacoustic systems and allows
the application of well-suited countermeasures, such as retrofit strategies
or the implementation of Helmholtz resonators, to avoid instabilities in the
frequency band of interest.

In the frequency spectrum of the stable operational point of the A2EV com-
bustor in Fig. 3.2 a), the T1 and T2 modes appear as potential interaction
partners1. By decreasing the air excess ratio from λ = 1.8 to λ = 1.2, the
T1 mode becomes unstable and appears as the sole peak in the frequency
spectrum of Fig. 3.2 b). This observation implies that the T2 mode is either
linearly stable for λ = 1.2 or it is unstable but suppressed by the T1 mode.

1In this thesis, the focus is set on the non-degenerate modes rotating in the swirl direction. Details and expla-
nations on the non-degeneracy of transversal modes can be found in Ref. [37].
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The frequency spectrum in Fig. 3.2 b) does not allow the distinction between
these two options, which prevents the experimental assessment of the linear
thermoacoustic stability of the T2 mode. This means that synchronization
of the T1 and T2 modes is either irrelevant, if the T2 mode is unstable but
suppressed by the T1 mode, or it would be a relevant phenomenon but
does not appear because the T2 mode is linearly stable. In the frame of this
thesis, the assessment of the relevance of T1/T2 synchronization in the A2EV
combustor is limited to the following theoretical discussion:
Synchronization of two acoustic modes most likely occurs, if their oscillation
frequencies are closely spaced in the frequency spectrum [132], i.e. f1 ≈ f2.
Then, so-called 1 : 1 synchronization may occur, which was observed by
Moeck. et al. [46] for azimuthal and axisymmetric acoustic modes in an
annular combustor. However, so-called higher-order synchronization can
occur as well. This can provoke the synchronization of acoustic modes, which
are largely spaced in the frequency spectrum. An example for higher-order
synchronization would be the synchronization of two modes where f1 ≈ 2 f2.
In this case, the oscillation frequency of mode 1 is approximately twice as
high as the one of mode 2. The synchronized state can then be characterized
by f1 6= f1,sync = 2 f2,sync 6= f2. More generally, any rational number Q = l/m,
i.e. synchronization order, is possible. With reference to Fig. 3.2 a), synchro-
nization of order l/m = 3/5, i.e. 5 fT1 ≈ 5 · 2800Hz ≈ 3 · 4500Hz ≈ 3 fT2 would
be conceivable in the case of the T1 and T2 modes of the A2EV combustor.
However, any other synchronization order is more unlikely to occur than
Q = 1, i.e f1 ≈ f2 [132]2. This implies that it is hard to observe higher-order
synchronization in real applications as shown for instance in Ref. [133]. In the
author’s opinion and with reference to the literature (e.g. Refs. [46, 132, 133]),
it is very unlikely to observe synchronization phenomena with the frequency
gap between T1 and T2 mode in the A2EV combustor. In consequence, the
modeling and analysis of modal interactions between T1 and T2 modes in
the A2EV combustor focuses on suppression processes or in other words, the
"mode competition".

2Quantitatively, this can be assessed by the so-called Arnold tongues. Arnold tongues reveal the synchroniza-
tion region of two coupled oscillators, i.e. the frequency range in which they can synchronize, as a function of
the coupling strength of the oscillators. For more information, the interested reader is referred to Ref. [132] at
this point.
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In this chapter, the ROM, which was introduced in Section 4.4 [37], is modi-
fied. Specifically, modal suppression effects between T1 and T2 eigenmodes of
the A2EV combustor are described through the integration of the non-linear,
pressure amplitude-dependent dissipation mechanisms identified in Chapter
6.

7.1 Modification of the Reduced Order Model

As explained in Section 4.4, the ROM framework is based on the APE (2.30)-
(2.31) in the frequency domain with a numerical stabilization parameter of
ατ = 0. Recall that this is possible as convective perturbations, which are
primarily responsible for the occurrence of numerical instabilities, are absent
in the APE. Hence, the non-physical effect of the SUPG/PSPG stabilization
scheme is precluded in the following ROM simulations.

In order to model modal interactions between T1 and T2 eigenmodes in
the A2EV combustor for the operational point in Fig. 3.2 b) ( ¯̇min = 120g/s,
T̄in = 623K and λ = 1.2), a ROM is created according to the four steps intro-
duced in Section 4.4. Next, the ROM is modified to account for the non-linear
phenomena associated with the radial flame contraction investigated in
Chapter 6. This comprises the inclusion of the spatial flame contraction and
its impact on the amplitude-dependent thermoacoustic driving and damping
behavior into the ROM. In this context, damping and driving rate data as well
as heat release rate fields are available as a function of the pressure amplitude
at a reference position in the A2EV combustor. This data is used to express
the ROM system matrix Ãr and the input vector u as a non-linear function
of the ROM output vector y, i.e. Ãr = Ãr(y) and u = u(y). Figure 7.1 presents
the modified APE state-space model, in which acoustic waves are constantly
excited by white noise indicated by box 1 . The state vector ηηη describes the
temporal amplitude evolution of the in-swirl direction rotating T1 and T2
modes of the A2EV combustor. The diagonal system matrix Ãr hosts the
corresponding eigenfrequencies. The reduced input matrix B̃r allows the
placement of spatially distributed volumetric sources/sinks with the input
vector u, while the reduced output matrix C̃r allows the extraction of acoustic
pressure, velocity and displacement signals at multiple locations of interest.
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The extracted data is collected in the output vector y.
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Figure 7.1: Amplitude-dependent state-space model.

In- and output matrices are used for the creation of local feedback loops to
model non-compact thermoacoustic driving with the flame displacement
and deformation FTFs [37]. This is illustrated by the boxes 2 and 3 in Fig.
7.1: The flame is split into acoustically compact segments indicated by the
grid in box 2 . For each of these segments an individual feedback loop is
established. Acoustic pressure p ′

n and displacement ∆′
n signals as well as
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the mean heat release rate ¯̇q (and its gradient ∇ ¯̇q)3 are extracted from each
segment to compute the local displacement and deformation FTFs, q̇ ′

∆,n and
q̇ ′
ρ,n, at time step n in box 3 . Notice that the mean heat release rate field in

box 2 represents the acoustically unaffected distribution at p ′ = 0kPa. The
local FTF values serve as the state-space system input at the locations of
the respective flame segments, which closes each local feedback loop. The
pulsation-amplitude dependency of the mean flow on the FTFs in frame 3
is captured by box 4 together with box 5 . The period-averaged heat release
rate fields obtained from the URANS CFD simulation in Chapter 6 serve as
the modeling basis. Their amplitude-dependency is known as a function
of the pressure amplitude at the probe location shown in box 5 . Two heat
release rate distributions at two reference pressure amplitudes are used to
approximate the radial flame contraction in the A2EV combustor: The first
heat release rate distribution represents the acoustically unaffected case for
p̂ = 0kPa. The second one is associated with a pressure amplitude of p̂ = 8kPa,
which represents the maximum amplitude in the URANS CFD simulation
presented in Chapter 6. Again, the flame segmentation approach is applied
to the two heat release rate fields as indicated by the rectangular pattern
in box 4 of Fig. 7.1. Based on the current ROM pressure amplitude deter-
mined at the probe position shown in box 5 , the heat release rate difference
∆ ¯̇qn = ¯̇qp̂=0kPa − ¯̇qn at time step n is computed for each flame segment via
linear interpolation. This difference value serves as the input for the FTFs in
box 3 of Fig. 7.1.

Notice that the flame contraction computed for increasing T2 pressure ampli-
tudes in the A2EV combustor showed a similar behavior as for T1 oscillations.
This justifies to perform the calculation of the heat release rate difference ∆ ¯̇qn

independent of the mode shape in this case. However, the flame contraction
behavior is generally different for each acoustic mode. If no simplification can
be made, the heat release rate difference ∆ ¯̇qn must be determined depending
on which eigemode dominates and has the highest amplitude values in the
combustion system. This complicates the setup of the amplitude-dependent
state-space model but might be realized by implementing band-pass filters

3Notice that the heat release rate gradient is required to compute the displacement FTF. For reasons of clarity,
the gradient field is not shown in Fig. 7.1.

121



7.1 Modification of the Reduced Order Model

and pressure amplitude queries to evaluate the current amplitude of each
mode considered in the ROM.

Furthermore, it is emphasized that the flame contraction feature in box 4
of Fig. 7.1 cannot account for changes of the acoustic mode shape, which
inherently occur as a result of the flame contraction. In other words this
means that the FTFs in box 3 are calculated for a spatially constant acoustic
mode shape, while the heat release rate field varies in response to the current
pressure amplitude. Despite the enhancement of the physical accuracy of
the ROM by considering changes of the heat release rate field, this inconsis-
tency can produce errors in the FTF calculation as changes of the acoustic
pressure and velocity mode shapes do affect the FTF calculation as well. The
amplitude-dependent variation of the acoustic mode shape in run-time has
yet not been realized in the ROM, but would further enhance the physical
accuracy of the ROM. The assessment of the impact of this inconsistency
on the flame displacement and deformation driving potential in the ROM
is difficult. It might be estimated by investigating the shift in oscillation
frequency ∆ fi of mode i , which is caused by the flame contraction (cf. Fig.
6.5 a)), with respect to the acoustically unaffected oscillation frequency at
p̂ = 0kPa, i.e. fi,p̂=0kPa. The condition ∆ fi ¿ fi,p̂=0kPa might be used as an
indicator to judge similarity between perturbed and unperturbed mode
shapes. With reference to Fig. F.2 c), the frequency shift for T1 and T2 modes
amounts to ∆ fT1 ≈ ∆ fT2 ≈ 50Hz, which is small compared to the respective
oscillation frequencies fT1,p̂=0kPa ≈ 2750Hz and fT2,p̂=0kPa ≈ 4580Hz. Hence, the
error caused by the inconsistency is assumed to be small in the present study.

Finally, driving due to flame displacement and deformation is found to be-
have almost amplitude-independent (cf. Fig. F.2 a) and b)). This observation
implies that the amplitude-dependent variation of the heat release rate field
modeled in box 4 of Fig. 7.1 barely affects the flame dynamics in the A2EV
combustor but might be important for other eigenmodes or combustor types.
The cubic heat release rate term q̇ ′

NL of Eq. (6.1) represents one option to pro-
duce limit-cycle oscillation and to couple acoustic eigenmodes in the ROM
[37]. However, in Chapter 6, it is identified that heat release rate saturation is
not the root-cause of limit-cycle oscillations in the A2EV combustor. Hence,
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this saturation term is removed from the ROM, which is indicated by the red
cross in box 3 . Instead amplitude-saturation and modal coupling is modeled
by the adaption of the ROM system matrix Ãr during run-time. As shown in
Appendix G, this is achieved by decreasing the damping rates of T1 and T2
modes (αT1 and αT2) on the diagonal entries of Ãr as a function of the current
ROM pressure p ′

n. For this purpose, the available damping and driving rates of
Chapters 5 and 6 as well as of Appendix F are used as benchmark data. This
data includes acoustic damping rates associated with acoustically induced
vorticity perturbations (αDΩΩΩ,a), visco-thermal losses in the acoustic boundary
layer (αBLµ/th), viscosity effects inside the chamber volume (αµ) and the non-
homentropic mean flow (α∇s̄) (cf. Eq. (5.21)). Driving due to vortex-flame in-
teractions is considered by the driving rate (βs). Adding up all contributions,
i.e.

βs +α(p ′) =βs +αDΩΩΩ,a(p ′)+αBLµ/th +αµ(p ′)+α∇s̄(p ′), (7.1)

gives the T1 and T2 damping rate curves in the plots of box 6 of Fig. 7.1.
Equation (7.1) indicates that pressure-dependent data is yet not available for
αBLµ/th and βs, which are thus assumed to be constant for increasing pressure
amplitudes. Keep in mind that thermoacoustic driving caused by flame dis-
placement and deformation is directly modeled in the ROM via local feedback
loops in box 3 , which translates into the driving rate β(p ′). This explains the
absence of the corresponding driving rates β∆ and βρ in Eq. (7.1). The overall
growth rate of the ROM can be written as

ν(p ′) =β∆(p ′)+βρ(p ′)+βs +α(p ′) =
(
β(p ′)+βs +αp ′=0kPa −αp ′=0kPaεp ′2

)
︸ ︷︷ ︸

=βs+α(p ′)

.

(7.2)

The sum of the constant vortex-flame driving rate βs and the pressure
amplitude-dependent damping rates α(p ′) in Eq. (7.1) is approximated by a
quadratic function through fitting of the non-linearity coefficient ε in Eq. (7.2)
to the benchmark damping and driving rate data of T1 and T2 modes. De-
tails on the T2 damping and driving rates are provided in the Appendix F. The
quadratic pressure dependency in Eq. (7.2) is based on the Van-der-Pol oscil-
lator Eq. (G.6) derived for the ROM in the Appendix G and allows extrapolation
of the damping rate curves in the plots of box 6 of Fig. 7.1 towards higher pres-
sure amplitude values. In practice (see Fig. 7.1), the current pressure value at
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time step n is used to determine the corresponding T1 and T2 damping rates
from α(p ′) in Eq. (7.2). In the next time step n +1, the updated damping rate
αn+1 replaces the old one αn in the system matrix Ãr. The damping rates of T1
and T2 modes, αT1(p ′) and αT2(p ′), increase until the amplification due to the
linear FTF feedback loop is compensated and a limit-cycle forms.

7.2 Non-Linear Coupling between T1 and T2 Modes

In this section, the modified ROM of Fig. 7.1 is analyzed. The overall pressure
amplitude-dependent T1 and T2 growth rates can be computed according
to Eq. (7.2). However, as driving due to flame displacement and deforma-
tion is inherently captured by the local feedback loops in the ROM, the
pressure-dependency of the corresponding driving rates β(p ′) is a priori
unknown. Therefore, constant T1 and T2 displacement and deformation
driving rates are assumed to estimate the T1 and T2 growth rate evolution
in the state-space system of Fig. 7.1. The constant driving rates correspond
to the acoustically unaffected cases, i.e. β = β(p ′ = 0kPa), which are known
from Chapters 5 and 6. Notice that this simplification can be justified by the
weak pressure dependency of displacement and deformation driving rates
(β(p ′) ≈ const.) identified in Chapter 6. Dashed and dotted lines in Fig. 7.2
show the expected amplitude-dependent T1 and T2 growth rate behavior
of the state-space system presented in Fig. 7.1. This behavior is the result
of the (almost) constant flame displacement (β∆) and deformation (βρ)
driving rates considered by the local feedback loops (boxes 2 - 4 ) and the
amplitude-dependent acoustic dissipation increase modeled by the adaption
of the ROM system matrix in run-time (box 6 ) with the quadratic damping
rate function βs +α(p ′) in Eq. (7.2). In Fig. 7.2, circles and squares represent
the overall T1 and T2 benchmark growth rates obtained from the URANS
CFD/CAA approach presented in Chapter 6.
The computed growth rates in Fig. 7.2 reveal that T1 and T2 modes are
linearly unstable at p̂ = 0kPa. Specifically, T1 and T2 growth rates amount to
νT2,p̂=0kPa ≈ 21rad/s and νT2,p̂=0kPa ≈ 10rad/s, respectively. These values indicate
that the T1 mode is amplified stronger by ∆νp̂=0kPa ≈ 11rad/s. Transferred to
the measured frequency spectrum in Fig. 3.2 b) this would imply that T1
and T2 modes are linearly unstable in the experiment for the operational
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Δνp=0 kPaˆ

pT2,limˆ pT1,limˆ

Figure 7.2: Amplitude-dependent growth rate data of T1 (circles) and T2
(squares) modes, which is approximated by quadratic functions in
the ROM.

point with an air excess ratio of λ = 1.2. However, only one distinct peak
at the T1 eigenfrequency is visible in the frequency spectrum. From this
observation in combination with the computed growth rates in Fig. 7.2 it can
be concluded that the T2 mode is apparently suppressed by the T1 mode.
The two parabolas, which approximate the amplitude-dependency of T1
(dashed line in Fig. 7.2) and T2 (dotted line in Fig. 7.2) modes, cross the zero
line at p̂T1,lim ≈ 10.2kPa and p̂T2,lim ≈ 5.0kPa. For these pressure amplitudes
νT1 = νT2 = 0rad/s, which suggests that T1 and T2 limit-cycle oscillations of
approximately 10.2kPa and 5.0kPa can be expected in the following ROM
simulations, if both modes are investigated in an uncoupled sense.

The growth rate constellation between T1 and T2 modes presented in Fig.
7.2 is predestined to investigate modal coupling effects. Each of the modes is
linearly unstable, which makes each of them a potential candidate to produce
limit-cycle oscillations. First, both modes are analyzed individually in Fig. 7.3.
Therefore, a ROM must created for each of the modes, where the respective
other mode is absent.
The time series of T1 and T2 modes in Fig. 7.3 are extracted at the probe
location shown above the respective plots. Notice that this location is iden-
tical to the probe position in box 5 of Fig. 7.2. The computed limit-cycle
amplitudes of T1 and T2 eigenmodes are p̂T1,lim ≈ 10.2kPa and p̂T2,lim ≈ 5.0kPa,
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-10.2 kPa
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T1 mode T2 mode
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p'[Pa]0

fT1 fT2

max

min

p'[Pa]0

Figure 7.3: Computed time series with the corresponding frequency spectra for
uncoupled T1 (left) and T2 (right) eigenmodes.

which reflects the expected values in Fig. 7.2. The corresponding, normalized
frequency spectra reveal single peaks at the T1 and T2 eigenfrequencies.

Next, the ROM of Fig. 7.1 is investigated, where T1 and T2 modes are coupled.
Figure 7.4 presents the time series recorded at the identical probe position as
in the top plot of Fig. 7.3.
The upper time series in Fig. 7.4 seems to be identical to the one on the
left side of Fig. 7.3 for the T1 mode. However, closer inspection of the time
span between 0s ≤ t ≤ 0.25s in detail B shows a pressure trace consisting
of more than one harmonic signal. The normalized frequency spectrum for
the time between 0.0s ≤ t ≤ 0.25s reveals that the pressure signal consists
of a superposition of T1 and T2 oscillations, i.e. p ′(t ) = p ′

T1 + p ′
T2. The green

T1 and blue T2 lines in Fig. 7.4 present the respective envelope amplitudes
and are obtained by bandpass-filtering the raw pressure signal. Green and
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detail A

detail B

detail A
fT1

fT1

fT2detail B

10.2 kPa

Figure 7.4: Computed time series with frequency spectra for a time span at the
onset of the instability and in the limit-cycle.

blue curves in the close-up view confirm that both modes are simultaneously
present during the onset of the thermoacoustic instability. Of course, this
is not the case in the T1 mode time trace of Fig. 7.3. Finally, the amplitude
of the T1 mode increases and saturates towards oscillation amplitudes of
p̂T1,lim ≈ 10.2kPa in the limit-cycle. The frequency spectrum of the limit-cycle
oscillations confirms a single frequency dominance at the T1 eigenfrequency
fT1, which explains the harmonic pressure oscillations in detail A. The en-
velope amplitude of the T2 mode remains near the zero line although the
T2 mode is linearly unstable up to pressure amplitudes of p̂T2,lim ≈ 5.0kPa
(cf. Fig. 7.2). Hence, the T2 mode is suppressed by the T1 mode, which is
the "survivor" of the mode competition. The non-linear coupling between
the modes is established by the amplitude-dependent modification of ROM
system matrix Ãr. This is highlighted in the Appendix G, where it is shown
analytically that the T1 and T2 modes in the ROM illustrated in Fig. 7.1 can
be interpreted as coupled Van-der-Pol oscillators. Notice that the limit-cycle
amplitude of the T1 mode in Fig. 7.4 is equal to the uncoupled case on the
left side of Fig. 7.3 and amounts to p̂T1,lim ≈ 10.2kPa. The conclusion from this
comparison is that either modal energy transfer processes between T1 and T2
modes are irrelevant in the investigated scenario or the ROM is yet not able
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7.2 Non-Linear Coupling between T1 and T2 Modes

of capturing these type non-linear coupling phenomenon. This discussion
and the corresponding investigations are left to future work. Nevertheless,
the single frequency dominance in the limit-cycle of Fig. 7.4 is in agreement
with the measurements of Fig. 3.2 b) and demonstrates the applicability of
the modified ROM for analyses of modal suppression mechanisms.

To emphasize the importance of interactions between multiple unstable
modes as part of the complete thermoacoustic prediction strategy presented
in the introduction Section 1.2, the following hypothetical scenario is con-
sidered: After commissioning of a novel gas turbine, a pressure time trace is
measured, which indicates the single frequency dominance of the unstable
T1 mode in its combustion chamber. To suppress this T1 instability, an active
control system particularly designed to damp the T1 oscillations is planned to
be implemented to the gas turbine. The control system is activated automati-
cally as soon as (with some time delay) a certain pressure amplitude threshold
value is exceeded in the chamber. Before realizing the expensive control sys-
tem in the real gas turbine, the stability analysis framework proposed in this
thesis is applied:

1. Linear stability analyses with the advanced CFD/CAA method presented
in Chapter 5 are performed for various eigenmodes in the vicinity of the
unstable T1 eigenfrequency. Indeed, the T1 mode is predicted to be lin-
early unstable. However, one further eigenmode, namely the T2 mode, is
identified to be linearly unstable, too.

2. Through application of the numerical analysis methodology introduced
in Chapter 6, acoustically induced vorticity perturbations and their in-
teraction with the bulk flow were identified to be the root-cause of limit-
cycle oscillation of these two high-frequency modes.

3. The modified ROM proposed in this chapter is created for these two
modes. In addition, the active control system is virtually incorporated to
the ROM. To mimic the real application, a pressure query is included to
the ROM. After having exceeded a certain T1 pressure amplitude value
plus a certain time delay, the T1 damping rate is increased in the ROM
system matrix, which mimics the effect of the, now activated control sys-
tem in the real combustor.
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The outcome of this procedure is shown in Fig. 7.5, where it is assumed that
the A2EV combustor represents the real engine.

activation of
countermeasure 

fT1 fT2

Figure 7.5: Modeling of an active thermoacoustic control system to suppress T1
oscillations, while the T2 mode is linearly unstable.

Similarly as in the real gas turbine, pressure amplitudes of the T1 mode
(green line in Fig. 7.5) start to grow exponentially, saturate and settle in the
limit cycle. The corresponding frequency spectrum gives the misleading
impression that the T1 mode is sole unstable mode in the combustor –exactly
as in the real engine. Indicated by the red, vertical line in Fig. 7.5, the active
control system is activated shortly after the T1 instability has appeared. In
consequence, the T1 mode vanishes, i.e. it becomes linearly stable. However,
this gives rise to oscillations of the unstable T2 mode, which has yet not
been considered in the design of the control system. This finding implies
to re-design the active control system to suppress T2 oscillations as well.
Without the utilization of the numerical prediction framework of this thesis,
the expensive realization of the original active control strategy would have
produced unsatisfactory stability results caused by an unexpected, dynamical
thermoacoustic system behavior.

Admittedly, this scenario is of rather theoretical nature. Nevertheless, it
stresses the importance of receiving a complete picture of the dynamics of
a thermoacoustic system reaching from the knowledge about its linear sta-
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bility limits to non-linear modal interactions. In particular, this might be im-
portant for gas turbine combustors, which are characterized by a large num-
ber of unstable modes closely spaced in frequency. In such complex cases,
the identification of the dominant mode is not as straightforward as for the
A2EV combustor, where only two potential interaction partners are present.
Theoretically, even multiple dominant modes may coexist although they do
not synchronize. This might be the case, if the interaction volume, or in other
word the coupling strength, of the unstable modes is weak.
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8 Summary, Conclusions and Future Work

This thesis deals with high-frequency thermoacoustic instabilities in lean-
premixed gas turbine combustion systems. These instabilities increasingly of-
ten occur after commissioning of modern gas turbine combustors and may
lead to hardware damage and/or decrease the operational window of the gas
turbine. The research objective of this work represents the qualitative and
quantitative prediction of thermoacoustic instabilities from a numerical and
theoretical perspective. This allows systematic application of countermea-
sures to avoid or mitigate unstable behavior. The approach to predict ther-
moacoustic instabilities is separated into three steps which comprise

1.) the determination of the linear thermoacoustic stability limits,

2.) the identification of non-linear saturation mechanisms leading to the
formation of limit-cycle oscillations and

3.) the consideration of modal suppression phenomena between linearly
unstable eigenmodes.

The goal of this thesis is to improve the predictability of high-frequency
thermoacoustic instabilities by the accurate consideration of the influence of
acoustically induced vorticity perturbations on the thermoacoustic stability
behavior in the three analysis steps. This is achieved by providing new com-
putational methods and models and by advancing existing ones. Additionally,
fundamental numerical studies are carried out to enhance the understanding
of the influence of vorticity perturbations on high-frequency thermoacoustic
oscillations in general.

To judge the performance of the computational tools and to validate numer-
ical investigations, a lab-scale, swirl-stabilized combustor is used as bench-
mark system. For the first transversal (T1) eigenmode of this combustor ex-
tensive experimental data is available.
Step #1 of the thermoacoustic stability prediction approach is based
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on a hybrid Computational Fluid Dynamics/Computational Aero Acoustics
(CFD/CAA) method. Eigenfrequency simulations with linearized disturbance
equations in the frequency domain, which are solved with the stabilized Finite
Element Method (sFEM), provide information on the thermoacoustic stability
in terms of growth rates. To improve the predictive capabilities of step #1, the
following research tasks are dealt with:

• The Helmholtz decomposition is applied to thermoacoustic systems.
This provides access to acoustic and vortical solution fields in a separated
manner. The decomposed fields are used to perform energetic analyses,
which provide detailed insight into the thermoacoustic stability behav-
ior.

• A methodology is established to eliminate the non-physical impact of nu-
merical stabilization schemes on thermoacoustic growth rates. This al-
lows the physically correct incorporation of acoustic dissipation caused
by acoustically induced vorticity perturbations to the CFD/CAA method.

• A model is developed to describe the effect of interactions between shed
vortices and the flame on the thermoacoustic stability.

• The overall thermoacoustic growth rate is decomposed into its individual
contributions. This provides detailed physical insight into the contribu-
tion of individual effects to the linear thermoacoustic stability behavior.

The main findings of the linear stability assessment are summarized in the
following:

• The elimination of numerical damping in thermoacoustic growth rates
overcomes one of the main shortcomings of the CFD/CAA method on the
basis of the sFEM. It is demonstrated that reasonable linear stability re-
sults can be retrieved from fully discretized, three-dimensional domains,
which proofs the applicability of the CFD/CAA method for practical gas
turbine combustion systems.

• The stability results revealed that acoustically induced vortices are one of
the main sources of acoustic damping.
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• From comparison to experiments, it is shown that the CFD/CAA ap-
proach consistently reproduces the measurements. For increasing ther-
mal power densities, thermoacoustic driving grows faster than acoustic
dissipation.

• The expected stability limit is predicted accurately. However, a small dis-
crepancy to the experiment remains.

To close this gap, it is suggested to assess the errors in the individual contri-
butions of the overall growth rate which occur by using CFD solution fields as
the input for thermoacoustic stability analysis instead of experimental data.
Additionally, entropy waves, which are precluded from all analysis in this
work, should be incorporated physically correct to the CFD/CAA tool in the
future.

Step #2 of the thermoacoustic stability prediction approach focuses on the
identification of non-linear saturation mechanisms, which lead to limit-cycle
oscillations in high-frequency thermoacoustic systems. A fundamental nu-
merical study based on the CFD/CAA approach is carried out to individu-
ally compute thermoacoustic damping and driving rates for various acoustic
amplitude levels at the T1 eigenfrequency of the benchmark combustor. The
study revealed the following findings:

• Driving due to flame-acoustics interactions exhibits almost no
amplitude-dependency, which agrees with prior experimentally based
studies at the author’s institute. This contradicts the concept of heat
release saturation as the root-cause for limit-cycle oscillations at least
for the high-frequency benchmark system investigated in this thesis.

• Instead, a significant increase of acoustic dissipation is identified for in-
creasing pressure amplitudes in this numerical study, which explains the
formation of the limit-cycle.

• The dissipation mechanism responsible for the amplitude-dependent
dissipation increase can be related to the interaction of vorticity pertur-
bations induced by the refraction of acoustic waves at mean density gra-
dients with the mean velocity field.
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• The increase of acoustic dissipation associated with the refraction of
acoustic waves is caused by an amplitude-dependent flame contraction,
which was also observed in the benchmark experiment.

• On the contrary, the "classical" phenomenon of acoustically induced vor-
tex shedding from sharp corners, which is mainly responsible for acous-
tic damping in low-frequency systems, is found to barely affect to stability
of the investigated high-frequency thermoacoustic system.

The following investigations are suggested for future work:

• The transferability of the findings gathered in step #2 of the thermoa-
coustic stability prediction approach to other combustion systems must
be analyzed and demonstrated.

• Further research should focus on the identification of other amplitude-
dependent damping mechanisms. This might include investigations of
the amplitude-dependent increase of acoustic damping caused by the
non-homentropic mean flow field and the effect of non-linear vortex
shedding.

In step #3 of the thermoacoustic stability prediction approach, interactions
between unstable acoustic eigenmodes are studied. Modal coupling effects
are investigated in the time domain with a Reduced Order Model (ROM), which
is based on the modal truncation theory. This method allows the efficient sim-
ulation of the non-linear dynamical behavior of multiple unstable acoustic
eigenmodes in arbitrarily complex geometries. The ROM is modified to con-
sider the amplitude-dependent increase of acoustic dissipation, which was
identified as the root-cause of limit-cycle oscillations in step #2. Then, the in-
teraction between linearly unstable first and second transversal modes of the
benchmark combustor is analyzed, which yielded the following findings:

• The single frequency dominance of the T1 mode measured in the bench-
mark combustor is reproduced in the ROM. This demonstrates that the
modified ROM correctly captures suppression mechanisms between un-
stable modes.

• It is found that both transversal eigenmodes can be interpreted as two
coupled Van-der-Pol oscillators, which explains the modal suppression
processes from a theoretical point of view.
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In the future, the application of the modified ROM to thermoacoustic sys-
tems with a large number of unstable modes closely spaced in frequency is
expected to unveil fundamental physical understanding of complex modal in-
teraction phenomena. However, this demands for the incorporation of addi-
tional modal coupling effects to the ROM next to the suppression mechanism.
This comprises the consideration of (higher-order) synchronization of, and
the modal energy transfer between multiple unstable acoustic eigenmodes
through physically motivated modeling approaches.
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A Energy Transformation Processes
between Acoustic and Vortical Sub-Modes

As illustrated in Fig. A.1, the co-existence of acoustic and convective, vortical
disturbance types in LNSE/LEE eigenmodes implies that the eigensolutions
obtained by directly solving the eigenvalue problem of Eq. (4.1) are not of pure
acoustic nature, but capture the evolution of the convectively transported,
vortical sub-mode in a superimposed manner as well, i.e. φ̂φφi = φ̂φφi,a + φ̂φφi,v

12.
Mathematically, the eigenvalues are linked to the eigenvectors, which implies
that the corresponding growth rates contain the contributions of acoustic and
vortical sub-modes, i.e. ν = νa +νv, as hypothesized in Ref. [37]. However, a
thermoacoustic stability assessment requires the quantification of the acous-
tic part only as this part provides information on whether a thermoacoustic
instability occurs or not. Notice that the oscillating frequency f is identical
for both sub-modes, since the convectively transported vortices are triggered
by the acoustic sub-mode.

[iωiE+(A+ASUPG)]   i = 0 iωi and    i
=

ωi=2πf-i(νa+νv)ˆ ˆ
ˆ ˆ ˆ

eigenfrequency analysis solution gives

i,a+   i,v
iωi=f(   i)ˆ
i

Figure A.1: Implication of the co-existence of acoustic and vortical sub-modes
on eigensolutions of the LNSE/LEE.

The objective of this appendix comprises the clarification, whether LNSE/LEE
growth rates obtained by directly solving the eigenvalue problem of Eq.
(4.1) can be used for a thermoacoustic stability analysis, although they are
composed of acoustic and vortical parts. This goes along with a theoreti-
cal/numerical investigation of the energy transformation processes between

1Parts of this chapter were published in Ref. [134]
2This appendix refers to Chapters 4-6 in the main part of this thesis.
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acoustic and vortical sub-modes, which finally seeks to extract the unambigu-
ous, pure acoustic net growth rate from a direct LNSE/LEE eigensolution by
using the growth rate Eq. (4.6). A comparison of the extracted, pure acoustic
net growth rate with the one computed by solving the eigenvalue problem of
Eq. (4.1) with the sFEM provides an answer to this question.

The numerical setup used for the theoretical study in Appendix A.2 is intro-
duced in Appendix A.1. Next, the term responsible for vortex shedding is iden-
tified in the LEE and the region of vortex generation is identified. Then, the en-
ergy transformation process between acoustic and vortical sub-modes is dis-
cussed. A connection between the energy equation for disturbance quantities
derived by Myers (see Eqs. (2.33)-(2.36)) [94, 95] and the equation to quantify
the pure acoustic dissipation due to vortex shedding provided by Howe [66] is
established. The latter is used to extract the pure acoustic net damping rates
αDΩΩΩ,a (cf. Eq. (4.9)) from the LEE. These damping rates are compared to the
corresponding LEE growth rates, which are obtained by solving the eigenvalue
problem of Eq. (4.1). Finally, a conclusion is drawn concerning the applicabil-
ity of these direct LEE growth rates for a thermoacoustic stability assessment.

A.1 Numerical Setup

For the purpose of this study, an isothermal configuration of the A2EV swirl
configuration is used, which is similar to the reactive one of Chapter 3 but
differs by a nozzle termination. A schematic with geometrical dimensions of
the combustion chamber with representative mean flow velocity fields is given
in Fig. A.2.

For this configuration, the operational condition is fixed to an

• inlet air temperature of T̄in = 293K and an

• inlet mass flow of ¯̇min = 120g/s.

The nozzle termination provokes an axial attenuation of transversal acoustic
modes towards zero at the outlet. This prevents acoustic fluxes through this
boundary. As explained in Section 2.4.1, this is caused by an increase of the
cut-on frequency in downstream direction as the radius of the chamber
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Figure A.2: Schematic of the isothermal A2EV swirl-stabilized test rig configu-
ration with mean flow fields in the combustion chamber of (from
top to bottom) radial, azimuthal and axial velocities.

Rc decreases. The absence of combustion in this case is optimum for this
analysis as thermoacoustic driving is precluded, i.e. β = 0. Additionally,
baroclinic vorticity generation at density gradients (for details see Chapter 6
and Appendix C) is neglected. Hence, the acoustically triggered generation
of hydrodynamic, convectively transported vortices and their subsequent
interaction with the mean flow remain the sole mechanisms affecting the LEE
growth rate. Remind that LNSE and LEE only differ by the absence of viscous
losses in the latter, which implies that all findings presented in this appendix
are also transferable to the LNSE.

The T1 eigenmode is the acoustic mode of interest in the study of this ap-
pendix. Figure A.3 presents the decomposed LEE disturbance fields, which
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are obtained by the velocity Helmholtz decomposition introduced in Section
4.3. Remember that this is possible due to the isothermal mean flow fields and
the low Mach number in this combustor setup. The first column displays the
superimposed LEE solution variables, i.e. pressure p̂, radial ûr, azimuthal ûθ

and axial velocity ûx. The second and third columns show the corresponding
decomposed acoustic and vortical fields, respectively.

min max

Re{ux}[m/s]

Re{ur}[m/s]

Re{uθ}[m/s]

LEE solution acoustic sub-mode vortical sub-mode

ˆ

ˆ

0

min max
0

min max
0

ˆ

ˆ
min max

0

Re{p}[Pa]

Figure A.3: Results of the Helmholtz decomposition for the T1 eigenmode of the
isothermal A2EV combustor configuration: pressure (first row) with
radial (second row), azimuthal (third row) and axial (fourth row)
velocity distributions for the original LEE solution (left) as well as
decomposed acoustic (middle) and vortical (right) sub-modes.

The damping rate results presented in Appendix A.3 correspond to the LEE
eigenmode shapes displayed in Fig. A.3. These are computed with the two-
dimensional numerical setup shown in Fig. A.4.

The close-up view displays the unstructured, triangular mesh in the vicinity
of the area expansion. The maximum element size directly at the edge is con-
stantly set to max(H) = 10−5m. The maximum element size of the remain-
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Figure A.4: Computational domain with boundary conditions and inspection
window showing the mesh in the vicinity of the area expansion.

ing domain is varied in the range of 3 ·10−4m ≤ max(H) ≤ 10−3m. The inlet is
specified as a closed boundary condition, i.e. û ·n = 0. In this case, the speci-
fication of the inlet boundary condition is of minor importance and does not
influence the final results, which is ascribed to the evanescence of acoustic
amplitudes towards a value close to zero at the inlet. Recall that this is caused
by the the decreasing radius Rc at the chamber inlet, which increases the cut-
on frequency f cut-on (cf. Eq. (2.46)). The outlet is characterized by a vanishing
pressure, i.e. p̂ = 0. Due to the nozzle termination, the acoustic T1 mode shape
decays towards a zero value at the outlet. However vortices can reach the out-
let, which leads to a vortical energy density flux exiting the domain through it.
Combustor walls are treated as slip walls, where û ·n = 0.

A.2 Acoustic-Vortical Interactions in the Linearized Euler
Equations

The LEE (and LNSE) capture linear interactions between mean flow quan-
tities and an acoustic field including the acoustically triggered shedding of
vortex perturbations as well3. As explained in Section 2.6, this phenomenon
is caused by a shear-layer in the underlying, steady-state flow field. Its in-
teraction with the acoustic field results in a transformation of acoustic into
vortical momentum (see Fig. 2.2 d)) [66]. The conversion of momentum is
connected to a shift of kinetic energy from the acoustic towards the vortical

3This section of the appendix seeks to provide more detailed information on the vortex shedding mechanism
introduced in Section 2.6. Furthermore, it supports the discusion about the impact of the SUPG/PSPG stabiliza-
tion scheme on acoustic and vortical sub-modes in Section 5.1.1.2.
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perturbation mode. This involves a decrease of energy in the acoustic field
and an energization of the vortical sub-mode. In turn, the generated vortices
interact with the mean flow, which may damp or amplify acoustics. However,
if the reduction of acoustic energy due to the vortex formation exceeds the
potential excitation due to the subsequent mean flow-vortex coupling (vortex
sound), a net damping of acoustic oscillating amplitudes results [66]. Con-
cerning the linear stability of thermoacoustic systems, the generation and
advection of vortex disturbances can thus counteract flame driving and may
turn a thermoacoustic system into stable operation [37].

In order to identify this aeroacoustic interaction as part of the LEE, the mo-
mentum Eq. (2.28) is rewritten in an equivalent form by using the vector iden-
tity of Eq. (2.21). Combining the resulting equation with the decomposition
approaches of Eqs. (2.19)-(2.20) and rearranging the terms yields the momen-
tum equation

ρ̄ [iωaûa +∇ (ū · ûa)]+∇p̂a =
−ρ̄iωvûv − ρ̄∇ (ū · ûv)−∇p̂v −

[
ρ̄
(
Ω̂̂Ω̂Ω× ū

)+ ρ̄ (
Ω̄̄Ω̄Ω× ûv

)+ ρ̄ (
Ω̄̄Ω̄Ω× ûa

)]
,

(A.1)

where the term (ρ̂ū · ∇ū) in Eq. (2.12) is neglected. This can be justified by
the combination of its second order dependence on the mean flow velocity
and the low Mach numbers in this combustor configuration, which results in
a negligible small impact of this term on LEE eigensolutions (cf. Fig. 6.7 in
Chapter 6). The l.h.s. of Eq. (A.1) is equal to the APE (2.30) and describes the
propagation and evolution of the acoustic velocity in the presence of a mean
flow [89]. The second term on the r.h.s. of Eq. (A.1) describes the irrotational
transport by convection of incompressible vortex perturbations. The fourth
and fifth terms capture interactions between existing vorticity perturbations
and the mean flow, while the sixth term in Eq. (A.1) is the one responsible
for the generation of convectively transported vortices. This can be shown by
taking the curl of Eq. (A.1) and applying the vector identities ∇×(ΩΩΩ×u) =ΩΩΩ∇·
u+u∇·ΩΩΩ+ (u ·∇)ΩΩΩ− (ΩΩΩ ·∇)u with ∇·ΩΩΩ=∇· (∇×u) = 0 and ∇×∇(...) = 0. For
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isothermal conditions4, the following vorticity transport equation is obtained

ρ̄
[
iωΩ̂ΩΩ+

=∇×(Ω̂ΩΩ×ū)︷ ︸︸ ︷
(ū ·∇)Ω̂ΩΩ− (

Ω̂ΩΩ ·∇)
ū+

=∇×(Ω̄ΩΩ×ûv)︷ ︸︸ ︷
(ûv ·∇)Ω̄ΩΩ− (

Ω̄ΩΩ ·∇)
ûv+...

...+Ω̄ΩΩ∇· ûa + (ûa ·∇)Ω̄ΩΩ− (
Ω̄ΩΩ ·∇)

ûa︸ ︷︷ ︸
=∇×(Ω̄ΩΩ×ûa)

]= 0.
(A.2)

Notice that irrotationality of the acoustic velocity field (∇ × ûa = Ω̂ΩΩa ≈ 0)
is assumed, which is valid for isothermal and low Mach number cases as
explained in Section 4.3. Furthermore, incompressibility of the isothermal
mean flow field, i.e. ∇· ū = 0, and of convectively transported vortical velocity
disturbances (see Eq. (4.15)) was exploited to obtain Eq. (A.2). The vorticity
Eq. (A.2) reveals that the cross-product term (Ω̄̄Ω̄Ω× ûa) in the decomposed LEE
momentum Eq. (A.1) interconnects the mean vorticity field with the acoustic
sub-mode. It is responsible for the generation of convectively transported vor-
tices trough dilatational Ω̄ΩΩ∇ · ûa, convective (ûa · ∇)Ω̄ΩΩ and stretching/bending
(Ω̄ΩΩ · ∇)ûa effects [17]. In Section 2.6 it is shown that these mechanisms are
the strongest directly downstream of the sharp corner at the combustion
chamber inlet, which explains the location of vortex generation in Fig. A.3.

The amount of acoustic energy transformed into vortical energy can indirectly
be quantified by evaluating the force which shed vortices exert on the acoustic
velocity field. In order to quantify this energy transformation process in terms
of a damping rate, the growth rate Eq. (4.7) with Eqs. (2.37)-(2.40) can be used.
For isothermal and homentropic mean flow conditions, the decomposed re-
lations for E , I and D read (Q = 0 as combustion is absent):

E =
(
p̂a + p̂v

)2

2ρ̄
+ ρ̄ (ûa + ûv)2

2
+ (
ρ̂a + ρ̂v

)
ū · (ûa + ûv) , (A.3)

I =
[ p̂a + p̂v

ρ̄
+ (ûa + ûv) · ū

][
ρ̄ (ûa + ûv)+ (

ρ̂a + ρ̂v

)
ū
]
, (A.4)

D = ρ̄[(
Ω̄̄Ω̄Ω× (ûa + ûv)

) · (ûa + ûv)︸ ︷︷ ︸
=0

+(
Ω̂̂Ω̂Ω× ū

) · (ûa + ûv)
]
. (A.5)

In Eq. (A.5), terms of second order dependence on the mean flow velocity
(i.e. ρ̂ū · ∇ū = O (M2) ) are neglected again due to the low Mach number

4For reactive conditions with temperature gradients, a baroclinic vorticity source term appears. This is dis-
cussed in more detail in Chapter 6.
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assumption.

In the following, the impact of each term in Eqs. (A.4)-(A.5) (starting with Eq.
(A.5)) on the net growth rate ν is discussed and the corresponding pure acous-
tic contribution is extracted. In the subsequent Appendix A.3, the acoustic,
net damping rates are computed and compared to the ones obtained by
solving the eigenvalue problem of Eq. (4.1) with the LEE. Finally, it is shown
that the latter approach is able to reproduce the pure acoustic part as well,
although the eigensolutions contain the contribution of the convectively
transported, vortical sub-mode.

The first term in the dissipation Eq. (A.5) captures the vortex generation pro-
cess. The contribution of this term to the net dissipation D vanishes identi-
cally per definition due to the vector identity (ΩΩΩ×u) ·u = 0. Mathematically,
this occurs as the cross product (ΩΩΩ×u) gives a vector which is perpendicular
to ΩΩΩ and u. Thus, the vortex generation process does not influence the LEE
net growth rate ν, as the corresponding damping rate αDΩΩΩ,1 gives a zero value:

αDΩΩΩ,1 = 1

2

−∫
V ρ̄〈

(
Ω̄̄Ω̄Ω× (ûa + ûv)

) · (ûa + ûv)〉dV∫
V 〈E〉dV

= 0. (A.6)

This infers that the vortex generation process represents an energy conserv-
ing transformation process as the work performed by the shed vortices in the
acoustic field is equal to the work performed by the acoustic field to generate
the vortices. Notice that this confirms the hypothesis stated in the dissertation
of Hummel [37]. Expanding the numerator of Eq. (A.6) to(

Ω̄̄Ω̄Ω× ûv

) · ûa +
(
Ω̄̄Ω̄Ω× ûa

) · ûv = 0, (A.7)

where
(
Ω̄̄Ω̄Ω× ûa

)·ûa =
(
Ω̄̄Ω̄Ω× ûv

)·ûv = 0 is already considered, shows that the inter-
action between mean vorticity and acoustic velocity field (second term in Eq.
(A.7)), which provokes the shedding of vortex perturbations, performs work
in the vortical velocity disturbance field ûv. This amplification of the vortical,
convectively transported sub-mode is compensated by the work of the inter-
action between mean vorticity and the instantaneously generated rotational
velocity disturbances (first term in Eq. (A.7)) performed in the acoustic field.
In other words, this means that the energization of the vortical sub-mode is
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achieved on the expense of the acoustic perturbation field, while the total en-
ergy is conserved. The damping rate associated with the dissipation of acous-
tics caused by vortex generation αDΩΩΩ,1,a can thus be determined via the first
term of Eq. (A.7), while the acoustic part of the disturbance energy density

Ea =
p̂2

a

2ρ̄c̄2
+ ρ̄ û2

a

2
+ ρ̂a (ū · ûa) (A.8)

is considered only. The desired acoustic dissipation term appears in Eq. (A.6)
after having removed the term

(
Ω̄̄Ω̄Ω× ûa

) · ûv in the integral of the numerator:

αDΩΩΩ,1,a = 1

2

−∫
V ρ̄〈

(
Ω̄̄Ω̄Ω× ûv

) · ûa〉dV∫
V 〈Ea〉dV

(A.9)

The second term in the dissipation Eq. (A.5) describes the interaction of the
generated disturbance vorticity Ω̂ΩΩ with the mean flow. In contrast to the LEE
damping rate αDΩΩΩ,1 of the vortex generation process (cf. Eq. (A.6)), the LEE
growth rate associated with this term takes generally non-zero values and thus
changes the energetic state of both, acoustic and vortical sub-modes:

αDΩΩΩ,2 = 1

2

−∫
V ρ̄〈

(
Ω̂̂Ω̂Ω× ū

) · (ûa + ûv)〉dV∫
V 〈Ea〉dV

=αDΩΩΩ,2,a +αDΩΩΩ,2,v 6= 0. (A.10)

Hence, the term (Ω̂̂Ω̂Ω× ū) does not describe an energy conserving transforma-
tion process. It can be interpreted as a source or sink of acoustic and vortical
energy, which originates from the coupling of the generated vortices with the
steady bulk flow. Physically, this term represents a force, which can both, in-
crease (energy supply) or decrease (energy reduction) the acoustic ûa as well
as the rotational velocity field ûv. The impact of this term on the acoustic sta-
bility in terms of the acoustic damping rate αDΩΩΩ,2,a can be determined by only
considering the acoustic part of Eq. (A.10), i.e.

αDΩΩΩ,2,a = 1

2

−∫
V ρ̄〈

(
Ω̂̂Ω̂Ω× ū

) · ûa〉dV∫
V 〈Ea〉dV

. (A.11)

The conclusions and findings are summarized in the following:

• From a theoretical point of view, the LEE growth rate does not provide the
pure acoustic damping rate. Instead, it describes the stability behavior of

147



A.2 Acoustic-Vortical Interactions in the Linearized Euler Equations

acoustic and vortical sub-modes in a superimposed manner. Specifically,
the LEE growth rate consists of an acoustic and a vortical contribution,
which are both associated with the coupling of vorticity perturbations
with the mean flow:

αD =αDΩΩΩ,1 +αDΩΩΩ,2 = 0+ (αDΩΩΩ,2,a +αDΩΩΩ,2,v). (A.12)

• The generation of convectively transported vortices through the inter-
action of the acoustic velocity field with the mean vorticity field repre-
sents an energy conserving transformation process. This mechanism has
a zero contribution to the stability of a LEE system since αDΩΩΩ,1 = 0.

• The acoustic growth rate of the LEE system associated with dissipation
inside the concerned volume is obtained by combining Eqs. (A.9) and
(A.11), i.e.

αDΩΩΩ,a =αDΩΩΩ,1,a +αDΩΩΩ,2,a. (A.13)

The sum of the argument of the numerator in Eqs. (A.9) and (A.11), i.e.
Da = ρ̄〈

(
Ω̄̄Ω̄Ω× ûv

) · ûa+
(
Ω̂̂Ω̂Ω× ū

) · ûa〉, is similar to the formulation derived by
Howe [66]. Thus, Howe’s energy expression can be seen as a special case
of Myer’s general formulation for disturbance energy [94], which only ac-
counts for the dissipation of the acoustic sub-mode.

Finally, keep in mind that these findings are not only valid for the LEE but are
also transferable to the LNSE as the cross-product terms (Ω̄̄Ω̄Ω× û) and (Ω̂̂Ω̂Ω× ū)
are present in both systems of equations.

Up to now, only the contribution of the dissipation term D given by Eq. (A.5)
to the stability of a LEE system was investigated. To complete the energetic
analysis, the growth rate νI in Eq. (4.7) associated with intensity fluxes cross-
ing in- and outlet, is accounted for. First, the acoustic intensity flux Ia is dis-
cussed, which consists only of products of acoustic quantities in Eq. (A.4). As
explained in Section 2.4.1, the specification of energetically neutral in- and
outlet boundaries would prevent any acoustic energy fluxes entering or leav-
ing the domain. In this case, the associated growth rate yields νI,a = 0. How-
ever, recall that this special type of impedance boundary condition is only
applicable for acoustic oscillations but not for convectively transported dis-
turbances. The nozzle termination of the isothermal A2EV configuration pro-
vokes yet a similar energetic decoupling effect of the acoustic sub-mode from
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the outlet. It results in the attenuation of high-frequency modes towards zero
acoustic pressure and velocity amplitudes at the outlet. This appears due to
the decreasing chamber diameter and ultimately due to the increasing cut-on
frequency. In consequence, an open outlet boundary condition can be spec-
ified as the acoustic intensity flux is unaffected anyway. This allows the con-
vectively transported vortices to escape through the outlet. In consequence,
all the vortical energy generated inside the domain vanishes through the out-
let boundary. Then, the energy balance for convectively transported vorticity
perturbation reads ∫

S
Iv ·ndS =−

∫
V

DvdV. (A.14)

The net LEE growth rate ν given by Eq. (4.7) can finally be decomposed into:

ν= νI,a︸︷︷︸
=0

+νI,v +αD,v︸ ︷︷ ︸
=0

+αD,a =αa = νa. (A.15)

Equation (A.15) implies that LEE growth rates obtained by directly solving
the eigenvalue problem of Eq. (4.1) can indeed provide the desired acoustic
damping rate required for a thermoacoustic stability analysis. The complete
evolution of the energy transfer between acoustic and vortical sub-modes is
illustrated in Fig. A.5.

interaction of vortices with the mean flow
while they are dissipated by diffussion

vortices leave
the domain

vortex
generation

Re{Ωθ}[1/s]ˆ

min

max

0

Figure A.5: Evolution of vortex disturbances.

One factor, which has not been considered in this study, is the impact of nu-
merical stabilization schemes (subscript "stab") on acoustic and vortical sub-
modes. Artificial diffusion can adopt a role similar as the open outlet, if it pro-
vokes the complete dissipation of the convectively transported vortices before
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they reach the outlet, while the acoustic intensity flux is (nearly) not affected.
Again, only the pure acoustic damping rate would be represented by the LEE
net growth rate5; however, falsified by a part νstab,a associated with the stabi-
lization scheme:

ν= νI,a︸︷︷︸
=0

+ νI,v︸︷︷︸
=0

+αDΩΩΩ,v +νstab,v︸ ︷︷ ︸
=0

+νstab,a +αDΩΩΩ,a = νa. (A.16)

Investigations on the impact of numerical stabilization on acoustic and vorti-
cal sub-modes are subject of Section 5.1.1 in the main part of this thesis. There,
it is revealed that the convectively transported vortices are completely dissi-
pated by diffusive mechanisms before they reach the outlet (cf. Fig. 5.3.). In
consequence, the evolution of the acoustic sub-mode remains the sole con-
tribution in the LEE net growth rate, i.e. ν= νa.

A.3 Results: Comparison of LEE Growth Rates

In this section, the pure acoustic damping rates αDΩΩΩ,a calculated via Eq. (A.13)
are compared with the ones obtained by numerically solving the eigenvalue
problem of Eq. (4.1) with the LEE. An agreement of these two rates, i.e.
αDΩΩΩ,a = ν, legitimates the utilization of LEE growth rates for a thermoacoustic
stability assessment.

Figure A.6 summarizes the computed growth rate results of the target eigen-
mode, which is the T1 mode in this study, in terms of a grid convergence
study (increasing mesh element number from left to right). Additionally,
the ατ-sweep reveals the impact of the SUPG/PSPG stabilization scheme
on the results for the three mesh configurations. The change of the acoustic
damping rate αDΩΩΩ,a with mesh resolution and stabilization parameter is used
to judge convergence of the solution. With reference to Fig. A.6, convergence
is assumed to be reached for values of ατ ≥ 15 independent of the mesh
configuration. This was found to be justifiable as the relative deviation is less
than ≈ ±1rad/s with respect to the mean LEE growth rate value in between
15 ≤ ατ ≤ 50 (cf. the black dashed lines in Fig. A.6). Notice that these results
correspond to the in-swirl direction rotating T1 mode.

5Notice that this is also valid for the LNSE.
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mean value: -5.26
rad
s mean value: -4.33

rad
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Figure A.6: Computed T1 growth rates for maximum mesh element sizes of
1E-3m (left), 5E-4m (middle) and 3E-4m (right) in the range of
0 ≤ ατ ≤ 50. Squares and crosses show the acoustic damping rates
associated with the vortex generation process and the interaction of
vortices with the bulk flow,αDΩΩΩ,1,a andαDΩΩΩ,2,a respectively. The open
circles represent the acoustic damping rate αD,a = αDΩΩΩ,1,a +αDΩΩΩ,2,a.
The filled circles are the damping rates computed by solving the
eigenvalue problem of Eq. (4.1).

In Fig. A.6, the open circles represent the pure acoustic damping rates αDΩΩΩ,a

of the LEE system. These are obtained by evaluating Eq. (A.13) with the
decomposed T1 eigenmode shapes of Fig. A.3 at the predefined mesh and
tuning parameter configurations. This damping rate is composed of the
contributions of the vortex generation process (squares) and the subsequent
interaction of the shed vortices with the mean flow (crosses), i.e. αDΩΩΩ,1,a (cf.
Eq. (A.9)) and αDΩΩΩ,2,a (cf. Eq. (A.11)), respectively. The former mechanism
reveals negative damping rate values indicating that acoustic energy is
reduced/consumed to generate the vortices. On the contrary, the latter con-
tribution shows positive damping rates, which implies a supply of acoustic
energy due to the vortex-mean flow coupling. The sum of squares and crosses
in the plots of Fig. A.6 yields the line with the open circles. Thus, this line rep-
resents the pure acoustic damping rate αDΩΩΩ,a = αDΩΩΩ,1,a +αDΩΩΩ,2,a = νa. Remind
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that the acoustic energy density fluxes through in- and outlet are zero. The
filled circles show the growth rates, which are obtained by directly solving the
eigenvalue problem of Eq. (4.1) with the LEE. Both, acoustic damping rate
and LEE growth rates take positive values in the converged range indicating
that the eigenmode is acoustically stable.

The good match of acoustic damping rates with the directly obtained LEE
growth rates shows that eigenfrequency analyses with the LEE (and LNSE) do
reflect the stability of the acoustic sub-mode only. The implicit impact of the
vortical sub-mode on the directly obtained LEE growth rates is thus either
compensated by the outlet boundary condition, which allows the vortices to
leave the domain but prohibits acoustic intensity fluxes to cross it, or/and
by the dissipation of the vortices by (numerical) diffusion. In conclusion, the
acoustic growth rate part remains the sole contribution in the LEE growth
rates of this study. This shows that the LNSE and LEE are thus suitable systems
of equations to assess the thermoacoustic stability of the acoustic eigenmodes
of interest.

The deviation between open and filled circles can be explained by the pres-
ence of the SUPG/PSPG artificial diffusion scheme acting on the acoustic sub-
mode: In the LEE growth rates ν (closed circles), the impact of numerical sta-
bilization is inherently included. This effect is absent in the acoustic damping
ratesαDΩΩΩ,a obtained by the growth rate Eq. (4.6). The incorporation of acoustic
damping caused by (artificial) diffusion in this post-processing analysis is not
straightforward and has not yet been achieved. In conclusion, the lower LEE
growth rate values can be related to a numerical damping contribution, which
falsifies the physically correct result. Figure A.6 reveals that this error reduces
for an increasing mesh resolution. Notice that the impact of the numerical sta-
bilization scheme can be eliminated in the LEE growth rates by applying the
correction method proposed in Section 5.1.1.3.
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B Bloch-Wave Theory for Thermoacoustic
Systems

This appendix provides information on how to implement pseudo-periodic
boundary conditions in systems with rotational symmetry and highlights
difficulties arising in the presence of vortices. Additionally, this appendix
presents a workaround for the vortex-problem in systems with continuous
rotational symmetry which leads to Eq. (2.47) introduced in Section 2.4.2 of
the main part of this thesis.

Combustion chambers often exhibit discrete periodicity in circumferential di-
rection. Then, the so called Bloch-wave theory can be employed to represent
acoustic modes, which significantly reduces the computational effort not only
in the frequency [135], but also in the time domain [136]. Specifically, the com-
putational domain can be decreased to one unit cell, i.e. 1/N of the entire do-
main, where N is the degree of rotational symmetry of the system. According
to the Bloch-wave theory [137], the acoustic mode shape of the solution vari-
ables φ̂φφa can be expressed as

φ̂φφa (r,θ, x,ω) = φ̂φφa,N (r,θ, x,ω)e i bθ, (B.1)

where r , θ and x denote radial, azimuthal and axial coordinate direction, re-
spectively. The first multiplicator φ̂φφa,N in Eq. (B.1) hosts information on the
acoustic amplitude distribution in the N repeating sectors. It is identical in
each of them and continuous between interfaces, i.e.

φ̂φφa,N

(
r,θref,N − π

N
, x,ω

)
= φ̂φφa,N

(
r,θref,N + π

N
, x,ω

)
. (B.2)

θref,N is the azimuthal reference angle associated with the bisector plane of
each of the N unit cells. The second multiplicator in Eq. (B.1) defines the
complex phase in circumferential direction and thus, describes the azimuthal
variability of φ̂φφa,N with |b| as the azimuthal mode order. If the unit cell exhibits
reflectional symmetry, the sign of b only specifies the direction of rotation
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of azimuthal acoustic modes. These modes are also known as degenerate
modes [58, 138]. If b = 0, any circumferential variability is precluded, which
only allows longitudinal or radial mode shape solutions. If N is an even num-
ber and b = N /2, so-called push-pull modes occur, which exhibit alternating
signs in adjacent sectors [138].

In summary, Eqs. (B.1) and (B.2) allow the reconstruction of the acoustic am-
plitude distribution in the full domain via mapping the amplitude solution of
one sector to the others, while adapting its complex phase according to the
Bloch-number. This implies restricting computations to only one unit cell,
which results in the desired reduction of the computational domain by the
factor 1/N. Therefore, the interfaces to the adjacent sectors need to be defined
by boundary conditions. Specifically, inserting Eq. (B.1) into Eq. (B.2) inter-
connects both interfaces of one representative sector by the pseudo-periodic
boundary condition

φ̂φφa

(
r,θref + π

N
, x,ω

)
= φ̂φφa

(
r,θref − π

N
, x,ω

)
e−i b 2π

N . (B.3)

Figure B.1 a) shows the T1 pressure distribution in a cross-section of the
A2EV combustor. As an example, the combustion chamber is split into N = 8
identical sectors. Instead of solving the full domain, the simulation can be
restricted to the highlighted sector marked by the bisector θref. The plane
view of the cross section in Fig. B.1 b) shows the pseudo-periodic boundary
conditions of Eq. (B.3) to couple the interfaces at θ = θref + π

N and θ = θref − π
N .

The Bloch-wave theory only applies to (purely) acoustic modes (subscript a
in all former equations of this section). As indicated by the vortices in Fig. B.1
b), convectively transported, hydrodynamic vortex perturbations (subscript
v) occurring in LEE or LNSE solutions cannot be described physically correct
by the pseudo-periodic Bloch boundary condition given by Eq. (B.3). For in-
stance, in a case without swirling mean flow, the interfaces would need to
be defined as symmetry boundary condition, instead of a pseudo-periodic
one. However, the definition of interface boundary conditions, which act sep-
arately on acoustic and vortical perturbations is not straightforward. This can
be circumvent by directly inserting the Bloch-wave function (B.1) into the gov-
erning equations and computing φ̂φφa,N (r,θ, x,ω) at θ = θref instead of prescrib-
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Figure B.1: a) Separation of the A2EV combustor into eight unit cells;
b) pseudo-periodic boundary conditions for transversal acoustic
modes.

ing circumferential periodicity via the pseudo-periodic boundary condition
of Eq. (B.3). However, this is only possible if the geometry of interest together
with all the corresponding mean flow quantities exhibit continuous rotational
symmetry. Then, N →∞, which reduces the three-dimensional problem to a
two-dimensional one at the θref-plane, as illustrated by the blue plane in Fig.
B.1 a). In this case, solution variables of the LNSE/LEE/APE can be written as

φ̂φφ (r,θ, x)
∣∣∣
θref

= φ̂φφ (r, x)e i bθ
∣∣∣
θref

. (B.4)

Consequently, spatial derivatives of solution variables in azimuthal direction
become

∂φ̂φφ (r,θ, x)

∂θ

∣∣∣
θref

= i b φ̂φφ (r, x)e i bθ
∣∣∣
θref

. (B.5)

Equation (B.4) (with Eq. (B.5)) is the equation presented in Section 2.4.2.
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C Details on the Helmholtz
Decomposition

This appendix seeks to provide details on the Helmholtz decomposition of
LNSE/LEE solution fields introduced in Section 4.3.

C.1 Comparison between Mass Flow and Velocity Helmholtz
Decomposition

In Section 4.3, the disturbance velocity û is identified to be an inappropriate
quantity to decompose LNSE/LEE mode shapes of reacting mean flow fields
into acoustic and vortical sub-modes via the Helmholtz decomposition. This
appears as the underlying acoustic velocity field ûa is not irrotational, which
will be shown in the following: For demonstrative purposes, it is assumed that
ū = 0. As a result, the isentropic LEE momentum Eq. (2.28) simplifies to

ρ̄iωû+∇p̂ = ρ̄iωûa +∇p̂a = 0 (C.1)

Equation (C.1) is of pure acoustic nature as any convective effects are absent.
By taking the curl of Eq. (C.1), the corresponding vorticity equations is ob-
tained

iωΩ̂ΩΩ= iωΩ̂ΩΩa =−∇ρ̄×∇p̂a

ρ̄2
, (C.2)

where the r.h.s. of Eq. (C.2) describes the vorticity production by the baroclinic
effect. Equation (C.2) confirms that the acoustic velocity field ûa is governed
by a rotational part, if ∇ρ̄ 6= 0; even in the limit of a vanishing mean flow
velocity. This observation disqualifies LNSE/LEE velocity fields to serve as the
input for the Helmholtz decomposition at least for reacting cases.

To circumvent this, Eq. (C.1) is written in its equivalent conservative form:

iωm̂+∇p̂ = iωm̂a +∇p̂a = 0 (C.3)
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where m̂ is the disturbance mass flow. Taking the curl of Eq. (C.3) reveals

iω∇×m̂ = iω∇×m̂a = 0, (C.4)

which shows that the acoustic disturbance mass flow is irrotational despite
the presence of mean density gradients. This indicates that the disturbance
mass flow represents a suitable quantity for the determination of acoustic
and vortical sub-modes via the Helmholtz decomposition.

The plots shown in Fig. C.1 compare mass flow (top halves of mid and right
columns) with velocity (lower halves of mid and right columns) Helmholtz de-
composition results of the T1 eigenmode shape with each other. The original
LNSE solution fields in the left column of Fig. C.1 are obtained for reactive
conditions in the A2EV combustor. Visual inspection of the acoustic solution
fields obtained by the mass flow Helmholtz decomposition in the top halves
of the mid column reveals good agreement with the original LNSE solution
fields. Subtraction of these acoustic fields from the LNSE fields gives the vorti-
cal fields in the top halves of the right column, which are associated with con-
vectively transported vortices. Erroneously using the LNSE velocity field as the
input for the Helmholtz decomposition leads to inaccurate results for both,
acoustic and vortical sub-modes. This can be seen by comparing the plots in
the lower halves of the mid column with the original LNSE fields. The acoustic
sub-mode is not reproduced correctly. Subtraction of these incorrect acous-
tic decomposition results from the original LNSE solution fields does not only
give the convectively transported vortices but also an acoustic part which is
erroneously attributed to the vortical fields (cf. the lower halves of the plots in
the the right column of Fig. C.1).

C.2 Relation between Scalar Potential and Acoustic Pressure

This appendix presents the derivation of Eqs. (4.19) and (4.24) introduced in
Section 4.3. The appendix starts with the derivation of Eq. (4.24).

For isothermal conditions and low Mach numbers, the velocity Helmholtz de-
composition can be used to extract acoustic and vortical solution fields as ex-
plained in Section 4.3. In this case, the acoustic pressure p̂a is linked to the
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Figure C.1: Results of the mass flow (top halves) and velocity vector (lower
halves) Helmholtz decomposition for the T1 eigenmode of the reac-
tive A2EV combustor configuration: pressure (first row) with radial
(second row), azimuthal (third row) and axial (fourth row) velocity
distributions for the original LNSE solution (left) and decomposed
acoustic (middle) and vortical (right) sub-modes.

scalar velocity potentialΦ by [111] (cf. Eq. (4.24))

p̂a =−ρ̄ (iωΦ+ ū ·∇Φ) (C.5)

The relation in Eq. (C.5) can be derived from the APE momentum Eq. (2.30),
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C.2 Relation between Scalar Potential and Acoustic Pressure

i.e.
ρ̄ (iωû+∇ (ū · û))+∇p̂ = 0. (C.6)

Notice that the term p̂/c̄2 1
2∇ (ū · ū) is neglected in Eq. (C.6), which can be justi-

fied by its second order dependency on the mean flow velocity and the low-
Mach number assumption. Writing Eq. (C.6) in terms of the velocity potential,
i.e. û = ûa =∇Φ gives (recall that ∇ρ̄ = 0)

∇(
ρ̄ (iωΦ+ (ū ·∇Φ))+ p̂a

)= 0, (C.7)

where linearity of the gradient operator is exploited. The trivial solution of Eq.
(C.7) is given by Eq. (C.5).

To obtain the relation between acoustic pressure and the mass flow potential
Φm̂, the APE momentum equation in conservative form is required. Starting
point for its derivation is the linearized LEE momentum equation in conser-
vative form, i.e.

iωm̂+∇· (m̂⊗ ū)+∇· (m̄⊗ û)+∇p̂ = 0, (C.8)

with m̂ = ρ̄û+ ρ̂ū and m̄ = ρ̄ū. Applying ∇ · (m⊗u) = u∇ ·m+ (m · ∇)u to Eq.
(C.8) gives

iωm̂+ ū∇·m̂+ û∇·m̄︸ ︷︷ ︸
=0

+(m̂ ·∇)ū+ (m̄ ·∇)û+∇p̂ = 0 (C.9)

Notice that the divergence of the mean flow mass flow is zero. Next, the vector
identity (m̂·∇)ū+(m̄·∇)û =∇ (m̂ · ū)+(

Ω̄ΩΩ×m̂
)+((∇×m̂)× ū) is used to re-write

to Eq. (C.9):

iωm̂+∇ (m̂ · ū)+∇p̂ =−ū∇·m̂− (
Ω̄ΩΩ×m̂

)− ((∇×m̂)× ū) . (C.10)

Taking the curl of Eq. (C.10) reveals that the terms on the r.h.s. introduce rota-
tion to the mass flow field. Removing these terms gives an irrotational, acous-
tic momentum equation1, i.e.

iωm̂a +∇ (m̂a · ū)+∇p̂a = 0, (C.11)

which is denoted as the APE momentum equation in conservative form in this
thesis. The irrotational mass flow field m̂a in Eq. (C.11) can now be expressed

1Recall that ∇×∇(...) = 0.
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Details on the Helmholtz Decomposition

by the gradient of the scalar potential, i.e. m̂ = m̂a =∇Φm̂. Exploiting linearity
of the gradient operator results in

∇(
iωΦm̂ + (∇Φm̂ · ū)+ p̂a

)= 0. (C.12)

Equation (C.12) is fulfilled if

p̂a =− (iωΦm̂ + (∇Φū·m̂)) . (C.13)

Equation (C.13) is the relation between the scalar mass flow potentialΦm̂ and
the acoustic pressure p̂a which is introduced in Eq. (4.19) in Section 4.3 of the
main part of this thesis.
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D RANS CFD Simulations of the A2EV
Combustor

D.1 Additional Information on the RANS CFD Simulations

boundary conditions isothermal reactive

T̄∞ 300K

T̄in 423K ≤ T̄in ≤ 723K

¯̇min 60 g
s ≤ ¯̇min ≤ 120 g

s

λ / 1 ≤λ≤ 1.8

αwall 0 W
m2K

75 W
m2K

CFD

domain 3D (quarter) quasi 2D

turbulence model k −ε Realizable

pressure-velocity cou-
pling SIMPLE

spatial discretization second order upwind

mesh size 9.67 ·105 cells 8.13 ·104 cells

mesh type struct. cut-cell struct. hexa

outlet type outflow

convergence criteria four decades four decades

combustion model /
FGM

extension [77, 121]

kinetics / GRI 3.0 [122]

Table D.1: Information on the RANS CFD simulations used for the linear ther-
moacoustic stability analysis.

Table D.1 presents the settings for the RANS CFD simulations used in Section
5.2 to compute the linear thermoacoustic stability limits of the T1 eigenmode
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D.2 Mesh Independence Study

in the A2EV combustor. These simulation were performed to obtain the mean
flow fields associated with the 80 operational points introduced in Chapter 3.

D.2 Mesh Independence Study
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Figure D.1: a) Turbulent kinetic energy in the complete A2EV combustor
benchmark system obtained by an isothermal RANS CFD simula-
tion; b) mesh independence study in terms k.

Mesh independence of the isothermal RANS CFD simulations was judged by
evaluating the surface- and volume-averaged turbulent kinetic energy in three
cross-sectional planes and in the complete computational domain, respec-
tively. An exemplary distribution ( ¯̇min = 120g/s, T̄in = 623K ) of the turbulent
kinetic energy simulation is presented in Fig. D.1 a). Figure D.1 b) presents the
results of the mesh independence study.
To establish mesh independence in the second, reactive RANS CFD simula-
tion of the combustion chamber only, the volume-averaged turbulent kinetic
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0 max
k [m²/s²]

a) b)

converged mesh

Figure D.2: a) Turbulent kinetic energy in the A2EV combustor chamber ob-
tained by a reactive RANS CFD simulation; b) mesh independence
study in terms k.

energy is evaluated for different mesh refinement steps. As an example, Fig.
D.2 shows the turbulent kinetic energy distribution for the operational point
with ¯̇min = 120g/s, T̄in ≤ 623K and λ = 1.2. Figure D.2 presents the mesh inde-
pendence results in terms of the volume-averaged turbulent kinetic energy.

D.3 Performance of the FGM Extension in Thermoacoustic
Stability Analyses

In past work [37], the mean heat release rate distributions ¯̇q of the
80 operational points of the A2EV combustor were obtained by OH*-
chemiluminescence measurements, which was possible due to the optical
access of the combustion chamber [81]12. In this study, the mean heat release
rate distributions are determined with a combustion model and the Gri-Mech
3.0 kinetics mechanism [122]. An extended version of the FGM reaction
model proposed by Klarmann et. al. [77, 121] is used, which includes the
effects of heat losses and flame stretch on the reaction progress source term.
Specifically, in regions of high heat loss and/or stretch, the fuel consump-

1Parts of this appendix were published in Ref. [139]
2This appendix refers to the flame displacement and deformation driving rates represented by the red dots in

Fig. 5.8.
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D.3 Performance of the FGM Extension in Thermoacoustic Stability Analyses

tion speed and thus the reaction progress source term value decrease. As a
result, the heat release rate in the outer shear-layers of theA2EV combustor
drops significantly. The application of the FGM extension represents an
essential prerequisite for an accurate incorporation of flame dynamics to a
thermoacoustic stability analysis as the measured OH*-distributions of the
premixed flame do not show strong emissivity in these regions. A compre-
hensive comparison of the FGM extension to other combustion models can
be found in Ref. [121]. In the plots of Fig. D.3 a), normalized measured (upper
halves) and computed (lower halves) mean heat release rate distributions of
two representative operational points –one thermoacoustically stable, the
other unstable– are qualitatively compared with each other. For the purpose
of better comparability, the contours (white lines) of the computed ones
are projected into the experimentally obtained heat release images [81].
Figure D.3 b) contains the computed deformation (top) and displacement
(middle) driving rates βρ and β∆, respectively, for the T1 eigenmode in the
A2EV combustor. Each circle represents one of the 80 operational points (cf.
Chapter 3). The third plot shows the net driving rate β = βρ +β∆. Red and
black dots indicate whether the driving rates are computed with numerically
(red) or experimentally obtained (black) flame brushes. Filled and open
circles provide information in a binary manner on whether an operational
point was stable or unstable in the experiments, respectively. Notice that the
driving rate results in Fig. D.3 b) are determined with the three-dimensional
computational domain (cf. Fig. 5.7). All eigenfrequency analyses were carried
out with the APE and a numerical stabilization parameter value of ατ = 0
according to Eqs. (5.29)-(5.30). With respect to the experimental benchmark
data, the following observations can be deduced concerning the applicability
of the reactive CFD simulations and the resulting errors in the corresponding
growth rates:

For all 80 operational points, driving due to flame deformation is predicted
stronger by the CFD based approach recognizable by the displaced red dots
in the top plot of Fig. D.3 b). This is constituted by the following reasons:
The main heat release of the computed flame brush is allocated near the
combustor wall, whereas the measured location is placed near the axis for
both, thermoacoustically stable and unstable operational points visible in
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stable operational pointa)
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Figure D.3: a) Comparison between measured (upper halves) and computed
(lower halves) heat release rate distributions for a stable and an un-
stable operational point; b) comparison of deformation (top), dis-
placement (middle) and net (bottom) T1 driving rates computed
with simulated (red) and measured (black) flame brushes.
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D.3 Performance of the FGM Extension in Thermoacoustic Stability Analyses

Fig. D.3 a). With reference to Eq. (5.28), the amplitude of heat release rate os-
cillations associated with flame deformation ˆ̇qρ is proportional to the product
of mean heat release rate ¯̇q and acoustic pressure p̂a of the T1 mode. Thus,
the interaction between computed flame brush and the transversal pressure
mode leads to an overestimation of deformation driving rates compared to
the measurement-based ones. Regarding the unstable cases, the measured
flame brush occurs to be more radially contracted than the computed one.
The flame dynamics for unstable, non-compact thermoacoustic systems was
investigated experimentally in past work by Berger et. al. [70] and numerically
in Chapter 6 of the present thesis. In both studies a pulsation amplitude-
dependent flame contraction is identified. Specifically, it was observed that
the flame radially contracts for increasing T1 limit-cycle amplitudes. However,
this effect cannot be accounted for in the steady-state RANS CFD simulations
explaining this source of deviation. Instead, the associated driving rates are
based on acoustically unaffected flame shapes, where any feedback from
acoustics to the mean flow is excluded. The RANS simulations give thus the
real zero amplitude mean flame shapes as theoretically required for a linear
stability analysis.

Contrary, driving due to flame displacement (middle plot in Fig. D.3 b))
is underestimated by the CFD simulation based results and even tends to
stabilize the thermoacoustic system. This deviation mainly appears due to
the reduced heat release rate in the chamber center of the computed flame
brush. The resulting generation of heat release rate oscillations due to flame
displacement, which depends on the acoustic velocity (cf. Eq. (5.28)), is
predicted too weak in this region.

The net driving rates (bottom plot in Fig. D.3 b)) obtained with computed
and measured flame shapes show good agreement. However, this is because
the former errors in displacement and deformation driving rates compensate
each other. This behavior was theoretically discussed in Refs. [70, 140].

In summary, the displacement and deformation driving rates determined with
the extended FGM combustion model show acceptable agreement with the
measurement-based results. Although the flame deformation and displace-
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RANS CFD Simulations of the A2EV Combustor

ment driving rates individually are predicted incorrectly, their net driving po-
tential is almost in perfect agreement with their counterparts based on OH*-
measurements. This allows utilization of the corresponding driving rates for
the thermoacoustic stability assessment of the T1 eigenmode of the A2EV
combustor and eliminates the RANS CFD simulations as a potential source
of error.
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E URANS CFD Simulations of the A2EV
Combustor

E.1 Details on the Numerical Setup and Mesh Independence

The analysis of Chapter 6 is performed with the mesh shown in Fig. E.1. The
gray shaded areas show the regions where the spatial distribution function δp ′

in Eq. (6.2) is non-zero.

A

A

A-A

excitation region

pressure extraction

Figure E.1: URANS CFD mesh with excitation region and pressure extraction
point.

The mesh in Fig. E.1 consists of approximately 282 ·103 cells and is the result
of the mesh independence study presented in Fig. E.2. On the left side of Fig.
E.2, evaluations of the volume-averaged turbulent kinetic energy for three dif-
ferent mesh refinement levels is presented. This quantity was determined at
the end of each time step calculation. Similarly, pressure data was extracted
for the three meshes at the position marked by the cross in Fig. E.1. These
pressure traces are plotted in the right graph of Fig. E.2.
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E.2 Frequency Response Analysis

Figure E.2: Results of the mesh independence study for the URANS CFD sim-
ulations. Left: volume-averaged turbulent kinetic energy k; right:
pressure.

first harmonic

excitation range

T1 eigenfrequency

Figure E.3: Computed frequency spectrum.

E.2 Frequency Response Analysis

A frequency response analysis is performed to determine the T1 resonance
frequency fT1 in Eq. (6.2). Therefore, the source term in Eq. (E.1) is used, which
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URANS CFD Simulations of the A2EV Combustor

allows simultaneous excitation at multiple frequencies:

mp ′ (r,θ, x, t ) = Ap ′δp ′
j∑

j=1

sin
[
2π fj (t − tref)+θrot

]
(E.1)

In Eq. (E.1), fj represents the forcing frequency. The summation symbol indi-
cates that the source term mp ′ consists of a superposition of j harmonic sig-
nals. In this work, the A2EV combustor is excited in a frequency range in be-
tween 2400Hz ≤ fj ≤ 3100Hz in steps of 50Hz. The computed frequency spec-
trum is displayed in Fig. E.3. The peak in the frequency spectrum of Fig. E.3 is
located at fj = 2750Hz = fT1, which corresponds to the T1 eigenmode.
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F Comparison between T1 and T2
Eigenmodes

Figure F.1 compares damping, driving and growth rates of the T1 and T2 eigen-
modes for 80 operational points of the A2EV combustor (cf. Chapter 3) with
each other1. Azimuthal periodicity of the two modes is exploited, which allows
utilization of a highly resolved, two-dimensional mesh for the eigenfrequency
analyses (see Section 2.4.2 and Appendix B for details). Information on how
each growth rate is determined can be found in Section 5.2. About half of the
80 operational points were observed to be thermoacoustically unstable at the
T1 eigenfrequency (open circles). The other operational points do not exhibit
a T1 instability (filled circles). The T2 mode was always observed to be sta-
ble in the experiment. Notice that the T2 mode might be suppressed by the
T1 mode in the experiment, which would be the result of non-linear modal
interactions. This phenomenon cannot be captured by the presented linear
CFD/CAA method but is addressed in Chapter 7 of this thesis.

Figure F.2 presents damping, driving and growth rates of T1 and T2 modes as
a response to the pressure amplitude-dependency of the mean flow field. The
left column shows the results for the T1 mode, which are also presented in
Chapter 6. The right column presents the amplitude-dependent behavior of
T2 growth rates with its individual contributions. The mean flow fields for the
investigations with the T2 mode are obtained by an URANS CFD simulation,
in which the source term of Eq. (6.2) is modified to mimic T2 oscillations in
the A2EV combustor.

1The T2 results presented in this appendix are used to study the modal suppression mechanisms in Chapter
7.
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T1 mode T2 mode

Figure F.1: Computed T1 and T2 growth rates. Open and closed circles indicate
the thermoacoustic stability behavior observed in the experiment.
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Comparison between T1 and T2 Eigenmodes

stable

unstable

8.0

0

pCFD[kPa]ˆ

4.0

T1 mode T2 mode
a)

b)

c)

Figure F.2: a) Absolute and b) relative evolution of T1 (left) and T2 (right) vor-
ticity damping rates (blue line), flame driving rates (red lines) and
remaining growth rate contributions (green-magenta colored line)
plotted against increasing pressure amplitudes; c) eigenfrequency
maps of T1 and T2 modes obtained by solving the parameterized
eigenvalue problem of Eq. (6.4) without the impact of the flame-
vortex source term and visco-thermal losses (information on the op-
erational conditions: ¯̇min = 120g/s, T̄in = 623K, λ= 1.2).
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G Theoretical Interpretation of the ROM

The ROM in Chapter 7 is equal to the isentropic LNSE (2.9)-(2.10) (based on
the APE with additional damping contributions like vortex shedding and vis-
cous effects, see Eq. (7.1)) in the time-domain with the flame displacement
and deformation as well as vortex-flame FTFs (cf. Eq. (5.20)). Differentiation of
the energy equation with respect to time, i.e. ∂Eq.(2.10)/∂t, and subsequent com-
bination with the divergence of the LNSE momentum Eq. (2.9) yields the in-
homogeneous wave equation for variable mean temperature fields

∂2p ′

∂t 2
− ρ̄c̄2∇·

(
1

ρ̄
∇p ′

)
= (

γ−1
) ∂q̇ ′

∂t
+ζ′+Ξ (G.1)

with the sources q̇ ′, ζ′ andΞ on its r.h.s. The first term q̇ ′ is associated with the
heat release rate FTFs of Eq. (5.28). ζ′ contains all terms with a dependency
on the mean flow ū and viscosity µ as well as the effect of the vortex-flame
FTF q̇ ′

s in Eq. (5.20).Ξmimics broadband combustion noise, which constantly
excites acoustic waves in the flame. By assuming that the sources on the r.h.s.
of Eq. (G.1) are small compared to its l.h.s., the eigenmodes of Eq. (G.1) can be
approximated by the Sturm-Liouville equation [17, 141]1,

−ω2
i p ′− ρ̄c̄2∇·

(
1

ρ̄
∇p ′

)
= 0, (G.2)

Mathematically, this can be justified, if f À ν. Physically, this implies that the
sources q̇ ′, ζ′ and Ξ only weakly affect the natural eigenmodes of Eq. (G.2).

Replacing the second term on the l.h.s. of Eq. (G.1) by Eq. (G.2) yields the os-
cillator equation

d2p ′

dt 2
+ω2

i p ′ = (
γ−1

) ∂q̇ ′

∂t
+ζ′+Ξ. (G.3)

In the ROM of this thesis, all effects influencing the thermoacoustic stabil-
ity except of flame displacement and deformation (these are incorporated

1The Sturm-Liouville equation results after Laplace transformation of the homogeneous wave Eq. (G.1).
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via local feedback loops, cf. Fig. 7.1) are considered by the system matrix Ãr

and more specifically by the amplitude-dependent damping rates αT1 and
αT2. This promotes the introduction of an amplitude-dependent dissipation
model for ζ′ in Eq. (G.3) as a function of pressure, i.e.

ζ′ = [
βs +αp̂=0kPa

(
1−εp ′2)]︸ ︷︷ ︸

=βs+α(p ′)

dp ′

dt
. (G.4)

In Eq. (G.4),αp̂=0kPa denotes the damping rate at zero acoustic amplitude. βs is
the amplitude-independent vortex-flame driving rate. The calibration factor
ε denotes the sensitivity of the damping rate α(p ′) to the pressure amplitude.
It can be determined by using the benchmark damping rates of Chapter 6.

A similar model is introduced for the heat release rate term q̇ ′, which captures
driving due to flame displacement and deformation. A linear driving model is
used (

γ−1
) dq̇ ′

dt
=βdp ′

dt
. (G.5)

In Eq. (G.5) β is the constant net driving rate. With reference to Chapter 6, this
can be justified by the weak dependency ofβ on the pressure amplitude. Com-
bining Eq. (G.3) with Eqs. (G.4)-(G.5) yields the governing oscillator equation,
i.e.

d2p ′

dt 2
−

(
β+βs +αp̂=0kPa −αp̂=0kPaεp ′2

)
︸ ︷︷ ︸

=βs+α(p ′)

dp ′

dt
+ω2

i p ′ =Ξ. (G.6)

Equation (G.6) represents a Van-der-Pol oscillator, which is constantly forced
by turbulent combustion noise Ξ (cf. box 1 in Fig. 7.1). In conclusion, the
ROM state-space model in Section 7.1 describes a system of coupled Van-der-
Pol oscillators. In this thesis, T1 and T2 eigenmodes in the A2EV combustor
are the oscillators.

Based on the Van-der-Pol oscillator Eq. (G.6), so-called amplitude-phase
equations can be derived for T1 and T2 modes. These equations can be used
to investigate the long-term behavior of unstable acoustic modes. The results
of these theoretical analyses can be used to validate the computations of the
modified ROM from an analytic point of view. However, the validation is left
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to future work and in the following, only the governing equations for slowly
varying T1 and T2 amplitudes as well as phases are derived, which can serve
as the baseline for the analyses.

The first step to obtain the governing amplitude-phase equations comprises
the application of a spatio-temporal pressure decomposition, i.e.

p ′(x, t ) =1

2

[(
p ′

T1 +p ′∗
T1

)+ (
p ′

T2 +p ′∗
T2

)]=
1

2

[(
ΨT1ηT1 +Ψ∗

T1η
∗
T1

)+ (
ΨT2ηT2 +Ψ∗

T2η
∗
T2

)] (G.7)

whereΨ= f (x) and η= f (t ). The asterisk ( )∗ denotes the conjugate complex.
Equation (G.7) is inserted into the Van-der-Pol oscillator Eq. (G.6). Next, the
resulting equation is devoted to a spatial averaging procedure [141]. This is
also known as Galerkin projection and exploits orthogonality between T1 and
T2 modes in systems with continuous rotational symmetry (this is satisfied for
the A2EV combustor geometry and the corresponding mean flow fields). For
this purpose, Eq. (G.6) with Eq. (G.7) is successively multiplied byΨ∗

T1 andΨ∗
T2

followed by a volume integration. The result is two coupled oscillator equa-
tions for T1 and T2 modes (the white noise term is neglected for reasons of
clarity):(

η̈T1 +νT1,p̂=0kPaη̇T1 +ω2
T1ηT1

)∫
V
ΨT1Ψ

∗
T1dV =(

αT1,p̂=0kPaεT1 +αT2,p̂=0kPaεT2

)[(
ηT1ηT1η̇

∗
T1 +2ηT1η

∗
T1η̇T1

)∫
V

(
ΨT1Ψ

∗
T1

)2
dV +

2
(
ηT1ηT2η̇

∗
T2 +ηT1η

∗
T2η̇T2 +ηT2η

∗
T2η̇T1

)∫
V
ΨT1Ψ

∗
T1ΨT2Ψ

∗
T2dV

]
(G.8)(

η̈T2 +νT2,p̂=0kPaη̇T2 +ω2
T2ηT2

)∫
V
ΨT2Ψ

∗
T2dV =(

αT1,p̂=0kPaεT1 +αT2,p̂=0kPaεT2

)[(
ηT2ηT2η̇

∗
T2 +2ηT2η

∗
T2η̇T2

)∫
V

(
ΨT2Ψ

∗
T2

)2
dV +

2
(
ηT2ηT1η̇

∗
T1 +ηT2η

∗
T1η̇T1 +ηT1η

∗
T1η̇T2

)∫
V
ΨT2Ψ

∗
T2ΨT1Ψ

∗
T1dV

]
(G.9)

Notice that the dots and double dots in Eqs. (G.8)-(G.9) indicate first and sec-
ond order time derivatives. The second terms on the r.h.s. of Eqs. (G.8)-(G.9)
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establish the coupling between the T1 and T2 modes, which is recognizable
by the mixed subscripts. The volume integrals with the mixed T1 and T2 mode
shapes (ΨT1 and ΨT2) can be interpreted as the interaction volume, which
defines the coupling strength between the unstable modes. Illustratively,
the coupling strength becomes zero, if the interaction volume is zero. For
instance, this would be the case, if two mode shapes do spatially not overlap.
In this case, both unstable may coexist.

Next, the method of temporal averaging over one oscillating period is applied
to Eqs. (G.8)-(G.9). Therefore, ηT1, η∗T1, ηT2 and η∗T2 are written as

ηT1 = p̂T1(t )exp(i (ωT1t +φT1(t ))) (G.10)

η∗T1 = p̂T1(t )exp(−i (ωT1t −φT1(t ))) (G.11)

ηT2 = p̂T2(t )exp(i (ωT2t +φT2(t ))) (G.12)

η∗T2 = p̂T2(t )exp(−i (ωT2t −φT2(t ))), (G.13)

where p̂ and φ denote amplitude and phase of T1 and T2 modes. Substitution
of Eqs. (G.10)-(G.13) into Eqs. (G.8)-(G.9) and presuming that amplitude and
angular phase velocity vary slowly compared to oscillatory time scales (see for
instance in Ref. [132]) yields the T1 and T2 amplitude and phase equations
describing their slowly varying, temporal evolution:

˙̂pT1 = νT1,p̂=0kPap̂T1 − 1∫
V ΨT1Ψ

∗
T1dV

(
αT1,p̂=0kPaεT1 +αT2,p̂=0kPaεT2

)
...

...
[

p̂3
T1

∫
V

(
ΨT1Ψ

∗
T1

)2
dV +2p̂T1p̂2

T2

∫
V
ΨT1Ψ

∗
T1ΨT2Ψ

∗
T2dV

] (G.14)

i p̂T1φ̇T1 = 0 (G.15)

˙̂pT2 = νT2,p̂=0kPap̂T2 − 1∫
V ΨT2Ψ

∗
T2dV

(
αT1,p̂=0kPaεT1 +αT2,p̂=0kPaεT2

)
...

...
[

p̂3
T2

∫
V

(
ΨT2Ψ

∗
T2

)2
dV +2p̂T2p̂2

T1

∫
V
ΨT2Ψ

∗
T2ΨT1Ψ

∗
T1dV

] (G.16)

i p̂T2φ̇T2 = 0 (G.17)

The zero value of the slowly varying phase velocity in Eqs. (G.15) and (G.17)
shows that the modified ROM is not capable of modeling synchronization
phenomena (cf. Ref. [132]). From a physical point of view this means that
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the oscillating frequencies of T1 and T2 modes remain constant in time. The
incorporation of synchronization effects to the ROM can thus be realized by
modeling temporal changes of T1 and T2 oscillating frequencies fT1 and fT2

induced by the interaction with the other mode. In practice, this might be
achieved by expressing the T1 and T2 frequency drifts (ω2

i −ω2) as a function
of the mode coupling strength C = ∫

V ΨT2Ψ
∗
T2ΨT1Ψ

∗
T1dV . This translates into

the following additional synchronization term in the governing Van-der-Pol
oscillator Eq. (G.6) for the T1 and T2 modes:

d2p ′

dt 2
−

(
β+βs +αp̂=0kPa −αp̂=0kPaεp ′2

)
︸ ︷︷ ︸

=βs+α(p ′)

dp ′

dt
+ω2

i p ′ =Ξ−C (ω2
i −ω2)p ′. (G.18)

The last term on the r.h.s. of Eq. G.18 introduces changes of the slowly varying
phases of the T1 and T2 and thus allows variations of the T1 and T2 oscillating
frequencies. The implementation in the ROM is left to future work and might
be realized in accordance with the damping rate adaption during run-time;
however, by adapting the oscillating frequencies fT1 and fT2 in the state-space
system matrix Ãr instead of αT1 and αT2.
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