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Zuallererst möchte ich meinem Doktorvater Herrn Professor Dr. Thomas

Sattelmayer danken. Sein Vertrauen, die Freiheit neue Wege zu beschreiten
und sein Rückhalt haben mir die Möglichkeit gegeben, dieses Promotions-

projekt erfolgreich abzuschließen. Von seinem breiten Erfahrungsschatz aus
Industrie und Wissenschaft habe ich dabei sehr profitiert. Zudem möchte
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diese Arbeit in dieser Form nicht entstanden. Vor allem meinen Studenten
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Kurzfassung

Neue emissionsarme Brennkammern von Gasturbinen sind anfällig ge-
genüber dem Phänomen der thermoakustischen Instabilitäten. Diese ent-

stehen durch die Koppelung der Wärmefreisetzung der Flamme und Druck-
fluktuationen und können zum Aufbau hoher Druckamplituden führen.

Beschädigungen der Brennkammer sowie Einschränkungen des Betriebsbe-
reiches der Turbine sind die Folgen. Aus diesen Gründen ist eine frühzeitige

Vorhersage von Instabilitäten von hoher Bedeutung um hohe Zusatzkosten
durch Entwicklung und Wartung zu vermeiden.

Zur Vorhersage von thermoakustischen Instabilitäten sind bereits eine Rei-
he von Methoden entwickelt worden. Aus der Sicht des Autors existiert eine

Lücke zwischen Modellen niedriger Ordnung, die eine schnelle aber weni-
ger genaue Vorhersage ermöglichen, und Modellen hoher Ordnung, die zwar

sehr genau sind aber viel Rechenzeit in Anspruch nehmen. Diese Arbeit
probiert diese Lücke mit der Einführung von linearisierten Navier-Stokes
Gleichungen (LNSEs) zu schließen. Anders als Modelle mit niedriger Ge-

nauigkeitsordnung berücksichtigen diese Gleichungen die Interaktion von
mittlerem Strömungsfeld und akustischen Wellen direkt. Zudem wird der

Einfluss komplexer, dreidimensionaler Brennkammergeometrien sowie akus-
tischer Impedanz-Randbedingungen und Flammen berücksichtigt. Dabei

vereinfacht die Transformation der Gleichungen in den Frequenzbereich de-
ren numerische Behandlung substanziell. Die Gleichungen werden in zwei

Schritten gelöst: Zunächst wird eine inkompressible Strömungssimulation
durchgeführt, um im Anschluss die LNSEs um das resultierende mittlere
Strömungsfeld zu lösen. Dabei hat die Interaktion von mittlerer Strömung

und akustischen Wellen meist einen stabilisierenden Effekt auf akustische
Moden, kann aber auch umgekehrt destabilisierend wirken.

Diese Dissertation entwickelt Lösungen auf den unterschiedlichen Ebenen
der wissenschaftlichen Wertschöpfungskette: Angefangen mit der Herlei-

tung der theoretischen Grundlagen wird eine konsistente Behandlung der
LNSEs im Rahmen von Finiten Elementen vorgeschlagen. Die diskretisier-

ten Gleichungen können dann mittels einem eigens entwickelten iterativen
Lösungsverfahrens für unterschiedliche Problemstellungen der Thermoakus-

tik oder Aeroakustik gelöst werden.
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Abstract

New low emission combustion technologies for gas turbines are prone to
a phenomenon called thermoacoustic instability. Such instabilities arise

from the coupling of the unsteady heat release rate of a flame and pressure
fluctuations, imposing restrictions on the operability range and damaging

hardware components. High costs may accumulate due to commissioning or
operating the combustor under non-optimal conditions. Therefore, detec-

tion of instabilities in the early phases of a gas turbine development cycle
is desired in order to avoid costly correction steps at later stages.

To predict thermoacoustic instabilities many tools are already available.
However, a gap is present between lower order models which allow for a quick

assessment of instabilities and higher order tools which are computationally
expensive, like e.g. compressible large eddy simulations. This thesis fills this

gap by introducing linearized Navier-Stokes equations (LNSEs) formulated
in frequency space. Unlike lower order models, the LNSEs include the
interaction of the mean flow with acoustic waves directly, and provide a good

trade-off between computational costs and accuracy. The proposed model
includes the effects of a multidimensional flow field and geometries, complex

impedances and flames. It works as a two-step approach: First, performing
an incompressible flow simulation using an appropriate turbulence closure

and then, in a second step, solving the LNSEs around the resulting mean
flow state. Interactions of acoustic waves with the flow field may lead to a

stabilizing but also to a destabilizing effect on thermoacoustic instabilities.

The thesis provides a full scientific value chain: Starting from the basic

theory it develops a consistent finite element procedure and provides espe-
cially designed iterative solvers which may efficiently solve the LNSEs for

large-scale industrial configurations. This procedure is validated on a vari-
ety of different flow and combustion configurations including generic as well
as more industrial cases.
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1 Introduction

The increase of worldwide energy demand poses significant challenges for
the future. Although energy generated by renewable sources is predicted to

increase significantly, the major part of the global energy of about 80% will
still be contributed by liquid fuels, coal or natural gas in 2035 according to
the U. S. Energy Information Administration (2010). Especially the con-

sumption of natural gas to generate electric power is projected to increase
by 44%.

Gas turbines are used to transform the energy bound in chemical molecules
into electric power or propulsion. They provide a large part of the world’s

electricity (21% in 2010, see International Energy Agency) and represent
the only source for aviation propulsion systems. Considering the finite avail-

ability of fossil fuels, the efficiency of gas turbines has to be significantly
increased in order to reduce fuel consumption. However, the increase in

efficiency is constrained by the demand to produce lower emissions. Both
goals are generally not fully congruent: While carbon dioxide, a gas known
to enhance the greenhouse effect, can only be reduced by increasing the

efficiency, the emission of nitrogen oxides (NOx) strongly depends on the
combustion process considered.

NOx emissions in gas turbines are strongly temperature dependent. By
decreasing the stoichiometry of the combustion process, combustion tem-

peratures can be decreased, which as a result decreases the NOx production
(Correa, 1993). In the stationary gas turbine industry, this was achieved

through the introduction of lean premixed combustion. A similar technol-
ogy, termed lean premixed pre-vaporized (LPP) technology, was also estab-

lished for liquid fueled gas turbines of the stationary gas turbine industry
(Jansohn et al., 1997). Very recently, this concept is also being adopted
by the aeroengine industry. The extension ’pre-vaporized’ results from the

fact that the liquid fuel employed needs to be vaporized first in order to be
burnt. These lean premixed technologies were found, however, to be par-

1



1 Introduction

ticularly susceptible to a phenomenon called combustion or thermoacoustic
instability (Lieuwen and McManus, 2003).

1.1 Combustion Instabilities

Combustion instabilities arise due to the interaction of unsteady flame and
acoustic field of the combustion chamber. The unsteady heat release acts as

a source of sound and, under unfavorable conditions, may excite an acoustic
resonance of the combustion chamber. The acoustic mode, in turn, may

perturb the flame even stronger, establishing a feedback loop which leads
to significantly high pulsation amplitudes. For gas turbine applications,

these oscillations may reach amplitude levels of the order of a few percent
compared to the static pressure (∽ O(100 Pa)).

The conditions, under which a thermoacoustic feedback loop is likely to
occur, can be expressed in terms of the well-known Rayleigh criterion (see

Rayleigh, 1878, 1926): If the phase relationship between pressure and heat
release fluctuations is just right, i.e. both are in-phase, instabilities are
amplified and grow in time, viz.

R =
∫

t

∫

Ω

p′(x, t)q′(x, t) dΩ dt (1.1)

When R > 0, flame-acoustics coupling promotes the appearance of insta-
bilities.

Structural damage and enhancement of high-cycle fatigue caused by large

amplitude pressure fluctuations are the consequences of operating combus-
tion chambers under such unstable conditions. In fact, a majority of the
non-fuel costs of stationary gas turbines are attributed to maintenance,

i.e. repair and replacement of hot-section components. Damages occur-
ring in these sections are often related to combustion-driven instabilities

(Lieuwen and Yang, 2005). Hardware failure can be prevented by incorpo-
rating appropriate monitoring systems. However, in this case, combustion

instabilities still restrict the region of operability of combustion chambers,
preventing gas turbine operation at optimal efficiency and emission levels.

Other undesirable phenomena are the high noise levels produced, which may
be radiated into the far-field at the gas turbine exhaust of aeroengines or

2



1.1 Combustion Instabilities

may cause wear of system components. Combustion instabilities also cause
higher NOx emissions and may favor circumstances under which flame flash-
back or blow-off occurs.

Combustion instabilities are observed in various combustion applications,

such as rocket engines, furnaces, or even heating devices. For civil aero-
engines, combustion instabilities are less frequently encountered and are
less severe as for their power generation counterpart (Lieuwen and Yang,

2005). It can be expected, however, that this topic will become more and
more problematic, because increasing regulatory standards on future emis-

sions force the aero-industry to adapt the lean-premixed combustion tech-
nology (Mongia et al., 2003). Based on this background, the European

Union founded a project called ’KIAI - knowledge for ignition and acous-
tic instabilities’1 which was launched in 2009. Its main aim is to provide

accurate simulation tools to predict combustion instabilities in early design
phases, minimizing the risks and costs of undergoing the development cy-
cle multiple times. Thus, using such predictive tools may help to increase

the future standards of engine’s reliability, safety and economical viability
and may foster the understanding of the mechanisms behind combustion

instabilities. This thesis evolved as a part of the KIAI project.

Methods predicting combustion instabilities aim at providing the frequen-

cies at which coupling occurs and whether the corresponding acoustic mode
grows in time or is attenuated by acoustic loss processes. In addition to the

frequencies of oscillation, the corresponding eigenmode or eigenfunction is
obtained, which gives insights into the spatial distribution of the fluctuating

quantities like pressure, velocity and temperature and may yield the neces-
sary information for the installation of active or passive damping devices.
Moreover, information about the finite amplitude of oscillation (limit cycle

amplitude) is generally thought for. Other than computational expensive
large eddy simulations, no method available at present takes the complex

geometry and multidimensional flow conditions into account. The flow field,
however, has a significant influence on the frequency and mode shape of os-

cillation. Without its proper incorporation, also limit cycle amplitudes may
not be predicted accurately. This thesis developes a consistent method to

account for flow fields and their effect on combustion instabilities.

1 http://www.kiai-project.eu
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1 Introduction

As the topic of combustion instabilities attracts growing attention to re-
search groups worldwide and many gas turbine manufacturers become in-
creasingly sensitive, a huge amount of knowledge has been gathered so far.

Covering all fundamental aspects of thermoacoustic instabilities and de-
tails on predictive methodologies is thus not possible in this thesis. For a

decisive and comprehensive review the work of Candel (2002) is therefore
recommended. More recently, Huang and Yang (2009) dedicate their re-

view article to swirl-stabilized combustion dynamics. Books have also been
published: An introduction to thermoacoustic instabilities is provided in

Poinsot and Veynante (2005), while Lieuwen and Yang (2005) provide a
particular focus on gas turbines.

1.2 Prediction of Combustion Instabilities

In order to account for the effect of the mean flow onto combustion insta-
bilities this thesis proposes to linearize the set of Navier-Stokes equations

(LNSEs). Other publications found in the literature, e.g. the ones of Bogey
et al. (2002); Ewert and Schröder (2003); Seo and Moon (2005), introduce

further assumptions in order to partially decouple the system of linearized
transport equations and to reduce numerical difficulties involved in their

solution process. By doing so, however, the main interaction processes are
either not accounted for or only to some partial extent. Thus, unlike in these
publications, this thesis solves the full set of linearized governing equations.

The resulting numerical difficulties are resolved by solving the equations in
frequency space and introducing stabilized finite element techniques. Lat-

ter methods introduce low amounts of numerical diffusion to avoid spurious
oscillations of the solution. When solved using Krylov subspace methods

conjointly with a multigrid preconditioner, also proposed in this thesis, this
results in a highly robust and efficient technique. In this section an overview

of different prediction methods to study combustion instabilities is provided
and the LNSEs approach is integrated into this global framework.

Depending on the available resources, predictive methods with different ca-
pabilities and prediction accuracies can be applied. Common to all of them

is that they are based on the Navier-Stokes equations with different levels of
approximation. A most common approach found in the literature is based
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1.2 Prediction of Combustion Instabilities

on the approximation of a combustor through a network of one or quasi two
dimensional homogeneous elements (constant density and speed of sound).
Each individual element is connected to the other via jump relations, which

enforce continuity in pressure and conservation of mass flow rate. Ampli-
tudes of the forward and backward propagating waves must satisfy these

relations. The flame is considered to be infinitely thin and connects the
reactive mixture to the burnt gases segment. A dispersion problem can be

formulated analytically, whose discrete roots ω describe the eigenmodes of
the combustor and satisfy all jump relations across the individual elements.

The main advantage of this approach is related to its simplicity: Complex
geometries are described through a few lumped elements. Fast assessment
of the combustion chamber eigenmodes can be achieved. The methodology

is therefore extensively be used as a predesign tool (Nicoud et al., 2007). Ex-
tensions to azimuthal spinning modes (Evesque and Polfike, 2002; Evesque

et al., 2003) and quasi two dimensional space (Benoit, 2005) can also be
found in literature. However, the main drawback of the method is that it is

not able to account for the geometrical complexity of combustion chambers.
Mean flow effects of complex elements can only be accounted for, if external

information obtained from higher order numerical analysis or experimental
measurements is included.

An alternative is the use of a wave equation which can be discretized, e.g.
using a finite element technique, for an arbitrary combustion chamber ge-
ometry including geometrical details (Pankiewitz and Sattelmayer, 2003).

Fields of density and speed of sound are inputs to such a solver. The
acoustic field is initialized with a random distribution of pressure fluctua-

tions and the wave equation is solved in time domain. Depending on the
acoustic-flame coupling certain modes of instabilities are amplified and grow

exponentially. This method represents a very intuitive way to predict com-
bustion instabilities. However, as it is discussed in the following chapters,

solving the problem in physical space introduces certain difficulties. One
is related to the fact that accounting for frequency dependent impedance
boundaries is not trivial when solving in time domain. Moreover, starting

from the initial fields multiple unstable modes may be amplified. Depending
on their respective strength, only the most amplified mode can be observed

in detail. The least amplified mode, however, can also be threatening when
thermoacoustic instabilities are observed.
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A more convenient alternative is the the use of the Helmholtz equation, the
frequency domain counterpart of the wave equation (Benoit and Nicoud,
2005; Nicoud et al., 2007). This resolves the impedance boundary problem

and transforms the initial value problem of the wave equation into an eigen-
value problem. Pairs of eigenfunctions and eigenfrequencies of every single

mode are solutions to this method, which admits a detailed analysis of every
individual combustion chamber mode and its respective growth rate. The

main disadvantage to these type of methods (wave- or Helmholtz eq.) is
that the equations are derived for a quiescent medium (ū ⋍ 0) and thus

acoustic-flow coupling and its related acoustic losses are not taken into ac-
count. This leads to the point that if an unsteady flame is incorporated into
the formulation, certainly some eigenmodes will exhibit an unstable behav-

ior. A method which incorporates stability reserves through acoustic-flow
coupling though, will predict a more stable combustion operation by trend.

Until now, no clear justification has been provided to neglect mean flow
field effects, see e.g. Keller et al. (1985); Polifke et al. (2001); Sattelmayer

(2003). Even on the contrary, there is strong evidence that the mean flow
may significantly alter the eigenmode appearance and introduce stronger

damping to the system (Dowling, 1995; Nicoud and Wieczorek, 2009).

An approach taking into account acoustic coupling with the flow field and

even with chemistry and turbulence is the large eddy simulation or LES
(Martin et al., 2006; Selle et al., 2004). However, main drawback of an LES
is its computational costs: As turbulence is resolved up to smaller scales, a

high numerical resolution is required. Moreover, for low Mach number flows
a large disparity in time scales between mean flow and acoustic fluctuations

exists, which severely restricts the time step. It is also needless to say that,
as LES is a time domain approach, it also involves the same problems as

discussed above for the wave equation, i.e. impedance boundary formulation
and proper analysis of all combustor eigenmodes. Despite the method’s high

potential in the future, LES still represents a costly and complex approach
and its application is not practicable for many cases of technical interest.

A proper alternative is to linearize the set of Navier-Stokes equations
(LNSEs) around an arbitrary flow state (see Chu, 1965). The unsteady

heat release rate then appears as a source term in the linearized energy
equation. The resulting set of equations describes the propagation of three
different kind of waves: Acoustic, vorticity and entropy waves (Chu and

6
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Kovasznay, 1958; Kovasznay, 1953). While acoustic waves travel with the
speed of sound augmented by the local flow velocity, entropy and vorticity
waves are convected by the mean flow. Gradients in the mean flow lead to

their coupling and result in energy transfer from one mode of fluctuation
into the other. The LNSEs may be transformed into frequency space, mak-

ing use of the above mentioned advantages. The transformation further
provides a remedy to the problem observed with the corresponding time

domain approaches: Unbounded growth of Kelvin-Helmholtz instabilities
in time. These disturbances in vorticity may obscure the acoustic solution

and may -in some cases- hinder from retrieving meaningful results (Rao and
Morris, 2006).

Similarly to the Helmholtz equation, an eigenvalue problem may be formu-
lated. Inclusion of a time delayed flame response makes the eigenvalue prob-

lem non-linear and an iterative routine originally proposed for the Helmholtz
equation (by Nicoud et al., 2007) needs to be introduced. The resulting
eigenvalues take acoustic-flow interaction processes, i.e. acoustic-vorticity

coupling and acoustic-entropy coupling fully into account, providing infor-
mation about attenuation and amplification effects of acoustic waves when

submitted to the mean flow of combustion chambers. The method can
be considered as trade-off between a highly resolved LES and a low-cost

Helmholtz equation simulation.

A different possibility proposed in this thesis is to use LNSEs to determine

network elements of combustion chambers, e.g. like swirl atomizer nozzles
or perforated screens. For this concept, the presence of a flame is excluded

and the respective elements are treated separately. By incorporating such
elements in a network analysis it is possible to take the fundamental attenu-
ation and amplification effects of complex flow configurations into account.

1.3 Proposed Methods

Two methods are proposed in this thesis for the prediction of combustion
instabilities: The first method uses frequency space linearized Navier-Stokes

equations to determine the passive scattering properties of complex acous-
tic elements of combustion chambers, e.g. swirl atomizer nozzles or perfo-
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rated screens. Scattering matrices obtained in this way, contain information
about the physical attenuation or amplification of sound generated through
acoustic-flow interaction processes. The information about the scattering

matrices may then be integrated into a low-order network model approach
describing the acoustic behavior of complete combustion chambers. A dis-

persion relation can be obtained in this way, whose solutions are the fre-
quencies of the acoustic modes in a combustion chamber. In this way,

eigenfrequencies of annular combustion chambers can be retrieved very ef-
ficiently. The combination of a high fidelity and robust LNSEs procedure

with a low effort lumped network analysis may bear a high potential in
order to improve the robustness and accuracy of state-of-the-art stability
analysis using a network model approach.

The second method directly determines the eigenfrequencies of combustion

chambers using LNSEs. A finite element approach is used to discretize
the frequency space LNSEs in an arbitrary three dimensional and com-
plex combustor domain, taking into account the acoustic coupling with a

multidimensional flow field and flame. By formulating it as an eigenvalue
problem, the shift-invert Arnoldi algorithm can be used in order to effi-

ciently determine the eigenfrequencies of the resulting system matrices. For
both considered methods, high amounts of degrees of freedom are gener-

ally involved and the resulting system matrices need to be inverted. For
this task, a specially designed Generalized-Minimum Residual method in
combination with a highly efficient multigrid preconditioning algorithm is

used.

Both methods are sequential approaches and the following steps need to be
performed in order to retrieve solutions of the acoustic fields or eigenvalues
respectively: Main input to both methods is a mean flow field computed

from a computational fluid dynamic simulation incorporating an appropri-
ate turbulence closure. The Navier-Stokes equations are then linearized

around this mean flow state. While the first approach does not need any
further inputs, the eigenvalue analysis needs information about the unsteady

source of the flame. This can be achieved analytically, experimentally or
numerically. The present analysis uses an experimental approach to retrieve

this piece of information. Overall, both methods require higher computa-
tional resources than, e.g., stability analysis using network models or the
Helmholtz equation, but they contain a much lower amount of assumptions.
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1.4 Thesis Structure

Chapter 2 introduces the underlying governing equations which are used

in the present analysis. These comprise the linearized Navier-Stokes equa-
tions, linearized Euler equations and the scalar Helmholtz equation. Phys-

ical mechanism involved in thermoacoustic instabilities and acoustic-flow
interaction processes is provided and important input parameters as acous-

tic boundary conditions and acoustic-flame coupling are discussed in more
detail.

This thesis employs a finite element strategy to solve the acoustic governing
equations. However, convective and reactive terms in the LNSEs or LEEs

introduce spurious oscillations to the solution when applying a standard
Bubnov-Galerkin technique. Therefore, stabilized finite element schemes,

also known as Petrov-Galerkin schemes, are introduced to address aeroa-
coustic and thermoacostic problem sets in a consistent manner. This is
done in Chapter 3. The schemes provide equation stabilization without

introducing high amounts of artificial viscosity. Different stabilization tech-
niques, like streamline-upwind/Petrov-Galerkin, Galerkin/least-squares or

Galerkin/least-squares-minus are introduced and their application to LNSEs
is discussed. Depending on the approach chosen, the matrices are assembled

in two different ways and the resulting problem formulations are introduced.

For three dimensional problems, direct solution methods become computa-

tionally inefficient and the assembled matrices of Chapter 3 must be solved
using iterative solution routines. These are introduced in Chapter 4. It

is shown that system matrix characteristics depend strongly on frequency
and flow state, and especially on mean flow gradients. The system matrices
are non-hermitian (non-symmetric) and indefinite. A broad overview of the

different solvers and preconditioners is provided for the purpose of inverting
the resulting system matrices. The methods mainly belong to the class of

Krylov subspace solvers. Finally, three different solver-preconditioner com-
binations are designed and calibrated in order to solve the LNSEs efficiently.

Their performance is compared against each other for a generic combustor
configuration. The fourth chapter also discusses the solution of the eigen-

value problem using an Arnoldi algorithm to which the same solvers are
applied.
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With the definition of a suitable finite element discretization of Chapter
3 and an efficient solution algorithm of Chapter 4, the resulting method
is validated for acoustic-vorticity interaction on a variety of different flow

configurations in Chapter 5. These include an area expansion, an orifice,
a T-joint and a realistic combustion chamber flow employing an industrial

swirl injector. The suitability of the LNSEs is shown to describe all acoustic-
flow interactions with high accuracy. Some limitations of the linearized

theory are highlighted in the case of a T-joint.

Finally, acoustic-entropy coupling is also considered for more combustor like

configurations. The isentropic assumption made to study acoustic-vortex
interactions in Chapter 5 is then dropped for Chapter 6. First, the pre-

dictive capabilities of the eigenvalue problem formulated with LNSEs is
assessed for a generic combustor configuration. Then, in a next step the

method is validated against the damping generated in a realistic combustor
flow of an atmospheric combustor test rig at the Technical University of Mu-
nich. State-of-the-art damping measurements are performed for this task.

Finally, the assessment of combustion instabilities of a self-excited config-
uration including acoustic-flame coupling is dealt with. The complexity of

the problems considered increases with every validation test case.

A conclusion and outlook is given in Chapter 7.
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2 Acoustic Governing Equations

To derive the acoustic governing equations we will consider a gas mixture
where all species share the same molar weight and heat capacities. The

medium considered is further assumed to act like a calorically perfect gas.
Molecular diffusion of heat and gravity forces are neglected in the present
analysis (λ = 0 and gi = 0), while molecular diffusion of momentum is

conserved for the derivation. Under the preceding assumptions, the mass,
momentum and energy equations read, respectively,

∂ρ

∂t
+

∂

∂xi
(ρui) = 0, (2.1)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) +

∂p

∂xi
=

∂τij(uk)

∂xj
, (2.2)

∂p

∂t
+ ui

∂p

∂xi
+ c2ρ

∂ui

∂xi
= (κ − 1) q̇V + (κ − 1) τij(uk)

∂ui

∂xj
. (2.3)

where ρ, ui and p denote the instantaneous density, velocity vector and

pressure variables, κ is the ratio of specific heats of the mixture and q̇V

denotes the heat release rate per unit volume. The viscous stress tensor is

defined as

τij(uk) = µ




∂ui

∂xj
+

∂uj

∂xi
−

2

3

∂uk

∂xk
δij



 , (2.4)

and together with the equation of state

p = ρRT, (2.5)

and entropy expression

s − sref = cv ln




p

pref



 − cp ln




ρ

ρref



 , (2.6)

this set of transport equations describes the spatiotemporal evolution of all

physical quantities. The heat capacities of the gas mixture are defined by
cv and cp, whereas R = cp − cv is the specific gas constant. These parame-

ters may vary with temperature, but are assumed constant to simplify the
derivation. The index ’ref ’ denotes a certain reference state.
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2 Acoustic Governing Equations

2.1 Linearized Navier-Stokes Equations

Acoustic governing equations may be obtained by linearizing the full set of
compressible Navier-Stokes equations, Eqs. (2.1)-(2.3), around an arbitrary
mean flow state, which by itself satisfies continuity of mass, momentum and

energy. We consider large scale small amplitude fluctuations (.′) superim-
posed to a mean flow field (̄.) which is solely a function of space. Then,

instantaneous fields of density, velocity, pressure and heat release rate can
be written as

ρ = ρ̄ + ρ′, ui = ūi + u′
i, p = p̄ + p′, q̇V = ¯̇qV + q̇′

V , (2.7)

where the quantities ρ′/ρ̄, |u′
i|/c̄, p′/p̄ and T ′/T̄ are of small order ǫ, where

ǫ ≪ 1 and c̄2 = κRT̄ is the mean speed of sound. Temporal fluctuations of

material properties can generally be neglected, see Olson and Swift (1994).
Introducing the preceding expansion into Eqs. (2.1)-(2.3) and keeping only

terms of the order of ǫ, the following set of linear equations is obtained

∂ρ′

∂t
+

∂

∂xi
(ūiρ

′ + ρ̄u′
i) = 0, (2.8)

∂ρ̄u′
i

∂t
+

∂

∂xj
(ρ̄ūju

′
i) +

(

ρ̄u′
j + ūjρ

′
) ∂ūi

∂xj
+

∂p′

∂xi
=

∂τij(u
′
k)

∂xj
, (2.9)

∂p′

∂t
+

∂

∂xi
(ūip

′ + κp̄u′
i) + (κ − 1)

(

p′∂ūi

∂xi
+ u′

i

∂p̄

∂xi

)

=

(κ − 1)



q̇′
V +



τij(uk)
∂ui

∂xj





′

 ,

(2.10)

which describe the spatiotemporal evolution of fluctuating quantities ρ′, u′
i

and p′. To simplify the derivation, the last term of the energy equation

Eq. (2.10) attributed to the molecular stresses, is not yet linearized. The
superscript (. . . )′ over the brackets denotes that this operation still needs

to be performed. Note that the linearized continuity Eq. (2.8) was used to
simplify the linearized momentum Eq. (2.9). By linearization any second
order effects are excluded from the considerations. This includes the term

u′
iu

′
j as well, which is mainly associated with turbulence.

In Eq. (2.10) pressure fluctuations are chosen as primitive variable for the
linearized energy equation. Similarly, the equation may be formulated in
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2.1 Linearized Navier-Stokes Equations

terms of fluctuating entropy s′ variable, see e.g. Nicoud and Wieczorek
(2009) and Appendix B,

∂s′

∂t
+ u′

i

∂s̄

∂xi
+ ūi

∂s′

∂xi
=

Rq̇′
V

p̄
−

R ¯̇qV p′

p̄2
+

R

p̄2
(p̄ − p′)



τij(uk)
∂ui

∂xj





′

. (2.11)

The equation illustrates that the fluctuating flow is isentropic if one of

the following conditions is satisfied: (1) if the velocity fluctuations are or-
thogonal to the mean entropy gradient ∇s̄; (2) the mean flow velocity is
orthogonal to the fluctuating entropy gradient ∇s′; (3) for vanishing vis-

cous stress tensor (µ = 0) and (4) in absence of a flame (q̇V = 0). Viscous
stresses are generally of low order for low frequency sound propagation,

see Appendix A. So condition (3) is approximately met. In absence of a
flame only the two divergence terms on the equation’s LHS remain. For

practical applications, the baseline flow is generally non zero (ūi 6= 0) and
multidimensional. Thus, conditions (1) and (2) are generally not fulfilled.

They may only be satisfied for a vanishing flow without any heat addition
since then ∇s̄ ⋍ −cp∇ρ̄/ρ̄ = 0. Hence, assuming isentropic behavior of the
fluctuation components is highly restrictive and generally not satisfied for

multidimensional complex flow fields.

The system of equations (2.8)-(2.10) are the so-called linearized Navier-
Stokes equations (LNSEs) which describe the propagation of three modes
of fluctuations: Acoustic, vorticity and entropy (Kovasznay, 1953). Vortic-

ity and entropy waves are convected by the mean flow, whereas acoustic
waves travel with the speed of sound, altered by the local flow velocity. Al-

though being in a linear regime, these types of modes are strongly coupled,
making differentiation between the modes difficult (Myers, 1991). Incor-

porating these three different mode types in a stability analysis enables a
detailed description of phenomena most relevant to gas turbine applica-
tions: Acoustic flame coupling leads to the formation of so-called hot-spots

(entropy waves) which are convected away from the flame by the baseline
flow. On the one hand, the generated entropy waves lead to a modifica-

tion of the fields of fluctuating variables in the flame region. On the other
hand, they are convected to the downstream turbine vane passage, where

they are partially transformed into acoustic waves and reflected back into
the combustion chamber (Marble and Candel, 1977). Thus, the accelerated

entropy spots may also participate in the thermoacoustic feedback loop.
Another important effect is the coupling of acoustic with vorticity waves
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2 Acoustic Governing Equations

(Boij and Nilsson, 2006). At flow separation edges vortical structures are
triggered by acoustic fluctuations. While convected downstream, these may
continuously interact with the acoustic field, leading to sound attenuation

or sound amplification. Hence, acoustic-entropy (Dowling, 1995) as well as
acoustic-vorticity coupling (Bechert, 1980; Fukumoto and Takayama, 1991;

Wendoloski, 1998) may lead to net dissipation or production of acoustic
energy due to acoustical energy transfer to the entropy and vorticity mode

or vice versa. The specific amount of energy transferred is highly important
as it determines the stability reserves of a combustion chamber. When an

unsteady heat release source term q̇′
V is introduced, the additional acous-

tic energy produced may either compensate or overcome the acoustic losses
leading to stable or unstable combustor operation, respectively.

Up to now, fluctuating quantities in the LNSEs depend on time. This con-

siderably complicates their treatment because of five main reasons: The
first being that boundary conditions depend significantly on frequency. In
time space broadband waves impinge simultaneously on a computational

boundary and the boundary condition imposed must relate each fraction of
the fluctuations to a certain frequency of impinging waves. This is a non

trivial task and requires the use of complicated filter algorithms and moni-
tor planes. A large variety of studies is devoted to this task, see e.g. Kaess

et al. (2008); Poinsot and Lele (1992). Secondly, the flame is frequently
modeled as a function of a time delayed velocity fluctuation at a reference
location requiring the storage of the point’s time history. This may compli-

cate the solution algorithm. Thirdly, in time space many unstable modes at
different frequencies may coexist at the same time. Discrimination between

the different modes becomes difficult as the most amplified one dominates
the fluctuating field. Fourthly, the LNSEs describe multiscale phenomena

with a large disparity in different time scales (Lele, 1997). These include
convective as well as acoustic scales. Thus, the time step is considerably

restricted. Finally, as a result from the linearization procedure, the LNSEs
promote the unbounded growth of Kelvin-Helmholtz instabilities with space
and time. In reality, however, these instability waves are saturated by non-

linear effects, like e.g. turbulence. Especially due to the temporal growth
of the Kelvin-Helmholtz instability wave, the acoustic solution may be ob-

scured (Agarwal et al., 2004) or the linear solution algorithm may even
diverge after a certain time span. Maintaining finiteness of the time space
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solution is a main aim of many publications, see e.g. the review article of
Richter et al. (2011) or Prax et al. (2008). Due to these reasons it is ad-
vantageous to introduce harmonic variations at a frequency f = ω/(2π) for

density, velocity, pressure and local heat release perturbations, as proposed
by Rao and Morris (2006):

ρ′ = ρ̂(xi)e
iωt, u′

i = ûi(xk)eiωt, p = p̂(xi)e
iωt, q̇′

V = ˆ̇qV (xi)e
iωt. (2.12)

This completely resolves the unbounded growth of Kelvin-Helmholtz insta-
bilities with time and allows to analyze each combustor eigenmode at a

discrete ω separately. Introducing Eq. (2.12) into the LNSEs leads to their
frequency domain counterpart:

iωρ̂ +
∂

∂xi
(ūiρ̂ + ρ̄ûi) = 0, (2.13)

iωρ̄ûi +
∂

∂xj
(ρ̄ūjûi) + (ρ̄ûj + ūjρ̂)

∂ūi

∂xj
+

∂p̂

∂xi
=

∂τij(ûk)

∂xj
, (2.14)

iωp̂ +
∂

∂xi
(ūip̂ + κp̄ûi) + (κ − 1)

(

p̂
∂ūi

∂xi
+ ûi

∂p̄

∂xi

)

=

(κ − 1)




ˆ̇qV +

̂


τij(uk)
∂ui

∂xj








 .

(2.15)

Herein, the mean flow quantities (ρ̄, ūi, p̄) as well as the unknown complex
quantities of density, velocity and pressure amplitudes depend solely on

space xi.

A different set of equations can be obtained by neglecting any viscous ef-

fects in the equations (µ = 0). This results in the so-called linearized Euler
equations (LEEs), the non-viscous counterpart of the LNSEs, which are fre-

quently used for time-space computational aeroacoustics (Bailly and Juvé,
2000; Billson et al., 2005; Mankbadi et al., 1998) or, more recently, also for

generic thermoacoustic problems (Nicoud and Wieczorek, 2009).

2.2 Linearized Equation of State and Entropy

Apart from the heat release term, Eqs. (2.8)-(2.10) are closed. However, es-
pecially for the analysis of thermoacoustic instabilities, information about
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2 Acoustic Governing Equations

the temperature and entropy fluctuations, T ′ and s′ respectively, is desir-
able. This information can be derived from the equations of state, Eq. (2.5),
and entropy, Eq. (2.6), by performing a Taylor series expansion around an

arbitrary mean flow state and keeping only first order terms of the fluctuat-
ing quantities. In this sense, the linearized versions of the equation of state

and entropy read

p′

p̄
−

ρ′

ρ̄
−

T ′

T̄
= 0, (2.16)

s′ = cv
p′

p̄
− cp

ρ′

ρ̄
, or s′ = cp

T ′

T̄
− R

p′

p̄
. (2.17)

As discussed above, assuming isentropic behavior of fluctuating quantities

is very restrictive. However, many studies, e.g. those by Boij and Nilsson
(2003); Gabard (2007), indicate the suitability of assuming s′ = 0 for low

Mach number flows without heat addition. This assumption considerably
eases the calculation since density and pressure fluctuations become directly
coupled by the isentropic relation

p′ = c̄2ρ′. (2.18)

Hence, the LNSEs system reduces by one equation, equivalently reducing
the degrees of freedom of the problem by a factor of approximately 4/5.

It is then straightforward to transform the isentropic relation Eq. (2.18) as
well as the linearized equation of state and entropy, Eqs. (2.16)-(2.17), into

frequency space using Eq. (2.12).

2.3 Material Properties

The dynamic viscosity of the fluid is assumed to vary with temperature T̄

according to Sutherland’s law:

µ =




T̄

Tref





3

2
(

Tref + S

T̄ + S

)

µref , (2.19)

where Tref and µref denote reference temperature and viscosity respectively
and S is the Sutherland temperature. In cases of higher Mach number flows
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2.4 Wave- or Helmholtz Equation

molecular diffusion of heat may become important in regions of shocks.
Then, the property λ can be assumed to vary with

λ =
cp

Pr
µ, (2.20)

using the Prandtl number Pr = cpµ/λ. As the mean flows considered in
this thesis are fully sub-sonic, molecular diffusion of heat is not accounted

for in the present formulation of the linearized energy equation. This is a
very common assumption for the analysis of low frequency acoustic pertur-
bations.

2.4 Wave- or Helmholtz Equation

Assuming a medium at rest ūi = 0 and neglecting molecular diffusion of
momentum and heat (µ = 0 and λ = 0) reduces the linearized equation of

mass, momentum and energy, Eqs. (2.13)-(2.15) to

∂ρ′

∂t
+ ρ̄

∂u′
i

∂xi
+ u′

i

∂ρ̄

∂xi
= 0, (2.21)

∂u′
i

∂t
+

1

ρ̄

∂p′

∂xi
= 0, (2.22)

∂p′

∂t
= (κ − 1) q̇′

V . (2.23)

The assumption of a quiescent medium is valid as long as the characteristic

Mach number of the flow Ma = |ūi|/c̄ is small compared to Lf/La, where
Lf is the the reaction zone thickness and La is the characteristic acoustic

length scale, see paper of Nicoud et al. (2007) and considerations therein.
This justifies the quiescent assumption ūi = 0 for many applications. The

assumption further implies that ∇p̄ = 0 from Eq. (2.2) as well as ¯̇qV =
0 from Eq. (2.3). Moreover, the time derivative of fluctuating quantities

reduces equivalently to D/Dt = ∂/∂t, since convective terms vanish with
ūi = 0.
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2 Acoustic Governing Equations

Taking the time derivative of Eq. (2.21), adding the divergence of Eq. (2.22)
over ρ̄ and using Eq. (2.17) to eliminate ρ′, yields the following scalar wave
equation for the pressure fluctuations p′:

1

c̄2

∂2p′

∂t2
− ρ̄

∂

∂xi




1

ρ̄

∂p′

∂xi



 =
(κ − 1)

c̄2

∂q̇′
V

∂t
. (2.24)

In case of q̇′
V = 0, solely the mean density and speed of sound distributions

may account for the effect of the flame.

A natural way of gaining information about the whole set of thermoacoustic
modes, is then to consider the Helmholtz equation, the frequency domain
version of the wave equation (Benoit and Nicoud, 2005; Nicoud et al., 2007).

Applying the harmonic ansatz of Eq. (2.12) yields

−
ω2

c̄2
p̂ − ρ̄

∂

∂xi

(

1

ρ̄

∂p̂

∂xi

)

= iω
κ − 1

c̄2
ˆ̇qV . (2.25)

Transformation into frequency space results in pressure amplitudes that

are solely a function of space not time. When discretizing the equations
over a certain combustor domain, a quadratic eigenvalue problem may be

formulated. If a model for the heat release rate ˆ̇qV is included, the quadratic
eigenvalue problem becomes non-linear and an iterative routine has to be

applied in order to determine the eigenfrequencies. Discretization of the
Helmholtz equation using finite elements and illustrations on how to solve

the respective eigenvalue problem are shown in the Appendix E.

The main weakness of performing linear stability analysis using the wave or

Helmholtz equation is the quiescent assumption made. Any acoustic mean
flow interaction processes leading to acoustic attenuation or amplification

processes, respectively, are neglected. This poses severe limitations to the
reliability of the predicted eigenfrequencies.

2.5 Low-Order Network Modeling

As described in the previous sections, predicting the frequencies of oscil-
lations is a complex task and, depending on the degree of modeling, can

involve high computational costs. A widespread method to analyze ther-
moacoustic instability is the so-called low-order network modeling approach.
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2.5 Low-Order Network Modeling

Essentially, the modeling subdivides a combustion chamber into its individ-
ual elements. Each element can than be represented in terms of an acoustic
scattering matrix






p̂+
d

p̂−
u




 =






T +(ω) R−(ω)

R+(ω) T −(ω)











p̂+
u

p̂−
d




 , (2.26)

where the pressure wave amplitudes p̂+
u , p̂−

u , p̂+
d and p̂−

d represent the plane
acoustic waves traveling along an element in upstream (+) or downstream

(−) direction, respectively. Their locations are indicated by the subscripts
u for upstream and the subscript d for downstream of the acoustic element.
Complex pressure wave amplitudes are related to the acoustic velocity û

and the pressure p̂ by

p̂+
u/d =

1

2

(

p̂u/d + ρ̄c̄ûu/d

)

, (2.27)

p̂−
u/d =

1

2

(

p̂u/d − ρ̄c̄ûu/d

)

. (2.28)

The coefficients of a scattering matrix Eq. (2.26) can be interpreted as reflec-

tion and transmission coefficients R and T for the pressure waves amplitudes
traveling in downstream or upstream direction, + and − respectively. An

equivalent description to the scattering behavior of acoustic elements is the
so-called transfer matrix. It can be obtained when inserting Eqs. (2.27) and
(2.28) in the scattering matrix of Eq. (2.26), yielding






p̂
ρ̄c̄

û






d

=






T11(ω) T12(ω)

T21(ω) T22(ω)











p̂
ρ̄c̄

û






u

. (2.29)

The coefficients of the transfer matrix relate the acoustic velocity û and
pressure p̂ upstream and downstream of the duct to each other. They de-

pend on the geometry, the frequency as well as on the flow state considered.
Finally, these individual elements can be connected to each other enforcing

pressure continuity and flow rate conservation. When coupling the trans-
fer matrices of a given system and using appropriate boundary conditions,

the complete network of elements can be analytically merged into a matrix
relation of the form

S(ω)P = 0, (2.30)
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2 Acoustic Governing Equations

where P = (p̂1, û1, p̂2, û2, . . . , p̂n, ûn) is the unknown solution vector con-
taining complex pressure and velocity amplitudes while S is the coefficient
matrix containing the n − 1 transfer matrices of all network elements and

boundary conditions. Only a discrete number of pulsations ω will satisfy
the jump relations across the individual elements and boundary conditions.

These are the roots of the dispersion relation det S(ω) = 0 which are the
eigenfrequencies of the system. Since the transfer matrices of typical net-

work models have a complex frequency dependance, the dispersion relation
resulting from Eq. (2.30) needs to be solved numerically (Polifke, 2003).

With the chosen formalism of Eq. (2.12), the real part of the eigenfrequencies
indicates the frequency of oscillations, while the imaginary part provides

information about the growth or damping of the specific mode. One may
differentiate between the two different cases:

ℑ (ω) > 0 stable operation,

ℑ (ω) < 0 unstable operation.
(2.31)

and oscillations decay or are amplified exponentially at a rate of ℑ (ω). The

main advantage of the method is that complex systems including acoustic
losses can be described by a few lumped elements, leading to a low-order

model that can be extensively used for predesign purposes, see e.g. Bade
et al. (2013a,b).

A main requirement of the approach, however, is that all its individual
elements have to be known a priori. In case of simple configurations, e.g.
ducts or discrete area changes, analytical modeling is possible. For example,

Boij and Nilsson (2003, 2006) derive a dispersion relation which incorporates
the flow-acoustic coupling of sound waves with the unstable shear layer of an

area expansion. In case for more complex geometries and flow conditions,
however, only experimental or numerical approaches are feasible.

Experimental approaches rely on the two-source method (Munjal and Doige,
1990a; Åbom and Bodén, 1995), where the element at interest is excited

acoustically once from upstream and once from downstream direction. By
measuring the pressure fluctuations at both respective locations the indi-

vidual coefficients of the scattering and transfer matrix are determined.
Typically, experimental setups are unavailable or too costly in early design

phases and the use of numerical methods becomes more favorable. Ex-
isting numerical approaches perform a compressible LES or an unsteady
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2.6 Heat Release Rate

Reynolds averaged Navier-Stokes simulation (URANS) using harmonic or
broadband excitation signals. Approaches applying harmonic excitation are
highly inefficient in retrieving broadband frequency responses since for every

pulsation ω a single simulation has to be performed. Combining broadband
signal excitation with system identification techniques like Föller and Po-

lifke (2012), however, one is able to provide response within one simulation.
A different method is presented in this thesis. It employs the LNSEs or

LEEs in frequency space to determine the scattering or transfer matrix co-
efficients. This approach is less costly compared to a compressible LES and

may compute the broadband response of acoustic elements by only a few
matrix inversions.

Another main disadvantage of network models is that they require each
element to act individually, which is generally not satisfied for relatively

compact combustion chambers. Moreover, it is solely a one dimensional
representation of complex three dimensional configurations and is purely
restricted to plane wave propagation.

2.6 Heat Release Rate

To close the system of partial differential equations Eqs. (2.8)-(2.10), the
fluctuating heat release rate ˆ̇qV has to be modeled in terms of fluctuating

density ρ̂, velocity ûi and pressure p̂. This is done by the so-called flame
transfer function F (FTF) which is expressed in its most general form as

ˆ̇qV = F(ω, ρ̂, ûi, p̂). (2.32)

A steady flame may be perturbed, causing fluctuations in heat release rate
ˆ̇qV , for various reasons:

• Merk (1956) shows that acoustic velocity fluctuations at the flame front
may perturb its position significantly and lead to perturbations of flame

area and hence perturbations in heat release rate as q̇V ∼ stA.

• Velocity and pressure fluctuations in shear layers may lead to mod-

ulations of the laminar or turbulent flame speed. These fluctuations
perturb the turbulence intensity and length-scale, contributing to per-
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2 Acoustic Governing Equations

turbations of the turbulent flame speed st. This, in turn, gives rise to
perturbations of the overall heat release rate.

• Large-scale coherent vortical structures may be convected in the shear

layer to the flame front. These vortex structures are generated through
velocity fluctuations in the burner month (Külsheimer and Büchner,
2002) which trigger hydrodynamic instabilities of shear layers (Poinsot

et al., 1987). On the one hand, the vortical structures cause wrinkling
of the flame front and therefore perturbations in flame area and heat

release rate. On the other hand, they perturb the turbulent flame speed
st (Yang and Culick, 1986).

• For practical configurations, the reactive mixture is never ideally pre-

mixed. At the point of fuel injection, acoustic fluctuations may mod-
ulate the fuel or air mass flow rate rate resulting in equivalence ration

φ′ fluctuations (Keller, 1995; Lieuwen and Zinn, 1998). After a convec-
tive time lag, these equivalence ratio fluctuations reach the flame front

where they perturb the turbulent flame speed and enthalpy of reaction
per unit volume. Consequently, the flame area and heat release rate
per unit area are altered.

• In combustion chambers employing liquid fuels, e.g. kerosene, acoustic

waves may couple with fluctuations in atomization and droplet va-
porization (Priem, 1965; Priem and Guentert, 1962). As found by

Tong and Sirignano (1986, 1987) unsteady droplet vaporization is a
potential mechanism driving combustion instabilities. Other studies of

Heidmann and Wieber (1966), however, assess a rather weak energy
contribution, while some publications claim that the condensing and

vaporization process rather attenuates acoustic waves (Marble, 1969;
Marble and Candel, 1975; Marble and Wooten, 1970).

Other mechanisms for acoustic flame coupling and influencing factors are
discussed in the literature, e.g. swirl number fluctuations (Gentemann et al.,

2004; Hauser et al., 2011b; Komarek and Polifke, 2010; Palies et al., 2010) or
the influence of a precessing vortex core (Moeck et al., 2012; Syred, 2006).

The effect of confinement is investigated in Hauser et al. (2011a) and Cuquel
et al. (2011).
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2.6 Heat Release Rate

The flame transfer function F mostly depends on a selection of the afore-
mentioned contributions. Which of the effects is more predominant depends
on the character of the combustion system, i.e. if it is operated under per-

fectly premixed, partially premixed or non-premixed conditions, if a laminar
or turbulent flame is considered or if the fuel is of gaseous or liquid character.

Its determination represents a crucial part to the success of any stability
analysis (Lieuwen, 2003) and may be achieved either through analytical

modeling, experimental measurements or numerical simulations.

2.6.1 Analytical Modeling

In general, the relationship between unsteady heat release rate and velocity
or equivalence ratio perturbations has a complex dynamic (see above). How-

ever, in cases where the typical length scale of the flame is small compared
to the characteristic acoustic wavelength that is an acoustically compact

flame, analytical models may be derived describing the global heat release
rate fluctuations (integrated over space). In this sense, models have been
proposed, describing the response of conical or V-shaped laminar flames

(Baillot et al., 1992; Schuller et al., 2003), the effect of equivalence ra-
tio fluctuations (Lieuwen and Zinn, 1998; Sattelmayer, 2003) and swirling

premixed flames (Palies et al., 2011). Especially for laminar flames and pre-
mixed Bunsen-type flames the heat release fluctuations are mainly caused

by kinematic effects and can be modeled with a g-equation ansatz, describ-
ing the displacement of the flame surface. The charm of such models is
that analytical solutions for the linearized perturbations can be retrieved

(Fleifil et al., 1996; Schuller et al., 2003). For more realistic technical con-
figurations including technically premixed, turbulent flames which may be

operated with liquid fuels in extreme cases, pure analytical modeling be-
comes ambiguous.

A fairly simple model accounting for acoustic flame interaction is the famous
n − τ model which is based on the ideas of Crocco (1951, 1952). Essentially

this is a one dimensional model which links the global heat release at time t
to a time lagged acoustic velocity at an upstream reference position, usually

chosen in the burner mouth:

Q̇′(t) = n
¯̇Q

ūb
u′

i(xref , t − τ)nref , (2.33)
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where Q̇′(t) is the global fluctuating heat release rate, ¯̇Q is its mean coun-

terpart and ūb is the bulk velocity at the reference location. Generally, the
factor n governs the strength of the flame response and is called the interac-

tion index. τ describes the time lag and controls the phase between acoustic
pressure and unsteady heat release of the flame and thus, the sign of the
Rayleigh integral, Eq. (1.1). For premixed flames the main idea behind this

modeling approach is that the heat release rate depends on the flame sur-
face area which, considering a given flame speed, is mainly controlled by the

flow rate of the reactive mixture. The time lag than represents a convec-
tive time scale for inhomogeneities traveling from the injector to the flame

front. However, it can also be applied to technically premixed configura-
tions where τ is interpreted as a convective time lag which also incorporates

the traveling time of mixture inhomogeneities. This compact n-τ model is
used frequently in network models.

The compactness assumption is, however, not always justified for modern
gas turbines where the heat release is spatially distributed. In such cases

the compact n-τ model of Eq. (2.33) can be reformulated to relate the local
heat release fluctuations to a velocity fluctuation at the reference location

q̇′
V (xi, t) = nl(xi)

¯̇qV (xi)

ūb
u′

i(xref , t − τl(xi))nref , (2.34)

where q̇′
V is the local unsteady heat release rate per unit volume. Now,

local interaction index nl(xi) and the local time delay τl(xi) are spatially
distributed in the flame zone which permits differences in the local response

of the flame.

Both models, global as well as local, require the knowledge of n or nl(xi) and
τ or τl(xi) to close the system. These can either be retrieved through ex-
perimental measurements (Ducruix et al., 2000; Hirsch et al., 2005; Schuller

et al., 2003) or through numerical simulations (Martin et al., 2006; Tay
Wo Chong et al., 2012; Varoquié et al., 2002). In the present study this

is achieved using an atmospheric pressure test rig to measure the FTF ex-
perimentally. Global n and τ parameters are derived from the experiments

which are, however, only valid for a compact flame. When predicting com-
bustion instabilities using a spatial approach, e.g. LNSEs or Helmholtz

equation, the flame needs a finite dimension and cannot be considered as
compact. Consequently, in numerical simulations the flame is given a small,
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finite space and a local n-τ model is chosen, Eq. (2.34), having a constant
τl(xi) = τ and relating the local interaction index to the global one using

nl(xi) =
n ¯̇Q
¯̇qV Vf

, (2.35)

where Vf represents the finite volume of the flame region. For simplicity

reasons, dependance of the n-τ model parameters on frequency was not
explicitly mentioned, but its is obvious that these parameters depend sig-

nificantly on frequency. A model using only a single interaction index and
time delay can hardly represent the flame response over a broad frequency
spectrum.

2.6.2 Experimental Measurements

Experimental measurements are based on the concept of FTFs which cor-
relate the unsteady global heat release rate to a velocity perturbation at a

reference position mostly located in the burner mouth

F(ω) =
Q̇′(ω)/ ¯̇Q

u′(xref , ω)/ū(xref)
. (2.36)

For perfectly premixed flames, the heat release fluctuations Q̇′ can be corre-

lated with the OH∗or CH∗chemiluminescence signals, which are measured
using intensified cameras (Keller and Saito, 1987; Price et al., 1969). As-
suming spatial proportionality is justified as long as laminar flames are con-

sidered, see e.g. Hardalupas and Orain (2004), and under some constraints
locally distributed nl(x) and τl(x) may be measured. However, for turbu-

lent premixed flames the chemiluminescence signal becomes a function of
turbulence intensity and only the integral chemiluminescence intensity can

be correlated with the integral heat release rate as shown by Lauer and
Sattelmayer (2010). Thus, in this case, only global n and τ parameters can

be obtained. For technically premixed systems the situation becomes even
more complex as the chemiluminescence intensities also depend on local
equivalence ratios. In this case, even the global integrated chemilumines-

cence signal is not proportional to the global heat release rate.

For flame configurations, such as kerosene flames, where the heat release rate
is not accessible from chemiluminescence intensities, a different approach
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based on acoustic analogies must be employed, see e.g. Alemela (2009).
Therein, global balances of fluctuating mass, momentum and energy across
the flame can be recasted into a transfer matrix notation of Eq. (2.29).

The relations used are the so-called Rankine-Hugonoit relations which are
valid for compact flames (Dowling, 1995; Keller et al., 1985). Inserting the

relation of Eq. (2.36), the procedure yields the following purely theoretical
transfer matrix






p̂
ρ̄c̄

û






d

=







ρ̄cc̄c

ρ̄hc̄h
− ρ̄cc̄c

ρ̄hc̄h

(

T̄h

T̄c
− 1

)

(1 + F(ω)) Mac

−
(

T̄h

T̄c
− 1

)

κMac 1 +
(

T̄h

T̄c
− 1

)

F(ω)












p̂
ρ̄c̄

û






c

.

(2.37)

As transfer matrices can simply be determined using a two-source location

method (Munjal and Doige, 1990b), the flame transfer matrix can be ac-
cessed by measuring the acoustic states up- and downstream of the flame.
This transfer matrix, however, contains also information about the acoustic

transfer behavior of the swirl atomizer nozzle, which is not desired. There-
fore, this piece of information is extracted from the transfer matrix by mea-

suring the transfer matrix of the swirl atomizer nozzle under non-reactive
conditions independently.

In order to treat the non-linear saturation effects of the heat release rate,
Noiray et al. (2008) have extended the experimental FTF analysis to take

the specific amplitude of velocity perturbations at the burner mouth into
account, i.e. F(ω, û). The authors call this modified flame transfer func-

tion a flame describing function (FDF). In this way, non-linear saturation
amplitudes can be determined using linear stability analysis and assuming
that the main driver of non-linearities is the flame.

2.6.3 Numerical Simulations

As experimental measurements are expensive from an infrastructural and

operational point of view, a relatively cheap alternative is the numerical
determination of flame transfer functions. Due to the exact knowledge of all

physical quantities and a certain subspace of chemical species, even spatially
distributed FTFs can be determined.
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These methods are based on acoustically exciting the flame either through
harmonic (Giauque et al., 2005; Selle et al., 2006) or through broadband
excitation signals (Kim et al., 2010; Tay Wo Chong et al., 2010, 2012). Ob-

viously, later method represents the most efficient way of identifying FTFs
over the complete frequency spectrum, since only a single simulation is

needed compared to multiple harmonic excitations using the first mentioned
method. It requires, however, the use of more advanced system identifica-

tion techniques (Föller and Polifke, 2010; Föller et al., 2010a) in order to
extract the frequency dependent flame responses. A main remedy of a nu-

merical approach is the high degree of modeling, especially concerning the
effect of the turbulent subgrid scales, as well as the limited chemistry sub-
space. Independently of these constraints, the methods (especially LES),

feature a high potential for the near future.

2.7 Acoustic Boundary Conditions

Boundary conditions represent important input parameters to any stabil-
ity analysis. They govern the acoustic energy flux out of the system and

therefore contribute to the systems overall energy content. Only physically
motivated absorption or introduction of acoustic energy is desired. More-
over, since boundaries reflect acoustic waves with a certain phase-shift, they

constitute to the thermoacoustic feedback loop. This is shown e.g. in Tran
et al. (2009), who varied the inlet and outlet boundary conditions of a

combustion chamber and therewith directly controlled the system stabil-
ity. Their measurements highlight the importance of the acoustic boundary

conditions and their effect the on the thermoacoustic feedback loop.

In order to define a well-posed physical problem this thesis follows the gen-

eral ideas of Hadamard (1902): A problem is well-posed if the solution
depends on initial and boundary conditions in a continuous way. The num-

ber of conditions to be defined at each boundary depends on the number of
characteristics entering or leaving the domain (Hirsch, 1990). These char-
acteristics are the upstream and downstream traveling acoustic waves, as

well as convectively transported vorticity and entropy waves.

In this section, first, an introduction to the acoustic reflection behavior
of characteristic boundaries found in practice is given. Such boundaries
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are typically represented by their complex impedance. Then, the general
cases of computational boundaries for confined geometries: mass flow inlets,
outlets and walls are considered. It is shown how vorticity and entropy

waves at boundaries are generally treated in this thesis.

2.7.1 Impedance Boundary Conditions

The reflection of acoustic waves at a computational boundary is fully de-
scribed through its complex impedance Z(ω) which relates perturbations in

pressure p̂ to velocity ûi by

Z(ω) =
1

ρ̄c̄

p̂

ûini
, on ∂ΩZ, (2.38)

where Ω denotes the computational domain and ∂ΩZ is its impedance
boundary. The impedance is the most general form of an acoustic bound-
ary, since it is used to describe the reflection behavior of very different

combustion chamber boundaries such as perforated screens, inlet diffusors
or outlet high pressure vanes. Analogously, an acoustic boundary may be

represented by its complex reflection coefficient R(ω) which describes the
ratio of reflected to incident acoustic waves,

R(ω) =
p̂+/−eiωt

p̂−/+eiωt
, (2.39)

and is a more intuitive variable. It can easily be derived from the complex
impedance R = Z − 1/Z + 1. While impedances or reflection coefficients

describe the acoustic reflection behavior, they provide no answer to the
question of how these boundaries acoustically reflect impinging entropy or

vorticity fluctuations generated in flame or flow separation regions, respec-
tively.

Subscribing impedances of Eq. (2.38) to computational boundaries using
LNSEs for configurations with multidimensional flow fields is difficult. In

such situations a modified formulation of the impedance must be introduced
which takes gradients in the mean flow field into account (Ingard, 1959; My-

ers, 1980). Otherwise, unphysical instability waves may be created in the
numerical solution (Brambley et al., 2012; Rienstra et al., 2013). The cou-

pling of acoustic waves with impedance boundaries in presence of boundary
layers is not trivial, even in frequency space.
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2.7.1.1 Subsonic Nozzle or Diffusor

Generally, at the air inlet of a combustion chamber the flow is decelerated
in a diffusor to reach lower Mach numbers. Part of the inlet air takes part

in the combustion process while another part is used to cool the combustion
chamber walls. When the burnt gases reach the combustion chamber outlet

the mixture is accelerated in the first vane passage, which is also referred
to as nozzle guide vane (NGV). These in- and outflow boundaries define

the acoustic boundary conditions to any thermoacoustic stability analysis
of gas turbines combustion chambers.

Depending on whether the flow state is sub-critical or choked, a nozzle
or diffusor reflects acoustic waves differently. In case the flow is choked

at its critical section (Ma∗ = 1), acoustic waves are generally fully re-
flected. However, with increasing frequency reflection amplitudes generally
decrease. In the other case, where the flow is sub-critical, acoustic waves

may pass through the nozzle. Then, the reflection behavior does not only
depend on the nozzle flow but also on the acoustic boundary condition up-

or downstream of the diffuser or nozzle, respectively. With this knowledge
available, the reflection behavior may be exactly specified using numerical

or analytical tools.
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Figure 2.1: Mach number dependance of the reflection coefficient of a subsonic flow
through a given nozzle configuration. The inlet flow Mach numbers are varied
Ma = 0.01, 0.1, 0.2 and 0.4. Compact theory of Marble and Candel (1977)
is compared to a non-compact one dimensional LEEs tool of Lamarque and
Poinsot (2008).
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Measurement of the acoustic reflection behavior of accelerated flows is gen-
erally difficult for various reasons. Therefore, analytical and numerical rou-
tines are generally preferred. Analytical models are restricted to one dimen-

sional or at most two dimensional configurations. They are based on one
dimensional solutions of the linearized Euler equations. Such models com-

prise the work on compact nozzles or nozzles having finite length of Marble
and Candel (1977) or Cumpsty and Marble (1977). Mani (1981) also derives

a theory for a nozzle’s isentropic reflection behavior. All aforementioned au-
thors, however, make assumptions on the axial flow distribution inside the

nozzle. To avoid any assumption made, the one dimensional LEEs may
be discretized using a finite difference method as shown by Lamarque and
Poinsot (2008). Their routine is implemented in a Matlab code and is ex-

plained in detail in Appendix F, which also contains a variety of different
validation test cases. Fig. 2.1 illustrates the difference between the theory

of Marble and Candel (1977) assuming a compact nozzle configuration and
the results of the one dimensional LEEs solver. As the compact theory is

derived for the low frequency limit, results agree well in this region but will
increasingly deviate towards higher frequencies. This code will be used to

retrieve the acoustic impedance of a subsonic nozzle, placed at the end of
an atmospheric combustion test rig in Section 6.2. Also compressible CFD,
e.g. LES, can be used to study the acoustic reflection behavior of nozzle

flows as shown e.g. by Lamarque and Poinsot (2008).

The acoustic reflection coefficient computed with the above mentioned

methods is -strictly speaking- only valid for longitudinal waves impinging
onto the inlet diffusor or outlet NGV. In annular combustion chambers,

however, the acoustic modes tend to be circumferential in shape. Neverthe-
less, Stow et al. (2002) show that reflection coefficients obtained through

one of the methods are still applicable to annular combustion chambers in
first order principle.

Besides the reflection of acoustic waves, the accelerated flow inside a
turbine stage may itself act as a source of sound. Non-uniformities of the

equivalence ratio or of the pressure distributions inside the combustion
zone create fluctuations in temperature or so-called hot-spots (Chu, 1953).

After their convective transport to the exit of a combustion chamber,
these are accelerated in the first turbine stage causing pressure and density
fluctuations which are reflected back into the combustion chamber as
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2.7 Acoustic Boundary Conditions

sound (Crocco, 1953; Tsien, 1952). This effect has already been covered
by many publications including experimental investigations by Bake et al.
(2009) and one dimensional modeling by (Leyko et al., 2009; Mani, 1981;

Marble and Candel, 1977; Moase et al., 2007). The role of entropy waves
for combustion driven instabilities is also analyzed by Eckstein et al. (2006).

2.7.1.2 Open Outlet

Open outlets are encountered at boundaries where a fluid discharges into

atmosphere. This is for example the case at an aeroengine exhaust, where
relatively high outlet Mach-numbers are reached. In terms of acoustics, the

problem can be reduced to a straight circular duct which radiates noise into
the surrounding atmosphere.

This kind of problem was first addressed by Levine and Schwinger (1948)
who derive an analytical solution of the plane wave reflection coefficient

with a fluid at rest and ambient conditions. For the compact case, i.e. duct
radius considerably smaller than the plane wave length r ≪ λ, the reflection
coefficient amplitude is close to unity, see Fig. 2.2 for He → 0. Later, their

results were experimentally confirmed by Peters et al. (1993). A simple
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Figure 2.2: Mach number dependance of the reflection coefficient and extended length
of a flow discharging into atmosphere. Flow Mach numbers are varied using
Ma = 0.05, 0.1, 0.2, 0.3, 0.4. Experiments of Allam and Åbom (2006) are
compared to the analytical theory of Munt (1990). Arrows indicate direction
of increasing Mach numbers.
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numerical representation of their findings is to prescribe vanishing pressure
fluctuations

p̂ = 0, on ∂ΩD, (2.40)

on Dirichlet outlet boundaries which is similar to prescribing Z = 0 in

Eq. (2.38). This condition introduces a π-phase shift of the reflected wave.
However, the assumptions of zero mean flow and compactness are highly

restrictive and lose validity at higher frequencies. There, aero-acoustic in-
teraction effects, especially interaction of acoustic waves with hydrodynam-
ically unstable shear layers, lead to reflection coefficients exceeding one,

which is theoretically explained by Howe (1979b).

The frequency dependant mean flow effect of acoustic reflections of open
outlets was first addressed in a theoretical model by Munt (1977, 1990).
The model takes aero-acoustic interaction effects into account and results

in reflection coefficients above unity. His findings were confirmed by ex-
periments performed e.g. by Allam and Åbom (2006) over a wide range of

Mach-numbers at ambient temperature conditions. Munt’s theoretical pre-
dictions and the experimental results of Allam and Åbom (2006) are com-

pared against each other in Fig. 2.2 for various jet Mach-numbers. Therein,
the phase of the reflection coefficient also shows a non trivial behavior. It is
plotted as extended length, which can be interpreted as the virtual length,

planar waves would travel into the opening before being reflected.

Very recently, Jörg et al. (2013) extended the analysis to higher exhaust
gas temperatures which are more realistic for engine like conditions. Using
a LNSEs based approach, they are able to show the significant influence of

exhaust gas temperature. At higher Helmholtz numbers the reflection coef-
ficient decreases significantly with respect to the temperature ratio Tjet/T∞.

The results also indicate possible limitations of Munt’s theory as the model
increasingly deviates from the numerically predicted results with rising tem-

perature ratio. Fig. 2.3 compares the results obtained by LNSEs predic-
tions and Munt’s model for different elevated exhaust gas temperatures up

to Tjet = 1200K. Note that the velocity correction proposed by Allam and
Åbom (2006) is consistently used to correct Munt’s model.
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Figure 2.3: Jet temperature dependance of the reflection coefficient and extended length
of a flow discharging into atmosphere. Flow temperatures are varied between
Tjet = 293, 600, 900 and 1200 K at a constant outlet Mach number Ma = 0.05.
Analytical model of Munt (1990) using a velocity correction proposed by
Allam and Åbom (2006) is compared to the numerical simulations using a
LNSEs approach by Jörg et al. (2013). Arrows indicate direction of increasing
jet temperatures.

2.7.1.3 Perforated Screen

Another important type of boundaries frequently encountered in combus-
tion chambers are perforated screens. In order to ensure thermal protec-

tion of the combustor walls, these are perforated by small diameter holes
(∼ O(10−4) meters). Jets of cooling air issue from these holes. Through
their coalescence, a cooling film is established which isolates the walls from

the hot combustion gases. Although perforated plates are not considered in
the present analysis, they are illustrated briefly for reasons of completeness

of a thermoacoustic stability analysis.

From an acoustical point of view, perforated plates behave very differently

to convectively cooled walls. On the one hand, the liner perforations lead
to transmission of acoustic waves and therewith to a communication be-

tween the combustor and its periphery. On the other hand, perforations
introduce damping of incident acoustic waves and thus may attenuate com-

bustion instabilities (Howe, 1979a), a characteristic highly important for
combustion chamber stability analysis. The mechanism behind the atten-

uation process can be explained by the conversion process of acoustic into
vortical energy (Bechert, 1979; Howe, 1979a). Perforated screens have been
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analyzed extensively analytically (Bellucci et al., 2004; Howe, 1979a, 1998),
experimentally (Allam and Åbom, 2011; Bellucci et al., 2004; Eldredge and
Dowling, 2003; Hughes and Dowling, 1990; Jing and Sun, 1999; Tran et al.,

2009) and numerically (Dassé et al., 2008; Eldredge et al., 2007).

Accounting for perforated liners in the thermoacoustic stability analysis
directly using LNSEs, would require the full resolution of all jets issuing
from the perforated screens. Since these are small in diameter and high

in number, this would require high amounts of grid cells clustered in near
wall regions and would mostly be out of scale of any stability analysis.

Therefore, impedance models are generally used to account for the damping
effect of perforated liners (Bauer, 1977; Bellucci et al., 2004; Howe, 1979a;

Jing and Sun, 1999). Mendez and Eldredge (2009) show that the modified
model developed by Howe (1979a) and Jing and Sun (1999) represents the

experimental measured reflection coefficients of Bellucci et al. (2004) with
high accuracy. It is based on the assumption that the impedance of the
perforated screen is composed of two parts, a wall impedance Zp and a

cavity impedance Zc,

Zliner = Zp + Zc. (2.41)

In the cavity, planar wave propagation can be assumed

Zc = −
iρc

tan (kl)
, (2.42)

where l denotes the distance to the back wall of the cavity. The impedance

of the perforated screen can be expressed in terms of a Rayleigh conductivity
KR

Zp =
iωρd2

KR
, (2.43)

where d denotes the hole spacing. The Rayleigh conductivity KR is ex-

pressed in terms of first and second order Bessel functions B1 and B2 re-
spectively

KR = 2r

(

1

kr
+

2

π

h

r

)−1

, and

kr = 2r



1 +
π
2 B1(St)e−St − iB2(St) sinh(St)

St
[

π
2 B1(St)e−St + iB2(St) cosh(St)

]



 .

(2.44)
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St denotes the Strouhal number of a single jet and r is the hole radius. The
influence of perforated liners on the eigenmodes of an annular combustion
chamber is shown by Gullaud and Nicoud (2012). Their findings illustrate

that the overall damping reached by incorporating the effect of perforated
combustor walls is of lower magnitude. The present study will show that

damping contribution of the acoustic interactions with the swirled mean
flow are generally an order of magnitude higher.

Taking into account perforated liners using complex impedances on duct
wall boundaries in a LNSEs solver can result in the artificial excitation of

Kelvin-Helmholtz instabilities (see Brambley et al., 2012; Rienstra et al.,
2013). Such flow instabilities arise in the fluid dynamic boundary layer

of the computation and are not observed in real applications. A Kelvin-
Helmholtz instability is generally caused by an inflection point in the mean

flow profile. However, in duct boundary layer profiles inflection points are
normally absent. This is changed when imposing a complex impedance.
The problem can be resolved by subscribing a modified impedance condition

proposed by Ingard (1959) and Myers (1980).

2.7.2 Additional boundary conditions for LNSEs

After having addressed the acoustic reflection behavior of characteristic

combustion chamber elements, the following sections provide a more gen-
eral view on the computational boundary conditions for the use in a LNSEs

solver. In order to define a well-posed problem, additional boundary condi-
tions need to be imposed, which especially address the characteristic waves
of vorticity and entropy not considered so far. This section provides differ-

ent possibilities of boundaries and therewith completes the computational
boundary treatment.

2.7.2.1 Mass Flow Inlet

At a mass flow inlet, five or four conditions need to be imposed in three
dimensional space depending on whether the flow is super- or subsonic,

respectively. For a subsonic flow, the involved characteristics entering the
domain are the downstream traveling acoustic wave (c̄ + ū), the vorticity
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wave vector and an entropy wave (both traveling with ū). At a supersonic
inlet, the velocity speed of the upstream traveling wave changes sign (c̄− ū)
and, thus, an additional condition needs to be imposed.

Generally, no information is available concerning entropy and vorticity fluc-

tuations at the inlet. Therefore, it is justified to assume that neither entropy
nor vorticity waves enter the computational domain at its inlet. Setting zero
entropy waves at the inlet leads to the following Dirichlet condition for the

linearized energy equation

ŝ = 0, yielding p̂ = c̄2ρ̂ on ∂ΩD. (2.45)

This is the same isentropic relation of Eq. (2.18). The assumption, however,

may be too restrictive when the upstream boundary is choked. In this case
acoustic waves that propagate upstream may interact with the shock that
defines the boundary (Leyko et al., 2008). Interaction may lead to the

generation of entropy waves that are convected downstream by the flow.
In such situations, Eq. (2.45) can be replaced by assuming zero enthalpy

fluctuations ĥ = cpT̂ + ūiniûini, which directly translates to the following
condition for the entropy perturbations

ŝ =
1

T̄

(

p̂

ρ̄
+ ūiniûini

)

. (2.46)

Alternatively, if the inlet is choked mass flow fluctuations vanish ṁ′ =
(ρu)′ = 0 or in other words

ρ̂ū + ρ̄û = 0, on ∂ΩD. (2.47)

As described above, generally no information about vorticity fluctuations is

available at the domain inlet. In these situations it is natural to assume zero
vorticity fluctuations for the linearized momentum equations by setting

û|| = 0, on ∂ΩD. (2.48)

The index || refers to the components parallel to the respective boundary.

2.7.2.2 Mass Flow Outlet

At the mass flow outlet the situation is different: Vorticity and entropy
waves are convected out of the domain and no boundary condition needs
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to be imposed for these types of fluctuations. Solely acoustic waves are
reflected back into the system when the flow is subsonic and have to be
accounted for. Hence, in order to define a well-posed physical problem, only

one boundary condition is necessary in case of a subsonic outlet, whereas
no condition needs to be prescribed when the flow is supersonic. If no other

information is available it is sufficient to impose an impedance boundary
condition. Of course the outlet may also be assumed as choked, leading to

the simple condition of Eq. (2.47) for the linearized momentum equations.

2.7.2.3 Wall Boundaries

In the vicinity of walls, fluid dynamic and acoustic boundary layers are

formed due to adhesion forces of molecular particles. Thus, fluctuations of
velocity must vanish in near wall regions, leading to

ûi = 0, on ∂ΩD. (2.49)

Prescribing this so-called no-slip condition to wall boundaries leads to the
formation of an acoustic boundary layer, which needs to be resolved nu-
merically. However, its thickness, which may be estimated for a quiescent

medium as

δa =

√
√
√
√

2ν

πf
, (2.50)

decreases significantly with increasing frequency. Already at moderate fre-
quencies the acoustic boundary layer δa is an order of magnitude smaller
than the hydrodynamic layer δh. Thus, subscribing no-slip boundary condi-

tions would result in a high clustering of finite elements in near wall regions.
Gikadi et al. (2012) have shown that the effect of the acoustic boundary layer

on the scattering behavior of an area expansion and a single hole orifice is
insignificantly low. They state that, if the fluid dynamic boundary layer

is resolved sufficiently the aeroacoustic interactions are captured correctly.
In this case the acoustic boundary layer may be neglected by prescribing

slip boundary conditions for the linearized momentum equation to all wall
elements, i.e.

ûini = 0, on ∂ΩD, (2.51)
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which weakens the constraint of no velocity fluctuations to zero velocity
fluctuations in normal to wall directions ni.

For the energy equation Eq. (2.10) we may further assume that the com-
bustion chamber walls have a constant temperature Tw = const. and tem-

perature fluctuations T̂ = 0 vanish. This leads to the following relationship
from Eq. (2.16)

p̂ −
p̄

ρ̄
ρ̂ = 0, on ∂ΩD. (2.52)

A suitable alternative is to prescribe a Neumann type of boundary condition,
imposing zero gradient of fluctuating pressure and/or density,

∂p̂

∂xi
ni = 0,

∂ρ̂

∂xi
ni = 0, on ∂ΩN . (2.53)

With the definitions of the homogeneous boundary conditions, Eqs. (2.38)-

(2.53) on ∂Ω = ∂ΩD ∪∂ΩN ∪∂ΩZ and ˆ̇qV = 0, Eqs. (2.8)-(2.10) define either
a linear eigenvalue problem with unknown complex ω, or a linear matrix
inversion problem where ω is real and explicitly prescribed.

2.8 Acoustic Energy

Stability analysis of combustion chambers is based on the evaluation of
the total acoustic energy in a given system. From the linearized mass,
momentum and energy equations, Eqs. (2.8)-(2.10), an equation describing

the temporal evolution of the system energy is obtained

∂e

∂t
+

∂Ii

∂xi
= Q, (2.54)

where the value e is the (local) energy of perturbations per unit volume and
Ii is an acoustic energy flux. Q defines a source term which includes the
effect of the heat release but also other field sources due to acoustic-flow

interaction or coupling with entropy waves. Integration over a stationary
volume, interchanging integration with the partial derivative for e and ap-

plying the Gaussian divergence theorem leads to the integral form of the
energy equation

∂E

∂t
+
∫

∂Ω

IinidS =
∫

Ω

QdV, (2.55)
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where E is the (global) energy of perturbations integrated over the domain
and the acoustic intensity Ii is only defined on the domain boundaries.
The global acoustic energy budget includes internal and external energy.

Whether a given system is unstable (the total energy of the system increases
over time) or is stable (the total energy of the system decreases) depends

on the temporal evolution of the system’s global energy E and thus on the
first term of Eq. (2.55). Assuming that the acoustic energy grows or decays

similarly to p′p′ and thus proportional to exp(2αt) yields for the rate of
attenuation or amplification α:

α =
1

2

∂E
∂t

E
. (2.56)

Substitution into Eq. (2.55) equivalently yields

α =
1

2

∫

Ω
Q dV −

∫

∂Ω
Iini dS

E
, (2.57)

a criterion for the stability of a combustion system. If α < 0, the system
damps energy. If α > 0, the system amplifies energy and instability is
observed. From the criterion of Eq. (2.57) damping and attenuation effects

can be explained by comparing energy input to the energy output. Thus,
system stability depends on the sign of the numerator.

Derivations of the terms for the energy E and acoustic flux Ii is non trivial,
since energy is normally composed of second order terms of the pertur-

bations. As the LNSEs, however, only contain terms of first order while
all second order terms were omitted for the derivation of the equations,

their explicit formulation is not trivial. For the simplest case of a quies-
cent medium or an isentropic medium, the acoustic energy can easily be

derived. This is exemplarily performed in Appendix C. However, when
considering a non-isentropic and non-quiescent medium the derivation gets
far more complex. The classical definition of acoustic energy is then not

sufficient anymore and a generalized disturbance energy corollary including
entropy fluctuations needs to be derived (Nicoud and Poinsot, 2005). This

is done by Myers (1991) who describes the energy of perturbations of an
arbitrary steady flow. Karimi et al. (2008) further extend his theory by

incorporate combustion terms. With availability of the complete perturbed
fields using the methods presented in this thesis, an energy consideration

becomes highly interesting for further investigations of the results from a
phenomenological perspective.
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2.9 Vortex-Acoustic Interaction

Configurations where shear layers in the mean flow are present are subjected

to acoustic-flow coupling. Depending on the Strouhal number, perturbation
energy may be transferred either to or from the acoustic field, leading to
amplification or attenuation of the incident acoustic waves, respectively.

In severe cases, amplification can lead to self-sustained oscillations in pipe
systems, a phenomenon which is also called whistling (see Nelson et al.,

1981, 1983).

The underlying mechanism of acoustic-flow interaction results from trig-

gering of hydrodynamic instabilities or vortical disturbances in regions of
flow separation. While they are convectively transported within the shear

layer, they may continuously interact with the acoustic field. As described
by Hofmans (1998) the interaction depends significantly on the incidence

of the acoustic waves, i.e. on the spatial distribution of the acoustic veloc-
ity across a vortical structure. If, additionally, the shear layer features a

hydrodynamic instability (Michalke, 1965), energy is transferred from the
mean flow field into the vortical modes contributing to their growth. Thus,
the interaction between acoustic waves and vortical structures may become

stronger when hydrodynamic instabilities of the shear layer are present.
This effect applies equivalently to attenuation and amplification processes.

The magnitude of the interaction can be estimated using the low-Mach
number approximation for the time averaged acoustic power derived by

Howe (1975, 1980, 1998):

〈P 〉 = −ρ̄
∫

V

〈ω × u〉 · u′dV, (2.58)

where ω = ∇ × u is the vorticity vector, u is the local flow velocity and u′

denotes the local acoustic perturbation velocity. Integration is performed
over the volume enclosing the vorticity V . If the time-averaged power is

negative, acoustic energy is lost to the hydrodynamic field. Conversely,
sound is generated when the time-averaged power is positive (Karlsson and

Åbom, 2010).
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2.10 Non-Linearity and Non-Orthogonality

The current analysis focuses on linear stability of combustion systems. This
assumption seems to be well justified at the time of the onset and initial

growth of instabilities where the amplitudes of oscillations are small (Zinn
and Lieuwen, 2005). Thus, linear models are well suited to discriminate
between unstable and stable combustor operation. However, after the onset

of instability the oscillation amplitudes increase and non-linear phenomena
start to govern the driving and damping behavior of combustors.

The main driver for non-linearities is the convective term ∇(ρuiuj) in the
Navier-Stokes equations Eqs. (2.1)-(2.3). Non-linearities determine limit

cycle amplitudes (the finite amplitude of oscillations), instability triggering
(the mechanism by which an unstable oscillation appears when the system

experiences a finite amplitude perturbation), mode switching (the change
in frequency observed during operation of practical devices) and hysteresis

(Dowling, 1997, 1999; Lieuwen and Neumeier, 2002; Wicker et al., 1996).
In terms of energy, the non-linear terms neglected in the present analysis,

may also lead to a redistribution of energy among different length scales,
i.e. eigenmodes, see Schmid and Henningson (2001).

When considering the flame to be the only or main driver of instabilities
(Dowling, 1997), the effect of saturation may also be captured in a purely
linear framework by incorporating the so-called flame describing function

(FDF) (Noiray et al., 2008). In their work the authors extend FTFs,
Eq. (2.32), by taking the amplitude of velocity perturbations at the burner

mouth into account, viz. F(ω, ûref). Generally, this leads to decreasing
flame responses with increasing velocity amplitude as non-linear damping

processes increase.

Another characteristic of a linear system is the non-orthogonality of its

eigenvectors. If the eigenvectors are not orthogonal to each other, they may
interact in a way that short term transient growth may occur even though a

linearly stable behavior is predicted. In the long term, however, the system
will reach its initial stable state. The theory of non-normal interactions

is introduced to thermoacoustics analysis by Balasubramanian and Sujith
(2008). Parameters influencing the orthogonality of the eigenfunctions are
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boundary conditions, heat release rate and a non-zero and multidimensional
baseline flow (Crighton, 1975; Wieczorek et al., 2010).
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3 The Finite Element Method

To solve the acoustic problem, the frequency space LNSEs Eqs. (2.13)-(2.15)
need to be discretized using a finite volume, finite difference or finite element

technique. Despite the popularity of finite elements for the use in structural
dynamics, it is far from being popular in the field of fluid mechanics. This
development may be explained through the fact (among others) that the

best approximation character of finite elements is lost when considering
non-elliptic partial differential equations (Hughes, 2000). In such cases the

differential operators are not self-adjoint, a characteristic which is mostly
found in fluid mechanics. Structural dynamics problems, on the other hand,

are of elliptic type and therefore keep the best approximation feature of
finite elements.

Finding a suitable discretization technique for computational acoustic prob-
lems is somewhat complex: The scalar Helmholtz equation Eq. (2.25), fre-

quently used for thermoacoustic analysis, is indeed of elliptic character and
finite elements are well-suited. However, when considering frequency space
LNSEs the elliptic character of the equations is partially lost and the finite

element technique loses its main advantage over, e.g., a finite volume tech-
nique. As it is a main aim of this thesis to develop a unified framework

to study thermoacoustic instabilities, these conflicting requirements for the
choice of discretization technique cannot be resolved. However, with the

development of stabilized finite element techniques (Hughes and Brooks,
1979; Hughes et al., 1989, 2004, 2010), the finite element method has be-

come competitive for the use in fluid mechanic problems. Therefore, the
finite element procedure is selected as the method of choice in this thesis to
discretize both, the LNSEs as well as the Helmholtz equation. The following

sections focus on the finite element treatment of the LNSEs, while details
on the treatment of the Helmholtz equation can be found in Appendix E.
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To simplify the derivation, we will rewrite the LNSEs for a three dimen-
sional cartesian coordinate system in a more compact notation, using nabla
operators:

iωρ̂ + ∇ · (ūρ̂ + ρ̄û) = sρ, (3.1)

iωρ̄û + ∇ · (ρ̄ūû) + ∇p̂ + (ρ̄û + ūρ̂) · ∇ū = ∇ · τ (û) + su, (3.2)

iωp̂ + ∇ · (ūp̂ + κp̄û) + (κ − 1) [p̂∇ · ū − û · ∇p̄] = sp. (3.3)

The LNSEs are composed into four different parts starting from the very

left: A frequency dependent term, a convective term, a reactive term (absent
in Eq. (3.1)), a diffusive term and source terms sρ, su and sp , e.g. including
the heat release term. Compared to the LNSE representation of Section

2.1, τ (û) represents the linearized stress tensor. The term including the
stress tensor in the linearized energy equation Eq. (2.15) is included into the

source term sp to simplify the derivation. Other forms used in the literature
to represent LNSEs are shown in Appendix B. For illustration purposes

the Navier-Stokes equations are often recasted into a scalar convection-
diffusion-reaction (CDR) equation of an arbitrary variable φ. Doing so for
a fluctuating variable φ in frequency space, yields

iωφ̂ + ∇ ·
(

ūφ̂
)

+ σφ̂ = ν∆φ̂ + sφ, (3.4)

where σ is the constant coefficient of the reactive term and sφ is a source

term. Note that this scalar equation is equally structured to the LNSEs of
Eqs. (3.1)-(3.3).

It is again noted that the full set of LNSEs are solved in this thesis. This
is not commonly the case for aeroacoustic applications found in literature,

which mainly introduce simplifications to the reactive terms of Eqs. (3.2)
and (3.3) in order to avoid or suppress Kelvin-Helmholtz instabilities. Ewert
and Schröder (2003) e.g., assume a vortex free velocity field, viz. ω × u = 0

where ω = ∇ × u. Other publications simply neglect all mean gradient
terms (cp. Tester et al., 2008) or, like Bogey et al. (2002); Zhang et al.

(2004), only remove a distinct set of mean gradient terms. Latter procedure
mainly affects the reactive terms of Eqs. (3.2) and (3.3) which are responsi-

ble for the acoustic flow coupling processes. A small review on the different
methods to suppress shear layer instability is provided by Richter et al.

(2011). Equations simplified in this way are well suited for the description
of far fields in aeroacoustic problems, where a uniform or no flow is present.
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However, by doing so, it is believed that the coupling process of acous-
tic waves with vortical or entropy disturbances is not captured correctly.
This will consequently affect the prediction accuracy of sound attenuation

and amplification processes, which this thesis aims to predict. Therefore,
no simplifications are introduced and Kelvin-Helmholtz instabilities become

part of the solution.

Keeping Kelvin-Helmholtz instabilities in the solution, however, may lead to

numerical difficulties. On one hand, their unbounded growth in time leads
to strong local gradients for the solution variables. On the other hand,

an insufficient numerical resolution of the vortical disturbances may lead
to spurious oscillations or grid dependence of the acoustic solution (Seo

and Moon, 2005). The first problem of unbounded transient growth was
resolved in Section 2.1 by transforming the LNSEs into frequency space,

Eqs. (3.1)-(3.3), and therewith allowing only spatial growth of instabilities.
The second problem is resolved by introducing stabilized finite element tech-
niques, which can be thought of as approximations of a variational multi-

scale approach (Hughes et al., 1998). This approach models the effect of
the unresolved scales and therefore numerically stabilizes the solution.

In this chapter the standard Galerkin finite element method will be intro-
duced first, as this is the standard procedure. Following Hughes (2000)

we will adopt the four step procedure of spatial discretization: (i) Starting
from the strong form of partial differential equations developed in Chapter

2, (ii) we will introduce a weak form based on the method of weighted resid-
uals. While the weak form is still an exact representation of the governing

equations, (iii) introducing Galerkin finite element functions leads to their
approximative form. The preceding efforts may then be summarized in a
matrix form (iv) which is delivered to the numerical solver discussed in the

next Chapter 4. Due to the character of the LNSEs numerical difficulties
will arise using the standard Galerkin technique. Therefore, stabilized finite

element procedures are introduced.

Books for further in-depth studies and reviews found on the finite element

techniques in literature are for example the one of Hughes (2000) or Johnson
(1987); Zienkiewicz and Taylor (2000). From a fluid mechanics point of

view, the books of Donea and Huerta (2003) and Gresho and Sani (1998)
show illuminating insights.
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3 The Finite Element Method

3.1 Standard Galerkin Approach

First, the residuals of the linearized equation of mass, momentum and en-

ergy, respectively, are introduced

RC(ρ̂) = iωρ̂ + ∇ · (ūρ̂ + ρ̄û) − sρ, (3.5)

RM(û) = iωρ̄û + ∇ · (ρ̄ūû) + ∇p̂ + (ρ̄û + ūρ̂) · ∇ū − ∇ · τ (û) − su,

(3.6)

RE(p̂) = iωp̂ + ∇ · (ūp̂ + κp̄û) + (κ − 1) [p̂∇ · ū − û · ∇p̄] − sp. (3.7)

The weak or variational form of the problem may then be derived by multi-
plying the residuals of Eqs. (3.5)-(3.7) with weighting functions wρ, wu, wp

and performing an integration over the domain Ω
∫

Ω

RCwρ dΩ = 0,
∫

Ω

RMwu dΩ = 0,
∫

Ω

REwp dΩ = 0. (3.8)

The method is generally termed as weighted residual method. In this form,

the condition for the fulfillment of the set of governing equations at every
point of the domain is weakened to the integral fulfillment over the complete
domain Ω. Thus, the finite element method can be considered as conser-

vative in a global fashion. Eqs. (3.8) may be written in compact form by
introducing the L2-inner product in the domain Ω:

(a, b)Ω =
∫

Ω

ab dΩ. (3.9)

After performing integration by parts of the Cauchy stress tensor, including
the pressure and diffusive term of the linearized momentum equation, the

weak form of the LNSEs is obtained

(wρ, iωρ̂)Ω + (wρ, ∇ · (ūρ̂ + ρ̄û))Ω = (wρ, sρ)Ω , ∀wρ ∈ Vρ, (3.10)

(wu, iωρ̄û)Ω + (wu, ∇ · (ρ̄ūû))Ω + (∇ · wu, p̂)Ω + (wu, (ρ̄û + ūρ̂) · ∇ū)Ω =

− (τ (wu), τ (û))Ω + (wu, su)Ω + (wu, hu)∂ΩN
, ∀wu ∈ Vu,

(3.11)

(wp, iωp̂)Ω + (wp, ∇ · (ūp̂ + κp̄û))Ω + (wp, (κ − 1) [p̂∇ · ū − û · ∇p̄])Ω =

(wp, sp)Ω , ∀wp ∈ Vp,

(3.12)
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3.1 Standard Galerkin Approach

where V{ρ,u,p} are the weighting function spaces for the respective weighting
functions wρ, wu and wp. Similarly, the solution function spaces S{ρ,u,p}

are assumed for the solution variables ρ̂, û and p̂, see Donea and Huerta

(2003) for elaboration. For the momentum equation a ’natural’ Neumann
boundary term arises in the formulation

n · (−p̂I + τ (û)) = hu, on ∂ΩN (3.13)

which is equal to some hu. The weak form poses lower demands on the dif-

ferentiability, as the formulation includes only first order derivatives instead
of formerly derivatives of second order. Finally, to complete the weak for-

mulation it is required to chose the solution and weighting function spaces
according to

S{ρ,u,p} =
{

{ρ̂, û, p̂} ∈ H1(Ω)d| {ρ̂, û, p̂} = g, on ∂ΩD

}

, (3.14)

V{ρ,u,p} =
{

{wρ, wu, wp} ∈ H1(Ω)d| {wρ, wu, wp} = 0, on ∂ΩD

}

, (3.15)

where H1(Ω) describes the Sobolev space of square-integral functions and
square-integral first derivatives and g is the respective vector at the Dirichlet

boundary. Further remarks on this Sobolev space can be found in the
existing literature.

In a next step, the problems geometry is discretized into a number Ne finite
elements with subdomains Ωe (e = 1, ..., Ne) and a number Nv vertices vk

(k = 1, ..., Nv) of which ND are located on ∂ΩD where

Ω′ =
Ne⋃

e=1
Ωe, and ∂Ω′ =

Ne⋃

e=1
∂Ωe|∂Ω, (3.16)

denote the union of all element interiors and element boundaries excluding
the domain boundary ∂Ω, respectively. The Galerkin finite element approx-

imation can then be obtained by replacing the (quasi) infinite dimensional
subspaces S{ρ,u,p} and V{ρ,u,p} by their finite dimensional counterparts Sh

{ρ,u,p}

and Vh
{ρ,u,p}. Accordingly, the solution variables become also discrete or fi-

nite which is denoted by the superscript h. They may be expressed in terms
of unknown parameters ρ̂A, ûA and p̂A and shape functions NA, which are

mostly represented by polynomial functions. Introducing these approxima-
tions yields

ρ̂h =
Ndofs
∑

A=1

NAρ̂A, ûh =
Ndofs
∑

A=1

NAûA, p̂h =
Ndofs
∑

A=1

NAp̂A, (3.17)
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3 The Finite Element Method

where Ndofs is the number of degrees of freedom. Similarly, introducing the
same approximations for the weighting functions leads to

wh
ρ =

Ndofs
∑

B=1

NBwρ,B, wh
u

=
Ndofs
∑

B=1

NBwu,B, wh
p =

Ndofs
∑

B=1

NBwp,B, (3.18)

the standard Galerkin approach, which is also known as Bubnov-Galerkin

approach. When the weighting functions are chosen differently from the
solution functions the approach is generally referred to as Petrov-Galerkin

approach. In the present analysis Lagrangian shape functions of a certain
polynomial order p are chosen for Eq. (3.17) and Eq. (3.18). Finally, the
standard Galerkin finite element formulation in its discrete form reads as:

find ρ̂h ∈ Sh
ρ to satisfy

B
(

wh
ρ , ρ̂h

)

Ω
=
(

wh
ρ , sρ

)

Ω
, where

B
(

wh
ρ , ρ̂h

)

Ω
=
(

wh
ρ , iωρ̂h

)

Ω
+
(

wh
ρ , ∇ ·

(

ūρ̂h + ρ̄ûh
))

Ω
,

(3.19)

ûh ∈ Sh
u

for

B
(

wh
u
, ûh

)

Ω
=
(

wh
u
, su

)

Ω
+
(

wh
u
, hu

)

∂ΩN
, where

B
(

wh
u
, ûh

)

=
(

wh
u
, iωρ̄ûh

)

Ω
+
(

wh
u
, ∇ ·

(

ρ̄ūûh
))

Ω
+
(

∇wh
u
, p̂h

)

Ω

+
(

wh
u
,
(

ρ̄ûh + ūρ̂h
)

· ∇ū
)

Ω
+
(

τ (wh
u
), τ (ûh)

)

Ω
,

(3.20)

and p̂h ∈ Sh
p for

B
(

wh
p , p̂h

)

=
(

wh
p , sp

)

Ω
, where

B
(

wh
p , p̂h

)

=
(

wh
p , iωp̂h

)

Ω
+
(

wh
p , ∇ ·

(

ūp̂h + κp̄ûh
))

Ω

+
(

wh
p , (κ − 1)

[

p̂h∇ · ū − ûh · ∇p̄
])

Ω
.

(3.21)

In a similar manner, the standard Galerkin problem of the general
convection-diffusion-reaction equation Eq. (3.4) can be formulated for the
appropriate solution Sh

φ and weighting function space Vh
φ as find φ̂h ∈ Sh

φ to

satisfy

B
(

wh
φ, φ̂h

)

Ω
=
(

wh
φ, sφ

)

Ω
+
(

wh
φ, hφ

)

∂ΩN
, where

B
(

wh
φ, φ̂h

)

Ω
=
(

wh
φ, iωφ̂h

)

Ω
+
(

wh
φ, ∇ ·

(

ūφ̂h
))

+
(

wh
φ, σφ̂h

)

+
(

∇wh
φ, ν∇φ̂h

)

(3.22)
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3.2 Artificial Diffusion Schemes

and hφ denotes the Neumann boundary arising naturally from integration-
by-parts of the diffusive term.

As already mentioned above, the standard finite element method looses
its best approximation characteristic (minimum error) when considering

LNSEs. The main reasons is that the convective operator in the LNSEs is
not self-adjoint, which will lead to numerical problems in the solution pro-
cess. For high Reynolds and Péclet number flows, this effect has been illus-

trated multiple times for a one dimensional stationary convective-diffusion
equation., e.g. in Donea and Huerta (2003). There, it is shown that for

element Péclet numbers Pee > 1, describing the ratio of convection and
diffusion,

Pee =
uh

2ν
, (3.23)

where h is the characteristic element length and u the velocity of the fluid,
the numerical solution oscillates. To avoid such spurious oscillations using

the standard Galerkin technique, the domain has to be discretized in such a
way to fulfill Pee < 1 in the complete domain. Since the physical conditions

of the problem considered cannot be changed, the only way to achieve the
requirement is to increase the number of elements and thereby to decrease
h. Then, the convective effect related to the individual element becomes

not dominant any more. However, doing so results in excessive numerical
refinements, especially in boundary layer regions or regions in which strong

shear layers exist. By modeling the effect of the unresolved scales using
Petrov-Galerkin schemes, excessive refinements can be avoided.

3.2 Artificial Diffusion Schemes

When comparing a discrete Galerkin scheme to an exact difference scheme

for convection-diffusion problems, it can be shown that the Galerkin term
introduces a truncation error of the form of a diffusion operator (Donea and

Huerta, 2003). For element Péclet numbers exceeding one, its sign is nega-
tive and thus a negative diffusion is introduced to the problem. This implies

that actually, a modified convection-diffusion equation is solved character-
ized by a reduced diffusion effect. For this case, no generally stable solution
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3 The Finite Element Method

can be guaranteed. It is then intuitive and obviously simple to add an ar-
tificial viscosity term to compensate the numerically introduced negative
diffusion, e.g. to the momentum equation Eq. (3.20)

B
(

wh
u
, u
)

Ω
+

Ne∑

e=1

(

τ (wh
u
),

ρ̄νe
art

µ
τ (ûh)

)

Ωe

=
(

wh
u
, su

)

Ω
+
(

wh
u
, hu

)

∂ΩD
,

(3.24)

which reduces the element Péclet number. The artificial viscosity νe
art acts

on all element interiors and can be specified for example as

νe
art =







|ū|h
2

P ee

3 for Pee < 3
|ū|h

2 for Pee ≥ 3
. (3.25)

Such a procedure, however, is not adopted in the present study for the

following reasons: In one dimensional space an appropriate choice of the
artificial diffusion νe

art would lead to nodal exact solutions for a convection-
diffusion equation. However, when the equations are solved in three dimen-

sional space, such artificial diffusion terms introduce significant amounts of
additional diffusion, which may significantly exceed the physical observed

magnitude. It is isotropically introduced in all directions, acting in stream-
line but also in crosswind direction. Following Johnson (1987) and John

and Knobloch (2007) such procedures lead to an accuracy of at most first
order O(h). Thus, increasing the polynomial order p of the shape functions,
does not equivalently increase the computational accuracy.

Moreover, there is no stabilization of reactive terms, which is a crucial point

when considering LNSEs. Many publications in aeroacoustic problems in-
troduce simplifications to the reactive terms in order to avoid numerical
difficulties, see e.g. (Bogey et al., 2002). Thus, numerical instabilities stem-

ming form the reactive terms may still be observed, even though artificial
viscosity is introduced. Similarly, the source terms are not specially treated

using artificial viscosity methods, which for some cases may also lead to
instabilities and inaccuracies in the solution. Therefore, despite the sim-

plicity of artificial diffusion methods, care has to be taken with their appli-
cation. They have been added to the present thesis to highlight analogies

to Petrov-Galerkin schemes discussed in the next chapter, but also to show
their inferiority.
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3.3 Petrov-Galerkin Approach

3.3 Petrov-Galerkin Approach

Stabilized finite elements methods (SFEMs) have been introduced to vari-
ous problems in fluid dynamics. It can be referred to the review articles of

Codina (1998) for convection-diffusion(-reaction) equations, of Hughes et al.
(2004) for convection-diffusion and incompressible Navier-Stokes equations

and of Hughes et al. (2010) for compressible Navier-Stokes equations. In-
dependently of their explicit derivation, all stabilization techniques have a

similar form. When introducing SFEMs to the standard Galerkin approach
an additional term arises on the LHS. This is exemplarily shown in the case
of the scalar convection-diffusion-reaction equation, Eq. (3.22), yielding

B(wh
φ, φh)Ω +

(

Rφ, τstabP(wh
φ)
)

Ω|∂Ω
=
(

wh
φ, sφ

)

Ω
, (3.26)

where P(wφ) is a certain operator applied to the weighting function, τstab

is the stabilization parameter and Rφ represents the equations residual.
All stabilization techniques differ in the explicit choice of the operator

P(wφ). In this section we will mainly provide an overview of the methods
which were directly applied in the current work. These incorporate the
streamline-upwind/Petrov-Galerkin technique and two variants of the

Galerkin/least-squares stabilization technique. Overviews describing the
evolution of stabilized finite element schemes are found in Donea and

Huerta (2003); Hughes et al. (1994) and Wall (1999).

3.3.1 Streamline-Upwind/Petrov-Galerkin Technique

The development of the streamline-upwind/Petrov-Galerkin technique
(SUPG) originates from the idea to overcome the disadvantages introduced

through isotropic artificial diffusion schemes: While imposing additional
viscosity in streamline direction, the same amount is also imposed in cross-

wind direction, where convective effects are low. To overcome the inherent
crosswind diffusion, Hughes and Brooks (1979) replaced the scalar artifi-

cial diffusion term with an artificial diffusion tensor taking into account the
respective flow direction. Their so-called streamline-upwind (SU) method

adds diffusion in streamline direction without being overly diffusive in cross-
wind direction. However, the technique was designed in such a way that
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3 The Finite Element Method

the operator P(wφ) would act only on the convective term and not on the
hole residuum Rφ, like depicted in Eq. (3.26). Therefore, the method still
lacks in consistency. Brooks and Hughes (1982) then applied the same

operator on the complete residuum, ensuring consistency of the newly de-
veloped SUPG approach. The SUPG operator then writes for the general

convection-diffusion-reaction equation Eq. (3.22)

PSUPG(wh
φ) = ∇ ·

(

ūwh
φ

)

. (3.27)

When introducing Eq. (3.27) to the standard Galerkin approximation of

Eq. (3.26) the equations may be rearranged in such a way that a standard
Bubnov-Galerkin form is reached, but this time including a modified test
function

w̃φ = wh
φ + τstab∇ ·

(

ūwh
φ

)

. (3.28)

In fact, this illustrates the reason why SUPG belongs to the family of Petrov-
Galerkin approaches, since the space of the test function does not coincide

with the space of the interpolation functions. The SUPG technique can
then be directly applied to the LNSEs, which yields extra terms for the

linearized equation of mass, momentum and energy of the form

BC
SUPG

(

wh
ρ , ρ̂h

)

Ω|∂Ω
=
(

RC(ρ̂h), τC∇ ·
(

ūwh
ρ + ρ̄wh

u

))

Ω|∂Ω
, (3.29)

BM
SUPG

(

wh
u
, ûh

)

Ω|∂Ω
=
(

RM(ûh), τ M∇ ·
(

ρ̄ūwh
u

))

Ω|∂Ω
, (3.30)

BE
SUPG

(

wh
p , p̂h

)

Ω|∂Ω
=
(

RE(p̂h), τE∇ ·
(

ūwh
p + κp̄wh

u

))

Ω|∂Ω
, (3.31)

where τC , τ M and τE define the stabilization parameters of the linearized
continuity, momentum and energy equation. A mathematical analysis

proves that SUPG may feature an order of accuracy O(hp+1/2) for con-
vection dominated problems and an order O(hp+1) for diffusion dominated
problems (Johnson, 1987). Latter order of accuracy is identical to the one

reached within a classical Galerkin approach. The mathematical analysis
shows that the SUPG method provides convergence characteristics superior

to the above mentioned methods (SU or artificial diffusion) which are at
most first order accurate. This becomes especially important when choos-

ing higher order interpolation functions, i.e. changing the order p. It has
to be noted though that in order to ensure the order of accuracy of the

mentioned methods, τstab has to be chosen accordingly. The formulation of
the stabilization parameter will be treated in a separate section.
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3.3 Petrov-Galerkin Approach

As Hughes (1987) argues, including the term ’upwinding’ in the name is
misleading, since it is generally related to the classical form of finite differ-
ence upwinding which is well-known to the field of fluid mechanics. There,

these methods feature increased stability at the cost of accuracy. This is
not the case with SUPG, which rather combines high accuracy with solid

stabilization characteristics, especially if higher order polynomials are con-
sidered.

In regions of steep gradients SUPG may still produce overshoots of the
solution. To avoid overshoots and to assure smooth approximations of the

solution, Hughes et al. (1986) have developed an additional discontinuity
capturing term. The term is non-linear in nature and is thus impracticable

to incorporate into a framework of fully linear equations like the LNSEs.
The main reason for this is related to an increase in computational resources

necessary to solve the non-linear terms using non-linear solution algorithms.
Circumventing the problem by linearization of the non-linear discontinuity
capturing term proved to yield overly diffusive results.

The added SUPG stabilization term is not symmetric which introduces some

difficulties in establishing stability. This non-symmetric stability term can
be avoided by applying the Galerkin/least-squares ansatz, introduced in the
next section.

3.3.2 Galerkin/Least-Squares Technique

The Galerkin/least-square approach (GLS) originates from the purely math-

ematical idea to minimize the least-square error of the residuum of any given
governing equation. This is directly illustrated by minimizing

∫

Ω

R2
φ dΩ =

∫

Ω

(L(φ̂) − sφ)2 dΩ → 2
∫

Ω

(L(φ̂) − sφ)L(δφ̂) dΩ = 0, (3.32)

where L is the differential operator of the governing equation. Interpreting
variations of δφ̂ as test function and restricting the influence of the whole

term using a stabilization parameter τstab, yields the final form of the GLS
stabilization term. Thus, the complete differential operator is used for the
Petrov-Galerkin formulation of Eq. (3.26), yielding a symmetric stabiliza-

tion term (Hughes et al., 1989) of the form

PGLS(wh
φ) = ∇ ·

(

ūwh
φ

)

+ σwh
φ − ν∆wh

φ, (3.33)
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wherein the first term can be identified as the convective operator already
used in SUPG. In fact, the major difference to SUPG is the inclusion of a
diffusive and a reactive term in the stabilization operator. Both methods

become identical for convection-diffusion (no reaction) problems using linear
elements. For the linearized continuity equation Eq. (3.1) both methods are

indeed equal, independently of the polynomial order p chosen.

In case a positive reactive term is introduced to the governing equations,

GLS weights the term 1+τstabσ more than the SUPG technique, which may
amplify arising instabilities. To resolve this problem Douglas and Wang

(1989) and Franca et al. (1992) propose the use of the adjoint operator

PGLS-(w
h
φ) = −P∗

GLS(wh
φ) = ∇ ·

(

ūwh
φ

)

− σwh
φ + ν∆wh

φ, (3.34)

in this way the reactive term is now weighted 1−τstabσ and thus less than for
the SUPG approach. This approach is generally referred to as GLS- tech-

nique and represents an approximative version of the multiscale or sub-grid
scale approach developed later by Hughes (1995). Latter approach is based

on a mathematical analysis of the physical problem for which an analytical
solution for the stabilization parameter τstab is obtained. Then, the stability

coefficient models the effect of the unresolved scales (subgrid scales) onto
the finite element solution (resolved scales). For this reason, SUPG and
GLS technique can be considered as approximations of the multiscale ap-

proach. The order of accuracy of GLS is O(h2p+1) for the primitive variables
and is derived mathematically in Hughes et al. (1989).

The mathematical application of GLS or GLS- to the LNSEs is straightfor-
ward, and leads to stabilization terms of

BC
GLS±

(

wh
ρ , ρ̂h

)

Ω|∂Ω
=
(

RC(ρ̂h), τC

[

∇ ·
(

ūwh
ρ + ρ̄wh

u

)])

Ω|∂Ω
, (3.35)

BM
GLS±

(

wh
u
, ûh

)

Ω|∂Ω
=
(

RM(ûh), τ M

[

∇ ·
(

ρ̄ūwh
u

)

+ ∇wh
p

±
(

ρ̄wh
u

+ ūwh
ρ

)

· ∇ū ∓ ∇ · τ (wh
u
)
])

Ω|∂Ω
,

(3.36)

BE
GLS±

(

wh
p , p̂h

)

Ω|∂Ω
=
(

RE(p̂h), τE

[

∇ ·
(

ūwh
p + κp̄wh

u

)

± (κ − 1)
[

wh
p∇ · ū − wh

u
· ∇p̄

]])

Ω|∂Ω
,

(3.37)

where the sign ± or ∓ depends on which stabilization scheme is employed,
i.e. the standard GLS or GLS- respectively. Note that generally the term
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3.3 Petrov-Galerkin Approach

related to the molecular stresses in the linearized energy equation should
also appear in the formulation. Since, it was omitted for simplification
reasons it is not included here for consistency.

3.3.3 Stabilization Parameter

To close the above stabilization schemes, the stabilization parameter τstab

needs to be specified. Its choice is highly important to the success of any
stabilized finite element method and mainly determines the order of ac-

curacy reached by the computation. Original stability parameters for the
SUPG technique proposed by Brooks and Hughes (1982) were derived by

comparing finite difference stencils and were limited to linear interpolation
functions. Later, stability parameters used also accommodated higher or-
der interpolation functions. They can be generally understood a posteriori

based on a priori error analysis, see e.g. Franca et al. (1992).

Various formulations exist in literature and have been tested on scalar

convection-diffusion-reaction equations. Three of these will be introduced
in their chronological order of their appearance. Rao and Morris (2006) ap-

plied a definition of the τstab parameter introduced by Le Beau et al. (1993)
to stabilize their acoustic LEEs equations

τ stab = max

(

αhi

λi

)

I, (3.38)

where α is a certain stabilization constant and λi the spectral radius of a

constant coefficient convective matrix in a direction i (compare with Ap-
pendix B.3 for more details). The characteristic size of the element in i-th

direction is denoted by hi. According to Hughes et al. (1986), lower bounds
for the parameter α can be determined empirically (e.g. α > 0.1 or α > 0.01

for quadrilateral elements with different numbers and location of nodes) de-
pending on the element type (e.g. triangular or quadrilateral in 2d space)

and polynomial order chosen. These lower bounds were derived on a very
similar formulation to Eq. (3.38) of the stabilization parameter. Later, Co-
dina (2000) proposed a second order accurate formula for τstab for a general

convection-diffusion-reaction equation according to

τstab =

(

2u

h
+

4ν

h2
+ σ

)−1

. (3.39)
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More recently, a fourth order accurate formula was proposed by the group
of Shakib,

τstab =





(

2u

h

)2

+ 9

(

4ν

h2

)2

+ σ2





−1/2

, (3.40)

which yielded better convergence than Eq. (3.39). However, all afore-

mentioned parameters were formulated for general convection-diffusion(-
reaction) equations. Especially for acoustic problems, a rigorous definition

of a stabilization term is still missing. For the present implementation, all
stability constants are chosen equally τC = τ M = τE for linearized continu-
ity, momentum and energy equation.

3.3.4 Problem Formulations

The discrete LNSEs of Eqs. (3.19)-(3.21) with an additional stabilization
technique like SUPG, Eqs. (3.29)-(3.31), or GLS, Eqs. (3.35)-(3.37), finally
have to be formulated into a matrix notation which is provided to a nu-

merical solver in the next section. This can be done in two different ways
defining two very different problem sets. The first problem is a matrix in-

version problem and is discussed next. The second is an eigenvalue problem
and is discussed in Section 3.3.6.

3.3.5 Matrix Inversion Problem

For the matrix inversion problem ω ∈ R is explicitly prescribed and thus the

coefficients of the frequency dependent term of Eqs. (3.10)-(3.12) are known.
This is exemplarily shown for the general convection-diffusion-reaction equa-

tion in Eq. (3.22),

M(ω)φ + [C + D + σ] φ = N − E (3.41)

Therein, φ is the vector incorporating the unknown coefficients φA. In

Eq. (3.41), M, C, D and σ denote the frequency dependent matrix, the
convective, diffusive and reactive matrix, respectively. N and E indicate the

right hand side vectors due to the Neumann boundary condition and due to
the essential Dirichlet boundary conditions, respectively. Such conditions
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3.3 Petrov-Galerkin Approach

were already described for the LNSEs in Section 2.7. The matrix system
of the LNSEs is slightly more complex due to the inherent coupling of
the equations. Nevertheless, it can be derived in a similar manner. The

pulsation ω is chosen to be real in the present study, however, similarly
imaginary components can be ascribed as well.

The different matrices of Eq. (3.41) of the complete system may then be
summoned into one global matrix A(ω)

A(ω)x = b. (3.42)

where x is now chosen to represent the vector of unknowns. For the LNSEs,
the x incorporates the unknown coefficients ρ̂A, ûA and p̂A of the discretiza-

tion introduced in Eq. (3.17).

Assembling the LNSEs in the way of Eq. (3.42) enables one to determine

the scattering or transfer matrix coefficients of Eq. (2.26) and (2.29), re-
spectively. This can be performed for confined configurations, such as area

expansions, orifices or tubular combustion chambers with two or more inflow
and outflow boundaries.

Any given configuration needs to be acoustically excited once from upstream
and once from downstream direction following a two-source strategy (Mun-

jal and Doige, 1990a; Åbom, 1991). Eq. (3.42) then needs to be solved
twice for every discrete pulsation ω. The two different excitation states are

labeled in the following by the subscripts I and II. Both acoustic states
are designed by incorporating appropriate volumetric source terms in the
LNSEs formulation, Eqs.(3.1)-(3.3), to retrieve the non-trivial solutions of

the problem. Such a procedure is valid for frequencies below the first cut-on
frequency of higher order modes, where solely longitudinal waves propagate

along the system’s feeding ducts. Then, an analytical solution exists for the
longitudinal waves, which is of the form

p̂u/d = p̂+
u/de

−ik+x + p̂−
u/de

ik−x, (3.43)

ûu/d =
1

ρ̄c̄

(

p̂+
u/de

−ik+x − p̂−
u/de

ik−x
)

, (3.44)

where k± = ω/(c̄ ± ū) represent the complex wavenumber of the wave
traveling in upstream or downstream direction. The complex pressure and

velocity amplitudes p̂u/d and ûu/d, upstream and downstream of the con-
figuration under investigations, are solutions of the LNSEs. As these are
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field variables, they are averaged over cross-section planes. A least-squares
Levenberg-Marquardt algorithm is then used to retrieve the complex pres-
sure amplitudes p̂+

u , p̂−
u , p̂+

d and p̂−
d for both acoustic states (Levenberg, 1944;

Marquardt, 1963). With all pressure amplitudes known, four equations may
be formulated for the four unknown coefficients






T +(ω) R−(ω)

R+(ω) T −(ω)




 =






p̂+
d,I p̂+

d,II

p̂+
u,I p̂+

u,II











p̂−
u,I p̂−

u,II

p̂−
d,I p̂−

d,II






−1

. (3.45)

The results are generally insensitive to the specific location of the acoustic
source. Only prerequisite is that it is not located to close to the region of

interest and does not overlap with regions where the complex pressure and
velocity amplitudes p̂u/d and ûu/d are extracted.

3.3.6 Eigenvalue Problem

The matrices may also be assembled in a different way, if the frequency
dependent terms are first shifted to the RHS, which results in

∇ ·
(

ūφ̂
)

+ σφ̂ − ν∆φ̂ − sφ = iωφ̂, (3.46)

for the general convection-diffusion-reaction equation. Such equations may
then be again discretized and assembled to a global matrix representation.

The resulting problem is of eigenvalue type and can be formulated as: find
pulsations ω ∈ C and eigenvectors V ∈ C which satisfy the fluid dynamic

as well as boundary conditions, such that

AV = iωV. (3.47)

For the LNSEs, the eigenvectors V contain the unknown coefficients ρ̂A,

ûA and p̂A. Note that matrix A is not a function of the pulsation ω. For
thermoacoustic problems, however, the situation is changed as soon as the

unsteady effect of the flame is incorporated into the source term sp. Then,
matrix A does indeed depend non-linearly on the pulsation ω, see Section

2.6, and the problem may not be solved directly. An intuitive solution to
treat the non-linear source term is introduced by Nicoud et al. (2007) in case

of the Helmholtz equation, who propose the use of an iterative algorithm.
The method works as such, if k denotes the current iterative step, the global
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3.3 Petrov-Galerkin Approach

matrix A is simply evaluated at the last iteration step with a known ωk−1.
Following these authors, the iterative algorithm works as follows:

• Determine first eigenfrequencies ω1
0, ω2

0,. . . without acoustic-flame cou-
pling by solving Eq. (3.47) with ˆ̇qV = 0.

• Select the i-th frequency, ωi
0.

• Set ωk = ωi
0 with k = 1 and ˆ̇qV 6= 0.

• Solve A(ωk−1)V = iωkV.

• Assess the error ǫ = |ωk − ωk−1|/|ω0|.

• Return to step four and perform a finite number of iterations on k until

ǫ is small enough.

• Repeat the algorithm until all necessary frequencies are found by re-

turning to step two.

Solving this equation system yields a set of complex eigenpairs (ω, V). The

eigenfrequency at a pulsation ω contains two main parts

ω = ωr + iωi, (3.48)

a real part ωr which determines the frequency of pulsation and an imaginary
part ωi which determines the respective growth or decay rate exp(−ωit)

(cp. to Eq. (2.12)). If a pulsation grows or decays in time depends on the
respective sign of ωi. The eigenvector V belonging to a certain pulsation ω,

describes the characteristic distribution of fluctuating quantities throughout
the computational domain. Generally, the iterative solution algorithm is

found to converge within a number of three to four iterations k for a single
eigenfrequency of investigation.

59



4 Solution of Large Linear Systems

In the beginning of this chapter, the two main problem formulations result-
ing from the finite element discretization of the LNSEs in Chapter 3 are

shortly summarized. The first is of eigenvalue type, where ω ∈ C is com-
plex and not known a priori. This means finding the complex eigenpairs
of pulsations ω and eigenvectors V which satisfy the given constraints and

fluid dynamic conditions inside the computational domain

AV = iωV, (4.1)

where the purely real operator matrix A ∈ Rn×n is of size n and V ∈ Cn is
a discrete eigenvector containing the unknown nodal values (ρ̂A, ûA, p̂A) for

each finite element.

The second problem set can be formulated if ω ∈ R is explicitly prescribed.

Then, the problem reduces to a simple inversion of the complex matrix
A ∈ Cn×n,

Ax = b, (4.2)

which can be solved using either direct or iterative methods described in

Sections 4.2-4.4. For both problem sets the matrix A is typically non-
hermitian (non-symmetric for real matrices) and indefinite for classical con-

vection transport equations as the LNSEs and LEEs are. This has a strong
impact on the selection of an appropriate iterative solver. Some of the it-

erative routines are based on a projection of the original problem into a
so-called Krylov subspace. The construction of such a subspace is the main

operation of the eigenvalue problem, which is therefore discussed first.

As most problems in reality have three dimensional geometries and flow

conditions, the use of iterative solvers becomes indispensable. Until now,
no iterative routine has been proposed in the literature to solve the LNSEs

in an efficient way. Therefore, this chapter designs three different iterative
algorithms for this purpose. First, the basic theory of direct and iterative
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schemes is introduced. The introduction is followed by an explanation of
preconditioning techniques which are used to accelerate iterative algorithms.
Finally, based on the theory, three different combinations of iterative algo-

rithm and preconditioner technique are selected and their performance is
compared on a generic combustor configuration.

4.1 Eigenvalue Solvers

Three algorithms exist for solving the eigenvalue problem of Eq. (4.1).
For hermitian matrices the Lanczos algorithm (Lanczos, 1950) is gener-

ally used. However, typical fluid dynamic transport equations are generally
non-hermitian and therefore subspace methods like the Arnoldi method

(Arnoldi, 1951) or Jacobi-Davidson method (Sleijpen and Van der Vorst,
1996; Sleijpen et al., 1996) have to be used instead. In the specific case

of the Helmholtz equation Eq. (2.25), it is shown that the Jacobi-Davidson
method is globally more efficient than the Arnoldi algorithm (Sensiau et al.,
2008), i.e. it requires a lower amount of iterations to converge. The dif-

ferences are, however, insignificant and both methods share nearly similar
solution capabilities. Therefore, the Arnoldi algorithm is chosen in the

present thesis to solve the eigenvalue problem defined by the LNSEs and
Helmholtz equation, respectively.

4.1.1 Arnoldi Algorithm

Discretization of three dimensional combustion chamber geometries using

a finite element procedure of Section 3 may result in large numbers of de-
grees of freedom and equivalently large system matrices A. Consequently,

these matrices have also large numbers of eigenvalues. However, in ther-
moacoustic applications we are mainly interested in a subset of the first few

eigenfrequencies. At such low frequencies it is believed that the system is
more susceptible to the coupling of acoustic waves with the heat release rate

of the flame. Therefore, solving for the complete spectrum of eigenfrequen-
cies is unnecessary and would involve high computational costs.
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4 Solution of Large Linear Systems

General idea behind the Arnoldi algorithm is to solve an eigenvalue problem
of much smaller dimension m, which accurately approximates the first few
eigenvalues of the original matrix A ∈ Cn×n where m << n. This smaller

matrix is called a upper Hessenberg matrix H ∈ Cm×m. It is constructed
by performing a projection of the original system onto a so-called Krylov

subspace. This subspace spans matrix-vector products of the first powers
of a matrix A and a vector r0 = b − Ax0 (Saad, 2010)

Km = span
{

r0, Ar0, A2r0, . . . , Am−1r0

}

. (4.3)

The dimensions of the subspace is explicitly given by the value m. The
Arnoldi algorithm then iteratively calculates the orthogonal vectors qn

which span the Krylov subspace as well as the individual matrix coeffi-

cients hij using a so-called modified Gram-Schmidt (MGS) procedure. The
vectors are summarized in the matrix Qn,m+1 = (q1; . . . ; qm+1) and the in-

dividual matrix coefficients hij in a non-square Hessenberg matrix Hm+1,m

to obtain the following form

AQn,m = Qn,m+1Hm+1,m (4.4)

A square upper Hessenberg matrix Hm,m can now be obtained by removing
the last line of Hm+1,m. Then, the relation Eq. (4.4) may be reformulated
in terms of a square Hessenberg matrix Hm,m

AQn,m = Qn,mHm,m + hm+1,mqm+1e
T
m (4.5)

with eT
m being the unity vector. Herein, the last term on the right hand

side describes the residual of this process. The eigenvalues and eigenvectors

of the resulting square Hessenberg matrix may then be computed with the
help of direct or iterative methods explained in following Sections 4.2-4.3.
The reduced eigenvalue problem to be solved is of an equivalent form to

Eq. (4.1)

Hm,mym
i = λiy

m
i , (4.6)

where λi are the eigenvalues of the square Hessenberg matrix Hm,m and

ym
i their corresponding eigenvectors. The time and memory consuming

task of calculating the eigenpairs of the original matrix A of size n × n

is circumvented by the computations of the eigenvalues of a much smaller
matrix Hm,m with m dimensions. Whether an eigenpair of the Hessenberg
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matrix (λi, ym
i ) is a good approximation of the original matrix A (ωi, Vi)

can be assessed by the following relation

||(A − λiI) um
i ||2 = hm+1,m

∣
∣
∣eT

mym
i

∣
∣
∣ . (4.7)

where um
i = Qn,mym

i is an approximation of the actual eigenvector Vi of

A and I the unitary matrix. If the norm of right hand side of Eq. (4.7) is
smaller than a certain threshold value, the routine is stopped. It is impor-

tant to note that the original system matrix A appears only in the form of
matrix-vector products in the Arnoldi iteration.

There are two main problems associated with the Arnoldi method: The
first is the choice of subspace dimension m. Sensiau et al. (2008) show in

case of the Helmholtz equation Eq. (2.25) that the Arnoldi algorithm is
insensitive to the choice of m after having reached a certain magnitude

of about 50. The second problem is related to a fairly large Krylov
subspace. In this case the MGS may produces Arnoldi vectors that are not
orthogonal to machine precision, leading to spurious eigenvalues (Åkervik,

2008). Explicit re-orthogonalization of the basis set in this case becomes
preferable, like e.g. done with the DKGS method introduced by Daniel

et al. (1976). However, the re-orthogonalization is not implemented into
the current COMSOL version.

4.1.2 Shift and Invert Method

The Arnoldi algorithm can determine the very large eigenfrequencies or
those very close to zero. However, sometimes intermediate or slightly higher
eigenvalues are of interest. This can be achieved by applying the Arnoldi

algorithm on a so-called shifted and inverted form of the original problem
Eq. (4.1). Therein, the problem is reformulated as

[A − iσI]−1 V = i(ω − σ)−1V = iµV (4.8)

wherein σ is the target value in the region of interest, I denotes the unity
matrix and µ is the eigenvalue of the shifted problem. Instead of system

matrix A the eigenvalues of [A − iσI]−1 are now sought for. A major dif-
ference to the standard Arnoldi algorithm is that matrix vector products
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of [A − iσI]−1 qn instead of Aqn are calculated which requires the use of a
direct or iterative procedure to invert the matrix [A − iσI]. The way this

is done in the current framework is explained in the following sections.

This thesis employes a parallel implementation of the shift and invert

method available in the ARPACK library (Lehoucq et al., 1998). Also con-
sult the same publication for a more thorough explanation of the introduced

methods.

4.2 Direct Solvers

In this section it is shown how to solve the linear matrix system of LNSEs of
Eq. (4.2), viz. Ax = b, or the matrix inversion in Eq. (4.8) as part of a shift

and invert eigenvalue routine. The class of direct solvers are characterized
by providing the exact solution of a linear system of equations after a finite

number of iteration steps (when neglecting round-off errors). Their main
disadvantages are related to the fact that on the one hand the system matrix

A must be available and can not be implicitly calculated, while on the other
hand, the complete matrix needs to be inverted. Such methods suffer from
excessive fill-in and unacceptable computer work, growing with the problem

size O(n3) (Trefethen and Bau, 1997).

Direct methods and latest developments are described in a review article of

George and Liu (1981). In the present thesis the two main direct solution
methods of LU and QR factorization will be introduced. It has to be

noted that variants of the factorization methods have been developed which
better cope with large system matrices and account for their band structure.

These are, e.g. the MUMPS (Amestoy et al., 2001) or PARADISO solvers
(Schenk and Gärtner, 2004) provided in the software package COMSOL

Multiphysics. To further reduce internal memory usage, all solvers include
out-of-core capabilities, i.e. storing parts of the matrix on the computer
hard disc.

In the current framework, only small two dimensional problems are gener-

ally solved using direct methodologies, providing a good trade-off between
accuracy, robustness and computational time in these cases.
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4.2.1 LU Factorization

The LU factorization method decomposes the system matrix A into the

product of a lower and upper triangular matrix, L and U respectively. The
individual matrix elements lij and uij of matrices L and U are computed
by means of a conventional elimination algorithm. One finally obtains

A = LU. (4.9)

When the factorization is completed, the solution vector xn is computed in

two sequential steps:

LUxn = b, (4.10)

Lyn = b, for unknown yn, (4.11)

Uxn = yn, for unknown xn. (4.12)

Eq. (4.11) is solved for yn using forward substitution, while Eq. (4.12) is
solved for the unknown solution vector xn using backward substitution.
A is typically a band structured matrix. In this case L and U are also band

structured matrices with the same bandwidth of matrix A. However, as A
is sparse along these bands, this is not the case for L and U which bands

are generally completely filled. This requires an increased memory space
and represents the main drawback of this direct methodology.

4.2.2 QR Factorization

The main advantage of the QR compared to the LU factorization method is
that the Euclidian norm is conserved for the unitary transformation (Meis-

ter, 2011) and the equation set can easily be solved since Q∗ = Q−1. The
subscript .∗ denotes the hermitian transposed. Let Q ∈ Cn×n be an or-

thonormal unitary matrix while R ∈ Cn×n is the upper right triangular
matrix, then it follows

A = QR. (4.13)
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The decomposition of A can be performed using Gram-Schmidt method or
using the algorithms of Givens and Housholder. After decomposition, the
solution vector is calculated as follows

QRxn = b, (4.14)

Qyn = b, for unknown yn, (4.15)

Rxn = yn, for unknown xn. (4.16)

The process of computing the factorizations LU or QR is the most expen-

sive part in terms of computational costs. For the LU factorization Golub
and Van Loan (1996) and Duff et al. (1986) give estimates of computa-

tional costs (or number of flops) O(n3/2) for two dimensional problems and
O(n5/2) for three dimensional problems. The costs may increase however

significantly when not taking into account the sparse character of the ma-
trix O(n4) for two dimensional problems and O(n7) for three dimensional

problems (Schäfer, 1999). The high demand in memory as well as com-
putational resources limits the applicability of direct solution methods to
relatively small cases.

4.3 Iterative Solvers

When large sparse matrices A are involved, direct solvers face limitations in
memory and processing time. As direct solvers can generally not make ad-
vantage of the sparse structure of system matrices, iterative schemes become

more interesting. For three dimensional problems such iterative schemes be-
come indispensable. Unlike direct solvers, the class of iterative solvers may

only provide the approximate solution of a discretized problem. Another
drawback of iterative solvers is their lack in robustness, when compared to

direct solvers.

Most simplistic representatives of iterative schemes are the Jacobi, Gauß-

Seidel and the successive over relaxation techniques. These algorithms are,
however, mostly inefficient (Schäfer, 1999). Therefore, a different class of

Krylov subspace solvers has been developed. The most famous represen-
tative is the Conjugate-Gradient (CG) method developed by Hestenes and

Stiefel (1952). It typically involves only one matrix vector multiplication
per iteration step and is therefore highly efficient. The algorithm, however,
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is only applicable to hermitian and positive definite matrix systems and
breaks down in the presence of non-hermitian systems like the ones con-
sidered in the present analysis. Later, the method was then extended to

cope with non-hermitian and indefinite systems. Bi-CG (Fletcher, 1975)
and BiCGstab (van der Vorst, 1992) have been developed for this purpose.

However, both iterative solvers do not satisfy optimality condition in the
sense that the residual is not minimized and convergence is irregular (Bi-

CG) or may break down before an exact solution is calculated (Meister,
2011). This low level in robustness is also observed in the course of the

present study when solving the LNSEs, where the solution algorithm would
converge for some frequencies but not for others. Compared to Bi-CG and
BiCGstab, the GMRES algorithm developed by Saad and Schultz (1986)

satisfies optimality condition and provides high robustness. This comes at
the cost of an increased usage of memory space. In terms of work per itera-

tion step all introduced Krylov subspace methods perform relatively similar
(van der Vorst, 2009). Another class of promising algorithms is represented

through the development of multi-resolution methods (Hackbusch, 1985;
Wesseling, 1992). These may be directly applied to perform matrix inver-

sion or may serve as preconditioners for solution algorithms like GMRES
(Wienands et al., 2000). Latter potential is exploited in this thesis.

For the challenging task of computing solutions of the LNSEs or LEEs, a
suitable solver must be capable to cope with strongly changing flow fields,
different mesh resolutions as well as different frequencies of investigations.

Therefore, robustness of the solution algorithm plays the most important
role for the explicit choice of iterative scheme for the present area of ap-

plication. First, some available solvers are discussed in more detail. Then,
suitable combinations of solvers and preconditioners are selected from the

literature to solve the LNSEs. Their individual performance is then com-
pared for a generic combustor model.

4.3.1 Jacobi, Gauß-Seidel and SOR

Generally Jacobi, Gauß-Seidel and successive over relaxation (SOR) meth-

ods are the most classical iterative solvers. They belong to the group of
so-called splitting methods. The linear system is expanded by the addition
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of Bx − Bx to the problem of Eq. (4.2) for matrix inversion problems and
of Eq. (4.8) for eigenvalue problems, respectively, yielding

Bx − Bx + Ax = b. (4.17)

which directly leads to the general iteration rule for step k + 1

Bxk+1 − Bxk + Axk = b, (4.18)

xk+1 = B−1(B − A)xk + B−1b. (4.19)

The convergence rate of this algorithm is now governed by the characteristics
of matrix M = B−1(B−A) instead of A. As matrix A is fixed a priori, the
choice of the arbitrary matrix B can be exploited to positively influence the

rate of convergence. An optimal choice of matrix B requires it to minimize
M. In the specific case of B = A, the solution would be achieved within

a single iteration step k = 1, see Eq. (4.19). Secondly, matrix B must be
easily invertible. This can be achieved by subscribing B = I. However,

these two requirements can not be fulfilled conjointly. A pragmatic solution
to such conflicting requirements is to subscribe only parts of A to matrix
B, viz.

A = AL + AD + AU , (4.20)

where AL is a matrix containing the lower part below the diagonal, AD

contains only the diagonal and AU includes the upper half of matrix A. By

the explicit choice of matrix B, three splitting methods may be derived:

B = AD, Jacobi (JAC) (4.21)

B = AD + AL, Gauß-Seidel (GS) (4.22)

B =
AD + ωSORAL

ωSOR
, SOR (4.23)

where the parameter ωSOR introduces a certain relaxation to the Gauß-
Seidel algorithm. For SOR to converge, the relaxation parameter must

fulfill ωSOR ∈ (0, 2). Its optimal value ωopt for general convection-diffusion
problems can not be derived explicitly. On simple model problems it can be

shown that the computational time may be reduced significantly using the
SOR compared to the Gauß-Seidel method when choosing the relaxation

parameter ωSOR between [1, 2). It is important to note that this is not
necessarily the case when the SOR technique is used as a preconditioner
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for the here presented LNSEs system. If ωSOR < 1 is chosen, SOR is also
refereed to successive under relaxation (SUR) method.

Computational costs of the Gauß-Seidel and Jacobi method are estimated in
Schäfer (1999) and feature an order of O(n4) for two dimensional and O(n5)

for three dimensional problems. The asymptotic convergence behavior may
be decreased by an order of magnitude when considering the SOR method
(Axelsson, 1996; Schäfer, 1999). This class of iterative solver shows high

robustness. However, with increasing degrees of freedom the iteration costs
still increase disproportionately according to Schäfer (1999).

4.3.2 Generalized Minimal Residuals (GMRES)

The Generalized Minimal Residual approach (GMRES) of Saad and Schultz

(1986) is an extension of the conjugate gradients (CG) method of Hestenes
and Stiefel (1952) to non-hermitian systems. Latter property is common to

general convection-diffusion equations in fluid dynamic applications. The
algorithm is based on an approximation of the linear problem Ax = b
at each iteration k by a vector xk that minimizes the residual norm R of

Eq. (4.2), i.e.

min||R|| = min||Axk − b||. (4.24)

At every k-th iteration, the vector xk may be expressed through xk = Qky.

GMRES uses the Arnoldi method to generate a basis of orthogonal vectors
of Qk. Substitution into relation Eq. (4.24) yields

min||R|| = min||AQky − b||. (4.25)

Next the relation of Eq. (4.4) is applied to obtain

min||R|| = min||Qk+1Hky − b||. (4.26)

Multiplication with Q∗
k+1 on the right side and usage of the knowledge that

Q∗
k+1b = ||b||e1 with e1 = (1, 0, 0, ...), yields the final problem formulation:

find a vector y that minimizes

min||R|| = min||Hky − ||b||e1||. (4.27)
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The solution vector is then explicitly calculated through xk = Qky. The
size of the problem to be solved at each k-th iteration, is given by the
Hessenberg matrix Hk which is of size (k + 1, k).

GMRES’s main disadvantage is the higher memory consumption connected

with the storage of the Krylov subspace basis vectors. The number of
stored vectors increases by one with every iteration and each vector is of
problem size n. In order to avoid this excessive storage, the algorithm can be

restarted after l iterations steps. This algorithm is referred to as restarted
GMRES(l). Now, l can be conveniently be chosen according to the available

memory resources. Various numerical experiments have shown that l = 10-
50 is a suitable choice. Main disadvantage of this restarting procedure

is, however, that after having performed l iterations, GMRES(l) may face
stagnation.

GMRES is an optimal solution algorithm and always features a monoton-
ically decreasing convergence behavior, but its rate of convergence signifi-

cantly depends on the choice of preconditioner, see e.g. Meister (1998). Es-
timating the computational costs therefore becomes difficult. For the very

specific case of the CG methods, van der Vorst (2009) shows that CG scales
with O(n3/2) for two dimensional problems and O(n4/3) for three dimen-
sional problems. From his consideration it is directly obvious that Krylov

subspace methods may rather be disadvantageous to solve two dimensional
problems. However, for three dimensional problems their capabilities are

unquestioned and with choice of a suitable preconditioner may even yield
scales of up to O(n7/6), see e.g. Axelsson (1996); Gustafsson (1978).

4.3.3 Flexible Generalized Minimal Residuals (FGMRES)

The Flexible Generalized Minimal Residual (FGMRES) is a modification
of the GMRES algorithm to handle different types of preconditioners more

flexibly (Saad, 1993). Instead of Eq. (4.2) the right preconditioned system
reads

AP−1
R y = b, (4.28)

where PR denotes a right preconditioning matrix and x = P−1
R b. Perform-

ing the operation AP−1
R is straightforward using the GMRES algorithm.
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However, to retrieve the solution vector x the matrix vector operation P−1
R y

has to be evaluated. This operation is saved using the FGMRES method
at the expense of storing m intermediate vectors P−1

R qk per m steps. Thus,

the memory costs increase slightly using FGMRES, which is not favorable
for most applications. However, in some situations, the preconditioning ma-

trix is not known explicitly and may change in every iteration step (Saad,
2000). In the context of finite elements, the benefits of an FGMRES have
been pointed out by Tezduyar et al. (1991).

4.3.4 Multiresolution Methods

Multiresolution methods (Brandt, 1973; Fedorenko, 1964) can also be used

to solve linear equations systems, but are also frequently used to speed up
the convergence rate of numerical solution algorithms, e.g. for the Navier-

Stokes equations (Arnone et al., 1995; Brandt, 1981). Their main advantage
is that their performance and memory storage scales linearly with the de-

grees of freedom O(n) (Wesseling, 1992). To achieve such convergence rates,
however, requires understanding and careful design of all solver components.
Statements on the convergence behavior of multiresolution methods are pro-

vided for example in Hackbusch (1985, 1993).

This class of method is based on the general idea that the numerical error
is distributed smoothly among the grid points. A hierarchy of different
mesh structures is generated and the problem is solved using direct solvers

of Section 4.2 on the coarsest mesh. Due to the insufficient numerical
resolution, the error produced by the direct solver has different wavenumber

components which obscure the physical solution. As it is the general idea
of the method, high wavenumber components of the error are thought to

be unphysical and are filtered out by performing a number of smoothing
operations. Multigrid methods provide a vast framework and only a brief

introduction to the subject is presented here.
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4.3.4.1 Geometric Two-Grid Method (GTG)

Consider a linear system of the discretization order l, where the element

size hl changes according to

Ωl =
{

jhl|j = 1, ..., 2l+1 − 1
}

. (4.29)

Then, the linear problem to solve on the l-th grid layer is written as

Alxl = bl. (4.30)

The essential principle of the method is to approximate the smooth (long

wavelength) part of the error on coarser grids. The non-smooth part (small
wavelength) is reduced by a small number of iterations with a basic iterative

method, e.g. using splitting methods, on the fine grid (Wesseling, 1992).
After a certain amount of iterations of the two-grid algorithm, an approx-
imation of the solution vector xl is computed. In the first step of the next

iteration, a number of ν1 ≥ 0 pre-smoothing operations is performed for the
model problem on the fine grid, Eq. (4.30) using the introduced splitting

methods (Sec. 4.3.1) of the general form,

xl
ν1+1 = M(ω)xl

ν1
+ N(ω)b for ν1 = 0, 1, 2.... (4.31)

In a next step, the defect dl = Alxl−bl is computed for the fine mesh Ωl and
is projected onto the coarser mesh Ωl−1 performing a so-called restriction

operation

dl−1 = Rl−1
l dl where Rl−1

l : Cnl → Cnl−1, R ∈ Rnl−1,nl (4.32)

On the coarser grid the error el−1 is computed solving the resulting equation

system

Al−1el−1 = dl−1, (4.33)

directly. For this task the algorithms introduced in Section 4.2 are used.
Depending on the size of the coarse mesh this operation is computationally

cheap to obtain. Interpolation, or so-called prolongation, on the finer mesh
yields the unknown error el on the fine mesh Ωl

el = Pl
l−1e

l−1 where Pl
l−1 : Cnl−1 → Cnl, P ∈ Rnl,nl−1 (4.34)
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with which a new defect dl,new and solution vector xl,new can be computed
from Alel = dl,new. A number of ν2 ≥ 0 post-smoothing iterations of similar

type of Eq. (4.31) may be performed. For pre- and post-smoothing iterations
the relaxation parameter ω inherits a different functionality compared to

its usage in iterative schemes of Section 4.3.1. It is employed as a kind of
calibration parameter for a ’quasi’ low-pass filter, ideally canceling all high

wavenumber components of the error.

4.3.4.2 Geometric Multi-Grid Methods (GMG)

Obviously, the two-grid can be recursively applied to some coarser grid with
m number of different grid layers. In general this may lead to very efficient

iterative routine since instead of Eq. (4.33), a much coarser problem

Al−mel−m = dl−m, (4.35)

is solved for el−m directly. This extends the GTG method to the Geometrical
Multigrid Method (GMG). One iteration of the GMG method is called a

cycle. The exact structure of the cycle depends on a parameter γ, which
denotes the number of two-grid iterations at each intermediate stage. The
case of γ = 1, the GMG performs a so-called V-cycle, while γ = 2 and γ = 3

are called a W-cycle and a F-cycle, respectively. Most common cycles found
in the literature are the V- and W-cycle. The explicitly choice of cycle,

however, does not have a significant influence on the convergence behavior
as Schäfer (1999) notes. For indefinite systems, multigrid methods may

become inefficient, as it is shown in the case of the Helmholtz equation by
Hackbusch (1978). In some cases even a diverging behavior of the iterative
solution algorithm could be observed. This is the reason why GMG methods

are not applied directly as a solution algorithm to solve the present set of
LNSEs. However, this class of solver has high capabilities for accelerating

iterative routines.

4.4 Preconditioners

Depending on the physical problem (i.e. transport equations) solved, the

numerical methodology (e.g. finite volume, finite element) and the individ-
ual discretization applied, each system matrix A has its own structure and
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characteristics. To iterative routines this structure is highly important and
determines whether an iterative routine convergence at all, or if so, its indi-
vidual rate of convergence. Certain measures may be defined which provide

an estimate of convergence rate. One is the condition number κ(A) of a
regular matrix A ∈ Cn×n,

κ(A) = ||A||a||A−1||a, (4.36)

where ||.||a is defined as the a-th matrix norm. Low condition numbers

implicate that a reducing residuum reduces the error norm equivalently.
On the contrary, a high condition number indicates that the norm of the

error may not necessarily be reduced with reducing residuum. In this case
we generally refer to an ill-conditioned system matrix. An other important

measure is the spectral radius of A. It is defined as the maximum eigenvalue
λ of A, i.e.

ρ (A) = max {|λ|λ ∈ σ(A)} (4.37)

where σ(A) denotes the spectrum of A. In the case of splitting methods
it can be shown that as long as ρ(A) < 1, convergence is ensured, see e.g.

Meister (2011); Schäfer (1999), and the smaller the value ρ(A), the higher
are the convergence rates reached.

In case a system matrix is A ill-conditioned, i.e. high κ(A) and ρ(A) ≫ 1,
a precondition matrix PL may be multiplied to both sides of the system of

Eq. (4.2)

PLAx = PLb. (4.38)

Now, the convergence rate does not depend on the properties of matrix A
but on the properties of matrix PLA with κ(PLA) < κ(A). The solution

of the system, however, remains unchanged. In the above form, the pre-
conditioning is called left preconditioning which is denoted by the index L.

Similarly a right preconditioning exists, but as Saad (2000) notes both tech-
niques yield similar acceleration. In the following, only left preconditioning

is considered therefore.

Main aim of the preconditioning is to define a matrix PL which is simple

to calculate, uses low memory space, its inverse is easily formed and for
which PLA approximates a unitary matrix. If PLA = I, only one iteration

is needed to produce the solution. Multiple algorithms have been designed
for this task and are mainly based on the classical solution algorithms:
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• Jacobi, Gauß-Seidel or SOR

• Gradient algorithms (GMRES, FGMRES)

• Geometric Multi-Grid Methods

For this purpose the original solution algorithms of Section 4.3 are modified

in order to construct a matrix PL. Details on how these algorithm are
integrated in a global solution procedure of Section 4.3 is out of scope for

the present analysis but can be extracted from the specific literature on this
field, e.g. in Saad (2000); van der Vorst (2009); Wienands et al. (2000). It

is important to note that the complete preconditioning matrix PL is not
necessarily known by an efficient preconditioner, only its implicit effect on
A needs to be calculated.

Scaling of the primitive variables represents the simplest form of precon-

ditioning. It is justified through the different orders in magnitude of the
solution variables. For example when solving LNSEs, pressure and veloc-
ity variables may have a difference in magnitude of the order of four and

it becomes advantageous to introduce new solution variables denoted by a
superscript .∗

ρ̂∗ = ρ̂/ρref , û∗ = û/cref , p̂∗ = p̂/pref . (4.39)

where ρref , cref and pref are selected mean flow quantities from a given point
in the domain. This methods disadvantage is that only a small increase in
convergence rate is generally observed (Meister, 1998). Nevertheless, due

to its simplicity the scaling is introduced to the present LNSEs solver.

4.5 Convergence Analysis

Main aim of this section is the design of an efficient solver to cope with the

large system matrices using LNSEs. This procedure includes the choice of
a suitable linear solver, in a so-called inner iteration, as well as an acceler-

ation technique (preconditioner) in an outer iteration cycle. The proposed
methods must be able to solve typical flow configurations of combustion

chambers with Mach numbers up to Ma ≈ 0.3, high temperature and ve-
locity gradients.
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For low-frequency applications using the finite element discretized LNSEs,
molecular viscosity has a negligible effect on the acoustic propagation, see
Appendix A. Matrix A therefore becomes generally ill-conditioned for the

application of interest. Using LEEs the situation is significantly worsened,
due to the unavailability of any diffusive term, yielding Pee → ∞. Based

on these considerations, a single tetrahedra element is analyzed first. It is
discretized in finite space to identify parameters influencing the structure of

the system matrix A and therewith its possible convergence behavior. In a
next step, three different linear algorithms are proposed to solve the LNSEs

in an efficient way. These are mainly based on the considerations above
and preliminary tests. Open parameters will be discussed and optimized
for a generic combustion chamber flow to yield fast and robust solution

algorithms. In a last step, the performance of all three defined algorithms
will be compared against each other and the most suitable one is identified.

4.5.1 Single Finite Element Analysis

At first, we assemble the system matrix Ae for a single tetrahedra finite
element arbitrarily located in three dimensional space. Such an element
is shown in Fig. 4.1 with its local distribution of nodes. By reducing the

overall system matrix A to a single finite element Ae, we may analyze
the basic mathematical character of the set of acoustic governing equations

and give approximations of the convergence behavior. LEEs are chosen

x

y

z

(x1, y1, z1)

(x2, y2, z2)

(x3, y3, z3)

(x4, y4, z4)

ū

p̄

ρ̄

Figure 4.1: Single tetrahedra finite element located in three dimensional space. Distri-
bution of nodes of linear element are shown by the filled symbols. For second
order elements, the unfilled nodes are additionally considered.
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here as representative of the most ’conservative’ case and since they are
more frequently used in the fields of aero- and thermoacoustics. Of course,
similar conclusions may be drawn for the LNSEs as well. Dependencies

of the convergence behavior on e.g. frequency and velocity gradients in
the mean flow field are identified. Moreover, the effect of finite element

stabilization methods on the system matrix structure is discussed.

The parameter used to characterize the convergence behavior is the con-

dition number κ(A) of Eq. (4.36). Consider a single tetrahedron finite
element, Fig. 4.1, with its nodes located arbitrarily in three dimensional

space. It is subjected to a certain mean flow which satisfies conservation
of mass, momentum and energy. LEEs are discretized on this element us-

ing the Bubnov-Galerkin finite element approach with piecewise linear test
functions to simplify the derivation. Scaling of the primitive variables, in-

troduced in Eq. (4.39), is also performed. Transformation into parameter
space using a Jacobian transform yields the final form of the element system
matrix Ae. Its characteristics is analyzed next.

In the first case, the frequency dependance is analyzed for a constant base-

line flow having zero velocity gradients. Fig. 4.2 (left) shows a distinct
characteristic upon frequency. The condition number drastically increases
at low frequencies, indicating possible difficulties when considering low fre-

quency oscillations. Above a frequency of around 500Hz the condition num-
ber reaches a constant level.
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Figure 4.2: Influence of frequency f and velocity gradients dux/dx on the condition num-
ber κ(Ae) of a single finite element stiffness matrix.
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In Fig. 4.2 (right) we observe a strong dependance of κ(Ae) upon the ve-
locity gradient. Increasing the axial velocity gradient negatively influences
the condition number. The influence is stronger for lower frequencies which

are also displayed in the same figure. The high condition numbers reached
highlights the need of SFEMs as well as suitable combination of a solution

algorithm and preconditioning techniques. In the course of the study, con-
tributions of the GLS term of Eqs. (3.35)-(3.37) were also introduced into

the element matrix. A direct effect is that the symmetry of the element
system matrix increases, due to the symmetric structure of the GLS terms.

Of course, the condition number also depends on the specific quality of the
tetrahedra element and the incidence of the flow velocity. In the presented

case a well shaped tetrahedra element has been selected. Decreasing the
element quality, decreases the condition number accordingly. Another in-

fluencing factor is the domain size (depending on number of elements and
the order of interpolation functions), which may also lead to a significant
decrease in the condition number. Therefore, it has to be noted that the

study of condition numbers of the system matrix of a single element is not
able to provide estimates of condition numbers of real physical problems.

The only aim of this section was to identify influencing factors and possible
dependancies.

4.5.2 Solution Procedures

In practical problems, acoustic fields over a wide range of frequencies are
of interest. For every discrete pulsation ω the matrix inversion problem of

Eq. (4.2) has to be solved once. The frequency dependance of the condition
number already indicates possible difficulties, especially in the low frequency

limit. Furthermore, the analysis has confirmed the mathematical nature of
the assembled system matrix of LEEs, being indefinite and non-hermitian.

If one can not rely on the special properties of matrix A, Krylov subspace
methods are the most suitable choice (Saad, 2000).

In the following, the generic combustion chamber problem is introduced
first. This problem will be used to ’calibrate’ free parameters of the solution

algorithms and to compare their performance against each other later on.
Note that the same generic problem will be used in Section 6.1 to validate
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the accuracy of the LNSEs solution procedure as a whole and a much more
elaborate discussion is found therein. Here, the discussion is confined to
create a basic understanding of the test case.

The generic premixed combustor is composed of a simple tube having con-

stant cross section, see Fig. 4.3. A fully premixed reactive mixture enters
from the inlet and is burnt in the flame region located in the middle of the
duct leading to a temperature jump of T̄h/T̄c = 4. The burnt gases are ac-

celerated and leave the combustor at its outlet. Acoustically this problem is
considered by exciting the inlet by prescribing velocity fluctuations ûx = 1.

The outlet is considered to fully transmit acoustic waves which is achieved
by prescription of an impedance boundary condition, Eq. (2.38).

Temperatures are assumed to be constant in the upstream and downstream
duct, while the temperature level is raised over the flame region by prescrib-

ing a hyperbolic tangent profile. All other mean flow quantities can then
be calculated as a function of inlet Mach number, density and pressure and

satisfy continuity of mass, momentum and energy. The main advantage of

ρ̄1

ū1
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Figure 4.3: Quasi one dimensional model combustor of length L, shaded area represents
flame region separating fresh to burnt gas side. Figures below show the
axial mean Mach number distribution as well as associated pressure and
temperature distribution for the inlet Mach numbers of Ma =0,0.01,0.05 and
0.1.
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this test case is that many different parameters may be studied, e.g. in-
let Mach number Main or frequency f . Semi-analytical solutions can be
derived from a one dimensional consideration of the LEEs to which the

numerically obtained solutions are compared.

For an iterative scheme to converge, a linear solver needs to be coupled
with an appropriate preconditioner. This thesis proposes three different
algorithms to solve LNSEs or LEEs in frequency space:

• FGMRES-GMRES(SOR): A similar form of this algorithm has al-

ready been used to solve the elliptic Helmholtz equation (Silva, 2011).
It is based on the choice of FGMRES as linear solver which flexibly
incorporates an GMRES preconditioner in the outer iteration loop. In

the present implementation the GMRES preconditioner is itself pre-
conditioned by a SOR splitting method. The method is based on the

considerations of Section 4.3.1. This additional step may accelerate
the solution process considerably. However, the method needs care-

ful calibration of the SOR relaxation parameter ωSOR. For the given
model problem this parameter is varied for different frequencies and

inlet Mach numbers in Fig. 4.4. It can be seen that the lower the fre-
quency the smaller the band is in which acceptable iteration numbers
are reached to converge to an error of ǫ = 0.01. Moreover, the graphs

illustrate that with increasing inlet Mach number, the choice of ωSOR

must decrease. A suitable range for this parameter would be between

0.2 ≤ ωSOR ≤ 0.4.

• GMRES-GMG: Like FGMRES, GMRES satisfies the optimality con-

dition and therefore represents a highly robust method. Here, it is used
in an inner iteration cycle. When used as linear solver for the LEEs,
the multigrid method proves not to converge fully satisfactory. Cer-

tain error frequencies may not be reduced sufficient enough and the
convergence behavior becomes strongly dependent on the selected pa-

rameters. However, when employed as preconditioner for GMRES, the
GMG method shows its high capabilities. Recently, different authors

have already proposed GMG methods to accelerate Krylov subspace
methods (Wienands et al., 2000; Zubair et al., 2007). This potential is

exploited by the use of GMG as a preconditioner for this solver config-
uration.
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Figure 4.4: Iteration number compared to the explicit choice of ωSOR for the FGMRES-
GMRES-SSOR(ωSOR) solution algorithm: dependance on frequency for an
inlet Ma = 0.01 (left), dependance on inlet Mach number at a frequency
f = 500Hz (right).

For multigrid preconditioners many open variables exist and must be

specified. These include the number of discretization levels, the type
of cycle (V-, F-, or W-cycle), the number of pre- and post smoothing

iterations (ν1, ν2) and the relaxation parameter ωSOR. Latter value is
employed as a filter to dampen small wavelength components. The
success of the GMRES-GMG procedure mainly depends on the choice

of ωSOR. Therefore, it is optimized for the model combustor prob-
lem. Fig. 4.5 shows the variation of iteration numbers depending on

the specific choice of ωSOR. At first sight it is clear that the iteration
number is relatively insensitive to the explicit choice of ωSOR, except

for low frequencies. This makes the method more robust compared
to the formally introduced FGMRES-GMRES algorithm. According

to Wienands et al. (2000), the amount of pre- and post-smoothing it-
erations is to be chosen such that ν1 ≤ ν2 when employing GMG as
preconditioner.

• BiCGstab-GMG: Although BiCGstab may break down before an
exact solution is calculated, the method requires significant less mem-

ory and is less expensive in terms of work per iteration compared to
the GMRES algorithm (van der Vorst, 2009). It is therefore selected

as a third alternative. The reduced memory consumption is ascribed
to the fact that BiCGstab does not need to store subspace vectors.
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All preconditioning parameters behave similarly to the GMRES-GMG
algorithm and are therefore chosen equivalently.

For the sake of clarity of the solver formulations, the linear solution al-
gorithm is always mentioned in first place while preconditioners used are

listed thereafter. With respect to Fig. 4.4 and 4.5, note that the different
algorithms may not be compared against each other, since the number of

iterations is only a relative measure of the speed of convergence. The com-
parison of the three different iterative solvers on the generic combustion

chamber is shown in the next section in terms of computational time.

4.5.3 Performance Comparison

In order to compare the performance of the three different iterative algo-

rithms, the CPU-seconds are compared to reach a convergent solution. The
numerical error ǫ for all three algorithms is estimated as

|ǫ| =

√
√
√
√
√
√

1

n

n∑

i=1




|b − Axi|

max (|xi|, Si)





2

, where Si = 0.1
1

n

n∑

i=1

|xi|, (4.40)

where the subscript i denotes the iteration number. A converged solution is

reached when ǫ = 0.001 is established. The benchmark problem of Fig. 4.3
is chosen in the following.
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Fig. 4.6 shows the performance of the three algorithms versus frequency at
an inlet Mach number of Ma = 0.05. The BiCGstab-GMG algorithm shows
a strong frequency dependance and does not converge for frequencies below

f . 750 Hz. At higher frequencies BiCGstab-GMG does converge, however,
slightly slower than the other two considered algorithms. BiCGstab-GMG

also showed to be very sensitive in respect to the explicit choice of free
parameters. The FGMRES-GMRES algorithm shows a lower dependency

upon frequency. Only in the very narrow band below f < 400 Hz the time
to obtain a convergent solution increases. In this band of frequencies, how-

ever, thermoacoustic instabilities are generally suspected and a numerical
routine must be able to retrieve acoustic solutions in this limit. Consuming
higher amounts of computational time in this range is therefore undesir-

able. Here, the GMRES-GMG algorithm shows its potential of providing
constant convergence speeds over the complete frequency range.

A similar behavior for the GMRES-GMG algorithm is found when chang-
ing the inlet Mach number of the configuration for a constant frequency

of 500 Hz (Fig. 4.6). As illustrated in Fig. 4.3, the mean velocity gradient
over the flame zone then changes equivalently with inlet Mach number. The

GMRES-GMG algorithm shows a very robust behavior with a relatively con-
stant convergence speed over the complete Mach number range. FGMRES-
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rithms: FGMRES-GMRES, GMRES-GMG and BiCGstab-GMG for the
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GMRES performs equally well. On the other hand, the BiCGstab-GMG
algorithm only showed converging behavior for very low Mach numbers.

From the considerations, the GMRES-GMG algorithm is chosen as itera-
tive solver for three dimensional problem sets of this thesis as it provides

constantly high convergence speed independent of frequency and velocity
distributions. For complex geometries, the GMG preconditioner may not
be able to represent the configuration’s geometry sufficiently enough on the

coarsest grid. In such cases, FGMRES-GMRES provides with a suitable al-
ternative. The BiCGstab-GMG may be a suitable choice when considering

low Mach number/high frequency applications, as the memory consumption
is lower than in the aforementioned algorithms.
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Behavior

Combustion chamber flows generally have a complex dynamic and feature a
large diversity of different flow configurations. In technical devices, the flow

coming from a feeding system is generally contracted in swirler channels
of an injector nozzle and a swirling fluid motion is imposed. The flow
then expands into a combustion chamber experiencing an abrupt change

in area. A strong shear layer is formed separating an inner from an outer
recirculation zone. Due to the significant radial momentum of the jets the

shear layer may impinge onto the combustion chamber walls.

As the different flow configurations are diverse, so are the acoustic flow inter-

actions: Acoustic waves interact with vortical structures in close proximity
of flow separation edges leading to attenuation or amplification processes of

the acoustic energy. Shear layers may also refract sound and influence the
scattering process into higher order modes (Ribner, 1964). Vortical struc-

tures traveling inside the shear layers may be deformed when impinging onto
walls, causing a certain feedback to the acoustic field. For high Reynolds-

number flows, acoustic waves may also interact with turbulent fluctuations
(Howe, 1984).

A combustor flow field may be subdivided into its different components.
Each component may then be studied individually in order to generate reli-
able statements on the suitability of LNSEs to predict acoustic interactions

in realistic combustion chamber configurations. This approach is followed
in this section. First, a simple area expansion is considered which mainly

features damping of acoustic waves. Then, a flow contraction in an orifice
is analyzed, where energy is also transferred from the vortical to the acous-

tic modes for certain frequency ranges, leading to amplification of sound.
Swirler vane channels may be thought of as representatives of such a config-

uration. Both aforementioned problems have in common that the vortices
separate in a -more or less- free shear layer. This is not the case for a grazing
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flow in a T-joint, the third test case considered. There, vortical structures
impinge onto confining walls and may provide an acoustic feedback. For
this test case aeroacoustic interactions are strongest. Finally, the last test

integrates the individual problems into one computation: A complex swirled
combustion chamber flow is simulated including an industrial combustion

injector developed by Avio S.p.A.1 The complexity of the acoustic analysis
increases with every configuration.

Main aim of this section is to study the effect of acoustic-vortex interactions
and the resulting implications on the acoustic losses. The solution procedure

of Section 3.3.5, which solves the matrix inversion problem of Eq. (4.2)
twice for each frequency, is applied to determine the complex scattering

coefficients of the different flow configurations mentioned. Coupling with
entropy waves is not considered herein, assuming isentropic behavior of all

fluctuating components, viz. p̂ = c̄2ρ̂. Governing equations, stabilization
schemes and wave extraction procedure are implemented in the flexible finite
element package COMSOL Multiphysics (2010).

5.1 Area Expansion

The first configuration studied is an area expansion depicted in Fig 5.1.

Its geometry consists of two pipe segments which are co-axially connected,
having an upstream diameter of du and a downstream diameter of dd. The

upstream pipe has a length of lu, while the length of the downstream pipe
is ld. The area ratio Ar = 0.35 is selected to resemble the experimental

measurements of Ronneberger (1987). The measurements are utilized to

ρ̄1

ū1

p̄1

ρ̄2

ū2

p̄2

AdAu

Figure 5.1: Schematic presentation of geometry and flow conditions of the area expansion
of the experimental set up of Ronneberger (1987).

1 http://www.aviogroup.com/
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validate the present method. Table 5.1 gathers the main characteristics of
this test case.

Acoustic phenomena involved are the scattering process of plane waves into
higher order modes at the area expansion, refraction of sound in the expand-

ing shear layer and the attenuation of sound generated through acoustic-
vorticity interactions. Latter effect results from the triggering process of
vortical structures by acoustic fluctuations at the trailing edge. At small

Strouhal numbers (St < 0.25) the shear layer features instability (see
Michalke, 1965), leading to aeroacoustic interactions.

The area expansion is used to study two main effects: First, the capability of
the LNSEs is demonstrated to capture acoustic-flow coupling and the mode

scattering effects. Secondly, the test case is used to study the influence of
the acoustic boundary layer. Some authors in the literature believe that

acoustic-flow interaction processes are significantly influenced by the effect
of the acoustic boundary layer Kierkegaard et al. (2012a,b). If so, the mesh

refinement of wall boundaries would exceed the ones encountered in typical
CFD simulations where the boundary is fully resolved. This is due to the

fact that the acoustic boundary layer (already at moderate frequencies, see
Eq. (2.50)), becomes an order of magnitude smaller than the fluid dynamic
boundary layer. With the unavailability of wall models incorporating the

effect of the acoustic boundary layer, this requirement would not be desir-
able and would restrict the use of LNSEs to at most small scale problems for

Table 5.1: Geometrical and physical operating conditions of the sudden area expansion
Ronneberger (1987).

Description Variable CFD/CAA

upstream pipe diameter du 0.05 m

downstream pipe diameter dd 0.085 m

upstream pipe length lu 0.5 m

downstream pipe length ld 0.7 m

area ratio Au/Ad 0.35

Mach number at inlet Ma 0.2

Reynolds number at inlet Re 1.88 × 105

kinematic viscosity ν 1.55×10−5 m2 s−1
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5 Prediction of Acoustic Scattering Behavior

the near future. Therefore, two computations with different boundary layer
resolutions are performed. The first uses the LNSEs incorporating the effect
of molecular viscosity and the second uses the non-viscous counterpart, the

LEEs, where the acoustic boundary layer is not resolved.

In order to design the different mesh configurations for the simulations using
LNSEs and LEEs, one has to be aware of the different length scales involved
in aeroacoustic problems. Resolving only the acoustic wavelength λa is not

sufficient. In order to capture the main acoustic-flow interaction processes,
resolution of the vortical length scale is necessary as well. It is roughly an

order of magnitude smaller for low Mach number configurations λv = Maλa.
As vortical structures originate from the trailing edge and propagate inside

the shear layer until they are dissolved, this region is significantly refined to
capture the vorticity length scale in the complete frequency range of interest.

The resolution of the uniform flow in the upstream and downstream ducts,
where generally only acoustic waves travel, is dedicated to sound waves
with shortest wavelength or the highest frequency. The shortest wavelength

considered at f =5100 Hz is resolved by a minimum of 15 cells. These
considerations are common to both LNSEs and LEEs resolutions. However,

for the LNSEs a different upstream near wall refinement is chosen. Up
to a Strouhal number of St < 0.25, after which aero-acoustic interactions

theoretically vanish, the acoustic boundary layer is resolved by at least four
cells. In case that the acoustic boundary layer contributes significantly to
the aeroacoustic interactions, differences in the computations with LEEs

must be seen up to St < 0.25. For the LEEs, only the hydrodynamic
boundary layer is resolved by four cells. Beginning from the smallest cell

located directly at the edge of the area expansion, the grids grow in axial and
radial direction with an element growth of 2%. Rectangular elements are

chosen in conjunction with second order Lagrangian interpolation functions.
The different mesh refinements result in overall 900k and 350k degrees of

freedom for the LNSEs and LEEs computations, respectively.

In order to establish a well-posed mathematical problem, two inlet bound-

ary conditions need to be defined in two dimensional space. Zero reflecting
acoustic impedance boundaries are subscribed for the acoustic character-

istic, Eq. (2.38) with Z = 1, while vorticity perturbations are assumed to
vanish, setting the velocity components parallel to the inlet to zero, viz.
û|| = 0. At the domain outlet, only a boundary condition for the upstream
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5.1 Area Expansion

reflected wave needs to be imposed, as vorticity perturbations are simply
convected out of the domain. Similarly to the inlet, this is done by im-
posing zero reflections using an impedance boundary condition. The only

difference between LNSEs and LEEs computation is the definition of the
wall boundary. As the effect of the acoustic boundary layer is estimated

in the following simulations, consequently acoustic no-slip wall boundaries
are ascribed for the LNSEs in the upstream duct û = 0. For LEEs, slip

boundaries are ascribed instead, Eq. (2.51). To reduce the computational
effort, the LNSEs and LEEs are formulated in a cylindrical coordinate sys-

tem (see Appendix B.2) and a symmetry boundary is chosen for the center
axis. Any symmetry line or plane does not permit the presence of acoustic
fluxes and friction forces yielding the symmetry boundary condition,

n · û = 0;
∂û||

∂n
= 0. (5.1)

For this test case also the influence of the finite element stabilization scheme

is assessed as well. It is found that the GLS scheme performes slightly
better compared to the SUPG scheme in case of the LNSEs. GLS is able

to reduces the numerical error by overall 1% compared to the experimental
data. However, when LEEs are employed, SUPG and GLS produce similar

orders of accuracy. For consistency, the following simulations are performed
using the GLS stabilization scheme using a stabilization parameter defined
in Eq. (3.38) using α = 0.1.

Main focus of this section is to validate the prediction capabilities of

the LNSEs and LEEs solely, errors stemming from the mean flow field
computations are undesired and minimized by restricting the modeling
to the subgrid turbulent scales. Thus, a well validated LES simulation is

time averaged to produce the mean flow fields. This is done within the
flow solver AVBP developed from CERFACS (Schoenefeld and Rudgyard,

1999). The same mesh consisting of block-structured hexahedra elements
and boundary conditions as described by Föller and Polifke (2012) are

utilized. For boundary layers, the applied wall model switches between
logarithmic and linear law depending on the value of y+. On average

a y+ = 35 is achieved. To produce the mean flow fields, overall 0.026 s
are time averaged while the time step satisfies a Courant-Friedrich-Levi
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5 Prediction of Acoustic Scattering Behavior

number (CFL) of 0.7. Subgrid turbulent scales are modeled using a Wall
Attached Layer Eddy model developed by Nicoud and Ducros (1999).

5.1.1 Scattering Matrix

The procedure described in Section 3.3.5 is used to compute the scattering

matrix of the area expansion. LNSEs and LEEs are solved in a cylindrical
coordinate system and two simultaneous simulations are performed exciting

the area expansion once from upstream and once from downstream direction
to retrieve all scattering matrix coefficients. Acoustic forcing is implemented

by inserting the source vector

su =

(

− cosh

(

x − xs

δs

)

− 1, 0

)T

(5.2)

into the finite element procedure of Eq. (3.2), where δs defines the thickness

of the region of the excitation source and xs its axial location. Outside of
the excitation region, the source term is set to zero. The resulting scattering

matrix is plotted versus the upstream Helmholtz number

He =
ωdu

2c̄
, (5.3)
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Figure 5.2: Amplitude and phase of scattering matrix coefficients of a sudden area ex-
pansion at Ma = 0.2. Results of LNSEs and LEEs with experimental data
of Ronneberger (1987).
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in Fig. 5.2. Amplitudes and phases are resolved with a frequency step
of 50 Hz up to the first cut-on frequency of the first non planar mode at
Hecut-on = 2.2. In comparison to the experimental results of Ronneberger

(1987), both equation sets, viz. LNSEs and LEEs, accurately capture the
scattering behavior of the sudden area expansion. Increasing reflection and

decreasing transmission coefficients amplitudes are observed. Characteristic
inflection points in |R+| at about He = 0.3 and 0.6 are captured with high

accuracy. The phase behavior is equally well predicted.

Direct comparison of LNSEs and LEEs shows nearly no deviation in the

results. Scattering coefficients predicted with LNSEs show only a slightly
smoother trend. This is attributed to the stronger vorticity perturbations

produced by the LEEs ansatz, due to the absence of viscosity. Larger am-
plitudes of vorticity in the wave extraction region increase the error of the

least-square algorithm. In the LNSEs, viscous effects contribute to the
suppression of vorticity waves and thus possibly reduce the fitting error.
Nevertheless, the similarity in the results between LNSEs and LEEs, may

lead to the preliminary conclusion that the coupling mechanism between
acoustic waves and the hydrodynamic mode is not strongly influenced by

molecular viscosity of the acoustic boundary layer in this particular case.
As it will be shown, this is also not the case for other configurations like a

single hole orifice. The strong similarity in the results, considering the very
different mesh resolution, also proves that grid independence is established.

Fig. 5.2 also compares the current approach to an LES/system-identification
ansatz of Föller and Polifke (2012) yielding the same order of accuracy.

Föller and Polifke (2012) argued that the linearized method neglects two
main aeroacoustic interaction effects: The scattering of sound into turbu-
lence as well as the reverse effect of the acoustic on the fluid dynamic field.

Although LNSEs and LEEs do neglect such effects, they do not seem highly
pronounced for this very test case. Both linearized equation sets are able to

capture the scattering matrix elements for the sudden area expansion with
high accuracy.

91



5 Prediction of Acoustic Scattering Behavior

-0.6

-0.4

-0.2

 0

 0.2  0.4  0.6  0.8  1

Z
re

s

St [-]

0

0.5

1.0

1.5

 0.2  0.4  0.6  0.8  1

Z
re

ac

St [-]

Exp.
LES-SI
LNSEs

LEEs

Figure 5.3: Acoustic resistance Zres and reactance Zreac of a sudden area expansion at
Ma = 0.2. Results of LNSEs and LEEs with experimental data of Ron-
neberger (1987) and results achieved by the LES/SI approach Föller and
Polifke (2012).

5.1.2 Acoustic Impedance

In this section the results of the acoustic impedance are shown to demon-
strate the capabilities of the optimized hybrid approach to capture the

acoustic flow interaction process and mode scattering mechanism in detail.
First, the analytic representation of the lumped impedance is introduced

from various publications (Föller and Polifke, 2012; Karal, 1953; Morse and
Ingard, 1987; Peat, 1988)

Z =
p̂u − p̂d

ρ̄c̄ûu
= Zres + iZreac. (5.4)

Its real part is called resistance Zres, whereas its imaginary part is generally

referred to as reactance Zreac. The resistance contains inertial information
about the damping behavior of the system. The reactance describes the
scattering process and temporal storage of acoustic energy in evanescent

higher-order modes. When the acoustic energy from the higher order modes
is back-scattered into the plane wave mode, a phase shift is introduced.

Fig. 5.3 plots the evolution of the resistance and reactance versus the non
dimensional Strouhal number

St =
ωθ

c̄Ma
, (5.5)

where θ is the boundary layer thickness in the upstream pipe close to the
separation edge. Boij and Nilsson (2006) estimate this thickness to be 10 %
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5.1 Area Expansion

of the upstream pipe radius ru. The Strouhal number represents the ratio of
time scales between the acoustic and mean flow field. If the time-scales are
approximately of the same order, then most-likely acoustic-flow interactions

appear.

Ronneberger’s measurements are in excellent agreement with the results
obtained through the linearized equations. In the following, the discussion
of the results is split into three Strouhal number ranges. According to the

differentiation made in Föller and Polifke (2012) these ranges are associated
to three different physical phenomena which lead to the observed impedance

behavior.

In the low Strouhal number range (St ≤ 0.25), Föller and Polifke (2012)

observe an initially constant resistance, which then gradually changes to a
lower level. This observation is confirmed by the linearized approach. At

about St = 0.25 the resistance becomes constant again. Throughout the
low Strouhal number range, the reactance remains mostly constant. This

characteristic behavior observed is associated with the hydrodynamic insta-
bility of the shear layer, which is triggered by the impinging acoustic waves.

Interaction causes an energy transfer from the acoustic to the vortical mode,
which results in a loss of acoustic energy or equivalently in an increase of
resistance (Boij and Nilsson, 2003, 2006). According to Michalke (1965) the

shear layer features instability only up to a Strouhal number of St ≤ 0.25
after which it reaches a stable state. Thus, after passing this point, the

interaction is supposed to vanish, which is confirmed by a nearly constant
resistance.

The second range between 0.25 ≤ St ≤ 0.4 is characterized by constant lev-
els of resistance as well as an increasing reactance. The underlying acoustic

phenomenon can be associated to the well known end-correction at pipe dis-
continuities (see Section 2.7.1.2 for elaboration). As the reactance features

a constant slope, this indicates a constant end-correction in this frequency
range.

In the higher Strouhal number range St ≥ 0.4, more acoustic energy is
scattered from the plane wave mode into higher order duct modes at the area

expansion. As the frequency approaches the cut-on frequency, higher order
modes are allowed to propagate through longer distances in the downstream
duct, leading to a delayed back-scattering process into the plane wave mode.
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5 Prediction of Acoustic Scattering Behavior

This behavior is characterized by an increasing reactance. The results shown
in Fig. 5.3 prove the capability of LNSEs as well as LEEs to capture the
physics with similar accuracy for all three Strouhal number ranges.

5.2 Orifice

In the second test case, the current approach is used to determine the scat-
tering coefficients of a single hole orifice schematically shown in Fig. 5.4.
The geometry consists of a constant area duct with diameter d which is in-

tersected by a sharp edged orifice with a hole diameter of do and thickness
t. The duct section upstream of the orifice has a length of lu, whereas the

length of the downstream duct is ld. The geometry and inlet flow velocity
(ū0 = 9m/s) are selected to allow comparison with the experimental mea-

surements of Testud et al. (2009). Table 5.2 gathers the main characteristics
of this test case. Compared to the area expansion, which features only at-

tenuation of sound, the flow inside an orifice may cause net amplification of
acoustic energy. This feature is analyzed in this section.

Despite the geometric simplicity of an orifice, strong acoustic-flow inter-
actions can be observed: The flow reaching the orifice is contracted to a
central jet and a shear layer is formed between the expanding flow and the

outer recirculation zones. In regions of flow separation, acoustic waves trig-
ger vortical modes in the flow field which are then convected downstream

inside the shear layer. For certain frequency ranges, the shear layer ampli-
fies the vortical structures (Michalke, 1965). This process may lead to a net

amplification of the acoustic energy if the vortical energy is fed back into
the acoustic mode by aeroacoustic interactions. If this type of amplification

occurs at frequencies which correspond to resonance frequencies of the com-

ρ̄u

ūu

p̄u

ρ̄d

ūd

p̄d

t

dod

Figure 5.4: Schematic presentation of geometry and flow conditions of single hole orifice
of experimental set up of Testud et al. (2009).
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plete system, a resonant feedback loop is created, yielding large amplitude
oscillations (Rockwell and Naudascher, 1979). Latter phenomenon is called
whistling and is a completely non-linear phenomenon. However, it can also

be studied by means of a linear analysis (Testud et al., 2009).

Acoustic fields for a discrete number of frequencies are calculated using
LNSEs and LEEs formulated in a cylindrical coordinate system. A GLS
Petrov-Galerkin approach is applied for finite element stabilization using

the τstab parameter of Eq. (3.38). As shown previously for the sudden area
expansion the viscous acoustic boundary layer has negligible influence on

the scattering behavior of the acoustic element. It is therefore neglected
subsequently and not resolved numerically. Eq. (2.51) is applied to all solid

walls. All other domain boundaries are chosen analogously to the area
expansion test case. At the axis of rotation again a symmetry boundary is

assigned to reduce the computational effort.

Due to the smaller dimensions of this test case the two dimensional acous-

tic mesh consists only of roughly 4.200 rectangular elements which are dis-
cretized using second order Langragian test functions. Overall, this leads to

120.000 degrees of freedom. The orifice do/2× t is discretized by 15×5 cells
respectively. Element growth rates in upstream and downstream direction
do not exceed 1 percent, resulting in a highly uniform grid distribution.

The resulting system matrix is efficiently solved using the direct LU fac-
torization method for large system matrices called MUMPS. For a single

Table 5.2: Geometrical and physical operating conditions of the single hole orifice Testud
et al. (2009).

Description Variable CFD/CAA

pipe diameter d 0.03 m

orifice hole diameter do 0.015 m

orifice thickness t 0.005 m

upstream pipe length lu 0.15 m

downstream pipe length ld 0.36 m

Mach number at inlet Ma 0.026

Reynolds number at inlet Re 1.8 × 104

kinematic viscosity ν 1.55×10−5 m2 s−1
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matrix inversion the computational time required by the direct algorithm
is approximately 12 seconds using a single core processor. In the same way
as for the sudden area expansion, regions of wave extraction are chosen up-

stream −0.09 m ≤ x ≤ −0.03 m and 0.15 m ≤ x ≤ 0.85 m downstream of
the orifice outlet plane (x =0 m).

The mean flow field is calculated performing a time average over LES so-
lutions. Subgrid scale model, discretization schemes and CFL number are

chosen equally to the described simulation of Section 5.1. The mesh of
Lacombe et al. (2011) is adopted for the present computations. It is signif-

icantly refined around the orifice’s leading and trailing edges. Main aim of
the employed discretization is to capture the correct flow angle of the flow

contraction at the upstream edge, the separation point and the shear layer
expansion inside the orifice. It is believed that these parameters strongly

influence the acoustic-flow interaction processes at an orifice configuration.
The fine discretization employed yielded a total number of 5.5 million cells.
Overall, 0.3 s are time averaged to produce the mean flow field. A time step

was chosen to satisfy CFL< 0.7 for the flow field computations.

5.2.1 Scattering Matrix

For a discrete number of frequencies f = 200−5100 Hz with a frequency step
of ∆f = 50 Hz, the results of the scattering matrix coefficients are shown

in Fig. 5.5. The results are plotted versus the orifice Strouhal number

St =
ωt

2πūo
, (5.6)

wherein, ūo = ū0(d/do)
2 describes the flow velocity through the orifice.

Again, high agreement in the complete frequency range between the pre-
dicted scattering matrix coefficients of the LNSEs or LEEs and the experi-

mental measurements is observed.

In the low frequency limit, amplitudes of the reflection coefficients predicted

by the linearized equations are about constant, whereas the experimental
results show a slight negative slope. After a drop, the reflection coefficients

increase sharply around St = 0.25. Similarly, amplitude transmission coef-
ficients increase and reach a maximum at about the same Strouhal number.
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Figure 5.5: Amplitude and phase of scattering matrix coefficients of an orifice
(ū =9 m s−1). Results of LNSEs and LEEs with experimental data of Testud
et al. (2009) and results achieved by the LES/SI approach Lacombe et al.
(2011).

In this frequency range, strong aeroacoustic interaction leads to the ampli-

fication of acoustic waves resulting in transmission coefficients much larger
than unity. At higher Strouhal numbers (St > 0.4), the shear layer stabilizes

again, leading to decreasing transmission and reflection coefficients.

LNSEs and LEEs are both able to capture all acoustic flow interaction pro-

cesses in the studied Strouhal number range in trend as well as in frequency.
Predicted amplitudes and phases are nearly identical for both linearized
equation sets and are in excellent agreement with the measurements for all

scattering matrix coefficients. Only some deviations to the experimental
data is observed for higher Strouhal numbers.

A comparison to the LES/SI approach of Lacombe et al. (2011) shows that
the scattering behavior of the test case is predicted with higher accuracy

by the LNSEs and LEEs. At higher Strouhal numbers (St > 0.5), the
LES/SI approach predicts a higher order mode. Its appearance, however,

is not in agreement with the experiments and results of the LNSEs and
LEEs simulations. A possible explanation may be the under prediction

of the inflow velocity in the LES/SI computations by 0.2 m s−1 yielding
a mean flow velocity of ū0 = 8.8 m s−1. However, the results should still

scale with Strouhal number which was adapted accordingly for the LES/SI
representation in Fig. 5.5. A more recent publications with corrected inflow
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velocity still shows the appearance of this higher order acoustic mode (see
Lacombe et al., 2013).

5.2.2 Whistling Criterion

As described above, orifices may be subjected to a phenomenon called
whistling. Although, this is a completely non-linear effect its onset may

be predicted by a linear approach such as the LNSEs. Whistling results
from a shear layer instability at the orifice which amplifies acoustic waves
and may lead to self-sustained oscillations in pipe-networks, such as ventila-

tion or supply systems. Aurégan and Starobinski (1999) derived a criterion
to determine the frequency regions where whistling may potentially occur.

The criterion can be formulated as follows: calculate the minimum and
maximum eigenvalue (ξmin, ξmax) of,

ξ = I − eig(S∗
eSe) with Se =






T +(ω) 1+Ma
1−MaR−(ω)

1−Ma
1+Ma

R+(ω) T −(ω)




 , (5.7)

where I is the identity matrix and Se the scattering matrix in terms of
exergy and the superscript ∗ denotes the hermitian transpose. The obtained

eigenvalues define the margins of the ratio of dissipated acoustic power
(Pin − Pout) to the incident acoustic power Pin, i.e.

ξmin ≤
Pin − Pout

Pin
≤ ξmax. (5.8)

The authors distinguish between three different cases:

• ξmin ≥ 0 and ξmax > 0, the system damps acoustic energy and the
outgoing acoustic power is lower than the incoming acoustic power,

• ξmin < 0 and ξmax = 0, the system amplifies acoustic energy and the
outgoing power may exceed the incoming acoustic power,

• ξmin = 0 and ξmax = 0, the element is energetically neutral and neither
amplifies nor damps acoustic waves.

The whistling potential of the orifice is characterized for a broad range of
frequencies in Fig. 5.6. Three distinct regions can be identified. At low
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Strouhal numbers (St < 0.2), ξmin ≈ 0 and the orifice dissipates acoustic
energy. Both, LNSEs and LEEs are in good agreement with the measure-
ments.

The second range between 0.2 ≤ St ≤ 0.4 is characterized by negative

values of ξmin which exhibit a minimum at St ≈ 0.28. Here, acoustic sound
is potentially produced by the orifice, which leads to a net amplification
of incident acoustic waves. LNSEs and LEEs predict the whistling mode

at slightly higher Strouhal numbers. The magnitude of the eigenvalues is
captured with quantitative accuracy by LNSEs but not by the LEEs. Here,

a first discrepancy between the two linearized models is observed: Although
showing qualitative agreement, the LEEs do not coincide with the results of

the LNSEs. A slightly lower ξmin is predicted, indicating that more sound
is produced than physically observed. This behavior is attributed to the

missing molecular viscosity in the LEEs, which inevitably leads to a stronger
growth of the vortical structures and therewith to a stronger aeroacoustic
coupling. The behavior found is believed to be unique to linearized sets of

equations and will be explained in more detail in the next section of the
T-joint where interactions are found to be stronger.

Similar to the case of the area expansion, a resolution of the acoustic bound-
ary layer does not seem important to capture the main aero-acoustic effects

of an orifice. A numerical edge-to-edge instability observed by Kierkegaard
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Figure 5.6: Minimum and maximum eigenvalues (ξmin ξmax) of the eigenvalue problem
in Eq. (5.7). Results of LNSEs and LEEs with experimental data of Testud
et al. (2009) and results achieved by the LES/SI approach Lacombe et al.
(2011).
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et al. (2012a), when slip wall boundary conditions are subscribed to the ori-
fice walls, is not observed in the present study. In the third range (St > 0.4)
the orifice again potentially dissipates acoustic energy.

This section successfully illustrates that the LNSEs as well as LEEs are able

to capture basic sound attenuation as well as amplification processes with
slight differences in accuracy. In regions close to the frequency of instability
of a shear layer, where maximum amplification of incident acoustic waves

occurs, LEEs are shown to slightly over predict the acoustic-flow coupling
processes.

5.3 T-Joint

A grazing flow in a T-joint is the third validation test case for which the
LNSEs are solved. This configuration features a flow through a main pipe

to which a side branch is attached perpendicular to the central axis of the
main pipe. Unlike in an area expansion or an orifice, the shear layer which
separates at the trailing edge of the upstream pipe intersection does not

evolve freely. Instead it expands until it reaches the downstream edge. In
a grazing flow configuration the shear layer separates the stagnant medium

in the side branch from the mean flow inside the pipe.

Similarly to the single hole orifice, this configuration may exhibit energy

transfer to or from the acoustic field, depending on the Strouhal number
considered. Consequently, incident acoustic waves are either amplified or

ρ̄u

ūu

p̄u

ρ̄d

ūd

p̄d
xref

d

d

Figure 5.7: Schematic presentation of geometry and flow conditions of grazing flow in a
T-joint experimentally measured by Karlsson and Åbom (2010).

100



5.3 T-Joint

attenuated. The mechanism behind this acoustic-flow coupling may be de-
scribed by a feedback loop of the following chain of events:

• the acoustic field excites the shear layer at the upstream edge of the

T-joint, where the flow separates. Instability of the shear layer leads
to the generation of vortical disturbances,

• the disturbances are convected through the shear layer and interact
with the acoustic field, resulting in a transfer of acoustic energy from

the flow field into the acoustic field, and vice versa,

• the additional sound produced through aeroacoustic interactions prop-

agates to the upstream edge, the most receptive area for the shear layer
instability, creating a certain feedback loop.

The concept of the feedback loop is very similar to the one observed in

low Mach number flows over deep cavities (Rockwell, 1983) or Helmholtz
resonators. Under resonance conditions, e.g. in pipe systems, this process

may also lead to the phenomenon of whistling already explained for the
orifice configuration.

In order to analyze the acoustic scattering behavior of a T-joint, the theory
for the determination of scattering coefficients of acoustic two-ports of Sec-

tion 3.3.5 must be extended to acoustic three-ports. The scattering matrix
of an acoustic three-port is defined by









p̂−
u

p̂−
s

p̂+
d









=









Ru Ts,u Td,u

Tu,s Rs Td,s
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















p̂+
u

p̂+
s

p̂−
d









(5.9)

where R’s denote the reflection coefficients and T ’s describe the transmission
coefficients from one branch to the other. The direction of acoustic transmis-

sion is included in the respective subscripts: The first index {u/d/s} defines
the point of origin of an acoustic wave to be transmitted, while the second

subscript defines the direction in which the acoustic wave is transmitted.
p̂

+/−
u/d/s defines the complex pressure wave amplitudes in the upstream branch

(subscript u), downstream branch (subscript d) or side branch (subscript
s), traveling either in downstream + or upstream direction −.
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Figure 5.8: Different acoustic excitation cases of the T-joint and location of complex
pressure amplitudes. Case I, case II and case III denote excitation from
upstream, side and downstream branch, respectively.

In order to obtain all unknown scattering matrix coefficients of Eq. (5.9)

three instead of formerly two independent acoustic states need to be
defined. This is done by performing three acoustic simulations for each

discrete angular frequency ω, as shown in Fig. 5.8. In the first simulation,
the T-joint is numerically excited from the upstream branch (case I) by

introducing a forcing function of Eq. (5.2), in the linearized momentum
equation in x-direction. Other contributions to the forcing vector are
chosen to be zero in this case. In a second and third case, case II and

III, the T-joint is excited from the side branch direction and from the
downstream direction, respectively. Following this routine provides nine

equations for the nine unknown scattering matrix coefficients of an acoustic
three-port.

5.3.1 Configuration

The T-joint consists of two pipe segments of equal diameter d. Both inter-

sect each other in an angle of 90 degrees. The main pipe has a length of
lm while the side branch pipe section is ls long. The edge geometry at the

intersection of both pipes has a strong impact onto the aeroacoustic behav-
ior, see e.g. Bruggeman et al. (1991) and Kooijman et al. (2008). Here, in
this thesis, a sharped edge T-joint is considered.

The flow enters the main pipe with an average Mach number of 0.1 and

forms a turbulent shear layer Re ∼ O(105) at the pipe intersection which
impinges onto the downstream edge. Tab. 5.3 summarizes the geometric
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5.3 T-Joint

Table 5.3: Geometrical and physical operating conditions of the T-junction Karlsson and
Åbom (2010) for the LES and LNSEs computations.

Description Variable LES/LNSEs

pipe diameter d 0.033 m

main pipe length lm 0.364 m

sidebranch pipe length ls 0.172 m

ambient pressure p̄ 101 325 m

ambient temperature T̄ 298.15 K

speed of sound c̄ 346.18 m s−1

kinematic viscosity ν 1.568 × 10−5m2 s−1

Mach number at inlet Ma 0.1

Reynolds number at inlet Re 6 × 104

and operating conditions. The numerical results are compared to the ex-
perimental data of Karlsson and Åbom (2010). The configurations differ

in the duct diameter d < dexp = 0.057m. While the Strouhal number and
the Mach number show similarity, the Reynolds number of the simulation

is 58 percent smaller than in the experiment. Föller et al. (2010b) argue
that this discrepancy has little influence on the momentum thickness of the

shear layer and that the data collapses well with Strouhal number.

5.3.2 Large Eddy Simulation of Flow Field

In the context of cavity noise prediction, Slimon et al. (1998) highlight the
importance of the turbulence model. In order to accurately predict the

fluid dynamics of the T-joint, LES is used within the flow solver AVBP
(Schoenefeld and Rudgyard, 1999). Series of data are time-averaged to

produce the mean flow field, which is input to the acoustic solver. At
this point it is noted that also Reynolds-averaged Navier-Stokes turbulence

closures can be used under some limitations (Tam et al., 1995). However,
in order to clearly validate the accuracy of LNSEs a much higher effort

is undertaken in correctly predicting the mean flow field and shear layer
dynamics.
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5 Prediction of Acoustic Scattering Behavior

The domain Ω is discretized using the same mesh configuration which is
described in detail by Föller et al. (2010b). Overall, five million hexahe-
dral cells are used. The spatial and temporal derivatives are approximated

using a second-order Lax-Wendroff scheme and an explicit Euler scheme,
respectively. Time marching is performed with a CFL number satisfying

CFL< 0.7.

The choice of subgrid scale model has a significant effect on the dynamics

of the shear layer and the near-wall structures (see Fureby and Grinstein,
2002). The results of Bogey and Bailly (2005), using a dynamic Smagorin-

sky model, suggest that this subgrid scale model is overly diffusive and
artificially decreases the Reynolds number. Therefore, again the effect of

the unresolved scales is modeled via the WALE approach by Nicoud and
Ducros (1999), which should better represent boundary and shear layers.

For the inflow velocity boundary condition turbulent profiles, experimen-
tally measured by Zagarola and Smits (1998), are prescribed. A velocity

inlet is also assumed for the side branch boundary with a bias flow velocity
set to zero. Walls are adiabatic and no-slip conditions are used. The fluid

dynamic boundary layer is fully resolved below dimensionless radii of the
pipe section of r+ ≈ 5. At the outflow boundary of the main pipe a pressure
outlet is applied. Fig. 5.9 shows the result of the time averaged LES over

0.3 s axial flow velocity distribution.

Figure 5.9: Inputs to the acoustic LNSEs solver, left: mean axial velocity ūx of grazing
T-joint flow, right: unstructured acoustic mesh consisting of tetrahedral and
hexahedral finite elements.
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5.3 T-Joint

5.3.3 Scattering Matrix

The LNSEs are solved up to 3000 Hz using a discrete frequency step of

∆f =100 Hz. Geometry and flow conditions are highly three dimensional
and the LNSEs are therefore formulated in a Cartesian coordinate system

in three dimensional space. The computational domain Ω is discretized
using approximately 280.000 tetrahedral and hexahedral elements and sec-

ond order Lagrangian interpolation functions, yielding a total number of
2.1 million degrees of freedom Ndofs. Four layers of hexahedral elements

are used to discretize the fluid dynamic boundary layer. Regions of separa-
tion edges at the intersection of main and side branch are rigorously refined
in order to capture the flow separation accurately. The acoustic mesh is

displayed in Fig. 5.9. The GLS- stabilization finite element scheme is em-
ployed. However, test runs using the SUPG approach have shown similarly

accurate results. The resulting large system matrix is inverted for discrete
frequencies, using the proposed Krylov subspace solver GMRES-GMG of

Section 4.5.2.

The result of the scattering matrix is plotted versus the Strouhal number

defined in Karlsson and Åbom (2010), providing best comparability between
experimental and numerical configuration,

St =
fdeff

uvc
, (5.10)

where uvc is the convective velocity of the shear layer disturbance and ap-

proximated as 0.45Mac̄, and deff = π/4 is the effective diameter of the
joint.

Results of the amplitudes of scattering matrix coefficients, Eq. (5.9), as well
as the respective arguments are illustrated in Fig. 5.10 and 5.11. The re-

sults can be differentiated in three different Strouhal number ranges. For
small Strouhal numbers St < 0.5, all coefficients tend to a quasi-stationary

response. This corresponds to the operability region of devices such as
Helmholtz-resonators, where the area of intersection is of much smaller di-
mension compared to the main duct. The LNSEs manage to capture this

trend with relatively high accuracy.

For 0.5 < St < 2.5, hydrodynamically unstable modes appear inside the
flow at integer multiples of the Strouhal number (Karlsson and Åbom,
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Figure 5.10: Amplitudes of scattering matrix coefficients, Eq. (5.9), of a sharp edged T-
joint at Ma = 0.1 versus Strouhal number. Results of LNSEs are compared
to the experimental data of Karlsson and Åbom (2010) and to the results
of the LES/SI approach of Föller et al. (2010b).

2010; Meissner, 2002) and the reflection and transmission coefficients show
a highly oscillatory behavior. Bruggeman (1987) shows that this is related
to the position of the vortex during the acoustic cycle and the explicit dis-

tribution of vorticity. In order to describe the obtained results more thor-
oughly, we differentiate between the three cases of excitation from upstream

(Ru, Tu,s, Tu,d), from the side branch (Ts,u, Rs, Ts,d) and from downstream
(Td,u, Td,s, Rd) direction. In the first and second case scattering matrix coef-

ficients exhibit a strong frequency dependance, whereas in the case of down-
stream excitation no pronounced dependance is observed. The mechanism

leading to this effect is the same for upstream and side branch excitation
cases and is explained by the above described feedback loop. However, the
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5.3 T-Joint

situation is different when exciting from downstream direction: Acoustic
waves are already scattered at the downstream edge and reach the up-
stream separation edge only indirectly, leading to smaller triggering of the

hydrodynamic instabilities and thus lower aeroacoustic interactions. Us-
ing a model for the vortex distribution derived by Bruggeman (1987) and

Howe’s model of Eq. (2.58), a model for the limiting Strouhal numbers, for
which the high reflection and transmission coefficients are observed may be

derived following Meissner (2002):

St + tan−1
(

1

St

)

= 2nπ ±
π

2
, (5.11)

where n is a certain mode number which is defined as the ratio of the
convective travel time, τ , of the vortices from one edge to the other and

the acoustic oscillation period T . The travel time can be approximated
by τ = d/ū. Indeed for this Strouhal number range, this relatively simple

formula very well describes the ranges for which self-sustained oscillations
may occur.

The LNSEs clearly manage to predict the oscillatory trend of scattering and
transmission coefficients of the T-joint correctly. Especially, the frequencies

of the amplification and attenuation of acoustic sound are captured by the
linear approach, taking the discrepancies in the mean flow field into con-
sideration. However, the finite magnitudes reached by the experiment are

significantly over predicted, especially of the upstream and side branch ex-
citation cases. The linear model predicts a stronger aeroacoustic interaction

which is unphysical. This can be explained through following hypothesis:
In general, shear layers feature two different flow regimes. After separa-

tion, a laminar shear layer is formed, which may itself be subdivided in
a stable and a potentially unstable region. In latter region small distur-
bances may be exponentially amplified. After a critical Reynolds number

is reached a laminar-turbulent transition takes place and a fully turbulent
region follows (Schlichting et al., 2006). A purely linear approach based

on the LNSEs is able to describe the triggering process and exponential
growth of the Kelvin-Helmholtz instability correctly, however as second or-

der effects like turbulence are only incorporated through the mean flow
field, the transition into the turbulence regime is not captured correctly.

After having reached this transition point vortical structures will still be
partially allowed to grow, whereas in reality the growth of such structures
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5 Prediction of Acoustic Scattering Behavior

is bounded by turbulence effects. Thus, if aeroacoustic interactions are not
confined to the region of laminar shear layer growth but extend into the
region of the turbulent shear layer, the acoustic interaction with vortical

structures will be over predicted by the linearized Navier-Stokes equations
due to the stronger vortex structures. That aeroacoustic interactions are

taking place in the complete cross-section is most likely the case for the
T-joint (see Bruggeman, 1987; Hofmans, 1998).

This reasoning also provides an explanation for the fact that aeroacous-
tic interactions in an area expansion and an orifice were predicted with

higher accuracy. There, most probably, the aeroacoustic interactions are
confined to the laminar regime of linear growth of Kelvin Helmholtz insta-

bilities, where the LNSEs are still valid and most accurate. This finding is
supported by many authors, who state that the aeroacoustic interactions,

e.g. for the area expansion, happen in close proximity to the separation
edge (Boij and Nilsson, 2003, 2006). This may also explain the deviations
between LNSEs and LEEs for the orifice configuration of Section 5.2. Al-

though nearly full agreement is observed in the complete frequency range, at
Strouhal numbers where the highest aeroacoustic interaction was observed,

LEEs over predict the sound generation through flow coupling. As LNSEs
include viscous effects, growth of vortical structures is partially bounded by

laminar viscosity which may extend the range of validity of the approach.
This will enable the LNSEs to better describe the interaction phenomena,
but only to some limited extend. Viscosity may have an effect on the growth

of vortical structures already in a laminar flow regime. Thus, in order to
improve aeroacoustic predictions in Strouhal number ranges where Kelvin-

Helmholtz instabilities occur it is slightly more advantageous to consider
LNSEs instead of LEEs.

In the region beyond St > 2.5, the oscillatory behavior decays significantly
and again a quasi-stationary response can be observed. In this region, the

vortices interact multiple times with acoustic waves during their convec-
tion time to the downstream edge and acoustic cancellation effects become

significant. Magnitude as well as trend are captured with relatively good
agreement by the LNSEs.

Phase angles of the reflection coefficients are shown in Fig. 5.11. Despite
of the large disagreement in magnitudes of scattering coefficients at the fre-
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Figure 5.11: Phase angles of scattering matrix coefficients, Eq. (5.9), of a sharp edged T-
joint at Ma = 0.1 versus Strouhal number. Results of LNSEs are compared
to the experimental data of Karlsson and Åbom (2010) and to the results
of the LES/SI approach of Föller et al. (2010b).

quencies where hydrodynamic instabilities appear the respective arguments
are captured by the LNSEs with higher agreement in the complete frequency

range. Phase angles are close to values of 0 or ±π and vary in regions where
strong acoustic flow coupling occurs. Generally, a phase shift can be ob-

served when maxima and minima of the respective scattering coefficient
amplitudes are reached. Solely points of discrete maxima and minima are

again over predicted.
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A comparison with the LES/SI technique of Föller et al. (2010b) shows
that the higher order approach yields much more accurate results in this
case. Especially magnitudes of reflection and transmission coefficients are

captured in higher detail than the linear models. This shows that when
the turbulence effect on the vortical scales is captured correctly, also the

magnitude of the coefficients can be captured.

5.3.4 Acoustic Power Conservation

Karlsson and Åbom (2010) show that amplification or attenuation effects

can be studied by observing the averaged power ratios 〈W 〉i of outgoing to
ingoing acoustic power for each reflection or transmission coefficient. These
can be calculated from the passive scattering matrix data, Eq. (5.9),

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(5.12)

As the Mach number is included into the expressions, the convective effect

of the mean flow on the wave propagation is taken into account. To analyze
whether acoustic energy is absorbed or produced, the power ratios of the

specific scattering matrix can be summed up, assuming boundary reflection
coefficients at ∂ΩZ to be zero. These are defined as the power ratios which

are based on the same ingoing acoustic waves p̂+
u , p̂+

s or p̂−
d :
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In case a sum exceeds unity, energy of the vortical mode is transferred
to the acoustic mode and hence more acoustic power is emitted from the
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5.4 Non-Reactive Swirler Nozzle

system than is introduced. Values below unity indicate acoustic energy
absorption. The assumption of low acoustic reflection is valid for the current
computations, as the acoustic reflection coefficients do not exceed an value

of R ≤ 0.02. Thus, the sum over the power ratios of a certain excitation
case represent the acoustic power absorbed or produced well.

Figure 5.12 shows the computed acoustic power ratios of Eqs. (5.13)-(5.15)
which correspond to the different excitation case I-III. The LNSEs predict

a significant overproduction for incident acoustic wave amplitudes p̂+
u and

two maxima are predicted instead of one in the experiments. The sum of

power ratios for an acoustic wave amplitude p̂+
s (case II) exhibits a slightly

higher agreement with the experiments. Generally, the frequency ranges for

which acoustic energy amplification (Ps > 1) or acoustic energy attenua-
tion (Ps < 1) is present are predicted correctly by the LNSEs. However,

the magnitudes of the acoustic power ratios are significantly over or un-
der predicted indicating an overly amplifying or dissipating behavior of the
LNSEs. This supports the fact that most probably the vortex strength is

over predicted and therewith the interaction described through the integral
in Eq. (2.58). The best agreement is again reached for case III.
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Figure 5.12: Sums of acoustic power ratios, Eq. (5.13)-(5.15) of a sharp edged T-joint at
M = 0.1 versus Strouhal number. Results of LNSEs are compared to the
experimental data of Karlsson and Åbom (2010).

5.4 Non-Reactive Swirler Nozzle

Chapter 5 is structured in a way to increase the understanding of the un-

derlying acoustic-flow interaction phenomena step by step, considering val-
idation test cases with increasing complexity. This consequently leads to
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5 Prediction of Acoustic Scattering Behavior

the study of acoustic interaction processes with a three dimensional and
highly complex flow field created by an industrial injection system. The
configuration includes an area expansion where the fluid discharges into

the combustion chamber. It includes flow contractions such as the orifice
configuration, e.g. the swirler vane channels, and due to the strong ra-

dial momentum of the swirling fluid motion vortices may impinge onto wall
surfaces providing a possible acoustic feedback.

The swirl nozzle is mounted at the end of a circular plenum with diameter
du and length lu. The nozzle connects the plenum to the combustion cham-

ber (CC), which is square in cross-section. It has a total axial length of ld
and side wall length of lc. The nozzle investigated is a partially evapora-

tion rapid mixing (PERM) injection system, developed by Avio S.p.A. (see
e.g. Marinov et al. (2010)). In detail, it consists of two co-rotating swirl

channels and a centered injector. As the fluid passes through the nozzle cir-
cumferential momentum is imposed. At its exit, the flow expands into the
combustion chamber and inner and outer recirculation zones are formed.

Fig. 5.14 illustrates the complexity of geometry and flow conditions.

The chosen test conditions correspond to two different inlet flow temper-
atures at a constant air mass flow rate. In the first Case A, ambient air
temperatures are used. Then the air is preheated in Case B to more realis-

tic engine inlet conditions of T̄in = 573.15 K. Consequently, inlet Mach and
Reynolds number vary with the inlet temperature. The geometrical and

flow conditions are gathered in Tab. 5.4.

The mean flow fields necessary for the acoustic analysis are supplied using

a standard k-ǫ turbulence closure model proposed by Launder and Spald-

ρ̄u

ūu

p̄u

ρ̄d

ūd

p̄d

AdAu

Figure 5.13: Schematic presentation of the geometry and flow conditions of the atmo-
spheric pressure test rig including an industrial swirl nozzle, inner and outer
recirculation zones are also shown.
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5.4 Non-Reactive Swirler Nozzle

Table 5.4: Geometrical and physical operating conditions of the non-reactive swirl injec-
tor flow.

Description Variable Case A Case B

upstream pipe diameter du 0.1245 m

downstream edge length ld 0.15 m

upstream pipe length lu 1.34 m

downstream length ld 0.890 m

inlet temperature T̄in 293.15 K 573.15 K

Mach number at inlet Main 0.007 0.01

Reynolds number at inlet Rein 1.96 × 104 1.22 × 104

kinematic viscosity ν 1.55×10−5 m2 s−1 5.012×10−5 m2 s−1

ing (1972). All free calibration constants are chosen accordingly. The use

of k-ǫ models in aeroacoustic applications is not new and has been ap-
plied to study scattering matrices of generic configurations (Kierkegaard
et al., 2012a,b) but also e.g. for the prediction of jet noise problems or

outlet impedances (Bailly et al., 1996; Jörg et al., 2013; Khavaran et al.,
1994). The unstructured computational mesh comprises overall 1.8 million

elements. Tetrahedral elements are used to discretize the complex features
of the swirl nozzle while hexahedra elements are used for the nozzle exit as

well as the combustion chamber and plenum sections. Special care is taken
for discretization of the shear layer separation point at the atomizer lip,
its expansion and the outer diameter of the nozzle diffusor. Second order

upwind schemes are employed for the momentum and energy equation.

For the fluid dynamic simulations a mass flow is prescribed at the inlet
while at the outlet an ambient pressure level is imposed. Parameters of
turbulence production k and dissipation ǫ at the inlet are simply calculated

by assuming turbulence levels and a length scale. However, due to the long
plenum section turbulence parameters are able to develop until they reach

the injector nozzle. The influence of the wall is incorporated through the
definition of wall functions for the momentum and energy equation. For

the simulations with preheated air, the plenum walls are believed to be
adiabatic due to their insulation. The combustor walls, however, are air

cooled and are therefore assumed non-adiabatic by prescribing a constant
wall temperature. Its specific value is determined iteratively until the sim-
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5 Prediction of Acoustic Scattering Behavior

ulated outlet combustor temperature is equivalent to its measured value.
It was believed that the axial impedance distribution along the combustion
chamber may have an influence on the acoustic scattering behavior.

Using the mean flow fields from the RANS computations, the LNSEs defined

in a cartesian coordinate system are solved for a discrete frequency range
of 25-800 Hz with a resolution of ∆f =25 Hz. The computational domain is
discretized using roughly 230.000 tetrahedral elements while second order

Lagrangian test functions are selected. Regions of flow separation and shear
layer expansion are refined as shown in Fig. 5.15. A GLS- finite element

stabilization technique introduced by Franca et al. (1992) is chosen for the
presented test case in order to better account for reactive terms in the

LNSEs. In terms of degrees of freedom (Ndofs), the acoustic mesh comprises
only a fraction of 30 percent of Ndofs compared to the RANS computation.

Grid independence is ensured by varying the grid size for a single frequency.

Acoustic boundary conditions are chosen equally to all aforementioned vali-

dation test cases. Due to the large size of the system matrix, the developed
GMRES-GMG algorithm is used herein to solve the resulting linear set of

LNSEs for every distinct frequency. The algorithm is highly efficient and
additionally allows parallelization yielding computation times of around 30
minutes per frequency. This time span comprises the solution of one matrix

inversion problem. The simulations are performed on a desktop machine
using overall eight cores.

The same flow fields computed in this section will be used in the following
Chapter 6 to analyze the eigenfrequencies of the combustion chamber flow

under non-reactive conditions.

Figure 5.14: Normalized mean axial flow velocity field ū/ūmax of mean flow field compu-
tations of Case A at ambient inflow temperatures.
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5.4 Non-Reactive Swirler Nozzle

Figure 5.15: Three dimensional unstructured grid of the non-reactive combustion cham-
ber flow configuration used for the acoustic computations, slice through the
mid plane (left) and view on the discretization close to the nozzle outlet
(right).

5.4.1 Experimental Measurements

The experimental measurements are performed at the atmospheric combus-
tion test rig originally designed by Eckstein (2004). A detailed description

of the main components can be found therein. In a later study the same
test rig is used for the measurements of flame transfer matrices (Alemela,

2009). It has been found that the FTFs measured at a single combustion
chamber test rig are not comparable to the FTFs measured at an annular

combustion chamber (Fanaca et al., 2010). In order to meet scalability of
the FTFs, the authors propose a design rule for the area expansion. There-
fore, a new combustion chamber having a greater cross section is designed

fulfilling the general guideline proposed. In the course of the present study
this configuration is optimized for the measurement of scattering matrices.

The two-source method, introduced by Munjal and Doige (1990b), is ap-
plied to determine the experimental scattering matrices. The technique

works very similarly to the numerical simulations performed using LNSEs
and requires two independent acoustic states in order to construct a scat-

tering matrix. This is achieved by harmonically exciting the inlet air flow
using a siren configuration. A fraction of around 35 percent of the inlet air

mass flow is excited, whereas the other fraction bypasses the siren. Then,
the pulsating air flows through a 1.2 m long plenum section. At three con-

secutive locations along the duct, air temperatures are measured. A series of
three dynamic pressure transducers of type PCB-J106B are mounted about
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5 Prediction of Acoustic Scattering Behavior

8d away from the injector configuration where d denotes the outlet diame-
ter of the nozzle. The pressure transducer distances from one another are
chosen non-uniformly following the general guideline of Bodén and Abom

(1986). After the air passes through the swirl nozzle, the flow expands
into a square combustion chamber. Windows on either side allow visual

access. About 10d further downstream of the combustion chamber inlet
plane, a second series of three dynamic pressure transducers is positioned.

Their consecutive distances are chosen irregularly in accordance with the
upstream measurement section. At the outlet of the downstream measure-

ment section a perforated screen is mounted yielding reflection coefficients
of about R ≈ 0.6 for the considered frequency range. An exhaust gas system
collects the air mass flow at the outlet.

The second acoustic state is constructed by mounting a siren to the down-

stream end of the combustion chamber. It periodically injects fresh air in
the circumference direction. When the downstream siren is employed the
upstream siren is solely bypassed. To ensure linear behavior of the scat-

tering matrix coefficients, it is verified that the velocity fluctuations at the
nozzle outlet do not exceed |ûref |/c̄ < 0.1. This is done by extrapolating the

acoustic signals measured in the downstream combustion chamber section
to the nozzle outlet. Acquisition times are chosen to be of 12 s per frequency

at a sampling rate of 16 kHz to ensure statistical convergence. Calibration
of the pressure transducers is performed before and after measurements.

The frequency range considered in the experiments is 100-800 Hz. It is noted
that the experimental measurements face limitations in the low frequency

limit. This is due to high reflection coefficients at inlet and outlet boundaries
(R ∼ 1). Then, the two acoustic states become linearly dependant and the
two-source method breaks down. Moreover, due to the special characteristic

of the considered spray atomizer nozzle only low amounts of acoustic energy
are transmitted to the upstream and downstream sections, respectively.

Considering the high turbulent noise levels of the flow the signal to noise
ratio may degrade. This is especially of a concern when exciting with the

downstream siren which has a low acoustic power. The high frequency limit
is bounded by the operability range of the available infrastructure.
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5.4 Non-Reactive Swirler Nozzle

5.4.2 Scattering Matrix

For a broad range of frequencies up to 800 Hz, the results of the scatter-
ing matrix coefficients are shown in Fig. 5.16. Amplitudes and phases are
plotted against frequency f . Blue and red symbols denote the conditions

of Case A and Case B respectively. In the low frequency limit f → 0, the
transmission and reflection amplitudes seem to tend towards similar values

for both excitation cases. Between 0 Hz < f < 200 Hz in the cold flow
Case A and between 0 Hz < f < 400 Hz in Case B, the amplitude scat-

tering coefficients show distinct Strouhal number characteristics which are
a result of acoustic-flow interaction processes. Beyond that (f > 200 Hz
and f > 400 Hz, respectively), the transmission coefficients T + and T − de-

crease and the reflection coefficients R+ and R− increase steadily for both
considered cases showing a quasi-steady trend.

The scattering matrix coefficient phases Φ are also shown in Fig. 5.16.
There, a similar characteristic is observed: A sharp frequency shift at a

distinct frequency. In the region before the shift we observe constant phase
levels. In the region after the shift, phases for the reflection Φ(R) and

transmission coefficients Φ(T ) show a steady growing or decreasing trend.
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Figure 5.16: Scattering matrix coefficients of non-reactive confined swirling flow at atmo-
spheric (—) and elevated inlet temperatures (—), experiments are plotted
in comparison to the result of LNSEs, amplitudes of scattering matrix co-
efficients (left) and their respective arguments (right).
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5 Prediction of Acoustic Scattering Behavior

The comparison of the LNSEs results with the experimental data clearly
demonstrates that the approach accurately captures the acoustic scatter-
ing behavior of a flow field generated by an industrial injection system.

Acoustic-flow interaction phenomena in the low frequency range as well
as constantly increasing and decreasing amplitudes are captured with rel-

atively high accuracy. Phase shifts of the reflected and transmitted planar
waves are equally well predicted. Small discrepancies are observed predict-

ing the location of peaks for the reflection amplitudes. This is attributed
to inaccuracies in the fluid dynamic field.

Acoustic-flow interaction processes are further illustrated in Fig. 5.17 for
three distinct frequencies of 150 Hz, 400 Hz and 800 Hz of the cold flow Case

A. The first chosen frequency corresponds to the range where acoustic-flow
interactions seem to be more pronounced. Fields of pressure and velocity

Figure 5.17: Acoustic fields of perturbed pressure p′ (left) and velocity u′

x (right) at
different frequencies of upstream excitation f =150 Hz, 400 Hz and 800 Hz
from top to bottom, respectively.
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5.4 Non-Reactive Swirler Nozzle

fluctuations are shown in the left and right column, respectively. For all
three frequencies it is clearly visible how vortical structures are excited in
the burner mouth and travel along the shear layer. These vortical struc-

tures impinge onto the combustion chamber walls for low frequencies. By
comparison of the magnitudes of the velocity fluctuations at the three fre-

quencies it can be observed that highest vorticity amplitudes are reached for
the 150 Hz case, which is exactly the frequency where strong variations in

the scattering matrix coefficients are observed. Thus, in the small frequency
range higher acoustic-flow interactions are observed. In the next section the

effect of these vortical structures on the acoustic loss generation potential
is shown.

It is interesting to note that despite the fact that RANS models tend to
misspredict swirling flows with high radial pressure gradients, the acoustic

scattering behavior using RANS computed mean flow fields is captured with
relatively high accuracy by the LNSEs. Many publications, see e.g. Boij
and Nilsson (2006); Munt (1977), suggest that the important acoustic-flow

interaction phenomena happen in close proximity of flow separation edges
(for an area expansion). As our employed RANS model uses calibration

constants measured for flow separation cases, we may assume that this
phenomenon is captured in relatively high detail by the turbulence model.

5.4.3 Acoustic Loss Margins

As already described, the scattering matrix contains valuable information
of the system’s potential damping behavior. A method to access this in-

formation from the already known scattering matrix coefficients has been
introduced for the orifice configuration in Section 5.2.2 and is based on the

ideas of Aurégan and Starobinski (1999). The experimental and numerical
data is post-processed to obtain the values of ξmin and ξmax which define

the margins of dissipated acoustic power to incident acoustic power, see
Eq. (5.8).

The values ξmin and ξmax are plotted in Fig. 5.18 over frequency for both
flow conditions investigated. In the complete frequency range solely acoustic

damping is observed which is confirmed by positive values of ξmax and a ξmin

close to zero. At low frequencies, ξmax shows a relatively constant trend.
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5 Prediction of Acoustic Scattering Behavior

However, between 150 Hz ≤ f ≤ 300 Hz for case A and 300 Hz ≤ f ≤ 450 Hz
for case B, values of ξmax abruptly start to decrease and a constant negative
slope is observed. The slope of the curve then changes again towards higher

frequencies. For the frequency range considered, the swirl nozzle behaves
very similar to an orifice configuration shown in Fig. 5.6 in the sense that

both configurations damp acoustic waves in the low frequency limit.

LNSEs manage to accurately predict the margins ξmin, ξmax in magnitude

as well as trend for both Cases A and B. Solely a slightly lower ξmin is
observed compared to the experiments. If the additional information about

the damping potential is considered when observing Fig. 5.17, it is evident
that highest magnitudes of vortical structures (at 150 Hz) transfer to high

amounts of acoustic damping potential.

The severe misprediction of frequency regions of strong acoustic-flow cou-

pling, found for the T-joint case, cannot be observed for the injection sys-
tem flow field. The scattering matrix of Fig. 5.16 and damping potential of

Fig. 5.18 illustrate this statement convincingly. As it seems, the aeroacous-
tic interactions take place in flow regimes of the shear layer which may be

purely described by the linear model. Thus, the aeroacoustic feedback loop
described in Section 5.3 is indeed represented correctly. However, the con-
figuration does not exhibit strong Kelvin-Helmholtz instabilities as observed

in the cases of the orifice and the T-joint. A similarity which is shared with
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Figure 5.18: System’s damping potentiality (ξmin, ξmax) plotted against frequency, ex-
periments are compared to the results the LNSEs computations for the two
cases of ambient inlet temperatures (—) and elevated temperatures (—).

120



5.5 Concluding Remarks

the area expansion test case. In the frequency range considered, both sys-
tems purely damp acoustic energy and a high agreement with experimental
data is achieved.

The high amounts of acoustic loss potential observed in the low-frequency

regime stresses the fact that numerical models incorporating the conversion
process between acoustic and vortical structures are essential to reliably
predict low frequency instabilities. Similarly, information about acoustic

losses is generally needed to predict magnitudes of saturation amplitudes,
as flame saturation occurs when the energy input of the flame is in balance

with acoustic field and boundary losses.

5.5 Concluding Remarks

A hybrid method, a combination of a flow simulation including an appropri-
ate turbulence closure and the frequency space LNSEs approach, is shown

to be capable to determine the scattering matrix coefficients of a set of
different flow configurations. It has been found that the acoustic loss mech-

anisms are captured in detail by the presented method. Such a method
may be used in conjunction with a network modeling approach in order

to assess certain network elements at relatively low costs compared to an
experimental approach or a compressible LES. As it is shown in the case of
the injection system, these elements may feature highly complex geometries

and flow conditions which may not be accessible to analytical modeling.

However, the applicability limits of the LNSEs and LEEs approach are also
shown in the case of the T-joint. There, it is illustrated that if strong Kelvin-
Helmholtz instabilities appear in certain frequency bands, the linearized

model approach fails to predicting the finite magnitudes of the scattering
matrix coefficients observed in the experiments. Following the hypothesis

made, the region of vortex formation and propagation through a stable lam-
inar shear layer are well described, but in regions where the laminar shear

layer gets unstable and promotes the growth of Kelvin-Helmholtz instabil-
ities is not captured physically. The LNSEs predict an exponential growth

of such flow instabilities only bounded by laminar viscosity. Thus, if the
aeroacoustic interaction expands into this range, where non-linear phenom-
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ena (like turbulence) limit the growth of disturbances, then the linear model
will suffer from inaccuracies leading to an overly excessive prediction of the
interactions between flow field and acoustic waves. The stronger the growth

of Kelvin-Helmholtz instabilities, i.e. the more unstable such instabilities
are, the earlier the point is reached where non-linear saturation mechanisms

set in.

This finding inevitably leads to the discussion of the validity of the linear

assumptions made. As found by Davis and Holland (2004) for practical
applications, linear and non-linear models for the acoustic wave propagation

in a duct only have negligible differences for amplitudes of 10% of the static
pressure. Thus, even if the excitation signals in the experiments are not fully

harmonic (e.g. for siren configurations), this may not explain differences in
the results obtained. Also, in the configurations studied the authors largely

estimated the influence of excitation amplitude on the scattering behavior
and found the configurations to be fully in the linear regime (see Karlsson
and Åbom (2010); Ronneberger (1987); Testud et al. (2009)). Therefore,

we have to expect a localized non-linear behavior in the fluctuating field
especially in the description of the growth of vortical disturbances which can

be captured in the experiments but not with the current linearized approach.
As shown, this behavior will depend on the particular case considered and,

thus, is difficult to handle in a general fashion. Expansion of the approach to
incorporate turbulence effects e.g. of Föller and Polifke (2012), however, will
complicate the analysis and increase the computational costs significantly.
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6 Global Stability Analysis

Although the isentropic assumption is not valid for multidimensional flow
fields, see Eq. (2.11), the above studies have shown that the introduced

errors are negligible for isothermal flow configurations. However, as soon
as the heat release has an unsteady component (q̂ 6= 0) or a mean entropy
gradient is present inside the flow (∇s̄ ⋍ cp∇T̄ /T̄ ) the isentropic assumption

is violated.

The main aim of this thesis is to address combustion instabilities. This

necessitates not only a detailed analysis of the acoustic-vortical interaction
processes, but must also include the description of acoustic-entropy coupling

(Dowling, 1995; Nicoud and Wieczorek, 2009). This process is linked to an
energy transfer from the acoustic to the entropy mode, leading to attenu-

ation of combustor modes. Therefore, to take this interaction process into
account, the isentropic assumption is discarded and the full set of LNSEs

including the linearized energy equation are solved.

The reverse effect of energy transfer from the entropy spots back to the

acoustic field is not considered in this thesis. This phenomenon is generally
caused by acceleration of entropy spots inside the downstream vane passage

(Cumpsty and Marble, 1977; Marble and Candel, 1977). The contribution
of this effect to the thermoacoustic feedback loop as well as related noise
emissions is subject to discussions in the literature (Polifke et al., 2001; Sat-

telmayer, 2003), as well as experimental (Bake et al., 2009) and numerical
investigations (Leyko et al., 2009).

In this chapter the second methodology, presented in Section 3.3.6, of the
eigenvalue analysis using LNSEs is validated. Since the unsteady behavior

of the flame is now included, the solution algorithm requires not only the
knowledge of the mean flow field, but also a model for the unsteady flame

behavior, i.e. for ˆ̇qV . In the presented test cases this is done by means of
an analytical model or by incorporating an experimentally measured FTF

function.
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Note that when assuming non-isentropic wave propagation the grid require-
ment changes slightly. After coupling with the flame, entropy waves are gen-
erated which are convected downstream. These have similar wavelength as

the vortical structures but, compared to the acoustic wavelength, are much
shorter λs = Maλa. However, unlike vortical structures which dissolve rela-

tively quickly in expanding shear layers, this type of fluctuation is convected
along larger distances throughout the combustor. Then, especially at small

Mach numbers, the combustion chamber needs to be significantly refined.

The Helmholtz equation represents the zero Mach number limit when pre-

dicting stability of combustion systems. Using this scalar equation, a
quadratic eigenvalue problem may be defined which can be solved using the

same iterative routine as in Section 3.3.6. It is a kind of state-of-the art tool
to predict thermoacoustic instabilities for complex three dimensional com-

bustion chamber configurations (Gullaud and Nicoud, 2012; Nicoud et al.,
2007; Selle et al., 2006). Here, it will be used to highlight differences to the
developed LNSEs tool which takes mean flow effects into account. Details

on the routine and finite element treatment are shown and explained in
Appendix E.

6.1 Generic Premixed Combustion Chamber

A simple premixed combustor which is frequently used in the thermoacous-

tic society to validate network models is discussed next (Dowling, 1995). Its
main advantage is that a huge number of different influencing parameters

can be studied which are essential for the development of thermoacoustic
tools like the one presented in this thesis.

As it will be shown a semi-analytical solution of the form of the matrix
Eq. (2.30) can be retrieved. This dispersion relation is derived without

taking viscous effects into account. Thus, in order to be consistent with the
semi-analytical solution the LEEs are solved instead of LNSEs. This step is

only performed for reasons of formality and simulations using LNSEs yield
approximately the same results.
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6.1 Generic Premixed Combustion Chamber

6.1.1 Configuration

The configuration considered is depicted in Fig. 6.1 and is a one dimensional

duct of length L and constant cross section. The fresh gas in the left duct is
separated from the hot gas by a thin flame sheet of thickness δf located in

the middle of the duct. It is assumed that the flame causes a temperature
jump from the hot-to-fresh gas side of T̄d/T̄u.

If assuming that the fresh gas enters the domain from the left boundary at
a specific state, it is possible to derive equations representing the mean flow

field in the complete generic combustion chamber. Doing so, we assume the
static temperature to vary along both duct segments and in the anisentropic

flame region in form of a hyperbolic tangent function, similar to Wieczorek
and Nicoud (2010)

T̄ (x) =
T̄d + T̄u

2
+

T̄d − T̄u

2
tanh



2
x − xf

δf/2



 , (6.1)

where xf defines the mid point of the flame region. Then, the mean flow
field may be calculated by assuming conservation of mass, momentum, and

total temperature, i.e.

ρ̄ū = const., (6.2)

p̄ + ρ̄ū2 = const., (6.3)

q̄ = cpρ̄ū
dT̄t

dx
, (6.4)

where T̄t = T̄ + ū2/(2cp). The mean flow is then entirely defined by the

choice of inlet parameters, i.e. static pressure p̄u, static temperature T̄u and
Mach-number Mau. Dowling (1995) proposed this configuration to study

ρ̄u

ūu

p̄u

ρ̄d

ūd

p̄d

δf

L

Figure 6.1: Quasi one dimensional model combustor of length L, shaded area represents
flame region separating fresh to burnt gas sides.
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the effect of the mean flow on combustion instabilities, while Nicoud and
Wieczorek (2009) have extensively studied the configuration using one and
two dimensional LEEs.

6.1.2 Semi-Analytical Model

A semi-analytical solution may be derived when assuming the flame sheet
to be infinitely thin (Dowling, 1995). Then the flow in the upstream (index

u) and downstream (index d) duct segments can be assumed to be uniform
and isentropic. Thus, with constant velocity and temperature distribution
along the two duct elements the acoustic solution of pressure, velocity and

entropy waves are described by

p̂(x) = p̂+e−ik+x + p̂−eik−x, (6.5)

û(x) =
1

ρ̄c̄

(

p̂+e−ik+x − p̂−eik−x
)

, (6.6)

ŝ(x) = ŝ+e−ikcx, (6.7)

where kc = ω/ū is the complex wavenumber of the convected entropy fluc-

tuations ŝ+ and k± = ω/c̄(1 ± M) the respective complex wavenumber of
the acoustic pressure waves traveling in upstream (p̂+e−ik+x) or downstream

(p̂−eik−x) direction. Note that entropy fluctuations may only be convected
with the mean flow and, thus, have only one wave component.

The flame region cannot be considered as isentropic and jump conditions
on both sides of the infinitely thin flame need to be derived. Integrating

conservation of mass, momentum and total energy over the limits xf − ǫ
and xf + ǫ, where ǫ → 0 and performing a linearization one obtains:

ρ̄û + ρ̂ū = 0, (6.8)

p̂ + ρ̂ū2 + 2ρ̄ūû = 0, (6.9)
(

cpT̄ +
1

2
ū2
)

(ρ̄û + ρ̂ū) + ρ̄ū
(

cpT̂ + ūû
)

= ˆ̇Q, (6.10)

where Q(t) = ˆ̇Q exp(iωt). At the upstream (x = 0) and downstream
(x = L) boundary, general impedance boundary conditions are imposed

p̂ − ρ̄c̄Zu/dûini = 0, see Eq. (2.38). Substitution of the solutions Eqs. (6.5)-
(6.7) in the jump conditions of Eqs. (6.8)-(6.10), taking into account the
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relations of Eqs. (2.16) and (2.17) and assuming that no entropy wave en-
ters the domain through its inlet, leads together with the two impedance
boundary conditions to the following compact matrix notation:

S(ω)P = 0. (6.11)

Herein, P = (p̂+
u p̂−

u p̂+
d p̂−

d
ρdc2

d

cp
ŝ+eikcx)T is the unknown solution vector and

S(ω) a coefficient matrix containing,

S(ω) =


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

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


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
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d x
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where,

S31 =
c̄u

c̄d
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1

2
M2

u

]

+
ˆ̇Q

κp̄




 e−ik+

u x, (6.13)
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u x, (6.14)

S33 = − (1 + Md)

[

Md +
1

κ − 1
+

1

2
M2

d

]

e−ik+

d x, (6.15)

S34 = − (1 − Md)

[

Md −
1

κ − 1
−

1

2
M2

d

]

eik−

d x. (6.16)

Solutions of the Eq. (6.11) can be obtained when requiring the matrix S(ω)
to be singular. Thus, a dispersion relation det S(ω) = 0 is obtained of

which the complex roots are the semi-analytical eigenvalues. The iterative
procedure of Polifke (2003) is then used to solve for the discrete eigenvalues.
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6 Global Stability Analysis

6.1.3 Steady Heat Release Rate (ˆ̇qV = 0)

First, the heat release is assumed to be steady and thus no source of heat

release fluctuations is present inside the domain (ˆ̇qV = 0). The parameters
of the problem are L =1 m, T̄u =300 K, T̄d =1200 K, p̄u =101 320 Pa and for

the flame sheet a thickness δf = 0.04L and a position xf = 0.5L are chosen
analogously for all considered cases herein.

Before comparing the results, it is stressed that one may expect differences
between the semi-analytical solution Eq. (6.11) and the LEEs computations

for one main reason: In the simulations the flame front is not infinitely thin
as in the semi-analytical model. It is at least as thick as the size of the
finite element in this region. The finite element mesh is shown in Fig. 6.2

and consists of 15.000 triangular elements which are refined in the flame
zone. The two dimensional LEEs are solved using a SUPG finite element

stabilization technique.

In first instance, simple acoustic boundary conditions are chosen setting

velocity fluctuations ûx = 0 at the inlet while at the outlet pressure fluctua-
tions vanish p̂ = 0 (case 1). For the two dimensional LEEs formulation it is

further assumed that entropy as well as vorticity fluctuations vanish at the
domain inlet assuming ŝ = 0 and û|| = 0, respectively. For the upper and

lower wall boundaries, slip conditions are prescribed for the velocity fluctu-
ations. The first four eigenmodes for this case are shown in the left graph
in Fig.6.3. If the mean flow is at rest (Mau = 0) no coupling of acoustic

and entropy waves occurs and thus, no amplification or attenuation is gen-
erated. The frequencies are purely real, which is captured by the Helmholtz

equation and LEEs and is in good agreement with the analytical solution:
135.4 Hz, 347.2 Hz, 558.8 Hz, 829.8 Hz for the first four modes, respectively.

Figure 6.2: Finite element mesh of generic premixed combustor configuration using tri-
angular elements.
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Figure 6.3: Evolution of the first four eigenmodes for a steady flame (ˆ̇qV = 0) of the
academic configuration of Fig. 6.1. For each mode the inlet Mach number
is varied from Mau = 0 − 0.16 with an increment of 0.04. Arrows indicate
direction of increasing inlet Mach number. Semi-analytical results are plotted
against LEEs and the solution of the Helmholtz equation; Left: boundary
conditions of case 1; Right: boundary conditions of case 2.

As soon as Mau > 0, mean flow effects become significant and even for

small Mach numbers of 0.04 the imaginary part of the eigenmode is pos-
itive. Hence, the eigenmodes decay exponentially with R(exp(iωt)). If

the inlet Mach number is further increased, the imaginary part increases
simultaneously more and more. Highest damping rates are obtained for

Mau = 0.16 where the imaginary party yields: 53 s−1, 38 s−1, 57 s−1, 48 s−1

for the first four modes, respectively. A shift in real frequency can also be
observed which is non negligible for the second and forth mode, −24 Hz

and −58 Hz, respectively. The LEEs tend to under or over-estimates the
solution obtained from the semi-analytical solution. However, considering

the infinite thickness of the flame, assumed to derive the semi-analytical
solution, these differences are small. It has been verified that the results

of the LEEs converge towards the semi-analytical result when further de-
creasing the flame thickness. Note that for all Mach numbers considered

the eigenvalues of the Helmholtz solution remain purely real, as the equa-
tions is based on the assumption of a quiescent medium (ū ⋍ 0). Thus, the
Helmholtz equation does completely neglect any damping generated in this

configuration.

The damping observed for case 1 originates from two effects: First, acoustic
waves trigger entropy waves in the steady flame region which are convected
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6 Global Stability Analysis

out of the domain. This coupling process is described by Eq. (2.11). Sec-
ondly, acoustic energy is radiated out of the domain since the boundary
conditions formerly chosen permit an acoustic energy flux when a flow is

present. Thus, in order to estimate the attenuation from acoustic-entropy
coupling only, a different set of boundary conditions is prescribed to in-

and outlet zeroing the acoustic energy flux in presence of a mean flow (case
2). This is achieved by correcting the above boundaries for convective flow

effects, by choosing û + ū/(κp̄)û = 0 and p̂ + ρ̄ūû = 0 for the in- and outlet,
respectively. Compared to the first case, the damping rates at Mau = 0.16

slightly decrease for mode one, three and four: 43 s−1, 49 s−1, 34 s−1. The
impact is significantly higher on the second mode: 12 s−1. However, this
effect can be explained through a velocity node in the flame region which

reduces the acoustic-entropy coupling. The shift towards lower real parts of
the eigenvalues is observed in this case as well. Agreement between LEEs

and analytical solution is found to be good while the error for the Helmholtz
equation increases significantly with Mau and can reach in maximum about

47 Hz for the real and 45 s−1 for the imaginary part of the frequency.

6.1.4 Unsteady Heat Release Rate (ˆ̇qV 6= 0)

Now, unsteady combustion is included in the considerations by introducing

the global n-τ model into the dispersion relation of Eq. (6.11) for the semi-
analytical model

ˆ̇Q =
κp̄

κ − 1
neiωτ û, (6.17)

at the location x = xf . For the LEEs a local formulation of the n-τ model
is introduced to model the heat release rate per unit volume of the finite

flame region

ˆ̇qV =
qt

ūb
nl(x)eiωτlû(xref), with nl(x) =

κp̄

κ − 1

ūb

qt

n

δf
. (6.18)

When employing the Helmholtz Eq. (2.25), the relation in Eq. (2.22) pro-
vides a direct link between velocity and pressure fluctuations. Trans-

formation into frequency space needs to be performed additionally using
Eq. (2.12).
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6.1 Generic Premixed Combustion Chamber

In order to validate the LEEs for the unsteady flame case, two different val-
ues of interaction index are considered, viz. n = 1 and n = 3, corresponding
to a small and large amplitude of the flame response, respectively. The time

delay is chosen to mimic typical combustor conditions τ =0.4 ms and the
simplified set of inlet and outlet boundary conditions is chosen (case 1),

viz. û = 0 and p̂ = 0 for inlet and outlet, respectively. Again, we expect
differences in the results for the in Section 6.1.3 mentioned reason, but also

because the reference point for the flame model is chosen directly upstream
of the flame region (x = 0.48L) in order to be consistent with the idea of

the n-τ model. Unlike for the semi-analytical model it cannot be chosen
directly at xref = L/2.

When the amplitude of the flame is small n = 1, Fig. 6.4 left shows the
results obtained with the semi-analytical model for Mau = 0−0.16 and two

solutions of the LEEs for zero and Mau = 0.16 inlet conditions. At zero
Mach number the agreement between semi-analytical solution and LEEs is
excellent for all four modes. Mode one and four are already stable at this

zero Mach number limit, while mode two is marginally stable (ℑ(f) = 0)
and mode three shows a clearly unstable characteristic (ℑ(f) < 0). If

a mean flow is introduced, this has a stabilizing effect on all four modes
considered. At the Mau = 0.16 limit, all modes show a stable behavior.

This trend is accurately predicted by the LEEs model. Note that also the
shift in frequency is captured with good agreement.

When the amplitude of the flame response is high n = 3, Fig. 6.4 right shows
that mode three is generally more amplified at zero mean flow conditions.

Compared to the small amplitude response of the flame case, a much higher
inlet Mach number must be reached in order to stabilize the mode (Mau >
0.1). For the other modes, a similar behavior is observed as for n = 1.

LEEs manage to predict the trend correctly but deviations at Mau = 0.16
are higher than before. However, overall a good agreement is achieved for

both conditions.

Next, the impact of the flame parameters on the combustor eigenmodes is

studied. When a flame model of n-τ type is introduced to the equations
the situation becomes complex. In this case, the Helmholtz equation will

predict eigenmodes which are either stable or unstable, depending on the
phase relationship between pressure and heat release fluctuations Eq. (1.1).
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Figure 6.4: Evolution of the first four eigenmodes for an unsteady flame (q̂V 6= 0,
τ =4 ms) of the academic configuration of Fig. 6.1 for different values of
the mean flow inlet Mach number Mau. Semi-analytical results are varied
Mau = 0 − 0.16. LEEs only display Mau = 0 and Mau = 0.16 results.
Arrows indicate direction of increasing Mach number. Left: small amplitude
response n = 1; Right: high amplitude response n = 3.

Influence of damping is not accounted for due to the nature of the equa-

tion. A parametric study is conducted for the first two modes to highlight
the differences between the quiescent assumption and LEEs. The inter-

action index n and the time delay τ are varied from 0, 1, 2, . . . , 7 and
0, 0.2, 0.4, . . . , 3 ms, respectively. This study is performed by retrieving
solely solutions from the LEEs and Helmholtz equation.

A subtle way to compare the differences in frequency prediction between
the Helmholtz equation and the LEEs is shown in Nicoud and Wieczorek

(2009). Their presentation is adopted herein and the resulting figure is
shown in Fig. 6.5 for the first and second eigenmode. The graph displays

the frequency shifts between solutions of the LEEs at Mau = 0.16 and
Helmholtz equation (i.e. Mau = 0) for each value of the flame response (n

and τ) and thus provides information of the error in frequency R(f) and
growth rate ℑ(f) made by assuming a medium at rest.

It is directly evident that a method based on the quiescent medium as-
sumption, like the Helmholtz equation, is not able to predict the frequen-

cies incorporating mean flow effects. Indeed, the frequency change depends
strongly on the acoustic-flame coupling (values of n and τ). The shift in

real frequency for both modes is always negative and yields up to −70 Hz
and −180 Hz for the first and second mode, respectively. This result is
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6.2 Two-Phase Flow Combustion Instabilities

consistent with the findings of Section 6.1.3 but shows a stronger trend.
Although the first mode is only stabilized by the presence of a mean flow,
the shift in imaginary frequency of the second mode can either be positive

or negative. Thus, including a mean flow may stabilize this particular mode
e.g. for n ≤ 1 or destabilize it e.g. for n > 1 and τ > 1 ms. Summariz-

ing the results yields that frequencies of instabilities can hardly be guessed
when assuming a zero mean flow. Depending on the acoustic-flame cou-

pling and acoustic boundary conditions an error is introduced. Including
a mean flow may yield a stabilizing effect but can similarly also turn into

a stronger forcing of thermoacoustic instabilities. Moreover, the achieved
results suggest that inclusion of acoustic interaction effects with entropy
waves is recommendable in many cases.
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Figure 6.5: Difference in real and imaginary part of first and second eigenmode predicted
by LEEs (Mau = 0.16) and Helmholtz equation (Mau = 0), frequency shifts
are plotted as a function of interaction index n while the values of the time
delays are varied along the curves from τ = 0 to 3 ms. Arrows indicate the
direction of increasing τ . Left: First eigenmode; Right: Second eigenmode.

6.2 Two-Phase Flow Combustion Instabilities

From the validated test cases one may conclude that acoustic-vorticity cou-

pling of Chapter 5 is equally important as acoustic-entropy coupling of Sec-
tion 6.1. It has been shown that both effects generally damp combustion

instabilities in the low frequency limit, although -under some limitations-
the reverse effect of amplification may also occur. Up until now the effects

133



6 Global Stability Analysis

have been considered separately. This is changed in the following section as
both coupling processes and their effect on eigenfrequencies will be consid-
ered conjointly.

The validation test case is the same atmospheric combustion chamber al-

ready used in section 5.4 to validate the scattering matrices of a non-
reactive swirled combustion chamber flow. Now, the eigenfrequencies of
the configuration are considered under reactive conditions by introducing a

kerosene mass flow to the centered injector of the injector nozzle. Liquid
film breakup, atomization and evaporation processes then lead to the gen-

eration of a reactive mixture which burns along the shear layers between
the recirculating zones. The test rig is modified to perform experiments

with self-excitation by establishing a thermoacoustic feedback loop. This is
achieved by introducing a subsonic nozzle at the downstream boundary of

the combustor.

In order to increase confidence in the robustness and accuracy of the pre-

sented method, the approach to the full reactive combustion chamber is
subdivided into four consecutive steps. First, the eigenmodes are consid-

ered under zero mean flow conditions. Then, in the second case, a constant
mean flow is introduced at atmospheric temperatures. The mean flow ve-
locity is then increased by preheating the inlet air, in the third test case, but

keeping the air mass flow constant. Finally, in the last step the influence
of the flame is introduced. The complexity increases with every validation

test case considered.

This section is structured as follows: First, the atmospheric pressure test rig

is illustrated. Then, the measurement equipment and methods are briefly
discussed. Measurements mainly comprise the evaluation of the eigenfre-

quencies of the combustion chamber. This is achieved by performing acous-
tic damping measurements yielding real and imaginary parts of the eigen-

frequencies. However, to provide all necessary data for validation purposes
the acoustic boundary conditions need to be provided, as well as a FTF for
the reactive case.
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Figure 6.6: Atmospheric pressure test rig including parts of the plenum section, the in-
jector nozzle, combustion chamber and convergent-divergent nozzle of Case
D. Field shows the dimensionless temperature distribution computed using
RANS model and PDF transported mixture fraction approach.

6.2.1 Experimental Configuration and Measurements

The atmospheric test rig is shown in Fig. 6.6 with its characteristic mean
temperature distribution for the reactive case. The upstream plenum sec-
tion has the same length lu = 1.34 m as for the scattering matrix measure-

ments of Section 5.4. Downstream of the injector nozzle, the combustion
chamber expands to a length ld = 0.73 m which comprises a window sec-

tion allowing optical access and a measurement section. At the end of the
combustor two different boundary conditions are mounted for the present

validation measurements. For cases with no reaction a perforated screen
is used. In the case including reaction a converging-diverging nozzle is
mounted providing high amounts of acoustic reflection. The critical section

of the nozzle has a diameter dn = 16 mm. Unlike the scattering matrix
measurements of Section 5.4, no downstream siren is present.

First the operating condition for the experimental validation case are de-
termined. In order to show the capability of the numerical method to dis-

criminate between stable and unstable combustor operation, the combustor
needs to feature a self-excited unstable operating condition. However, in

case of instability the flame saturates and its flame transfer function, be-
ing in the non-linear regime, cannot be measured. Thus, in this case the

LNSEs and Helmholtz equation remain mathematically unclosed. In or-
der to resolve this conflict, an operating condition must be chosen which

is acoustically stable to provide the FTF as well as acoustically unstable
to provide the eigenfrequency of instability. This is realized by mounting a
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6 Global Stability Analysis

low and a high reflecting boundary condition to the downstream end of the
combustion chamber. Latter condition may close the thermoacoustic feed-
back loop leading to a combustor instability. These two different conditions

are represented by a perforated screen and an accelerated nozzle flow.

For both boundary conditions the air ratio and air mass flow is ramped up
and down while recording time series of the pressure signal. After Fourier
transformation the maximum pressure amplitudes of the frequency spec-

trum are summarized in Fig. 6.7 for both boundaries. Low pressure ampli-
tude levels are observed for the complete operability range when employing

a perforated screen at the combustor outlet (Fig. 6.7 left). Only at the
lean extinction limit slightly higher pressure levels are reached. This il-

lustrates that a flame transfer function may be measured in the complete
operability range displayed, except at the lean extinction limit. Now, the

nozzle is mounted and the time series at each operating point are again post
processed to determine the maximum pressure amplitudes displayed in the
right Fig. 6.7. Again, slightly higher pulsations are observed at the lean ex-

tinction limit at high λ. However, significant pressure amplitudes of around
260 Pa are reached at high thermal powers, i.e. high air mass flow and low

air ratio, which indicates the presence of a thermoacoustic instability.

From these considerations the validation test case is defined at mair =

45 g s−1 and at an air ratio of λ = 1.6. On the one hand, a FTF can
be measured at these conditions using a perforated screen at the outlet
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Figure 6.7: Contour of pressure amplitude in the combustion chamber varying air mass
flow and air ratio for two different boundary conditions at the outlet: a low-
reflecting perforated screen (left) and a subsonic nozzle (right).
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(Fig. 6.7 left). On the other hand, a self-excited thermoacoustic instability
is observed when using a convergent-divergent nozzle (Fig. 6.7 right). The
instability causes pressure amplitude levels of around 130 Pa.

As already explained above, the reactive combustor test case is highly com-

plex as it integrates a variety of different interaction effects. To allow for a
better understanding of the problem and its associated mean flow effects,
the problem is subdivided into a number of different steps with increasing

complexity. First, the combustion chamber modes are considered under zero
flow conditions in a Case A. Then, a mass flow mair = 45 g s−1 is prescribed

to the combustor inlet in Case B. The same inlet air mass flow of Case
B is then preheated to temperatures of T̄in = 573 K in the next Case C.

Air preheating results in an approximate doubling of the maximum velocity
reached in the swirl injector exit plane. In the final Case D, a kerosene mass

flow is supplied to the centered injector of the swirler and a steady flame
establishes. Only in this case, a convergent-divergent nozzle is mounted
at the combustion chamber exit. For all other cases a perforated screen is

employed. All operating conditions are summarized in Tab. 6.1.

Table 6.1: Operating conditions of atmospheric pressure test rig of the four investigated
Cases A, B, C and D. Downstream boundary condition is specified according
to PS: perforated screen; NOZ: convergent-divergent nozzle.

Parameters Case A Case B Case C Case D

ṁair [g/s] 0 45 45 45

Tin [K] 293 293 573 573

λ [-] - - - 1.6

DS boundary [-] PS PS PS NOZ

6.2.1.1 Acoustic Damping Measurements

Generally only the real part of the eigenfrequencies of combustor modes are

provided for experimental test cases found in the literature. Determination
of the decay or growth rates of eigenmodes is far more complex. However,

recently Wagner et al. (2013) have proposed a method to determine the
decay rates ωi of a given combustor configuration. Their technique is applied
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to the current atmospheric combustion test rig to provide not only the
real part of the eigenfrequencies but also their respective decay rate. This
information allows a better validation of LNSEs and Helmholtz solvers.

For all different cases investigated the siren of Kathan et al. (2010) is con-

nected to the downstream part of the combustion chamber having a circular
port with a diameter of ds = 0.012 m. The siren intake is located ls = 60 mm
away from the outlet section. Its exact location is depicted in Fig. 6.6. The

siren can be operated under two different conditions: Providing a continu-
ous excitation signal at distinct frequencies, or, exciting the test rig for an

amount of nine excitation periods T . In this time span a certain satura-
tion amplitude is reached. After 9T , acoustic excitation is stopped for 45T

and the pressure levels decay exponentially with a respective decay rate of
exp (−ωit) (cp. to Eq. (3.48)). This specific siren operation is realized by

perforating the rotating disc of the siren by an amount of nine perforations
(compared to 54 perforations for continuous excitation).

The continuous siren operation is used to identify the pressure amplitude
spectra of the combustion test rig in order to determine the approximate

locations of the eigenfrequencies. Then, in a next step, the second siren
disc is mounted and the test rig is excited periodically for 9T at the ap-
proximate eigenfrequencies of combustion chamber. The transient pressure

signals are recorded using piezo transducers located in the plenum and com-
bustion chamber section with a sampling rate of 20 kHz. A Gibbs sampler is

used which calculates the probability distributions of frequency and damp-
ing rates using a Monte-Carlo type of method. In this thesis the JAGS

algorithm available online is used (Plummer, 2012). Wagner et al. (2013)
have found this approach to be highly robust compared to other methods
commonly found in literature.

Damping coefficients measured for the four cases of investigation are shown

in Tab. 6.2 for eigenmodes up to 1000 Hz. Damping rates reached for the
zero mean flow case are relatively low compared to the cases with mean flow
except for the frequency at 730 Hz which is fully conform with the previous

results. The damping reached for the zero mean flow case must result en-
tirely from the acoustic energy transmission at the inlet and outlet bound-

aries. In case of a thermoacoustic instability where acoustic amplitudes
exponentially grow in time (i.e. negative values of ωi), the measurement
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Table 6.2: Eigenfrequencies and damping rates of combustion chamber test rig including
and excluding mean flow in the non-reactive case.

Description Frequency Damping Rate

ṁair [g/s] Tin[K] λ [-] f [Hz] ωi/2π [s−1]

0 293 - 125 40

292.8 47

499.5 50

730 110

954 62

45 293 - 164 40

288 130

496 160

737 170

957 110

45 573 - 165 -

290 48

605 210

973 150

45 573 1.6 90.9 4.7

technique loses its validity and only the frequencies of oscillations may be
retrieved from the pressure time series.

6.2.1.2 Acoustic Boundary Characterization

In order to provide all necessary data for LNSEs validation, the acoustic

boundary conditions at inflow and outflow need to be available for all cases
considered. The boundary’s impedance Eq. (2.38) governs the acoustic en-

ergy flux out of the system and therefore contributes to the overall com-
bustor damping. Inlet and outlet impedances are determined by measuring

the acoustic reflection coefficients at the same operating conditions but in a
separate experiment. At the inlet of the plenum a stationary siren naturally

provides a perforated screen. Measurement of the acoustic reflection coeffi-
cients of such boundaries is straightforward and well known in the existing
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literature. The reflection behavior for the siren intake are displayed for the
first three measurement conditions in Fig. 6.8. Similarly, the downstream
reflection coefficient of the perforated screen is determined for the cases A,

B and C and is displayed below in the same Fig. 6.8.

For Case D the same inlet boundary conditions are used for the LNSEs
as in Case C. At the outlet, the nozzle mimics the presence of the first
vane passage of the turbine. Due to a low signal-to-noise ratio in case of

a thermoacoustic instability, measurement of the reflection coefficient be-
comes difficult. Therefore, the reflection coefficient is obtained from acoustic

theory using an one dimensional formulation of the LEEs (Lamarque and
Poinsot, 2008). The routine is described in detail in Appendix F and is

implemented into Matlab. Amplitude and phase of the resulting reflection
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Figure 6.8: Amplitudes and phases of the reflection coefficients at the upstream R+ and
downstream R− boundary for operation Cases A, B and C. Top: Upstream
boundary, Bottom: Downstream boundary.
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coefficient for the specific nozzle mounted at the combustor exit are shown
in Fig. 6.9.

6.2.1.3 Spray Flame Transfer Function

For the reactive Case D, the flame transfer function of the spray flame pro-
duced by the injection system is measured additionally. This FTF needs to

be provided to the numerical LNSEs eigenvalue solver in order to provide
a model for the unsteady heat release rate ˆ̇qV (ω). This is done by per-

forming the measurement routine described in Section 2.6.2 and assessing
the transfer matrices of the two acoustic states with and without flame.

A perforated screen is mounted to the combustor exit ensuring low acous-
tic reflection coefficients and a stable flame operation. Fig. 6.10 shows the
result of the measured FTF. The temperature T̄h, which is necessary to

close Eq. (2.37), is chosen from the incompressible flow simulations. Av-
eraging this temperature over a plane just downstream of the flame yields

T̄h = 2020 K.

The FTF shows a very similar characteristic to gaseous flames (cp. with

Alemela, 2009; Lieuwen and Yang, 2005). A frequency step of 10 Hz is
used during the experiments. Roughness in the representation of the FTF

are due to a degraded signal to noise ratio, especially when employing the
downstream siren. For this excitation state, the pressure amplitudes reached
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Figure 6.9: Amplitude and phase of frequency dependent reflection coefficient of the sub-
sonic nozzle mounted downstream of the combustion chamber of Case D.
Prediction is performed using the numerical routine of Appendix F.
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6 Global Stability Analysis

in the combustion chamber are already relatively low. When the acoustic
signals are transmitted to the upstream plenum section via the swirl injector,
the amplitudes are further decreased due to the low transmission coefficients

of the injector (see |T −| in Fig. 5.16).

6.2.2 Mean Flow Computations

The non-reactive flow configurations (Case A, B and C) are calculated us-

ing the same specifications as in Section 5.4. For the reactive calculation
(Case D) only the mesh is slightly refined in the flame region yielding a total

amount of 1.9 million elements. Instead of the standard k-ǫ turbulence clo-
sure model, a modified version called renormalized group (RNG) k-ǫ model
is employed. The method is proposed by Yakhot et al. (1992) and is based

on their theory derived in Yakhot and Orszag (1986). For Case D, the fields
of unknown variables are initialized by prescribing the flow fields computed

in the preheated Case C. Then, in a next step, kerosene droplets are in-
jected into the combustion chamber and in a last step the flame is ignited.

Chemical reaction is modeled in terms of a PDF transported mixture frac-
tion variable approach with a total number of 30 species considered. The

numerical computations were also verified by performing simulations with
an eddy dissipation concept model yielding similar results.
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Figure 6.10: Amplitude and phase of flame transfer function measured at the operating
conditions of Case D (λ = 1.6, mair = 45 g/s) using a two-source microphone
technique.
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6.2 Two-Phase Flow Combustion Instabilities

Liquid kerosene is injected by prescribing a characteristic droplet diameter
and respective mass flow rate at the end of the atomizer lip. Droplet diam-
eters are determined experimentally by Avio S.p.A. and are provided to the

numerical computation. All droplets are transported through the computa-
tional domain until they fully evaporate using a Lagrangian approach. Heat

flux through the combustor walls becomes non-negligible in this case and is
accounted for by prescribing constant temperature to all combustor walls.

The wall temperatures are varied iteratively, similarly to the procedure of
Section 5.4.

6.2.3 Non-Reactive Flow (¯̇qV = ˆ̇qV = 0)

For the acoustic simulations of the three different cases without acoustic-
flame coupling (¯̇qV = ˆ̇qV = 0, Case A, B and C) the frequency dependent

impedance boundary conditions of Fig. 6.8 are subscribed to inlet and out-
let boundaries. Additionally, velocity fluctuations parallel to the inlet are

assumed to be zero, i.e. zeroing vorticity fluctuations,

û|| = 0. (6.19)

Entropy fluctuations vanish by subscribing Eq. (2.45). At solid walls slip
conditions of Eq. (2.51) and vanishing gradients of pressure and density

fluctuations of Eq. (2.53) are chosen.

Using the Helmholtz equation, only one condition needs to be imposed on

each boundary. For mass flow inlet and outlet the same frequency depen-
dent impedance boundary conditions are used as subscribed for the LNSEs.

Velocity amplitudes for the zero mean flow assumption become directly
coupled to pressure amplitudes iωû = −∇p̂/ρ̄ (in Eq. (2.22)). A homoge-

nous Neumann condition results when injecting this expression into the slip
boundary condition of Eq. (2.51) (see also Eq. (E.4)).

We expect deviations of the numerical computations compared to the ex-
perimental data for the following reasons: (1) The siren introduces an ad-

ditional mass flux to the system which may lead to a short-term change in
the acoustic flow state and boundary conditions. (2) The siren is connected

via a tube to the combustion chamber (diameter d = 12 mm and length
l = 1.5 m). Strictly speaking, the experimental and numerical setup are not
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Figure 6.11: Combustor eigenmodes of quiescent operating condition of Case A. Results
of real and imaginary part of eigenfrequencies, i.e. R(f) and ℑ(f), are
plotted of experiments, Helmholtz equation and LNSEs.

the same as the siren supply tube is neglected in the numerical computa-

tions. (3) Furthermore, in the zero mean flow case (Case A) the assessment
of the boundary reflection coefficients R± is done by introducing a 8 g/s
mass flow rate. Otherwise, performing reflection coefficient measurements

employing sirens would be infeasible. (4) Damping generated through struc-
ture vibration or small slits and holes in the configuration is not accounted

for in the numerical simulations. However, the combustor walls are at least
100 mm thick and, thus, the influence of structural vibrations is assumed to

be of low order.

For the quiescent conditions of Case A the LNSEs reduce to the system

of Eqs. (2.21)-(2.23), apart from the diffusion term, and should yield very
similar eigenmodes compared to the Helmholtz equation. This is indeed

the case, as shown by the results plotted in Fig. 6.11. For all four modes
both models coincide. Higher mode damping is predicted at low magni-
tudes of reflection coefficients (modes one and two) while lower amounts

of mode damping are observed for frequency regions characterized through
higher reflection coefficients at domain boundaries (modes three and four),

see Fig. 6.8. Results obtained with LNSEs and Helmholtz equation are fully
in line with these considerations: With the unavailability of acoustic-flow

coupling in Case A, the only contributor to acoustic damping ℑ(f) should
be the acoustic energy flux through the domain boundaries, which is gov-

erned by their acoustic impedances. Therefore, if the correct impedances
are prescribed to the simulation, then, experimental results and simulations
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6.2 Two-Phase Flow Combustion Instabilities

should not deviate from one another. However, differences in the results
are observed which increase with frequency. As mentioned above the dif-
ferences may be explained through the measurement of acoustic boundary

conditions: To operate the sirens a finite mass flow had to be introduced.
Thus, the impedances do not represent quiescent conditions. The very

strong deviation of mode four at 730 Hz can not be explained through this
consideration. Even when artificially decreasing the boundary reflection

coefficients in the Helmholtz computations to values below R < 0.1 the
experimental measured damping rate could not be reached. The deviation

can only be explained through differences in the geometric configuration. It
must be noted that also eigenmodes inside the plenum section exist which
are not plotted.

The frequencies associated with the first four modes found in the experi-

mental campaign of Case B and Case C are gathered in the left and right
graph of Fig. 6.12, respectively. Tab. 6.3 and Tab. 6.4 show the errors made
by the respective acoustic model. A set of longitudinal acoustic modes is

found in the combustor. All modes are significantly damped for both cases
as part of the acoustic energy leaves the domain through the boundaries but

also -and most importantly- acoustic-flow coupling sets in. This is conform
with the findings of Section 5.4. It is evident that the acoustic-flow coupling

must contribute significantly to the damping rates reached when compar-
ing the experimental values to the solutions of the Helmholtz equation. As
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Figure 6.12: Combustor eigenmodes of ambient and preheated operating conditions of
Case B (left) and Case C (right), respectively. Results of real and imaginary
part of eigenfrequencies, i.e. R(f) and ℑ(f), are plotted of experiments,
Helmholtz equation and LNSEs.
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6 Global Stability Analysis

explained, the Helmholtz equation solely incorporates the influence of the
damping generated at the acoustic boundaries. Especially at frequencies
f > 250 Hz, the contribution of acoustic-flow interactions is remarkably

high. This fact emphasizes the importance of acoustic-flow interaction pro-
cesses on combustor damping.

Table 6.3: Experimental measured eigenfrequencies of case B of combustion chamber test
rig and error of made by LNSEs and Helmholtz code.

Mode Experiments LNSEs Helmholtz Eq.

R(f) [Hz] ℑ(f) [1/s] ǫ(R(f)) [%] ǫ(ℑ(f)) [%] ǫ(R(f)) [%] ǫ(ℑ(f)) [%]

1 164 40 4.8 25.5 9.3 32.0

2 288 130 2.4 0.2 2.4 81.3

3 496 160 2.3 2.7 1.2 86.4

4 737 170 0.7 27.4 1.0 93.9

At ambient inflow temperatures (Case B), a lower amount of damping is

measured for the first mode. With increasing mode number the damping
increases significantly and reaches values of up to 170 s−1 for mode four.

Overall, the agreement with the LNSEs is very good with respect to fre-
quency and damping rates as shown in Tab. 6.3. Similarly to Case A,
highest deviation is observed for the fourth acoustic mode. Currently, the

origin of the deviations cannot be explained.

When considering the quiescent approximation of the eigenmodes using a

Helmholtz equation, the frequencies of the respective modes are captured
with relatively high agreement, cp. Tab. 6.3. However, the inability of the

model to account for mean flow effects results in a significant under predic-
tion of the combustor damping. For modes one, two and three the differ-

ences in damping rates are 106 s−1, 139 s−1 and 160 s−1, respectively. If the
presence of a flame is incorporated into the Helmholtz equation, probably

only small amounts of energy input by the flame are enough to balance the
acoustic losses. Thus, a Helmholtz solver will tendentiously find a combus-
tion chamber to be more unstable when operated under reactive conditions.

For the Helmholtz equation also eigenmodes pulsating inside the plenum
section are determined. These modes have not been determined experimen-
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6.2 Two-Phase Flow Combustion Instabilities

Table 6.4: Experimental measured eigenfrequencies of case C of combustion chamber test
rig and error of made by LNSEs and Helmholtz equation.

Mode Experiments LNSEs Helmholtz Eq.

R(f) [Hz] ℑ(f) [1/s] ǫ(R(f)) [%] ǫ(ℑ(f)) [%] ǫ(R(f)) [%] ǫ(ℑ(f)) [%]

1 165 - 5.0 - 21.2 -

2 290 48 2.4 18.7 22.5 28.7

3 605 210 1.0 1.7 9.5 90.9

tally. Their presence is explained through the high amounts of acoustic re-

flections and low amounts of acoustic transmissions featured by the injector
nozzle. This leads to a partially decoupling of modes in the plenum section

and modes observed inside the combustion chamber. Using the LNSEs the
presence of plenum modes can be observed as well. However, because of the

increased computational costs only the experimental determined combustor
modes are searched for.

When the inlet air is preheated (Case C) the flow velocity through the rig
nearly doubles. In this case, a higher impact on the frequencies of oscilla-

tions is expected (Tab. 6.4). Rather low amounts of damping are reached
for low mode numbers. Experimentally the damping rate for the first mode
could not be evaluated as the statistical error is large and the resulting ex-

ponential fit shows low agreement with the pressure time series. However,
LNSEs predict a low damping rate in this frequency range which is of similar

order to the second acoustic mode observed. As LNSEs damping predic-
tions are of similar order of the Helmholtz equation, acoustic-flow coupling

must have an insignificant effect in the low frequency regime. The agree-
ment reached between LNSEs and the experimental data is again high, as
seen from the corresponding Fig. 6.12. As the damping reached for the first

two modes is of the order of the acoustic losses through the boundaries, the
Helmholtz equation performs well in predicting the damping for mode one

and two. However, as soon as acoustic-flow coupling becomes predominant
it fails in providing the correct magnitude as it can be observed for mode

three. Interestingly, another deficiency of the Helmholtz equation can be
observed: with an increase in flow velocity also the real parts of the fre-

quencies are mispredicted by about 21%, 22% and 9% for modes one, two
and three, respectively.
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6 Global Stability Analysis

The eigenvalue simulations of this section show an irregular convergence be-
havior. This is related to the fact that experimentally measured boundary
conditions (or FTF in the next section) are employed. All measurements

are performed with a frequency step of 10 Hz and the results are not smooth
on a local scale, due to measurement errors. If the eigenvalue linearization

point surpasses an integer multiple of 10 Hz the eigenmodes are found to
experience a stronger shift in frequency leading to problems in the conver-

gence behavior of the iterative routine. The convergence criterium after
which the iterative routine of Section 3.3.6 is ended, is therefore chosen

to be more nonrestrictive ǫ = 2π10 Hz/|ω0|. In future, such problems can
be overcome by either employing higher order interpolation schemes or by
approximating the measured data with sufficiently smooth models. With

this convergence criterion chosen, the eigenvalue would converge within a
number of two to three iterations.

6.2.4 Unsteady Heat Release Rate (ˆ̇qV 6= 0)

Solving the LNSEs as in the preceding section means finding the eigenmodes
of the combustor, taking into account mean flow effects and acoustic losses

through the boundaries but neglecting steady and unsteady effects of the
flame. When addressing thermoacoustic problems, however, the ultimate

objective is to discriminate between unstable and stable combustor opera-
tion which requires the inclusion of a flame response. This is the goal of
the current section which treats the reactive Case D by accounting for the

acoustic-flame coupling incorporating the experimentally measured FTF of
Fig. 6.10 into the LNSEs formulation.

The FTF is included numerically by reformulating it as a local n-τ model
using Eq. (2.36) and Eq. (2.34). A flame sheet over the complete combustor

cross section with thickness δf = 0.01 m is inserted into the region of highest
rate of reaction at xf = 0.073 m as depicted in Fig. 6.13. The kinetic rate of

reaction is obtained, performing an area average of the simulations using an
eddy dissipation model. Parameters of global n(ω) and τ(ω) are considered

frequency dependent and are interpolated for every iteration step from the
experimentally measured data of Fig. 6.10. For interpolation the pulsation

ωk−1 of a previous iteration (k − 1) is used following the iterative routine of
Section 3.3.6.
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6.2 Two-Phase Flow Combustion Instabilities

0

Figure 6.13: Kinetic rate of reaction averaged radially over space. Results from three di-
mensional steady reactive combustion simulation using an eddy dissipation
concept model. Shaded area shows finite thickness and axial location of the
unsteady combustion model in the acoustic simulations.

The frequency spectrum at the operating point is illustrated in Fig. 6.14

and shows two sharp peaks at frequencies of 95.4 Hz and 510.9 Hz reach-
ing pressure amplitudes of 129.4 Pa and 21.5 Pa, respectively. From the

amplitudes reached it is concluded that the first eigenmode is most likely
unstable. Pressure levels reached for the second mode at 510.9 Hz are of the

order of the background noise levels and therefore the mode is considered
to be in the stable regime. At this particular frequency the FTF also shows
a low source strength, cp. Fig. 6.10 left.

Overall, two simulations are performed: One in which the steady effect of
the flame through the mean temperature field is accounted but neglecting

any unsteady effects (ˆ̇qV 6= 0). And another one in which the acoustic-
flame coupling is incorporated and the combustor may feature instability

(ˆ̇qV 6= 0). This is done for both simulation tools (Helmholtz and LNSEs).
However, using the Helmholtz equation all eigenfrequencies between 50 Hz-

800 Hz are predicted while using the LNSEs it is focused on the two modes
of interest.

For the cases including and excluding an unsteady heat release rate the
modes predicted by the LNSEs and Helmholtz equation are plotted in

Fig. 6.15, left and right, respectively. For the unstable mode at 90 Hz,
it can be observed that the LNSEs correctly predict a shift from the stable

(ℑ(f) > 0) to the unstable regime (ℑ(f) < 0) when the unsteady effect of
the flame is included. An instability is predicted at 97 Hz and corresponds
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Figure 6.14: Pressure amplitude spectrum of combustion chamber operated under acous-
tically unstable conditions of Case D. Pure acoustic signal and data fit using
a Savitzky-Golay filter.

to the quarter wave mode in the combustion chamber. Interestingly, it is

often believed that low frequency instabilities are caused by entropy cou-
pling. The feedback mechanism of accelerated entropy spots is, however,

not accounted for and thus, the low frequency of instability must originate
from mean flow effects. In the present framework the instability can be

explained by the fact that the mean flow may introduce large shifts to the
frequency of oscillations. The difference in frequency compared to the first
stable mode of the Helmholtz equation (ū = 0) is −67 Hz. Such shifts to

lower values in frequency have already been observed in the earlier sections.
The Helmholtz equation, however, finds the first mode to be in the fully

stable regime. A prediction not supported by the experiments.

The second mode observed in the frequency spectrum of Fig. 6.14 at 510 Hz

is found to be stable by the LNSEs tool but is predicted as unstable using
the Helmholtz equation. Here, again, the difference in frequency is −36 Hz,

when including the mean flow. This shift in frequency is most probably
responsible for the stable mode prediction by the LNSEs. When looking

at Fig. 6.10 in this range the flame shows almost no acoustic response.
Artificially increasing the flame response, however, would directly yield an
unstable mode for the LNSEs as well.

For both acoustic modes considered, the LNSEs manage to capture the fre-

quency of instability and is able to correctly discriminate between stable
and unstable combustor operation. LNSEs results are conform with the ex-
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perimental findings. When neglecting mean flow effects using the Helmholtz
equation a completely different acoustic mode is found to be unstable and
the instability at 90 Hz is not predicted at all.
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Figure 6.15: Acoustic modes of LNSEs (left) and Helmholtz equation (right) for the at-
mospheric pressure test rig including combustion (Case D). Modes including
the stationary effect of the flame (passive flame, ˆ̇qV = 0) are plotted as well
as the modes associated with unsteady combustion (active flame, ˆ̇qV 6= 0).

6.3 Concluding Remarks

In this chapter a global stability analysis of combustion chambers was per-
formed using LNSEs. Two configurations were studied: a generic premixed

combustor configuration and an experimental single combustor test rig em-
ploying an industrial injection system developed by Avio S.p.A.

For both considered cases including a mean flow field without any unsteadi-
ness in the reaction yields a stabilizing effect of the combustion chamber

eigenmodes, cp. to Figs. 6.3 and 6.12. As the experimental combustion
chamber solely damps acoustic waves (cp. Fig. 5.18), coupling of acoustic

with entropy or vorticity modes leads to a stabilizing effect of the combustor
eigenmodes. This stabilizing effect of the mean flow field can also be ob-

served when including the effect of the unsteady flame, see e.g. Figs. 6.4 and
6.5 left. However, as shown by the Figs. 6.5 right and 6.15 including a mean

flow and unsteadiness of reaction may also lead to a destabilizing effect on
the combustor eigenmodes. Moreover, the mean flow field significantly al-
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6 Global Stability Analysis

ters the frequencies of instability and therewith the acoustic coupling with
the flame.

The LNSEs are able to assess the stabilizing, but also destabilizing effect
of the mean flow field onto the combustion chamber modes with relatively

high accuracy in frequency as well as in growth rate. As the Helmholtz
equation is derived on basis of a quiescent assumption, it does not include
the mean flow effect on combustion instabilities. Consequently, the damp-

ing or attenuation of combustion chamber modes, i.e. ℑ(f), is continuously
misspredicted using the Helmholtz equation. For cases with lower mean

flow speed and no reaction, the Helmholtz equation, however, manages to
predict the frequencies R(f) of the combustor modes with similar accuracy

than the LNSEs. However, as soon as the flow speed is approximately dou-
bled by preheating the inlet air at constant mass flow, also the frequencies

exhibit errors much greater than those predicted using the LNSEs. Finally,
when unsteady reaction was included the Helmholtz equation predicted an
unstable mode which was found to be stable in the experiments and a sta-

ble mode which was found to exhibit instability. Therefore, the Helmholtz
equation may only provide with rough approximations of the modes of in-

stability and great care needs to be taken when higher flow velocities are
reached within a combustion chamber.

When performing an eigenvalue analysis using the LNSEs, the eigenvalues
were found to exhibit small shifts in frequencies and were not easily traceable

by the iterative routine. To increase robustness of the methodology, the
following three steps are proposed for future investigations:

• Representation of experimentally measured boundary conditions and
flame FTF by smoothened curves, using e.g. a Savitzky-Golay filter

performing a local polynomial regression or theoretical models.

• For all regions in the field, the local density of the fluid dynamic data

points must be considerably higher than the density of the computa-
tional nodes of the acoustic simulation. Otherwise, interpolation may

cause inaccurate representations of fluid dynamic boundary and shear
layer profiles. If by chance, interpolation artificially causes a point

of inflection in the representation of the mean flow distribution, this
would inevitably lead to the promotion of local hydrodynamic instabili-
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ties. From the incompressible fluid dynamic theory of Michalke (1965)
it is well known that an inflection point in the flow field causes the
appearance of such flow instabilities.

• Great care needs to be taken to represent shear layers emitting from
leading or trailing edges of any configuration in the acoustic simulation.

This requires a relatively fine resolution of such regions in the fluid
dynamic simulations.

This observed sensitivity was also observable for the Helmholtz equation,
but was more pronounced when using the LNSEs. The simulation of the

scattering matrices of Chapter 5 did not show such sensitivities.
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7 Conclusion

Two different numerical solvers are presented in this thesis which solve for
the acoustic fields or eigenfrequencies and eigenmodes of multidimensional

flow configurations employing complex impedances and active or passive
flames. They are based on the linearized Navier-Stokes equations which
account for the propagation of three types of disturbances (acoustic, vor-

ticity and entropy). Interaction between the different disturbances leads to
a transfer of energy from one to the other and allows to capture acoustic

attenuation and amplification processes. Different stabilized finite element
procedures are introduced which may be interpreted as methods modeling

the effect of the unresolved subgrid scales. The schemes provide finite ele-
ment stabilization with lowest amounts of numerical diffusion and preserve
the order of accuracy of the interpolating functions. After finite element

discretization, large system matrices may arise in three dimensional space.
In order to solve such large problem sets, different iterative solvers are de-

signed. The Krylov subspace method of GMRES used in conjunction with
a geometric multigrid acceleration technique has proven to yield best con-

vergence rates and is relative insensitive to variations in frequency and flow
field. This technique has been applied either to invert the system matrix or

to accelerate the shift and invert formulation of the Arnoldi algorithm. The
resulting solvers are tested on a large variety of different flow configurations.

At first, only coupling of acoustic waves with coherent vortical structures
are considered. The LNSEs manage to capture accurately the main acous-

tic flow interaction processes for the different flow configurations of an area
expansion, an orifice and an industrial aeroengine injection system. Com-
parisons of scattering matrices as well as acoustic energy balances illustrate

the quality of the approach and justify all assumptions made. Interestingly,
at frequencies where strong fluid dynamic instabilities are present in the

flow (only observed in case of a T-joint) deviations occur and the aeroa-
coustic interaction is significantly over predicted. This effect is attributed

to the over prediction of the growth rate of vortical structures which are
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convectively transported downstream. Larger growth leads to stronger vor-
tical disturbances and consequently to stronger acoustic-flow interactions.
This over prediction, results from an insufficient inclusion of the effect of

turbulence which provides a certain physical bound to the coherent vortex
growth. This issue can be resolved even in this purely linear framework and

future work will be dedicated to this subject.

When a flame is absent, predicting the eigenmodes of a combustion chamber

configuration using LNSEs, the presence of the flow generally leads to a sig-
nificant increase of acoustic damping. Main contributor is the swirling flow

produced by the injection system at which multiple shear layers are formed
and discharge into the combustion chamber. In addition, acoustic entropy

interactions with a stationary flame may further increase the acoustic loss
process. For certain frequencies the damping reached by these mechanisms

seems to be of much higher order than the damping introduced through per-
forated screens (cp. Gullaud and Nicoud, 2012). But not only the damping
is changed, also the frequencies of oscillations experience a shift in maxi-

mum of about −50 Hz when the influence of the flow is accounted for. When
a flame is introduced, the mean flow can have a stabilizing but also -on the

contrary- a destabilizing effect on the thermoacoustic modes. Depending
on the characteristics of the flame, even the frequency of oscillations can be

shifted by −150 Hz for the generic premixed combustor case and of about
−67 Hz for the experimental test case compared to the zero mean flow case.
This may have a drastic effect on the acoustic coupling process with the

flame. A method neglecting the mean flow field will hardly be capable of
predicting the eigenmodes and stability of the system correctly. However,

for the case with lower flow speeds inside the combustor it is still believed
that, e.g., a Helmholtz equation is still able to provide relatively accurate

results.

The method proposed is very general and has considerable potential to com-

plement current state-of-the-art thermoacoustic and aeroacoustic analysis
in the near future. On the one hand, LNSEs can be used to support low-

order lumped network model approaches by supplying scattering or transfer
matrices of complex flow configurations. If a mean flow field is available,

the routine may provide scattering matrices within a few hours until up to
a day (depending on the frequency range and frequency resolution). On
the other hand, it can be used to verify the existence and stability of eigen-
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modes computed by a network model approach or a Helmholtz code. Using
this higher order tool, the gap between lower order approaches and an high
fidelity LES can be filled.

Despite the method’s high potential, there are still some problems involved.

As the determination of scattering matrices proved to be highly robust, the
problems are mainly associated with the thermoacoustic eigenmode anal-
ysis. One problem concerns the observed sensitivity of the eigenmodes to

irregularities in boundary conditions and mean flow representation. An-
other problem is associated with the prediction of a multitude of eigen-

modes mostly located at low frequencies which contain physical as well as
spurious modes. In such cases, discrimination between physical and unphys-

ical solution becomes difficult. A solution followed in this thesis is to run a
Helmholtz solver computation beforehand and to feed the resulting eigenfre-

quencies as starting values to the LNSEs solver. Also, a re-orthogonalization
of eigenvectors, as proposed in Section 4.1.1, may become favorable. In or-
der to extend the current approach to larger systems, the issue of code

parallelization must also be considered. At the moment, this cannot be suf-
ficiently realized by Comsol Multiphysics which is inefficient in large parts

and is only capable to provide a solid starting ground.

Possibilities of further research employing the developed schemes are multi-

fold. Here, only two of them are mentioned: Inclusion of entropy waves and
their coupling in an accelerated flow in downstream turbine vane passage,

which possibly leads to low frequency instabilities, can be studied. Experi-
mental tests are readily available in the literature, see. e.g. the papers by

Zukoski and Auerbach (1976) and Bake et al. (2009). Furthermore, the here
proposed method can be employed to study fluid dynamic instabilities and
their respective source regions, the so-called wave-maker region (see Ober-

leithner et al., 2012). In this case, it is probably advisable to introduce the
incompressible assumption before linearizing the equations.
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APPENDIX





A Influence of Viscosity on
Acoustic Wave Propagation

Derivations in this section are partially based on the lecture series given
by Prof. Sujith at the Technical University of Munich in 2011. The sec-

tion estimates the importance of viscosity for wave propagation problems.
Assuming purely one dimensional wave propagation and a medium at rest
ū = 0, the linearized equation of momentum yields

∂u′

∂t
= −

1

ρ̄

∂p′

∂x
+ ν

∂2u′

∂x2
. (A.1)

The equation may be made non dimensional by substituting dimensionless
variables into the equation:

t∗ =
t

τa
, x∗ =

x

λ
, p′∗ =

p′

pref
, u′∗ =

u′

pref/ (ρ̄c̄)
, (A.2)

using a characteristic acoustic length scale λa and time scale τa. Substitu-
tion, multiplication with pref/ρ̄c̄, and rearrangement of the terms yields

∂u′∗

∂t∗
= −

∂p′∗

∂x∗
+

Λ

2λa

∂2u′∗

∂(x∗)2
, (A.3)

with the acoustic time and length scale related by τ = 1/f = λa/c and
viscosity defined as ν = cΛ/2 where Λ defines the molecule’s mean free

path length. Thus, viscosity becomes only important if the coefficient of
the viscous term is of the order

Λ

λa
∼ 1. (A.4)

The magnitude of the molecule’s free path length is generally of the order
O(10−8m). Thus, only if λa is sufficiently small, i.e. the frequency is high,

molecular viscosity becomes important for acoustic wave propagation. This
is for example the case when computing the noise audible in the far field of
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jet engines where high frequency components travel along large distances.
Note, however, that any acoustic flow interactions stemming from convective
or reactive terms were eliminated for the derivation. The effect of viscosity is

much more important for the convectively transported vortical and entropy
modes which have much lower length scales λv ≈ λs ≈ Ma λa. Thus, the

effect of viscosity on aeroacoustic interactions may be much more important
to thermoacoustic stability analysis.
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B Forms of Transport Equations

B.1 Forms of Energy Conservation Equation

The conservation of energy equation, Eq. (2.3), may be written in very dif-
ferent forms. The present study choses pressure to be the primitive variable

to represent energy conservation. This choice is motivated through the fact
that the pressure variable can easily be determined experimentally at sur-

faces and is a conservation variable. Other forms of the energy equation
found in literature (e.g. Nicoud and Wieczorek (2009)) employ the entropy

variable. However, as entropy is not conserved and can not be measured
directly it is not chosen for the present approach. Next, the energy equa-
tion is derived in terms of pressure variable starting from its formulation in

terms of total energy E,

DE

Dt
=

∂uiτij

∂xj
−

∂pui

∂xi
+ ρfiui −

∂q̇i

∂xi
. (B.1)

From the Fourier’s law for thermal heat conduction qi is defined as

q̇i = −λ
∂T

∂xi
. (B.2)

Substitution of enthalpy h = e + p/ρ then yields

ρ
Dh

Dt
=

Dp

Dt
+ τij

∂ui

∂xj
−

∂qi

∂xi
. (B.3)

Using the equations of state p = ρRT and h = cpT and assuming constant
cp and ratio of specific heats κ finally yields

∂p

∂t
+ ui

∂p

∂xi
+ pκ

∂ui

∂xi
= (κ − 1)



q̇V + τij
∂ui

∂xj



 . (B.4)
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Note that the conservation of mass equation, Eq. (2.1), was used to derive
this equation. Equally, the energy equation can be written in terms of
entropy variable s using the entropy formulation of Eq. (2.6) which leads to

Ds

Dt
=

R

p



q̇V + τij
∂ui

∂xj



 . (B.5)

B.2 Cylindrical Coordinate System

Often it is advantageous to formulate the transport equations in a cylindrical
coordinate system. This is especially the case when considering configura-

tions which are symmetric with respect to the axis of rotation. Then, the
transport equations may be formulated in two dimensional space but rep-

resent the configuration in a quasi three dimensional manner. Conversion
between a Cartesian and a cylindrical coordinate system is done through

x = r cos θ, (B.6)

y = r sin θ, (B.7)

z = z, (B.8)

where r is the radius and θ defines an angle. The continuity equation then
writes

∂ρ

∂t
+

1

r

∂

∂r
(ρrur) +

1

r

∂

∂θ
(ρuθ) +

∂

∂z
(ρuz) = 0, (B.9)

the momentum transport equations equally yields

ρ




∂ur

∂t
+ ur

∂ur

∂r
+

uθ

r

∂ur

∂θ
+ uz

∂ur

∂z
−

u2
θ

r



 = −
∂p

∂r

+

[

1

r

∂

∂r
(rτrr) +

1

r

∂

∂θ
τθr +

∂

∂z
τzr −

τθθ

r

]

+ ρgr,

(B.10)

ρ

(

∂uθ

∂t
+ ur

∂uθ

∂r
+

uθ

r

∂uθ

∂θ
+ uz

∂uθ

∂z
+

uruθ

r

)

= −
1

r

∂p

∂θ

+

[

1

r2

∂

∂r
(r2τrθ) +

1

r

∂

∂θ
τθθ +

∂

∂z
τzθ

]

+ ρgθ,

(B.11)

ρ

(

∂uz

∂t
+ ur

∂uz

∂r
+

uθ

r

∂uz

∂θ
+ uz

∂uz

∂z

)

= −
∂p

∂z

+

[

1

r

∂

∂r
(rτrz) +

1

r

∂

∂θ
τθz +

∂

∂z
τzz

]

+ ρgz.

(B.12)
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and finally the energy equation using the pressure variable formulation,

∂p

∂t
+ ur

∂p

∂r
+ uθ

1

r

∂p

∂θ
+ uz

∂p

∂z
+ pκ

(

1

r

∂

∂r
(rur) +

1

r

∂uθ

∂θ
+

∂uz

∂z

)

=

+ (κ − 1) q̇V + (κ − 1)

[

τrr
∂ur

∂r
+ τrθ

(

1

r

∂ur

∂θ
−

uθ

r

)

+ τrz
∂ur

∂z

+ τθr
∂uθ

∂r
+ τθθ

(

1

r

∂uθ

∂θ
−

ur

r

)

+ τθz
∂uθ

∂z
+τzr

∂uz

∂r
+ τzθ

(

1

r

∂uz

∂θ

)

+ τzz
∂uz

∂z

]

.

(B.13)

The components of the viscous stress tensor are now defined as,

τrr = µ

[

2
∂ur

∂r
−

2

3

(

1

r

∂

∂r
(rur) +

1

r

∂uθ

∂θ
+

∂uz

∂z

)]

, (B.14)

τθθ = µ

[

2

(

1

r

∂uθ

∂θ
+

ur

r

)

−
2

3

(

1

r

∂

∂r
(rur) +

1

r

∂uθ

∂θ
+

∂uz

∂z

)]

, (B.15)

τzz = µ

[

2
∂uz

∂z
−

2

3

(

1

r

∂

∂r
(rur) +

1

r

∂uθ

∂θ
+

∂uz

∂z

)]

(B.16)

τrθ = τθr = µ

[

r
∂

∂r

(

uθ

r

)

+
1

r

∂ur

∂θ

]

, (B.17)

τθz = τzθ = µ

(

1

r

∂uz

∂θ
+

∂uθ

∂z

)

, (B.18)

τzr = τrz = µ

(

∂ur

∂z
+

∂uz

∂r

)

, (B.19)

Next, the problem is reduced to two dimensions using uθ = 0 and assuming
rotational symmetry along r = 0 and ∂/∂θ = 0,

∂ρ

∂t
+

1

r

∂

∂r
(ρrur) +

∂

∂z
(ρuz) = 0, (B.20)

ρ

(

∂ur

∂t
+ ur

∂ur

∂r
+ uz

∂ur

∂z

)

= −
∂p

∂r

+µ




∂2ur

∂z2
+

4

3

∂2ur

∂r2
+

1

3

∂2uz

∂z∂r
+

4

3r

∂ur

∂r
−

4

3r2
ur



 + ρgr,
(B.21)
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ρ

(

∂uz

∂t
+ ur

∂uz

∂r
+ uz

∂uz

∂z

)

= −
∂p

∂z

+µ




∂2uz

∂r2
+

4

3

∂2uz

∂z2
+

1

3

∂2ur

∂z∂r
+

1

3r

∂ur

∂z
+

1

r

∂uz

∂r



 + ρgz,
(B.22)

∂p

∂t
+ur

∂p

∂r
+ uz

∂p

∂z
+ pκ

(

1

r

∂

∂r
(rur) +

∂uz

∂z

)

= (κ − 1) q̇V

+ (κ − 1)

[

τrr
∂ur

∂r
+ τrz

∂ur

∂z
+ τzr

∂uz

∂r
+ τzz

∂uz

∂z

]

.

(B.23)

The equations can be linearized in the same way as described in Chapter 2.

In order to keep the formulation more compact we introduce the index
notation again i, j = (r, z). Linearization leads to

∂ρ′

∂t
+ ρ̄

∂u′
i

∂xi
+ ρ′ ∂ūi

∂xi
+ ūi

∂ρ′

∂xi
+ u′

i

∂ρ̄

∂xi
+

ρ̄u′
r

r
+

ūrρ
′

r
= 0 (B.24)

∂u′
r

∂t
+ ūj

∂u′
r

∂xj
+ u′

j

∂ūr

∂xj
+

1

ρ̄

∂p̂

∂r
−

ρ̂

ρ̄2

∂p̄

∂r
=

µ




∂2u′

r

∂z2
+

4

3

∂2u′
r

∂r2
+

1

3

∂2u′
z

∂r∂z
+

4

3r

∂u′
r

∂r
−

4

3r2
u′

r



 + ρ′gr

(B.25)

∂u′
z

∂t
+ ūj

∂u′
z

∂xj
+ u′

j

∂ūz

∂xj
+

1

ρ̄

∂p̂

∂z
−

ρ̂

ρ̄2

∂p̄

∂z
=

µ




∂2u′

z

∂r2
+

4

3

∂2u′
z

∂z2
+

1

3

∂2u′
r

∂z∂r
+

1

3r

∂u′
r

∂z
+

1

r

∂u′
z

∂r



 + ρ′gz.

(B.26)

B.3 Matrix notation of LNSEs

Eqs. (2.8)-(2.10) can also be written in compact matrix form notation which
may allow for a simpler differentiation between the individual terms (con-

vection, diffusion, reaction) contributing to the acoustic problem. Using the
general variable φ = (ρ̂, ûx, ûy, ûz, p̂)T , all five linearized equations of mass,

momentum and energy can be written in form of

iωφ +
∂Aiφ

∂xi
+ Cφ − Dφ = fs, (B.27)

for a cylindrical coordinate system. xi is the coordinate vector and is speci-
fied through xi = (r, z). Matrices Ai, C and D are the convective matrices
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in the i-th direction, the reactive matrix and the diffusive matrix. fs is a
source vector. The constant coefficient convective matrices Ai writes

Ax =

















ūx ρ̄ 0 0 0

0 ūx 0 0 1/ρ̄

0 0 ūz 0 0

0 0 0 ūx 0

0 κp̄ 0 0 ūx

















, Ay =

















ūy 0 ρ̄ 0 0

0 ūy 0 0 0

0 0 ūy 0 1/ρ̄

0 0 0 ūy 0

0 0 κp̄ 0 ūy

















, (B.28)

Az =

















ūz 0 0 ρ̄ 0

0 ūz 0 0 0

0 0 ūz 0 0

0 0 0 ūz 1/ρ̄

0 0 0 κp̄ ūz

















, (B.29)

while the reactive matrix reads

C =


















0 0 0 . . .

− 1
ρ̄2

∂p̄
∂x1

−
(

∂ū2

∂x2
+ ∂ū3

∂x3

)

∂ū1

∂x2
. . .

− 1
ρ̄2

∂p̄
∂x2

∂ū2

∂x1
−
(

∂ū1

∂x1
+ ∂ū3

∂x3

)

. . .

− 1
ρ̄2

∂p̄
∂x3

∂ū3

∂x1

∂ū3

∂x2
. . .

0 (1 − κ) ∂p̄
∂x1

(1 − κ) ∂p̄
∂x2

. . .

. . . 0 0

. . . ∂ū1

∂x3

1
ρ̄2

∂ρ̄
∂x1

. . . ∂ū2

∂x3

1
ρ̄2

∂ρ̄
∂x2

. . . −
(

∂ū1

∂x1
+ ∂ū2

∂x2

)

1
ρ̄2

∂ρ̄
∂x2

. . . (1 − κ) ∂p̄
∂x3

(κ − 1)
(

∂ū1

∂x1
+ ∂ū2

∂x2
+ ∂ū3

∂x3

)


















.

(B.30)

Making use of the Schwarz’s law of continuous second derivatives and chang-
ing differentiation order, the diffusive matrix yields

D = ν

















0 0 0 0 0

0 4
3

∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3

1
3

∂2

∂x1∂x2

1
3

∂2

∂x1∂x3
0

0 1
3

∂2

∂x1∂x2

∂2

∂x2
1

+ 4
3

∂2

∂x2
2

+ ∂2

∂x2
3

1
3

∂2

∂x2∂x3
0

0 1
3

∂2

∂x1∂x3

1
3

∂2

∂x2∂x3

∂2

∂x2
1

+ ∂2

∂x2
2

+ 4
3

∂2

∂x2
3

0

0 0 0 0 0

















,(B.31)
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Finally, the source vector defined for thermoacoustic problems is defined as

fs =

















0

0

0

0

(κ − 1) q̇′
V

















. (B.32)
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C Acoustic Energy

The conservation of acoustic energy can be written in differential form. It
states that the temporal change of acoustic energy in a system plus the

acoustic energy flux out of the boundaries is equal to the acoustic sources
inside the system.

∂E

∂t
+

∂Ii

∂xi
= S, (C.1)

by integration over a domain Ω and applying the gaussian divergence the-
orem one obtains

∫

Ω

∂E

∂t
dΩ +

∫

Γ

Iini dΓ =
∫

Ω

D dΩ. (C.2)

C.1 Acoustic Energy in a Quiescent Medium

Considering a fluid without motion ūi = 0, and hence p̄ = const. and assum-

ing ρ̄ = const., the differential equation describing the external energy of an
acoustic system can be calculated from the momentum equation, Eq. (2.9),

times perturbations of mass flow u′
iρ̄ yielding

∂

∂t




ρ̄u′2

i

2



 + u′
i

∂p′

∂xi
= 0. (C.3)

The internal energy is expressed by the linearized Euler energy equation,
Eq. (2.24), multiplied by p′/(ρ̄c̄2) which leads to

∂

∂t




p′2

2ρ̄c̄2



 + p′∂u′
i

∂xi
=

κ − 1

ρ̄c̄2
p′q̇′

V . (C.4)

The total overall energy, composed of internal and external energy, is ob-

tained by a simple addition of Eq. (C.3) and Eq. (C.4), yielding

∂

∂t




p′2

2ρ̄c̄2
+

ρ̄u′2
i

2





︸ ︷︷ ︸

E

+
∂

∂xi
(p′u′

i)
︸ ︷︷ ︸

Ii

=
κ − 1

ρ̄c̄2
p′q̇′

V

︸ ︷︷ ︸

S

. (C.5)
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C Acoustic Energy

Note that the total energy E of the system consists of two terms. One
resembles the kinetic energy of the system Ekin = p′2/2ρ̄c̄2. The other can
be interpreted as the amount of energy needed for an isentropic compression

of an ideal gas and hence defines the potential energy of the system. One
can clarify this consideration by a simple consideration, if

Epot = −
1

V̄

V∫

V̄

p dV , (C.6)

defines the potential energy of a given system. Its differential volume can
be rewritten as

dV =
V̄

v̄
dv, (C.7)

where v = 1/ρ. Applying the isentropic change of state

v = p̄1/κp−1/κv̄, (C.8)

and linearizing the equation of the state around p̄

dv

dp

∣
∣
∣
∣
∣
p=p̄

= p̄1/κ−1

κ
p̄−1/κ−1v̄ = −

v̄

κp̄
, (C.9)

finally leads to

Epot = −
1

V̄

V∫

0

p
V̄

v̄
dv = −

1

V̄

p′

∫

0

p
V̄

v̄

−v̄

κp̄
dp =

p′2

2c̄2ρ̄
. (C.10)

Assuming that the acoustic flux over the boundaries Ii is zero, the total en-

ergy inside the system is directly proportional to the source term S. In this
case if S > 0, the acoustic energy of the system increases, i.e. ∂E/∂t > 0,

and the system becomes unstable. This condition is known as the Rayleigh
criterion of Eq. (1.1).

C.2 Acoustic Energy in an Isentropic Medium

To retrieve the acoustic energy from an isentropic medium is somewhat

more complex as acoustic-flow coupling becomes important. For the sake
of clarity only the derivation is shortly explained next: Starting point is
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C.3 Stability Considerations of Acoustic Energy

the multiplication of the linearized mass equation, Eq. (2.21), linearized
Navier-Stokes momentum equation, Eq. (2.22), and the linearized energy
equation, Eq. (2.23), with ūju

′
j, u′

iρ̄ + ūiρ
′ and p′/(κp̄), respectively. In-

fluence of viscosity is neglected (λ = ν = 0). Adding the linearized mass
equation to the linearized momentum and energy equations, making use of

the isentropic relation, Eq. (2.18), and performing some math one finally
obtains the energy equation sorted in the form of Eq. (C.1):

∂

∂t




ρ̄u′2

i

2
+ ūi

ρ̄

p̄κ
p′u′

i +
1

2κp̄
p′2





︸ ︷︷ ︸

E

+
∂

∂xi
(u′

ip
′ +

p′2ūi

p̄κ
+ u′

jρ̄u′
iūj +

p′

p̄κ
ūjρ̄ūiu

′
j





︸ ︷︷ ︸

Ii

=
κ − 1

κp̄
p′q̇′

V +



ρ̄
∂u′

j

∂xi
−

ρ̄p′

p̄κ

∂ūj

∂xi





(

ūiu
′
j + u′

iūj

)

︸ ︷︷ ︸

S

.

(C.11)

The contributions to the source term S can be interpreted as fluctuating
heat release and vorticity. Note that steady-state conservation of mass,
momentum and adiabatic energy was used for the derivation.

ūi
∂ρ̄

∂xi
= −ρ̄

∂ūi

∂xi
, (C.12)

ūj
∂ūi

∂xj
= −

1

ρ̄

∂p̄

∂xi
, (C.13)

ūi
∂p̄

∂xi
= −κp̄

∂ūi

∂xi
. (C.14)

C.3 Stability Considerations of Acoustic Energy

The growth or damping rate of the acoustic energy α can also be evaluated
from the energy balance of a given system. By assuming that the amplitudes

of harmonic fluctuations slowly change with time

p′ = Re
[

p̂(x)eiωt
]

, u′
i = Re

[

ûi(x)eiωt
]

, q̇′
V = Re

[

ˆ̇qV (x)eiωt
]

,(C.15)

and substituting this ansatz into the acoustic energy balance equations

Eq. (C.5) or Eq. (C.11) leads to the following equation for α

α =
S − Ii

2E
. (C.16)
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C Acoustic Energy

E is a measure of the overall acoustic energy content of a combustion system,
Ii is the acoustic flux leaving the combustor and S defines the volume
averaged source term, precisely speaking

E =
∫

Ω

E dΩ, Ii =
∫

∂Ω

Iini dΓ, S =
∫

Ω

S dΩ. (C.17)

Thus, the growth rate of acoustic energy α can be evaluated as the differ-

ence between the combustion source term S and the acoustic losses at the
boundaries Ii. Instability for a given pulsation ω occures if the growth rate
exceeds values greater then one (α > 1), which is equivalent in writing

Ii > S . (C.18)

Whether these functions grow or decay in time for a given pulsation ω will
determine the stability of the system.

170



D Additional LNSEs Validation
Testcases

Other than the test cases considered in Chapters 5-6 additional validation
cases were considered in order to generate a thorough understanding of the

underlying physical phenomena. Apart from very generic one dimensional
axial flow configurations, which are not mentioned herein, two different cases
investigating aeroacoustic interactions are considered. These comprise a

generic one dimensional shear layer which promotes the growth of a Kelvin-
Helmholtz instability at a certain pulsation ω and an open pipe termination

where a jet issues in a quiescent atmosphere. For the first test case an
analytical solution exists, while for the second test case experimental data

is available.

D.1 Radiation and Refraction in Two Dimensional

Shear Layer

The first problem considered deals with the prediction of radiation and re-

fraction of sound through a two dimensional shear layer (Morris and Agar-
wal, 2004). A time-harmonic acoustic energy source is located inside a two

dimensional jet. It may be thought of as an acoustic source arising from
turbulent jet noise. All acoustic waves the source generates are radiated

and refracted by the jet shear layer. An hydrodynamic instability wave
is triggered by the acoustic source which is convected downstream by the

mean flow.

In combustion chamber flows general multiple shear layers are present, e.g.

the flow expansion out of the swirl injection system or at the emitting jets
from air dilution holes or perforated screens. Therefore, the problem is

solved to prove the LEE capability (or LNSE) to capture the mean flow
effects of refraction and convection of sound waves by shear layers. In
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D Additional LNSEs Validation Testcases

a confined combustion chamber environment refraction and scattering of
sound may result in phase shifts for the longitudinal wave propagation which
may alter the thermoacoustic feedback loop.

The baseline flow is parallel ū2 = 0 and the unidirectional sheared flow is

described through a Gaussian function

ū1(y) =







ū0 exp
[

− ln(2) (y/b − h/b)2
]

y ≥ h

ū0 0 ≤ y ≤ h
, (D.1)

while the density relation is deduced from the Crocco-Busemann relation

ρ̄0

ρ̄(y)
=

T̄∞

T̄0

−




T̄∞

T̄0

− 1




ū(y)

ū0
+

κ − 1

2
M2

0

ū(y)

ū0



1 −
ū(y)

ū0



 (D.2)

where the subscripts ′0′ define the values at the center axis of the jet. The

time-harmonic acoustic source term is given by

f = A exp
[

−
(

Bxx2 + Byy2
)]

. (D.3)

The problems parameters are M0 = 0.789, T0 = 600 K, T∞ = 300 K,

R = 287 m2 K−1 s−2, κ = 1.4, b = 1.3, A = 10−3kg m−2 s−3, Bx =
0.04 log(2)m−2, By = 0.32 log(2)m−2. The mean pressure is constant

p̄ = p̄∞ = 103 330 kg m−1 s−2. The Strouhal number is St = 0.087 based
on the center jet velocity ū0 and the jet diameter 2b. At a pulsation
ω0 = 76 rad s−1 the acoustic source triggers a hydrodynamic instability.

This is the pulsation for which the LEEs are solved.

The computational domain expands from [xmin, xmax] × [ymin, ymax] =
[−250, 225] × [0, 100] and contains a physical domain and a buffer zone.
The purpose of a buffer zone is to avoid acoustic reflections from computa-

tional boundaries by the introduction of acoustic damping. Here, acoustic
waves decay exponentially by prescribing an artificial imaginary part to

the otherwise purely real frequency f . At y = 0 a symmetry boundary is
placed. The computational mesh uses rectangular elements 99 × 45. Near

the acoustic source, at the origin of the problem, the mesh is clustered in
x and y direction in order to better resolve the mean flow and the acoustic

source. This problem corresponds to the Problem 1 of Category 4 in the
4th CAA Workshop on Benchmark Problems (Morris and Agarwal, 2004).
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D.1 Radiation and Refraction in Two Dimensional Shear Layer

D.1.1 Analytical Solution

The numerical generated solution is compared to the analytic solution pro-

vided by Agarwal et al. (2004). Starting with the frequency space formu-
lation of the LEEs, the authors reduce the system of equations to a single

third-order partial differential equation. Its third order differential operator
is the well-known Lilley wave operator. By applying a Fourier transform

in streamwise x-direction the Lilley operator is reduced to a second order
ordinary differential Rayleigh operator. After integration of the Rayleigh

equation in the cross-stream direction and inverse Fourier transform in x-
direction the final solution is obtained.

D.1.2 Unstable Hydrodynamic Solution

When predicting acoustic propagation phenomena in a shear layer using
LEEs, the shear layer will exhibit instability at a certain frequency. Many

authors claim that these instabilities are non-physical. However, this re-
quires a more differentiated consideration: The occurrence of a hydrody-

namic instability is completely physical but its unbounded growth is not,
since in reality it is suppressed by viscosity and non-linear effects. In fact,

every shear layer with inflection points exhibits instability at certain fre-
quencies (cp. Michalke, 1965). In this sense, it may be advantageous to
include viscosity by employing the LNSEs instead of the non-viscous LEEs,

since LNSEs reduce the growth of vortical scales by including the influence
of viscosity. To be consistent with the analytical solution which was derived

for a non-viscous flow, only the LEEs are considered.

The unstable solution of the LEEs is presented in Fig. D.1 and compared

to its respective analytical solution. The LNSEs are solved using 3rd order
Lagrangian finite elements and a SUPG finite element scheme. An hydro-

dynamic instability is triggered in close proximity of the acoustic source
and is convected in downstream direction, obscuring the acoustic solution

in this area. Its wavelength is much smaller compared to the wavelength of
the corresponding acoustic signal. The existence and spatial growth of the

instability at the distinct pulsation ω = 76 s−1 is accurately captured by the
LEEs solver.
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Figure D.1: Fluctuating pressure distribution in the physical domain along line y = 15.
Acoustic solution contains a hydrodynamic instability wave. Comparison of
LEE computation and analytic solution.

D.1.3 Purely Acoustic Solution

In many aeroacoustic applications the triggering of a Kelvin-Helmholtz in-
stability is not desired, since the fluid dynamic instability wave obscures

the acoustic solution (as seen in Fig. D.1). For such applications, it is a
main aim to retrieve a clear picture of the acoustic wave propagation phe-

nomena in the computational domain. To suppress the triggering of the
instability wave in the LEEs, Rao and Morris (2006) have used a SUPG fi-

nite element stabilization technique in conjunction with a buffer layer at the
domain boundaries. The authors argue that with fine tuning of the SUPG
scheme, buffer layer region as well as the numerical mesh employed, the

hydrodynamically unstable component of the solution may be extracted.

It was tried to replicate their results by employing the same technique and
approximately the same discretization scheme and order but did not succeed
directly. In the current investigations their proposed technique was not

found robust in extracting the instability wave from the solution. However, a
solution solely based on the acoustic waves could finally be obtained mostly

by means of calibrating the buffer layer and mesh by trial and error. Fig. D.2
shows that the predicted solution captures the analytically stable solution.

Therefore, it is concluded that the radiation and refraction of sound through
a shear layer is predicted by the LEEs quite accurately. The two dimensional

acoustic field is plotted in Fig. D.3. It shows the typical silence region in
the wake of the jet.
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Figure D.2: Fluctuating pressure distribution p′ along line y = 15 (left), y = 50 (mid-
dle) and x = 100 (right) of purely acoustic solution, Comparison of LEE
computation and analytic solution.

The picture drawn from the aforementioned publication of Rao and Morris

(2006) may implicate that the SUPG technique is a highly diffusive scheme.
This is not the case. It is believed that the explicit distribution of mesh
elements, order of shape functions and buffer layer lead to the suppression

of the instability wave. Explicitly the mesh resolution in the source re-
gion governs the presence of the instability wave. This argumentation is

supported by the fact that by switching off the SUPG finite element sta-
bilization scheme for the hydrodynamically stable solution, the solution is

not altered and does not change into the unstable regime of Section D.1.2.

The purely acoustic solution is retrieved in order to study the prediction

capabilities of LEEs for sound radiation and refraction in a jet flow. It
is believed that by suppressing the instability wave, main aeroacoustic in-

teraction effects cannot be captured accurately as acoustic waves may not
interact with vortical structures. This effect was found to be a main driver
of acoustic losses inside a multidimensional flow field.
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Figure D.3: Acoustic field of fluctuating pressure including the hydrodynamic instability
wave (upper graph) and absence of an instability wave (lower graph) of the
mean flow. Solution of the LEEs for the benchmark problem one of category
four in (Morris and Agarwal, 2004).

D.2 Acoustic Reflection of an Open Pipe Termination

In the second additional test case the LNSE procedure described in Section
3.3.5 is modified to determine the reflection coefficient of an open pipe

termination. For this case a variety of experimentally measured cold flow
configurations and analytical models exist for which the present technique

can be validated. However, as this case can be interpreted as the outlet
of a gas turbine, the jet temperatures are generally significantly elevated

compared to atmosphere. For this conditions little-to-non validation data
exists so far. Therefore the LNSEs technique is used to get into the range of

higher temperature ratios of T̄jet/T̄∞ and to assess the reflection coefficient
of a pipe termination with different temperature ratios. This is done in the
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publication of Jörg et al. (2013) and is not further illustrated herein. There,
also deviations to the existing theory by Munt (1977) are assessed.
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E Helmholtz Solver

E.1 Governing Equation

For a medium at rest the LNSEs reduce to a single wave or Helmholtz
equation in time, Eq. (2.24), and frequency domain, Eq. (2.25), respectively.

These type of equations were already derived in Section 2.4 but are recalled
herein for sake of completeness. As the mean flow is assumed to vanish

only acoustic waves propagate, while vorticity and entropy waves do not
propagate. The wave equation incorporating a heat release source term

writes,

1

c̄2

∂2p′

∂t2
− ρ̄

∂

∂xi




1

ρ̄

∂p′

∂xi



 =
(κ − 1)

c̄2

∂q̇′
V

∂t
, (E.1)

where the RHS source term is frequently modeled as a function of a time

delayed velocity fluctuation at a reference point in the burner mouth. It
requires the knowledge about of the time history of acoustic states at that

position. This is not favorable and complicates the treatment considerably.
Moreover, the treatment of impedance boundary conditions becomes more

complicated and therefore it is advantageous to introduce the harmonic
assumption, transforming the wave equation into frequency space,

−
ω2

c̄2
p̂ − ρ̄

∂

∂xi

(

1

ρ̄

∂p̂

∂xi

)

= iω
κ − 1

c̄2
ˆ̇qV . (E.2)

Using the linearized momentum Eq. (2.22) and the flame model, Eq. (2.34),
the volumetric heat source translates to

ˆ̇qV =
¯̇qV

iωρ̄(xref)
nl(xi)e

−iωτl(xi)
∂p̂(xref)

∂xi
ni,ref . (E.3)
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E.2 Boundary Conditions

E.2 Boundary Conditions

The boundary conditions derived in Section 2.7 for the LNSEs are also valid
for the wave- and Helmholtz equation when assuming a flow at rest. These

conditions include velocity fluctuations as unknown variables. However,
in the Helmholtz equation velocity fluctuations are not primitive variables

which are solved. They are rather directly coupled to the pressure fluc-
tuations through Eq. (2.22). This requires to reformulate the important

boundary conditions and has implications on the finite element method de-
scribed later. Since only one scalar equations is solved, only one condition
needs to be imposed on every boundary of the computational domain. For

a solid, non-moving wall at which velocity fluctuations vanish ûi = 0, use of
Eq. (2.22) translates the boundary condition from a Dirichlet to a Neumann

type, i.e.

∂p̂

∂xi
ni = 0, on ∂ΩN . (E.4)

This boundary is also frequently used as a fully reflecting inlet at which
velocity fluctuations vanish. The condition can also be imposed at a silenc-

ing chamber, where the velocity of the flow is strictly imposed. At open
outlets, where the outer pressure is imposed strongly onto the flow domain,

pressure fluctuations vanish. In case of a vanishing mean flow, this yields a
fully reflecting boundary condition,

p̂ = 0, on ∂ΩD. (E.5)

In the most general case of a complex reduced impedance Z = p̂/ρ̄c̄ûini the

boundary condition translates to a Robin type of condition for the acoustic
pressure,

∂p̂

∂xi
ni +

iω

c̄Z
p̂ = 0, on ∂ΩZ. (E.6)

Note that a treatment of the impedance boundary becomes non-trivial in

time space, since the second term on the LHS transforms to a time derivative
of the fluctuating pressure and thus the time history of pressure fluctuations

at the boundary must be known for every frequency component of fluctua-
tions. Together with the boundary conditions on ∂Ω = ∂ΩD ∪ ∂ΩN ∪ ∂ΩZ

and heat release rate fluctuations of Eq. (2.34), Eq. (E.2) defines a non-
linear quadratic eigenvalue problem.
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E.3 Finite Element Treatment

Eq. (E.2) can be spatially discretized and transformed into a finite element
eigenvalue problem using a finite element procedure. Consider a spatial

domain Ω ∈ R with a piecewise smooth boundary ∂Ω. Ne defines the
number of finite elements Ωi (i ∈ 1...Ne), Nv the number of vertices vk

(k ∈ 1...Nn) of which ND elements are located on ∂ΩD. Without any loss in
generality we may integrate the Helmholtz equation over the entire domain

Ω and multiply it with a test function wj, yielding

−
∫

Ω

∂

∂xi

(

1

ρ̄

∂p̂

∂xi

)

wj dΩ −
∫

Ω

ω2

c̄2ρ̄
p̂wj dΩ = 0. (E.7)

The weak formulation of the problem is obtained by integrating the first

term by parts and making use of Eqs. (E.4)-(E.6),
∫

Ω

1

ρ̄

∂p̂

∂xi

∂wj

∂xi
dΩ − iω

∫

∂ΩZ

1

ρ̄c̄Z
p̂wj dΩZ − ω2

∫

Ω

1

c̄2ρ̄
p̂wj dΩ = 0. (E.8)

Note that only the impedance boundary contributes to the boundary in-

tegral on the LHS, since p̂ = 0 for all x ∈ ∂ΩD as well as ∇p̂ · n = 0 on
x ∈ ∂ΩN . For the following derivation we consider linear finite elements

where ϕk denotes the piecewise linear shape function for each node vk. It is
equal to one directly at node vk and is zero for all vj 6=k. Next, we approxi-
mate the complex unknown function p̂(x) by

p̂(x) =
N∑

k=1

p̂kϕk(x), (E.9)

which directly satisfies the homogenous Dirichlet boundary condition on
∂ΩD. Following a Bubnov-Galerkin approach with weighting functions cho-

sen equivalently to the solution variable approximations, yields
N∑

k=1

p̂k

∫

Ω

1

ρ̄

∂ϕk

∂xi

∂ϕj

∂xi
dx −

N∑

k=1

p̂k

∫

∂ΩZ

∂ϕk

∂xi
ϕjnidγ − ω2

N∑

k=1

p̂k

∫

Ω

1

ρ̄c̄2
ϕkϕjdx = 0,

(E.10)

coefficients p̂k become constant and independent of space. Thus, they are
extracted from the integral. Introducing the symmetric matrices

Kkj =
∫

Ω

1

ρ̄

∂ϕk

∂xi

∂ϕj

∂xi
dx, Dkj = −

∫

∂ΩZ

i

ρ̄c̄Z
ϕkϕj dγ, Ekj = −

∫

Ω

1

c̄2ρ̄
ϕkϕj dx,

(E.11)
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which are of size N × N we may rewrite Eq. (E.10) for the discrete acoustic
problem

ω2EkjP + ωDkj(ω)P + KkjP = 0, (E.12)

where P contains a number of N complex coefficients p̂k. Matrix E and K
are completely real whereas D is complex except for the particular case of an
purely imaginary impedance Z. Solving the homogeneous Eq. (E.12) means

finding the characteristic eigenfrequencies and eigenmodes of the burner
geometry, taking into account the flame by its mean temperature field but

neglecting its unsteady effect. Because the coupling of acoustics and flame
is not accounted for, there is no possibility to discriminate between unstable

and stable operation conditions. As the flame acts as a source of acoustic
energy an extra term needs to be introduced to the RHS:

Skj = −
∫

Ω

κ − 1

ρ̄c̄2

¯̇qV

ρ̄ref ūref
nl(xi)e

−iωτlxiϕj
∂

∂xi
ϕk(xref)nrefdx. (E.13)

Note that S depends non-linearly on the pulsation ω and is not hermitian.
The non-linearity originates from the assumption that the unsteady heat

release is a function of a time delayed velocity perturbation, which converts
into an exponential term in frequency space. Finally, the full discretized
thermoacoustic eigenvalue problem writes

ω2EkjP + ωDkj(ω)P + KkjP = Skj(ω)P. (E.14)

In fact, Eq. (E.10) can not easily be converted into a linear eigenvalue
problem since it still depends quadratically on the pulsation ω and contains

an exponential term in N . However, the first non-linearity can be resolved
by introducing a new column vector

Pω = ωP (E.15)

and rewrite Eq. (E.14) as

ωEkjPω + Dkj(ω)Pω + KkjP = Skj(ω)P (E.16)

Both equations, Eq. (E.15) and Eq. (E.16), can then be transformed into

the following matrix form,





0 −I

K D











P

Pω




 = ω






I 0

0 E











P

Pω




 (E.17)
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where I defines the unitary matrix. If the impedance Z in matrix D does
not depend on the pulsation and Skj(ω) = 0, this matrix system is a lin-
ear eigenvalue problem and may be solved for the eigenfrequencies and

corresponding eigenmodes (ω, P). The obtained solution accounts for the
boundary conditions and can provide relevant information about the shape

and frequency of the first few combustor modes. However, the non-linearity
in N needs to be resolved in order to account for unsteady flames. This can

be done by introduction of an iterative technique of Nicoud et al. (2007):
If ωk is the eigenfrequency at the k-th iteration, then matrix D including

the impedance and matrix S including the flame coupling are assumed to
be functions of the ωk−1 of the last iteration step, and thus become con-
stant coefficient matrices. The quadratic eigenvalue problem is then defined

through

ωkEkjPω + Dkj(ωk−1)Pω + [Kkj − Skj(ωk−1)] P = 0. (E.18)

Initialization for ω0 is naturally done by calculation of the modes with an

acoustically passive flame. This routine is implemented in this thesis around
the finite element package COMSOL Multiphysics which solves the eigen-

value problem using an Arnoldi method available in the ARPACK-library
(Lehoucq et al., 1998). Iterative updating of the linearization point leads
to rapid convergence: For the real part of the eigenfrequency convergence is

reached within four iterations while six iterations are generally needed for
convergence of the eigenfrequencies imaginary part.

E.4 Validation Cases

Several test cases are selected to illustrate the potential of the method

to account for complex impedance boundary conditions as well as non-
isothermal active flames (ˆ̇qV 6= 0). The major difficulty arising from the

thermoacoustic problem given by Eq. (E.2) or Eq. (E.18) originates from
the strong non-linearity of the source term with respect to the pulsation

ω. Therefore, in a first step, the purely acoustic problem is considered by
neglecting the influence of the unsteady flame, viz. ˆ̇qV = 0. All test cases

presented herein allow for a detailed comparison to available analytical or
semi-analytical solutions.
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E.4.1 Isothermal Rectangular Cavity

In this test case the capability of the Helmholtz code is assessed to account
for complex valued impedances at domain boundaries. The computational
domain is a rectangular cavity of length L = 0.4 m and height h = 0.1 m

and the speed of sound inside the cavity is c̄ = 450 m s−1. The domain is
discretized using a uniform distribution of 600 triangular finite elements.

Two sets of boundary conditions are considered in the following. At first,
the side edge is subjected to an impedance boundary, admitting a set of

longitudinal modes. In the second configuration, a complex impedance is
imposed to the top edge yielding a set of two dimensional or transversal

modes. Both configurations and their respective boundary conditions are
shown in Fig. E.1.

E.4.1.1 One Dimensional Modes

A homogeneous Neumann boundary condition Eq. (E.4) is subscribed to

top, bottom and left boundaries, whereas a complex impedance of type

Z = Zr + iZi (E.19)

is imposed at the right boundary (see Fig. E.1 left). A set of one dimensional

or longitudinal modes are solutions to this configuration. In case of a purely
reactive impedance, viz. Z = iZi with Zi ∈ R the eigenfrequencies are given
by

fn = n
c̄

2L
+

c̄

2πL
arctan

(

−i

Z

)

, n ∈ N, (E.20)

ûi = 0ûi = 0

Z = Zr + iZi

Z = Zr + iZi

Figure E.1: Isothermal rectangular cavity supporting a number of longitudinal modes
(left) and a number of transversal modes (right).
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and are purely real. n defines the mode index. In this case the acoustic flux
at the boundary is zero and the eigenmodes are marginally stable (ℑ(f) =
0). If, on the other hand, a purely resistive impedance is selected, viz.

Z = Zr with Zr ∈ R, the eigenfrequencies are complex valued and equal to

fn = n
c̄

2L
− i

c̄

4πL
ln

(

Zr + 1

Zr − 1

)

, n ∈ N. (E.21)

If Zr < 0 the acoustic flux at the boundary is positive and the eigenmode
is unstable (ℑ(f) < 0). If, on the other hand, Zr > 0 the eigenmode

becomes stable as the acoustic flux is negative transporting acoustic energy
out of the computational domain. However, the eigenfrequencies imaginary

part is independent of the mode index n. Furthermore, if |Zr| > 1, viz.
(Zr + 1)/(Zr − 1) > 1 the real part of f is a multiple of the half-wave

mode c̄/2L, whereas if |Zr| < 1, viz. (Zr + 1)/(Zr − 1) < 1, the frequencies
real part is of quarter wave mode shape, see Nicoud et al. (2007). Fig. E.2
illustrates that the solutions of the Helmholtz equation are in full agreement

with the analytical findings.

E.4.1.2 Two Dimensional Modes

The following configuration admits a set of two dimensional modes. Homo-
geneous Neumann boundary conditions are subscribed to left, bottom and

right edges, whereas a complex impedance (Z = Zr + iZi) is imposed to the
top boundary of the computational domain (see Fig. E.1 right). Solutions
of the eigenmodes can be deduced from the dispersion relation

e2jkyh
(

ky −
k

Z

)

−

(

ky +
k

Z

)

= 0, with ky =

√
√
√
√k2 −

(

nπ

L

)2

, n ∈ N,

(E.22)

with a wavenumber k = ω/c̄. Similarly to the considerations above, if the
impedance is purely reactive, viz. Z = iZi with Zi ∈ R the acoustic flux

at the boundaries is zero and consequently the wave number k is real. In
case of a purely resistive impedance Z = Zr with Zr ∈ R the acoustic flux

can be positive or negative depending on the mode index and both real and
imaginary part of the eigenfrequencies depend on Zr. For both considered

cases and mode numbers, analytical solution, Eq. (E.22) and numerical
results show high agreement (see Fig. E.3).
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Figure E.2: Complex eigenvalues of one dimensional longitudinal modes in a cavity de-
pending on the complex impedance Z = Zr + iZi, value n indicates the
different eigenmodes of the configuration.

E.4.2 One Dimensional Combustor

In this case the capability of the Helmholtz solver is tested to account for

the influence of acoustically active flames. The configuration is quasi one
dimensional and consists of a straight duct of length L = 0.5 m and constant

cross section h = 0.1 m. A reactive mixture enters the duct from the left
boundary and is burnt in an infinitely thin flame sheet located in the middle

of the duct, see Fig. 6.1. Its unsteady effect is modeled via the n-τ model
Crocco (1951, 1952). After reaction, the burnt gas leaves the domain at the
right boundary. The temperature ratio from burnt to unburnt mixture is

chosen as T̄2/T̄1 = 4 to resemble engine conditions.

A semi-analytical solution can be obtained by considering linear wave prop-
agation in both ducts sections, up- and downstream of the flame, see
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Figure E.3: Complex eigenvalues of two dimensional modes in a cavity depending on the
complex impedance Z = Zr + iZi, top: purely real (resistive) impedance,
bottom: purely imaginary (reactive) impedance.

Eqs. (3.43) and (3.44). At the interface of both ducts, jump relations are
defined from pressure continuity, i.e.

p̂1 (x = l1) = p̂2 (x = 0) , (E.23)

and conservation of mass,

A2û2 = A1û1 +
κ − 1

κp̄
ˆ̇qV , (E.24)

where the indices 1 and 2 define the states of the reactive mixture and the

burnt gases. We derive the semi-analytical solution for the general case of
different duct lengths l1 and l2 and different cross sections A1 and A2.

For the unsteady heat release rate ˆ̇qV a n-τ model is chosen

κ − 1

κp̄
ˆ̇qV = A1ne−iωτ . (E.25)

At the inlet (x1 = 0) the velocity fluctuations are assumed to vanish, viz.
û = 0. At the outlet (x = l1 + l2) the fluid discharges into atmosphere and
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an acoustic open boundary is prescribed, viz. p̂ = 0. Using the definitions
of reflection coefficients, these boundaries can be expressed as

R1 =
p̂+

1

p̂−
1

= 1, (E.26)

R2 =
p̂+

2

p̂−
2

e−2ik2l2 = −1. (E.27)

Applying Eq. (3.43) and Eq. (3.44) on the jump relations, Eq. (E.23) and

(E.24) and introducing the n-τ model Eq. (E.25) yields

p̂+
1 e−ik1l1 + p̂−

1 eik1l1 = p̂+
2 + p̂−

2 , (E.28)

Γ
(

1 + ne−iωτ
) (

p̂+
1 e−ik1l1 − p̂−

1 eik1l1
)

= p̂+
2 − p̂−

2 , (E.29)

where Γ = A1ρ̄2c̄2/A2ρ̄1c̄1 is a dimensionless coefficient which reduces to the

ratio of impedances when both ducts have constant cross section. Using
the jump relations Eqs. (E.28) and (E.29) and the boundary conditions
Eqs. (E.26) and (E.26) a matrix S of the type

S(ω)P = 0, (E.30)

can be constructed, where P defines the vector of unknown complex pressure
amplitudes, viz. P = (p̂+

1 , p̂−
1 , p̂+

2 , p̂−
2 ). Then, matrix S is of the form

S =













1 −1 0 0
1
2

(

1 + Γ
(

1 + ne−iωτ
))

e−ik1l1 1
2

(

1 − Γ
(

1 + ne−iωτ
))

eik1l1 −1 0
1
2

(

1 − Γ
(

1 + ne−iωτ
))

e−ik1l1 1
2

(

1 + Γ
(

1 + ne−iωτ
))

eik1l1 0 −1

0 0 e−2ik2l2 1













.(E.31)

Requiring matrix S to be singular det (S) = 0, yields a dispersion relation
for the unknown eigenfrequencies ω and eigenvectors P of the problem.

However, the characteristic equation cannot be solved explicitly for the
eigenfunctions ωn. Instead, numerical route finding has to be applied (see

Polifke, 2003).

For the case of l1 = l2 and A1 = A2 the semi-analytical solution is calculated

for two different values of the interaction index n, viz. n = 0.01 and n = 5
corresponding to small and high amplitude flame response respectively. The

time-lag τ = 10−4s is selected in accordance with Nicoud et al. (2007)
leading to a set of stable and unstable modes. The unstructured mesh used
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for the Helmholtz algorithm consists of 17.500 triangular finite elements
which are refined in the flame region located in the middle of the duct.

Deviations from the semi-analytical solution can be expected for two reasons
(Benoit and Nicoud, 2005): First, the flame thickness of the semi-analytical

model is assumed to be infinitely thin. This can not be realized in the finite
element Helmholtz computation, where the flame thickness is at least as
thick as the typical cell size in the flame region. In the present simulation

it is set to δf = 0.001 m. Secondly, as the flame has finite thickness the
reference point of the flame model can not be placed directly at L/2, since

it belongs to the reactive mixture gas side.

In the following, the exact eigenfrequencies are compared in Fig. E.4 with

the numerical results obtained from the iterative algorithm described in
Sec. 3.3.6. In the case of small amplitude response of the flame (n = 0.01),

the iterative Helmholtz solver is in good agreement with the analytical find-
ings. The first and fourth mode are found to be stable, while the third mode

is amplified by the unsteady flame. Mode two is neither stable nor unstable
since a velocity node is located in the flame region. When an steady flame

is considered, i.e. ˆ̇q = 0 (or n = 0), all four modes are marginally stable, as
no acoustic energy is transported in nor out of the system and the acoustic
source function of the flame is zero.

A high flame response by the flame (n = 5) leaves the second mode un-
changed, while the first and fourth mode are more damped. Fig. E.4 shows

that the third mode is unstable and acoustically forced by the flame. Com-
pared to the case with n = 0.01 the frequencies R(f) of the eigenmodes

deviate more strongly from the marginally stable solution without unsteady
acoustic/flame interaction. Generally, it can also be observed that the pre-

diction error increases with increasing frequency.

E.4.3 Two Dimensional Combustor

The generic combustor test case with constant cross section introduced

above can be modified to incorporate an area change A2/A1 = 2 at the
flame location L/2. Temperature, speed of sound and density distribution

as well as all boundary conditions remain unchanged. The semi-analytic
model of Eq. (E.31) is used by modification of the dimensionless coefficient
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Figure E.4: First four eigenfrequencies of the generic model combustor with constant
cross section. Simulation results are compared to the semi-analytic solution
for small amplitude n = 0.01 (left) and high amplitude flame response n = 5
(right). Figures include location of modes with steady flame operation n = 0.

Γ to calculate the semi-analytical reference data. Kaufmann et al. (2002)

solve this case analytically for the limiting n → 0.

Similarly to the constant cross section combustor of Section E.4.2, differ-

ences are excepted in the simulation to originate from the finite thickness
of the flame sheet and the location of the reference point. To minimize

these inequalities an unstructured mesh is considered with 12.000 second
order triangular finite elements. These are refined in the region of the area
jump. A fame thickness of δf = 0.001 m is chosen which expands from

0.25 m ≤ x ≤ 0.251 m. The reference point xref is located upstream of the
flame x = 0.2495 m.
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The test case is used to study the detailed influence of the flame model
parameters n and τ on the frequency and stability of the first eigenfre-
quency. Fig. E.5 compares the result of the semi-analytical solution and

of the numerical prediction. Three ranges of instability 0.5 s . τ . 1.25 s,
1.6 s . τ . 2.4 s and 2.7 s . τ . 3 s exist. These ranges are relatively

insensitive to the specific choice of amplitude of the flame response, viz.
n. Latter variable solely augments the magnitude of damping or excitation

by the flame. Generally, the stabilizing/destabilizing effect of the unsteady
flame is captured with high agreement by the numerical method. Small

deviations are observed with increasing interaction index n.
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Predicting thermoacoustic instabilities in combustion chambers generally
requires exact knowledge of the acoustic boundary conditions up- and down-

stream of the combustion chamber, respectively. At the entrance a diffusor
decelerates the air flow to lower Mach numbers while at the exit the exhaust
gas is accelerated in the downstream first turbine stage. The flow states in-

side the diffusor or nozzle depend on the operating conditions: While a
diffusor is generally subsonic and thus unchoked, a nozzle operates under

subsonic but also transonic conditions. It may thus be choked zeroing any
mass flow fluctuations.

For an acoustic stability analysis two alternatives exist: One may either
incorporate these elements fully into the numerical computation or impose

complex impedances at its inlets and outlets which account for the com-
plex reflection behavior of diffusor or nozzle elements. When employing

the Helmholtz equation, the first alternative is not realizable, since the
Helmholtz equation is derived for a zero baseline flow and loses its va-

lidity for higher Mach numbers. Thus, imposing the complex impedance
representing mean flow effects is the only suitable choice. In case a sta-
bility analysis is carried out using the LNSEs or LEEs both alternatives

are possible. However, when discretizing diffusor inlets or nozzle outlets,
vortical and acoustic length scales become of the same order of magnitude

(λa = Ma λv) and the numerical resolution must drastically increase. Un-
der these circumstances, subscribing complex impedances at in- or outlets

becomes advantageous in terms of numerical resources. Thus, analytical
models or low-order numerical tools are required to predict the impedance
behavior of combustion chamber diffusors and nozzles.

Many analytical models exist assessing the acoustic reflection behavior of

such elements, see e.g. Mani (1981); Marble and Candel (1977) and Moase
et al. (2007). In such models, generally an assumption about compactness
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of the acoustic element or the specific velocity distribution is introduced.
When the geometry becomes more complex a suitable alternative is to dis-
cretize the LEEs in one dimensional space. In this case no further assump-

tion needs to be introduced. Recently, this procedure is introduced in a
finite difference context by Lamarque and Poinsot (2008). Their routine

is implemented into Matlab in this thesis, enabling the assessment of the
unknown acoustic impedances of diffusers and nozzle flows. In the follow-

ing, the approach is introduced and then validated against test cases with
analytical solution or experimental data available.

F.1 Calculation of Mean Flow Distribution

Fields of mean density, velocity and pressure, viz. (ρ̄, ū, p̄) can be calculated

from basic gas dynamic theory (Spurk and Aksel, 2006). With the inlet area
A at x = 0 and the inlet Mach number known, the critical section A∗ can

be calculated from,

A(x)

A∗
=

1

Ma2

[

2

κ + 1

(

1 +
κ − 1

2
Ma2

)](κ+1)/(κ−1)

. (F.1)

When A∗ is determined, the axial Mach number distribution is calculated

from the same relation for any given axial distribution of A(x). All other
mean quantities can then be obtained from the isentropic relations using
the respective total values at the inlet,

pt

p(x)
=




Tt

T (x)





κ/(κ−1)

=

(

κ − 1

2
Ma2 + 1

)κ/(κ−1)

, (F.2)

ρt

ρ(x)
=




Tt

T (x)





1/(κ−1)

=

(

κ − 1

2
Ma2 + 1

)1/(κ−1)

, (F.3)

and ū(x) = Ma c̄. The one dimensional mean flow computation is validated
for a subsonic flow through a convergent-divergent nozzle of Section F.4.

All inlet parameters are given therein. Fig. F.1 compares the result of a
computational fluid dynamic simulation which is area averaged (Myrczik,
2006) and the one dimensional numerical solution of Eqs. (F.1)-(F.2). The

one dimensional solution captures the flow profile through the nozzle very
well.
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Figure F.1: Pressure and velocity distribution computed with a two dimensional flow
solver AVBP (Myrczik, 2006) and results from the one dimensional approach
for a subsonic flow through a diffusor.

F.2 Finite Difference LEEs Solver

Basis of the finite difference solver are the one dimensional LEEs formulated

in frequency space. Existence of entropy waves is excluded and the gas is
considered perfect with constant decomposition and heat capacities. With
these assumptions, the quasi one dimensional LEEs are written (cp. to

Marble and Candel, 1977):

∂

∂t




ρ′

ρ̄



 + ū
∂

∂x




ρ′

ρ̄
+

u′

ū



 = 0, (F.4)

∂

∂t




u′

ū



 + ū
∂

∂x




u′

ū



 +




ρ′

ρ̄
+ 2

u′

ū




dū

dx
−

p′

p̄

dū

dx
+

p̄

ρ̄ū

∂

∂x




p′

p̄



 = 0, (F.5)

(

∂

∂t
+ ū

∂

∂x

)


p′

p̄
− κ

ρ′

ρ̄



 =

(

∂

∂t
+ ū

∂

∂x

)


s′

cv



 = 0. (F.6)

Assuming harmonic oscillations of all fluctuating quantities,

p′

p̄
= ϕ(x)eiωt,

u′

ū
= ν(x)eiωt,

ρ′

ρ̄
= δ(x)eiωt, (F.7)

and substitution into Eqs. (F.4)-(F.6) leads to a set of differential equations

iωϕ + ū
dϕ

dx
+ κū

dν

dx
= 0, (F.8)

κ

(

iω + 2
dū

dx

)

ν +

(

1

Ma2
− 1

)

ū
dϕ

dx
+

[

(1 − κ)
dū

dx
− iω

]

ϕ = 0, (F.9)
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which may be discretized in space to form a matrix system

Si






ϕi

νi




 =






ϕi−1

νi−1




 , (F.10)

where Si is a 2×2 system matrix depending on mean flow properties, speed
of sound and frequency. In terms or reduced variables, the impedance at
every axial location inside the nozzle is then calculated from

Z =
1

ρ̄c

p′

u′
=

1

κMa

ϕ

ν
. (F.11)

However, before the impedance may be calculated, a numerical boundary

conditions needs to be prescribed at a certain location inside the diffusor or
nozzle. Choked conditions represent an exception from this rule, since an

analytical boundary condition can be derived from the linearized momentum
equation Eq. (F.9) by substituting Ma∗ = 1, yielding a throat impedance
of

Z∗ =
1

κMa

ϕ∗

ν∗
=

2 dū
dx

∣
∣
∣
∗

+ iω

(κ − 1) dū
dx

∣
∣
∣
∗

+ iω
. (F.12)

When the diffusor or nozzle is not choked the situation is different. For
this case up- or downstream impedances at the compressor exit or at the

turbine inlet, respectively, must be known. As this information is generally
not available simplified pressure outlet p̂ = 0, viz. Z = 0, or zero velocity

fluctuations û = 0, viz. Z = ∞, must be prescribed. At lower flow Mach
numbers the unknown impedance represents the main source of error.

F.3 Cylindrical Duct Impedance

The finite difference code is validated for a straight duct, where an analytical

solution exists. The duct has a length L = 0.2 m and a constant speed of
sound c̄ = 334.6 m s−1 and density ρ̄ = 1.1723 kg m−3 distribution. At

the boundary x = L a wall is placed, which writes in terms of impedance
Z = ∞. For the limiting case of a zero baseline flow, viz. ū = 0, an

analytical solution for the duct inlet impedance at x = 0 can be derived

Zin =
1 + e2ikL

1 − e2ikL
. (F.13)
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When considering impedances close to infinity illustration of the boundary
conditions in terms of admittance Yin = 1/Zin is preferable. Decomposition
of the admittance in real and imaginary part, yields

R(Y ) = 0, and ℑ(Y ) =
i sin(2kL)

1 + cos(2kL)
. (F.14)

Fig. F.2 compares the results of the finite difference code to the analytical
solution. In the whole frequency range f = 0 − 3000 Hz the agreement is

very high.
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Figure F.2: Real and imaginary part of the acoustic admittance Yin of a duct with con-
stant cross section.

F.4 Subsonic Diffusor Admittance

Next, the subsonic flow through a diffusor is investigated. The flow

state upstream of the diffusor is given by ūin = 30 m s−1, T̄in = 300 K,
ρ̄in = 1.074 78 kg m−3 and p̄in = 0.9292 bar. Specific gas constant and ratio

of specific heats are R = 288.19 J kg−1 K−1 and κ = 1.399, respectively.
The same configuration was investigated using a harmonically excited large

eddy simulation within the flow solver AVBP as shown in Myrczik (2006).
The mean flow state inside the diffusor generated by the LES and the one
dimensional code presented herein, are compared in Fig. F.1 against each

other. The obtained results are in very high agreement.

The admittance is evaluated at the diffusor exit at x = 0.2 which repre-
sents the acoustic boundary at the inlet of a combustion chamber. As the
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flow is fully subsonic (see also Fig. F.1) an acoustic impedance needs to
be prescribed at the upstream boundary. The results are compared to the
harmonically results from the LES simulation and are presented in Fig. F.3.

In the complete frequency range high agreement between LES and one di-
mensional LEEs solution is observed. Small discrepancies are shown at a

frequency of approximately 2200 Hz.
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Figure F.3: Real and imaginary part of the acoustic admittance of a subsonic flow
through a diffusor. Results of harmonically excited flow simulation within
AVBP by Myrczik (2006) and results of the one dimensional LEEs method
are compared against frequency.

F.5 Supersonic Nozzle Admittance

In the next test case a choked rocket combustion chamber nozzle is calcu-

lated and compared against available measurements of Kathan et al. (2010).
The measurements comprise a frequency range 5.8 − 12.3 kHz at ambient

inlet temperatures of T̄in = 257 K, a density of ρ̄in = 2.07 kg m−3 and pres-
sure p̄in = 1.654 bar. At the nozzle inlet a Mach number of Main = 0.25 is

reached.

In this case, the nozzle critical section is choked and an analytical solution

exists for the impedance of the choked cross section. A high agreement
between measurements and numerical routine can be expected. In this fre-

quency range, a peak in the real part of the admittance is observed which
corresponds to a change in sign of the imaginary part. Overall, the agree-

ment reached is high as the LEEs solution approximates the measurements
with a smooth curve.
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Figure F.4: Real and imaginary part of the acoustic admittance of a choked flow through
a rocket combustion chamber outlet nozzle plotted against Strouhal number.
Experiments of Kathan et al. (2010) are compared against the one dimen-
sional LEEs solver.

Overall, the above selected validation test cases impressively illustrate that
the one dimensional LEEs code is able to approximate inlet and outlet

impedances quite well. This includes fully three dimensional flow cases as
the one considered in this last section. However, it is noted again that if

the flow is unchoked, knowledge of the upstream or downstream impedance
of diffusors and nozzles respectively, is essential. Subscribing simplified
boundary conditions may lead to the introduction of errors.
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F. Bake, C. Richter, B. Mühlbauer, N. Kings, I. Röhle, F. Thiele, and
B. Noll. The entropy wave generator (ewg): A reference case on entropy

noise. Journal of Sound and Vibration, 326(3-5):574 – 598, 2009.

K. Balasubramanian and R.I. Sujith. Thermoacoustic instability in a Rijke
tube: non-normality and nonlinearity. Physics of Fluids, 20(4):044103,

2008.

A. B. Bauer. Impedance theory and measurements on porous acoustic liners.
Journal of Aircraft, 14(8):720–728, 1977.

D. W. Bechert. Sound absorption caused by vorticity shedding, demon-

strated with a jet flow. In Proceedings of the 5th AIAA Aeroacoustic
Conference, page 11, Seattle, March 1979.

D. W. Bechert. Sound absorption caused by vorticity shedding, demon-

strated with a jet flow. Journal of Sound and Vibration, 70(3):389–405,
1980.

212



REFERENCES

V. Bellucci, P. Flohr, and C.O. Paschereit. Numerical and experimental
study of acoustic damping generated by perforated screens. AIAA Jour-
nal, 42(8):1543–1549, 2004.
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tive interference of acoustic and entropy waves in a premixed combustor
with a choked exit. International Journal of Acoustics and Vibration, 6
(3):135–146, 2001.

C. Prax, F. Golanski, and L. Nadal. Control of the vorticity mode in the
linearized euler equations for hybrid aeroacoustic prediction. Journal of
Computational Physics, 227(12):6044 – 6057, 2008.

R. B. Price, I. R. Hurle, and T. M. Sugden. Optical studies of the generation
of noise in turbulent flames. Symposium on Combustion, 12(1):1093–1102,
1969.

R. J. Priem. Influence of the combustion process on stability. Technical Re-
port NASA TN D-2957, National Aeronautics and Space Administration,
Lewis Research Center, Cleveland, Ohio, 1965.

R. J. Priem and D. C. Guentert. Combustion instability limits determined

by a nonlinear theory and a one-dimesnional model. In NASA TN D-1409,
1962.
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