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Abstract

Gas turbines have been playing a key role for electrical power generation
in the past decades. The importance of this role is expected to increase
in the future, which is due to two main reasons. First, gas turbines are a
central component within high-efficiency combined cycle power plants for
electricity generation that emit considerably less carbon dioxide than e.g.
coal-fired plants. Second, gas turbines are suited for compensating load
fluctuations in the electric grid induced by fluctuations of renewable energy
sources. This compensation role is due to gas turbines’ capabilities of fast and
flexible changes between operation points, fuel types and load level while
maintaining a low-emission combustion process at optimal efficiencies. In
order to comply with stringent emission regulations (particularly carbon
monoxide and nitrogen oxides), lean premixed combustion technologies are
employed. These technologies, however, cause the combustion chambers to
be sensitive to develop thermoacoustic instabilities. The main focuses of this
thesis is on thermoacoustic instabilities that are specifically characterized
by high-frequency screech tones. In this frequency regime, thermoacoustic
interactions between flame and acoustic modes are spatially variable, i.e.
non-compact. As an overall research objective, a comprehensive modeling
framework for analysis of high-frequency thermoacoustics in gas turbine
combustors is developed. This framework is validated by conducting respec-
tive modeling and analysis tasks of a lab-scale swirl-stabilized combustor.
From the results, understanding of physical mechanisms as well as system
behavior of high-frequency instabilities at the first transversal mode in gas
turbine combustors is deduced.

Specifically, spatially distributed, linear flame driving at the first transver-
sal mode within this combustor is theoretically assessed and modeled. Non-
compact flame transfer functions that describe the driving mechanisms are
derived and employed to numerically investigate global system features that
promote/inhibit the T1 mode to become unstable. Besides flame driving,
damping of the first transversal modes due to acoustically induced vortex-
shedding is concerned. The suitability of the Linearized Euler Equation to
quantify this damping mechanism is discussed, the need for a simple model



is identified and the model is developed. The superposition of driving and
damping models yields a framework to assess the thermoacoustic stability of
non-compact systems that is particularly applicable to transversal modes oc-
curring in the high-frequency regime. Results of driving and damping com-
putations as well as the linear stability assessment are compared with experi-
mental data readily available from 80 operation points.

Motivated by the goal to reconstruct the temporal combustor dynamics, a
Reduced Order Modeling methodology is developed. This method allows to
efficiently carry out time-domain simulations of the thermoacoustic dynam-
ics that are governed by non-compact flames and multi-dimensional modes.
Modal truncation as the Model Order Reduction technique is applied to
large-scale state-space systems that are based on the Linearized Euler and/or
Helmholtz Equations. Non-compact flame dynamics is modeled by dividing
the flame into multiple compact sub-regions and forming a local feedback
loop for each sub-region. The approach is capable to account for linear, non-
linear and stochastic flame dynamics effects. Procedural guidelines to derive,
verify and apply the Reduced Order Modeling method for non-compact sys-
tems are given. The methodology is applied to the swirl-stabilized benchmark
combustor. Acoustic pressure dynamics of non-degenerate transversal mode
pairs of one stable and one unstable operation point of the benchmark com-
bustor are numerically reconstructed using respective Reduced Order Mod-
els. The results allow to infer physical insight into HF thermoacoustics from
a dynamical system perspective. These investigations are extended to analyti-
cal considerations as by deriving a system of stochastic differential equations
that governs the amplitude dynamics of non-degenerate transversal modes
that are in a limit-cycle state. Comparing respective analytical results from a
fixed point analysis to the numerical counterparts consolidates the findings of
thermoacoustic time-domain behavior of non-degenerate, transversal mode
in swirl-stabilized combustion systems.

The system of stochastic differential equations is utilized to derive system
identification methods to extract linear growth rate from time-domain data,
i.e. acoustic pressure time traces. Knowledge of this growth rate is of impor-
tance for model validation, strength ratings of an occurring instability and as
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an input quantity for damper design tasks. The system identification meth-
ods are verified using ROM data of which underlying growth rates are known
before the methods are applied to experimentally obtained acoustic pressure
amplitude time series.
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Kurzfassung

Gasturbinen nehmen seit Jahrzehnten eine Schlüsselrolle bei der Stromerzeu-
gung ein. Die Bedeutung dieser Rolle wird in Zukunft voraussichtlich weiter
zunehmen, was vor allem auf zwei Gründe zurückzuführen ist. Zum einen
werden Gasturbinen als eine zentrale Komponente in hocheffizienten Kom-
bikraftwerken zur Stromerzeugung eingesetzt, welche deutlich weniger
Kohlendioxid emittieren als z.B. Kohlekraftwerke. Zum anderen eignen
sich Gasturbinen zur Kompensation von Lastschwankungen im Strom-
netz, die durch Schwankungen von erneuerbaren Energien hervorgerufen
werden. Diese Kompensationsfunktion ist darauf zurückzuführen, dass Gas-
turbinen schnell und flexibel zwischen Betriebspunkten, Brennstoffarten
und Laststufen wechseln und gleichzeitig einen emissionsarmen Verbren-
nungsprozess bei optimalen Wirkungsgraden aufrecht erhalten können.
Um die strengen Emissionsvorschriften (insbesondere für Kohlenmonoxid
und Stickoxide) einzuhalten, werden mager vorgemischte Verbrennung-
stechnologien eingesetzt. Diese Technologien führen jedoch dazu, dass die
Brennkammern empfindlich auf thermoakustische Instabilitäten reagieren.
Der Schwerpunkt dieser Dissertation liegt auf thermoakustischen Instabil-
itäten, die speziell durch hochfrequente (HF) Kreischtöne charakterisiert sind.
In diesem Frequenzbereich sind thermoakustische Interaktionen zwischen
Flammen und akustischen Moden räumlich variabel, d.h. nicht-kompakt. Als
übergeordnetes Forschungsziel wird ein umfassendes Modellierungsgerüst
zur Analyse von hochfrequenter Thermoakustik in Gasturbinenbrennkam-
mern entwickelt. Dieses Gerüst wird durch die Durchführung entsprechender
Modellierungs- und Analyseaufgaben anhand einer Laborbrennkammer,
welche mit drall-stabilisierter Verbrennung betrieben wird, validiert. Aus den
Ergebnissen wird Verständnis über physikalische Mechanismen sowie des
Systemverhaltens hochfrequenter Instabilitäten bei der ersten transversalen
Mode in Gasturbinenbrennkammern abgeleitet.

Konkret wird die räumlich verteilte, lineare Flammendynamik bei der er-
sten transversalen (T1) akustischen Mode in dieser Brennkammer the-
oretisch betrachtet und anschließend modelliert. Die thermoakustischen
Antriebsmechanismen werden durch nicht-kompakte Flammentransferfunk-
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tionen mathematisch beschrieben, welche zuerst hergeleitet und danach
verwendet werden. Die Verwendung dieser Transferfunktionen in nu-
merische Studien führt zur Identifikation globaler Systemeigenschaften, die
die die Instabilitätsneigung der T1-Mode fördern bzw. unterdrücken. Neben
dem Flammenantrieb wird die Dämpfung der ersten transversalen Moden
durch akustisch induzierte Wirbelablösung betrachtet. Die Eignung der lin-
earisierten Euler-Gleichungen zur Quantifizierung dieses Dämpfungsmech-
anismus wird diskutiert und im Zuge dessen die Notwendigkeit eines ein-
fachen Modells identifiziert sowie entwickelt. Die Überlagerung von Treib-
und Dämpfungsmodellen liefert den Berechnungsrahmen zur Bestimmung
des linearen thermoakustischen Stabilitätsverhaltens für nicht kompakte Sys-
teme, der insbesondere für transversale Moden im Hochfrequenzbereich
geeignet ist. Die Ergebnisse der Treib- und Dämpfungsberechnungen sowie
der linearen Stabilitätsbewertung werden mit experimentellen Daten aus 80
verschiedenen Betriebspunkten verglichen.

Motiviert durch die Zielsetzung das zeitliche Verhalten der Modendynamik
zu rekonstruieren wird eine Methodik zur Bildung von Modellen reduzierter
Ordnung - sogenannten Reduced Order Models (ROM) - entwickelt. Die
Methode erlaubt die effiziente Durchführung von Zeitbereichssimulationen
der thermoakustischen Dynamik, die nicht-kompakte Flammeninteraktio-
nen mit mehrdimensionale akustische Moden berücksichtigen. Konkret wird
eine modale Trunkierung als Technik zur Modellreduktion auf große Zu-
standsraumsysteme angewendet, wobei letztere auf diskreten Formen lin-
earisierten Euler- und/oder Helmholtz-Gleichungen basieren. Die Nichtkom-
paktheit der Flammendynamik wird modelliert, indem die Flamme in
mehrere kompakte Teilbereiche aufgeteilt und für jeden Teilbereich eine
lokale Rückkopplungsschleife gebildet wird. Der Ansatz erlaubt zudem, lin-
eare, nichtlineare und stochastische Einflüsse auf die Flammendynamik
zu berücksichtigen. Vorgehensrichtlinien zur Herleitung, Verifizierung und
Anwendung der Niederordnungsmodellierung von nicht-kompakten Sys-
temen werden erarbeitet und dargelegt. Des weiteren wird die Methodik
auf die Laborbrennkammer mit drall-stabilisierter Verbrennung angewen-
det. Konkret wird der zeitliche Verlauf des Schalldrucks von einem nicht-
degenerierten transversalem Modenpaar eines jeweils stabilen und instabilen
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Betriebspunktes der Laborbrennkammer durch die Niederordnungsmod-
ellierungsmethodik numerisch rekonstruiert. Entsprechende Interpretatio-
nen der Ergebnisse erlauben physikalisches Verständnis über die HF-
Thermoakustik aus einer dynamischen Systemperspektive zu erzeugen. Ana-
log zu den numerischen Untersuchungen wird das dynamische Systemver-
halten durch analytische Betrachtungen examinieren. Dies erfolgt durch die
Herleitung eines Systems stochastischer Differentialgleichungen, welches die
Amplitudendynamik nicht-degenerierter transversaler Moden, die sich in
einem Grenzzykluszustand befinden, beschreibt. Der Vergleich der jeweiligen
analytischen Ergebnisse, also die stationären Lösungen des Gleichungssys-
tems, mit den entsprechenden Resultaten aus den numerischen Berechnun-
gen, führt zur Konsolidierung der Erkenntnisse des thermoakustischen Zeit-
bereichsverhaltens von nicht-degenerierten, transversalen Moden in drall-
stabilisierten Verbrennungssystemen.

Das System der stochastischen Differentialgleichungen wird des weiteren
verwendet, um Systemidentifikationsmethoden zu erarbeiten. Diese Sys-
temidentifikationsmethoden verfolgen die Zielsetzung aus Zeitbereichsdaten,
d.h. Zeitreihen des akustischen Schalldrucks, lineare Wachstumsraten zu
extrahieren. Die Kenntnis der Wachstumsraten ist von technisch relevan-
ter Bedeutung für Modellvalidierungsaufgaben, die Bewertung der Inten-
sität einer auftretenden Instabilität und als Eingangsgröße für die Ausle-
gung von Dämpfern. Die vorgestellten Systemidentifikationsmethoden wer-
den anhand von ROM-Daten verifiziert, deren zugrundeliegende Wachstum-
sraten bekannt sind. Anschließend werden die Methoden auf experimentell
gewonnene Zeitreihen von akustischen Schalldruckamplituden angewendet.
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1 Introduction

1.1 Technical Background and Motivation

The principal measure to counteract the advancement of global climate
change comprises the reduction of greenhouse gas emissions, most notably
carbon dioxide CO2 [5, 116]. Within the field of electric power generation,
achieving this countermeasure implies the necessity for transformation of the
current power plant landscape from dominantly fossil (e.g. coal and oil) to re-
newable (e.g. wind and solar) technologies. For example, Germany committed
to convert its energy infrastructure so that by the year 2050 "60% percent of
the gross final consumption of energy, and 80% percent of the gross electric-
ity consumption" occurs by renewable sources [115]. Such large portions of
renewable sources causes one considerable technical challenge, that is, fluc-
tuation of the supply due to the unpredictable availability of e.g. wind or solar
sources [5, 34, 117]. In order to ensure grid stability, these fluctuations need to
be compensated for which the utilization of new generations of gas turbine
plants – either in a standalone configuration or as part of a combined cycle
plant – poses one of the most promising technical solution [5, 34,56,117]. The
suitability of gas turbines for this task is found within the following perfor-
mance potentials:

1. High operational flexibility, i.e. the capability of conducting fast and on-
demand load changes. This flexibility serves to compensate the load fluc-
tuations within the grid induced by renewable energy sources [56, 161].

2. High efficiency over a wide operational range. Thereby, CO2 emission are
minimized in compliance with climate change countermeasure strate-
gies [5].

3. Overall low formation of pollutants, notably nitrogen oxides NOx to meet
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environmental regulations [89, 133].

Turbulent lean premixed combustion is characterized by low NOx emission
levels compared to non-premixed, i.e. diffusive combustion. The latter com-
bustion mode is predominantly implemented in conventional gas turbine
systems [80, 133]. New generations of gas turbines are operated in premixed
combustion mode [80, 161], which ensures that the performance criteria of
low NOx emissions is achieved. However, lean premixed systems exhibit a
sensitive susceptibility to so called self-sustained thermoacoustic oscillations
[28,37,80,96,133]. As is illustrated in the next sections, these oscillations (also
often referred to as thermoacoustic instabilities, pressure pulsations or com-
bustion/combustor dynamics) are caused by constructive coupling mecha-
nisms between the unsteady flame and the natural acoustics (i.e. eigenmodes)
of the chamber. The reasons why premixed combustors are more sensitive to
develop thermoacoustic instabilities than the non-premixed counterparts is
due to two main reasons: (1) Combustion reactions in the former systems oc-
cur in the vicinity of the stoichiometric regions of the mixture field, which acts
as a stabilizing mechanisms to thermoacoustic oscillations [133]. (2) Acous-
tic dissipation is lower in combustors operating with premixed flames [80,92].
An occurrence during gas turbine operation needs to be avoided in order to
prevent hardware damage, emission compliance violation and system shut
downs [92, 96].

1.2 Thermoacoustic Oscillations and Rayleigh’s Criterion

Self-sustained thermoacoustic oscillations in gas turbine combustors are fun-
damentally based on the thermoacoustic effect. This effect is explained with
the help of a generic gas turbine combustion system sketched in Fig. 1.1.
This system consists of an inlet and mixing section followed by a combustion
chamber. Specifically, an air flow enters the inlet section (a) into which fuel is
injected (c). The mixture passes through the swirler (c) to result in a swirling
air-fuel flow (d) that convects into the combustion chamber. This premixed
flow sustains a turbulent, aerodynamically stabilized flame (e) that releases

2



1.2 Thermoacoustic Oscillations and Rayleigh’s Criterion

heat due to combustion. Acoustic waves (b and c) are constantly excited due
to broadband combustion noise, which propagate in up- and downstream di-
rection through the combustor as well as reflect at walls, inlets and outlets.

Flame (e)

Swirling Air-
Fuel Flow (d)Air Flow (a)

Acoustic
Waves (b)

Fuel (c)

Swirler (c)

Acoustic
Waves (f)

Control Volume

Combustion ChamberInlet and Mixing Section

Figure 1.1: Schematic of gas turbine combustor with thermoacoustic control
volume

Now, assume that the heat release rate and pressure in the control volume
oscillate at a distinct frequency. For simplicity of the forthcoming explana-
tions, the heat release rate and pressure oscillation (denoted by q̇ ′ and p ′) is –
for now – presumed spatially invariant across the control volume. Moreover,
the oscillatory cycle of the latter oscillations is viewed with a thermodynamic
cycle analogy. Thermodynamically, sole acoustic pressure oscillations isen-
tropically compresses and expands the gas within the control volume. Hence,
mechanical volume work is respectively done on and by the gas during the
compression and expansion phases, which are of equal magnitude so that the
overall net effect is zero [121, 162]. The oscillatory heat release rate can be in-
terpreted to cause additional increases and decreases of the gas’ specific vol-
ume [121]. This leads to additional volume work done by/on the gas in the
control volume, which net effect can become non-zero. The energetic effect of
the work processes caused by acoustic and heat release oscillations becomes
clear by applying the first law of thermodynamics, i.e.

∆e = w − q︸︷︷︸
=0

(1.1)

where ∆e is the energy change of the (oscillating) gas in the control volume,
w is mechanical work term and q is the heat transfer term. The latter is zero
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as no heat transfer occurs across the boundaries of the control volume. The
mechanical work term is due to volume work that is caused by the interplay
between acoustic pressure and respective changes of the gas’ specific volume,
which is given by [121]

w =
∮

p ′dv ′, (1.2)

where the closed line integration is to be carried out along the acous-
tic/thermodynamic cycle. The specific volume expansion v ′ is composed of
contributions due to isentropic acoustic and heat release oscillations, i.e.

dv ′ = dv ′p ′ +dv ′q̇ ′
, (1.3)

which are reformulated to [121]

dv ′p ′ ∝ dp ′, (1.4)

dv ′q̇ ′ = dv ′q̇ ′

dt
dt ∝ q̇ ′dt . (1.5)

Substituting Eqns. 1.2-1.5 into Eqn. 1.1 gives

∆e ∝
∮

p ′dp ′︸ ︷︷ ︸
=0

+
∮

p ′q̇ ′dt . (1.6)

The first term on the right-hand-side describes the work process due to sole
isentropic oscillations – which vanishes as expected – while the value of the
second work term depends on the phase difference between pressure and
heat release oscillations. Equation 1.6 essentially presents Rayleigh’s criterion
[125,162] to describe the thermoacoustic effect, which can be formulated as: If
heat release fluctuations are in-phase with pressure fluctuations of the gas in
the control volume, the unsteady flame generates mechanical work in form of
acoustic oscillations, which provides energy to the acoustic field and leads to
an amplification of amplitude. Conversely, mechanical work is consumed by
the heat release fluctuations in an out-of-phase situation, implying an extrac-
tion of energy from the acoustic field and a decline of the acoustic oscillation
amplitude [121]. The integral term alone in Eqn. 1.6, i.e.∮

p ′q̇ ′dt , (1.7)
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1.2 Thermoacoustic Oscillations and Rayleigh’s Criterion

is known as the Rayleigh integral, which is widely used for thermoacoustic sys-
tem analysis [63, 179]. Practical understanding of Rayleigh’s criterion/integral
is generated by considering three different scenarios of phase relations be-
tween heat release and acoustic oscillations. These scenarios are depicted in
Figs. 1.2a)-c), respectively representing in-phase, out-of-phase (180◦ phase
shift) and 90◦ phase relations. As can be retrieved from the figures, the in-
phase (a) and out-of-phase (b) situation emerge a positive and negative
Rayleigh integral so that the flame is said to drive and damp the pressure os-
cillations, respectively. A zero Rayleigh integral – i.e. no driving/damping at
all – occurs for a phase relation (c) of 90◦ between pressure and heat release
oscillations. The phase relations in between these three scenarios cause corre-
sponding energy transfer with a varying magnitude as illustrated in Fig. 1.2d).

(p ′q̇ ′)q̇ ′p ′

p ′, q̇ ′, (p ′q̇ ′)

time

c)

phase (p ′q̇ ′)

d)
RI

0◦ 180◦90◦45◦ 135◦
c)

b)

a)

time

a)

time

b)
p ′, q̇ ′, (p ′q̇ ′)

p ′, q̇ ′, (p ′q̇ ′)

Figure 1.2: a) In-phase, b) out-of-phase, c) 90◦ phase shifted heat release and
pressure oscillation in control volume. d) Generated acoustic en-
ergy by the flame as a function of the phase relation

In combustion systems, the acoustic oscillations at the flame are associ-
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ated with the natural acoustics of the chamber geometry, i.e. eigenmodes.
The presence of turbulent combustion processes causes broadband noise,
which excites all modes in the chamber. Heat release oscillations at distinct
frequencies are induced by modulations of the combustion process by the
eigen-oscillations. The identification and understanding of how incoming
acoustic perturbations physically convert into heat release oscillations rep-
resents one central objective in the field of thermoacoustic research and
engineering. A fundamental mechanism that leads to heat release oscillation
is illustrated with the help of an example from the field of low-frequency
oscillations and Fig. 1.1. The flow is presumed to be in a perfectly premixed
state after the swirler (d). Flowing into the combustion chamber, this fuel-air
mixture sustains a perfectly premixed flame. The naturally present acoustic
modes are non-zero in the burner tube and cause the mixture flow rate to
pulsate. This pulsating mixture flow then enters the flame (e) and causes
heat release oscillation upon combustion. Another prominent mechanism
that occurs if the system is not perfectly-premixed, is the modulation of heat
release due to convectively transported equivalence ratio fluctuations. At the
fuel injector (c), acoustic oscillations of the fluid velocity induce fluctuations
of equivalence ratio [96, 98, 121, 133]. These equivalence ratio fluctuations
are transported with the mean flow to the flame (e) where they translate
into heat release oscillations upon combustion. Thermoacoustic driving
occurs at all modes/frequencies at which the heat release oscillations ex-
hibit a phase relation between fully in-phase and 90◦ (Fig. 1.2d)) with respect
to the pressure oscillations are driven by the flame, i.e. receive acoustic energy.

If the amount of driving energy exceeds the amount of losses (i.e. acous-
tic damping e.g. due to mean flow effects and/or at domain boundaries),
the associated oscillations will start to grow in amplitude. The eigenmode
of the combustor and the unsteady heat release are said to constructively
interfere and form a positive feedback loop that leads to the amplification
of each other [28, 96, 121, 133, 142]. Eventually, non-linear processes saturate
this amplification, and the system settles into a constant amplitude limit
cycle behavior (cf. next subsection) [36,96,143]. Thus, there are two necessary
conditions for an instability to occur: Firstly, the in-phase relation between
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heat release and pressure fluctuations. Secondly, a positive energy balance
between flame driving and acoustic losses due to damping for each con-
cerned mode. Mathematically, the condition whether an instability occurs is
given by

RI = 1

T

∫
T

∫
V

p ′(x, t )q̇ ′(x, t )dV dt > D, (1.8)

where RI denotes the Rayleigh integral, p ′(x, t ) and q̇ ′(x, t ) are pressure and
heat release rate oscillations integrated over the control/combustor volume
and over one oscillation period T of the concerned frequency. The quantity D
denotes all acoustic energy losses at the particular mode. Note that a spatial
variability of both, heat release and pressure oscillations are admitted, which
grants Eqn. 1.8 most general applicability.

1.3 Instability Evolution and Technical Implications

A mode is rendered thermoacoustically unstable, if RI > D . Consequently,
a thermoacoustic instability occurs in the combustor, which evolves in four
consecutive phases as are indicated in Fig. 1.3.

t (s)

p
′ (t

)

Onset of heat release modulation

Exponential
growth

Non-linear
saturation Limit cycle

oscillations

Figure 1.3: Characteristic pressure trace of a thermoacoustic instablility
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Phase #1: Heat Release Modulation

At the instant of an impending instability, modulation of the heat release with
the acoustic eigenmodes occurs. This implies that no growth in amplitude
has yet occurred while thermoacoustic feedback mechanisms are active and
the Rayleigh integral condition in Eqn. 1.8 is satisfied. Operationally, this is for
example the consequence of a load change of the gas turbine away from the
stable operation range as well as due to a change of the fuel composition [161].

Phase #2: Exponential Growth of Amplitude

Upon the onset of the instability, the oscillation amplitude [31, 96] starts to
grow exponentially, which is due to the surplus of acoustic energy provided by
the thermoacoustic interactions at the flame. The mode is said to be linearly
driven by the flame.

Phase #3: Saturation of Heat Release Oscillations

While the amplitude level rises, flame modulation mechanism change, which
leads to a saturation of the heat release oscillations. This saturation is caused
by non-linear processes [9, 12, 36, 91, 97, 143] that are non-generalizable
and depend e.g. on frequency regime, combustor as well as flame type. The
(relative) reduction of heat release oscillations implies an attenuation of the
thermoacoustic effect, which leads to a (relative) reduction of generated
acoustic energy and acoustic oscillation amplitude.

Phase #4: Stochastically Modulated Limit Cycle Oscillations

The saturation phase continues until the thermoacoustically generated
energy equates the losses due to damping such that the Rayleigh integral
condition becomes RI = D . At this point, the eigenmode is said to have
settled into a limit cycle state. Limit cycle oscillations are characterized by a
constant amplitude level, which is stochastically modulated by broadband
turbulent combustion noise [26, 94, 112]. It is important to point out that in
gas turbine thermoacoustics the energy attenuation effects that lead to limit
cycle states are solely induced by the saturation of heat release oscillations.
Encountered limit cycle amplitude levels remain "small" compared to the
mean pressure so that non-linear acoustics – which can cause limit cycle
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1.4 High-Frequency vs. Low-Frequency Oscillations

states in e.g. rocket combustors [31] – can be assumed as negligible in gas
turbine combustors [36, 143].

Thermoacoustically Stable Oscillation Dynamics

If acoustic damping exceeds the energy generation, the mode of concern is
said to be stable and the foregoing transition into limit cycle oscillations do
not occur. Stable cases are characterized by the Rayleigh condition RI < D .
While thermoacoustic coupling between heat release and acoustic eigen-
modes still occurs, the net effect of energy generation remains negative.
Then, the acoustic oscillations in the chamber are solely stochastically forced
through broadband turbulent combustion [26, 38, 94, 113].

Operational Aspects of Thermoacoustic Instabilities

From a macroscopic perspective, thermoacoustic oscillations can be viewed
as pressure pulsations that manifest in the combustion chamber. These
pulsations exert thermal and mechanical stresses on the combustor hardware
as well as inhibit low-emission combustion processes [96,133]. Self-evidently,
the occurrence of thermoacoustic instabilities have to be avoided across the
entire load range of the gas turbine. This emerges the engineering task to
design new (or retrofit existing) combustors such that these are thermoa-
coustically stable [161]. For this task, a thorough understanding of physical
mechanism, capabilities for thermoacoustic system analysis as well as de-
velopment strategies for instability suppression/mitigation is necessary. The
provision of respective theoretical and mathematical fundamentals, analyses
and modeling methodologies, design tools and best-practice guidelines
represents one principal tasks of engineering research.

1.4 High-Frequency vs. Low-Frequency Oscillations

The general scope of this thesis comprises the investigation of thermoacoustic
oscillations in gas turbine combustors in the high-frequency (HF), screech
regime. All investigations are carried out using a can-type combustor setup,
where one main burner tube feeds the chamber with a perfectly premixed
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air-fuel flow. The burner is located centrically to the chamber as can be
observed in the Fig. 1.4 and as is presented in detail in Chap. 3. In order to
establish a first sense of understanding of the subject, a clear characterization
of HF oscillations in terms of physical features, typical frequency regimes and
distinction to low-frequency (LF) instabilities is established.

Non-Compact Flames

The first feature that defines HF oscillations is found among characteristic
length scale relations of flame and acoustic modes. In the case where the
ratio of flame to acoustic length scale is small, the former can be considered
as a thermoacoustic point source. Hence, heat release oscillations across the
flame volume are spatially invariant, which renders the flame as compact and
presents a characteristic situation for LF oscillations. Oppositely, the length
scales in the HF regime are of equal order of magnitude so that local variation
of flame-acoustic coupling effects require consideration, labeling the flame as
thermoacoustically non-compact. Mathematically, this (non-)compactness is
quantified by the Helmholtz number via

He = δ f l

λa
=

{
< HEthresh → compact

≥ HEthresh → non-compact
(1.9)

where δ f l and λa refer to the characteristic flame length and the acoustic
wavelength at the considered mode as indicated in Fig. 1.4. In Eqn. 1.9, the
quantity HEthresh presents a threshold constant that separates the compact
and non-compact flame regimes. The precise value is problem-specific,
i.e. depends on combustor, flame and mode of interest. As an approximate
orientation, a compact flame’s length scale should be much smaller than one
quarter of the mode’s wavelength. For example in this work, the threshold
constant is found to be HEthresh = 0.1.

Multidimensional Modes

Thermoacoustically non-compact flame dynamics as given by Eqn. 1.9
usually occur in combination with multi-dimensional modes at frequencies
beyond the geometrical cut-on value of the concerned chamber. Thus, as the
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second feature, HF oscillations manifest via transversal, radial, longitudinal
(and any combinations thereof) acoustic modes, which applies to the most
common types of gas turbine combustors, e.g. can, silo, annular, sequen-
tial systems. For LF oscillations, the encountered modes vary for different
combustor types. Can and sequential combustors are typically governed
by axial and one-dimensional modes. In silo systems, transversal, radial,
longitudinal (and any combinations thereof) modes can form the basis of
LF oscillations, while annular systems most often contain azimuthal modes
with longitudinal components. Note that in this thesis, can-type combus-
tors are considered so that HF and LF oscillations are distinguished by the
governance of multi-dimensional and one-dimensional modes, respectively.
An explicit consideration of multi-dimensional modes in LF system is not
within the scope of this thesis, and thus, omitted. Representative LF and
HF pressure modes in the geometry of the can-type model combustor (cf.
Chap. 3) are shown in Fig. 1.4. The figure also reveals length scale relations
to yield compact and non-compact thermoacoustic interactions for the LF
and HF mode, respectively. The HF mode on which all investigation of this
thesis are based is of first transversal (T1) type. A comprehensive overview of
other transversal mode types – which are in principle equally applicable to
this work’s research objectives and results – can be found in [31,62,79,96,145].

Driving Mechanisms

The physical interaction mechanisms between acoustic and heat release
oscillations differ between LF and HF systems, too. The former is governed by
convective modulation mechanisms (e.g. mixture flow pulsations and, for the
case of technically premixed systems, convectively transported equivalence
ratio fluctuations entering the flame) that are converted into heat release
oscillations at the flame. Whether convective modulation mechanisms also
govern HF oscillations depends on two conditions: First, the mode shape
needs to extent into the mixing section to be of non-zero value where the
convective modulation mechanisms are initiated. Second, the frequency of
the mode shape of interest needs to be within the active region of the low-
pass behaviour of the flame. This low-pass behaviour depends on the length
and time scales associated with the combustor setup as well as the flame
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(a) Longitudinal pressure mode
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Figure 1.4: Combustion system with normalized (a) longitudinal pressure
mode and compact flame (b) transversal pressure mode and non-
compact flame

shape [137]. For the swirl-stabilized system concerned in this thesis (cf. Fig.
1.4), the T1 mode shape is zero. Moreover, the encountered frequencies are
beyond the active zone of to flame’s low-pass behaviour (cf. low-pass estima-
tions in App. A). Thus, convective modulation effects can be disregarded for
the types of swirl-stabilized configurations concerned in this thesis. However,
this disregard of convective effects is not a generally applicable characteristic
of HF oscillations. For example, in combustor configurations where a set
of injector tubes is arranged circumferentially on the faceplate around the
central burner (e.g. as in [57]), or if a sequential system with an auto-ignition
flame is concerned [16], convectively driven heat release fluctuations might
not be negligible. In these cases, the transversal mode in the chamber gives
rise to longitudinal modes in the injector/mixing section to cause convective
modulation mechanisms. To illustrate this scenario, the low-pass behaviour of
the flames of a generic injector tube configuration is shown to start at higher

12



1.5 Literature Overview and State-of-the-Art Knowledge

frequencies than for a swirl-stabilized system with one central burner (cf. App.
A). As is discussed in detail in Chap. 4, thermoacoustic driving at the T1 mode
in this thesis is due to periodic flame shape deformations and displacement
effects [148–150]. These mechanisms represent local thermoacoustic driving
and are rather small compared to convective mechanisms, which explains
the insignificance of the former particular in LF systems. Furthermore, the
lacking presence of convective mechanisms for the concerned combustor
setup explains the relevance the local driving effects in the HF regime at the
T1 mode. At the same time, acoustic damping is lower for the concerned
HF/T1 modes than for LF modes so that net values of Rayleigh integrals (or
growth rates) are in the same area of magnitude for both frequency regimes.

Cut-on value as well as acoustic length scales depend on the individual
combustor geometry. Hence, establishing a universally valid frequency value
to separate LF and HF regimes is somewhat ambiguous. Rather, one can speak
of HF instabilities if the foregoing features of multi-dimensional modes, non-
compact flames and reduced significance of convective modulation govern
the oscillations. Nevertheless, the frequencies at which HF oscillations occur
in experimental and industrial gas turbine combustors are usually in the
kilohertz regime, and thus labeled as "screech" instabilities [31, 119].

1.5 Literature Overview and State-of-the-Art Knowledge

High-frequency, screech tone thermoacoustic instabilities in gas turbines
that are associated with non-compact interactions between heat release
and acoustic oscillations have only recently entered the focus of scientific
and engineering research. This is due to the increasing occurrence of these
types of instabilities in industrial gas turbine combustors as a consequence
of continuously expanding the systems’ operational flexibility and part-load
efficiency [140]. Thus, the available literature and corresponding state-of-the-
art knowledge on HF instabilities sparse.

Investigations on premixed, swirl-stabilized flames in a experimental tubular
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combustor that exhibits limit-cycle oscillation at the first transversal mode re-
vealed initial understanding on thermoacoustic driving mechanism. Schwing
and his co-authors [151] first discovered pronounced dynamics of the outer
shear-layer of the flame/flow at the frequency of the self-excited oscillations
using Particle Image Velocimetry, which were thought to be responsible
for the thermoacoustic feedback. However, in [149] it was found that the
shear-layer response attenuates while the oscillations remain at a constant
level for a change of operation parameters (e.g. the swirl intensity). Thus, the
possibility of the shear-layer causing the feedback could be precluded. This
is supported as the outer shear-layer in swirling flames is exposed to strong
quenching effects [83] implying that total the heat release (and thus potential
oscillations) is negligibly low. Although not directly causing heat release oscil-
lations, the inspection of the shear-layer dynamics led to the finding the flame
is periodically moving in-phase with the acoustic pressure and displacement
field [148–150]. Based on this observation, a physical mechanism where the
acoustic displacement field drives the heat release oscillation was established
in [150]. A corresponding mathematical formulation of displacement driven
heat release oscillations was derived for a simplified flame shape in [148].

Zellhuber [178] numerically assessed the transversal thermoacoustic per-
formance of a generic reheat combustor using unsteady, compressible,
reactive Large Eddy Simulations (LES). Zellhuber and Schwing [179] jointly
confirmed the latter concept of flame displacement. They also introduced
density modulations as an additional driving mechanism, although no physi-
cal connection between the former and the latter is drawn.

Ghani [50] numerically investigated HF oscillations in a bluff body gas
combustor using LES, where the thermoacoustic performance is phenomeno-
logically assessed. Any specific conclusions of mode types that govern the
oscillations as well as physical driving mechanisms are not treated. Further
numerical work on HF instabilities was carried out by Grimm [57]. In this
work, an experimental can-type combustor with azimuthally distributed
fuel injection at the faceplate was concerned. While the HF instability is
reproduced by means of numerical simulations, the result interpretations
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remain of rather descriptive nature and a provision of conclusive physical
insights is omitted.

A first analytical approach to quantify the thermoacoustic driving strength
of swirl-stabilized flame interactions at the first transversal mode was taken
by Hertweck [62, 63]. In this work, the Rayleigh integral was evaluated using
the formulation of displacement and density modulations for a wide set
of distributions of mean heat release shapes, which were obtained exper-
imentally at different operation conditions. A dependency of the Rayleigh
integral on the swirl-number was identified. Further work on analysis and
modeling of HF instabilities in the field of gas turbine thermoacoustic seem
non-existent in the open literature. Flame displacement is considered as a
driving mechanism in [134] in which a transfer function is developed. This
transfer function emerges as identical as the formulation used by Hertweck
as is shown in [63].

Conversely to HF oscillations, the LF regime has been center of research
projects for approximated 30 years. Thus, a vast pool of literature on fun-
damental mechanisms of thermoacoustics in combustion systems along
with modeling approaches and analysis procedures is available. Although
not directly applicable, this knowledge is certainly helpful to understand HF
instabilities. A brief selection of reference found useful for this thesis is given
in the following. Note that this list is certainly not complete as a respective
provision of all relevant literature for LF instabilities would be far beyond the
scope of the present literature overview.

Fundamental work on thermoacoustic instabilities in gas turbine com-
bustors in terms of physics, theory and modeling approach can be found
in [12, 39, 80, 96, 121, 138, 142]. Moreover, numerous literature on modeling
and analysis approaches of LF oscillations is available. For example, effi-
cient modeling methods using field methods in combinations with modal
approaches in frequency domain to computationally predict a combustor’s
thermoacoustic stability state are provided in [27, 55, 158, 176]. Moreover, ef-
ficient computation methods on basis of the Linearized Euler/Navier-Stokes
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Equations have been increasing used recently [52, 53, 82, 145, 154], which is
methodologically independent whether the HF or LF regime is considered.
Low-order modeling and analysis approaches for LF systems based on net-
work concept in state-space – which enables access to frequency and time
domain – are given in [13, 41, 139]. Analyzing thermoacoustic systems from
a dynamical system perspective using time series either from experiments,
from low-order simulations or ordinary differential equation descriptions
allows to generate understanding of the system behavior [7, 21, 78, 108, 174].
Further approaches seek to model/investigate the combustor dynamics via
ordinary differential equations including the effect of linear flame driving,
non-linear saturation of heat release oscillations [51, 104] and stochastic
effects due turbulent combustion noise is given in [26,93,112]. Review papers
on thermoacoustic instabilities in gas turbine combustors can be found
in [28, 101, 114].

Oppositely to gas turbine combustors, high-frequency thermoacoustic
instabilities have been at the center of scientific attention in the field of
rocket engines since the 1950s. Culick’s monographic report [31] essentially
presents most research results up to the year 2006 including an extensive
literature database. This reference presents a useful starting point for many
research tasks as it covers in principal all topics that are relevant for thermoa-
coustics in combustion systems such as driving and damping mechanism,
modeling approaches, non-linear acoustics, dynamical and stochastic system
approaches, rigorous mathematics as well as results on numerous theoretical
and experimental analysis campaigns.

More recent and specific experimental work concerns high-frequency
oscillations in cryogenic rocket combustors. This research focuses on explor-
ing the physics that lead to unstable engine operation [58, 60, 61, 126, 155]
at the first transversal mode. Numerical counterpart investigations on the
basis of linearized conservation equations, Perturbed Non-conservative
Non-linear Euler or compressible Navier-Stokes Equations are conducted
in [59,81,136,146,167]. The combination of both, experimental and numerical
elements aims to cross-validate experimental findings and extract theoretical
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explanation of the experimental observations in order to gain physical un-
derstanding of HF instabilities in rocket engines. Notably, Schulze [144, 146]
developed a linear stability tool based on the Linearized Euler Equation in
frequency domain applicable to non-compact rocket combustors with the
focus on transversal modes. The work presents methodological details that
are transferable for the development of linear stability tools of HF instabilities
in gas turbine combustors.

1.6 Research Objectives and Structure of the Thesis

The central research focus of this thesis is the investigation of HF thermo-
acoustic oscillations in swirl-stabilized gas turbine combustors from model-
ing and analytical perspectives. Theoretical fundamentals, based on which
the research tasks are carried out, are provided after this introduction in
Chap. 2. The benchmark system, i.e. a swirl-stabilized, can-type experimental
combustor that is used for all investigations conducted within this work is
presented in Chap. 3. The acoustic mode of interest is the first transversal (T1)
mode, although applicability of the research outcomes to other HF modes is
not restricted.

The first objective of this thesis seeks to establish a comprehensive modeling
and analysis framework applicable to HF and non-compact thermoacoustic
oscillations in gas turbine combustors. This objective is motivated by the
apparent non-existence of such a framework in the open literature (cf. Sec.
1.5). The framework is divided into two parts: The first part concerns linear
thermoacoustic phenomena that can be modeled and analyzed in frequency
domain. Respective details on the development, verification and application
are provided in Chaps. 4-6. The specific features and research tasks associated
with the development of the linear modeling framework unfold as follows:

• Provision of physical models of flame modulation, acoustic damping and
mean flow interaction mechanisms in HF systems.

• Development of numerical computation methodologies for quantifica-
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tion of flame driving and acoustic damping.

• Establishment of computational capabilities for linear thermoacoustic
stability analyses.

For the second part of the modeling and analysis framework, non-linear phe-
nomena in time domain are considered. Development details along with ex-
ecution of corresponding analysis tasks are described in Chaps. 7-10, and
specifically consists of:

• Development of a Reduced Order Modeling (ROM) approach for efficient
time domain simulations of transversal HF oscillations.

• Derivation of a non-linear system of Stochastic Differential Equations
(SDE) that govern amplitude dynamics of transversal HF modes in can-
type chambers geometries for analytical consolidation of numerical time
domain simulations.

• Development and validation of output-only system identification tech-
niques – i.e. the extraction of thermoacoustic growth rates from time-
domain data – for HF systems governed by transversal modes.

As the second objective of this thesis, the developed framework shall be appli-
cable to industrial gas turbine combustors, which implies the necessity of the
following general features:

• Time-efficient computation for system analyses to enable utilization
within iterative thermoacoustic simulation practices for combustor de-
sign. 1

• Applicability to three-dimensional geometries containing non-uniform
and turbulent flow fields that are representative as encountered in in-
dustrial gas turbine combustors.

• Transferability to further types (e.g. can, silo, annular, sequential) of gas
turbine combustors.

1For this reasons all numerical simulations and computations of this thesis are carried out on an PC with a
Intel Core i7-4770K processor with 3.5 GHz and 32 GB RAM.
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The third research objective of this thesis requires to generate new theoretical
insights regarding HF thermoacoustic oscillations in gas turbine combus-
tors, which presents a contribution towards the improvement of the overall
understanding of the subject. The theoretical understanding is sought to
be retrieved from the analyses and modeling results carried out with the
framework developed for the first main objective of this thesis.

The research of this thesis is part of a research framework on HF ther-
moacoustics in gas turbine combustors involving two further doctoral
projects with experimental (F. Berger, e.g. [15]) and numerical foci (P. Romero,
e.g. [130]) at the Lehrstuhl für Thermodynamik of TU München. Respective
results of these projects have been utilized for generation of a general under-
standing of the topic as well as for verification and validation tasks. For this
thesis, whenever results from these other projects are used for any of these
tasks, appropriate citations are placed. Note that these two other projects also
involve the design and commissioning of a novel sequential burner test rig
for investigation of HF oscillations in reheat flames [16, 129].
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2 Theoretical Fundamentals

This chapter provides the theoretical background relevant for the forthcoming
investigations of HF oscillations in thermoacoustically non-compact gas tur-
bine combustors. The following topics are addressed: First, the Navier-Stokes
Equations that describe gas turbine fluid flows in the most general manner
are introduced in Sec. 2.1. In Sec. 2.2, flow variable decompositions are em-
ployed to derive a simplified set of conservation equations that govern only
periodic flow motions, while random turbulent flow motions are absorbed
within a steady mean flow description. Specific assumptions uniquely due to
HF oscillations in gas turbine combustors are presented in Sec. 2.3. These as-
sumptions are utilized in Sec. 2.4 to derive the Linearized Euler Equations,
which form the mathematical starting point for all system analyses in this
work. Section 2.5 presents a modal analysis approach based on Fourier Series
descriptions of the unsteady flow variables, which yields the frequency do-
main formulation of the Linearized Euler Equations. Then, a concept to model
the thermoacoustic interactions between flame dynamics and unsteady flow
field by using coupling functions is outlined in Sec. 2.6. An integral description
of disturbance fields in terms of total energy and respective source terms is
given in Sec. 2.6, which are used to theoretically assess respective driving and
damping processes occurring in thermoacoustic systems. Finally, theoretical
and procedural information on numerical simulation based on the Finite El-
ement Method as well as Computation Fluid Dynamics employed within this
thesis are presented.

2.1 Navier-Stokes Equations

Thermoacoustic oscillations in gas turbine combustion chambers are allo-
cated to the field of unsteady fluid mechanics. Thus, the governing equation
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are most fundamentally given by the Navier-Stokes equations as well as the
energy equation. These equations are for a uni-molecular gas given by [31,96]

∂ρ

∂t
+u ·∇ρ+ρ∇·u = mρ, (2.1)

ρ
∂u

∂t
+ρu ·∇u+∇p = Fu,τ+mu, (2.2)

∂p

∂t
+u ·∇p +γp∇·u = (γ−1)q̇ +Fp,τ+mp . (2.3)

The conservation variables ρ(x, t ), u(x, t ), and p(x, t ) denote density, vectorial
velocity, and pressure, respectively, while γ is the ratio of specific heats. Note
that temperatures and entropy can be computed using respective equations
of state. The latter variables are general functions of time t and space x
associated (for typical gas turbine combustor geometries) with Cartesian
or cylindrical coordinate systems (cf. [84] for explicit formulations of these
differential operators). Energy induction due to combustion is described by
the volumetric source terms q̇(x, t ). In Eqns. 2.1-2.3, viscous and thermal
diffusion as well as dissipation effects are absorbed in the functions Fu,τ(x, t )
and Fp,τ(x, t ), respectively. Explicit formulations of these diffusion functions
can be found in [31]. Addition of mass, momentum and energy to the flow is
described by the volumetric source terms mρ(x, t ),mu(x, t ) and mp(x, t ).

In principle, the unsteady flow behavior including thermoacoustic oscil-
lations of a given combustion chamber can be retrieved by directly solving
Eqns. 2.1-2.3, which has been pursued prominently by numerical approaches
based on Unsteady-Reynolds-Averaged-Navier-Stokes (URANS) and Large-
Eddy Simulations (LES) e.g. [142,153,172]. Although such simulations provide
a precise degree level of physical results as by resolving all underlying fluid
dynamic phenomena at once (e.g. turbulence, combustion reactions, periodic
hydrodynamics, acoustic wave propagation and respective flame/flow inter-
actions), required mesh sizes and computation times limit the application
of such high-performance computing approaches to fundamental investiga-
tions [32]. As stated by the thesis objective in Sec. 1.6, numerical simulations
carried out within this thesis are required to be fast and computationally
efficient in order to ensure transferability to technically relevant combustors.
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2.2 Time and Length Scale Decompositions

A simplification of the Navier-Stokes and energy equations is achieved by re-
taining and discarding all physical features in the equations that are respec-
tively relevant and dispensable to the thermoacoustic performance of the
concerned system. Unsteady flows at high Reynolds numbers, as occurring
in gas turbine combustion chambers, can be divided into two groups, i.e.

1. Turbulent, random flow motions

2. Periodic, coherent flow motions

Periodic motions can be distinguished into acoustic and hydrodynamic flow
disturbances. Acoustic disturbances can be interpreted as time-harmonic per-
turbations that are transported through the flow diffusively with the local
speed of sound in a wave-like manner [127]. Hydrodynamic disturbances can
be viewed as coherent and vortical structures within the flow, which are trans-
ported convectively with the local fluid velocity [96]. Similarly, entropy distur-
bances [38] can be thought of as local pockets of temperature fluctuations that
convect with the local mean flow velocity, too. For thermoacoustic instabili-
ties, only acoustic disturbances are of direct relevance as these disturbances
constitute the self-sustained oscillations. Vorticity and entropy disturbances
contribute only indirectly as part of acoustic damping and driving processes.
Examples for an indirect impact that causes damping are vortex-shedding ef-
fects at area jumps [68] and entropy generation at flame fronts [38,52]. Acous-
tic driving may be caused by whistling phenomena due to interactions be-
tween mean flow and vorticity disturbances [66, 127]. Indirect noise genera-
tion at accelerated flows through nozzle geometries due to interaction with
entropy disturbances presents further possible scenario of non-flame-related
acoustic driving [38]. Acoustic damping due to generation of vortical distur-
bances at shear layers of the mean flow is subject of Chap. 5, while entropy
disturbances are neglected (cf. Sec. 2.3). Driving mechanisms due to non-
flame-related effects are beyond the scope of this work. Turbulence can be
viewed as stochastic motions without any recognizable pattern that lead to an
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increase of the flow’s mixing and diffusion capabilities [123]. This description
of turbulence is essentially the Reynolds-averaged interpretation [171], which
is adopted in this work while it is recognized that turbulent flow physics is far
more than macroscopically impacting the mean flow field as can be retrieved
from the previous two references. It is important to point out that in reality
the convective (vortical and entropy) disturbances – while transported by the
mean flow – are exposed to turbulence, too. However, in order to achieve the
desired simplification to depart from an LES framework, these coupling phe-
nomena between turbulence and periodic motions are disregarded. This sep-
aration between turbulent and periodic motions is achieved by imposing the
decomposition

φφφ(x, t ) = φ̄φφ(x)+φφφ′(x, t ), (2.4)

where the vector φφφ represents all flow variables φφφ = [ρ,u, p]T and sources
(Fu,τ,Fp,τ,mρ,mu,mp , q̇) associated with Eqns. 2.1-2.3. The decomposition in
Eqn. 2.4 is composed of a spatially variable, steady part φ̄φφ(x) and spatio-
temporal unsteady partφφφ′(x, t ). All turbulence effects are absorbed within the
steady fields, while all time-dependent, periodic, processes are described in
the unsteady contributions. The mean flow field includes all physical effects
relevant in turbulent flows occurring in gas turbine combustion chambers.
These fields are separately obtained, typically by means of Computational
Fluid Dynamics (CFD) of Reynolds-Averaged-Navier-Stokes (RANS) equations
(cf. Sec. 2.8.2) Substituting Eqn. 2.4 into Eqns. 2.1–2.3 results in

∂ρ′

∂t
+ ū ·∇ρ′+u′ ·∇ρ̄+ ρ̄∇·u′+ρ′∇· ū = mρ′ +Sρ′, (2.5)

ρ̄
∂u′

∂t
+ ρ̄ū ·∇u′+ ρ̄u′ ·∇ū+ρ′ū ·∇ū+∇p ′ = Fu′,τ+mu′ +Su′, (2.6)

∂p ′

∂t
+ ū ·∇p ′+u′ ·∇p̄ +γp̄∇·u′+γp ′∇· ū = (γ−1)q̇ ′+Fp ′,τ+mp ′ +Sp ′, (2.7)

where Fu′,τ(x, t ), Fp ′,τ(x, t ), mρ′(x, t ), mu′(x, t ), mp ′(x, t ) are the unsteady coun-
terparts of the diffusion functions and volumetric source terms as defined
above for Eqns. 2.1-2.3. Explicit formulation of the unsteady diffusion func-
tion can be found in [31]. In Eqns. 2.5-2.7, only first order terms are retained,
while higher order terms, i.e. products of unsteady variables, are implicitly
absorbed in the functions Sρ′(x, t ),Su′(x, t ),Sp ′(x, t ). The explicit formulation
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of the higher order functions can be found in [31, 119], which physically
govern non-linear interactions between the acoustic, vortical and entropy
disturbances as is discussed in [31, 96].

The decomposition of the heat release source term in Eqn. 2.7 is of par-
ticular importance as the unsteady part q̇ ′ represents the physical source
terms of thermoacoustic oscillations. As described in Sec. 2.6, unsteady flame
dynamics are generally comprised of complex mechanisms that contain
linear thermoacoustic driving and non-linear saturation as well as stochastic
forcing processes. Numerically resolving these processes is computationally
expensive (cf. Sec. 2.2. Hence, the effect of flame dynamics is incorporated
solely by using respective flame transfer functions.

Equations 2.5-2.7 represent a non-linear system of Partial Differential
Equations (PDE), which carries less complex physics (due to exclusion of
turbulence), but would still require considerable computational resources to
produce respective numerical solutions. Hence, further simplifications of the
governing equations are necessary, which are presented in the next section.

2.3 Simplifications and Assumptions

This section introduces a set of assumptions that are specific to HF thermoa-
coustics in gas turbine combustors, which enable the derivation the governing
equations that form the basis of all modeling and analysis tasks in this thesis.

2.3.1 Isobaric Combustion at Low Mach-Numbers

Combustion in stationary gas turbines represents an (idealized) isobaric ther-
modynamic process, which is associated with low-Mach number mean flow
fields. Hence, for simplification of the governing equations, the static pressure
can be assumed as constant in the combustion chamber, implying that

∇p̄ = 0. (2.8)
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2.3.2 Inviscid and Adiabatic Unsteady Motions

The unsteady flow motions are assumed to occur inviscidly, which implies
that Fu′,τ = Fp ′,τ = 0 in Eqns. 2.5-2.7, and presents a commonly employed as-
sumption for thermoacoustic analyses [35,106]. Notice that turbulent dissipa-
tion processes are already excluded due to the presumed separation between
periodic and turbulent flow motions as discussed in Sec. 2.2 above.

2.3.3 Isentropic Motions

The generation of entropy disturbances is neglected, which is non-intuitive in
combustion systems, but physically justifiable for the T1 instabilities in swirl-
stabilized combustor type used as benchmark in this thesis as follows: Entropy
disturbances are caused by equivalence ratio fluctuations [132,170]. As the T1
mode does not extent into the mixing section in the concerned system (cf. Fig.
1.4), it cannot cause any fluctuation of equivalence ratio that would lead to
entropy fluctuation at the flame. This isentropicity yields the relation between
pressure and density [127] disturbances

p ′ = ρ′c2, (2.9)

which allows to reduce the number of governing equations by one as is shown
below. Furthermore, imposing isentropicity in terms of the flow disturbances
eliminates any ambiguity issues due to artificial generation of entropy waves
[29], which are known to occur in frequency domain methods to analyze
thermoacoustic systems.

2.3.4 Linearity of Disturbances

Thermoacoustic oscillations in gas turbine combustors are associated with
flow disturbances (acoustic and vortical modes) that are observed to remain
small compared to the mean flow [36], which implies for flow variable/sources
in Eqns. 2.5-2.7

φφφ′(x, t ) ¿ φ̄φφ(x). (2.10)
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This condition holds true even in the case of an occurring thermoacoustic in-
stability in which the system contains self-sustained acoustic limit cycle oscil-
lations. Note that the characteristic mean quantity for linearity of the acous-
tic velocity is the speed of sound, i.e. requiring u′(x, t ) <¿ c(x) [96]. As dis-
cussed in Sec. 1.3, a limit cycle state is caused by non-linear saturation ef-
fects that attenuate flame response strength until parity between flame driv-
ing and acoustic damping is reached. This saturation of exponential growth
solely originates in the unsteady flame behavior (cf. [9, 36, 143] and Sec. 1.2),
and not in any acoustic non-linearity that causes e.g. modal energy transfer as
in rocket engine thermoacoustics (cf. [26,31,174,175]). Hence, the acoustic os-
cillations always remain "low" in amplitude, i.e. linear [36], which implies that
only disturbance terms of first order are retained. Thus, higher order terms
are discarded in Eqns. 2.1-2.3, i.e. Sρ′(x, t ) = Su′(x, t ) = Sp ′(x, t ) = 0. This linear-
ity assumption only concerns the unsteady flow quantities, whereas the mean
quantities certainly contain non-linear phenomena, e.g. turbulence and com-
bustion.

2.4 Linearized Euler Equations

Substituting the assumptions and simplifications established in the previous
section into Eqns. 2.5-2.7 yields the Linearized Euler Equations (LEE) that de-
scribe isentropic, unsteady flow disturbances in the HF regime encountered
in gas turbine combustors:

ρ̄
∂u′

∂t
+ ρ̄ū ·∇u′+ ρ̄u′ ·∇ū+ρ′ū ·∇ū+∇p ′ = mu′ (2.11)

∂p ′

∂t
+ ū ·∇p ′+γp̄∇·u′+γp ′∇· ū = (γ−1)q̇ ′+mp ′. (2.12)

It is important to point out that while the higher order (i.e. non-linear) dis-
turbance terms are canceled out, the heat release source q̇ ′ itself is not re-
stricted to be of first order. Moreover, prescribing the heat release with linear,
non-linear and stochastic transfer functions (cf. Sec. 2.6) allows to model all
thermoacoustic features of self-sustained limit cycles alongside the impact of
combustion noise as observed during real combustor operation. These mod-

27



Theoretical Fundamentals

eling tasks are carried out in the course of the time domain investigations
of this thesis in Chaps. 8-9 for which Eqns. 2.11-2.12 form the mathematical
starting point. Note that volumetric source terms of unsteady mass and energy
are not further used in this thesis and set to zero, i.e. mρ′ = mp ′ = 0. Numer-
ically determining the spatio-temporal behavior of the unsteady flow by re-
solving Eqns. 2.11-2.12 is time extensive, which is overcome by a Reduced Or-
der Modeling framework developed in Chap. 7. Furthermore, if only the linear
thermoacoustic behavior (e.g. for stability assessments) is of interest, a reso-
lution of temporal evolution can be omitted by employing a modal analysis
approach as presented next.

2.5 Modal Analysis in Frequency Domain

The linear nature of Eqns. 2.11-2.12 allows to describe the temporal evolu-
tion of the disturbance fields by a Fourier series, which results in a signifi-
cant reduction of computational requirements to produce respective numeri-
cal solutions as the time dependency of the equations is eliminated. Hence, all
linear investigations in this thesis are based on the following modal analysis
approach. This approach is essentially comprised of expanding the pressure,
velocity and heat release rate fluctuation fields via a complex Fourier series
with a finite number of expansions, i.e.

p ′(x, t ) =
N∑

n=1

1

2

(
p̂n(x)exp(iωn t )+ p̂∗

n(x)exp(−iω∗
n t )

)
, (2.13)

u′(x, t ) =
N∑

n=1

1

2

(
ûn(x)exp(iωn t )+ û∗

n(x)exp(−iω∗
n t )

)
, (2.14)

ρ′(x, t ) =
N∑

n=1

1

2

(
ρ̂n(x)exp(iωn t )+ ρ̂∗

n(x)exp(−iω∗
n t )

)
, (2.15)

mu′(x, t ) =
N∑

n=1

1

2

(
mûn (x)exp(iωn t )+m∗

ûn
(x)exp(−iω∗

n t )
)

, (2.16)

q̇ ′(x, t ) =
N∑

n=1

1

2

(
ˆ̇qn(x)exp(iωn t )+ ˆ̇q∗

n (x)exp(−iω∗
n t )

)
. (2.17)
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The complex valued Fourier coefficients at the n-th series expansion are de-
noted by p̂n(x), ûn(x) and ˆ̇qn(x), which are respectively referred to as pressure,
velocity and heat release source mode shape. The mode shapes represent the
spatial distribution of the acoustic oscillations associated with a distinct angu-
lar frequencyωn. The asterisk (∗) denotes the complex conjugate of the modes
and source terms in Eqns. 2.13-2.17. Hence, it is sufficient to compute mode
shape and frequency to reconstruct the temporal oscillations. The equations
that govern the respective mode shapes are derived as follows:

1. Substitution of Eqns. 2.13-2.17 into the LEE in Eqns. 2.11-2.12.

2. Dropping the summation due to linear independence of the expansion
terms.

3. Multiplication with exp(−iωn t ) and integration over one period
∫

T (·)dt
with T = 2π/ωn.

This yields the LEE in frequency domain, i.e.

ρ̄iωnûn + ρ̄ū ·∇ûn + ρ̄ûn ·∇ū+ ρ̂nū ·∇ū+∇p̂n = mûn , (2.18)

iωp̂n + ū ·∇p̂ +γp̄∇· ûn +γp̂n∇· ū = (γ−1) ˆ̇qn. (2.19)

Only linear contributions of the unsteady flame dynamics term are captured
within the heat release source term ˆ̇qn. Non-linear approaches in frequency
domain based on flame describing functions are not considered in this thesis.
Such approaches are used to computationally predict limit-cycle ampli-
tudes [87, 97, 110, 135], which is not part of this thesis’ scope.

Equations 2.18-2.19 can be solved using two different procedures, which
yields two corresponding analysis types that are applied in the course of this
thesis:

• Eigenfrequency analysis, i.e. synchronous solution of mode (eigenmode)
and frequency (eigenfrequency) of the homogeneous version – i.e. zero
external source terms – of Eqns. 2.18-2.19. The eigenfrequencies are gen-
erally complex, i.e. ωn =ωn,r − iωn,i , where the real part describes the os-
cillation frequency and the imaginary part gives a measure of the energy
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balance of the concerned mode (cf. Sec. 2.7). Eigenfrequency analyses
find particular application in this thesis for linear investigations of flame
driving, acoustic damping and linear stability in Chaps. 4-6. 1

• Response analysis, i.e. the solution of Eqns. 2.18-2.19 for a set of pre-
defined values of oscillation frequencies ωn. This requires setting one of
the volumetric source terms (mûn ) to non-zero in specific regions in the
domain or simply prescribing a wall boundary with a non-homogeneous
Dirichlet boundary condition, which models e.g. external siren forcing.
Pressure response analyses are utilized to compute the reflection co-
efficient of a thermoacoustic system as is carried out in the course of
the damping quantification in Chap. 5. The concept of quantifying a
thermoacoustic domain by means of a reflection coefficient is explained
in [137, 144, 177] and is explicitly introduced for transversal modes in
Chap. 5.

Numerous analyses in this thesis utilize Eqns. 2.18-2.19 with a zero mean ve-
locity assumption. This eliminates any coupling terms between mean flow
field and disturbance quantities. The resulting equations are then referred to
as a Helmholtz Equation (HE) system, which reads

ρ̄iωnûn +∇p̂n = mûn , (2.20)

iωp̂n +γp̄∇· ûn = (γ−1) ˆ̇qn. (2.21)

It is acknowledged that the "classical" Helmholtz Equation is a single, second
order equation governing the acoustic pressure [127], while the HE system
concerned in this work are retained in conservation form given by Eqns. 2.20-
2.21. However, the computed mode solutions are identical between the "clas-
sical" Helmholtz Equation and the HE system concerned here, which justifies
the terminology.

1Notice that the complex value of the frequency implies that the summation of Eqns. 2.13-2.17 is based on
the Laplace instead of the Fourier transform [19], and an explicit distinction is omitted in this thesis for clarity.
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2.6 Incorporation of Flame Dynamics

The foregoing discussions omitted any details regarding the treatment of the
heat release source terms q̇ ′ and ˆ̇q in Eqns. 2.12-2.21. A direct numerical reso-
lution of the unsteady flame dynamics along with the acoustic oscillation in a
given combustor is unsuitable due to large computational costs as pointed
out in Sec. 2.1. Instead, physical separability between the acoustic oscilla-
tions and the flame dynamics is assumed, which implies to view the former
and latter as individual domains. This approach is commonly employed in LF
thermoacoustic [118, 137] and adopted for the HF analyses in this work. The
main idea is to establish stand-alone models (called domain) for acoustic and
flame dynamics in the combustor of interest, which are then connected to
yield the overall model of the thermoacoustic system performance. The phys-
ical connection between flame and acoustics is of source term nature only.
Hence, only quantitative effects of the thermoacoustic interactions are cap-
tured (e.g. value of Rayleigh’s integral or amplitude levels) while mode and
flame shapes remain unaffected. Mean combustion ¯̇q is considered merely as
a volume source of thermal energy so that an explicit discussion of combus-
tion in gas turbine systems is not provided and one is referred to the litera-
ture [120].

2.6.1 The Acoustic Domain

The acoustic domain is geometrically and mathematically represented by the
combustor volume and governing equations in time and/or frequency do-
main, respectively. In a stand-alone consideration of the acoustic domain,
the heat release source term remains unspecified and can be viewed as "in-
active". However, the effect of variable mean temperature/density/speed of
sound fields due to mean combustion is accounted for.
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2.6.2 The Flame Domain

Geometrically, the flame domain is given by the mean flame volume. The un-
steady heat release oscillations are described by an mathematical function
with acoustic quantities as the independent variables. Phenomenologically,
this function is divided into

q̇ ′ = q̇ ′
D + q̇ ′

S . (2.22)

where q̇ ′
D and q̇ ′

S denote deterministic and a stochastic contributions [21,112,
113]. The deterministic part unfolds into

q̇ ′
D = q̇ ′

L + q̇ ′
N L, (2.23)

where q̇ ′
L(x, t ) and q̇ ′

N L(x, t ) describes all linear and non-linear processes
related to the acoustic-flame interactions [108], respectively, Notice that the
spatial dependency of the flame functions in Eqns. 2.22-2.23 automatically
accounts for non-compact thermoacoustic interactions associated with HF
and transversal mode oscillations encountered in this thesis.

The linear part q ′
L(x, t ) describes low amplitude modulation mechanism,

i.e. how acoustic perturbations convert into heat release oscillations, and
thus sources of sound. In this work, the linear part of the flame function is
used for frequency domain analyses only, which is obtained by the Fourier
transformation to give q̇ ′

L(x, t ) → ˆ̇qn(x) (cf. Eqn. 2.17).

Saturation of the exponential growth – in case of a linearly unstable situ-
ation – into a constant amplitude limit cycle is described via the non-linear
flame function q ′

N L(x, t ). This assumption of a saturating flame is a validated
approach for gas turbine combustion oscillations [36]. As explicated in Sec.
2.5, non-linear frequency domain approaches are not concerned in this thesis
so that the non-linear function applies to the time domain only.

The stochastic part of the flame function q̇ ′
S in Eqn. 2.22 is used to model the

effect of turbulent combustion noise, which stochastically modulates and
excites the limit cycle amplitude in the unstable case and the system modes
in the stable case, respectively.
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The connection between the acoustic and flame domain is given by pre-
scribing the – at this point unspecified – source term within the acoustic
domain by the flame transfer function in Eqns. 2.22-2.23.

2.7 Energy Relations for Thermoacoustic Analyses

Thermoacoustic instabilities are associated with energy transformation pro-
cesses, e.g. conversion of heat release oscillations into acoustic energy as ex-
plained in Chap. 1. At the same time, acoustic energy is dissipated due mean
flow effects at the free shear layer of the flow. The generation and dissipa-
tion of acoustic energy is addressed in detail in Chaps. 4-5. In order to the-
oretically interpret and mathematically demonstrate the energy transforma-
tion processes encountered within thermoacoustic systems, an integral bal-
ance of the disturbance energy can be effectively used. Such a disturbance
energy framework can be deduced from Eqns. 2.18-2.19 following Myer’s work
in [96, 105, 127], which gives with

E = p ′2

2ρ̄c2
+ 1

2
ρ̄(u′ ·u′)+ρ′(ū ·u′) (2.24)

an explicit formulation of the disturbance energy density field in the domain
of interest. It can be viewed as a total energy of the unsteady flow field simi-
lar to total enthalpy of in fluid mechanics. The conservation equation for the
energy density is given by

dE

dt
+∇· I = DΩ′ +Dmu′ +Dq̇ ′, (2.25)

where I represents the energy flux, while DΩ′,Dmu′ and Dq̇ ′ describe volumetric
source terms due to mean flow effects, momentum sources and heat release
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oscillations, respectively. The sources expand to [96, 105, 127]

I = (ρ̄u′+ρ′ū)(p ′/ρ̄+ ū ·u′), (2.26)

DΩ′ = ρ̄ū · (Ω′×u′)+ρ′u′ · (Ω̄× ū), (2.27)

Dmu′ = mu′ · (u′+ρ′ū/ρ̄), (2.28)

Dq̇ ′ = γ−1

γp̄
p ′q̇ ′. (2.29)

The variablesΩ′ =∇×u′ and Ω̄=∇×ū in Eqn. 2.27 denote unsteady and mean
vorticity of the flow field. The heat release source term Dq̇ ′ is the product of
pressure and heat release rate oscillations. This product identifies as the
Rayleigh integrand in Eqn. 1.7 and connects the theoretical and phenomeno-
logical energy depiction of thermoacoustic instabilities in this section and in
Sec. 1.2, respectively.

An integral value of the energy equation is obtained by volume integra-
tions over the computational domain V , which gives for the individual terms
of Eqn. 2.25

Ẽ =
∫

V
EdV , (2.30)

Ĩ =
∫

V
∇· IdV =

∮
S

I ·ndS, (2.31)

D̃Ω′ =
∫

V
DΩ′dV , (2.32)

D̃mu′ =
∫

V
Dmu′dV , (2.33)

D̃q̇ ′ =
∫

V
Dq̇ ′dV. (2.34)

The oscillatory nature of these integral terms is eliminated by substituting the
modal description given by Eqns. 2.13-2.17, and averaging over one period to
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yield〈
Ẽn

〉= 1

4

∫
V

[(p̂n p̂∗
n)/(ρ̄c2)+ ρ̄(ûn · û∗

n)+ (ρ̂∗
nū · ûn + ρ̂nū · û∗

n)]dV , (2.35)〈
Ĩn

〉= 1

4

∮
S
[Î1,n Î

∗
2,n + Î

∗
1,n Î2,n]dS

= 1

4

∮
S
[(p̂n + ρ̄ūn · ûn)(û∗

n + ρ̂∗
nū/ρ̄)+ (p̂∗

n + ρ̄ū · û∗
n)(ûn + ρ̂nū/ρ̄)] ·ndS,

(2.36)〈
D̃Ω̂,n

〉= 1

4

∫
V

[ρ̄ū · (Ω̂n × û∗
n + Ω̂∗

n × û)+ (ρ̂nû∗
n + ρ̂∗

nûn) · (Ω̄× ū)]dV , (2.37)〈
D̃mûn

〉= 1

4

∫
V

[mûn · (û∗
n + ρ̂∗

nū/ρ̄)+mû∗
n
· (û+ ρ̂nū/ρ̄)dV ], (2.38)〈

D̃ ˆ̇qn

〉
= 1

4

∫
V

[(γ−1)
(
q̂n p̂∗

n + q̂∗
n p̂n

)
/(γp̄)]dV. (2.39)

As before, the summations are dropped due to linear independence of the ex-
pansion terms so that Eqns. 2.35-2.39 describe the respective energy relation
of mode n. The flux term in Eqn. 2.36 was transformed into a surface integral
using the Gaussian theorem [84], which describes the energy transfer across
the system boundaries. Finally, the governing equation for the period aver-
aged modal energy is given by

d
〈

Ẽn

〉
dt

+〈
Ĩn

〉= 〈
D̃Ω̂,n

〉+〈
D̃mûn

〉+〈
D̃ ˆ̇qn

〉
. (2.40)

As is derived in [31], the energy change can be related to the imaginary part of
the complex eigenfrequency of the mode, i.e.

ωn,i = 1

2

1〈
Ẽn

〉 d
〈

Ẽn

〉
dt

= 1

2

1〈
Ẽn

〉[
〈

D̃Ω̂,n

〉+〈
D̃mûn

〉+〈
D̃ ˆ̇qn

〉
−〈

Ĩn

〉
]. (2.41)

Interpretatively, Eqn. 2.41 describes the total disturbance energy balance of
the concerend mode that is governed by the LEE in Eqns. 2.18-2.19. Physical
sources and sinks that determine this energy balance are due to mean flow in-
teractions

〈
D̃Ω,n

〉
, volumetric momentum sources

〈
D̃mûn

〉
, heat release oscil-

lation
〈

D̃ ˆ̇qn

〉
and fluxes across the system boundaries

〈
Ĩn

〉
. Hence, computing

the complex eigenfrequency (in particular the imaginary part) automatically
provides the complete energy balance of the mode of interest.
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2.8 Numerical Methods

This section provides the basics of numerical methods employed in this the-
sis. Specifically, an overview of the Finite Element Method (FEM) to discretize
and solve thermoacoustic problems as well as Computational Fluid Dynamics
(CFD) to compute steady, swirling mean flow fields is provided.

2.8.1 Finite Element Method for Thermoacoustic Problems

Numerical solutions of Eqns. 2.18-2.19 can be obtained using a stabilized
FEM. The stabilization is required to avoid spurious solutions caused by the
convective terms of the LEE [54, 124, 145, 165] and is based on the idea of
adding artificial diffusion to the equations. The weak form of the governing
equations – which presents the first step of FEM discretization procedures (cf.
details in [2,44]) – is expanded with an extra term that consists of the residuum
of the actual equation and a stabilization operator. For the LEE in Eqns. 2.18-
2.19, this weak form formulation including the stabilization extension reads∫

V
[ (iωnEcφ̂φφ

c
n +Ac

LEEφ̂φφ
c
n −Bc

mûn
−Bc

ˆ̇qn
)︸ ︷︷ ︸

residuum

Nφ̂φφ

+ (iωnEcφ̂φφ
c
n +Ac

LEEφ̂φφ
c
n −Bc

mûn
−Bc

ˆ̇qn
)︸ ︷︷ ︸

residuum

τAc
SU PG Nφ̂φφ︸ ︷︷ ︸
stabilizer

]dV = 0, (2.42)

where V refers to the volume of the computational domain, and φ̂φφ
c
n represents

the solution variable, i.e. pressure p̂n and velocity ûn disturbances. The ma-
trices Ec ,Ac

LEE and Ac
SU PG are linear operators associated with the strong form

and the stabilization scheme, respectively. The vectors Bc
mûn

and Bc
ˆ̇qn

contain

the volumetric source term of momentum and heat release ocillations, re-
spectively. The superscript c indicates the continuous nature of the operators,
which explicit forms are provided in [52, 144]. In the continuous case, the
stabilization terms do not exert a quantitative impact on the solution. This
becomes clear because the residuum for continuous solutions of the LEE
is zero so that the stabilization term vanishes [144, 145]. However, as the
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solutions are produced numerically, the impact of stabilization cannot be ne-
glected and should be assessed for each analysis individually. Throughout this
thesis, the residual based Streamline Upwind Petrov Galerkin (SUPG) artificial
diffusion scheme is employed, which acts only on the convection terms in
the residuum (cf. [52, 124, 144, 145]). There are other schemes available, too,
which can be found in the previous references. Finally, the constant param-
eter τ is used to control the stabilization strength as is discussed further below.

Presuming the presence of boundary conditions and a suitable mesh, i.e.
a collection of nodes that span the geometry of the computational do-
main/combustor of interest, Eqn. 2.42 – and thereby Eqns. 2.18-2.19 – is
discretized using standard FEM procedures (cf. [2,44] for FEM fundamentals).
Linear shape functions are used, which emerged an optimal balance between
solution robustness and computational efficiency in this work. The FEM dis-
cretization transforms the differential into an algebraic system of equation,
i.e.

iωnEφ̂φφn = (ALEE +τASU PG)︸ ︷︷ ︸
A

φ̂φφn +Bmûn
+B ˆ̇qn

, (2.43)

where E, ALEE and ASU PG denote discretization matrices associated with the
time derivatives (i.e. iωn terms), spatial derivatives and SUPG stabilization
operators, respectively. The total system matrix of Eqn. 2.43 is given by A =
ALEE +τASU PG . The solution vector φ̂φφn = [p̂n ûn]T hosts the discrete solution
variable at every node in the mesh. The dimension of the matrices are N ×N ,
which denotes the number of degrees of freedoms, i.e. the unknown variables
at the nodes of the mesh. The vectors Bmûn

and B ˆ̇qn
represent the discretiza-

tion of momentum and heat release source terms, respectively. Equation 2.43
can then be solved for the desired mode shapes at corresponding frequen-
cies using readily available standard inversion methodologies as presented in
detail in [2, 43]. Therefore, either an eigenvalue problem or forced field prob-
lem can be solved as described in Sec. 2.5. Expanding the heat release source
term in Eqn. 2.43 with an explicit expression depending on the acoustic quan-
tities connects the flame and acoustic domain as well as models the thermo-
acoustic system performance as described in Sec. 2.6. Specifically, the flame
source term ˆ̇qn, which is absorbed in B ˆ̇qn

, may depend on the eigenfrequency
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ωn. Then, the eigenproblem of Eqn. 2.43 is solved for the eigenvector and -
frequency associated with the first transversal modes using an iterative proce-
dure as explained in [52]. The stabilization parameter τ in Eqn. 2.43 is a field
quantity, which is given by [165]

τ=ατmax

(
Hx,el

|ux,el |+ cel
,

Hy,el

|uy,el |+ cel
,

Hz,el

|uz,el |+ cel

)
, (2.44)

where the parameter ατ is a user-defined variable to achieve the desired sta-
bility. The arguments of the maximum function are composed of the local el-
ement height in three spatial directions (Hx,el /Hy,el /Hz,el ), the local magni-
tude of the flow velocity vector components (|ux,el |/|uy,el |/|uz,el |) and the local
speed of sound cel . The numerical stabilization is required due to the presence
of convective terms in the LEE. Hence, analyses based on a zero mean velocity
assumption, i.e. HE systems, are not needed to be stabilized. The specification
of boundary conditions completes the FEM discretization, which are divided
into wall and inlet/outlet types.

Wall Boundary Conditions

Slip wall conditions are assumed for all velocity disturbances, i.e.

ûn ·n = 0, (2.45)

where n is the normal vector of the boundary pointing out of the domain. In
the case of sweep analyses, an excitation device (e.g. loudspeaker) may be pre-
scribed by assigning the wall condition in Eqn. 2.45 a finite amplitude value,
i.e.

ûn ·n = uex . (2.46)

Inlet and Outlet Boundary Conditions

Inlet and outlet boundary conditions are prescribed by an impedance formu-
lation, i.e.

ρ̄c Zn = p̂n

ûn ·n
, (2.47)
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where ρ̄ and c are the mean flow density and speed of sound at the par-
ticular boundary, respectively. Essentially, the impedance in Eqn. 2.47 re-
lates the pressure and velocity disturbances. It may be frequency dependent
e.g. if it originates from measurements to describe the acoustic volumes up-
and downstream of the considered analysis domain. Details on incorporating
acoustic volumes adjacent to the chamber domain by measured impedance
can be found in [139, 145]. In this thesis, volumes adjacent to the analysis do-
main are assumed to have no impact on the modes of interest as is discussed
in the results chapters. Hence, in- and outlet boundaries are prescribed with
energy-neutral conditions, which are derived from the surface flux terms of
disturbance energy equation in Eqn. 2.36. Specifically, the flux term is required
to become zero, which yields two boundary conditions, i.e.

Î1,n = ĥn = p̂n + ρ̄ū · ûn = 0, (2.48)

Î2,n = ˆ̇mn = (ûn + ρ̂nū/ρ̄) ·n = 0, (2.49)

where Î1,n and Î2,n are often referred to as fluctuating enthalpy and mass of
the flow disturbance, respectively. Re-arranging these formulation in terms of
a specific impedance for incorporation into the FEM discretization yields

ρ̄c Zn =−ρ̄ū, (2.50)

ρ̄c Zn =− ρ̄c2

ū ·n
. (2.51)

Notice that Eqns. 2.50 and 2.51 respectively converge into an open and closed
end termination from a classical acoustic perspective when a zero-mean ve-
locity assumption is imposed , i.e. a HE system is concerned:

ρ̄c Zn = 0 (2.52)

ρ̄c Zn =∞ (2.53)

Dynamical Systems in Time Domain

For time domain simulations and analyses, Eqn. 2.43 is inversely Fourier
transformed, which is permitted due to the linear nature of the equation to
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result in

E
dφφφ′

dt
= Aφφφ′+Bmu′um +Bq̇ ′uq , (2.54)

where E is the descriptor matrix, A is the system matrix, and φφφ′ = [p ′ u′]T is
the state vector hosting the unsteady flow variable at each mesh node. The
vectors (matrices) Bq̇ ′ and Bm′

u
contain information on spatial location of

heat release and momentum source terms, respectively. The corresponding
time-domain signals are denoted by uq and um. Prescribing the former with a
suitable flame dynamics function given by Eqn. 2.22 models linear, non-linear
and stochastic thermoacoustic interactions, which is subject of Chaps. 7-8
of this thesis. Conveniently, the foregoing matrices/vectors are identical to
the frequency domain versions given by Eqn. 2.43. Hence, it suffices to carry
out the discretization using only the frequency domain formulations of the
concerned governing equations, which yields discrete systems in both, time
and frequency domain. Note this matrix equality requires the prescription
of frequency independent boundary conditions for the discretization tasks.
The incorporation of frequency dependent boundary conditions and flame
source terms can be carried out after the discretization steps during the
temporal integrations using interconnection procedures in an state-space
environment [139].

Typical sizes of discretization matrices (E and A) for practical thermoacoustic
systems concerned in this thesis are N = 100,000 − 500,000. Numerical
integrations of frequency domain formulations are straightforward. Time do-
main counterparts require extensive numerical efforts, which is sought to be
avoided as by this thesis’ research objectives (cf. Sec. 1.6). The reasons for this
disparity is given by the steady and transient nature of the systems, where the
latter is substantially more demanding in terms of computational resources.
However, this disadvantage of time domain simulations is overcome in this
thesis by the development (and employment) of a Reduced Order Modeling
(ROM) framework. This ROM approach is applicable to LEE (or HE) systems
given by Eqn. 2.54, which enables fast pace, transient simulations and is
subject of Chaps. 7-8.

All FEM discretization tasks are carried out using COMSOL Multiphysics [2].
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The COMSOL environment allows to prescribe weak form equations given by
Eqn. 2.42 of e.g. the LEE or HE systems, corresponding boundary conditions,
source terms and element types in a user-defined manner. The discretization
itself is carried out in the background by the source code inaccessible to the
user. The numerical solutions associated with frequency domain analyses in
this work are produced within the COMSOL environment in which optimized
solvers e.g. MUltifrontal Massively Parallel sparse direct Solver [2] for eigen-
frequency and sweep computations are readily incorporated. Furthermore,
the discretization matrices can be extracted, which presents a crucial input to
the ROM framework developed in Chap. 7.

2.8.2 Mean Flow Field

The discretization of the LEE for analyses in both, time and frequency re-
quires a steady mean flow field of the concerned combustor. The determi-
nation of these fields occurs by numerical simulations using CFD. For all
mean flow simulation in this thesis, Reynolds-Averaged Navier Stokes (RANS)
approach is employed using a k − ε turbulence model with wall functions
[1, 43, 163]. Combustion models are not considered as all CFD simulations
concern isothermal operations points. Temperature fields are retrieved from
chemiluminescence measurements and mapped into the thermoacoustic
analysis domain (cf. details in Chap. 4). Consequently, the assumption is im-
posed that the velocity field does not change significantly for isothermal and
reactive conditions. This is justified for low Mach number flows, and implies
that interactions between unsteady flow disturbances and mean velocity field
is invariant between isothermal and reactive conditions (cf. Chap. 5 for de-
tails). ANSYS Fluent [1] is used to conduct all CFD simulation. As RANS CFD
simulations represent a standard procedure in engineering analyses, an ex-
plicit treatment of theory, discretization and solution procedures, turbulence
modeling, convergence criteria and strategies is left to the literature [1,43,163].
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3 Benchmark Combustion System

This chapter presents details of the combustion system used as benchmark
for the research tasks in this thesis. The system represents an atmospheric,
experimental version of a can-type combustor as are commonly implemented
in industrial gas turbines. A schematic of the test-rig along with a representa-
tive mean flow field is shown in Fig. 3.1. All mean flow fields used in this the-
sis were obtained through CFD simulations by applying a unstructured hex-
ahedral ("cut-cell") automatic meshing procedure as outlined in [152]. The
combustor system operates as follows. A preheated and perfectly-premixed
gas (natural gas and air) is introduced into the plenum (a) and flows through
A2EV swirl generator (b). A swirling flow (c) in counter-clockwise direction
with reference to the coordinate convention indicated in Fig. 3.1 is generated,
which convect through the mixing tube (d). The flow enters a tubular quartz
glass combustion chamber (e) and is consumed by a lean, turbulent, swirl-
stabilized, premixed flame (f). The combustion product flow leaves the cham-
ber through an exhaust duct (g). The following features, which are relevant for
this thesis, can be varied:

• Swirl-strength (i.e. swirl number) generated in the A2EV swirler.

• Preheated gas temperatures ranging from T̄i n = 293.15K−673.15K.

• Air and fuel mass flow rates to achieve different levels of thermal power
(range: Pth = 97kW−350kW) and air excess ratios (range: λ= 1−2).

In-depth information on specific designs of the entire system, components,
commissioning and operation of this test-rig can be found in [100, 131]. The
operation of the combustor with perfectly-premixed instead of technically-
premixed combustion (as in industrial systems) is justified by the insignifi-
cance of convective modulation effects for the T1 mode in the benchmark
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ūx A

A

320

15
6

Premixed Flame (f)

Swirling Flow (c)
Exhaust (g)Premixed

Flow (a)

Combustion Chamber (e)

A2EV Swirler (b)

θrx
r

35 m/s

−5 m/s

A-A

ūr
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Figure 3.1: Schematic of experimental benchmark combustion system (di-
mensions are in mm) along with axial, radial and azimuthal mean
flow velocity fields (from top to bottom)
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system. This insignificance is due to on the one hand the zero value of the T1
mode in the mixing section and on the other hand due to the low-pass charac-
teristic of the flame in the benchmark system as explained in Sec. 1.4 and App.
A. The absence of these mechanisms allows to reason that thermoacoustic
driving mechanisms are equal between technically- and perfectly-premixed
configurations of the benchmark system at the T1 mode. At certain opera-
tion points, the T1 mode in the combustion chamber undergoes a thermo-
acoustic instability, which yields ideal investigation conditions for HF oscilla-
tions. Specifically, the system is utilized for the following tasks in the course of
this thesis:

• Provision of geometry and operational conditions for computations.

• Test case for validation of the modeling and analysis framework.

• Research subject for analysis and investigations of HF instabilities.

For these tasks, two configurations of the benchmark system are considered:
The first configuration refers to reactive operation as above-described. Analy-
sis domain and shape of the targeted T1 mode are shown in Fig. 3.2.

Â
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Domain

320

15
6

80

Pulsation Probes

r

A-AA

A

B

B

θx
r

B-Bp̂n
+1

-1

Figure 3.2: Reactive configuration of swirl-stabilized benchmark system (di-
mensions are in mm)
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The figure indicates six pressure sensors that are azimuthally distributed at
the faceplate of the chamber to provide acoustic pressure measurements.
Note that broadband excitation of acoustic chamber modes occurs implicitly
due to turbulent combustion for stable as well as unstable operation points.
Thus, there are no external excitation devices for the reactive configuration.
Information on the stability state of each considered operation points are
given in a binary manner, i.e. whether a limit cycle occurs or not. Furthermore,
high-speed camera diagnostics allow to record chemiluminescence radiation
of the steady and unsteady combustion processes. Specific technical infor-
mation on diagnostic equipment and respective operational details (pressure
probe, camera systems, etc.) can be retrieved from [15, 17, 18, 62, 63, 148–150].

As the second configuration, an isothermal setup of the swirl-stabilized
benchmark combustor is utilized for investigations of interactions between
mean flow and acoustic oscillations at transversal modes. This setup estab-
lishes clearly defined investigation conditions of the underlying aeroacoustic
processes without any superimposed impact of flame dynamics. The analysis
domain along with the T1 mode shape are shown in Fig. 3.3.

A nozzle termination is attached to the chamber in order to prevent the
transversal acoustic modes from propagating downstream into the exhaust
duct and interact with the boundary, i.e. experience boundary damping. This
converging nozzle diameter causes a local increase of the cut-on frequency so
that the transversal modes attenuate in downstream direction. Equivalently,
the same mode attenuates in upstream direction due to the smaller diameter
(higher cut-on value) of the mixing tube so that the acoustic performance of
the upstream periphery can be neglected at the considered frequencies. This
creates comparable mode shapes as encountered for reactive cases, where
the associated mean temperature increase in downstream direction causes
the increase in cut-on frequency that leads to the axial mode attenuation.

In terms of diagnostics, the same dynamic pressure probe arrangement
at the faceplate for the reactive counterpart is available as illustrated by
Fig. 3.3. Turbulent flow noise is not strong enough to sufficiently excite the
acoustic modes in the system. Hence, two acoustic compression drivers are
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Figure 3.3: Isothermal configuration of swirl-stablilized benchmark system
(dimensions are in mm)

mounted to the chamber as indicated in the figure to externally excite the
transversal modes of the system.
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4 Non-Compact Flame Driving

One of the most fundamental questions for theoretical understanding as well
as modeling and analysis of thermoacoustic systems is how chamber acous-
tics and the flame physically couple at the onset of a potential instability, i.e. at
very low amplitudes. Such linear coupling mechanisms in the low-frequency
regime have been receiving extensive attention for the last two decades, and
are thus, fairly well understood. The high-frequency counterpart however has
come into focus of the gas turbine combustion community only within re-
cent years (cf. Sec. 1.5). Hence, this chapter provides theoretical details and
investigations along with flame models and a numerical analysis methodol-
ogy of non-compact linear flame dynamics (i.e. flame driving or heat release
modulation mechanisms) at transversal, high-frequency (HF) acoustic modes
in premixed, swirl-stabilized combustors. Thereby, the chapter seeks to fulfill
the following distinct objectives:

• Establishment of a numerical methodology based on Helmholtz Equa-
tion (HE) systems to compute linear driving rates of non-compact flames
in the HF regime. (Sec. 4.1).

• Introduction of a rigorous theoretical framework of linear flame modu-
lation mechanisms that drive transversal HF thermoacoustic oscillations
in the benchmark combustor of this thesis (Sec. 4.2). The emerging driv-
ing mechanisms shall then be modeled and mathematically cast into cor-
responding non-compact flame transfer functions (Sec. 4.3).

• Utilization of these flame transfer functions for quantification of the rela-
tive contribution of density (flame deformation) and velocity (flame dis-
placement) driven heat release oscillations (Sec. 4.5).

• Identification of specific physical features that determine a swirl-
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stabilized combustion system’s propensity to develop transversal HF in-
stabilities (Sec. 4.5).

4.1 Numerical Analysis Methodology

This section introduces the specific numerical methodology with which the
subsequent non-compact thermoacoustic driving computations are carried
out. The modal analysis approach in frequency domain presented in Sec. 2.5
forms the basis for this analysis. Mathematically, thermoacoustic driving is
modeled by energetically coupling the acoustic mode with the unsteady flame
using explicit source term functions (cf. Sec. 2.6), where the latter acts as a
source to the former. Also, due to the exclusive focus on flame driving in this
chapter, the consideration of any acoustic damping processes is omitted and
separately treated in Chap. 5. Moreover, the swirling mean flow induces a loss
of degeneracy onto a transversal mode pair in the concerned system, which
implies the separation of corresponding eigenfrequencies into two distinct
values. This split is usually small so that it can be neglected for the purposes
of the present chapter. However, the loss of degeneracy of transversal modes
represents a relevant component for the phenomenological and theoretical
understanding of HF thermoacoustic oscillations, and is concerned in detail
in App. B.

As governing equations, the HE system given in Eqns. 2.20-2.21 is used
in this chapter. For clarity reasons, the HE system is re-written and reads

ρ̄iωn,aûn,a +∇p̂n,a = mûn , (4.1)

iωn,a p̂n,a + ρ̄c2∇· ûn,a = (γ−1) ˆ̇qn, (4.2)

where only the unsteady heat release term is of concern so that mûn = 0. In this
chapter, the solution variables are the n-th acoustic eigenmode of pressure
p̂n,a(x), velocity ûn,a(x) and unsteady heat release ˆ̇qn(x), which are associated
with a complex angular eigenfrequency ωn,a. At the same time, the subscript
n denotes the expansion term associated with the complex Fourier series in
Eqns. 2.13-2.17. The subscript a indicates that the modes describe only acous-
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tic disturbances of the flow, while other types of disturbances (e.g. vortical)
are not captured due to the negligence of mean flow effects. Equations 4.1-4.2
account for spatial variation of the mean density ρ̄(x), ratio of specific heats
γ(x) and the speed of sound c(x) due to the mean temperature T̄ (x), which is
caused by the combustion process. Recall that the spatial dependency of the
modal heat release source term ˆ̇qn(x) complies with the requirement to partic-
ularly account for non-compact flames within the presented analysis frame-
work. At this point, Eqns. 4.1-4.2 are under-determined (four equations and
five unknowns), which is resolved by prescribing the heat release source term
in terms of acoustic pressure p̂n,a and velocity fluctuations ûn,a, i.e.

ˆ̇qn(x, t ) = F (p̂n,a(x), ûn,a(x)). (4.3)

This functional dependence formally closes Eqns. 4.1–4.2, which generally de-
scribes the linear flame response and is called flame transfer function (FTF).
The analyses conducted within this chapter comprise the computation of
flame driving rates, which is simply given by computing the complex eigen-
frequency. Hence, Eqns. 4.1–4.2 are viewed as an eigenvalue problem, which
yields the n-th eigenmode and -frequency of the concerned combustion sys-
tem for a given FTF and boundary conditions. The eigenfrequencies are com-
plex, i.e.

ωn,a = 2π fn,a − iβn,a, (4.4)

where fn,a and βn,a denote oscillation frequency and flame driving rate, re-
spectively. The driving rate describes the rate of acoustic energy change per
acoustic oscillation cycle due to thermoacoustically induced heat release os-
cillations. This is mathematically shown by employing the assumptions (neg-
ligence of mean flow effects, negligence of any source terms except flame driv-
ing, zero losses across the system boundaries) imposed in this chapter on the
conservation equation of flow disturbance energy in Eqn. 2.40, which gives

d
〈

Ẽn,a

〉
dt

=
〈

D̃ ˆ̇qn

〉
−〈

Ĩn,a

〉
. (4.5)

In this equation
〈

Ẽn,a

〉
is the integral modal energy describing only acoustic

disturbances, which is given by imposing the zero mean velocity assumption
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on Eqn. 2.35: 〈
Ẽn,a

〉= 1

4

∫
V

(
p̂n,a p̂∗

n,a

γp̄
+ ρ̄ûn,aû∗

n,a

)
dV (4.6)

One factor that leads to a theoretical change of acoustic energy is the flux term〈
Ĩn,a

〉
given by Eqn. 4.5, which unfolds to

〈
Ĩn,a

〉= 1

4

∫
S

(p̂n,aû∗
n,a + p̂∗

n,aûn,a) · ndS = 0, (4.7)

where S denotes the domain surface and n is the corresponding outwards
pointing normal vector. Due to fully-prescribed boundary conditions, any
energy transfer across the system boundaries is zero as indicated. Hence, a
change of the modal energy is solely governed by the source term due to heat

release oscillations
〈

D̃ ˆ̇qn

〉
. The flame source term is given by Eqn. 2.39, which

is recalled to 〈
D̃ ˆ̇qn

〉
= 1

4

∫
V

(
γ−1

γp̄

(
q̂n,a p̂∗

n,a + q̂∗
n,a p̂n,a

))
dV.

As is shown in Sec. 2.7, the imaginary part of the complex eigenfrequency in
Eqn. 2.41, i.e. here the driving rate, is proportional to the change of integral
modal energy

βn,a = 1

2

1〈
Ẽn,a

〉 d
〈

Ẽn,a

〉
dt

= 1

2

1〈
Ẽn,a

〉 〈
D̃ ˆ̇qn

〉
, (4.8)

which yields the mathematical connection between acoustic energy, heat re-
lease source term and driving rate. Hence, one crucial input for the calcula-
tion of the flame driving rates is the knowledge of an explicit formulation of
the heat release source term via an appropriate FTF, which is subject of the
next section.

4.2 Theoretical Discussion of Modulation Mechanisms

This section provides the theoretical basis of linear HF thermoacoustic mod-
ulation mechanisms in the swirl-stabilized benchmark combustor presented
in Chap. 3. The starting point is given by the experimental observations made
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by [148–151]. These observations comprised a periodic flame displacement at
the T1 mode. The researchers found that the heat release zone moves with
the acoustic displacement field of the mode. This displacement drives the
acoustic field, which in turn causes the flame displacement. In this way, a
thermoacoustic feedback loop is established where heat release modulates
with acoustic velocity temporally in-phase with the pressure oscillations. The
computation of Helmholtz numbers by Eqn. 1.9 gives He ≈ 0.25 and indicates
non-compactness of the thermoacoustic interactions. A first model was devel-
oped on basis of a generic Dirac type flame in [148] which confirmed a driving
potential due to flame displacement, but remains too generic to be applied
to more "realistic" flames treated in this work. Illustrating the displacement
mechanisms, the flame position always shifts towards the pressure maximum
during an oscillation period Ta as schematically indicated in Fig. 4.1 for differ-
ent instances in time. The figure displays a meridian cut through the tubular
combustor, where the flame is sketched as a parabola. The isocontours of the
instantaneous pressure mode/moving flame over half an oscillation period is
shown via Figs. 4.1 a) – c).

a) Time: t = t0/Ta b) Time: t = t0 +0.25/0.75Ta

Displaced Flame

Flame Motion at t = t0 +0.75Ta

Flame Motion at t = t0 +0.25Ta

c) Time: t = t0 +0.5Ta

Acoustic pressure field p′(x, t )

Acoustic displacement field∆′(x, t )

Displaced Flame

Reference Line

x
r

θ

Figure 4.1: Illustration of flame displacement during one acoustic period Ta

at four time instances of the oscillation cycle for the T1 pressure
mode (top row) and displacement mode (bottom row)
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The periodic flame displacement is the physical origin through which thermo-
acoustic driving is induced into the system. This mechanism becomes appar-
ent by decomposing the heat release into

q(x, t ) = ¯̇q(x)+ q̇ ′(x, t ), (4.9)

which is rearranged to

q̇ ′(x, t ) = q̇(x, t )− ¯̇q(x), (4.10)

where x denotes spatial coordinates (e.g. Cartesian or cylindrical) within a
fixed frame of reference. In Eqns. 4.9-4.10, q̇ ′(x, t ) represents distributed fluc-
tuations of heat release due to instantaneous differences between the spatial
distribution of the moving q̇(x, t ) and the stationary mean ¯̇q(x) heat release.
The concept of this induction of heat release fluctuations due to flame dis-
placement is explained in Fig. 4.2 by means of a Gaussian flame. This flame
can be thought to represent the heat release rate distribution of the flame
along the reference line drawn in Fig. 4.1. The red and blue areas in Fig. 4.2
display the flame in the up- and downwards displaced position as in Fig. 4.1
a) and c), respectively, whereas the bold black curve represents the time aver-
aged heat release distribution.

r

UP

t = t0 +Ta/2
t = t0

DOWN

¯̇q(r )

q̇(r, t ) q̇ ′(r, t )

rs,DOW N

rs,U P

r

Figure 4.2: Simplified schematic of heat release fluctuations due to to flame
displacement

54



4.2 Theoretical Discussion of Modulation Mechanisms

If the flame is assumed to be of Dirac-type as in [148], it moves with one dis-
tinct value of the acoustic displacement at the Dirac position in the domain.
However, this does not hold true for a general case with a "real" heat release
region of finite thickness as in gas turbine combustors. As Fig. 4.1 reveals,
length scales of transversal acoustics and flame shape are of the same order
of magnitude. In consequence, local interactions between the former and
latter must be taken into account, which presents the thermoacoustically
non-compact problem. The heat release region moves with the local values of
the acoustic displacement field.

The values of the acoustic displacement between positions below and
above of the mean Gaussian heat release maximum (denoted by DOWN and
UP in Figs. 4.2 and 4.3) differ. Consequently, local flame shape deformations
as schematically shown in Fig. 4.3 are induced. Specifically, at t = t0 (red

r

UP

t = t0 +Ta/2
t = t0

DOWN

¯̇q(r )

q̇(r, t ) q̇ ′(r, t )

rs,DOW N

rs,U P

r

Figure 4.3: Simplified schematic of heat release fluctuations due to flame
shape deformation

shaded in Fig. 4.2) the flame is exposed to a radially increasing pressure
mode (cf. Fig. 4.1 a)), which implies upward flame motion with a radially
decreasing (positive valued) acoustic displacement mode. Hence, the flame
displacement on the DOWN side is larger than on the UP side leading to
a compression of the flame region and an instantaneous increase of the
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maximum volumetric heat release rate. The opposite effect occurs after half
of a period is elapsed at t = t0 + Ta/2 (blue shaded in Fig. 4.2 c)). At this
instant in time, the flame faces a radially decreasing acoustic pressure (cf. Fig.
4.1), and consequently a downward flame motion with a radially increasing
(negative valued) displacement mode. Accordingly, the flame displacement is
stronger on the DOWN side compared to the UP side, which causes the flame
region to expand and instantaneously experience a decrease in the maximum
volumetric heat release rate. These periodic compression/expansion cycles
represent local oscillations of heat release as is depicted in Fig. 4.3. It is
important to point out that the instantaneous distribution of displaced heat
release exhibits both, positive and negative zones. Specifically, at t = t0 the UP
and DOWN region is respectively positive and negative, and vice versa for the
time instant t = t0 +Ta/2. The temporal behavior of displacing heat release
and acoustic pressure at probe points rs,U P and rs,DOW N are plotted in Fig. 4.4.

t

q̇ ′

q̇ ′
rs,DOW N

p ′
rs,DOW N

p ′

p ′

t

q̇ ′

q̇ ′
rs,U P

p ′
rs,U P

Figure 4.4: Local oscillations of heat release and pressure – flame displace-
ment

It is revealed that oscillations between heat release and pressure are fully
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in-phase at the UP probe, while an out-of-phase situation is observed for the
DOWN probe. According to Rayleigh’s criterion (cf. Sec. 1.2), acoustic energy
is generated and absorbed at the UP and DOWN probe, respectively. As the
pressure amplitude is larger at UP than at DOWN – while the amplitude of
the heat release oscillation is presumed as constant at both locations – the
net effect of the displacing flame is positive thermoacoustic driving in the
presented scenario.

The deformed heat release field in Fig. 4.3 emerges only positive and
negative zones throughout the entire distribution at t = t0 and t = t0 +Ta/2,
respectively. The temporal behavior of heat release and pressure oscillations
for the deforming flame at the UP and DOWN probes is plotted in Fig. 4.5.
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p ′
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p ′

p ′

t
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q̇ ′
rs,U P

p ′
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Figure 4.5: Local oscillations of heat release and pressure – flame deformation

The figure reveals that both, UP and DOWN probes record fully in-phase
dynamics between heat release and pressure oscillations. Consequently, the
deformation mechanism presents a source of acoustic energy at all spatial
locations. Notice that all oscillation amplitudes in Figs. 4.4-4.5 are arbitrary
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as only qualitative relations are concerned. The discussion of positive and
negative driving regions associated with flame displacement is extended to
swirling flame shapes in Sec. 4.5.

It is important to emphasize that the heat release oscillations emerge lo-
cally due to the displacing and deforming flame shape. Consequently, the
(combustor-)volume integrated instantaneous and fluctuating heat release
distributions, which result from the superposition of the two contributing
mechanisms, must respectively conserve energy and vanish at every instant
in time, i.e. ∫

V
q̇(x, t )dV = Ṗth ∀ t , (4.11)∫

V
q̇ ′(x, t )dV = 0 ∀ t . (4.12)

Herein, Ṗth = ṁ f hc denotes the chemically available thermal power with ṁ f

and hc representing the fuel’s mass flow rate and heat of combustion, respec-
tively.

4.3 Derivation of Source Term Functions

The computation of the flame driving rates and the associated quantification
of contributing physical mechanisms in HF thermoacoustic system requires
the explicit formulation of the respective FTF, which is derived in this section.
In order to model the foregoing described modulation of heat release due to
the periodic flame displacement and deformation, and to derive the desired
corresponding FTF, it is useful to introduce a moving reference frame. This
frame is given by the coordinate transform as introduced in [179]

x̃(x, t ) = x−∆′(x, t ), (4.13)

where x̃ = (x̃, ỹ , z̃) denotes the moving frame’s coordinates, which are linked
to the fixed frame’s coordinates by the acoustic displacement field ∆′(x, t ).
The time domain versions of the oscillatory variables are used for the deriva-
tion, which appeared more effective for one’s sense of imagination. Notice that
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Cartesian coordinates are used for the presented derivations, which is not a
necessity, and can be equally carried out within any coordinate system. Inter-
pretatively, the moving frame can be thought of being located on the flame. Its
coordinates describe the displacing and deforming flame shape. Thus, a gen-
eral functional description of the heat release distribution at every instant in
time is given by

q̇(x̃(x, t )) = q̇(x−∆′(x, t )), (4.14)

where the right-hand-side provides an implicit functional description of the
instantaneous heat release distribution in fixed coordinates. The next step to-
wards developing the desired FTF is to explicitly express the displacing and
deforming heat release distribution in terms of stationary mean heat release
as well as unsteady acoustic quantities. The requirement of integral energy
conservation is employed, which must hold true within the fixed as well as the
moving frame: ∫

V
q̇(x, t )dV =

∫
Ṽ

q̇(x̃(x, t ))
dṼ

dV
dV ∀ t (4.15)

Satisfying Eqn. 4.15 is achieved by requiring

q̇(x, t ) = q̇(x̃(x, t ))
dṼ

dV
, (4.16)

with the derivative term expanding to dṼ
dV = dx̃

dx
dỹ
dy

dz̃
dz . Considering Eqns. 4.13-

4.14, the desired formulation of the moving and deforming heat release distri-
bution in the fixed coordinate frame is obtained (where only first order terms
are retained):

q̇(x, t ) = q̇(x−∆′(x, t ))
(
1−∇·∆′(x, t )

)
(4.17)

Then, Eqn. 4.17 is further modified via a Taylor series expansion to the first
order that results in

q̇(x, t ) = ¯̇q(x)−∇ ¯̇q(x) ·∆′(x, t )− ¯̇q(x)∇·∆′(x, t ), (4.18)

where ¯̇q(x) denotes the stationary mean heat release distribution and second-
order fluctuation terms are neglected. The fluctuating field of heat release is
then retrieved by combining Eqns. 4.10 and 4.18 to produce

q̇ ′(x, t ) =−∇( ¯̇q(x) ·∆′(x, t )) =−∇ ¯̇q(x) ·∆′(x, t )− ¯̇q(x)∇·∆′(x, t ). (4.19)
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The non-compact thermoacoustic analysis methodology described in Sec. 4.1
only admits FTF, which are formulated via the acoustic pressure and velocity.
Thus, the acoustic displacement in Eqn. 4.19 is related to acoustic velocity via

u′ = ∂∆′

∂t
, (4.20)

whereas the divergence of the displacement is transformed into

−∇·∆′(x, t ) = ρ′

ρ̄
= p ′

γp̄
, (4.21)

during which conservation of mass as well as the definition of isentropic
acoustics is exploited. Substituting the frequency domain versions of Eqns.
4.20-4.21 into Eqn. 4.19 yields

ˆ̇qn(x) =−∇ ¯̇q(x) · ûn,a(x)

iωn,a︸ ︷︷ ︸
F∆̂

+ ¯̇q(x)
p̂n,a(x)

γ(x)p̄(x)︸ ︷︷ ︸
Fρ̂

, (4.22)

which represents the required distributed FTF at mode n for the non-compact
thermoacoustic analyses of this work. This FTF describes the coupling mech-
anisms introduced above as revealed by re-writing Eqn. 4.22 into

ˆ̇qn(x) = F (p̂n,a, ûn,a) = F∆̂(ûn,a)+Fρ̂(p̂n,a). (4.23)

The first and second terms of Eqn. 4.23

ˆ̇q∆̂,n(x) = F∆̂(ûn,a) = −∇q̄(x) · ûn,a(x)

iωn,a
, (4.24)

ˆ̇qρ̂,n(x) = Fρ̂(p̂n,a) = ¯̇q(x)
p̂n,a(x)

γ(x)p̄(x)
, (4.25)

describe the thermoacoustic driving due to flame displacement and flame
shape deformations. Equations 4.24 and 4.25 recover the functions postulated
in [178], but the fundamental derivations presented in this work establishes
the mathematical and physical interconnection between the two underlying
mechanisms. Section 4.6 presents the experimental validation of these two
mechanisms and the corresponding FTF. Note that the driving mechanism
of flame shape deformation resembles the density modulation mechanism
caused by mass flux oscillations as is encountered in the LF regime [121, 138],
which are insignificant for LF modes due to the dominance of convective
mechanism as explained in Sec. 1.4 and App. A.
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4.4 Investigation Framework

This section provides information of the considered operation points of the
experimental benchmark system used for the forthcoming investigations.
Also, mean heat release and temperature distribution as well as numerical
setup and analysis procedures are discussed.

4.4.1 Experimental Operation Points

The FTF derived in the previous section are used to compute respective driv-
ing rates of an entire operational window of the benchmark combustor. These
driving rates form the basis for the subsequent analyses. The considered set
of operation points is composed of 80 operation points associated with a low-
swirl configuration. This set assembles from all combinations of the following
mass flow rates, inlet temperatures, and air excess ratios:

• ¯̇m = 0.06,0.08,0.10,0.06kg/s

• T̄in = 373.15,473.15,573.15,673.15K

• λ= 1.0,1.2,1.4,1.6,1.8

Around half of these operation points exhibit self-sustained thermoacoustic
oscillations of the T1 mode within the chamber as evaluated by assessing dy-
namic pressure measurements in respective experimental work (cf. [62, 63,
148–151]). Hence, the stability state (i.e. binary rating unstable or stable) of
each operation point is known, and readily available.

4.4.2 Mean Heat Release and Temperature Distributions

The mean heat release distribution is a crucial parameter to the above-derived
FTF in Eqn. 4.23. This distribution is approximated from time-averaged, in-
verse Abel transformed OH∗-chemiluminescence recordings (which are read-
ily available, cf. Chap. 3) of the mean flame brush for each operation point.
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Utilizing this approximation provides mean heat release distributions for a
large variety of operation points without the need of conducting Computa-
tional Fluid Dynamics (CFD) simulations. It is assumed that the mean OH∗

radical intensity distribution indicates the steady heat release distribution (cf.
Fig.4.6), which leads to

q̄(x) = K · Ī (x), (4.26)

where Ī (x) is the volumetric, time-averaged OH∗ intensity distribution, and K
a constant proportionality factor. This factor is determined from the integral
energy conservation requirement

Ṗth = K ·
∫

V
Ī (x)dV. (4.27)

Associated mean temperature distributions are required to compute mean
density and speed of sound fields for the following analyses. These fields are
also derived from the averaged OH∗ intensity distributions (cf. Fig. 4.6) by em-
ploying certain scaling and fitting routines. Specifically, this procedure utilizes
scaling and fitting rules, which are retrieved from comparisons between tem-
perature and OH∗ fields of a reactive CFD simulation with the experimen-
tal OH∗ field of a distinct operation point. More details regarding the basic
idea and procedural concepts of this fitting and scaling method can be found
in [15]. The usability of OH∗ images to obtain mean heat release rate distribu-
tion is justified as the experiments are operated in perfectly premixed com-
bustion mode [15, 17, 62, 63].

0

q̄(x,r )(W/m3) T̄ (x,r )(K)

q̄

0

T̄

r
θ

x

Figure 4.6: Sample mean heat release and temperature distribution
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4.4.3 Numerical Setup and Analysis Procedure

The computation of driving rates βn,a of the T1 mode occurs by numerically
solving Eqns. 4.1-4.2 under consideration of the respective FTF. Mean fields
of heat release and mean temperature are required to prescribe the FTFs and
are individually obtained for each operation point as outlined in the previ-
ous section. The computational domain involves only the three-dimensional
combustor geometry as indicated in Fig. 3.2. In order to practically execute
these computations, the equations are discretized and numerically solved us-
ing FEM (cf. basic theory in Sec. 2.8). Due to the absence of any convective
transport terms in the governing equations in this chapter, no numerical sta-
bilization schemes are required for discretization and system solutions. The
FEM mesh and corresponding boundary conditions are illustrated in Fig. 4.7.

Inlet :Zn =∞

Wall : ûn ·n = 0

r

x
θ

Outlet :Zn = 0

Figure 4.7: Computational domain, mesh and boundary conditions

Each node of this mesh carries a value of the conservation variables, i.e. p̂n,a

and ûn,a), which altogether presents an approximate solution to Eqns. 4.1-4.2.
Specifically, the combustor domain for this work is meshed with ≈ 200,000
tetrahedral elements, and the equations are discretized using linear shape
functions, which translates into ≈ 145,000 degrees of freedom to be solved
for. The employed boundary conditions are also indicated in Fig. 4.7, and are
slip wall conditions at all bounding walls, while the domain’s in- and outlet
are prescribed with an impedance, which is set to represent an acoustically
hard and soft termination, i.e. Z =∞ and Z = 0, respectively.

Due to the employed type of equations as well as the fully-reflecting (i.e.
energy neutral) inlet and outlet termination, no acoustic damping is included
within the analyses as desired. The resulting driving rates only contain the
energetic effect of heat release oscillations as mathematically induced via
the prescribed FTF. One objective of this chapter is to quantify the individual
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significance of the two contributing mechanisms (flame displacement and
deformation) to the total modulation of heat release. This is achieved by
carrying out two separate eigenvalue analyses for each operation point. These
two analyses respectively utilize the FTF corresponding to flame displace-
ment in Eqn. 4.24 and deformation in Eqn. 4.25, which yield the associated
driving rates β∆̂ and βρ̂. The total driving rate can be determined by
superposition, i.e.

βtot =β∆̂+βρ̂. (4.28)

The significance of the two coupling mechanisms is quantified by comput-
ing the relative contribution between the individual and absolute driving rate,
which respectively reads

r c∆̂ =
β∆̂
βtot

·100%, (4.29)

r cρ̂ =
βρ̂

βtot
·100%. (4.30)

4.5 Results and Interpretations

This section presents results and interpretations of the driving analysis. First,
computed driving rates of all considered operation points are provided. Then,
distinct physical features that promote/inhibit non-compact flame driving are
identified and discussed. Lastly, further insight in non-compact flame modu-
lation behavior is generated by inspecting the source term function.

4.5.1 Quantification of Driving Mechanisms

The driving rates are computed by solving the HE system given by Eqns. 4.1-
4.2. For each operation, the driving rate due to displacement and deformation
is obtained individually by utilizing the FTF given in Eqns. 4.24 and 4.25, re-
spectively. The calculated oscillation frequencies, which are independent of
the prescribed type of modulation mechanism, are compared against readily
available experimental counterparts in Fig. 4.8. The operation point number
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on the x-axis is only of auxiliary purpose to present and compare the frequen-
cies. An explicit allocation to specific operation conditions is not required.
The experimental frequency values result from Fast Fourier Transforms of dy-
namic pressure measurements that are recorded at the combustion chamber’s
faceplate (cf. Chap. 3 and [15, 17, 62, 63]).
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Figure 4.8: Comparison of numerical vs. experimental oscillation frequencies
of all considered operation point for validation purposes

The numerical simulations accurately reproduce the experimentally mea-
sured frequencies with an average relative error of 5%. As these frequencies
are sensitive to the mean temperature distribution, the employed fitting pro-
cedure to obtain this distribution that is retrieved from [15] can be viewed
as implicitly validated. Thus, the results of Fig. 4.8 establish confidence that
the computation method is capable of accurately reproducing the transversal
acoustic eigenfrequencies as well as the mode shapes of all concerned opera-
tion points. The oscillation frequencies associated with the individual compu-
tation of the displacement and deformation FTF are identical for each opera-
tion point. The reason for this equality is due to the fully in- and out-of-phase
nature of the two FTF, which does not induce a frequency shift on the modes.
The experimental frequencies reflect the non-degeneracy of T1 modes due to
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swirling mean flow effects. However, the associated frequency differences are
small (cf. Chap. 7), and are thus averaged for the comparison purpose of Fig.
4.8 to yield one distinct frequency value for each operation point. The three
driving rates due to displacement, deformation and the sum of these (total
driving) are plotted against the integral thermal power density and measured
oscillation amplitudes 1 of all operation points in Figs. 4.9 and 4.10, respec-
tively.This power density is given by

PD = Ṗth

V f
, (4.31)

where Ṗth is the thermal power as given for Eqn. 4.27 and V f is the flame
volume, which can be computed within the FEM analysis framework. Recall
that the only measurement inputs – which are all readily available, cf. Chap.
3 – comprise (1) the observed (in-)stability behavior, (2) the oscillation ampli-
tudes, and (3) the OH∗-images as mean heat release indicator for each opera-
tion point.
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Figure 4.9: Computed driving rates vs. thermal power density

1given by the peak value of an Fast Fourier Transform of measured dynamic pressure time series
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Figure 4.10: Computed driving rates vs. measured oscillation amplitudes

All driving rates and power densities provided in the respective figures are
numerically computed quantities. The filled circles in the figures indicate
experimentally determined stable points, whereas empty circles indicate
unstable operation points. Unstable points are associated with higher com-
puted driving rates, and vice versa for stable points, which holds true for the
displacement, density and total driving rates. This trend is also evident in
Fig. 4.10, where the driving rates are plotted versus the measured pressure
amplitudes. The magnitude indicates the severity of the instability limit
cycle. Figure 4.9 identifies a linear dependence of the driving rates on the
thermal power density. This dependence can be explained by assessing the
displacement and deformation FTF in Eqns. 4.24-4.25. Operation points with
a large power density naturally translate into flames with high volumetric
heat release rates compared to lower power densities, which explains the
linear trend of the deformation driving rates.

All displacement driving rates emerge as positive for all operation points
despite the theoretical possibility to yield negative values as described in
Sec. 4.2. It is inferred that positive source regions outweigh the negative
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counterparts in the spatial distribution of the associated displacement FTF.
Details on positive and negative driving regions of the displacement FTF
within swirl-stabilized flames are given further below.

Overall, it is argued that higher power densities lead to higher gradients
of mean heat release that are located so that the interactions with the dis-
placement field cause positive driving and the observed linear dependence
of the displacement driving rates. Thus, the propensity of a combustor to
develop a HF instability at the T1 mode can be linked to the underlying ther-
mal power density. A separation line between driving rates associated with
stable and unstable operation points can be drawn in Figs. 4.9-4.10. Shifting
the cloud of driving rates downwards so that the stability line coincides
with the x-axes of the plots yields the image one would expect if all relevant
damping effects are taken into account, too. This requires the computation
of damping rates, which are then superposed with the driving rates to yield
the net thermoacoustic growth rates. The computation of both, damping and
growth rates are considered in Chaps. 5-6.

In order to valuate the significance of the constituting modulation mecha-
nisms, relative contributions are computed via Eqns. 4.29-4.30, and plotted in
Fig. 4.11. The figure reveals that density and velocity modulations contribute
on average 75% and 25% towards the total thermoacoustic driving of the T1
mode for the concerned operation configurations, respectively. Thus, density
modulation (flame shape deformations) dominates this driving, however, not
as strong as to justify the principal negligence of the displacement contribu-
tion. It is important to point out that these results are not universally valid
and apply only to the types of flame shapes/combustor setups considered
in this thesis, i.e. swirl-stabilized systems with one central flame associated
with one fuel-air mixture entering the chamber through a main burner tube.
Other configuration, e.g. containing auto-ignition stabilized or jet flames
would require an individual analyses in the same manner as conducted in
this chapter.
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Figure 4.11: Relative contributions to total driving

4.5.2 Driving Propensity

This subsection identifies global features that determine the concerned swirl
stabilized combustor’s propensity to develop a HF instability at the T1 mode.
For this, the magnitude of the driving rates serve as rating parameter, i.e. large
values imply an amplified propensity, and vice versa. In order to identify such
governing factors, a selected set of operation points is inspected in detail.
All these cases are of equal thermal power, but show both, experimentally
determined stable and unstable behavior. Hence, six points with a thermal
power value of Ṗth = 194,050 W are chosen. Three of these are respectively
stable and unstable. According to the Rayleigh criterion (cf. Eqn. 1.8), thermo-
acoustic driving can only occur within the spatial extent of pressure oscilla-
tions [63, 179], i.e. where the pressure mode is non-zero. Additionally, driving
is solely possible within the flame region where the mean heat release is non-
zero. The intersection zones (ISZ) between the pressure mode and the heat
release distribution are formed for each of these six points as visualized in Fig.
4.12. The calculation of these ISZ requires to set the pressure mode to zero be-
low a threshold value. This value is selected such that 95% of modal acoustic
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energy (cf. Eqn. 4.6) is maintained within the "truncated" modes for the ISZ
computations.

Â

Intersection Zone
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Figure 4.12: Intersection zone (blue shade) between pressure mode (rainbow)
and flame contour

Then, the ratio between thermal power released within the ISZ and the total
thermal power as well as between the geometrical volume of the ISZ and the
total flame volume are computed. These two quantities are then assessed in
terms of their role as an indicator for instability propensity. The computed
values of volume and power ratio are given in Tab. 4.1.

UNSTABLE STABLE

Volume Ratio (%) 52 50 56 39 40 43
Power Ratio (%) 53 52 58 41 42 48

Driving Rate (r ad/s) 86 74 87 59 55 61

Table 4.1: ISZ quantites for three stable and unstable operation points at equal
thermal power of a low-swirl combustor configuration

The table reveals that the thermal power released within the unstable ISZ is
larger than for the stable counterpart. Hence, the available thermal power with
which acoustic pressure perturbations interact to induce heat release oscilla-
tions is higher. This amplifies the thermoacoustic feedback, which ultimately
leads to stronger driving with larger driving rates compared to the cases that
carry less thermal power within their ISZ. Also, the volume ratios of the unsta-
ble cases are larger than these of the stable cases. Thus, a higher volumetric
portion of the flame is exposed to thermoacoustic coupling for unstable cases
compared to stable ones. The foregoing observations yield that large integral
thermal power ratios as well as flame volume ratios associated with the swirl-
stabilized combustor’s underlying ISZ promote HF instabilities. This finding
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allows to identify the following flame/combustor features, which lead to an
increase of instability propensity at the T1 mode:

• Flame location fairly close to the burner outlet within the extent of the
transversal acoustic mode, which is confirmed by experimental investi-
gations 2.

• Radially off-centered flame position towards the chamber wall.

• Compact rather than widespread flame shape.

In order to reinforce the validity of foregoing identified features, six config-
urations of a high-swirl setting of the combustor with the same operational
parameters as the low-swirl cases are investigated in terms of ISZ and (in-)
stability propensity. The respective results are shown in Tab. 4.2, which shows
the same trends as established above. Larger volume and power ratios emerge
for the unstable cases, which are also associated with higher driving rates, and
vice versa for the stable cases. Furthermore, the increased instability severity
of high-swirl cases – as experimentally identified in the work of [15] – is ex-
plainable by the above-found features, i.e. high-swirl flame shapes are more
radially off-center, more compact, and are located closer to the burner outlet
compared against their low-swirl counterparts.

UNSTABLE STABLE

Volume Ratio (%) 65 62 64 50 48 52
Power Ratio (%) 66 61 69 53 50 54

Driving Rate (rad/s) 136 120 127 76 74 72

Table 4.2: ISZ quantities for three stable and unstable operation points at
equal thermal power of a high-swirl combustor configuration

4.5.3 Assessment of Non-Compact Source Terms

Further understanding of non-compact heat release modulation in swirl-
stabilized flames is generated by assessing the non-compact source terms

2This work was performed by F. Berger at the Lehrstuhl für Thermodynamik of TU München.
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in detail. For this purpose, the integrand of the source term due to heat re-
lease oscillations in the modal energy balance (cf. Eqn. 4.8) – which links this
source to the modal driving rates (cf. Eqn. 4.8) – is expanded using the FTF
of displacement and deformation driving given by Eqns. 4.24-4.25. These dis-
tributed source fields are also called Rayleigh indexes [63], which respectively
unfold to

riρ̂(x) = Re
(
q̂ρ̂,n(x)p̂∗

n(x)
)= Re

(
q̄(x)

γ(x)p̄(x)
p̂n(x)p̂∗

n(x)

)
, (4.32)

ri∆̂(x) = Re
(
q̂∆̂,n(x)p̂∗

n(x)
)= Re

(
− ∇q̄(x)

ρ̄(x)ω2
n

∇p̂n(x) · p̂∗
n(x)

)
, (4.33)

where the acoustic velocity of the displacement FTF is replaced by the gradi-
ent of the pressure mode using the momentum equation given by Eqn. 4.1.
First, the deformation Rayleigh index in Eqn. 4.32 is always positive, which
implies that the associated local heat release and pressure oscillations are
(temporally) in-phase, i.e. generate acoustic energy, at all spatial positions of
the source field. Conversely, heat release oscillation due to flame displace-
ment can either be in-phase or out-of-phase with the acoustic pressure.
Hence, positive and negative zones within the source field are possible,
which respectively resemble generation and absorption of acoustic energy as
indicated through the investigations using the generic Gaussian flame shapes
in Sec. 4.2.

The reason for the presence of positive and negative zones is due to de-
pendency of the displacement Rayleigh index on gradients of mean heat
release and the pressure mode. Both quantities can exhibit positive and neg-
ative values within their respective fields. Specifically referring to Eqn. 4.33,
in-phase acoustic energy generation due to flame displacement occurs (note
the negative sign in the expression) at locations where a positive/negative
pressure gradient meets a negative/positive mean heat release gradient.
Vice versa, locations at which the pressure and mean heat release gradients
are both positive/negative exhibit acoustic energy absorption due to the
out-of-phase situation between heat release and pressure oscillations. The
following theoretical findings related to heat release modulation due to flame
deformation and displacement are established:
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• Flame deformation always leads to positive driving rates, which is due to
the presence of only positive zones of the Rayleigh index.

• Flame displacement can lead to either positive or negative driving rates,
which depends on whether positive or negative zones dominate the
Rayleigh index.

4.6 Validation of Source Term Functions

This section provides validation of the analytical FTFs given by Eqns. 4.24-
4.25. All findings, interpretations and implications drawn in the foregoing
sections are crucially based on the computation results of the driving rates
carried out with these FTFs. Hence, the physical correctness of these results
are consolidated with this experimental validation. For this purpose, the nu-
merically obtained total Rayleigh index, i.e. the sum of individual displace-
ment and deformation formulations ri = ri∆̂+ riρ̂, is compared against the ex-
perimentally obtained counterpart. One representative operation point ( ¯̇m =
0.12kg/s, T̄i n = 473.15K,λ = 1.4) is selected for the comparisons. It is em-
phasized that the experimental determination of the FTF fields was not car-
ried out as part of this thesis’ research, and are readily retrieved from [15].
Details on measurement techniques and post-processing procedures can be
found in these references. The analytical Rayleigh index fields are obtained by
evaluating (and then adding) Eqns. 4.32-4.33 using the respective FTF from
Eqns. 4.24-4.25 as well as numerically computed mode shapes along with the
mean heat release and temperature field of the concerned operation point.
The comparison of the Rayleigh indexes are shown in Fig. 4.13.

The figure reveals an excellent qualitative and quantitative agreement be-
tween the experimental and analytical Rayleigh index. An equally accurate
validation between the underlying experimental and analytical FTF can be
implied. More extensive validation studies using further operation points were
conducted in [15, 17, 18], which emerge the same level of agreement between
experiments and models. Hence, the FTF models derived and used for the
analyses – as well as the associated results – in this chapter can be labeled
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Figure 4.13: Comparison between analytical (left) and experimental (right)
Rayleigh index

as experimentally validated.

4.7 Summary and Findings – Non-Compact Flame Driving

The foregoing chapter presented a theoretical and analytical treatment of HF
thermoacoustic flame driving of the first transversal acoustic mode in a lab-
scale swirl-stabilized gas turbine combustor, which resulted in the following
findings:

• Flame displacement and deformation were confirmed as fundamental
mechanism that cause HF instabilities.

• Distributed flame transfer functions of these two driving mechanisms
were derived from first principles.

• Flame deformation always leads to positive driving rates.

• Flame displacement can theoretically yield positive or negative driving
rates, although the latter was not observed in the presented analysis.
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A non-compact modal analysis framework was established, which allowed to
straightforwardly incorporate the distributed source terms to compute oscil-
lation frequencies and driving rates of the T1 mode. Required mean tempera-
ture and heat release rate fields were obtained from OH∗-chemiluminescence
measurements of the experimental benchmark combustor. A wide range of
operation points of low- and high-swirl configurations of this combustor,
which feature HF instabilities, were analyzed, and emerged to following re-
sults:

• Accurate reconstruction of oscillation frequencies for all operation
points was achieved.

• The driving rates belonging to flame deformation and displacement driv-
ing showed consistent results with the experimental instability observa-
tion over the entire operational window.

• Driving contributions of flame shape deformations were found three
times larger than flame displacement.

Additionally, the following criteria that promote a swirl-stabilized combustor’s
propensity to develop a HF instability were identified:

• Inclusion of large portion of mean heat release distribution within the
acoustic pressure mode.

• Compact flame shape close to burner outlet and chamber walls. This
criteria holds true only for the concerned T1 mode. If other modes are
considered, the assessment of instability propensity needs to be re-done.
Generally, compact flame shapes that are placed in regions of pres-
sure anti-nodes of the respective mode lead to an increased instability
propensity.

• High power density of flames.

Finally, note that the presented theory, methods, models and findings are in
principle applicable to other transversal mode and combustor types as long
as governing physical mechanisms remain the same.
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Dissipation of acoustic energy (i.e. damping) presents the second key factor –
besides generation of acoustic energy due to flame driving – that determines
whether or not a combustor undergoes a thermoacoustic instability. Acousti-
cally induced vortex-shedding at free shear-layers of the mean flow presents
one main damping mechanism in gas turbine combustors [40, 49, 67, 138]. In
this thesis, the multi-dimensional nature of the concerned transversal modes
in the HF regime renders this mechanism as acoustically non-compact. The
application of existing methodologies to model and quantify the damping
rate of the concerned modes from the field of low-frequency/compact ther-
moacoustics [49, 137] is not possible. Respective models that are applicable
to HF modes are not existent. Furthermore, the usage of the Linearized Euler
Equations to directly compute the desired damping rate is – as addressed in
this chapter – not straightforwardly possible. This chapter seeks to establish
a theoretical and methodological framework with which the acoustic damp-
ing of transversal modes due to shear-layer interactions can be modeled and
quantified. This requires to achieve the following research objectives:

• Theoretical assessment of acoustically induced vortex-shedding for
transversal modes in the HF regime (Sec. 5.1).

• Clarification of the suitability of the Linearized Euler Equations for direct
numerical determination of acoustic damping rates (Sec. 5.2).

• Development of a robust methodology to model and numerically quan-
tify the acoustic energy loss due to vortex-shedding for transversal modes
(Sec. 5.3 and Sec. 5.4).

• Computation of damping rates of all 80 operations points, which were
concerned for the flame driving studies in the previous chapter (Sec. 5.5).
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5.1 Acoustically Induced Vortex-Shedding

Acoustically induced vortex-shedding represents one main damping mech-
anisms in gas turbine combustors [40, 67, 138]. A simplified explanation of
this process is given in Fig. 5.1. The explanation starts by considering a mean
shear-layer velocity profile at the area jump in a combustor, which causes an
induction of mean vorticity into the flow field. The shear layer velocity pro-
file is modulated by acoustic velocity oscillations, which consistently induces
a fluctuation of the vorticity generation. One counter-rotating vortex pair is
formed per acoustic oscillation period, which convects downstream with the
local mean flow velocity. The generation of these vortices consumes acous-
tic energy (i.e. damping). For detailed depictions of physical mechanisms on
vortex-shedding, one is referred to the literature [11, 40, 68, 103].

u′ū
a

Mean shear layer velocity profile.

Mean vorticity caused by shear layer velocity profile.

Modulation of mean shear layer velocity profile by

Counter-rotating vortex pair is formed during one

Acoustic velocity oscillations at shear layer.

Combustor wall a

b

c

e

d

e
b

c
acoustic velocity oscillations leads to a periodic
generation of vorticity. This generation of voritcy
represents damping of acoustics.

acoustic oscillation period, which propagates
downstream with the local mean flow velocity.

d

Figure 5.1: Simplified concept of acoustically induced vortex-shedding

For the swirl-stabilized benchmark combustor, acoustically induced vortex-
shedding is proclaimed as the only relevant damping mechanisms. The
impact of other damping mechanism is assumed as negligible. Specifically,
damping due to the formation of entropy disturbances is not concerned
as these are irrelevant in the frequency regime encountered in this work
(cf. Sec. 2.3 and [164, 170]). Damping at the domain in- and outlet can be
neglected due to the attenuation of the T1 mode to zero in both, up- and
downstream directions (cf. explanations and pressure mode shape plots in
Chap. 3). For non-isothermal cases, the T1 mode is simply the first transversal
mode appearing after the cut-on frequency of the concerned chamber. The
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5.1 Acoustically Induced Vortex-Shedding

temperature field causes this T1 mode to exhibit a natural longitudinal com-
ponent. Thus, it could be labeled as T1L0, too, which is not used in this work
for clarity reasons. In case of isothermal conditions and a constant diameter
of the chamber, the T1 mode is also the first one after the cut-on frequency,
yet, it does not attenuate naturally downstream and its shape depends on the
outlet boundary condition. The mode’s attenuation in up- and downstream
direction is caused by the decreasing diameter and increasing temperature in
downstream direction, respectively. Consequently, any interaction between
the T1 mode and the inlet and outlet of the computational domain is impos-
sible. This boundary independency applies only to the first T1 mode that are
close to the cut on value. Modes with longitudinal components (i.e. T1Lx) are
exposed to outlet damping. Thus, the first T1 mode (and equally first T2,T3,...
modes) is more susceptible to become unstable as boundary damping ef-
fects are missing, which explains why the benchmark combustor exhibits
HF instabilities at this mode and not at, e.g. the T1L2 mode. Furthermore,
dissipation in the acoustic boundary layer [96, 127] is regarded as negligible
in benchmark combustor. Notice that the claim of zero wall damping is of
hypothetical nature, which is being investigated in the course of an ongoing
research project [130].

The term "vortex-shedding" refers to the interactions between acoustic
oscillations and shear-layers of a combustor’s mean flow field (cf. Fig. 5.1),
which causes an energy transformation chain as schematically illustrated in
Fig. 5.2. The periodic formation of vortices occurs at the expense of acoustic
energy. The shed vortices represent coherent structures of the flow, which
propagate upon formation with the local convection speed of the mean flow.
Hence, these structures can be interpreted as hydrodynamic flow distur-
bances, which can be considered as incompressible in low Mach number
mean flows as encountered in gas turbine combustors. The hydrodynamic na-
ture causes the vortical structures to be exposed to turbulent processes while
propagating downstream [67, 123, 168]. Specifically, dissipative turbulent pro-
cesses act on the kinetic vortical energy to eventually transform it into heat,
which is then absorbed by the mean flow. At the point where the vortices have
disappeared, the transformation chain from unsteady acoustic into unsteady
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Acoustic disturbance (wave) , transported with local speed of sound, energy flux Ia,1

Mean shear layer, interactions with acoustic velocity causes periodic vortex-sheddings

Vortical disturbances, transported with local mean flow velocity, energy flux Iv,3

Acoustic wave after vortex shedding, decreased energy flux Ia,4 < Ia,1

Vortical disturbances, subjected to turbulence, decreased energy flux Iv,5 < Iv,3

Acoustic wave, unchanged energy flux Ia,6 = Ia,4

Vortical disturbances dissipate completely into heat, zero energy flux Iv,7 = 0

Acoustic wave, unchanged energy flux Ia,8 = Ia,6
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Figure 5.2: Energy conversion processes associated with vortex-shedding

vortical and furthermore steady thermal energy is completed as illustrated in
Fig. 5.2. The energy content associated with the transformation of acoustic
into vortical disturbances represents exactly the damping value relevant for
the assessment of a combustor’s thermoacoustic linear stability state. The
discussion of in-depth details on physics and theory of vortex-shedding and
accompanied turbulent dissipation processes is beyond this thesis’ scope.
Interactions between vortical disturbances (e.g. due to vortex-shedding) and
the mean flow field that generate acoustic energy [66, 127] are governed by
the LEE, too [52, 82]. However, it seems that such interaction have not (yet)
appeared as relevant in HF systems. The vortex-shedding phenomenon at
the T1 mode in the benchmark combustor is illustrated via Mie-Scattering
images [151] in Fig. 5.3 a). Accompanied velocity and vorticity fields of the
mean flow (obtained via CFD following the work of [152]) are shown in Figs.
5.3 b)-c), while unsteady counterparts are presented in Figs. 5.3 d)-e). The
figures effectively indicate that the vortex-shedding process occurs along the
outer shear-layer of the swirling mean flow field.
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|ū|
0 +1

a)

r

x
θ

|Ω̄|
0 +1

Figure 5.3: a) Mie scattering of period vortex-shedding [151] b) Normalized
mean velocity field c) Normalized mean vorticity field d) Normal-
ized instantaneous (radial) velocity disturbance field e) Normal-
ized instantaneous (radial) vorticity disturbance field f) Normal-
ized instantaneous pressure disturbance field
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5.2 Linearized Euler Solutions for Quantification of Vortical
Acoustic Damping

It has been often perceived (e.g. by the author of this thesis) that computing
the eigenvalues of the LEE with an underlying mean flow field that contains a
shear-layer emerges the acoustic damping rates relevant for thermoacoustic
stability assessments [72]. However, as is addressed below, the LEE eigenval-
ues contain more physical information than acoustic damping, and a utiliza-
tion for thermoacoustic stability analyses is not straightforward. Specifically,
this section seeks to clarify the suitability of LEE eigenmodes for quantifica-
tion of acoustic damping due to vortex-shedding from a theoretical perspec-
tive. For this purpose, LEE eigenmodes are decomposed into acoustic and vor-
ticity disturbance modes, which are then assessed from an energy conserva-
tion perspective using the energy disturbance framework introduced in Sec.
2.7.

5.2.1 Disturbance Field Decompositions

Mathematically, the phenomenon of acoustically induced vortex-shedding
is captured by the Linearized Euler Equations (LEE) in frequency domain,
which are given by Eqns. 2.18-2.19. This vortex-shedding causes the presence
of both, acoustic and vortical disturbances. Consequently, LEE eigenmodes
contain acoustic as well as vortical disturbances that respectively propagate
with the speed of sound and the mean flow velocity in a superposed man-
ner [25, 96]. Mathematically, the unsteady velocity fields are therefore com-
posed of acoustic and vortical contributions, i.e.

ûn = ûn,a + ûn,v , (5.1)

where the former and latter vector fields are irrotational (∇× ûn,a = 0) and
solenoidal (∇ · ûn,v = 0) at mode n, respectively. Consequently, the pressure
disturbance reads

p̂n = p̂n,a + p̂n,v . (5.2)
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In order to assess energy transformation processes, it is emphasized that LEE
solutions do indeed capture the formation process of vortical disturbances
at the expense of acoustic energy at the mean shear-layer. However, the ab-
sence of turbulence effects in the LEE inhibits the vortical disturbances from
dissipating as it would occur in reality (cf. Sec. 5.1 and Fig. 5.2). From this per-
spective, the vortical disturbances remain existent upon formation and con-
vect downstream towards the outlet of the domain. The axiomatic require-
ment of energy conservation leads to the statement that the unsteady flow
field given by LEE modes that describe the vortex-shedding process do not
experience any change of total energy, while a transformation of acoustic into
vortical disturbance energy occurs at the location of vortex-shedding. Figure
5.4 illustrates this statement by presenting the energy fluxes of total, acous-
tic and vortical flow disturbances for a generic shear-layer that is perturbed
by an upstream traveling acoustic wave. In this figure, the downstream end
is presumed as infinitely long so that there are no reflections/interactions of
acoustic and vortical disturbances at the outlet boundary. Note that acoustic
reflection at the area expansion is neglected (i.e. assumed to be fully transmis-
sible) for simplicity of the presented discussions.

Ia

Iv

Itot

turbulent dissipation (not capture by the LEE)

x

I

area of vortex-shedding convective transport region

C.V.

Figure 5.4: Total (Itot), acoustic (Ia) and vortical (Iv ) energy fluxes

Performing an energy balance of the fluxes around the control volume shown
in Fig. 5.4 gives for the physics that are captured by the LEE:

Ia,i n + Iv,i n︸︷︷︸
=0

= Ia,out + Iv,out = Itot (5.3)

Employing the Linearized Navier-Stokes Equations (LNSE), i.e. the LEE with
additional molecular and/or turbulent diffusion terms on the right hand side
of the momentum equations would also not model the desired effects. The
effect of molecular diffusion would simply model particle friction of the un-
steady motions. This friction would indeed cause (quite small) losses, yet,
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does not describe the dissipation processes of the vortical disturbances that
would yield the correct energy balance given by Eqn. 5.3. Using the turbulent
viscosity as e.g. in [53] would also not model the dissipation of vortical distur-
bances as it acts on both, vortical and acoustic quantities. The consequence
would be dissipation of both types of unsteady quantities, which contradicts
the physical description that only vortical disturbances are subject to turbu-
lent dissipation processes for a correct energy balance. Additionally, the tur-
bulent viscosity field depends on the turbulence model used for the mean flow
computations, which implies an undesirable dependency of the LNSE results
on the employed turbulence model.

5.2.2 Energetic Interpretations of Eigenfrequencies

The conservation of disturbance energy (cf. Fig. 5.4) is assessed by performing
an energy balance over the LEE eigenmode of interest. For this purpose, the
complex eigenfrequency is used, which reads

ωn = 2π fn − iαn, (5.4)

where fn is the oscillation frequency of mode n, and the imaginary part αn is
called LEE damping rate. It is intuitive to presume that this LEE damping rate
corresponds to the damping rate required for thermoacoustic linear stability
analyses [72]. This claim is investigated by relating the LEE damping rate using
the conservation equation for the disturbance energy associated with an LEE
mode. Referring to Eqn. 2.41, this relation is given by

αn = 1

2

1〈
Ẽn

〉 d
〈

Ẽn

〉
dt

= 1

2

1〈
Ẽn

〉 (〈
D̃Ω̂,n

〉+〈
D̃mûn

〉+〈
D̃ ˆ̇qn

〉
−〈

Ĩn

〉)
, (5.5)

were
〈

Ẽn

〉
,
〈

Ĩn

〉
and

〈
D̃Ω̂,n

〉
represent modal energy, boundary flux terms and

source terms due to vortex-shedding interactions, respectively. The source

term associated with heat release oscillations is set to zero
〈

D̃ ˆ̇qn

〉
= 0 as flame

driving is not considered in this chapter. Note that explicit expressions of
the foregoing terms are given by Eqns. 2.35-2.39. Moreover, the following
discussions presume zero external momentum addition so that

〈
D̃mûn

〉= 0 in
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this section, respectively.

As the unsteady velocity consists of acoustic and vortical contributions
(cf. Eqn. 5.1), it is reasoned that the modal energy, flux and source term can
be decomposed in an analogous manner [25, 96]:〈

Ẽn

〉= 〈
Ẽn,a

〉+〈
Ẽn,v

〉
(5.6)〈

Ĩn

〉= 〈
Ĩn,a

〉+〈
Ĩn,v

〉
(5.7)〈

D̃Ω̂,n

〉= 〈
D̃Ω̂,n,a

〉+〈
D̃Ω̂,n,v

〉
(5.8)

It is pointed out that theoretically, the substitution of the decomposed velocity
and pressure disturbance into the energy, flux and source expressions emerges
mixed terms, i.e. En,a,v , In,a,v and DΩ̂,n,a,v . A definite physical interpretation of
these terms is not yet clarified and poses an open research question [96]. How-
ever, the length scale relation between vortical and acoustic disturbances (cf.
Fig. 5.3) allows to reason that the mixed terms can be considered small so that
upon volume integration 〈

Ẽn,a,v

〉¿ 〈
Ẽn,v

〉
/
〈

Ẽn,a

〉
, (5.9)〈

Ĩn,a,v

〉¿ 〈
Ĩn,v

〉
/
〈

Ĩn,a

〉
, (5.10)〈

D̃n,a,v

〉¿ 〈
D̃n,v

〉
/
〈

D̃n,a

〉
, (5.11)

and are thus not further considered in the forthcoming discussions. The LEE
modes describe the total flow disturbance, i.e. the superposition of acoustic
and vortical contributions. Practically, a respective decomposition is not
straightforwardly possible, and thus, not available for this thesis work. Con-
sequently, the individual modal energies, fluxes and source terms in Eqns.
5.6-5.8 cannot be explicitly obtained. Nevertheless, the decomposition mind-
set presents a crucial component to shed light into the energy transformation
processes and the accompanied role of the LEE damping rate.

The proportionality relation between LEE damping rate and change of
modal energy of Eqn. 5.5 along with the decomposition in Eqn. 5.6 leads to

αn = 1

2

1〈
Ẽn

〉 d
〈

Ẽn

〉
dt

= 1

2

1〈
Ẽn,a

〉 d
〈

Ẽn,a

〉
dt︸ ︷︷ ︸

=αn,a

+ 1

2

1〈
Ẽn,v

〉 d
〈

Ẽn,v

〉
dt︸ ︷︷ ︸

=αn,v

, (5.12)
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where 1
2

1
〈Ẽn,a〉

d〈Ẽn,a〉
dt = αn,a and 1

2
1

〈Ẽn,v〉
d〈Ẽn,v〉

dt = αn,v denote energy changes as-

sociated with the acoustic and vortical disturbance modes, respectively. It di-
rectly follows that

αn =αn,a +αn,v , (5.13)

which shows that the LEE damping rate is composed of individual damping
rates associated with the acoustic αn,a and vortical αn,v disturbances. Phys-
ically, the origins of the individual damping rates are retrieved from the de-
compositions in Eqns. 5.6-5.8, which yield

αn,a = 1

2

1〈
Ẽn,a

〉 d
〈

Ẽn,a

〉
dt

= 1

2

1〈
Ẽn,a

〉 (〈
D̃Ω̂,n,a

〉−〈
Ĩn,a

〉)
, (5.14)

αn,v = 1

2

1〈
Ẽn,v

〉 d
〈

Ẽn,v

〉
dt

= 1

2

1〈
Ẽn,v

〉 (〈
D̃Ω̂,n,v

〉−〈
Ĩn,v

〉)
. (5.15)

These equations reveal that the governing factors that cause a change of in-
dividual modal energy (i.e. non-zero individual damping rates) are due to
respective flux terms

〈
Ĩn,a

〉
and

〈
Ĩn,v

〉
as well as source terms

〈
D̃Ω̂,n,a

〉
and〈

D̃Ω̂,n,v

〉
. Thus, a physical interpretation of the three available damping rates

given in Eqn. 5.13 can now be established:

• Acoustic damping rate αn,a describes the modal change of energy asso-
ciated with the acoustic disturbance.

• Vortical damping rate αn,v describes the modal change of energy associ-
ated with the vortical disturbance.

• LEE damping rateαn describes the net effect the modal change of energy
associated with total disturbance, i.e. the superposition of the acoustic
and vortical disturbances.

The assessment of thermoacoustic stability – which represents one central ob-
jective of this thesis – relies only on the acoustic damping rate αn,a, while the
vortical damping rate αn,v is irrelevant for this task. Hence, a direct use of the
LEE damping ratesαn is not straightforward, which is subsequently discussed
in more detail by assessing the relations between the acoustic and vortical
source as well as flux terms in the context of overall energy conservation.
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Source Term Relations

The first step towards revealing the inapplicability of LEE damping rates for
thermoacoustic stability analysis is comprised of establishing a physical con-
nection between the individual source terms

〈
D̃Ω̂,n,a

〉
and

〈
D̃Ω̂,n,v

〉
that causes

a change of modal energy/damping rates associated with the acoustic and
vortical modes. The event of vortex-shedding triggers the formation of vor-
tices at the mean flow’s shear-layer at the expense of acoustic energy (cf. Sec.
5.1). Conservation of energy and absence of any dissipation effects in the LEE
requires that the source term due to mean flow interaction, i.e. the vortex-
shedding process, vanishes to give〈

D̃Ω̂,n

〉= 0, (5.16)

which gives for the individual source terms〈
D̃Ω̂,n,a

〉=−〈
D̃Ω̂,n,v

〉
. (5.17)

The remaining factor that leads to a non-zero LEE damping rate in Eqn. 5.5 is
the flux term

〈
Ĩn

〉
, which describes the transfer of disturbance energy across

the system boundaries. If one uses LES instead of LEE, the source term would
be non-zero as turbulent dissipation of vortical disturbances is accounted for
(cf. [168]). The impact of the scenarios of zero and non-zero flux boundaries
on the LEE damping rate is addressed next.

LEE Damping Rates for Zero Energy Flux at System Boundaries
〈

Ĩn

〉= 0

The case of zero flux term
〈

Ĩn

〉= 〈
Ĩn,a

〉= 〈
Ĩn,v

〉= 0, implies that there is no en-
ergy transfer across the system boundaries. From an energy balance perspec-
tive where the control volume is given by the combustor domain, disturbance
energy can neither enter nor leave at the inlet and outlet, respectively. There
is transformation of acoustic to vortical energy at shear-layer due to vortex-
shedding (cf. Eqns. 5.16-5.17). The total disturbance energy of the concerned
(LEE) mode is thus constant, which yields

d
〈

Ẽn

〉
dt

= 0 →αn = 0, (5.18)
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and leads to the statement that LEE damping rates are zero for zero flux
boundary conditions.

LEE Damping Rates for Non-Zero Energy Flux at System Boundaries
〈

Ĩn

〉 6= 0

If the vortical disturbances that convect downstream were simply allowed to
exit the domain/control volume, the LEE damping rate would reflect the "cor-
rect" and desired energy balance. This scenario is achieved by setting the vor-
tical flux at the domain outlet equal to the vortical dissipation term. Also, all
of the acoustic energy needs to remain within the domain, i.e.〈

Ĩn,v

〉
out =

〈
D̃n,v

〉
, (5.19)〈

Ĩn,a

〉
out = 0. (5.20)

Substituting Eqn. 5.19 into Eqn. 5.15 reveals that the net change of vortical
energy is zero, i.e.

d
〈

Ẽn,v

〉
dt

= 0 →αn,v = 0. (5.21)

Substituting Eqn. 5.21 into Eqn. 5.13 mathematically reveals that the LEE
damping rate is equal to the acoustic damping rate, i.e.

αn =αn,a, (5.22)

for the present case of full transmission of vortical energy at the domain out-
let. Unfortunately, prescribing the flux boundary condition in Eqns. 5.19-5.20
is not possible in practice, i.e. there is no formulation that transmits all vorti-
cal energy and retains all acoustic energy at the outlet. Moreover, the value of
vortical dissipation is not available either, which is due to the inseparability
of the LEE solution variable. Thus, the computation of the desired acoustic
damping rate – although theoretically possible – by directly solving for LEE
eigenmodes is, at this point, denied.

Conclusively, the only boundary condition that can be confidentially ap-
plied for numerical simulation of LEE systems is the prescription of zero flux,
i.e.

〈
Ĩn

〉 = 0 as given by Eqns. 2.48-2.49. These zero flux boundary conditions
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can be interpreted as a fully reflecting (in an energy sense) boundary con-
dition for LEE modes that contain both, acoustic and vortical contributions.
Even the prescription of measured impedance boundary conditions should
be handled with care if the LEE are solved. Specifically, these impedances pre-
sume the presence of sole acoustics. Hence, prescribing such an impedance
(which is valid for acoustic disturbances only) at boundaries (e.g. domain
outlets) which are exposed to vortical disturbances, non-physical interactions
in form of incorrect reflections and transmissions are induced. Conveniently,
all LEE eigenfrequency simulations in this work are conducted with zero flux
boundary conditions so that the previous issues are not applicable and need
no further consideration.

5.3 Quantification Methodology for Vortical Acoustic Damp-
ing of Transversal Modes

In this section, a methodology to determine acoustic damping rates due to
vortex-shedding processes is developed. Specifically, governing equations,
modeling details and solution procedures are subsequently presented in the
following subsections.

5.3.1 Governing Equations

The methodology proposed to model and quantify vortical damping of
transversal modes is based on the HE as for the driving rate computations in
Chap. 4, i.e.

ρ̄iωn,aûn,a +∇p̂n,a = mû,n,a, (5.23)

iωn,a p̂n,a +γp̄∇· ûn,a = (γ−1) ˆ̇qn︸ ︷︷ ︸
=0

, (5.24)

which are identical to Eqns. 4.1-4.2 except that a source term to the momen-
tum equation is retained while the energy counterpart due to heat release
oscillations is set to zero. The solutions of Eqns. 5.23-5.24 yield irrotational
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velocity disturbance fields driven by pressure gradients as the potential, i.e.
purely acoustic modes. This irrationality implies that the damping rates de-
scribe pure acoustics, i.e. αn,a. Recall that the negligence of mean flow denies
the capturing of interaction effects that induce a loss of degeneracy, i.e. split of
eigenfrequencies, associated with transversal mode pairs, which is acceptable
for the purpose of computing driving/damping rates as explained in Sec. 4.1.

5.3.2 Absorption Model

Acoustic dissipation due to vortex-shedding is modeled as a sink of momen-
tum while capturing any hydrodynamic effects is disregarded. Mathemati-
cally, this sink of momentum is modeled by linearly expanding the volumetric
source term in Eqn. 5.23 to the first order, i.e.

mû,n,a =−D · ûn,a ·δ(x−xD). (5.25)

The matrix D is assumed to unfold into a 3× 3 diagonal matrix with entries
D(1,1) = ζx , D(2,2) = ζr , and D(3,3) = ζθ. These quantities can be interpreted
as acoustic loss coefficients in an analogous manner as occurring in vortical
damping models [49, 138] for low-frequency instabilities. The Dirac function
in Eqn. 5.25 indicates that the damping term is only defined in the region xD

where dissipation physically occurs. This region is given by the shear-layer of
the mean flow, i.e. the mean vorticity field Ω̄ as illustrated in Fig. 5.3.

In order to model the damping effect of vortex-shedding, it is assumed
that dissipation of acoustics occurs isotropically along the shear-layer of the
mean flow allow. This assumptions allows to imply equality between the three
loss coefficients, i.e. ζx = ζr = ζθ = ζ, and leads to a reduction of the three
unknown coefficients in Eqn. 5.25 from three to one. The loss matrix becomes

D = ζ · I, (5.26)

where I is the 3× 3 identity matrix and ζ is the unknown loss coefficient. In
order to demonstrate that the proposed methodology induces damping on
the concerned modes, the relation between the damping rate and change of
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modal energy is again applied. Employing the assumptions associated with
Eqns. 5.23-5.24 on the Eqns. 5.12 yields

αn,a = 1

2

1〈
Ẽn,a

〉 d
〈

Ẽn,a

〉
dt

=−1

8

1〈
Ẽn,a

〉 ∫
V

[D · ûn,a · û∗
n,a ·δ(x−xD)]dV (5.27)

which reveals that the proposed loss model in Eqn. 5.26 acts indeed dissipa-
tively (i.e. negative change of energy) for ζ> 0. Hence, the remaining task be-
fore the damping rate can be computed is the determination of the loss coef-
ficient ζ, which is presented next.

5.3.3 Determination of Loss Coefficient

The determination of the loss coefficient ζ in Eqn. 5.26 occurs by imposing
an equality requirement between the reflection coefficient of the concerned
configuration obtained from respective simulations of the full LEE (which in-
cludes the physics) and the HE system (which includes the damping model).
This reflection coefficient is defined as

RT = F̂T

ĜT

(5.28)

where F̂T and ĜT are frequency dependent down- and upstream traveling
acoustic wave amplitudes as indicated in Fig. 5.5. The subscript T denotes that
the traveling wave amplitudes are associated with transversal mode shapes.

Shed Vortices

ĜT

F̂T
r

x
θ

xr e f

Acoustic Waves
Mean Shear Layer

Figure 5.5: Characterization of an acoustic domain (shaded in grey) by reflec-
tion coefficients with the reference location at the burner exit

Using the Multi-Microphone-Method (MMM) [3, 45, 55, 147] to retrieve this
reflection coefficient filters out any vortical disturbances present in the LEE
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solutions [54, 82], and represents a unambiguous quantification of the pure
acoustic damping due to the vortex-shedding . Essentially, the MMM fits the
numerically simulated pressure field to an analytical counterpart expression
that governs the traveling wave amplitudes. This expression is given by the
solution of the convective Helmholtz equation [96, 127] for a uniform axial
mean velocity in a pipe with constant cross section, which reads for cylindrical
coordinates

p̂M M M (x,ω) =AF (x,ω)F̂T +AG(x,ω)ĜT . (5.29)

The auxiliary functions AF and AG expand to

AF (x,ω) = ρ̄c Jb(r kr
T 1)exp(−i kx+(x −xr e f ))exp(±i b(θ−θr e f )), (5.30)

AG(x,ω) = ρ̄c Jb(r kr
T 1)exp(−i kx−(x −xr e f ))exp(±i b(θ−θr e f )), (5.31)

where Jb is the Bessel function of b-th order while xr e f and θr e f are reference
values (which are set to zero in this work) of axial and azimuthal coordinate,
respectively. In Eqns. 5.29-5.31, b is the azimuthal wave number (which is for
T1 modes b = 1) while the axial wave numbers kx± are given by

kx± = k

1− M̄ 2

−M̄ ±
√

1−
(

kr
T 1

k

)2

(1− M̄ 2)

 , (5.32)

where M̄ represents the axial Mach number of a presumed uniform mean
flow field. The total wave number is defined as k = ω/c with ω being the
angular (real) frequency and c the speed of sound. The radial wave number in
Eqns. 5.29-5.32 is kr

T 1 = sT 1/Rc , where sT 1 = 1.8412 is the Bessel root associated
with the T1 mode solution of the convective wave equation [96], and Rc is
the chamber radius. The employment of Bloch symmetry simplifications –
as is explained in Sec. 5.4.1 – implies the sole presence of one specific mode
type (here: T1 modes with arbitrary longitudinal components). Hence, other
mode types such as pure L modes, which naturally occur in the investigated
frequency regimes along with the T1 modes in a superposed manner if three-
dimensional computational domains are used, can be omitted in the pressure
field description of Eqn. 5.29. Detailed theory and determination procedures
of reflection coefficients for systems with several multi-dimensional modes
of various types can be found in [79, 144].
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The complex wave amplitudes F̂T and ĜT are obtained by fitting Eqn.
5.29 to the numerically computed pressure fields at the (real) frequencies of
interest. Specifically, these pressure modes are given by numerical solutions
of the LEE/HE model, which represent response fields to an external excita-
tion (cf. details below). The fitting procedure starts by re-writing Eqn. 5.29 in
matrix-vector notation, i.e.

p̂ = MRT · [F̂T ĜT ]T (5.33)

where p̂(xp) = [p̂(xp,1,rp,1,θp,1) p̂(xp,2,rp,2,θp,2) ... p̂(xp,Np ,rp,Np ,θp,Np )]T is
a row vector containing complex pressure values retrieved from Np discrete
probes xp within the computational domain. This probe array is required to be
located within a region of the domain, which satisfies the underlying assump-
tion (i.e. constant mean velocity and cross section) of the objective function
in Eqn. 5.29 for the fit. The matrix

MRT =



AF (xp,1,rp,1,θp,1) AG(xp,1,rp,1,θp,1)
AF (xp,2,rp,2,θp,2) AG(xp,2,rp,2,θp,2)

. .

. .

. .
AF (xp,Np ,rp,Np ,θp,Np ) AG(xp,Np ,rp,Np ,θp,Np )

 (5.34)

is composed of two row vectors carrying the discrete values of the mode shape
function evaluated at the probe locations. Finally, the overdetermined system
in Eqn. 5.33 ist solved for the unknown amplitudes in a least square sense,
which is achieved by pseudo-inversion, i.e.

[F̂T ĜT ]T = (MT
RT

·MRT )−1MT
RT

· p̂, (5.35)

The value for ζ – which is in general frequency dependent – that equates re-
flection coefficients of the LEE with the HE model yields a quantitative cor-
rect description of the vortical acoustic losses at the respective frequency. The
main steps to setup the HE damping model and obtain the loss coefficient are
summarized as follows:

1. Visualization of the mean shear-layer Ω̄ and identification of the sink lo-
cation xD (cf. Fig. 5.3c).
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2. Computation of the reflection coefficients RT over the frequency range of
interest from LEE solutions.

3. Determination of ζ values such that the reflection coefficient from 2. is
reproduced by the HE model.

Once the values of ζ are known across the concerned frequency band, Eqns.
5.23-5.24 can be solved for the eigenmodes of interest, which yields the de-
sired acoustic damping rate.

5.4 Validation Test Cases

This section seeks to validate the conservation of disturbance energy state-
ment in Sec. 5.2 and the quantification approach of Sec. 5.3. All validation
studies are carried out using the isothermal configuration of the swirl-
stabilized combustion system presented in Chap. 3 as benchmark test case.
The reason for selecting this isothermal configuration is to provide optimal
conditions to investigate acoustically induced vortex-shedding and accom-
panied acoustic damping processes. The absence of combustion implies the
absence of any thermoacoustic processes, leaving vortex-shedding processes
as the sole mechanisms that govern the damping rate value without any
superposed presence of flame driving effects. It can be expected that the
mean temperature/density gradients impacts the vortex-shedding processes
(cf. vorticity equation and discussion of corresponding terms in [96]). Thus,
a respective assessment of theory, quantitative impact on damping rates and
inclusion in the loss model is required for an advancement of the approach
and is assigned to future work.

All upcoming analyses are executed using the same operation point, which
is defined by an air mass flow rate of ¯̇m = 120g/s at T̄i n = 293.15K. Details on
design, experimental setup and computation domain is provided in Fig. 3.3.
The simulated velocity field is presented in Fig. 5.6 and is representative of the
turbulent flow conditions occurring in industrial (e.g. can type) gas turbine
combustors. The velocity field is shown in Fig. 5.6 in 3D form to illustrate the
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swirling and multidimensional as well as rotationally symmetric character,
whereas the following simulations are executed in 2D as explained next.

r

x

ūx ūθ

30m/s-8

A-A

A

A

r θ

11m/s0

Figure 5.6: Swirling mean flow field combustion chamber with nozzle outlet

5.4.1 Bloch Symmetry Framework

The mean flow field of the swirl-stabilized benchmark combustor can be as-
sumed as axisymmetric (cf. Fig. 5.6). This circumstance allows for the appli-
cation of Bloch symmetry simplifications [102] to transform the computa-
tional domain from 3D into 2D. Thereby, a substantial increase of mesh reso-
lution capabilities is achieved, which enables to accurately resolve the vortex-
shedding processes. Bloch symmetry exploits the azimuthal periodicity asso-
ciated with transversal modes, which motivates to separate the solution vari-
ables, i.e.

p̂n(x,r,θ) = p̂n,b(x,r )exp(±i bθ), (5.36)

ûn(x,r,θ) = ûn,b(x,r )exp(±i bθ), (5.37)

mû,n(x,r,θ) = mû,n,b(x,r )exp(±i bθ), (5.38)

q̂n(x,r,θ) = q̂n,b(x,r )exp(±i bθ), (5.39)

where p̂b(x,r ), ûb(x,r ), mû,n,b(x,r ) and q̂n,b(x,r ) are axisymmetric (Bloch)
mode shapes/sources associated with the azimuthal variability of exp(±i bθ).
This azimuthal shape function describes a rotating mode where ± denotes
the direction of rotation, i.e + = clockwise (CCW) and − = counterclockwise
(CW) with respect to the reference frame given in Fig. 5.6). If T1 modes are

95



Acoustic Damping of Transversal Modes

concerned, the azimuthal wave number for first transversal modes is b = +1
while the consideration of e.g. longitudinal or second transversal modes im-
plies that b = 0 and b = 2, respectively. Equations 5.36-5.39 are substituted into
the three-dimensional LEE given by Eqns. 2.18-2.19. Division by exp(±i bθ)
yields a modified version of the LEE, i.e. Bloch LEE, that governs the Bloch
mode shapes, which are axisymmetric and thus allow for the solution on 2D
domain as is indicated in Fig. 5.7.

2D Bloch Domain

3D Domain

Figure 5.7: Numerical setup of LEE eigenfrequency simulations: a) domain
and boundary conditions b) coarse mesh c) fine mesh

The reconstruction of the corresponding "true" three-dimensional transver-
sal mode shapes is given by Eqns. 5.36-5.39. Numerical discretization and so-
lution procedures as well as prescription of boundary conditions associated
with 2D Bloch LEE simulations are identical as for the 3D counterparts (cf.
Sec. 2.8). One shortcoming of the Bloch methodology is the in advance defi-
nition of the rotation direction via the azimuthal wave number b. Hence, in
order to compute the Bloch solution associated with CW and CCW rotating
modes, which is required if the loss of non-degeneracy of transversal mode
pairs in swirling mean flows is investigated (cf. App. B), two respective simu-
lations with b = +1 and b = −1 need to be carried out. However, due to the
substantial increase in computational efficiency by utilizing the Bloch frame-

96



5.4 Validation Test Cases

work, the additional effort required to compute these two solutions separately
can be neglected.

5.4.2 Results – Energy Conservation of LEE Modes

The conservation of total disturbance energy within LEE eigenmodes (cf. Sec.
5.2) is assessed by computing the LEE damping rate αn for energy neutral
boundary conditions (cf. Fig. 5.8a)). In accordance with Eqns. 5.17-5.18, a zero
valued damping rate would then verify this conservation of energy statement.
Also, the impact of numerical stabilization is inspected. The assessments are
carried out using the T1 as well as the T1L1 eigenmode of the isothermal noz-
zle test case. The decreasing cross sectional area of the nozzle causes an axi-
ally increasing cut-on frequency (as the increasing temperature causes in the
reactive case), and thus detaches both modes from the outlet boundary con-
dition. The Bloch LEE is solved to produce the desired eigensolutions, which
implies the utilization of a 2D mesh configuration for the discretizations. In
order to assess the impact of the mesh on the damping rates , two different
degrees of fineness, i.e. coarse and fine (Fig. 5.8b)-c)), are used. The coarse
and fine mesh are composed of approximately 12,000 and 230,000 linear el-
ements to give N ≈ 24,000 and N ≈ 455,000 degrees of freedom to be solved,
respectively.

The resulting mode shapes (CCW mode, b =−1) of pressure and velocity of the
fine mesh are presented in Fig. 5.9, which reveal two relevant observations:

• Formation of vortices along the mean shear-layer, which confirms that
the vortex-shedding is captured within LEE solutions.

• Containment of vortical disturbances in the domain, where a portion is
circulating along with the outer recirculation zone of the swirling mean
flow field while another portion is convected downstream. The image
indicates a vanishing character of the vortical disturbances towards the
outlet. The reason for this seemingly dissipating behavior is the advec-
tion of the vortical disturbance with the local mean velocity, which decel-
erates, spreads out downstream of the swirl zone (cf. Fig. 5.8) and retains
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Outlet: ĥn = 0

a)

b) c)

x

r Wall : ûn ·n = 0

Inlet: ˆ̇mn = 0

Mesh Inspection
Window

Figure 5.8: Numerical setup of LEE eigenfrequency simulations: a) domain
and boundary conditions b) coarse mesh c) fine mesh

within the domain.
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Figure 5.9: Normalized pressure and velocity mode shapes

The LEE damping rates and oscillation frequencies computed for varying sta-
bilization parameter ατ of the T1 and T1L1 modes are shown in Fig. 5.10 for
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the two mesh configurations. The plots show the results for the CW mode
(b =+1) while equivalent computations using the CCW setting (b =−1) yields
the same behavior, which is not shown to avoid unnecessary repetitions.
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Figure 5.10: LEE eigenfrequency vs. numerical stabilization parameter for the
CW mode (b =+1)

The plot emerges the following findings:

• Variations of oscillation frequencies with increasing stabilization
strength are negligibly small.

• Smallest value of the stabilization parameter that yields fully non-
spurious/numerically stable mode shape solutions emerged as ατ = 1.
Mode shape solutions below this value represents non-negligible spuri-
ous features and should not be considered for further analyses.
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• LEE damping rates over the considered range of stabilization parameters
for the fine mesh are fairly constant and near-zero. The finite values of
the damping rate is allocated to numerical diffusion effects induced by
the FEM mesh. Hence, the energy conservation statement for LEE eigen-
solution established in Sec. 5.2 and given by Eqn. 5.18 can be confirmed.
Furthermore, the constancy of the damping rate with increasing values
of ατ indicates that numerical stabilization schemes are negligible, if the
mesh resolution is sufficiently fine as theoretically expected. An elegant
methodology, e.g. based on a modified set of LEE equations, would be
to use the stabilization parameter – since it is mathematically a diffusion
term – in a way that it would act on the convectively transported vortical
disturbances in a dissipative manner. Thereby, real world turbulent dif-
fusion could be modeled/mimicked by the stabilization term. However,
the development of such a method is beyond the scope of this thesis and
left for future research work.

• Nearly linear decrease of the LEE damping rates from ατ = 1 to ατ = 10
for both eigenmodes of the coarse mesh simulations. For further increas-
ing values of the stabilization parameter, the evolution saturates and be-
comes rather arbitrary for the T1 and T1L1 damping rate, respectively.
Hence, the impact of numerical stabilization for the coarse mesh is found
as non-negligible.

• Overall, accurately resolving all vortex-shedding processes along with the
associated conservation of total disturbance energy within LEE eigen-
modes requires a considerably fine mesh resolution. A sufficient degree
of mesh fineness is achieved, if stabilization independence as well as near
zero values of the damping rates emerges.

As pointed out above, using the LNSE [54, 82] instead of the LEE would add
molecular/turbulent diffusion terms to the equation. The molecular diffusion
term models viscous dissipation within the flow motions. The turbulent
diffusion term acts dissipatively on both, acoustic and vortical disturbances
in the regions of the domain defined by the turbulent viscosity field that is
a result of CFD simulations (cf. comments above in Sec. 5.1). Essentially,
these two dissipation effects do not represent the turbulent dissipation of
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vortical disturbance as would be required for the desired energy balance.
The observation of the linear decrease of the damping rates with increasing
stabilization parameter (range 0-10 in Fig. 5.10) for the coarse mesh cases
motivates to use such a configuration to model the dissipation of vortical
disturbances in a qualitative manner. The coarse mesh induces numerical
diffusion, which is sensitive to the stabilization parameter. For increasing
mesh refinement, this connection between stabilization parameter and mesh
diffusion vanishes. The stabilization parameter can then be used as a tuning
variable to establish the desired damping rates. Such qualitative reproduc-
tions are important e.g. for time domain investigations, which are based on
the discrete LEE systems/eigenmodes as is concerned in Chaps. 7-8. The
shortcoming of this approach is clearly the lack of predictive capabilities, i.e.
an in advance determination of the ατ value that yields the correct damping
rate/amount of dissipation is not possible. It is emphasized that there are
no guidelines to determine the most suitable mesh "coarseness" to induce
the linear dependence between stabilization parameter and LEE damping
rate. Moreover, purposefully inducing such numerical errors into the solu-
tion of differential equations might not seem like a robust and advanced
engineering/science practice. Hence, this "coarsened" mesh approach to
model acoustic damping through adjusting the stabilization strength should
be used with great care and strong awareness of the underlying circumstances.

Finally, it is important to point out that the degree of mesh resolution to
achieve the solution accuracy is a consequence of the Bloch framework,
and the associated 2D computational domain. Carrying out equivalent
simulations with the same (fine) mesh resolution on a 3D domain would
translate into discrete system sizes of N ≈ 10,000,000. Producing numerical
solutions of systems with these sizes is unattainable with standard (i.e. non-
high performance computing) computational resources as are used for the
numerical simulations of this thesis. Hence, the implementation of the Bloch
framework for LEE solutions presents the essential component to accurately
resolve vortex-shedding processes within swirling mean flows. The domain
transformation from 3D to 2D using the Bloch approach is only possible if
the combustor is rotationally symmetric in terms of geometry and mean
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flow field. For industrial configurations, such a symmetry condition is rarely
satisfied. Nevertheless, the Bloch approach can be applied to reduce the
computational domain size of industrial combustors, too. For example for
the analysis of annular system, only a particular segment can be used as the
computational domain instead of the entire ring. Thereby, an improvement
of the computational efficiency (cf. [102]) is achieved, too, although not to a
degree as encountered for 2D-Bloch domains of the benchmark test case in
this thesis. However, the application to simple geometry test cases allows to
carry out investigations, develop and verify models that are transferable to
industrial settings.

5.4.3 Results – Damping Rate Quantification

This section provides the validation results of the damping rate quantifica-
tion method. Specifically, vortical damping of transversal modes within the
test case configuration/operation point is modeled and quantified applying
the procedure proposed in Sec. 5.3. The first step of this methodology is the
visualization of the dissipation/momentum sink region xD , which is simply
given by the locations at the outer shear-layer, where the mean flow vorticity
is non-zero (cf. Fig. 5.11 a)).

Next, the reflection coefficient is computed for a frequency band of
ωn = [1200,1795] · 2π rad/s with increments of ∆ωn = 35 · 2π rad/s, which
includes the eigenfrequencies of the T1 and T1L1 modes in the test case
combustor. The domain used to compute the pressure response modes to
further obtain the reflection coefficients differs to the nozzle chamber that
constitutes the validation test case. Specifically, the nozzle termination is
removed and the chamber tube is elongated in downstream direction to
yield the computational domain for the determination of the reflection
coefficients. The elongation is justified as long as the swirling mean flow field
– and thus the vortex-shedding interactions – in the vicinity of the faceplate
remains identical between the nozzle and the straight domain. This equality
is affirmed by comparing the respective velocity fields given by Figs. 5.6 and
5.11b). The reason for this elongation is due to the necessity to establish
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0 1|Ω̄|
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Figure 5.11: a) Mean shear-layer (normalized) b) mean velocity field (normal-
ized) c) pressure response mode with extraction probes (normal-
ized) d) boundary conditions

mean flow conditions (i.e. constant mean velocity and cross sectional area)
that agree with the underlying assumptions of the objective function in Eqn.
5.29. Hence, extraction probes are located in this downstream region to yield
pressure values required to perform the least square operation given by Eqn.
5.35 to determine the desired wave amplitudes. The probe array along with a
representative pressure response mode is shown in Fig. 5.11 c). Figure. 5.11
d) provides information on boundary conditions and excitation sources for
LEE/HE simulation to obtain the reflection coefficients. For the inlet, a hard
wall boundary was chosen, which is presumed to exert not impact on the
reflection coefficient results. The reason for this assumption is due to the
cut-on frequency value within the burner tube (cf. Chap. 3), which prevents
any transversal modes from existing - and interactions with the boundary -
within the investigated frequency regime.

The magnitude of the resulting reflection coefficients for the CW and
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CCW Bloch setup are displayed in Fig. 5.12, which reveals an almost constant
behavior across the concerned frequency range with a slight increase (less
damping) for increasing frequencies. The reflection coefficient of the CCW
mode setup, i.e. b = −1, of the Bloch framework yielded nearly identical
results as the CW counterpart for b = +1. The plots also show the reflection
coefficients for different values of the numerical stabilization parameter ατ,
which are nearly identical. Hence, the impact of numerical stabilization can
be rated as negligible, which indicates sufficient mesh fineness.
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Figure 5.12: Reflection coefficient of LEE simulations for CCW (b = −1, left)
and CW mode (b = +1, right) Bloch description and varying sta-
bilization parameter

The reflection coefficient distribution required to carry out the damping
model procedure is obtained by taking the mean of the CW and CCW re-
sults at the stabilization parameter ατ = 1, and is shown in Fig. 5.13. The loss-
coefficient ζ of Eqn. 5.26, which yields the identical distribution of the reflec-
tion coefficient through analogous simulation using the HE model given by
Eqns. 5.23-5.24 is shown in Fig. 5.13b). The mesh used for the simulations fea-
tures the same refinement at the edge of the chamber inlet in the vicinity of
the mean shear-layer as the fine case configuration of LEE eigenmode analysis
shown in Fig. 5.8. At the downstream end of the elongated domain, the mesh
is composed of the same element size as in the downstream end of the nozzle
domain. The resulting number of element emerged to approximately 180,000,
which gives by using linear shape functions for the discretization of the Bloch
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LEE N ≈ 350,000 degrees of freedoms to be solved.
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Figure 5.13: a) Reflection coefficient b) Matched loss coefficient

Finally, the complex eigenfrequencies of Eqns. 5.23-5.24 are computed for the
T1 and T1L1 mode of the nozzle domain under consideration of the ζ distri-
bution in Fig. 5.13b). The Bloch framework is applied in an analogous fash-
ion as for the LEE eigenfrequency simulations above using the fine mesh and
boundary conditions as well as assuming ū = 0 as shown in Fig. 5.8. Notice that
the accurate solution of the HE system would not require this level of mesh
resolution and even allow for the employment of three-dimensional domains
as for the driving rate computations in Chap. 4. The present computations of
the damping rates are nevertheless carried out using the 2D Bloch framework,
which is simply due to maintain consistency with the accompanied LEE simu-
lations in this chapter. Also, the lacking mean flow yields degenerate transver-
sal mode pairs, i.e. equal frequencies and damping rates. The resulting damp-
ing rate values describe the pure acoustic damping due to vortex-shedding as
desired, and are provided in Tab. 5.1. The table contains the measured coun-
terparts of damping rates and oscillation frequencies (cf. Chap. 3 for infor-
mation and references on the raw data acquisition), and reveals an accurate
reproduction of the measurement benchmarks by the model. Note, the ex-
perimental damping rates were obtained by fitting the pressure signal after
sudden shut off of the excitation to an exponential function (cf. method de-
tails in [159, 169]). The damping rate is found to be robust to the frequency
value, i.e. evaluating the loss coefficient (and thus the damping rate) at the
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experimental frequency value fn,E X P (which is the average of the two non-
degenerate frequency values) instead of the computed value of the HE sys-
tem fn yields no considerable differences as for the computed value. The ex-
perimental frequencies were determined by with the help of the Fast Fourier
Transform.

ᾱn,a,E X P (r ad/s) αn,a(r ad/s) f̄n,E X P (H z) fn(H z)

T1 −15±2 −16 1283 1275
T1L1 −25±3 −24 1577 1562

Table 5.1: Measured and calculated damping rates and oscillation frequencies

5.5 Damping Rate Computations of Reactive Configuration

The quantification methodology is applied to the reactive configuration of the
swirl-stabilized benchmark combustor. Specifically, the damping rates due
to vortex-shedding of the same 80 operation points concerned in the previ-
ous chapter for the flame driving investigations are computed. Thereby, three
goals are sought to be achieved:

• Demonstration of the quantification method’s applicability to reactive
configurations.

• Provision of damping rates for the stability assessments of the bench-
mark combustor that carried out subsequently in Chap. 6.

• Identification of physical features that promote vortical damping of
transversal modes in swirling mean flows.

It is important to point out that the reflection coefficients extracted from
LEE/HE model simulations are obtained with an underlying mean flow
field that is isothermal, i.e. without combustion. The temperature for these
simulation is set to the preheat value of the concerned operation point.
The negligence of combustion implies equality of vortical damping in both,
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isothermal and reactive flow situations, which is a common assumption
for thermoacoustic analyses (e.g. burner and flame matrix approaches for
LF systems [118]). However, a thorough assessment of the validity of this
invariance assumptions for non-compact, HF modes remains open for future
work.

Notice that a parameter variation of only air mass flow rates and preheat
temperatures among the 80 reactive operations points in Sec. 4.4 need to be
considered as air-excess ratios are irrelevant due to the concerned isothermal
flow fields. Hence, the isothermal flow fields are obtained for all combinations
of

• ¯̇m = 0.06,0.08,0.10,0.06kg/s

• T̄in = 373.15,473.15,573.15,673.15K

which implies a total of 16 CFD computations. Then, the reflection coefficient
distribution is computed for each isothermal operation point. For this, the
same mesh, numerical stabilization setup and probe locations that yielded
robust results for the validation test case in Sec. 5.4 are used. From each dis-
tribution, five different loss-coefficients ζ corresponding to the different air
excess ratio variations (and thus adiabatic temperatures and ultimately eigen-
frequencies) in the reactive case are determined as above-described. Recall
that the range of air excess ratios is λ= 1.0−1.8 which translates for the differ-
ent combination of air mass flow rates into a range of Tad = 1550K−2314K for
the adiabatic flame temperatures. All 80 T1 eigenfrequencies, which implicitly
contain the effect of an active temperature distribution, are readily available
from the driving rate computations of the previous chapter (cf. Fig. 4.8). The
damping rates are then computed for the 80 operation points by solving
the HE model with the respective loss coefficient and mean temperature
distributions. The sensitivity of these target frequencies on the corresponding
damping rate results is robust, i.e. a variations of the frequency within a ±10%
range yielded no significant deviation (< 5%) of the resulting damping rate,
which establishes confidence in the of results.
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Figure 5.14 shows the resulting damping rates, which are plotted against
the power density (cf. Eqn. 4.31) of the operation point. The reasons for using
the power density as independent variable is to ensure comparability with
the driving rate analysis in Sec. 4.5. There is no direct connection between
combustion properties and damping. As before, the filled and open circles
in Fig. 5.14 indicate whether an operation point is stable and unstable based
on experiential observations, respectively. The figure allows to establish the
following observations:

• All damping rates are negative, which confirms that a loss/dissipation of
energy is captured as desired.

• Linear increase of damping strength (decrease of negative damping rate)
with power density.

• Stable operation points exhibit weaker damping compared to the unsta-
ble counterparts.
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Figure 5.14: Damping rates vs. (normalized) thermal power density
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In order to establish a physical explanation of these observations, preheat
temperature, velocity magnitude at the burner edge (indicated in Fig. 5.11b))
and temperature jump are plotted against the damping rate. These plots are
provided in Figs. 5.15-5.17. The finding extracted from Fig. 5.15 is the depen-
dency of the damping rates on the velocity magnitude of the mean shear-layer.
Physically, a higher flow velocity at the burner edge induces stronger mean
vorticity associated with the shear-layer, which then causes – upon acoustic
perturbation – enhancement of vortex-shedding, and thus acoustic damping.
This explanation coincides with vortical damping models for LF systems [138],
which reveal an dependency of an increasing damping rate with increasing
burner mean velocity, too.
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Figure 5.15: Damping rates vs. shear-layer velocity magnitude
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Figure 5.16: Damping rates vs. preheat temperatures
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Figure 5.17: Damping rates vs. Temperature jump temperatures
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Inspecting Fig. 5.16 emerges a more or less constant dependency of damping
rates on the preheat temperature. The variation of damping rates at a fixed
preheat temperature is again due to the underlying mean velocities at the
shear-layer. The impact of the inlet temperature is not completely negligible
as for a given inlet mass flow rate, the higher preheat levels lead to lower den-
sities and further to higher flow velocities due to mass conservation. It can be
stated that higher inlet temperatures ultimately increase damping for a fixed
mass flow rate. Figure 5.17 reveals somewhat of a trend of the damping rate
magnitude for an increasing temperature jump, although a clear dependency
as well as a physical explanation cannot be recognized.

The previous plots give some insight into the impact of single parameters on
the damping rate. However, a clear dependency of the damping strength along
with a physical explanation could not be established. In order to establish
such an explanation, an analytical expression that describes vortical damp-
ing from 1D, LF systems is utilized and can be written as [138]

αn,a,LF ∝ ζLF ¯̇mûx (5.40)

where ζLF is the loss coefficient, ¯̇m is the mean mass flow rate in the burner
tube and ûx is the acoustic velocity at the burner outlet/chamber inlet. This
expression is now conceptually transferred to the modeling approach for T1
modes introduced above, which gives

αn,a ∝ ζ ¯̇mûsl (5.41)

where ζ is the loss coefficient of Eqn. 5.26, ¯̇m is the mean mass flow rate in the
burner tube and ûsl denotes the acoustic velocity at the shear-layer where the
absorption zone is non-zero. It is postulated that the acoustic velocity at the
shear layer is proportional to the mean temperature jump, i.e. ûsl ∝ T̄ad − T̄i n,
which is justified as follows: For a fixed axial flame (as is the case for the con-
sidered operation points), a large temperature jump leads to a higher dispar-
ity between the cut-on frequency in the hot downstream region and the actual
oscillation frequency than for lower temperature jumps. As the consequence,
the mode attenuation caused by the axially increasing cut on frequency (cf.
Sec. 5.1) is stronger. The mode shape is axially shorter, and thus, exhibits larger
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acoustic velocities in the region of the shear layer relative to modes that are ax-
ially longer and are associated with a smaller temperature jump. This reason-
ing agrees with the work and findings in [62], where axially shorter T1 mode
shapes are shown to exhibit higher damping rates than axially longer ones for
T1 modes in a tube. Hence, the presumed dependence of the damping rate of
the T1 mode in this chapter is written as

αn,a ∝ ζ ¯̇m(T̄ad − T̄i n). (5.42)

This relation merges the dependency of the damping rate on global hydrody-
namic (i.e. via the mass flow rate and the loss coefficient) and thermal (i.e. via
the temperature jump) parameters. The damping rates are plotted against the
product of loss coefficient, mass flow rate and temperature jump in Fig. 5.18.
A clear linear dependence of the growth rate to this product can be observed.
Thus, high damping occurs for large mass flow rates and loss coefficients as
well as large temperature jumps. Particularly the combination of large mass
flow rates and large temperature jumps (which is associated to an air excess
ratio close to one) explains the increasing damping rates for operation points
with higher power density as shown in Fig. 5.14.
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5.6 Summary and Findings – Damping of Transversal Acous-
tic Modes

The first part of the foregoing chapter provided a theoretical discussion
regarding physical processes associated with vortex-shedding induced by
transversal acoustic modes. Particular emphasis was placed on discussing the
nature of eigenmodes obtained by LEE simulations in terms of physical mech-
anisms and energy conservation captured within the solutions. These theo-
retical assessments revealed the following findings:

• LEE eigenmodes adequately reproduce the acoustically induced vortex-
shedding for transversal modes in swirling mean flow environments.
These interactions lead to the superposed presence of both, acoustic and
vortical modes within the LEE solutions.

• The absence of turbulent dissipation in the LEE leads to a theoretical en-
ergy conservation of acoustic and vortical disturbances associated with
vortex-shedding processes within the eigenmodes. The impact of further
interactions between vortical disturbances and non-uniform mean flow
was assumed as negligible and was thus not considered. Respective in-
vestigations of this assumption and the phenomena itself are left for fu-
ture work.

• A straightforward utilization of LEE damping rates for mean flows with
strong shear-layers present for linear thermoacoustic stability assess-
ment tasks is generally not possible. This inapplicability is due to the
absence of turbulent dissipation as well as the unavailability (the point
of the compilation of this thesis) of respective dissipation models as well
as suitable outlet boundary conditions that would allow vortical distur-
bances to convect out of the domain.

• A rather heuristic approach was identified that allows to qualitatively
model vortical acoustic damping by adjusting the numerical stabilization
parameter as well as exploiting numerical diffusion induced by a "coars-
ened" mesh. As there is no theoretical basis for this approach, univer-
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sal utilization guidelines cannot be established so that the employment
should be carried out with great care.

The energy conservation hypothesis as well as the suitability of LEE eigen-
modes to compute acoustic damping rates were verified using the isothermal
configuration of the swirl-stabilized benchmark system of this thesis. In order
to ensure accurate numerical resolution of the interactions between shear-
layer and acoustic disturbances, a Bloch symmetry framework was adopted
to the LEE. This framework allows to transform the numerical domain from
3D into 2D, which implies a substantial increase of numerical resolution
capabilities for non-high performance computing approaches. Moreover, this
increase allowed to resolve the LEE to sufficient degree so that independency
of mesh and numerical stabilization parameter is achieved, which would not
be possible, if 3D domains are concerned.

In order to unambiguously determine the damping rates of transversal
modes due to vortex-shedding, a quantification methodology based on
a local loss model in Helmholtz type of governing equations was devel-
oped. Mean flow effects were neglected for this approach. The nature of the
Helmholtz type of equations yields modes of acoustic disturbance type only
so that the computed eigenfrequencies contain the acoustic damping rates
relevant for thermoacoustic stability analyses. The loss model is facilitated
in the momentum equation, which assumes that loss of acoustic energy
occurs at the shear-layer of the swirling flow. The model contains one loss
coefficient, which is obtained by imposing an equality condition between
reflection coefficient computed by the LEE and the HE model. An isothermal
nozzle configuration of the benchmark combustor is used to validate the
method. The impact of a variable mean temperature distribution on the
vortex-shedding processes remains an open task for future work. Experimen-
tally obtained damping rates of the T1 and T1L1 mode were reproduced by
the methodology and found applicable to compute damping rates for stability
assessments of reactive configuration of can type combustors.

Then, the methodology was employed to 80 operations points of the re-
active configuration of the benchmark system. The damping rates due to
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vortex-shedding at the first transversal mode were computed, which serve
as input to the thermoacoustic stability assessment carried out in the next
chapter. Interpretations of results emerged the following findings regarding
damping of transversal modes due to vortex-shedding in swirling mean flow
environments:

• Observation of a linear dependency of damping rates with thermal power
density.

• Combustion parameters (e.g. power value) do not directly impact damp-
ing. Rather, the physical origin of this linear dependence is found within
the mean flow velocity magnitude at the burner edge.

• Inlet temperatures exert an indirect impact on the damping rates as
higher levels lead to higher flow velocity if the mass flow rate is fixed.

• Linear dependence of the damping rate on the product of loss coefficient,
mean mass flow rate and temperature jump was revealed.

Overall, the developed methodology for quantification of acoustic damping
rates of multi-dimensional HF modes in swirl-stabilized gas turbine com-
bustors yielded reasonable results. Future work tasks should comprise fur-
ther (parametric) investigations on vortical damping of HF modes to increase
the physical understanding as well as to derive design for stability guidelines
can be carried out. For example, the sensitivity of swirl intensity as well as
the axial position of inner recirculation zone on the acoustic damping rate of
transversal modes poses potential subjects for such studies. Also, quantitative
comparison between computed and experimentally obtained damping rates
should be considered to strengthen the validation of the methodology.
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This chapter combines the outcomes of the two previous chapters to estab-
lish a theoretical and practical framework for linear thermoacoustics stabil-
ity assessments of gas turbine combustors that feature HF oscillations as well
as non-compact flame dynamics. This stability assessment comprises the fol-
lowing research objectives:

• Establishment of the theoretical background for numerical linear stabil-
ity assessments of non-compact thermoacoustic oscillations governed
by transversal modes (Sec. 6.1).

• Executing the linear stability assessment on the swirl stabilized bench-
mark combustor (Sec. 6.2).

• Interpretation of the results in terms of physical correctness and techni-
cal applicability of the methodology (Sec. 6.2).

6.1 Theoretical Background

The terminology "linear stability analysis" in the context of thermoacoustic
oscillations generally implies the computational prediction whether an op-
eration point of a given combustors will undergo an instability. Employing
a modal analysis approach, this task is achieved by considering all energetic
contributions – i.e. flame driving as well as acoustic damping – in the govern-
ing equations, i.e.

ρ̄iωn,aûn,a +∇p̂n,a = mûn,a , (6.1)

iωn,a p̂n,a +γp̄∇· ûn,a = (γ−1)q̂n. (6.2)
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where p̂n,a(x) and ûn,a(x) represent the acoustic pressure and velocity eigen-
modes. Equations 6.1-6.2 resemble a HE type system as used for the individ-
ual driving and damping analyses in Chaps. 4-5 in which source/sink terms
to model flame driving q̂n(x) and acoustic damping mûn,a (x) are retained.
Hence, the same assumptions of a zero-mean flow, fully reflecting in- and out-
let boundary conditions, handling of non-compactness, explicit expansion of
source/sink models, and numerical FEM procedures to compute the desired
eigensolution as discussed in the previous two chapters equally apply here,
too. The linear stability of the mode n is simply evaluated by solving Eqns.
6.1-6.2 for the respective complex eigenfrequency, which unfolds to

ωn,a = 2π fn − iνn,a (6.3)

where fn,a is the oscillation frequency, and νn,a is called net thermoacoustic
growth rate. This growth rate is composed of the superposition

νn,a =βn,a +αn,a, (6.4)

where βn,a and αn,a denote the total flame driving and acoustic damping rate
of mode n. Recall that the damping rate is per convention in this work neg-
ative αn,a < 0. As explained in Chap. 4, the driving rate is composed of two
mechanisms, i.e. flame displacement and deformation which gives

βn,a =β∆̂,n,a +βρ̂,n,a. (6.5)

For the damping rate, the only mechanism considered as relevant is due to
acoustically induced vortex-shedding (cf. Chap. 5). However, if further damp-
ing processes are present in the considered combustor, the total acoustic
damping rate is obtained by the superposition of the individual damping
rates.

The sign of the growth rate essentially defines the linear stability state of
mode n, and thus, of the thermoacoustic system [31]:

νn,a > 0 → unstable (6.6)

νn,a = 0 → asymptotically stable (6.7)

νn,a < 0 → stable (6.8)
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The sufficiency of using the growth rate as the rating parameter for linear sta-
bility of a particular mode can be demonstrated in two ways:

• Mathematically, i.e. substituting growth rate into the Fourier series for-
mulation of the underlying the modal approach.

• Energetically, i.e. performing an energy balance on the acoustic mode.

6.1.1 Illustration of Linear Stability via Fourier Series

Mathematically, the modal analysis approach employed in this thesis (cf. Sec.
2.5) is fundamentally based on the description of thermoacoustic oscillations
of the chamber of interest via a discrete Fourier series in Eqns. 2.13-2.17. The
Fourier series directly reveals the linear stability of the system, and is recalled
to

φφφ′(x, t ) =
N∑

n=1

1

2
(φ̂φφn(x)exp(iωn t )+φ̂φφ∗

n(x)exp(−iω∗
n t )), (6.9)

whereφφφ represents the spatially dependent unsteady quantities (i.e. pressure
p, vectorial velocity u and heat release rate q). The prime ( ′ ) denotes oscil-
lations in time, while the N eigenmodes – which constitute the summation
expansion – are indicated by the hat (ˆ). The asterisks ∗ denotes the complex
conjugate of the respective quantity. Substituting the complex eigenfrequency
given in Eqn. 6.4 into Eqn. 6.9 yields

φφφ′(x, t ) =
N∑

n=1

1

2
(φ̂φφn(x)exp(i 2π fn,a t )+φ̂φφ∗

n(x)exp(−i 2π fn,a t ))exp(νn,a t ), (6.10)

which effectively reveals that the modal contribution to the temporal oscil-
lation is an exponential amplitude growth and decay if νn,a > 0 and νn,a < 0,
respectively. In the former case, the mode n is labelled linearly unstable and
in the latter linearly stable, which is in agreement with Eqns. 6.7-6.8.
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6.1.2 Illustration of Linear Stability via Modal Energy

An energetic illustration of linear stability of a thermoacoustic mode is pro-
vided by performing an energy balance on the acoustic mode of interest. This
energy balance is carried out in an analogous manner as for the driving and
damping investigations in Secs. 4.1 and 5.3, respectively, and is given by

d
〈

Ẽn,a

〉
dt

=
〈

D̃ ˆ̇qn

〉
+

〈
D̃mûn,a

〉
. (6.11)

Recall that
〈

Ẽn,a

〉
in Eqn. 6.11 governs only acoustic disturbances as the im-

posed zero mean flow assumption eliminates all vorticity source terms. The
prescription of fully-reflecting boundary conditions causes all flux terms to
vanish. Hence, the only sources that govern the change of modal acoustic en-

ergy are due to flame driving
〈

D̃ ˆ̇qn

〉
and acoustic dissipation

〈
D̃mûn

〉
. Explicit

formulations of these sources are given by is retrieved from Eqn. 4.8 and Eqn.
5.27. The question whether a given combustor undergoes a thermoacoustic
instability is answered by the sign of the temporal change of modal energy,
i.e.:

d
〈

Ẽn,a

〉
dt

> 0 → mode receives energy → unstable (6.12)

d
〈

Ẽn,a

〉
dt

< 0 → energy is removed from the mode → stable (6.13)

A connection between the growth rate definition of linear stability in Eqn.
6.4 is established by decomposing the change of modal energy in driving and
damping contribution, i.e.

1

2

1〈
Ẽa

〉 d
〈

Ẽa

〉∣∣
net

dt︸ ︷︷ ︸
=νn,a

= 1

2

1〈
Ẽa

〉 d
〈

Ẽa

〉∣∣
q̂

dt︸ ︷︷ ︸
=βn,a

+ 1

2

1〈
Ẽa

〉 d
〈

Ẽa

〉∣∣
mûn,a

dt︸ ︷︷ ︸
=αn,a

. (6.14)

The individual modal energy changes represent the driving and damping rates
given by Eqns. 4.8 and 5.27 so that the growth rate relation of Eqn. 6.4 is repro-
duced from an energy balance perspective.
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6.2 Results, Findings and Conclusions

The linear stability analysis of the 80 operation points concerned in the pre-
vious two chapters is simply executed by evaluating Eqn. 6.4 with the driv-
ing and damping rates that are readily available from Chaps. 4-5. The results
are shown in Fig. 6.1, where all three relevant quantities, i.e. driving, damping
and net growth rates are plotted. As before, a filled and open circle declares
an operation point stable and unstable, respectively, which solely results from
experimental observations.
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Figure 6.1: Net growth, driving and damping rates

Generally, the computed growth rates are within realistic orders of magni-
tudes. The specific result interpretations occur in the following by inspecting
the stable and unstable operation points separately.

6.2.1 Stable Operation Points

Inspecting the growth rates of the stable operations points (filled circles) al-
lows to identify two distinct observations:
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• All operation points in the low power density regime (PD/max(PD) <
0.4) are computed as stable, i.e. νn,a < 0.

• In the intermediate power density region (0.4 < PD/max(PD) < 0.6),
the operation points are (wrongly) computed as unstable, i.e. νn,a > 0,
although the growth rates are small and close to the stability border
νn,a = 0.

It can be stated that the presented methodology is usable to qualitatively re-
produce the stability state of the stable operation points. The reasons for the
few operation points that exhibit a marginally unstable growth rate can be ex-
plained by the sole consideration of only vortex-shedding as acoustic damp-
ing mechanism. As argued in Chap. 5, vortex-shedding can be assumed as
the most dominant damping mechanism for transversal modes in the tubu-
lar benchmark combustor. However, acoustic losses due to dissipation in the
boundary layer and at the domain in-/outlets are certainly non-zero. Conse-
quently, some additional damping due to these foregoing mechanism would
suffice to shift the respective growth rates downwards towards negative val-
ues, which would then reflect the stable observation, too.

6.2.2 Unstable Operation Points

The assessment of the computed growth rates associated with the unstable
operations points (open circles) yields the following observations:

• All growth rates are in the same order of magnitude and approximately
constant with increasing power density.

• Computationally, the growth rates emerge as stable, i.e. νn,a < 0, which
contradicts the experimental observations for which positive growth
rates, i.e. νn,a > 0 are expected.

The observed stability behavior for unstable configurations of the benchmark
systems is not reproduced by the linear stability analysis, which presents a
dissatisfying result. However, the negative magnitudes of the growth rates
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are quite close to zero, and thus, not far away from the expected results, i.e.
positive magnitudes. An in-depth assessment for identifying the reasons that
would yield positive growth rates along with implementing respective im-
provements to the methodology/models is left for future work. As a suggested
path, the driving and damping mechanism and modeling methodologies
should be revisited in a systematic manner. For the damping rates, confi-
dence in the correctness is established as the scattering behaviour observable
in Fig. 6.1 could be explained by the interplay of the influencing factors loss
coefficient, temperature jump and mass flow rate (cf. Sec. 5.5 and Fig. 5.18).
Of course, numerical inaccuracies associated with the absorption modeling
approach introduced in Chap. 5 remains a possibility, too. Furthermore,
additional damping mechanisms should be taken into consideration, e.g.
dissipation in the wall boundary layer [130], which shifts down both, the
damping and growth rate cloud, and thereby, the unstable points further
away from the "correct" boundary.

Then, it could be inferred that some additional driving is missing in or-
der to lift the unstable operation points above the zero line. One approach
could be to raise the question whether there is a further driving mechanism
in addition to the displacement and deformation effects – which remains a
rather speculative suggestion. Another approach would be to re-assess the
correctness of the computed driving rates. These rates were approximated
from OH∗ measurements recorded during unstable limit cycle operation. In
order to be theoretically correct, a linear stability consideration requires mean
flame shapes that correspond to a "zero" acoustic oscillations amplitude.
Hence, the effect of "truly" linear flame images on the computed driving rates
should be assessed by using OH∗ measurements that are retrieved from stable
operation (i.e. requiring to stabilize the limit-cycle oscillations by employing
suitable damping devises in the experiment). Moreover, obtaining the mean
heat release distribution via reactive CFD simulations should be taken into
consideration, too. However, investigations of amplitude dependent flame
response in [17] revealed that for increasing amplitudes the effect of displace-
ment and deformation equally increases and decreases, respectively. The total
driving rates remain at the same value regardless of the pulsation amplitude.
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This constancy represents an argument that the driving rates in Fig. 6.1 are –
despite being retrieved from mean flame images recorded during limit cycle
operation – suitable for a linear stability assessment.

All in all, it has to be admitted that the results are not as desired, but can
nevertheless be labeled as promising as the order of magnitude were found
as realistic and routes of finding possible causes of the inconsistencies were
outlined. Thus, open work tasks are to pursue these routes and conduct fur-
ther research. The overall goal should be to establish a robust linear stability
analysis framework applicable to non-compact gas turbine combustors.
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7 Reduced Order Modeling Framework

The previous chapters of this thesis considered linear modeling and analy-
ses of non-compact thermoacoustic systems in frequency domain. These
analyses are effectively used to investigate physical behavior regarding flame
driving, acoustic damping and thermoacoustic stability at the onset of a
thermoacoustic instability, i.e. at small (linear) oscillations amplitudes. Ulti-
mately, these efforts established the basis to carry out linear thermoacoustic
stability analyses of HF oscillation in gas turbine combustors.

However, the frequency domain framework exhibits the following limita-
tions:

• Impossibility of reconstructing the thermoacoustic dynamics, i.e. simu-
lating the temporal evolution of a thermoacoustic instability from linear
modulation to non-linear saturation into a constant amplitude limit cy-
cle.

• Inability of modeling and analyzing the impact of stochastic forcing ef-
fects due to turbulent combustion noise on the thermoacoustic oscilla-
tions.

• Impracticality of capturing modal interactions caused by non-linear
flame dynamics.

Modeling and carrying out these tasks requires a time domain framework.
Corresponding analyses can be used to generate theoretical understanding of
thermoacoustic oscillations from a dynamical system perspective [7,21,78,94,
113]. In practice, time domain simulations are used for designing active and
passive instability mitigation techniques [30, 111, 139] as well as for develop-
ing system identification techniques based on acoustic pressure data [21] and
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Chap. 10. For LF systems, such a time domain framework is given by a state-
space description of the combustion system in conjunction with a network
modeling approach [13, 20, 41, 139]. However, these LF approaches are con-
strained by the thermoacoustic compactness assumption (cf. Sec. 1.4), and
are therefore not applicable to non-compact systems in the HF regime. In
theory, utilizing the 3D LEE (or even an HE system) in time domain along
with respective non-compact flame models would satisfy the desired tasks
and present a suitable framework. Unfortunately, typical discrete system sizes
of the benchmark combustor in Chap. 3 are too large for efficient numerical
integrations, and are thus impractical for application in this thesis. In order to
enable fast and efficient time domain simulations, a Reduced Order Modeling
(ROM) methodology of 3D LEE/HE systems, which is capable of accounting
for non-compact flames as well as multidimensional modes in the HF regime,
is developed in this chapter. The development tasks unfold into the following
specific objectives:

• Introducing a methodology to derive Reduced Order Models (ROM) of
3D LEE/HE systems, which forms the central component to establish the
non-linear analysis framework for HF thermoacoustic oscillations (Sec.
7.1 and Sec. 7.2).

• Development of capabilities to model and simulate non-compact
thermoacoustic feedback that allows to account for linear, non-linear
and stochastic flame dynamics (Sec. 7.3).

• Establishing procedural guidelines to setup and verify the ROM and ac-
companied non-compact feedback framework a-priory to carrying out
time domain analyses (Sec. 7.4).

7.1 Model Order Reduction Methodology

The starting point for the derivation of the desired ROM is given by the dis-
cretized form of the LEE in time domain, which is given by Eqn. 2.54 and is
re-written as
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E
dφφφ′

dt
= Aφφφ′+Bmu′um +Bq̇ ′uq , (7.1)

which represents a dynamical system in state-space form of size N . Recall that
in Eqn. 7.1, E is the descriptor matrix, A is the system matrix, andφφφ′ = [p ′ u′]T

is the state vector hosting the unsteady flow variable at each mesh node. The
source term vectors Bq̇ ′ and Bm′

u
carry information on the spatial location of

the sources, and are used to insert input signals of heat release oscillations
uq and momentum addition um into the system, respectively. Multiple inputs,
which are e.g. associated with spatially distributed sources across the com-
putational domain can be facilitated by simply assembling an input matrix of
corresponding source term vectors. Output signals of acoustics/flow distur-
bances are retrieved by

y = Cφφφ′, (7.2)

where C is the output matrix, which is assembled from several row vectors,
each carrying an unity entry at the position of the desired output variable and
location within the FEM mesh, and zero elsewhere.

The state-space system given by Eqns. 7.1 and 7.2 is of the same order N
as the corresponding linear system in frequency domain given by the FEM
discretization in Eq. 2.43. Recall that time and frequency domain formula-
tions of the discrete systems are simply connected by the Fourier transform
as explained in Sec. 2.8. The dynamical systems treated within this work are
of order N ≈ 300,000−500,000, which can be labeled for the computational
resources considered in this thesis as large-scale. Temporal integrations of
such large systems are vastly expensive in terms of computational resources,
and are impractical for efficient thermoacoustic system simulations. For
this reason, the system of Eqns. 7.1 and 7.2 is subjected to a Model Order
Reduction (MOR) technique, which aims to significantly reduce the system’s
order, while retaining the capability of accurately reproducing the large-scale
system’s solutions. The employed MOR technique is referred to as modal
truncation [8, 14]. At first, matrix A is re-written by means of an generalized
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eigenvalue decomposition, which is given by

E
dφφφ′

dt
= EVΛΛΛWφφφ′+Bmu′um +Bq̇ ′uq , (7.3)

where V and W = V−1 is the right and left eigenvector matrix, respectively, and
ΛΛΛ a diagonal matrix with the corresponding eigenvalues. Subsequently pre-
multiplying Eqn. 7.3 by E−1 and W gives

W
dφφφ′

dt
=ΛΛΛWφφφ′+WE−1(Bmu′um +Bq̇ ′uq ), (7.4)

where

WV = V−1V = I (7.5)

is exploited. This unity condition is used to manipulate the output relation
given by Eqn. 7.2 as follows:

y = CVWφφφ′ (7.6)

The eigenvalue matrix ΛΛΛ contains the complex eigenfrequencies of the sys-
tem’s eigenmodes. Isolating these eigenfrequencies according to the fre-
quency range of interest for the sought investigations/simulations – e.g. for
the HF systems in this thesis the first five longitudinal modes and the first five
transversal modes – along with the corresponding right and left eigenvectors
in V and W allows to significantly reduce the system order (N → Nr ):

ΛΛΛ(N xN ) ⇒ΛΛΛr (Nr xNr ) (7.7)

V(N xN ) ⇒ Vr (N xNr ) (7.8)

W(N xN ) ⇒ Wr (Nr xN ) (7.9)

Substituting the expressions 7.7 – 7.9 into Eqns. 7.4 - 7.6 derives the desired
ROM:

dφφφ′
r

dt
= Arφφφ

′
r +Bmu′ ,r um +Bq̇ ′,r uq , (7.10)

y = Crφφφ
′
r , (7.11)

In this equation, Ar =ΛΛΛr and the order of the system is Nr , where Nr ¿ N . The
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ROM’s state-variable, in- and output-matrices respectively expand to

φφφ′
r = Wrφφφ

′, (7.12)

Bmu′ ,r = WE−1Bmu′ , (7.13)

Bq̇ ′,r = WE−1Bq̇ ′, (7.14)

Cr = CVr . (7.15)

The inversion of the descriptor matrix in Eqns. 7.13-7.14 can be circumvented
by exploiting the unity conditions of the left and right eigenmodes in Eqn.
7.5, which is shown in detail in App. C. The inputs um and uq as well as the
output y are not affected by the reduction procedure. Mathematically, the
foregoing modal reduction is essentially the projection of the high-order
system into a subspace, which is spanned by its truncated left eigenspace.
The main computational challenge of the ROM derivation is the one-time
determination of the left and right eigenmodes. Details on computation times
and specific mesh sizes of the eigenmodes of the system concerned in this
chapter are given in the respective sections below. The 2D Bloch methodology
could be also employed to obtain the 3D eigenmodes (cf. Sec. 5.4), which is
however not pursued for the ROM derivation and analyses in this thesis. The
reasons for using a 3D domain to obtain the eigenmodes are on the one hand
to demonstrate the applicability to true 3D geometries as encountered for
industrial gas turbine combustors, and on the other hand due to the non-
availability of the 2D Bloch framework at the time of the ROM developments.

The quality of the ROM – i.e. how well it reconstructs the benchmarks
given by the corresponding high-order system – is evaluated in the frequency
domain by computing a relative error given by

rel.Err.(iω) = ||p̂n,r (xextr , iω)− p̂n(xextr , iω)||2
||p̂n(xextr , iω)||2

, (7.16)

where ||..||2 denotes the H2-norm1, p̂n,r (xextr , iω) and p̂n,r (xextr , iω) are the
pressure responses at the position xextr due to an external excitation of the
original and reduced system over a certain band of angular frequencies ω, re-
spectively.

1For a row vector a with complex entries:||a||2 =
p

aaH
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7.2 Validation Test Case

In this section, the ROM capability to describe complex acoustic systems is
validated. A test case consisting of a combustor-like configuration, i.e. an
orifice-tube, is set up, and the aeroacoustic performance reconstructed by
the ROM. An orifice-tube is a commonly used configuration to study acous-
tic/unsteady flow problems that are similar as occurring in real gas turbine
combustors, and is hence ideally suitable to validate the ROM approach.
Strong mean flow gradients at the orifice lead to vortex-shedding that is in-
duced due to interaction between acoustic oscillations and shear-layer of the
mean flow as is addressed in detail in Chap. 5. Validation is achieved by com-
paring the ROM results against LEE simulation results and measurements, the
latter of which is readily retrieved from [147]. Note that the orifice test case
contains only longitudinal acoustics, i.e. represents LF features. The purpose
of this test case is to provide a first assessment of the suitability of the MOR ap-
proach to model real world systems. The omission of HF features is justified
in order to maintain simplicity of the test case in terms of physical behavior
and post-processing methods. The application of the ROM approach to HF
systems with multidimensional modes is subject of Secs. 7.3-7.4.

7.2.1 Orifice Tube

The geometry and dimensions (in mm) of the orifice configuration are shown
in Fig. 7.1.

3

R = 19
R = 32

r

x

Mean
Flow

3000410

p̄out

T̄i n

¯̇m

Figure 7.1: Orifice tube configuration

An operation point is selected that leads to similar mean velocity fields as
found in real combustors, which yields a mass flow rate of ¯̇m = 160.8g/s of air
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at ambient conditions (T̄in = 288.15K, p̄out = 1atm). The mean Mach number
in the orifice is M a = 0.4.

7.2.2 Numerical Setup

The acoustic behavior of the orifice is mathematically described by the isen-
tropic LEE 2 in frequency domain given by Eqns. 2.18-2.19. The required lin-
earization point, i.e. the mean flow field, is provided by RANS CFD simula-
tions of the above-mentioned operation point. The mean flow field is retrieved
from [147]. The geometry is meshed with approximately 110,000 tetrahedral
elements. Fig. 7.2 shows the particular refinement in the vicinity of the ori-
fice, which is required to accurately capture the complex interactions between
acoustic fluctuations and mean flow gradients. Azimuthal and radial symme-
try is exploited due to the experimentally considered span of frequencies be-
ing below the cut-on value for higher, non-longitudinal modes.

Figure 7.2: FEM mesh at orifice

As indicated in Fig. 7.3, and contrary to [147], fully reflecting boundary condi-
tions are chosen at the in- and outlet in order to unambiguously identify the
eigenmodes required for the MOR procedure. As for the damping analyses of
the swirl stabilized benchmark combustor in Chap. 5, the governing equations

2Note that in the publication associated with this chapter of this thesis’ author, the Linearized Navier-Stokes
Equations were used. In this work, the terminology LEE is employed for consistency with the other chapters.
ROM reproduction results do not differ between the two types of equations.
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Figure 7.3: Numerical setup of the orifice tube

are stabilized by the SUPG (Streamline Upwind Petrov-Galerkin) method (cf.
details in Sec. 2.8) in order to avoid numerical instabilities. Acoustic excitation
to produce non-trivial solutions upon frequency sweep analyses is achieved
by prescribing the source term of the x-directional momentum equation with
an excitation function. For this, a piecewise cosine function is chosen to en-
sure a smooth embedding of the source term regions into the mesh:

mûn,x =



0.5(−cos(2π(x −x1)/(x2 −x1))+1),

if x1 < x < x1+x2
2

0.5(cos(2π(x − ( x1+x2
2 ))/(x2 −x1))+1),

if x1+x2
2 < x < x2

0 elsewhere,

(7.17)

These source terms are located either up- or downstream of the orifice near
the boundaries as illustrated in Fig. 7.3. The LEE are discretized on the fore-
going described mesh applying linear shape functions. The associated linear
system has around 170,000 degrees of freedom.

7.2.3 Scattering Matrix

Acoustic elements such as the orifice tube are effectively characterized by a
scattering matrix S. This matrix relates incoming and outgoing waves (cf. Fig.
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7.4) traveling at a certain frequency ω in terms of transmission and reflection
coefficients by the linear relation

[
F̂d

Ĝu

]
=

[
Td Ru

Rd Tu

]
︸ ︷︷ ︸

S(ω)

[
F̂u

Ĝd

]
. (7.18)

Herein, F̂u/F̂d and Ĝu/Ĝd are the respectively right- and leftward traveling
waves – which are complex quantities – evaluated at reference planes up- and
downstream (xu and xd in Fig. 7.3) of the element. The scattering coefficients
of transmission Tu/Td and reflection Ru/Rd – which are subject to be identi-
fied – describe physical events (e.g. damping at the orifice’s shear-layer) within
the acoustic element in a black-box manner.

Fd

S(ω) Gd

Fu

Gu

Figure 7.4: Scattering matrix

The traveling waves (Riemann invariants) are related to the acoustic pressure
and velocity by

F̂ = 1

2

(
p̂

ρc
+ ûx

)
, (7.19)

Ĝ = 1

2

(
p̂

ρc
− ûx

)
, (7.20)

where ûx is the axial component of the velocity mode. The scattering coeffi-
cients of the experimental benchmarks of the orifice tube in [147] were ob-
tained by the Multi-Microphone Method in accordance with the procedure
outlined in [3, 4, 45, 54, 137]. Two independent acoustic fields are respectively
computed by applying acoustic excitation at a distinct frequency up- (case I)
and downstream (case II) of the orifice as shown on Fig. 7.3. Then, four equa-
tions are available to solve the four unknown scattering coefficients for each
considered excitation frequency by
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(
T̂d R̂u

R̂d T̂u

)
=

(
F̂ I

d F̂ I I
d

Ĝ I
u Ĝ I I

u

)(
F̂ I

u F̂ I I
u

Ĝ I
d Ĝ I I

d

)−1

, (7.21)

requiring the respective Riemann invariants at the denoted locations. Unfor-
tunately, the acoustic field is polluted with vorticity disturbances due to the
vortex-shedding processes in the vicinity of the orifice. For this reason, a di-
rect assembly of the Riemann invariants as per Eqs. 7.19 and 7.20 would yield
incorrect results [147, 166]. Analogous as for the determination of the reflec-
tion coefficient in the swirl-stabilized benchmark combustor in Chap. 5, the
invariants are retrieved from a reconstruction of the analytical solution for
plane wave propagation with uniform mean flow, which is given by

p̂ I
(u/d)(x) = ρ̄u/d cu/d [F̂ I

u/d exp(−i kx+
u/d x)+Ĝ I

u/d exp(−i kx−
u/d x)], (7.22)

p̂ I I
(u/d)(x) = ρ̄u/d cu/d [F̂ I I

u/d exp(−i kx+
u/d x)+Ĝ I I

u/d exp(−i kx−
u/d x)], (7.23)

where the wave numbers kx±
u/d expand to

kx±
u/d =± ω

cu/d ± ūx,u/d
. (7.24)

The reconstruction is carried out using a finite number (∼ 50 − 120) of ex-
tracted (cross section-averaged) pressure values at distinct locations within
certain zones up- and downstream (cf. Fig. 7.3) of the orifice for both exci-
tation cases. Mathematically, this overdetermines Eqns. 7.22-7.23, which re-
quires the determination of the Riemann invariants via the method of least
squares (cf. Sec. 5.3 and [141, 147, 166]).

ROM Creation and Verification

The MOR of the high-order LEE system of the orifice configuration is car-
ried out described in Sec. 7.1. Covering the frequency range of interest – i.e.
500Hz ≤ f ≤ 1500Hz – yields a ROM order of Nr = 84, which is a magnificent
order reduction compared to the LEE system with an order of N ≈ 170,000.
The two independent excitation cases are conveniently merged into the ROM,
unfolding two column vectors to form the Bmu′-matrix. CPU-times and rela-
tive errors (cf. Eqn. 7.16) for the considered frequency range at the up- and
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downstream reference locations for both excitation cases are given in Table
7.1. The one-time computation of the left and right eigenmodes to carry out
the MOR required around 20min. The corresponding plots of the pressure re-
sponses are presented in Figs. 7.5, and illustrate excellent agreement between
ROM and high-order LEE results. All in all, accepting a small loss in accuracy
(while gaining magnificent CPU-speed) infers that the ROM reconstructs the
LEE reference acceptably well.

Upstr. Excit. Downstr. Excit.

rel.Err at xu 4.16 % 1.75 %
rel.Err at xd 1.26 % 1.11 %
∆tLEE 20 min 20 min
∆tROM 10−8sec

Table 7.1: CPU-times & relative errors

7.2.4 Validation Results

The scattering coefficients are evaluated for a frequency spectrum between
500Hz and 1500Hz in 50Hz steps with results from the high-order LEE system
and the ROM. The resulting amplitudes and phases are plotted in Figs. 7.6 and
7.7. The reference location for the phase angles is at x0 (cf. Fig. 7.3), which is
in the center of the orifice.

The figures reveal an excellent agreement between the ROM results and the
high-order LEE as well as the experimental benchmarks. The occurring de-
viations are found negligible, especially when considering the CPU-time re-
quired to produce the ROM results compared to the high-order LEE simula-
tions. The CPU times are the same as in Table 7.1, but one has to consider that
the two independent sets for high-order LEE results need to be obtained by
two simulation runs, whereas the ROM results require only a single simula-
tion due to its MIMO system nature. All in all, the reconstruction results infer
that the proposed MOR approach can be employed to produce ROMs that ac-
curately describe real-world aeroacoustic systems. Consequently, such ROMs
are granted full eligibility to be used as the main building block for modeling
non-compact thermoacoustic system and flame dynamics.
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Figure 7.5: Pressure responses – orifice tube

7.3 Reduced Order Model of Non-Compact Thermoacoustic
Systems

In this section, a modeling framework – which is centrally based on the above-
presented ROM methodology – for the analyses of non-compact thermo-
acoustic systems is introduced. For this purpose, a novel method to incorpo-
rate non-compact flame dynamics is presented, which is then applied to the
benchmark combustor to demonstrate the work flow in the subsequent sec-
tion. The general idea of incorporating non-compact flame dynamics within
a ROM description of a given combustor is presented in Fig. 7.8.
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Figure 7.6: Amplitudes of scattering coefficients

This figure shows a characteristic flame shape as encountered in the swirl-
stabilized benchmark combustor (cf. Chap. 3) along with the first transversal
pressure mode shape. It is revealed that length scales of the former and lat-
ter are of the same order of magnitude, which confirms the non-compactness
of the system. The non-compact thermoacoustic interactions are modeled by
dividing the flame shape into multiple compact sub-regions (cf. Fig. 7.8) and
forming a local feedback loop for each sub-region. Each sub-region’s refer-
ence signal is extracted at the center of each concerned sub-region by a cor-
responding output vector. This output signal is converted into a heat release
signal using the general transfer function given by Eqns. 2.22-2.23 in Sec. 2.6
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Figure 7.7: Phase angles of scattering coefficients

formulated on sub-region level (denoted by the subscript s), i.e.

q ′
s = FL,s(p ′

s)+FN L,s(p ′
s)+FS,s , (7.25)

where FL,s and FN L,s implicitly describe linear and non-linear thermoacoustic
coupling processes, respectively. The term FS,s denotes the function that mod-
els the stochastic effects on the oscillations due to turbulent combustion noise
as explained in Sec. 2.6. Notice that retaining only the linear part of the trans-
fer function in Eqn. 7.25 allows to carry out linear stability assessments in
frequency domain. Such analyses are essentially analogous to linear driving,
damping and stability assessments presented in Chaps. 4-6, and can be ef-
fectively used for verification of the ROM feedback connections. The entire
transfer function, i.e. considering the linear, non-linear as well as stochas-
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Figure 7.8: Non-compact flame segmentation, mean heat release distribu-
tion, and Multi-Input-Multi-Output (MIMO) feedback connec-
tions for Reduced Order Modeling framework

tic part in Eqn. 7.25, is employed for time domain simulations carried out in
Chap. 8. Regardless of the specific form of the transfer function used, the re-
sulting heat release oscillations are fed into the ROM by an appropriate input
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vector. This input vector is created from a FEM load vector for which each
sub-region is flagged by setting the heat release fluctuation amplitude of the
source term in the energy equation to unity at all grid nodes associated with
the respective region, and zero elsewhere. Setting this fluctuation amplitude
to unity neutralizes the – at this point open-loop – input term to ensure an
unbiased feedback modeling, i.e. it is ensured that the heat release input that
is converted by transfer functions is magnitude-wise correct. Finally, the non-
compact thermoacoustic interactions are modeled by forming the feedback
loop for each sub-region via multiple in- and output signal routes, i.e. estab-
lishing a Multi-Input Multi-Output (MIMO) feedback system.

7.4 Derivation of MIMO Reduced Order Model

The creation and verification of the MIMO-ROM system that describes the
non-compact thermoacoustic performance of a given combustor is divided
into the following steps:

1. Problem setup, i.e. definition of governing equations and boundary con-
ditions of the concerned combustor.

2. FEM discretization to retrieve the large-scale system matrices.

3. Creation of the open loop ROM and verification via comparisons of pres-
sure response functions.

4. Flame segmentation and set up of MIMO feedback framework along with
the formulation of local transfer functions.

5. MIMO feedback closure and verification via comparison of complex
eigenfrequencies.

In the following, these steps are employed on two operation points of the
swirl-stabilized benchmark combustion system. Thereby, explicit handling
guidelines of the non-compact thermoacoustic modeling concept are pro-
vided. At the same time, the MIMO-ROM framework for the time domain sim-
ulations conducted in Chap. 8 below is produced, too.
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Step #1: Problem Setup of Concerned Combustor

The thermoacoustic performance of two distinct operation points (cf. Tab.
7.2) of the reactive configuration benchmark combustor is modeled and ana-
lyzed with the MIMO-ROM methodology. One operation point exhibits self-
sustained, first transversal oscillations, i.e. is thermoacoustically unstable,
while the other one is stable as indicated by the dynamic pressure amplitude
values in Tab. 7.2.

Parameter Stable Unstable Units

Normalized pressure amplitude 0.012 1.0 -
Air excess ratio 1.8 1.1 -
Air mass flow 120 120 g/s

Fuel mass flow 3.9 7.0 g/s
Inlet temperature 673 673 K

Thermal power 195,000 350,000 W

Table 7.2: Operation points of the unstable/stable case

The open-loop thermoacoustic performance of these two operation points are
modeled via the LEE given by Eqns. 2.18-2.19. Theoretically, the computation
of the acoustic damping due to non-uniform mean flow effects, i.e. vortex-
shedding, is not straightforward with these equations (cf. Chap. 5). However,
due to the 3D nature of the computation domain the grid resolution is rather
coarse compared to the fine resolution that resolved all vortex-shedding pro-
cesses adequately (cf. Fig. 5.8c). As is explained in Sec. 5.4, this coarseness
induces a sufficient level of numerical diffusion, which allows to model vorti-
cal damping using the numerical stabilization parameter as a tuning variable.
This allows to adapt the damping/growth rates of the eigenmodes for the ROM
creation as desired. Of course, this "coarsened" mesh approach eliminates any
capabilities of damping predictions that are quantitatively correct. However,
a quantitative prediction is not necessary as the main purpose of the ROM is
to conduct time-domain simulation of the temporal behaviour of the thermo-
acoustic modes. Thus, the growth rates are required to be only binarily cor-
rect, i.e. positive or negative to respectively investigate the dynamics of stable
an unstable modes. Note that the phrase "coarse mesh" refers to the resolu-
tion of the vortex-shedding processes and the associated vorticity mode. Rat-
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ing the mesh regarding the resolution of the acoustic mode and respective
flame-acoustic interactions – which are of predominant interest for the fol-
lowing analyses – is found as adequately fine. The inclusion of quantitatively
correct damping rates within the ROM would be achieved if the HE modeling
approach introduced in Sec. 5.3 is used instead of the LEE as underlying gov-
erning equation/large scale system. Nevertheless, the LEE is used over the HE
model, which is justified by the following reasons:

• The LEE capture mean flow effects that cause the loss of degeneracy of
the transversal mode pairs, which is an essential feature of the non-linear
system dynamics as is addressed in Chap. 8.

• The LEE in conjunction with numerical stabilization parameters and a
coarsened mesh automatically acts on all concerned modes of the ROM.
This approach circumvents the need to obtain the damping rate for each
mode individually (as would be required if the HE damping modeling
approach is employed).

The required mean velocity and pressure fields are retrieved from isothermal
CFD simulations of the two operation points as for the linear damping quan-
tification in Chap. 5. Mean heat release and temperature distributions are ob-
tained from time-averaged, inverse Abel transformed OH∗ intensity images of
the "real" flame in the combustor facility, results and details of which can be
retrieved from [15]. The flame is rotationally symmetric (cf. Fig. 7.8). Hence,
the inverse Abel transformed OH∗ chemiluminescence 2D cut-plane images
are used to construct the flame volume within the computational domain by
an azimuthal revolution of 360 degrees of the respective image. The sepa-
ration of thermal and velocity mean fields essentially assumes that acoustic
damping is solely a result of interaction processes between acoustic and non-
uniform mean flow velocity, i.e. due to acoustically induced vortex-shedding.
This separation approach was already applied and justified in the course of
the damping modeling in Chap. 5. Finally, acoustic boundary conditions at
the combustor’s bounding surfaces need to be prescribed (cf. Fig. 7.9). At the
inlet, an energetically neutral condition ˆ̇m = 0 is imposed, while a pressure
node p̂ = 0 and slip conditions û · n = 0 are imposed at the outlet and the
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7.4 Derivation of MIMO Reduced Order Model

walls, respectively. Thus, the only source of damping is acoustically induced
vortex-shedding and the subsequent absorption of vortical disturbances by
the artificial diffusion scheme/coarsened mesh approach.

Step #2: Discretization of Governing Equations

The LEE description in frequency domain of the open-loop aeroacoustics per-
formance of the two operation points is transformed into large-scale systems
via a Streamline Upwind Petrov Galerkin (SUPG) stabilized FEM scheme. De-
tails on the SUPG theory and implementation can be retrieved from Sec. 2.8.
The unstructured mesh of the 3D combustor domain on which the FEM dis-
cretization is conducted consists of around 435,000 tetrahedral elements for
both cases, and displays in Fig. 7.9. This mesh translates into a resolution of
minimum 15 elements per wavelength in the coarsest region at the outlet, and
90 elements per wavelength in the finest region around the flame with respect
to the T1 modes. Using linear elements, the resulting final size of the FEM sys-
tem amounts to N ≈ 300,000 degrees of freedom.

Wall: ûn ·n = 0

Outlet: p̂n = 0
Inlet: ˆ̇m = 0

Wall: ûn ·n =−1

Wall: ûn ·n =+1

r

x
θ

Figure 7.9: Mesh, excitation sources and boundary conditions

Step #3: ROM Creation and Frequency Response Verification

The ROM of the two considered cases (stable and unstable) are created and
validated within this section. For this purpose, the subspace into which the
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respective large-scale LEE system is projected needs to be defined. The sub-
space is spanned by a collection of eigenvectors of the associated LEE system,
which are associated with the eigenfrequencies across the frequency range
and includes the targeted T1 mode:

2000Hz ≤ fMOR ≤ 5000Hz (7.26)

Specifically, seven longitudinal, ten first transversal, and two second transver-
sal modes comprise the subspace. Execution of the MOR procedure (cf. Sec.
7.1 above) produces the ROM with a final dimension – considering the com-
plex conjugate nature of the eigenmodes – of Nr = 2×19 = 38 for both cases.
Hence, a substantial order reduction over five orders of magnitude for both
cases is achieved. Thermoacoustic driving is not yet considered, but will be in
the next step. At this point, the ROM’s reproduction capabilities are assessed
by means of frequency swept pressure responses to external excitations. For
this purpose, two wall sections at the faceplate of the combustor are pre-
scribed with an excitation wall boundary conditions as is indicated in Fig. 7.9
to predominantly excite first transversal modes.
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Figure 7.10: Frequency pressure responses of stable case’s open loop systems

The responses of the ROM and LEE systems are computed for both cases over
the range given by Eqn. 7.26 with N f = 120 discrete frequencies. The result-
ing amplitudes and phases of the open-loop stable and unstable case are
shown in Figs. 7.10-7.11, which indicate adequate agreement between ROM
and LEE results. Table 7.3 provides the relative error (cf. Eqn. 7.16) for both
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7.4 Derivation of MIMO Reduced Order Model

cases. The errors remain below 2%, which reveals an accurate reproduction
capability of large-scale system performance by the respective ROM. Compu-
tation times of the ROM response occur basically instantaneous (7x10−3sec),
while the LEE sweeps lasted 11 hours for each case. A one-time obtainment
of the eigenmodes of the derived the ROM is required and lasted 1 hour for
each case. Conclusively, substantially small ROM dimensions with associated
vanishingly short computational times are achieved, while large-scale system
benchmarks results are accurately reproduced.

- STABLE UNSTABLE

REL.ERR. 1.6% 0.9%

Table 7.3: Relative errors of the stable and unstable open-loop ROM

Step #4: Flame Segmentation and MIMO Feedback Framework

The flame segmentation is carried out as shown in Fig. 7.8, which yields a
three-dimensional structure composed of individual volumes. For each of
these volumes, an in- and output vector is created, which are then assembled
to yield the respective in- and output matrices. The transfer function needed
to convert (local) pressure signals to heat release oscillations consists – due to
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Figure 7.11: Frequency pressure responses of unstable case’s open loop sys-
tems
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the frequency domain verification task via eigenfrequencies in the next step –
only of the linear part of Eqn. 7.25, and explicitly unfolds into

q ′
s = FL(p ′

s) = q ′
ρ′,s +q ′

∆′,s =
q̄s

γs p̄s
p ′

s −
∇q̄s

ρ̄ω2
n,a

∇p ′
s (7.27)

where the mean values of heat release rate q̄s , pressure p̄s , density ρ̄s and ratio
of specific heatsγs as well as the acoustic pressure signal p ′

s are space averaged
values for each sub-region s. The two parts of the linear transfer function rep-
resent the driving mechanisms due to flame deformation and displacement as
presented in Chap. 4. Notice that the displacement transfer function is mod-
ified to yield a functional dependence on the pressure oscillation, which is
achieved by using the acoustic momentum equation (cf. homogeneous form
of Eqn. 2.20) to replace the velocity. To be specific, the pressure dependence
is given by means of the spatial gradient. The pressure gradient signal at a
particular sub-region is generated – and thus incorporated within the MIMO-
ROM computations – by the pressure signals of the adjacent sub-region using
standard finite difference approaches [43]. The reason for using the pressure
gradient instead of the velocity in Eqn. 7.27 is given by the requirement that
input variables to thermoacoustic transfer functions are required to be of pure
acoustic nature. For LEE modes, which provide the mathematical basis of the
MIMO-ROM in this work, only the pressure mode satisfies this pure acous-
tic feature (cf. Eqn. 5.2), whereas the velocity contains acoustic and hydrody-
namic contributions (cf. Eqn. 5.1).

Step #5: MIMO Feedback Closure and Eigenfrequency Verification

This section verifies the MIMO-ROM feedback approach by assessing the lin-
ear thermoacoustic stability of the two subjected cases. For this purpose, the
linear, distributed transfer function in Eqn. 7.27 is used to close the MIMO-
ROM feedback loop. The eigenfrequencies of this closed system are straight-
forwardly computed using standard linear algebra techniques, i.e. linear frac-
tional transforms as shown in [137]. These eigenfrequencies are complex, i.e.

ωn,a = 2π fn,a − iνn,a, (7.28)
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7.4 Derivation of MIMO Reduced Order Model

where fn,a and νn,a denote oscillation frequency and growth rate of the acous-
tic mode n, respectively. The sign of the growth rate determines linear stability,
i.e. mode n is rendered thermoacoustically stable/unstable for νn,a < 0/ > 0
(cf. Chap. 6). The resulting MIMO-ROM eigenfrequencies are presented in Fig.
7.12 along with corresponding eigenfrequency benchmarks of the large-scale
LEE system. These LEE solutions are obtained by prescribing the heat release
source term ˆ̇qn in Eqn. 2.19 with the source term given in Eqn. 8.21, and then
solving this closed system for the desired eigenmodes/frequencies. Figure 7.12
reveals three main outcomes:

• Binarily correct reproduction of experimentally observed T1 stability –
i.e. positive and negative growth rates for the unstable and stable oper-
ation point – is achieved by tuning the numerical stabilization param-
eter as required. This is justified as the time-domain simulations in the
next chapter only require these binarily adjusted growth rate values of
the considered thermoacoustic modes for the associated analyses.

• Identification of deviating oscillation frequencies and growth rates be-
tween the T1 mode pairs for each case. This loss of T1 degeneracy
is caused by mean flow interactions between acoustic oscillations and
swirling velocity field (cf. App. B).

• Accurate eigenfrequency results of the MIMO-ROM compared against
the LEE verification results in respective relative errors of growth rates
that remain below 5% for the T1 modes, which is certainly acceptable in
the light of the significant order reduction achieved. The oscillation fre-
quencies of the ROM and FEM results match exactly, which is due to the
underlying MOR procedure.

It is important to point out that if one’s primary interest is in linear thermo-
acoustic analyses, there is no need to conduct the MIMO-ROM modeling ap-
proach as the field methods in frequency domain presented in Chaps. 4–6 are
more suitable for such tasks. The purpose of employing linear analyses in this
chapter is primarily to verify the reproduction capabilities of the MIMO-ROM
approach of the high-order reference setup to ensure suitability for the desired
time-domain simulations in the next chapter.
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Figure 7.12: Complex eigenfrequencies of closed loop for both operation
points

A comparison of the T1 oscillation frequencies of the ROM/high-order LEE
systems against the experimentally measured counterparts is given in Tabs.
7.4 and 7.5 for the stable and unstable case, respectively. The tables show the
deviating frequencies as a consequence of the loss of degeneracy, which are
allocated to two counter-rotating T1 modes. The higher and lower frequency
mode (labeled T1F and T1G mode) rotates counterclockwise (CCW) and clock-
wise (CW), which is the same and opposite direction as the swirling mean flow,
respectively (cf. App. B for details on the origin of this loss of degeneracy).

EXPERIMENT MIMO-ROM REL.ERR.

fF 2,870 Hz 2,801 Hz 2.5%
fG 2,840 Hz 2,776 Hz 2.25%

Table 7.4: Comparison of oscillation frequencies – stable case

EXPERIMENT MIMO-ROM REL.ERR.
fF 3,150 Hz 3,038 Hz 3.5%
fG 3,100 Hz 3,003 Hz 3.2%

Table 7.5: Comparison of oscillation frequencies – unstable case

148



7.5 Summary and Findings – ROM Development

Relative errors (cf. Tabs. 7.4-7.5) between calculated and measured frequen-
cies remain below 4%, which is an accurate agreement. It can be concluded
that the MIMO-ROM approach accurately reproduces the high-order LEE ver-
ification baseline as well as the applicable experimental observation in the lin-
ear regime. Hence, the respective MIMO-ROM systems can be confidentially
employed for time domain simulations in Chap. 8 as well as for verification
tasks of the growth rate extraction methods developed in Chap. 10.

7.5 Summary and Findings – ROM Development

The foregoing chapter presented the development of a Reduced Order Mod-
eling (ROM) methodology that is particularly applicable to model HF thermo-
acoustic oscillations governed by transversal modes in gas turbine combus-
tors. Specifically, the methodology exhibits the following modeling capabili-
ties:

• Consideration of 3D domains and multi-dimensional acoustic modes.

• Incorporation of non-compact flame dynamics using a Multi-Input-
Multi-Output (MIMO) feedback modeling approach.

• Formulation of the ROM in state-space to enable both, frequency and
time domain analyses.

Theoretically, the methodology is based on modal reduction of large-scale
LEE systems, i.e. the projection of this system into a subspace that is spanned
by a selected set of eigenmodes. The range of eigenmodes is determined by
the range of frequency in which the thermoacoustic dynamics of the combus-
tor is investigated. Applicability of the ROM methodology to combustor-like
configurations was validated by computing the aeroacoustic scattering
behavior of an orifice tube. Experimental as well as LEE reference results
were accurately reproduced, while a considerable increase of computational
efficiency of the ROM computations was achieved.
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Then, the ROM methodology was applied to the swirl-stabilized bench-
mark combustor, which included the consideration of non-compact flame
dynamics via the MIMO feedback approach. The procedural derivations steps
of the methodology for thermoacoustically active HF systems were demon-
strated. At the same time, the required ROM framework for the time-domain
simulations and analyses carried out in the next chapter was established.
Specifically, ROM of one stable and one unstable operation point were de-
rived and verified. The verification occurred in frequency domain by means
of comparing pressure response and complex eigenfrequencies obtained by
large-scale LEE and ROM computations. Additionally, a substantial order
reduction was achieved as desired, which rendered the ROM eligible for
further usage.

The ROM framework forms a comprehensive tool for time domain analyses,
which can be readily applied to gas turbine combustors of industrial scale.
Often these tasks include the incorporation of damping devices at distinct
locations of the combustor wall to test the effect on the system dynam-
ics [111]. Moreover, assessing the impact of up-and downstream periphery
on the acoustic modes – especially when interactions between mode and
in-/outlet boundaries of the chamber are non-negligible – is frequently
of interest, too. Procedurally, the incorporation of both (damping devices
and up-/downstream periphery) occurs by interconnecting the combustor
domain with transfer functions [13]. This interconnection is achieved in an
analogues manner as the connection of the non-compact feedback, and
can thus be considered as a readily available capability within the ROM
framework. An explicit demonstration of such analyses was beyond the scope
of this thesis and remains open for future work.
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8 Combustor Dynamics – Numerical
Analysis

This chapter applies the previously developed MIMO-ROM methodology to
conduct time domain simulations and corresponding analyses of HF thermo-
acoustic dynamics in the swirl-stabilized benchmark combustor. The refer-
ences [21, 78, 94, 113] are used as overall sources for these tasks. The same
operation points (1x unstable, 1x stable) used to demonstrate the derivation
and verification procedure in Sec. 7.4 of the ROM framework are used for this
tasks. Hence, the required MIMO-ROM systems are readily available for the
simulations in this chapter. The specific objectives of this chapter are then:

• Reconstruction of experimentally observed combustor dynamics consti-
tuted by non-degenerate T1 mode pairs by ROM simulations.

• Characterization of HF thermoacoustic oscillations from a dynamical
system perspective.

• Identification of distinct physical features that govern HF thermo-
acoustic limit cycle dynamics.

• Demonstrating the suitability of the non-compact MIMO-ROM ap-
proach for time domain analyses/simulations of technically relevant
combustors.

8.1 Preparations of Time Domain Analyses

This section presents preliminary information relevant for time domain analy-
ses in this chapter. First, a post-processing procedure to classify and describe
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the dynamical behavior of transversal modes in tubular combustor geome-
tries is presented. Second, non-compact transfer function that are suitable to
model time domain flame dynamics are introduced.

8.1.1 Transversal Mode Dynamics

Possible scenarios of transversal mode dynamics, i.e. how the particular mode
behaves in time domain, are as follows:

1. Rotating mode dynamics in either clockwise (CW) or counterclockwise
(CCW) direction.

2. Standing mode dynamics.

3. Mix of rotating and standing mode features.

Identifying the dynamical scenario from acoustic pressure time series allows
for efficient interpretation of the experimental and simulation results. This
task is achieved by employing a post-processing methodology. This method-
ology is based on the assumption that transversal mode dynamics are de-
scribed by a superposition of two, in opposite direction traveling first transver-
sal modes. This is achieved by expanding the spatial acoustic pressure oscilla-
tion by a two-fold Fourier series given by [24, 42]

p ′(x, t ) =
p ′

F︷ ︸︸ ︷
ηF (t )ΨF (x)+

p ′
G︷ ︸︸ ︷

ηG(t )ΨG(x)+p ′∗
F +p ′∗

G , (8.1)

where the shape functions ΨF (x) and ΨG(x) are associated with a coun-
terclockwise (CCW, p ′

F ) and clockwise (CW, p ′
G) rotating transversal mode,

respectively. The complex Fourier coefficients ηF (t ) and ηG(t ) are time-
dependent signals associated with each rotating mode. Theoretically, the
pressure oscillations are governed by an infinite Fourier series. In practice,
bandpass-filtering of the time signals around the resonance frequency needs
to be carried out to eliminate contributions to the time series by other modes
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than the T1 pair. The mode shapes are given by

ΨF (x) =Ψ∗
G(x) =σ(x,r )exp(−iθ) (8.2)

ΨG(x) =Ψ∗
F (x) =σ(x,r )exp(iθ) (8.3)

where exp(−iθ) and exp(iθ) imply CCW and CW direction of rotation, re-
spectively. Any axial and radial variability of the mode shapes is absorbed in
σ(x,r ), which is a real expression. Higher transversal modes (e.g. T2) can be
treated analogously as shown herein for the T1 mode. In Eqns. 8.2-8.3, the
asterisk (∗) indicates the complex conjugate of the concerned function.

Employing the counter-rotating description of the mode dynamics as
given by Eqn. 8.1 poses one dominant advantages over using the approach
that is based on two standing modes (cf. [21, 108, 112]). This advantage is
the ability to capture the non-degeneracy feature at the first transversal
mode (cf. App. B) that is encountered in swirling, non-uniform mean flow
environments, which is not possible using the standing mode approach. This
non-degeneracy manifests in different oscillation eigenfrequencies of the
constituting rotating modes p ′

F and p ′
G . Consequently, the oscillations of the

complex Fourier coefficient ηF (t ) and ηG(t ) are not restricted to be equal.

The next step to extract information about the mode dynamics from a
given time series is to identify the Fourier coefficient signals ηF (t ) and ηG(t ).
Practically, time traces of acoustic pressure signals (Nt samples) are recorded
through probes at Nθ azimuthal positions, which are mounted at the faceplate
of the benchmark combustor as indicated in Figs. 3.2.

p ′(θ, t ) = (ηF +η∗G)σ(xp ,rp)exp(−iθ)+ (η∗F +ηG)σ(xp ,rp)exp(iθ). (8.4)

The value of the axial-radial mode shape function is set to one, which avoids
any impact on the amplitude values of the Fourier coefficients, i.e. σ(xp ,rp) =
1. Then, Eqn. 8.4 is re-written as an overdetermined linear system, i.e.

P(θ j , t ) = H(t ) ·T(θ j ), (8.5)

where T(θ j ) = [exp(−iθ j ) exp(iθ j )]T . The pressure time signals of the az-
imuthal probes at θ j with j = 1,2, . . . Nθ are collected in the Nt × Nθ matrix
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P(θ j , t ). The matrix H = [Ha Hb] dimension Nt × 2, where the first and sec-
ond column represent complex time traces composed of Fourier amplitudes
Ha = ηF +η∗G and Hb = η∗F +ηG , respectively. These time traces are obtained in
a least-square sense, i.e. pseudo-inverting Eqn. 8.5

H = P ·TT · (T ·TT )−1. (8.6)

Assuming that the temporal change of the amplitude traces of these wave sig-
nals is slow compared to the time scale of the associated acoustic oscillation
allows the following polar decomposition

ηF (t ) = F (t )exp[i (ωF t +φF (t ))], (8.7)

ηG(t ) =G(t )exp[i (ωG t +φG(t ))], (8.8)

where F (t )/G(t ) and φF (t )/φG(t ) represent slowly varying, time-dependent
amplitudes and phases, respectively. The traces ηF (t )/F (t )/φF (t ) are associ-
ated with the CCW rotating mode while ηG(t )/G(t )/φG(t ) corresponds to the
mode rotating in CW direction. The oscillation frequencies ωF /ωG are not re-
stricted to be equal. The amplitude and phase traces are obtained by Hilbert
transforming the time signals of Eqn. 8.6, which yields

HF =H(Ha) = Ha,r (t )+ i Ha,i (t ), (8.9)

HG =H(Hb) = Hb,r (t )+ i Hb,i (t ). (8.10)

The Fourier amplitudes are then given by

F (t ) = |HF |, (8.11)

G(t ) = |HG |, (8.12)

while the corresponding total phase evolutions are obtained using the Hilbert
transform via

ϕF (t ) =ωF t +φF (t ) =∠H(Real (HF (t ))/F (t )), (8.13)

ϕG(t ) =ωG t +φG(t ) =∠H(Real (HG(t ))/G(t )). (8.14)

Then, the oscillatory signals of the decomposition are determined by evalu-
ating Eqns. 8.7–8.8 using the amplitude and total phase traces given by Eqns.
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8.9–8.14. The eigenfrequencies ωF and ωG are then retrieved e.g. from spec-
trum plots that are obtained by taking the Fast Fourier Transform (FFT) of the
respective signals. Knowing these eigenfrequencies allows to determine the
slowly varying phase evolutions by rearranging Eqns. 8.13–8.14, i.e.

φF (t ) =ϕF (t )−ωF t , (8.15)

φG(t ) =ϕG(t )−ωG t . (8.16)

The correctness of the foregoing decomposition procedure is ensured by
respective application to dynamic pressure traces given at the Nθ = 5 az-
imuthal probes of the swirl-stabilized benchmark combustor. Specifically,
the methodology is applied to pressure measurements associated with the
isothermal test case used for the damping model and mean flow investiga-
tion in Chap. 5 and App. B. The spectra of the decomposed mode signals ηF

and ηG are plotted in Fig. 8.1. The figure effectively reveals two distinct peaks
that indicate the frequencies associated with the CCW and CW mode, which
correctly originate from the signals ηF and ηG , respectively. Hence, the non-
degeneracy features of transversal modes is correctly captured, which grants
the decomposition approach suitability for usage of time series analysis in this
chapter.

Furthermore, the decomposition approach is applied to the pressure traces
retrieved from the unstable operation point of the reactive configuration con-
cerned in this work. The spectra are shown in Fig. 8.2, which reveal the deviat-
ing eigenfrequencies (indicated by the dashed vertical lines) of the CCW and
CW signals, too. The amplitude peak of the CW signal is much smaller than the
CCW counterpart, which is caused by the suppression of the former by the lat-
ter mode due to mode interactions during the limit-cycle oscillations as is ex-
plained in the upcoming sections. As for the isothermal data, non-degeneracy
of the transversal mode pairs is captured by the decomposition, and thus, con-
firms the suitability of the approach for further usage.

The instantaneous values of slowly varying amplitudes F (t )/G(t ) reveal the
mode dynamics, which specifically unfold into a CCW and a CW rotating
mode if F (t ) = 0 and G(t ) = 0, respectively. The situation F (t ) = G(t ) denotes
a standing mode, and F (t ) 6= G(t ) 6= 0 mixed-type behavior. These dynamic
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Figure 8.1: Pressure spectrum of the CCW and CW signals (ηF and ηG) –
isothermal benchmark configuration (normalized with maximum
amplitude of ηF )

scenarios are effectively illustrated by a spin ratio [24] given by

s(t ) = F (t )−G(t )

F (t )+G(t )
, (8.17)

which translates into s =±1 for a CCW and CW rotating mode, respectively. A
spin ratio of s = 0 indicates a standing mode, while values in between these
extrema represent mixed-type behavior.

8.1.2 Time-Domain Flame Dynamics Function

In order to execute time-domain simulations, the linear, non-linear and
stochastic parts of the non-compact transfer function given in Eqn. 7.25 need
to be explicitly formulated for the MIMO-ROM feedback connections. The lin-
ear part is simply retained as for the linear verification analysis in Eqn. 7.27,
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Figure 8.2: Pressure spectrum of the CCW and CW signals (ηF and ηG) – reac-
tive configuration (normalized with maximum amplitude of ηF )

which is recalled here for clarity to

FL,s(p ′
s) = q ′

ρ′,s +q ′
∆′,s =

q̄s

γs p̄s
p ′

s −
∇q̄s

ρ̄ω̄2
n,a

∇p ′
s (8.18)

where ρ̄s γs , q̄s , and p̄s denote the mean density, isentropicity coefficient
value, mean volumetric heat release rate, and static pressure averaged over
the concerned compact sub-region, respectively. The frequency ω̄n,a in Eqns.
8.18 is the mean value of the CCW and CW modes’ eigenfrequencies. Eqn. 8.18
describes modulation of heat release with acoustic pressure oscillations, and
is derived and discussed in detail in Chap. 4.1 The results, i.e. growth rates and
acoustic pressure time traces, are identical between both approaches to ac-
count for linear flame displacement. Saturation of heat release is described by
a static non-linear function given by

FN L,s(p ′) =−κp ′3
s , (8.19)

1Note that in the publication [72] associated with this chapter, the displacement part of the linear transfer
function in Eqn. 8.18 was not explicitly considered for the time-domain feedback. Instead, the effect of flame
displacement at the T1 mode was implicitly included within the eigenmodes to perform the MOR to obtain the
open-loop ROM, which is simply due to the lacking implementation of considering spatial gradients of pressure
oscillations in the MIMO-ROM framework at the time of the publication.
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which presents an empirical function that is based on observations from ex-
periments (cf. [112, 113]). The saturation function represents a power series
expansion to the fourth order. However, the even terms (second p ′2 and fourth
order p ′4) have no impact on the amplitude dynamics as is shown by the
analytical averaging procedures in the next chapter and in [112]. The quan-
tity κ > 0 is called non-linearity coefficient to model the flame’s saturation
strength, and is presumed a global constant independent of the particular
sub-region of the flame. Equation 8.19 essentially models the saturation of the
oscillating heat release rate with increasing amplitudes to yield self-sustained
limit cycle oscillations of the mode of interest. The stochastic source terms
expands to

FS,s = ΓΞs . (8.20)

where Γ is the noise strength of and (spatially and temporally) uncorrelated
white noise Ξs where the former is a constant while the latter represents and
individual Gaussian signal for each sub-region. Spatial correlation between
different sub-regions are thus neglected. Considering inter-spatial coherence
of the source terms – which might be relevant in reality – is assigned to future
work. There is no dependency of the stochastic source term in Eqn. 8.20 on
the acoustic pressure oscillations, which reflects the additive noise assump-
tion employed in this work. An explicit formulation of the non-compact heat
release source term at sub-region level is produced by substituting Eqns. 8.18-
8.20 into Eqn. 7.25 to give

q ′
s =

q̄s

γs p̄s
p ′

s −
∇q̄s

ρ̄ ¯ωn,a
2∇p ′

s −κp ′3
s +ΓΞs . (8.21)

8.2 Results and Interpretations

This section presents the results of the time-domain simulations. Specifically,
the thermoacoustic dynamics of the concerned stable and unstable operation
point are reconstructed. For this, the non-compact feedback loops are closed
via Eqn. 8.21 for which the MIMO-ROM state-space systems are readily avail-
able from Sec. 7.4. The additive white noise sources constantly excite the sys-
tem dynamics throughout the simulations, which eliminates the need of any
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external excitation sources. Both systems are integrated in time using a Runge-
Kutta-Dormand-Prince algorithm of 5th order over a time span of 4 seconds.
The required CPU time is approximately 2 minutes for each case. This span
captures around 12,000 oscillation periods of the T1 mode at a sampling time
of dt = 10−5seconds. The acoustic pressure time traces are recorded at Nθ = 5
azimuthal probe locations at the benchmark combustor’s faceplate, which is
the same number of pressure sensors as in the experiment (cf. Chap. 3). Sta-
ble and unstable system simulations are adjusted to match the experimental
observations by means of the non-linearity coefficient κ and the intensity Γ
associated with the noise term Ξs in Eqn. 8.21, which represents the proce-
dure established in [21]. The final values for κ and Γ are 30,000 and 0.25 for
both cases, respectively. MIMO-ROM simulation results are then compared
against experimental data in order to retrieved physical insight of the sub-
jected thermoacoustic system.

8.2.1 Stable Case

At first, the simulated pressure traces at the azimuthal probe locations are
band-passed filtered around the two T1 frequencies (cf. Tab. 7.4). In a subse-
quent step, the above-introduced methodology of decomposing these band-
limited signals (cf. Eqn. 8.5) into time-dependent Fourier coefficients ηF (t )
and ηG(t ) of the respectively CCW and CW spinning waves is employed to the
experimental and ROM data. Recall that the experimental traces are readily
available for this work as discussed and referenced in Chap. 3. The resulting
signals are comparatively shown in Fig. 8.3 over a representative time span of
0.3 seconds. The plots yield fairly equal amplitude levels for the experimen-
tal and ROM signals, which is achieved by adjusting the noise strength Γ for
the simulations. Generally, the figures reveal a successful reproduction of the
signal produced by MIMO-ROM simulations as experimentally benchmarked,
in which qualitative oscillatory character of the acoustic pressure, caused by
stochastic forcing effects, is recovered. In the stable case, no deterministic
limit cycle is established as the underlying mode is thermoacoustically sta-
ble. The oscillations are driven by broadband combustion noise [94], which
causes the random amplitude evolution as can be observed in Fig. 8.3.

159



Combustor Dynamics – Numerical Analysis

1.7 1.75 1.8 1.85 1.9 1.95 2
-0.2

-0.1

0

0.1

0.2

t (s)

R
e
η

F
(t

)(
−)

1.7 1.75 1.8 1.85 1.9 1.95 2
-0.2

-0.1

0

0.1

0.2

t (s)

R
e
η

F
(t

)(
−)

Experiment ROM

Figure 8.3: Stable case: temporal oscillations of Fourier coefficients (left col-
umn: experimental results, right column: ROM results)
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Figure 8.4: Stable case: Probability Density Distributions

Then, the corresponding slowly varying amplitudes of Eqns. 8.7-8.8 are ob-
tained as shown in Sec. 8.1 above for simulated and measured pressure signal
sets, and normalized. The normalized amplitudes are plotted as a joint prob-
ability density function (PDF) in Fig. 8.42, and corresponding spin-ratios s (cf.
Eqn. 8.17) are displayed via histograms in Fig. 8.5.

2layout and colormap of the PDF plot adapted from the work in [173]
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Figure 8.5: Stable case: spin-ratio histograms

Both figure types reveal predominantly standing mode dynamics for both,
ROM and experimental results. The bell-shaped spread in Fig. 8.5 is caused by
stochastic forcing due to turbulent combustion noise, which yields the possi-
bility of instantaneous mixed type or even purely rotating mode behavior. The
presented results/observations effectively serve to demonstrate the ROM’s ca-
pability to identify and explain physical situations: Closely inspecting the PDF
diagrams yields the maximum probability of the ROM’s two waves’ amplitudes
at Fmax,ROM = 0.80 and Gmax,ROM = 0.70, while the experimental counterparts
valuate at Fmax,E X P = 0.78 and Gmax,E X P = 0.72. The slight difference of these
values implicates a dominantly standing T1 mode, which slowly rotates CCW,
which is the direction of the swirling mean flow. This slow rotation in CCW di-
rection is also revealed by the histogram plots in Fig. 8.5, which yield a mean
spin-ratio of smean,ROM = 0.0024 and smean,E X P = 0.0021 for the ROM and ex-
perimental data sets, respectively. The interpretation of this small rotational
feature is due to stochastic forcing, which constantly excites both rotating T1
modes. Specifically, the (stochastically excited) T1F and T1G modes spin in
CCW and CW direction, respectively. The spinning speed (i.e. the eigenfre-
quency) of the former T1F mode is larger than of the latter T1G mode. Su-
perposing these two individual mode behaviors yields a standing mode that
slowly rotates as overall pressure dynamics. The angular speed of this slow ro-
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tation is given by the difference between the eigenfrequencies of the T1F and
T1G modes.

8.2.2 Unstable Case

The dynamic pressure simulation data produced by the non-linear MIMO-
ROM of the unstable case feature an initial exponential growth stage, which
settles into the limit cycle oscillation stage due to non-linear saturation –
as is theoretically expected. Analogously to the stable case, CCW and CW
spinning Fourier amplitude signals ηF (t ) and ηG(t ) as well as corresponding
slowly varying amplitudes F (t ) and G(t ) are computed from limit cycle data.
Limit cycle oscillation amplitude levels, which additionally feature a distinct
low-frequency modulation/beating are reproduced against the experimental
benchmarks as shown in Fig. 8.6 with less pronounced beating amplitudes for
the ROM signal. The CCW spinning wave ηF (t ) exhibits approximately two to
three times the amplitude of the CW wave ηG(t ), which implies mixed type T1
mode dynamics. The envelope beating is revealed by the FFT of the signals’
slowly varying amplitudes. The spectra show a low-frequency peak, which is
the beating frequency. Corresponding plots are given in Fig. D.1 in App. D.
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Figure 8.6: Unstable case: temporal oscillations of Fourier coefficients (left
column: experimental results, right column: ROM results)

The PDF plots in Fig. 8.7 confirm these T1 dynamics, and additionally reveal
that the direction of the rotations is CCW. This direction is – as for the slow
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rotation of the stable case – the same direction as the mean swirl of the com-
bustor, and is associated with the higher frequency T1F mode (cf. Tab. 7.5).
The mixed-type dynamics can be characterized as divided between a standing
and rotating mode with an elevated tendency to the latter. This result emerges
with an approximate mean spin-ratio of smean,ROM = 0.71 and smean,E X P = 0.69
from the histogram plots in Fig. 8.8, too. Again good agreement between the
experimental and simulated data is found. The impact of stochastic forcing is
smaller compared to the stable results as retrievable from the narrower Gaus-
sian spin-ratio histograms, and the more compact shape of the PDF contours.
This reduced presence of noise is due to the immensely elevated amplitude
level of the limit cycle relative to the stable oscillations, which is three orders
of magnitudes larger (cf. Figs. 8.3 and 8.6), while the noise strength is kept
constant between the simulations of the stable and unstable case.
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Figure 8.7: Unstable case: Probability Density Distributions

The reason for the rotational part of the mixed-type T1 mode to occur CCW
is found by inspecting the linear growth rates of the two modes T1F (CCW,
higher frequency) and T1G (CW, lower frequency). The respective growth rates
valuate at νF = 17r ad/s > νG = 9r ad/s. Thus, the preferred mode direction is
linked to the constituent mode with the larger growth rate. Artificially swap-
ping the T1F and T1G growth rate, which is straightforwardly doable within
the ROM derivation so that νF = 9r ad/s < νG = 17r ad/s confirms the forego-
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Figure 8.8: Unstable case: spin-ratio histograms

ing explanation. Corresponding time domain simulation results disclose the
same mixed-type T1 mode dynamics, but with the rotational part occurring
CW as is shown in Fig. 8.9. Notice that this swapping is physically meaning-
less, but is justified as it serves to demonstrate the decisive role of the growth
rate for direction of the limit-cycle mode, whereas the oscillation frequency is
not of any relevance for this matter.

More physical insight regarding the evolution of the instability in terms of
its progression through the exponential growth into the limit cycle is gener-
ated by executing the MIMO-ROM simulations with a vanishingly low noise
strength. Consequently, the results are unpolluted by stochastic effects, and
solely reflect the deterministic thermoacoustic system performance. The tem-
poral behavior of the deterministic amplitudes are plotted along with the
noise-containing counterparts in Fig. 8.10. It can be observed that the CCW
amplitude’s F (t ) deterministic signal, which provides the rotational direction
of the mixed-mode dynamics smoothly grows in an exponential manner, and
then settles into a limit cycle. Thereby, the deterministic level reflects an ap-
proximate mean value of the noise-containing amplitude levels. The deter-
ministic CW amplitude G(t ) also enters a growth period, reaches a maximum
at a much lower amplitude than the CCW signal, and then descends to nearly
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zero amplitude instead of remaining in a constant limit cycle - even though
the mode is linearly unstable. Thus the deterministic case resembles purely
rotating T1 dynamics.
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Consequently, the real system dynamics – i.e. MIMO-ROM results that match
the experimental benchmarks – can be explained as follows: The qualitative
behavior of the deterministic performance is retained, which yields a limit cy-
cle rotation of the higher growth rate mode (T1F ), while the lower growth rate
mode (T1G) vanishes. The presence of stochastic forcing on the one hand ran-
domly modulates the limit cycle amplitudes of the rotating T1F mode, and
on the other hand causes the T1G mode oscillations to be non-zero. Hence,
the existence of the mixed-type dynamics originates at one rotating T1 mode,
which spins in a thermoacoustically self-sustained manner. Conversely, the
oppositely rotating mode T1G is purely stochastically driven. Superposition
between the former and the latter constituent modes ultimately reproduces
– and thereby explains – the physical process observed within the subjected
experimental combustor. Furthermore, the cubic saturation formulation of
heat release oscillations (cf. Eqn.8.21) can be validated to sufficiently describe
the non-linear flame dynamics in the concerned combustor. This validation
is retrieved due to the agreement between MIMO-ROM and measurement
results, where the former implicitly depends on the transfer function’s satu-
ration term. It is important to point out that this non-linear function actu-
ally represents a fourth order Taylor series expansion (cf. next chapter and
[112]), which implies an increased accuracy of the saturation mechanism the
function seeks to reconstruct. Although universal applicability to all thermo-
acoustic problems is not possible, the positive results of this work along with
the positive application in [109] establishes confidence in using the presented
cubic saturation function to describe super-critical bifurcations of thermo-
acoustic modes, i.e. limit cycle resulting from linearly unstable stability state.
If one seeks to capture sub-critical bifurcations, i.e. a triggered limit cycle as-
sociated with a linearly stable mode, a fifth-order series expansion to describe
flame dynamics should be employed [107].
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8.3 Summary and Findings – Numerical Analysis of Combus-
tor Dynamics

This chapter presented the time domain analysis of HF, transversal thermo-
acoustic oscillations in swirl-stabilized gas turbine combustors. For this
purpose, the previously introduced ROM approach, which presents a low-
order state-space system that describes the given combustor thermoacoustic
performance including non-compact flame dynamics was employed. These
ROM relied on the LEE as mathematical basis, which ensured that non-
degeneracy of transversal modes in mean flow environments is adequately
captured within the time domain analysis. Specifically, two operation points
(1x stable and 1x unstable) were utilized for the analyses for which the re-
spective ROM setup was readily available from the previous chapter. The
analysis was comprised of time-domain simulations by means of numerically
integrating respective ROM, and yielded corresponding acoustic pressure
time traces of both operation points. The numerically obtained traces were
then compared to experimental counterpart traces for result interpretations.

For the stable case, the following dynamic features were identified:

• Dynamics of the transversal mode pair behaves as a damped linear cou-
pled oscillator system driven by white noise (cf. next chapter for explicit
details).

• Predominantly standing first transversal mode.

• Slow rotation of this standing mode in direction of the swirling mean ve-
locity.

• Slow rotation due to loss of degeneracy of transversal mode pair.

• Slow rotation speed is associated to the CCW and CW modes’ frequency
difference, which is considerably smaller than the speed of sound.

The non-linear part of the flame transfer function produced limit cycle oscilla-
tion within the unstable case simulations. An acceptable agreement between
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the simulation and experimental results was achieved, which rendered the us-
age of a cubic saturation function to describe the non-linear heat release satu-
ration suitable for swirl-stabilized premixed flames in cylindrical combustion
chamber geometries. Also, a low-frequency modulation of limit-cycle oscilla-
tion – i.e. an amplitude beating – was experimentally revealed, numerically
reproduced, and allocated to the non-degeneracy of the T1 mode pair. The
following physical characteristics associated with the unstable case were re-
trieved:

• Dynamics of the transversal mode pair behaves as a non-linear coupled
oscillator system driven by thermoacoustic effect and white noise (cf.
next chapter for explicit details).

• Mixed-type mode dynamics, i.e. partly standing and rotating first
transversal mode.

• Deterministic evolution of limit cycle only features one of the transversal
mode pair; the other mode vanishes.

• Limit cycle mode with lower growth rate vanishes, while mode with larger
growth rates dominates the limit cycle and hence the direction of rota-
tion.

• Stochastic forcing effects randomly modulate the limit cycle mode.

• Stochastic forcing effects randomly excite the vanished mode.

• Superposition of these two (stochastically forced limit cycle and vanished
mode) causes the observed mixed-mode dynamics.

Besides the generation of insight and understanding of HF oscillations,
carrying out the analyses on the swirl-stabilized benchmark combustor
demonstrate the ROM methodology’s applicability to technically relevant
system. It can be stated that the methodology can be confidentially used for
time domain analyses of other combustor types that contain non-compact
flame dynamics and HF modes.
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For future work, modeling non-linear and stochastic dynamics of non-
compact flames should be further explored, ideally using other combustor
configurations. For this purpose, mathematically more advanced saturation
functions (cf. [90, 112]) as well as spatially and temporally correlated noise
sources could be used and assessed in terms of reproduction capability of
experimental baseline to increase generality of the methodology.
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9 Combustor Dynamics – Theoretical
Analysis

This chapter presents the theoretical extension to the time series analyses
conducted in the previous chapter. For this reasons, the limit-cycle dynamics
constituted by a non-degenerate T1 mode pair in the swirl-stabilized bench-
mark combustor is modeled via a coupled, first order system of non-linear
Stochastic Differential Equations (SDE). This system of SDE is sought to gov-
ern the amplitude-phase dynamics of the oscillations including the impact
of linear, non-linear and stochastic effects of an unsteady and non-compact
flame. The procedure to derive the SDE is based on spatial and temporal av-
eraging operations as conceptually provided by [31, 112, 113]. Utilizing the
amplitude-phase pair as solution variables (instead of the oscillatory vari-
ables) allows to employ analysis techniques from the field of non-linear dy-
namics to yield insight into the thermoacoustic dynamics from a theoretical
perspective. Furthermore, the amplitude-phase description gives rise to de-
rive respective solution expressions, which form the mathematical basis for
the development of output-only system identification techniques in Chap. 10.
The content of the present chapter is given by the following objectives:

• Derivation of a system of SDE that governs the amplitude-phase dynam-
ics of non-degenerate transversal modes (Sec. 9.1)

• Execution of a fixed point analysis for comparison against experimen-
tal/numerical findings of the previous chapter and respective interpreta-
tion (Sec. 9.2).
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9.1 Derivation of Stochastic Differential Equations

This section presents the derivation steps of the SDE, which govern the am-
plitude phase dynamics of transversal modes in the benchmark combustor.
For this, the starting point is given by a wave equation form of the Linearized
Euler Equations (cf. [31] for explicit derivation steps), i.e.

∂2p ′

∂t 2
− ρ̄c̄2∇·

(
1

ρ̄
∇p ′

)
+Mp ′ = (γ−1)

∂q̇ ′

∂t
, (9.1)

which is a partial differential equation governing the scalar field of spatio-
temporal acoustic pressure oscillations p ′ = p ′(x, t ) that are thermoacousti-
cally driven by the heat release source term q̇ ′ = q̇ ′(xfl, t ). The spatial variable
is a vector x, which describes in this chapter cylindrical x = [x,r,θ]T coor-
dinates while the subscript fl denotes that the function is only non-zero in
the flame region and zero elsewhere. The reasons for using a wave equation
formulation instead of LEE form is as follows. The wave equation is only
one scalar differential equations, whereas the LEE consists of four coupled
equations. The analytical techniques for the forthcoming derivations can only
be employed to the scalar equations. In Eqn. 9.1, Mp ′ contains all coupling
terms between mean and oscillatory flow quantities (cf. explicit formulations
in [31]).

In order to include linear, non-linear and stochastic flame dynamics, the
heat release source term is described by a power series as well as an additive
noise term as in [90, 112]. As in these references, the heat release source term
in Eqn. 9.1 formulated as

q̇ ′ =
M ,K∑
m=0
k=0

amk p ′m ṗ ′k +ΓΞ, (9.2)

where amk(xfl) are spatially variable (across the flame volume xfl) series coeffi-
cient. The first expansion term for m = k = 0 is time-independent, and can be
interpreted as the time-average of the heat release oscillations implying that
a00 = 0. The time derivative pressure terms ṗ ′k act on the phase/frequency of
the acoustic modes [112] that are driven by the source term in Eqn. 9.2. These

172



9.1 Derivation of Stochastic Differential Equations

terms are not further considered in the forthcoming derivation of the SDE as
reasoned in [112], and an explicit consideration is left for future work. The
number of corresponding series expansions is set to zero, i.e. K = 0. Expand-
ing the series to the fourth order yields

q̇ ′ = b1p ′+b2p ′2 +b3p ′3 +b4p ′4 +ΓΞ, (9.3)

where the first order coefficient b1(xfl) describes the distributed linear
thermoacoustic coupling, while the coefficients b2(xfl) − b4(xfl) are allo-
cated to describe non-linear saturation effects. Additive stochastic forcing
is modeled – as for the MIMO-ROM simulations in Chap. 8 – by ΓΞ(xfl, t ),
which denotes distributed, spatially uncorrelated white noise signals that are
emitted by the turbulent flame. Coefficients, acoustic pressure variables, and
the stochastic forcing term in Eqn. 9.3 are most generally formulated via a
spatial dependency across the flame volume, i.e. capable of accounting for
the non-compact flame dynamics as required in this thesis.

The procedure to derive the SDE is presented in the following subsec-
tions. This first step is to transform the wave equation in Eqn. 9.1 into a
second order coupled oscillator system using spatial averaging methods.
From this second order system, the SDE is deduced by employing temporal
averaging procedures.

9.1.1 Complex Coupled Stochastic Oscillator

The derivation of the coupled oscillator starts by rewriting the acoustic pres-
sure oscillations by the superposition of the combustor’s natural modes, i.e.

p ′ =
∞∑

n=0

1

2

(
p ′

n,a +p ′∗
n,a

)
, (9.4)

where p ′
n,a denotes the spatial-temporal pressure oscillations of the eigen-

mode n, while p ′∗
n is the complex conjugate counterpart. The addition of the

complex conjugate of the mode ensures that the pressure signal is real valued,
where the factor 1

2 is required to conserve the amplitude of the oscillations,
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i.e. p ′ = Real(p ′
n,a). The (natural) eigenmodes are described by the Helmholtz

equation, i.e.

ω2
n,a p ′

n,a =−ρ̄c̄2∇·
(

1

ρ̄
∇p ′

n,a

)
, (9.5)

ω2
n,a p ′∗

n,a =−ρ̄c̄2∇·
(

1

ρ̄
∇p ′∗

n,a

)
, (9.6)

where ωn,a is the (real) oscillation frequency of the mode n.

Only the impact of acoustic damping due to mean flow effects is of in-
terest, which allows to expand respective interaction terms in Eqn. 9.1 by an
absorption model, i.e.

Mp ′ =
∞∑

n=0
2αn,a

(
∂p ′

n,a

∂t
+ ∂p ′∗

n,a

∂t

)
, (9.7)

where αn,a is the pure acoustic damping rate for the particular mode. More-
over, the absorption description of Eqn. 9.7 precludes any occurrence of vor-
tical disturbances in the acoustic velocity as are present for general LEE so-
lutions. The acoustic velocity can then be deduced using the acoustic pres-
sure formulation in Eqn. 9.4 along with the momentum equation (assuming
zero mean flow ū = 0) given by Eqn. 2.11. Now, the wave equation is trans-
formed from a partial differential equation into an ordinary differential equa-
tion, which occurs by substituting Eqns. 9.3- 9.7 into Eqn. 9.1 to give

∞∑
n=0

p̈ ′
n,a + p̈ ′∗

n,a +2αn,a(ṗ ′
n,a + ṗ ′∗

n,a)+ω2
n,a(p ′

n,a +p ′∗
n,a)

=
∞∑

n=0
q̇ ′(p ′

n,a, p ′∗
n,a, ṗ ′

n,a, ṗ ′∗
n,a), (9.8)

where the second and first time derivatives are respectively denoted by ( ¨ )
and (˙) for simplicity.

The focus of this work concerns the thermoacoustic oscillations governed by
the (non-degenerate) T1 modes in cylindrical combustion chambers. Hence,
the pressure field is formulated using the two-fold Fourier series analogous as
for the decomposition methodology for the identification of mode dynamics
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in Sec. 8.1. Consequently, the number of expansion terms in Eqn. 9.4 amounts
to two, i.e. n = 1,2, which give for the individual pressure terms:

p1 = p ′
F = ηF (t )ΨF (x) (9.9)

p∗
1 = p∗

F = η∗F (t )Ψ∗
F (x) (9.10)

p2 = p ′
G = ηG(t )ΨG(x) (9.11)

p∗
2 = p∗

G = η∗G(t )Ψ∗
G(x) (9.12)

In these equations, ηF (t ) and ηG(t ) represent complex, time-dependent
Fourier coefficients of the counter-clockwise (CCW) and clockwise (CW) ro-
tating mode. The mode shape functions can be obtained solving a Helmholtz
equation, which are however, not explicitly needed for the forthcoming
derivations. Rather, the derivations are based on the orthonormality of the
mode shape functions, which implies the following condition

∫
V
ΨnΨ

∗
mdV =

{
1 → n = m,

0 → n 6= m,
(9.13)

where V is the combustor volume. In case one considers LEE modes for the
shape functions it needs to be considered that these are not orthogonal due
to the captured mean flow effects. However, these effects are weak so that the
loss of orthogonality is weak and thus negligible, too. The complex eigenfre-
quencies associated with ηF (t ) → (ωF − iνF ) and ηG(t ) → (ωG − iνG) are not
restricted to be equal, which fully accounts for loss of degeneracy associated
with the CCW and CW modes in the concerned benchmark combustor (cf.
App. B). Specifically, the difference between the angular oscillation frequen-
cies is small, which gives the condition:

∆ω=ωF −ωG

→ωn,a = (ωF +ωG)/2 (9.14)

→ωn,a À∆ω

Moreover, the loss of degeneracy induces a deviation of the modes’ damping
rates, i.e.

νF 6= νG , (9.15)
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which difference is not restricted to be small as for the oscillation frequen-
cies. Modeling the present modal dynamics of two non-degenerate counter-
rotating modes cannot be captured by the state-of-the art approaches based
on two standing modes as e.g. in [108, 113], and requires the approach intro-
duced in this chapter. The desired oscillator system is derived by substitut-
ing Eqns. 9.9-9.12 into Eqn. 9.8 and a subsequent Galerkin projection. Specif-
ically, this Galerkin projection is comprised of multiplying the equation with
Ψ∗

F (x) = ΨG(x) and Ψ∗
G(x) = ΨF (x), followed by a volume integration, i.e.

∫
V

(Eqn. 9.8)·ΨF /ΨGdV . This gives

η̈F + η̈∗G +2αF η̇F +2αG η̇
∗
G +ω2

FηF +ω2
Gη

∗
G = q̇1, (9.16)

η̈∗F + η̈G +2αF η̇
∗
F +2αG η̇G +ω2

Fη
∗
F +ω2

GηG = q̇2, (9.17)

where the right-hand-side of the flame dynamics function unfolds to

q̇1 = 2βF (η̇F + η̇∗G)−3κ(ηF +η∗G)2(η̇∗F + η̇G)−6κ(ηF +η∗G)(η∗F +ηG)(η̇F + η̇∗G)+Γξ,
(9.18)

q̇2 = 2βG(η̇∗F + η̇G)−3κ(η∗F +ηG)2(η̇F + η̇∗G)−6κ(η∗F +ηG)(ηF +η∗G)(η̇∗F + η̇G)+Γξ.
(9.19)

Interestingly, the even coefficients of the generalized flame function in Eqn.
9.3 cancel out during the spatial averaging operations, and thus can be re-
vealed as non-contributing to the flame’s saturation dynamics. The space de-
pendency of the series coefficients emerges as constant during the Galerkin
projections. The first and third coefficient result in the linear driving rate and
the non-linear saturation constant, i.e. b1(x) → 2βF /G and b3(x) →−κ, respec-
tively. Notice that the cancellation of the even terms in the transfer function
reproduces the presumed cubic saturation assumption made in Sec. 8.1 for
the MIMO-ROM numerical simulations. Similarly, the noise term in Eqn. 9.3 is
assumed to loose its space dependency during the Galerkin projection to con-
verge into a delta-correlated white noise source Ξ(x, t ) → ξ(t ) given by [112]

〈ξ(t )ξ(t +τ)〉 = lim
T→∞

1

T

∫ T

0
ξ(t )ξ(t +τ)d t = Γξ

2
δ(τ), (9.20)

where
Γξ
2 denotes the intensity and τ represents the characteristic time scale

of the noise process.
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9.1.2 Deterministic Amplitude-Phase Equations

The desired SDE is obtained by transforming the second order oscillator sys-
tem in Eqns. 9.16-9.17 into a first order system of differential equations. The
respective operations are based on integral averaging methods as for the
Galerkin projections above, which are of temporal instead of spatial nature.
Specifically, a complex time averaging method as presented in [33, 99], which
resembles an extension to the Krylov-Bogoliubov approach [85], is employed.
This method crucially relies on a weak non-linearity assumption [51], which
implies that the qualitative acoustic oscillations are given by the normal so-
lution – i.e. q̇1 = q̇2 = 0, αF = αG = 0, ∆ω = 0 – of Eqns. 9.16 - 9.17. Hence, the
shape of the temporal Fourier coefficients is given by

ηF (t ) = F (t )exp(iωt )exp(iφF (t )), (9.21)

η∗F (t ) = F (t )exp(−iωt )exp(−iφF (t )), (9.22)

ηG(t ) =G(t )exp(iωt )exp(iφG(t )), (9.23)

η∗G(t ) =G(t )exp(−iωt )exp(−iφG(t )), (9.24)

where the integration constants – i.e. amplitudes (F,G) and phases (φF ,φG) of
the respective mode – are presumed as time dependent with the constraint
that the characteristic time scales vary much slower than the oscillatory time
scale. Hence, these amplitude and phases are labeled slowly varying in time
and can be assumed constant over one acoustic period. Substitution of Eqns.
9.21 - 9.24 into Eqns. 9.16 - 9.17, employing the complex averaging procedure
over one period of oscillation T = 2π/ω, while considering the condition given
by Eqn. 9.14 produces the following first order system for the slowly varying
amplitudes and phase dynamics:

Ḟ = νF F −3κ

(
1

2
F 3 +FG2

)
+nF , (9.25)

Ġ = νGG −3κ

(
1

2
G3 +GF 2

)
+nG , (9.26)

Φ̇= 2∆ω+nΦ. (9.27)

In the last equation,Φ=φF−φG , and nF , nG , nΦ contain the white noise source
terms, the treatment of which in terms of temporal averaging is shown in the
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next subsection. The quantities νF = βF −αF and νG = βG −αG denote the
net growth rate between flame driving and acoustic damping of the respec-
tive mode, which are not restricted to be equal as in Eqn. 9.15. This inequality
successfully represents the non-degenerate situation of transversal modes in
swirling mean flow environments as found in the benchmark combustor of
this thesis.

9.1.3 Stochastic Amplitude-Phase Equations

The stochastic averaging of the noise terms in Eqns. 9.25-9.27 are performed
as outlined in [107, 128, 128, 156] which centrally rely on the whiteness as-
sumption given in Eqn. 9.20. Finally, the system of SDE derives to

Ḟ = νF F −3κ

(
1

2
F 3 +FG2

)
+ Γξ

4ω2
n,aF

+χF , (9.28)

Ġ = νGG −3κ

(
1

2
G3 +GF 2

)
+ Γξ

4ω2
n,aG

+χG , (9.29)

Φ̇= 2∆ω+
(

1

F
+ 1

G

)
χΦ, (9.30)

where χF ,χG ,χΦ are delta-correlated white noises of intensity Γξ/(2ω2
n,a).

Equations 9.28-9.30 govern the joint process of stochastic and deterministic
dynamics related to the amplitudes and phases of the second order oscillator
equations in Eqns. 9.16 - 9.17. The following sections focus on the theoretical
analysis of the deterministic behavior. The impact of stochastic forcing is only
considered from a phenomenological perspective as per additively perturbing
the deterministic results. Furthermore, Eqns. 9.28-9.30 represent the mathe-
matical basis for the growth rate extraction methods developed in Chap. 10
below.

9.2 Fixed Point Analysis

The term fixed point (FP) analysis refers to a classical approach from the field
of non-linear systems that allows to analytically identify the long-term be-
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haviour of a dynamical system (cf. fundamentals in [160]). Such a FP analysis
is applied to the SDE system in order to gain analytical insight into the thermo-
acoustic dynamics associated with the counter-rotating T1 modes. Specifi-
cally, the analysis is composed of three steps. First, the identification of the
FPs, i.e. the long-time solution of the dynamical system, is conducted. Sec-
ond, the physical feasibility of each FP is evaluated by inspecting the linear
stability of the solution at the respective FP. Third, the analytical results of the
previous two steps are graphically illustrated for further interpretations.

9.2.1 Determination of Fixed Points

In order to compute the FP of the SDE given by Eqns. 9.28-9.29, the derivatives
are set to zero (Ḟ = Ġ = 0). Stochastic forcing is neglected, i.e. Γξ = 0, which im-
plies that only the deterministic parts of the SDE is considered. Per conven-
tion, the term deterministic refers to the terms that originate from thermo-
acoustic interactions. The noise intensity term in Eqns. 9.28-9.29, i.e. –

Γξ

4ω2
n,aF

and
Γξ

4ω2
n,aG

– originate from stochastic noise effects, and are thus are not con-

sidered as deterministic in this thesis. The additive noise assumption simply
leads to a stochastic perturbation of the FP solution. Physically feasible FP so-
lutions are:

FP #1:F̄ =
√

2νF /3κ,Ḡ = 0 → CCW-rot. mode (9.31)

FP #2:F̄ = 0,Ḡ =
√

2νG/3κ→ CW-rot. mode (9.32)

FP #3:F̄ =
√

(4νG −2νF )/(9κ), (9.33)

Ḡ =
√

(4νF −2νG)/(9κ) → Mixed Mode (9.34)

FP #4:F̄ = 0,Ḡ = 0 → Zero amplitude mode (9.35)

In the case of equal growth rates (νF = νG), Eqns. 10.5-9.35 reproduce the
results of a similar analysis based on a standing mode approach carried out
in [108] for azimuthal systems, where FP #3 converges to a standing mode so-
lution.
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9.2.2 Stability of Fixed Points

In order to assess the physical realizability of each solution, the linear stabil-
ity of each FP is determined. Therefore, the deterministic part of 9.28-9.29 is
linearized around each FP by respectively substituting:

F (t ) = F̄ +F ′(t ) → F ′ ¿ F̄ (9.36)

G(t ) = Ḡ +G ′(t ) →G ′ ¿ Ḡ (9.37)

The resulting linear system reads

[
Ḟ ′

Ġ ′

]
= J

[
F ′

G ′

]
(9.38)

where the so called Jacobian matrix J is given by

J =
[
νF −3κ(Ḡ2 +3/2F̄ 2) −3κF̄ Ḡ

−3κF̄ Ḡ νG −3κ(F̄ 2 +3/2Ḡ2)

]
,

which yields the following eigenvalue pairs:

FP #1:λ1 =−2νF ,λ2 = νG −2νF (9.39)

FP #2:λ1 =−2νG ,λ2 = νF −2νG (9.40)

FP #3:λ1/λ1 → Eqns. E .1/E .2 in App. E (9.41)

FP #4:λ1 = νG ,λ2 = νF (9.42)

These eigenvalue pairs indicate the stability of each FP. Physically, this stabil-
ity informs about the dynamical behavior of the system – which is presumed
to be steadily at rest at the fixed point of concern – upon a small perturbation.
Beware that the term "stability" of the fixed points of the non-linear system
in this chapter is unrelated to linear stability of thermoacoustic modes con-
cerned in Chap. 6. Specifically, possible scenarios are revealed by writing the
general solution of the amplitude perturbations of Eqns. 9.36-9.37, i.e.

F ′ ≈ exp(λ1t )+exp(λ2t ), (9.43)

G ′ ≈ exp(λ1t )+exp(λ2t ). (9.44)
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These equations indicate that an amplitude perturbation exponentially re-
turns to and departs from the underlying FP, if both eigenvalues are nega-
tive and at least one eigenvalue is positive, respectively. Consequently, the for-
mer scenario labels the FP as stable (attractor), while the latter case is called
unstable. Unstable FPs are further distinguished between repellers and sad-
dle points, which are characterized by both and only one eigenvalue being
positive, respectively. Notice that there are more types of FP [160], which are
however not relevant for the thermoacoustic systems considered in this thesis.
Generally, stable FPs represent solutions that are physically possible to repre-
sent real combustor dynamics, whereas unstable FPs are rather unattainable.
For the concerned system in this chapter, the physical realizabilites of the FPs
unfold as:

• FP#1 → stable for: νF > 0 & νG < 2νF (attractor)

• FP#2 → stable for: νG > 0 & νF < 2νG (attractor)

• FP#3 → unstable for: νF > 0 & νG > 0 (saddle)

• FP#4 → unstable for: νF > 0 & νG > 0 (repeller)

For gas turbine combustors subjected in this work, the growth rates are within
the range to render FP#1 and FP#2 stable attractors. An explicit consideration
of unconstrained growth rate relations is left open for future work. Solutions
of FP#4 (zero amplitude) and FP#3 (mixed mode) are physically impossible to
exist, where the theoretically possible existence of the latter is ruled out due to
the additive noise presence. Hence, the CCW and CW rotating modes remain
the only two physically feasible solutions, which agrees with the findings of
Chap. 8 as well as [17, 104]. For νF > νG , the limit-cycle is governed by a CCW
rotating mode. This theoretical finding of of the rotation direction of the limit
cycle mode agrees with the numerical outcomes in Chap. 8. Interestingly,
the case of a thermoacoustically stable T1 mode, i.e. νF < 0 & νG < 0, is
governed by the foregoing FP analysis, too. Then, the zero amplitude FP#4
becomes the stable attractor while the limit cycle solutions of FP#1/FP#2
change into unstable repellers. The foregoing results hold only true if the
concerned combustors exhibits a rotationally symmetric mean flame shape
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and geometry as well as no externally mounted devises (e.g. dampers) that
induce asymmetries into the system.

9.2.3 Graphical Illustration

In order to deepen the insight regarding which of the two stable FP prevail in
the concerned thermoacoustic system, a phase portrait of the deterministic
part of the SDE in Eqns. 9.28-9.29 is computed (cf. Fig. 9.1). This phase portrait
represents the solution trajectories from several initial condition pairs to the
associated (normalized with F̄ ) steady state. Representative values for νF =
22rad/s,νG = 18rad/s were selected.
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Figure 9.1: Phase portrait of deterministic system with basins of attraction
(FP#1 = blue, FP#2 = green)

The phase portrait confirms the nature of the FPs as discussed in the previous
subsection by effectively revealing the basins (blue for F, green for G) of the
two rotating mode solutions. The location of the initial condition, that is
whether it lies within the F or G basin, determines which rotation direction
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prevails. Assuming that the onset of an instability in real systems elapses
from a linearly stable (regarding the thermoacoustic mode of concern) state
(i.e. F (t = 0) = G(t = 0) ≈ 0, cf. Fig. 9.1), the limit cycle dynamics will be
governed by the rotating mode associated with the larger growth rate, which
is in the present case the T1F mode in CCW direction. For swirling mean flow
environments, this mode – as is shown in Chap. 8 – always coincides with the
swirl direction. Hence, the results of the FP analysis in this and the previous
subsection theoretically confirm findings based on numerical MIMO-ROM
simulations of Chap. 8. This finding is consolidated experimentally in [17],
where the limit cycles of several operation points are revealed to be consti-
tuted by a rotating T1 modes in the same direction as the mean flow swirl.

Considering the impact of noise, the random perturbations could cause
a jump (if the noise strength is sufficiently strong and/or the growth rate gap
is sufficiently small) from one basin into the other. Such an event would imply
a sudden change of rotation dynamics that is especially prone to occur in the
initial phase of the limit cycle development. The corresponding solution then
converges to the opposite solution as deterministically expected, although
the occurrence has not yet been observed in any operation point of the
swirl-stabilized experimental benchmark system [17]. The special case for
equal growth rates exhibits equally sized basins of attraction for the CCW and
CW rotating mode solution so that the likelihood of occurrence of each of
the latter in a noise containing system is equal (cf. [143] for similar findings),
respectively.

Note that the phase is not concerned in previous FP investigation as it is
decoupled from the amplitude dynamics in Eqns. 9.28 - 9.30. The phase is
only needed to reconstruct the non-degeneracy of the oscillatory dynamics
by integrating Eqn. 9.30, i.e.

Φ= 2∆w t +Φr e f ,

→φF =∆w t +φF,r e f , (9.45)

→φG =−∆w t +φG ,r e f ,

and respective substitutions into Eqns. 9.21-9.24 as well as Eqn. 9.4. The ref-
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erence phase is typically set to zero Φr e f = φF,r e f = φG ,r e f = 0. The impact of
noise perturbs the phase solution in Eqn. 9.45 – analogously to the amplitude
solutions – in a Gaussian manner. Notice that the phases are irrelevant to the
FP solutions of the amplitude, and are not required to determine the direction
of rotation as it is for the standing mode method in [108].

9.3 Summary and Findings – Theoretical Analysis of Combus-
tor Dynamics

In the current chapter, HF limit cycle oscillations constituted by non-
degenerate transversal modes in thermoacoustically non-compact swirl-
stabilized combustors are theoretically analyzed. For this analysis, a non-
linear system of Stochastic Differential Equations (SDE) that govern the
amplitude-phase dynamics of the oscillations was derived. The derivation of
this SDE started with the inhomogeneous wave equation and utilized complex
spatial and temporal averaging operations similar to Galerkin projections in
conjunction with the Krylov-Bogoliubov method. The spatio-temporal pres-
sure oscillation were described by a superposition of two counter-rotating
T1 modes. Oscillation frequencies and growth rates of these modes were set
to deviate, which reflects – and hence incorporates – the physical features
of non-degeneracy within the SDE. The deterministic-stochastic flame dy-
namics were mathematically described by a pressure dependent Taylor series
formulation and additive white noise sources.

A fixed point analysis of the deterministic part of the SDE revealed the
rotating mode limit cycle behavior as the only stable FP solution, where
the rotation direction is linked to the mode with a larger growth rate. This
finding agrees with the numerical and experimental observations of the
swirl-stabilized benchmark combustor, and provides a respective theoretical
explanation from a dynamical system perspective. Specifically, the core
findings of the fixed point analysis are given by:

• Predictability of limit cycle modal rotation direction in swirl stabilized
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systems is possible by solely inspecting the linear growth rates.

• Applicability of cubic saturation description for non-linear flame dynam-
ics within the considered benchmark combustor was revealed due to
agreement between modeled and observed fixed point behaviors.

Furthermore, the system of SDE represents the mathematical basis for the
development of system identification methodologies applicable to HF oscil-
lations in the next chapter.

Future work associated with this chapter was identified as to extent the
SDE derivations to account for modes with largely space frequencies, e.g. T1
and T2 modes. In alignment with the future work task identified for the ROM
analyses in the previous chapter, the impact of multiplicative noise as well
as consideration of more advanced series expansions to describe non-linear
flame dynamics to increase the generality of the method pose topics for future
investigations.
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10 Growth Rate Identification from
Time-Domain Data

This chapter presents the development and verification of an output-only sys-
tem identification methodology that is applicable to non-compact thermo-
acoustic systems governed by transversal mode pairs. The concept of output-
only system identification is fundamentally treated in [46, 47, 64, 86], and was
recently introduced for low-frequency, compact thermoacoustic systems in
[22, 23, 107, 112]. These references serve as starting point of the work pre-
sented in this chapter. Note that the term system identification is widely used
in many different engineering disciplines, and generally refers to the task of
obtaining a mathematical model from a certain set of observations/data (e.g.
determination of flame transfer functions from LES numerical data [122]). The
main goal of the output-only system identification methodologies in this the-
sis/foregoing mentioned references is to extract linear thermoacoustic growth
rates νn,a of the mode of interest from time domain data. Knowledge of the
growth rate is of high technical relevance as it assumes a crucial role e.g. within
the following tasks:

1. Quantitative characterization of the stability of acoustics modes and the
sensitivity to different operation parameter [109].

2. Design of damping devices [111].

3. Validation of computational prediction tools including flame driving and
acoustic damping models [21].

The term "output-only" implies that the time domain data is retrieved from
an autonomously operating system, where the system is naturally excited
by turbulent combustion noise. The consideration of any external excitation

187



Growth Rate Identification from Time-Domain Data

device such as a siren is not required. Hence, the methods are in principle
applicable to dynamic pressure measurements retrieved from industrial gas
turbine combustors that are in operation.

This chapter is structured based on the following research objectives:

• Execution of verification test cases using numerically generated refer-
ence data to test the methodologies (Sec. 10.3).

• Demonstration of the methodologies’ principal applicability to mea-
sured data by carrying out respective experimental test cases (Sec. 10.3).

Moreover, the methodologies are required to be applicable to linearly sta-
ble and unstable thermoacoustic oscillations that are governed by transversal
modes in gas turbine chambers. Verification and experimental test case con-
figuration is given by the swirl-stabilized benchmark system, where numerical
and experimental acoustic pressure time traces are readily available from the
previous chapters.

10.1 Purpose and Conceptual Approach

The main purpose of output-only system identification in the field of ther-
moacoustics is to extract linear growth rates from time domain data. Acoustic
pressure time series are utilized, which are the most commonly available form
of measurements from experimental and industrial combustors. The concep-
tual approach of the identification is depicted in Fig. 10.1.

Â

Growth Rate

νF

Fitting Procedure
Solution

ExpressionMathematical Model - SDETime Series
Measurements

p ′(t ) → F (t )&G(t )

Figure 10.1: Conceptual approach of output-only system identification
methodologies

188



10.2 Theoretical Basis

First, a suitable model that describes the thermoacoustic system dynamics
of the respective acoustic pressure time series via stochastic differential equa-
tions (SDE) needs to be established. For transversal modes, this model is given
by the system of SDE derived in the previous chapter. These SDE govern the
modal amplitude dynamics of the pressure oscillations. The non-degenerate
nature of transversal mode pairs due to swirling mean flow effects (cf. App.
B) are accounted for, which implies that unequal growth rates νF and νG are
the target quantities of the identification efforts. In order to establish equiv-
alence between model and data, the amplitude traces of oscillatory pressure
signals need to be obtained by employing the decomposition techniques de-
scribed in Sec. 8.1. Then, respective solution expressions of the SDE, which
include the growth rates as model constants, are derived. Due to the presence
of stochastic elements in the model, these solution expressions are given in
the form of an auto-correlation function of the amplitude dynamics. Finally,
the desired growth rates are extracted by fitting corresponding measurement
data to these expressions. This fitting task represents one main component of
the entire system identification work flow.

10.2 Theoretical Basis

In this section, the theoretical basis of the identification methodology is pre-
sented. Specifically, the approach "Linearized Limit Cycle (LLC)" is employed.
The origin of this methodology can be found in [107], where details on the-
ory and derivation steps for LF systems are provided. The SDE governing the
amplitude dynamics as given by Eqns. 9.28-9.29 presents the starting point for
the LLC method. These equations are recalled for clarity to

Ḟ = νF F −3κ

(
1

2
F 3 +FG2

)
+ Γξ

4ω2
n,aF

+χF , (10.1)

Ġ = νGG −3κ

(
1

2
G3 +GF 2

)
+ Γξ

4ω2
n,aF

+χG . (10.2)

The assumption that stochastic perturbations of the deterministic amplitude
due to combustion noise are small is imposed. Hence, the amplitudes can be

189



Growth Rate Identification from Time-Domain Data

described by a linear expansion, i.e.

F = F̄ +F ′(t ) → F ′ ¿ F̄ (10.3)

G = Ḡ +G ′(t ) →G ′ ¿ Ḡ (10.4)

where F̄ /Ḡ and F ′/G ′ represent mean and perturbation amplitude of the CCW
and CW running mode, respectively. The mean amplitudes are given by a fixed
point analysis of the deterministic part of the SDE. As stated in Sec. 9.2, the
noise intensity term is not viewed as a deterministic part of the SDE. Thus,
the FP used for the forthcoming derivations are unaffected by the noise inten-
sity term. As is shown in Sec. 9.2, rotating modes are the only two physically
feasible, i.e. stable, fixed point (FP) solutions for the concerned benchmark
combustor. Recalling Eqns. 10.5-10.6, these FP solutions unfold to

FP #1: F̄ =
√

2νF /3κ,Ḡ = 0 → CCW-rot. mode, (10.5)

FP #2: F̄ = 0,Ḡ =
√

2νG/3κ→ CW-rot. mode. (10.6)

As found in the previous chapters, for practical swirl-stabilized combustion
systems the direction of rotation (of the T1 modes) follows the direction of
the swirling mean flow. For the benchmark system in this work, CCW rotation
prevails, although the procedure is analogous, if a CW rotating mode consti-
tutes the limit cycle. The SDE are linearized by substitution of Eqns. 10.3-10.4
into Eqns. 10.1-10.2. Additionally substituting Eqn. 10.6 into Eqns. 10.1-10.2
allows to obtain a linear first order equation for the CCW mode’s amplitude
perturbation, i.e.

Ḟ ′ =
(
−2νF +

Γξ

4ω2
n,aF̄ 2

)
F ′+χF , (10.7)

where the presumed low noise intensity leads to Γξ/4ω2
n,aF̄ 2 ¿ 1 → Γξ ≈ 0.

The CW mode’s counterpart equation for G ′ results in a trivial expression due
to the zero mean amplitude of the fixed point. Thus, the growth rate of the
zero amplitude mode is not accessible for the LLC identification approach.
The linearity allows to Fourier transform Eqn. 10.7 and formulate the power
spectral density of the amplitude perturbation [48, 107], i.e.

SF F = SχFχF

ω2 +4ν2
F

, (10.8)

190



10.2 Theoretical Basis

where SχFχF is the power spectral density of the noise process associated χF ,
and ω is the independent variable angular frequency. The Wiener-Khinchin-
theorem relates a time signal’s power spectral density to the auto-correlation
of the signal [48, 95], i.e.

kF F (τ) =
∫ +∞

−∞
SF F exp(iωτ)dω. (10.9)

The integral can be solved analytically using the Residue-theorem [6,65,84,95]
to yield the following auto-correlation function of the amplitude perturbation:

kF F (τ) = exp(−2νFτ) (10.10)

This equation is normalized such that kF F (0) = 1, while τ is the time delay
vector. The relation in Eqn. 10.10 is used to extract the growth rate of an
unstable T1F mode by fitting the right hand side against the auto-correlation
obtained from time traces of the CCW mode’s amplitude perturbation F ′. The
first order nature of the underlying differential equation yields exponential
decay only. Utilizing standard least-square techniques for the fitting tasks
suffices and are used for the test cases further below.

The previous explanations presume linearly unstable scenarios, i.e. νG > 0
and νF > 0, where the underlying modal oscillations are in a limit cycle state.
In order to derive an expression for the identification of stable growth rates,
i.e. νG < 0 and νF < 0, the non-linearity coefficient in the system of SDE is set
to zero κ = 0. This is justified by the small levels of amplitudes in the stable
case, where no non-linear saturation mechanisms are active. Thus, the term
in the equations that models non-linear saturation of heat release oscillations
is eliminated. In this case, the amplitude dynamics is solely governed by
stochastic forcing as expected. The resulting equations read

Ḟ = νF F + Γξ

4ω2
n,aF

+χF , (10.11)

Ġ = νGG + Γξ

4ω2
n,aG

+χG . (10.12)

Due to the elimination of the non-linear terms, the modal amplitudes of the
CCW and CW mode are no longer coupled in Eqns. 10.11-10.12. Conversely to
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the unstable cases, both amplitudes – and thus growth rates – are accessible
for the extraction procedures. The equations are linear due to the absence of
non-linear flame dynamics in the stable case. For this reason, the decomposi-
tion of the amplitudes into the mean and time-dependent part as well as the
noise strength are not restricted to the smallness assumption (cf. Eqns. 10.3-
10.4). Substituting the amplitude decomposition of Eqns. 10.3-10.4 into Eqns.
10.1-10.2 gives

Ḟ ′ = νF F̄ + Γξ

4ω2
n,aF̄

+νF F ′− F ′Γξ
4ω2

n,aF̄ 2
+χF , (10.13)

Ġ ′ = νGḠ + Γξ

4ω2
n,aḠ

+νGG ′− G ′Γξ
4ω2

n,aḠ2
+χG , (10.14)

The first two terms that contain only mean quantities on the right hand side
of each equation represent the steady state expression of the system includ-
ing the impact of the noise strength Γξ. Hence, respective expressions for the
mean amplitude value of the stochastically forced oscillations are given by

F̄s =
(
− Γξ

4ω2
n,aνF

)1/2

, (10.15)

Ḡs =
(
− Γξ

4ω2
n,aνG

)1/2

, (10.16)

which leads by insertion into Eqns. 10.13-10.14 to the following equations that
govern the amplitude perturbations for linearly stable cases:

Ḟ ′
s = 2νF F ′

s +χF (10.17)

Ġ ′
s = 2νGG ′

s +χG (10.18)

Interestingly, these equations are identical to the counterpart equation in Eqn.
10.7 for the unstable cases except the different sign of the growth rate term. A
generalization of the stable and unstable regime can be carried out by identify-
ing the absolute value of the growth rate |νn,a|. This result aligns with the out-
comes in [88, 107] for single oscillator models. Proceeding as outlined above,
Eqns. 10.17-10.18 are transformed into the auto-correlation function

kF F = exp(2νFτ), (10.19)

kGG = exp(2νGτ), (10.20)
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based on which the fits to extract the desired growth rates from measured data
are performed. The auto-correlation of amplitude dynamics from linearly sta-
ble cases are exponentially decaying. Thus, according to Eqns. 10.19-10.20, the
identified growth rates are – as expected – smaller than zero νF < 0 and νG < 0.

10.3 Verification and Validation Test Cases

The two operation points (1x stable and 1x unstable) already used for the ROM
dynamical system analysis in Chap. 8 are used for verification and validation
of the LLC identification methodology. The Fourier signals ηF (t ) and ηG(t ) as-
sociated with the CCW and CW mode given in Figs. 8.3 and 8.6 of both, the
ROM and measurement data are re-shown for clarity in Figs. 10.2-10.3.
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Figure 10.2: Stable operation point for LLC growth rate extraction: temporal
oscillations of Fourier coefficients (left column: experimental re-
sults, right column: ROM results)
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Figure 10.3: Unstable operation point for LLC growth rate extraction: tempo-
ral oscillations of Fourier coefficients (left column: experimental
results, right column: ROM results)

Details on measurement techniques and originating references are presented
in Chap. 3. The length of each time series is 5s recorded at a time step of
dt = 1.25×10−5 s. The amplitude traces F (t ) and G(t ) of these signals are then
obtained using the procedure explained in Sec. 8.1. There are ROM and ex-
perimental traces for one stable and one unstable operation point, i.e. in total
four sets of amplitude traces F (t ) and G(t ). The LLC procedure requires the
amplitude perturbation traces, which are obtained through Eqns. 10.3-10.4,
i.e. F ′(t ) = F (t )− F̄ and G ′(t ) = G(t )− Ḡ . Then, the auto-correlation functions
of these perturbation traces are computed and fitted to the expression given
in Eqn. 10.10 and Eqns. 10.19-10.20 to yield the desired growth rates.

Results and performance assessments of the LLC methodology using the
above-presented ROM and experimental amplitude traces as test data are dis-
cussed in the following subsections. The extracted growth rates are compared
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to known reference values. For the ROM cases, these reference growth rates
are automatically given by the eigenvalues of the system matrix of the cor-
responding ROM (cf. ROM methodology and derivation in Chap. 7). For the
experimental cases, there are no reliable reference growth rate values avail-
able at the moment. Thus, a quantitative comparison between growth rate
values originating from the linear stability assessment and the LLC extrac-
tion is omitted for the experimental data. The reason for this omission is due
to the inconsistency found for the linear stability methodology (cf. Sec. 6.2),
which implies that respective results may not be correct. Thus, a comparison
of the LLC results to potentially incorrect reference results is irrelevant and
would be misleading. Nevertheless, the LLC results for the experimental data
are assessed in an order of magnitude sense, i.e. rating whether the extracted
growth rate values are realistic to yield a first indicator of the method’s feasi-
bility for application to measured data. Of course, a quantitative comparison
between extracted and definite reference values is required for complete vali-
dation, which is left as a future work task.

10.3.1 Stable Case

First, the stable operation point is considered. The LLC fit results are pre-
sented in Figs. 10.4 and 10.5 for the ROM and experimental data, respectively.
The blue lines represent the auto-correlation functions of the input data, i.e.
amplitude perturbation traces F ′(t ) and G ′(t ) from the ROM data (Fig. 10.4)
and experimental data (Fig. 10.5). The reconstructed functions, i.e. evaluation
of the functional expression in Eqns. 10.19-10.20 that include the correspond-
ing extracted growth rate value are plotted in green. The dashed and full lines
indicate the respective allocation of the functions to the T1F (CCW spinning)
and T1G (CW spinning) mode constituents. Visually inspecting the fit qual-
ity, i.e. assessing how well the reconstructed auto-correlation functions match
the input counterparts, yields accurate results for the CCW and CW modes for
both, the ROM and experimental case.
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Table 10.1 presents the extracted growth rates for the ROM and experimental
data sets. Specifically, the first two lines provide the growth rates of the T1F

and T1G mode of the ROM data, which are denoted by νF,ROM and νG ,ROM ,
respectively. As noted before, reference values of the extracted growth rates
originating from the system matrices are available for the ROM case, and ac-
curately agree with the extracted values. The extracted growth rates of the ex-
perimental data of both modes are given in the last two lines of the table, and
are denoted by νF,E X P and νG ,E X P . Here, no reference values are available as
explained above, while the order of magnitude can be viewed as realistic.

LLC Extraction Result Reference Value

νF,ROM −11.4rad/s −12.7rad/s
νG ,ROM −18.7rad/s −18.6rad/s
νF,E X P −28.6rad/s n/a
νG ,E X P −33.3rad/s n/a

Table 10.1: Growth rate results of LLC methodology – stable operation point

The performance of the LLC methodology for stable cases yields the following
observation:

• Successful identification of the ROM reference growth rates.

• Non-degeneracy of the transversal mode pair, i.e. CCW and CW mode ex-
hibit larger and smaller (stable) growth rates, is consistently reproduced
from both, the ROM and experimental data traces.

• Same orders of magnitude are found for growth rates retrieved from ex-
perimental data as computed by the linear stability assessment in Chap.
6.

Both, the theory to compute growth rates (Chaps. 4-6) and the identification
procedure (this chapter) present new developments. The closeness of results
(in terms of order of magnitude) establishes confidence to a general correct-
ness of the theory, implementations and employed procedures, although fur-
ther refinement and validations remain as open tasks for future work.
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10.3.2 Unstable Case

The auto-correlation plots of the ROM and experimental data for the unstable
operation point is shown in Fig. 10.6 and Fig. 10.7, respectively. Recall that only
the mode of the counter-rotating T1 mode pair that constitutes the limit cycle
oscillations (in this work the CCW mode T1F ) is accessible for the LLC growth
rate identification methodology. The blue lines in the two figures represent
the auto-correlation of the input data, i.e. the perturbation amplitude trace
F ′(t ), whereas the reconstructed auto-correlation using the extracted growth
rate values are plotted by the green lines. The extracted growth rate values
are provided in Tab. 10.2. As for the stable results, a reference values are only
available for the ROM case as above-discussed.
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Figure 10.6: Auto-correlation fit results LLC methodology with ROM data –
unstable operation point

The LLC applied to the unstable case yields the following observations:

• Underestimation of growth rates from the ROM data, although the fit it-
self appears as accurate.
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Figure 10.7: Auto-correlation fit results LLC methodology with experimental
data – unstable operation point

LLC Extraction Result Reference Value

νF,ROM 11.1rad/s 16.6rad/s
νG ,ROM n/a 8.7rad/s
νF,E X P 14.2rad/s n/a
νG ,E X P n/a n/a

Table 10.2: Growth rate results LLC methodology – unstable operation point

• Accurate fit of the experimental amplitude data to the autocorrelation
function, whereas a statement on correctness of the extracted growth
rates cannot be made due to the unavailability of reference values as dis-
cussed above.

The results of the output-only system identification for the considered unsta-
ble cases are dissatisfactory. The reason for this failure is given by the stochas-
tic perturbation strength of the limit cycle amplitude, which does not meet
the smallness criteria required by the linearization of the SDE (cf. Eqns. 10.3-
10.4). As can be seen in Fig. 8.10, this perturbation is clearly not "small" and
is rather of the same order of magnitude as the mean level. In order to ver-
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ify this explanation, the unstable operation point is re-simulated with a re-
duced noise strength to yield ROM time series that satisfy the linearization as-
sumption. The respective amplitude traces are shown in Fig. 10.8. The identi-
fied growth rate results in νF,ROM = 18.7rad/s, which reproduces the reference
value in Tab. 10.2 quite accurately. For the experimental data, the stochastic
perturbation strength cannot be controlled so that a corresponding identifi-
cation of the growth rate using the LLC is not possible for the given operation
point.
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Figure 10.8: Amplitude time trace of ROM simulations with small noise per-
turbation strength

10.4 Summary and Findings – Growth Rate Identification
from Time-Domain Data

The foregoing chapter concerned the development of an output-only sys-
tem identification methodology to extract thermoacoustic growth rates of
transversal modes from time domain data. Specifically, the methodology is
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comprised of linearizing the SDE – which were derived in the previous chap-
ter – around the steady-state amplitudes. This imposed the constraint that the
perturbation of limit cycle amplitude by stochastic noise is small for unsta-
ble cases. From this linearized SDE, a solution expression was derived against
which measurement data were fitted to yield the desired growth rates. The
methodology is applicable to both, linearly stable and unstable operation
points. The methodology was tested by applications to synthetic time series
generated by ROM simulations (for which target growth rates were known)
and experimental data. The main results are as follows:

• Accurate identification of growth rates from stable operation point. Thus,
the methodology was found suitable for application to stable operation
points.

• The noise strength emerged as sensitive to the identification of growth
rates from unstable operation points, i.e. it fails if the noise perturbation
of the amplitude is too strong. Consequently, employing the method to
unstable operation points requires awareness of the underlying assump-
tions.

For future work, the execution of test campaigns using different sets of ROM
and experimental data with varying levels of growth rates and noise strengths
should be considered with the goal to acquire more understanding of practi-
cal employment aspects of the LLC methodology in HF systems. In addition
to varying the growth rate and noise strength values, the impact of sample
size, step sizes and bandpass filter width of the acoustic pressure time series
used to carry out the identification should be assessed, too. During the work
for this thesis, these parameter emerged to have an impact on the extracted
growth rate values, which is also known from LF activities in [107]. Besides the
LLC methodology, there are further approaches from the field of LF oscilla-
tions, which allow an identification of unstable growth rates without any con-
straint to stochastic perturbation strength [23,64]. The idea of this approach is
to numerically solve an adjoint Fokker-Planck equation that governs the am-
plitude dynamics and match the results to experimental data using an opti-
mization routine. This allows to identify the growth rate rather independently
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of the noise intensity, sample sizes, filter width and time steps. A transferal
from the 1D (longitudinal modes) [23] to 2D (transversal modes) oscillation
was already carried out through the course of a semester thesis written by a
Master’s student [77], which was initiated and overseen by the author of this
thesis. The explicit presentation of the material along with results is omitted
here as to maintain a reasonable length of this thesis document. In the student
thesis, the Fokker Planck approach for the 2D situation was numerically im-
plemented and verifications test campaigns using synthetic ROM time traces
as input data were conducted. First applications of the routine to experimen-
tal data from the swirl-stabilized combustor were executed, too. As findings
for both – i.e. the ROM and experimental data – the capabilities for identify-
ing the growth rate of two linearly unstable and non-degenerate transversal
mode even for increased noise strengths was demonstrated. The computa-
tional effort of the numerical optimization routine was quite extensive. Thus,
future work tasks are to improve the numerical routines for speed and ef-
ficiency (e.g. implementing the approach into a FEM environment such as
COMSOL [2] that readily provides robust solver infrastructure. Furthermore,
the adjoint Fokker Planck approach should the used to identify the growth
rates of the unstable operation points of the linear stability assessment in
Chap. 6, which are not accessible by the LLC due to a strong noise impact
on the amplitude. These results can then be utilized for further physical in-
terpretation of instability promoting features as well as for cross validation of
underlying flame/damping models and system identification methodology it-
self.

202



11 Summary and Future Work

This thesis deals with high-frequency (HF) thermoacoustic oscillations in lean
and premixed gas turbine combustors. Specifically, a model version of a can
type combustor with one swirl-stabilized flame sitting downstream of an area
jump in a tube geometry was used as the research benchmark. For such types
of system, high-frequency thermoacoustics is characterized by:

• Non-compactness of thermoacoustic interactions, which is character-
ized by a Helmholtz number that reflects the same order of magnitude
between the flame and a quarter of a wavelength.

• Frequencies larger than the cut-on frequency associated with transver-
sal or radial modes of the combustor, which leads to multi-dimensional
acoustic modes that constitute the oscillations.

• Dominance of flame driving due to local effects at the heat release zone.

Moreover, for the considered type of swirl-stabilized combustion systems,
convective modulation mechanisms can be presumed as rather insignificant
in the HF regime due to the zero value of the concerned T1 mode in the mixing
tube section of the benchmark system as well as the low-pass characteristics of
the encountered flames. The research tasks were of theoretical nature with the
explicit focus on modeling and analysis of high-frequency and non-compact
thermoacoustic oscillations in gas turbine combustors. Extensive experimen-
tal data were used for validation of the theoretical tasks, although the execu-
tion of experiments itself were not part of this work. Structure and specific
content of the research tasks were generated based on three main research
objectives:

• Development of a comprehensive framework for modeling, analysis and
numerical computations of HF thermoacoustic phenomena.
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• Validation of the framework and generation of theoretical understanding
of HF thermoacoustic oscillations.

• Technical applicability of findings and methodologies to industrial gas
turbine combustors.

All investigations, model developments, theoretical and numerical analyses
were carried out using an experimental swirl-stabilized combustor as a
benchmark system. This system can be viewed as a experimental version of
a can-type chamber in industrial gas turbines, and exhibits self-sustained
thermoacoustic oscillations at the first transversal mode. All criteria (non-
compact flames, multidimensional modes, insignificance of convective
modulation effects) to label the oscillations as "high-frequency" were satis-
fied. Moreover, extensive experimental baseline data were readily available to
yield optimal conditions for validation of models and results.

Flame modulation comprised the first subject of investigations. Physical
mechanisms that cause non-compact heat release rate oscillations (or flame
driving) were theoretically assessed and mathematically modeled. Non-
compact linear transfer functions for the two dominant driving mechanisms,
i.e. heat release modulations due to local acoustic oscillation of fluid density
and fluid particle displacement, were derived from first principles. More-
over, a 3D methodology in frequency domain to compute driving rates as
a quantification measure for thermoacoustic energy generation of non-
compact flames was established. Then, thermoacoustic driving rates for each
mechanism (displacement and density) of the first transversal (T1) mode
were computed for a set of operation points of the benchmark combustor.
Respective result interpretations yielded the following findings that are valid
for a T1 mode:

• Experimentally observed unstable operation points were associated with
larger driving rates, and vice versa for stable operation points. A correla-
tion between magnitude of driving strength and oscillation amplitude as
well as flame’s power density was detected.
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• Density modulation of the heat release rates for swirl flames was found
to be approximately three times stronger than displacement modulation.

• Density modulation distribution was found to exhibit positive driv-
ing zones throughout the flame volume. The displacement modulation
counterpart reveals both, positive and negative driving zones. From an
integral perspective, density modulation always generates acoustic en-
ergy while displacement – depending whether the positive or negative
zones are larger – either generates or absorbed acoustic energy.

• Specific physical features that promote/inhibit thermoacoustic driving,
and thus, the occurrence of an instability were identified. Higher and
lower swirl of the mean flow increases and decreases the instability
propensity at a given operation point, respectively. In accordance with
the Rayleigh integral, flame shapes that are rather concentrated and lo-
cated towards the centerline lead to less driving than flame shapes that
are widespread and settle near the combustor walls.

Future work tasks regarding these driving assessments were identified as:

• Experimental determination of driving rates for validation against com-
puted counterparts and underlying models.

• Investigation of a potential presence of further driving mechanisms.

• Execution of presented driving analysis using other flame and combus-
tors types, e.g. self-ignition systems, to promote the generality of the de-
veloped methodology and models.

Damping of transversal modes due to acoustically induced vortex-shedding
processes at the mean shear-layer was concerned next. The capabilities of the
Linearized Euler Equations (LEE) to capture these processes were theoretically
discussed. In order to resolve the vortex-shedding process accurately, the sim-
plification based on the Bloch symmetry was implemented to transform the
computational domain from a 3D to a 2D space, which enabled a substantial
increase of mesh resolution capabilities. These LEE assessments yielded the
following findings:
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• Isentropic LEE accurately capture the process of acoustically induced
vortex-shedding, although a fine mesh resolution is required.

• Solutions of LEE modes contain both, acoustic and vorticity distur-
bances.

• The LEE are incapable of capturing the dissipation of vorticity fluctua-
tions. This dissipation is due to turbulent effects, which are not captured
by the LEE. Thus, directly retrieving the acoustic damping rates from LEE
eigensolutions is not straightforward. Using the LNSE instead of the LEE
adds molecular and/or turbulent diffusion terms to the equation through
which dissipation of vortical disturbance only cannot be captured, too.

Then, a modeling methodology to quantify only the damping effects on
transversal acoustic modes was developed, verified and applied for analyses of
the benchmark combustor. The principal idea of the methodology is to model
the acoustic energy loss due to vortex-shedding by a momentum absorption
term. The absorption strength at the frequency of interest is determined by
using reflection coefficients computed via LEE simulations – which describe
pure acoustic damping – as a reference. The main findings associated with the
damping model are summarized to:

• Successful validation of the methodology using the isothermal configu-
ration of the benchmark combustor as test case.

• Damping rates of the first transversal mode in the reactive configuration
for a wide set of operation points were computed.

• Primary dependence of damping strength on the magnitude of the mean
flow velocity at the shear-layer was revealed.

The damping investigations yielded the following suggestion for future work:

• Development of a decomposition methodology to separate LEE modes
into explicit acoustic and vortical disturbance fields.
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• Derivation of a LEE description that allows for direct solutions of acoustic
and vortical modes along with corresponding damping rates.

• Investigation of the assumption that vortical damping for transversal
modes is equal between isothermal and reactive conditions.

• Derivation of a simple model for computing the acoustic damping rate
due to vortex-shedding that is based on mean flow quantities only and is
non-mode specific as the presented reflection coefficient method. This
method should works for any mode type, to be applicable to industrial
combustors that contain multiple – potentially unstable – HF modes.

The combination of the driving and damping considerations led to the linear
assessment of the benchmark system. Essentially, the superposition of com-
puted driving and damping rates yielded the thermoacoustic growth rates.
The sign of the growth rate indicated the linear stability state of the operation
point of concern. Comparing the computed stability states with experimental
observation yielded the following findings:

• Same order of magnitudes of computed growth rates were found as oc-
curring in experiments, which indicate that no fundamental flaws exist
in the methodology.

• Growth rates of stable operation points emerged as negative, i.e. confirm-
ing the experimental observations.

• Growth rates of unstable operation points computed as negative, too,
which did not reflect the experimental observations.

The improvement of the system identification methodology regarding the
inconsistency of the unstable operation points was assigned to research tasks
for the future.

The development of a Reduced Order Modeling (ROM) methodology
comprised the central component of the non-linear part of the modeling
framework. This methodology produces Reduced Order Models of large-scale

207



Summary and Future Work

LEE or Helmholtz Equation (HE) systems in state-space form, which allows for
fast-pace simulations in time domain. Non-compact flame dynamics could
be included by dividing the flame volume into a set of compact sub-regions.
Forming a feedback loop for each sub-region using local transfer functions
models the overall non-compact thermoacoustic system. Linear, non-linear
and stochastic contributions of flame transfer functions can be included. The
primary outcomes of the ROM development are given by:

• Theoretical basis of a Model Order Reduction technique to derive ROM
of large-scale, 3D LEE/HE for analysis of non-compact thermoacoustic
system was established.

• Experimental validation of the ROM’s capabilities to describe acoustic
behavior of a "gas turbine-like" configuration was achieved using an
orifice-tube as test case. The order of the ROM was substantially lower
than the large-scale reference system, which was accompanied with an
increase of computational efficiency as desired.

• Procedural guidelines to derive and verify a ROM including the non-
compact flame modeling feature were generated.

For future work, the capability of including damping devices by means of in-
corporating respective transfer functions within the ROM framework should
be validated. Thereby, the area of applicability of the ROM – e.g. for analysis of
different combustor configurations as well as operational scenarios – would
be expanded.

The ROM methodology was employed for thermoacoustic time-domain
analysis of the swirl-stabilized benchmark combustor. Specifically, the non-
compact thermoacoustic dynamics of the first transversal mode for two
operation points (1x stable and 1x unstable) were numerically reconstructed,
compared against experimental data and respectively interpreted. The
following core findings emerged:

• Accurate reproduction of limit cycle and stable mode dynamics in-
cluding stochastic effects due to turbulent combustion noise. Thus, the
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suitability of the ROM framework for modeling non-compact thermo-
acoustic systems in time-domain was demonstrated.

• Identification of physical features, i.e. limit cycle oscillations of non-
degenerate transversal modes that are constituted by the rotating mode
that exhibits the larger frequency and growth rate. Thus, the modal rota-
tion direction is in the same direction as the swirling mean flow.

• Stable cases are characterized by standing modes that slowly rotate in
direction of the mean flow. The phase speed of this rotation is given
by the frequency difference of the two counter-rotating, non-degenerate
transversal modes, and is thus, much smaller than the speed of sound.
These dynamics are a consequence of the superposition of the two
counter-rotating modes that are individually excited by broadband com-
bustion noise.

The non-linear behavior of the flame leading to saturation of driving and
accompanied limit cycle dynamics was modeled using a cubic saturation
term. Thus, the utilization of more complex model for the non-linear as well
as stochastic dynamics of the flame should be considered to increase the
generality (e.g. for further flame/combustor types) of the model within future
work tasks.

The limit cycle oscillations of two counter-rotating (non-degenerate)
transversal modes were analyzed using theoretical approaches from the
field of non-linear dynamics. A system of non-linear Stochastic Differential
Equation (SDE) that governs the amplitude-phase dynamics of the oscilla-
tions was derived using a Krylov-Bogoliubov approach. The SDE included the
effects of linear flame driving, non-linear saturation and stochastic forcing
due to broadband combustion noise. Executing a fixed point analysis on the
deterministic part of the SDE yielded the following findings:

• The only non-linearly stable – and thus physically feasible – solution
emerged as rotating modes that spin in the same direction as the mean
swirl flow. This finding presents a theoretical confirmation of the numer-
ical results from the ROM analysis chapter.
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• The role of combustion noise is of additive nature only, i.e. induces
stochastic perturbation of the amplitude-phase dynamics. Theoretically,
these perturbation can cause a change of rotation direction of the limit-
cycle mode, which is yet to be observed in experiments.

Future work emerging from the theoretical analysis task are formulated as:

• Derivation of an analogous system of SDE without the simplification of
small space frequencies, i.e. targeting widely spaced modes.

• Inclusion of more complex saturation and stochastic models for the
flame dynamics function.

The system of SDE provided the basis for the development of an output-only
system identification methodology to extract linear growth rates from time
domain data. The basic idea of such a methodology is to formulate a solution
expression of the SDE, which contains the growth rate as an unknown param-
eter. This expression is then fitted against experimental data to yield the de-
sired growth rate. Specifically, the approach called "Linearized Limit Cycle"
was employed. This method linearizes the SDE around the fixed points from
which an auto-correlation expression of the amplitude perturbation as the fit-
ting function is derived. The methodology was tested using synthetic ROM
data (for which underlying growth rates are known) and measurements of a
stable and unstable operation point. This verification test case emerged the
following results:

• Applicability to stable cases was found to work correctly.

• Application to the unstable case failed for the ROM and experimental
data. The reason was found in the noise level, which lead to a pertur-
bation of the amplitude that violates the "smallness" assumption.

• Re-execution of the unstable case using ROM data with considerable less
noise strength yielded successful extractions of the growth rate.

These findings generated the following future work tasks:
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• Execution of verification test campaigns using ROM data with different
level of growth rates and noise strengths. Moreover, the impact of total
sample time and step size along with bandpass filtering width should be
assessed, too.

• Continuance of more advanced identification routines that are not con-
strained by an assumption of low noise intensity. These routines are
based in solving a numerical optimization problem using the adjoint
Fokker Planck equation, and were already implemented and tested in the
course of this thesis work.

• Identification of growth rates of the operation points concerned for the
stability analysis of the benchmark combustor. The extracted growth
rates should then be compared to the (improved) analyses results for
cross validation of underlying models and system identification meth-
ods.

The development of the output-only system identification methodology pre-
sented the last component of the modeling and analysis framework for HF
oscillations, and concluded this thesis.
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A Assessment of Frequency Dependence
of Convective Driving Mechanisms

The impact of convective modulation effects for increasing frequencies is
shown with the help of the generic combustor schematic shown in Fig. 1.1
presented in Chap. 1. For simplicity, planar traveling acoustic waves propa-
gating from the burner inlet to the chamber outlet are concerned. Possible re-
flections at area and temperature jumps are neglected. The acoustic pressure
and velocity of a traveling wave are related through the momentum equation,
which gives

p̂ = ρ̄cû, (A.1)

where ρ̄ and c is the fluid density and speed of sound, respectively. It is
assumed that the wave modulates the equivalence ratio at the injector as
explained in Sec. 1.2. The resulting heat release oscillations are given by
[121, 138]

q̂φ
q̄

= Fφ
φ̂

φ̄
exp(−ω

2σ2

2
), (A.2)

where φ̂, φ̄ and q̄ are mean equivalence ratio, fluctuating equivalence ratio
and mean heat release rate, respectively. The function Fφ relates the conver-
sion of equivalence ratio into heat release fluctuations. It contains informa-
tion regarding the transport of equivalent ratio fluctuation via a time delay
description from the injector to the flame. The quantity σ denotes the stan-
dard deviation of the time delays accounting for a spatial extent of the flame
shape and a corresponding distribution of delay times [121, 138]. The equiv-
alence ratio fluctuations are caused by air velocity oscillations at the injector,
which gives

q̂φ
q̄

= Fu
û

ū
exp(−ω

2σ2

2
), (A.3)
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Assessment of Frequency Dependence of Convective Driving Mechanisms

where Fu is the flame transfer function that describes the conversion of ve-
locity oscillations at the injector into heat release oscillations at the flame. At
the same time, mass flux fluctuation at the flame front, which correspond to
the dominant flame modulation mechanism "flame deformation " of the T1
mode (cf. Chap. 4) induce oscillations of the heat release rate, too. The respec-
tive flame transfer function reads

q̂ρ
q̄

= p̂

γp̄
, (A.4)

where γ is the ratio of specific heats and p̄ is the mean pressure. Substituting
the acoustic pressure into Eqn. A.4 by Eqn. A.1 yields a dependency on the
mean Mach number M a, i.e.

q̂ρ
q̄

= û

ū
M a, (A.5)

which induces the velocity ratio û
ū as independent variable into the expression.

The purpose of this velocity ratio is to establish comparability to the equiva-
lence ratio expression in Eqn. A.3. In order to assess the relative significance
between both modulation types, the transfer functions need to be manipu-
lated to allow an order of magnitude comparison. This is achieved by dividing
both expressions in Eqns. A.3 and A.5 by the velocity ratio û

ū to eliminate the
acoustic dependency. The comparison functions read:

Cφ =
q̂φū

q̄û
= Fu exp(−ω

2σ2

2
) (A.6)

Cρ =
q̂ρū

q̄û
= M a (A.7)

The convective comparison function Cφ presents a low-pass filter [138]
while the deformation function Cρ is frequency independent and constant.
Equations A.6 and A.7 directly show that for increasing frequency, convective
modulation effects become irrelevant, which explains the increasing domi-
nance of local flame driving mechanisms for increasing frequencies.

Now the question is how to decide at which frequency levels convective
modulation becomes insignificant. The answer is given by the low-pass
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element in Eqn. A.6, i.e. exp(−ω2σ2

2 ), and specifically by the standard deviation
of the time delays σ. The quantitative value depends on the convective
transport velocity in the mixing/injector parts upstream of the flame, the
length of these mixing/injector tubes and the flame length scales – all of
which are individual to the concerned combustor configuration. Hence, it
cannot be universally stated that convective effects are insignificant for HF
oscillations. This is demonstrated by comparing the low-pass behaviour of
two different systems, i.e. a swirl-stabilized system with one main burner tube
(resembling the A2EV benchmark used in this thesis) and a generic tubular
chamber with circumferentially arranged injector tubes instead of one main
burner. Simplified schematics of both system along with the key quantities to
compute the σ-values are presented in Fig. A.1.
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Figure A.1: Schematic of swirl-stabilized system (top) and injector tube con-
figuration (bottom) with key quantities for assessment of low-pass
behaviour

The standard deviation of the time delays is approximated by σ = τmax −
τmi n. Theses maximum and minimum time delays are computed by τmax =
lmax/ūmax and τmi n = lmi n/ūmi n, where the lmi n and lmax denote the lengths
of convective traveling paths as indicated in Fig. A.1. The transport velocity
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Assessment of Frequency Dependence of Convective Driving Mechanisms

is assumed as constant, i.e. ūmax = ūmi n. Evaluating the standard deviations
using the velocity and length values shown in the figure gives for the swirl-
stabilized systemσSW = 2.67ms and the injector tube systemσI T = 0.4444ms.
Next, the low-pass behaviour is plotted over the frequency and shown in Fig.
A.2. For the swirl-stabilized system, convective modulation effects can be dis-
regarded for frequencies larger than 250Hz. Transferring these results to the
to the A2EV – where the the T1 frequencies are around 2000Hz − 3000Hz –
indicates that the concerned frequency range is certainly outside of the non-
zero low-pass region. The only driving effects that remain active are due to
local interaction, i.e. deformation and displacement. The low-pass behaviour
of the flame in the injector tube configuration starts at higher frequencies, i.e.
around 1200Hz, than for the swirl-stabilized setup. Hence, convective mecha-
nisms are active for higher frequencies. Thus, answering question whether or
not convective effects are relevant for HF oscillations requires an individual
assessment of the combustor configuration of interest.
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Figure A.2: Low-pass behaviour of the flames in the swirl-stabilized and injec-
tor tube configurations
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B Effects of a Swirling Mean Flow on
Transversal Modes

Chapters 4-6 in the the main document of this dissertation addressed linear
flame driving, vortical damping and linear stability assessments of transversal
oscillations in gas turbine combustors, all contained one central assumption:
The split of eigenfrequencies, i.e. loss of degeneracy [10, 21], associated with
transversal mode pairs in swirling mean flow environments was neglected.
This negligence is justified by the smallness of this split and the implication
that results, interpretations and findings of the respective chapters are not
impacted. However, this non-degeneracy of the transversal mode pairs turned
out as a crucial feature that affects limit cycle oscillations concerned in Chaps.
7-9.

In this appendix, the physical origin of the loss of degeneracy in transversal
systems is investigated, which is found in the linear regime. The results
contribute towards increasing the theoretical understanding of HF thermoa-
coustics as well as consolidates the linear analysis framework’s capability to
capture all relevant physics correctly. Particularly, the specific objectives of
this appendix seek to

• Investigate interactions between transversal modes and swirling mean
flows.

• Demonstrate the non-compact linear analysis framework’s capabilities
for reproduction of real system features.

• Generate theoretical understanding of transversal modes in swirling
mean flows, and
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Effects of a Swirling Mean Flow on Transversal Modes

B.1 Isothermal Test Case

The isothermal nozzle configuration as used for the damping modeling ap-
proach presented in Chap. 3 is used as investigation benchmark. Due to the
absence of combustion/thermoacoustics, this configuration yields ideal con-
ditions to investigate interactions between swirling mean flow and transversal
modes that cause the loss of degeneracy. The experimental setup is equipped
with two adjacent compression drivers mounted to the nozzle tube, which are
used to excite transversal system modes at discrete frequencies (cf. Chap. 3
for details and references on setup, operational aspects and measurements).
The same operation point ( ¯̇m = 0.12kg/s, T̄i n = 293.15K, p̄ = patm) as for the
validation of the damping modeling approach in Sec. 5.4 is used. All relevant
mean flow effects that induce the loss of degeneracy of transversal modes are
implicitly captured by the LEE in frequency domain, which are given by Eqns.
2.18 -2.19. Hence, LEE eigenmodes of T1 modes are computed to assess the
observed non-degeneracy. In order to produce the numerical solution, the
same setup (fine mesh configuration in Fig. 5.8, Bloch symmetry, boundary
conditions, mean flow field) as used for the LEE simulations in Sec. 5.4. The
damping rates were obtained through the quantification methodology pre-
sented in Chap 5, where the reflection coefficient was matched at the respec-
tive CCW and CW frequencies.

B.2 Loss of Degeneracy of Transversal Modes

The loss of degeneracy is characterized by the occurrence of two distinct peaks
around a first transversal mode in the Fourier spectrum. For the concerned
isothermal nozzle configuration, these two peaks are revealed in the pres-
sure spectrum shown in Fig. B.1. The underlying time series to compute this
spectrum were obtained as follows: First, acoustic pressure time traces are
recorded at the faceplate for a set of excitation frequencies. External excitation
of the system occurs via compression drivers (cf. Fig. 3.3), where the respec-
tive excitation signals are 180-degree phase shifted in order to predominantly
excite first transversal mode shapes. Second, the time signals for each exci-
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B.2 Loss of Degeneracy of Transversal Modes

tation frequency are added, which is in accordance with Fourier’s theory [84].
Third, this total time series is Fourier transformed to yield the amplitude spec-
trum given in Fig. B.1. Note that the peaks the amplitude spectrum belong to
the T1L1 mode (cf. Fig. 5.9) of the chamber, which is also the mode of con-
cern for the subsequent discussion. The reasons for using the T1L1 instead of
the T1 mode is that the experimental response of the isothermal system to the
external excitation was stronger than for the T1 mode, which yielded clearer
experimental results.
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Figure B.1: Measured pressure spectrum reflecting two peaks that indicate
non-degeneracy of the T1L1 mode pair

The LEE simulations reproduce both eigenfrequencies as is indicated in the
figure, too. Furthermore, it is revealed that each eigenfrequency is associated
with a rotating eigenmode. More specifically, the higher and lower frequencies
(ωF 6= ωG) are associated with a counter-clockwise (CCW, denoted with T1F )
and clockwise (CW, denoted with T1G) running mode in and against the mean-
swirl direction, respectively. Hence, as revealed by the LEE eigensolutions, the
non-degenerate situation is characterized by two counter-rotating modes of
deviating frequencies, whereas the degenerate transversal modes emerge as
standing modes (denoted by A and B) that exhibit equal frequencies (ωA =
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Effects of a Swirling Mean Flow on Transversal Modes

ωB ). Note that the degenerate case can also be described by two counter-
rotating modes of the same frequency. However, the clarity of interpreta-
tions and explanations in this thesis, degenerate and non-degenerate circum-
stances are described by standing and counter-rotating mode pairs, respec-
tively. Generally, a loss of degeneracy implies a loss of symmetry [21], which
is for swirling flows induced due to one dominant direction of the azimuthal
mean velocity. Figure B.2 illustrates departure of degeneracy from standing
modes (e.g. occurring in a combustor with a jet flow) to non-degenerate
counter-rotating modes (e.g. occurring in a combustors with a swirl flow).

Quantitatively, the difference between oscillation frequencies emerges as
∆ω ≈ ωF −ωG = 20.5 ·2π (r ad/s), which is retrieved from both, the spectrum
in Fig. B.1 and the LEE eigenfrequency results. Additionally, the individual fre-
quency values of the CW and CCW rotation are accurately reproduced (cf. Ta-
ble B.1). Relative errors between numerically computed frequency difference
and respective frequency values and experimental counterparts remain be-
low 5%. Furthermore, measured and computed damping rates (cf. Table B.1)
reveal a deviation between the CCW and CW rotating mode as for the oscilla-
tion frequencies, too. Specifically, the damping rates of the CW (against mean
swirl) and CCW (with mean swirl) exhibit smaller and larger relative values,
respectively, i.e. αG < αF . This deviation of damping is confirmed using the
reflection coefficient associated with transversal modes in Fig. 5.13, which re-
veals a slightly lower and higher reflection coefficient, i.e. larger and weaker
damping), for lower and higher frequencies, respectively. Notice that the two
measured damping rates were identified using method of fitting the envelope
of the decaying pressure signal that results of a sudden switch off of the exci-
tation signal. Details on the the fitting method is given in [159, 169].

Experiment Simulation Direction

ωF (rad/s) 1587 ·2π 1573 ·2π CCW
ωG (rad/s) 1567 ·2π 1553 ·2π CW
αF (rad/s) -23.5 -23 CCW
αG (rad/s) -28.0 -25 CW

Table B.1: Eigenfrequencies and damping rates
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B.2 Loss of Degeneracy of Transversal Modes
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Figure B.2: Schematic: departure from degeneracy (two standing modes T1A

and T1B , orthogonal to each other, equal frequencies) into non-
degeneracy (two counter-rotating modes T1F and T1G , deviating
frequencies) due to swirling mean flow
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Effects of a Swirling Mean Flow on Transversal Modes

B.3 Physical Origin of Non-Degeneracy

The previous section identified distinct features of non-degenerate transver-
sal modes in swirling mean flow environments. Also, LEE eigenmodes are re-
vealed to capture the loss of degeneracy, and accurately reconstructed the ex-
perimental observations. The root cause of the non-degeneracy, i.e. the phys-
ical origins of the deviations of damping and growth rates, is addressed in this
section.

B.3.1 Growth and Damping Rate Deviation

The physical origin of the deviation of CCW and CW modes’ damping rates is
discussed using the reflection coefficient results given in Fig. 5.12. Specifically,
the reflection coefficient increases with increasing frequencies. The reflection
coefficient at the eigenfrequencies with which the damping rates shown in
Tab. B.1 are determined valuate to 0.96 and 0.965 for the CW (b = 1) and
CCW (b = −1) Bloch mode, respectively. As a possible interpretation, the
CCW mode can be thought to experience less resistance than the CW due to
the co- and counter-rotation with respect to the mean flow swirl. Associated
interactions between acoustics and shear zones, i.e. vortex-shedding, are
amplified and attenuated, which leads to respectively more and less damping
due to vortex shedding.

For reactive cases of the benchmark system, thermoacoustic flame driv-
ing acts quantitatively equal onto both modes, i.e. βF = βG . This equality is
due to the frequency independence of the deformation source term in Eqn.
4.25, and the negligibility of the frequency dependence of the displacement
source term in Eqn. 4.24 over the split range ∆ω. Writing the growth rates as

νF =βF +αF , (B.1)

νG =βG +αG , (B.2)

reveals the impact of the of non-degeneracy, i.e. a smaller acoustic damping
rate leads to a larger growth rate, and vice versa. For the benchmark case in
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B.3 Physical Origin of Non-Degeneracy

this work the growth rate of the CCW mode is larger than the CW mode, i.e.
νF > νG because of αF <αG .

B.3.2 Frequency Gap

The reason for the frequency gap intuitively connects to interaction effects
between the swirling mean flow and acoustics fluctuations. It seems apparent
that the azimuthal component of the mean flow vector induces this loss in
degeneracy analogously as shown in [10]. This reference concerns an annular
system, where a constant azimuthal mean flow induces a frequency difference
– and thus a loss in degeneracy – into the azimuthal mode pairs. In order to
assess the basic mechanisms governing the interactions between azimuthal
mean flow and transversal acoustics the swirling 3D system is approximated
by a 2D circular domain as is illustrated in Fig. B.3. The swirling mean flow
is modeled via a solid body rotation, which implies a linear variation of the
azimuthal mean velocity component while the radial mean velocity is zero as
indicated in the schematic. All other mean quantities remain constant.

0 MAX

ūθ = r Ω̄

ūr

Wall: ûn,r = 0

ūθ

ūr = 0

r
θ

Figure B.3: 2D domain with solid body rotating mean flow

The corresponding LEE system in frequency domain governing the simplistic
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Effects of a Swirling Mean Flow on Transversal Modes

2D model is retrieved from Eqns. 2.18-2.19, and reads in cylindrical coordi-
nates

ρ̄iωûn,r + ρ̄Ω̄
∂ûn,r

∂θ
− (

Coriolis−r︷ ︸︸ ︷
2ρ̄Ω̄ûn,θ) · scor + ∂p̂n

∂r
= 0, (B.3)

ρ̄iωûn,θ+ ρ̄Ω̄
∂ûn,θ

∂θ
+ (

Coriolis−θ︷ ︸︸ ︷
2ρ̄Ω̄ûn,r ) · scor + 1

r

∂p̂n

∂θ
= 0, (B.4)

iωp̂n + Ω̄∂p̂n

∂θ
+γp̄

(
ûn,r

r
+ ∂ûn,r

∂r
+ 1

r

∂ûn,θ

∂θ

)
= 0, (B.5)

where Ω̄ denotes the constant angular mean flow velocity, while ûr , ûθ present
the acoustic velocity mode shapes in radial r and azimuthal θ direction, re-
spectively. The switch parameter scor in Eqns. B.3-B.4 is used to quantify the
relative contribution of the convective and Coriolis terms on the transversal
modes’ eigensolutions. The resulting eigenfrequency differences (normalized
with experimental value) from simulations of the 2D system for scor = 1 and
scor = 0 are drawn in Fig. B.4. The same figure hosts the gaps from the mea-
surements, and the corresponding 3D LEE simulations the swirling isothermal
combustor configuration.
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Figure B.4: Eigenfrequency differences

Comparing the results for scor = 1 and scor = 0 identifies the Coriolis ef-
fect as the dominant mechanism that quantitatively causes the observed fre-
quency differences. The convective case (scor = 0) only reproduces the ana-
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B.4 Summary and Findings – Mean Flow Interactions

lytical counterpart results as expected. Thus, only considering convective ef-
fects leads to an underestimation of the frequency difference in combustors
with non-degenerate transversal modes. This circumstance emphasizes one
major difference between azimuthal (annular cross section) and transversal
(circular cross section) acoustic oscillations: The Coriolis force presents a rel-
evant, non-negligible physical mechanism in transversal thermoacoustic sys-
tems with swirling mean flows. The occurring physics can be thought of an
acceleration and deceleration of the counter rotating modes induced by the
Coriolis force, which causes an in- and decrease of the associated wave num-
bers (and thus oscillation frequencies), respectively.

B.4 Summary and Findings – Mean Flow Interactions

In the previous sections, the loss of degeneracy of transversal modes that
occurs in swirl-type combustion chambers was investigated. This non-
degeneracy physically results in two counter-rotating transversal eigenmode
pairs with deviating oscillation frequencies, damping rates and (in for reac-
tive, thermoacoustic cases) growth rates. Then, the physical origin of the non-
degeneracy was explored using an aeroacoustic test case of a swirl stabilized
burner. Experimental and numerical investigations generated the following
findings:

• Physical origin of the eigenfrequency gap is governed by Coriolis effects
due to the swirling mean flow.

• Rotating modes in and against the mean swirl direction exhibit higher
and lower rotational speeds, i.e. eigenfrequencies, respectively.

• Physical origin of the growth rate gap is due to unequal damping of the
constituting rotating modes, while flame driving acts equally on both
modes.

• Rotating modes in and against the mean swirl direction experience at-
tenuated and amplified vortex shedding, which translates into a smaller
and higher damping rate, respectively.
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Effects of a Swirling Mean Flow on Transversal Modes

Overall, new theoretical insight into physical mechanisms of transversal
modes for HF thermoacoustics oscillations was generated. The successful nu-
merical reproduction supports the applicability of the LEE methodology to
capture the mean flow interaction processes that induce the non-degenerate
eigenfrequencies. Finally, the discussion of mean flow effects on linear eigen-
modes in this appendix presents the last component – after driving, damping
and stability investigation in Chaps. 4-6 – of the linear considerations of this
thesis.
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C Evaluation of WrE−1

This appendix presents a procedure to determine the expression WrE−1

needed for the MOR in Chap. 7 without carrying out the computationally ex-
tensive inversion operation of the descriptor matrix E. This procedure starts
with the right and left generalized eigenvalue problem, i.e.

A =EVΛWEVΛWEVΛW , (C.1)

A =VΛW EVΛW EVΛW E , (C.2)

where VVV , WWW , ΛΛΛ and AAA denotes the left eigenvector matrix, right eigenvector
matrix, eigenvalue matrix and system matrix of size N , respectively. The dot
product of the left and right eigenvector matrix yields the unity matrix, i.e.

V WV WV W =W VW VW V = III . (C.3)

Next, Eqns. C.1-C.2 are respectively pre- and post-multiplied with VVV and WWW to
give under consideration of Eqn. C.3

W AVW AVW AV =W EVΛW EVΛW EVΛ, (C.4)

W AVW AVW AV =ΛW EVΛW EVΛW EV , (C.5)

to give

W EVΛW EVΛW EVΛ=ΛW EVΛW EVΛW EV . (C.6)

Recall thatΛΛΛ is a diagonal matrix. Thus, satisfying Eqn. C.6 requires KKK =W EVW EVW EV
to be a diagonal matrix, too. Next, Eqn. C.6 is inverted, i.e.

K −1K −1K −1 =V −1E−1W −1V −1E−1W −1V −1E−1W −1. (C.7)

Post-multiplying Eqn. C.7 with WWW gives

W E−1W E−1W E−1 =K −1WK −1WK −1W , (C.8)
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which furthermore transforms into the desired expression by utilizing the
eigenvectors that define the subspace of the MOR, i.e.

WrWrWrE−1E−1E−1 =K −1
rK −1
rK −1
r WrWrWr , (C.9)

The remaining task is to evaluate K −1
rK −1
rK −1
r , which requires to invert the reduced

diagonal matrix given by
KrKrKr =WrWrWrEVrEVrEVr , (C.10)

by taking the reciprocal of each entry.
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D Illustration of Beating Frequency in
Fourier Spectrum
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Illustration of Beating Frequency in Fourier Spectrum

10 25 40 55 70 85
0

0.2

0.4

0.6

0.8

1

A
m

p
li

tu
d

e

f Hz

F F T (F )
F F T (G)

∆ f = fF − fG

Figure D.1: Fourier spectra of experimental data (unstable case) – top (pre-
vious page): oscillating mode signals, bottom (this page): slowly
varying amplitudes
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E Eigenvalue of Standing Mode Fixed
Point

λ1 =− (νn,a,F+νn,a,G )
3 −

√
62νn,a,Fνn,a,G−23(ν2

n,a,F+ν2
n,a,G )

9 (E.1)

λ2 =−
√

62νn,a,Fνn,a,G−23(ν2
n,a,F+ν2

n,a,G )

9 (E.2)
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