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The principle of model order reduction (MOR) is well-known forenhancing the manageabil-
ity of large-scale and complex systems. As hybrid dynamicalsystems are of rising spread and
complexity, the application of MOR to such models is of high interest. However, a straight-
forward applicability is nowadays limited and often of weak performance. In this article, a
new performance-improving framework for the reduction of switched linear systems based on
conventional MOR methods is presented. By introducing auxiliary systems for the switching
signals (guards), the approximation of the transition dynamics between the subsystems can be
conducted independently from their own dynamics. This offers a large flexibility in the reduc-
tion parameters and methods to be employed in order to achieve a satisfactory overall system
performance. The effectivity and suitability of the new approach is illustratedby two simulation
examples.

1 Introduction

Motivated by the rising complexity of engineered systems (e. g. flight control, manufacturing,
transportation and product service systems), many modeling and control methods were devel-
oped for handling large-scale and complex systems [7]. Hybrid dynamical formulations are
widely used, as they enable an interconnection of continuous and discrete dynamics. In [2] for
instance, a hybrid model of a common rail fuel injection system is presented. The fuel’s flow
is considered as continuous dynamics while the dynamics of the injectors is modeled using
discrete state variables (e. g.open, close). Although hybrid dynamical systems are powerful
models for complex embedded processes, they generally require a large number of degrees of
freedom to capture the underlying system dynamics. In addition, most of the control and analy-
sis methods that are proposed so far for this class of systemsrequire such a high computational
effort that their feasibility is limited to low and very low dimensional systems.
Conventionally, these complexity problems can be tackled bymodel order reduction(MOR)
techniques, which approximate the dynamics of the originalhigh-order system by a system of
lower order, while preserving essential features for further analysis and control (e. g. stability,
passivity) [1]. Standard MOR techniques, for instance,Truncated Balanced Realization(TBR)
[11] or Krylov subspacemethods [8], were developed for systems of differential or difference
equations. Consequently, when directly applied to hybrid dynamical systems, they become
either non-applicable or they are of weak performance [5, 12]. These facts motivated the exten-
sion of MOR to hybrid and switched linear systems in the last few years. The research in the
field of MOR for switched systems is currently following two main strategies: First, it is aimed
at developing methods for a holistic order reduction of the overall switched system [13, 12] and
second, each involved subsystem is reduced separately and additionally taking care of their con-
nections [10]. While the first strategy is able to guarantee stability, such a proof is still missing
for the second one. Conversely,linear matrix inequalities(LMI) have to be solved in the first
approach, which makes it computational inefficient for high-order systems and even unfeasible



when a high amount of subsystems is involved. Because of the holistic system’s reduction, the
first family of methods can not ensure a subsystem’s approximation which is comparable to a
separate reduction of each of these subsystems. A common drawback of both strategies, is the
difficulty to ensure an appropriate ”hitting” of the guard, i. e. right time of switching.
In this article, an approach tackling the problem of hittingthe right switching time for the second
family of methods is proposed. Guard auxiliary systems are introduced to allow the reduction
of the subsystems and the guards separately and thus, to focus on the approximation of each
of these models which, in general, do not have similar dynamics. This general extension is
applicable to all conventional MOR methods and to all categories of switching signals, namely,
time, state and output-based ones. The remainder of the paper is organized as follows: In
Section 2, a short introduction to switched linear systems is given and in Section 3 the arising
challenges for MOR of these systems are discussed and illustrated by a simple example. Section
4 describes the new proposed approach on the example used in Section 3. Section 5 substantiates
the effectivity of the introduced approach showing simulation results of a high-order benchmark
example.

2 Switched linear dynamical systems

Hybrid dynamical systems can be classified based on several attributes [3]. One often con-
sidered category are switched linear continuous dynamicalsystems which arise from a hybrid
system when reducing the discrete dynamics to switching events. Specifically, these systems
consists of a finite amountk ∈ N of continuous dynamical LTI-subsystems, which are activated
and deactivated depending on a switching signalα ∈ {1,2, . . . , k}.
The corresponding state-space representation is given by

Σα :=






ẋ(t) = Aαx(t) + Bαu(t),

y(t) = Cαx(t) + Dαu(t),
(1)

wherex ∈ R
n andy ∈ R

p are the state and output vectors, respectively, andu ∈ R
m is the

input vector. The matrix tuple{Aα,Bα,Cα,Dα} defines the currently active subsystemΣα. The
parameterα is a piecewise constant switching function called switching signal or guard, and
can be classified into two categories [14]:

• time-dependent switching: The switching signal is extrinsically driven, depending only
on the timet

α(t) : t 7→ {1,2, . . . , k} (2)

• state and/or output-dependent switching: The switching signal is intrinsically driven, by
its latest valueα− and a functionσ depending on specific state and/or output variables

α(σ(x(t), y(t)), α−(t)) : (σ, α−) 7→ {1,2, . . . , k} , with

σ : Rn ×Rp 7→ R
(3)

Although the time intervals where a specific subsystem remains active may be arbitrarily small,
the possibility of an infinite number of switches in finite time is excluded [9]. In Figure 1,
examples for the introduced switching signals are shown. While in Figure 1(a) the control
strategy is switching (e. g. between position and velocity controllers), in Figure 1(b) the plant’s
behavior switches (e. g. changing gears in a transmission).
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Figure 1: Example for switched linear systems.

As they allow the use of linear system theory, switched linear systems are an advantageous
format for a wide class of hybrid and nonlinear systems for the purpose of modeling, analysis
and control [4, 9, 14].

3 Challenges for standard model order reduction techniques

By taking advantage of the fact that the high-order switched linear system consists of a set
of LTI subsystemsΣα, well-known MOR methods for a separate reduction of each of these
subsystems can be employed. This results in a set of low-order subsystems, each offering a
good approximation of its corresponding original one. However, this cannot, by no means,
guarantee a good approximation of the overall switched system, as the switching dynamics has
not been considered within the reduction step.
In order to study and illustrate the effects of the different switching signals (see Section 2) on the
overall system behavior, the following benchmark SISO model consisting of two subsystems,
each of order 5, is considered [12]:

A1 =





−5.055 0.4867 0.7761 −3.765 −2.702
0.4867 −3.034 0.0537 0.6768 0.603
0.7761 0.0537 −1.392 −0.0739 0.8858
−3.765 0.6768 −0.0739 −5.26 −1.886
−2.702 0.603 0.8858 −1.886 −3.909





, b1 =





−0.5081
0.8564
0.2685
0.625
−1.047





,

cT
1 =
[

1.536 0.4344 −1.917 0 0
]

(4)

A2 =





4.23 0.4654 1.305 0.313 −1.461
0.4654 −4.418 0.8745 −0.9324 −0.7062
1.305 0.8745 −1.839 −0.0083 0.6652
0.313 −0.9324 −0.0083 −1.801 −0.4979
−1.461 −0.7062 0.6652 −0.4979 −2.355





, b2 =





−0.1721
−0.336
0.5415

0
−0.5703





,

cT
2 =
[

−1.499 −0.0503 0.553 0.0835 1.578
]

(5)

3.1 Time-dependent switching

First, it is assumed that the switchingα(t) between both subsystems occurs at certain predefined
time instances and is thus independent of the current systemstate. This is, for instance, done in
vibration or starting procedure simulations of a generator/motor whose damping and/or stiffness
matrices change with the rotational speed (input). The subsystemsα = 1 (4) andα = 2 (5) are
reduced using the TBR method to order 3 and 2, respectively, offering a good approximation of
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Figure 2: Frequency response of the benchmark SISO model.

their corresponding high-order models. The frequency responses are depicted in Figure 2. The
simulation of the overall switched system has been conducted according to the time-dependent
switching signal shown in Figure 3(a). The step responses ofthe original and the reduced
overall system are depicted in Figure 3(b), where it is clearto see that, under the assumption
that accurate reduced subsystems are at hand, the approximation of the switched system over
the complete time interval is satisfactory.
Accordingly, the conventional reduction of time-dependent switched systems leads to a good
overall system performance.
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Figure 3: Time-dependent switching.

3.2 Output-dependent switching

Now, it is assumed that the switchingα(σ(y(t)), α−(t)) occurs based on the system’s output
values and thus depending on the dynamics of the subsystems.This is a common scenario
when e. g. simulating the opening and closing of an electromagnetic valve, where the system
matrices change in a discrete manner depending on the position of the anchor.
For the considered example, the switching function has beenchosen to be:

α(y(t), α−(t)) =






1 fory = −0.5,

2 fory = −0.02,

α
− otherwise

(6)

For the comparison of the step responses of the original and the reduced system, the reduced
subsystems (order 3 and 2) introduced in the previous subsection have been adopted. The results
of a complete system simulation are shown in Figure 4(a), where the discrepancy between the
reduced and the original system is notable. In fact, the approximation error sums up with the
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Figure 4: Step response of the switched system with output-dependent switching.

time and leads to a drift between both step responses. For this class of switching signals, the
reduction results can be considerably improved by increasing the order of both involved reduced
models as depicted in Figure 4(b). This leads to a better approximation of the outputs, whereby
the switching functions (equation (6) here) and thus the switching times are ”hit” more precisely.
Nevertheless, the approximation error remains proportional to the simulation time.
Hence, the only way of improving the overall system performance is by increasing the reduction
order.

3.3 State-dependent switching

The most challenging switching for the task of order reduction is the state-based one where
α(σ(x(t)), α−(t)) depends on the state(s) of the currently active subsystem. This is mostly the
case for system simulations where the state(s) in question can not be directly measured, but
approximated by a state-observer.
For the considered example, the following function has beenchosen so that a periodic switching
between the subsystemsα1 andα2 takes place:

α(x1(t), α
−(t)) =






1 for x1 = 0.15,

2 for x1 = −0.25,

α
− otherwise

(7)

Unlike the two previous cases, neither the reduced systems of order 3 and 2 (see Figure 5(a)) nor
those of order 4 (Figure 5(b)) resulted in an acceptable approximation of the step response. This
can be easily explained by the fact that states which are playing a major role in the switching
signal, may be of no importance for the input-output behavior of their corresponding subsystem
and thus deleted by the order reduction step. Consequently, the switching signalα(x1(t), α−(t))
can not be accurately approximated.
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Figure 5: Step response of the switched system with state-dependent switching.



As a conclusion, it can be stated that standard order reduction methods applied to every involved
subsystem (with a sufficiently high reduced order) result in a good approximation of the overall
switched system behavior for the case of a time-dependent and output-dependent switching.
However, for the case of state-dependent switching, increasing the order of the reduced system
can not offer a satisfactory approximation and thus there is a need to improve or modify the
existing reduction methods to make them suitable for the reduction of this important class of
switched linear systems.

4 Auxiliary system

Order reduction of switched linear systems consists of delivering a set of reduced systems that
not only approximate the output signal but also the switching one. This challenge has been
shown to be specially important for the case of state-dependent switching where not only the
importance of a certain state for the input-output behaviorneeds to be considered but also for
the switching dynamics.
Based on these facts and in order to remain within the framework of the standard MOR methods
for linear systems, it is suggested to introduce several auxiliary systems having the switching
signals (guards) as output (one auxiliary system per switching state per subsystem). In other
words, the switching of the linear system will be now controlled by the output of these newly
introduced systems. Accordingly, a system with state-dependent switching sketched in Figure
6(a) is now reformulated as a combination of a set of systems having the switching signal
as output (guard auxiliary systemsΣg) and a modified main systemΣαg (Figure 6(b)). The
modified main system consists of the same original switched linear systemΣα, however now
with an extrinsically driven switching signal (the output fromΣg), wherebyα is changed toαg:

Σαg :

{

ẋ(t) = Aαgx(t) + Bαgu(t),
y(t) = Cαgx(t) + Dαgu(t)

(8)

Hence, the switching functionσg(x) for the new switching signalαg(σg(x), α−g) is separately
calculated in the auxiliary system. The guard auxiliary systems share the same state equations as
the original switched one, but with an output equation corresponding to the switching function:

Σg :

{

ẋ(t) = Aαg x(t) + Bαg u(t),
σg(t) = cT

αg
x(t), (9)

wherecT
αg

builds the state-dependent switching function.
Accordingly, the calculation of the switching signal does not take place within the main system
anymore but within the guard auxiliary systems. Thus, unlike the original switched system, a

y(t)u(t)
Σα

state-dependent switching

(a) Original switched system

y(t)u(t)
Σαg

Σg

switching
output-depending

time-depending switching

αg(σg(x(t), α−(t))

(b) Guard auxiliary extended system

Figure 6: Architecture of the switched system.
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Figure 7: Frequency response of the auxiliary guard systemsof the benchmark SISO model.

state-depended switching signal is bypassed by an extrinsically driven (time-dependent) switch-
ing signal according to equation (2) and an output-dependent switching (equation (3)) of the
guard auxiliary systems. The systemsΣαg andΣg can now be reduced independently offering
the required flexibility and transparency for a simultaneous and accurate approximation of the
input-output behavior as well as the switching signal dynamics. This benefits are not directly
given when setting the states responsible for the switchingas outputs of the original system, for
the purpose of a multi-output order reduction, for two reasons: First, only one reduction method
can be applied and second, a common projector is obtained leading to a coupling of the reduced
systems’ matrices whereby less accurate results may be achieved, meaning that the order of the
reduced subsystems has to be increased in order to achieve anacceptable overall system sim-
ulation. The mentioned effects rise with diverging dynamics of input-output behaviorand the
switching signals.
As the introduced guard auxiliary systems share the same state equations with the modified
switched system (8), the numerical costs of a reduction compared to the case without modifi-
cation remain acceptable. Moreover, forΣg to remain a linear system, the switching function
itself should be a linear function of the states. Otherwise it would not be possible to calculate
the switching signal using the vectorcT

αg
and the corresponding states.

The suitability of the new approach is illustrated using thelow-order example introduced in Sec-
tion 3. Here, the subsystems of the auxiliary switching system are reduced by the TBR method
to order 4, while the original systems to order 3 and 2 as in theprevious Section. In Figure
7 the frequency response of the auxiliary switching system is shown. The curves are almost
superimposed, which implies a good approximation of the switching dynamics. In Figure 8, the
step responses of the original and the reduced system are compared. A significant approxima-
tion improvement can be seen, especially in comparison to the results without a guard auxiliary
switching system (Figure 5(a)). There is almost no drift in the step response of the reduced sys-
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Figure 8: Step responses of the new approach with state-dependent switching.



tem which obviously suggests that the switching signals have been perfectly approximated by
the reduced guard auxiliary systems. Hence, only a very goodapproximation of the responsible
states for switching leads to a satisfactory result.

5 Simulation results

The benchmark exampleFOM was introduced in [6] as a stable theoretical model of order
1006 generating a non-smooth Bode plot having three peaks. Here, it is considered as the first
subsystemΣ1 of a switched system according to equation (1). The state-space matrices are
given by

A1 = diag(Λ1,Λ2,Λ3,Λ4) , with Λ1 =

[

−1 −100
−100 −1

]

,Λ2 =

[

−1 −200
−200 −1

]

,

Λ3 =

[

−1 −400
−400 −1

]

,Λ4 = diag(−1, ...,−1000),

bT
1 = cT

1 = [10, . . . ,10
︸      ︷︷      ︸

6

, 1, . . . ,1
︸  ︷︷  ︸

1000

].

(10)

The second stable subsystemΣ2

A2 = A1 − 5I , b2 = b1, cT
2 = cT

1 , (11)

is derived from the first one by slightly modifying the systemmatrix A1. Both subsystems,
whose frequency responses are depicted in Figure 9, are reduced by TBR to systems of order
15. Based on the analysis of Section 3, the guard is chosen to bestate-depended (see equation
(3)), which is the hardest challenge for MOR. Actually, the weak observable state variablex7 is
selected and the switching signal is considered to be as follows:

α(x7(t), α
−(t)) =






1 if x7 = 0.17,

2 if x7 = 0.95,

α
− otherwise

(12)

The corresponding guard auxiliary system according to equation 9 is thus given by

Σα,g :=






ẋ(t) = Aαgx(t) + bαgu(t),

σg(t) = cT
αg

x(t), with cT
g = [0, . . . ,0

︸  ︷︷  ︸

6

,1,0, . . . ,0
︸  ︷︷  ︸

999

],

y(t) = σg(t).

(13)
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Figure 9: Frequency response of the switched FOM system.
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Figure 10: Frequency response of the auxiliary guard system.
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In Figure 10 the frequency responses of the two guard auxiliary systems and of their corre-
sponding reduced models (TBR) of first order are shown.
Now, for both the reduced switched system with and without the guard auxiliary systems, the
step response is simulated and compared to the one of the original switched system. In addition,
the time response of the guard state variablex7 is shown in Figure 11. Due to the weak observ-
ability of x7, the conventional reduction (without guard auxiliary system) in Figure 11(a) hits the
switching condition earlier than it should do, leading to a divergence of the system responses
over the time in contrast to the here introduced reduction framework (Figure 11(b)). Hence,
although the subsystems are well approximated, the output signals of the overall switched sys-
tems diverge which is avoided by the here introduced reduction framework. The corresponding
output signalsy(t) are depicted in Figure 12. The output errorsǫy = yo(t) − yr(t), where the
indexo represents the original andr the reduced system signals, are shown in Figure 13. While
the error in Figure 13(a) increases and reaches its maximum possible value (difference between
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Figure 12: Approximation of the output signal: subsystems’order 15.
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(b) Subsystemα = 2

Figure 14: Frequency response of the switched FOM system.

maximumymax and minimumymin), the result with the guard auxiliary systems keeps a very
low and non-increasing error according to Figure 13(b). Accordingly, a reduction of the output
approximation error of 99% has been achieved in the considered simulation time by the guard
auxiliary system extended reduction.
Now, the two subsystems are further reduced to order 8. The obtained frequency responses are
shown in Figure 14. The auxiliary guard systems are again reduced to order 1 (see Figure 10
and 11(b)). Figure 15 shows the output signaly and the errorǫy of the here introduced reduction
framework. This error is still 50% lower than the one of the conventional TBR reduction to
order 15 (Figure 13(a)) although the reduction order has been almost halved. In contrast, a
conventional TBR of the subsystems to an order of 8 is unrewarding. It leads to an insufficient
approximation of the guard state variablex7, which does not reach the exact switching values
according to equation (12) as depicted in Figure 16. Hence, the reduced switched linear system
remains within one subsystem for all time.
The introduced framework for model order reduction of switches linear systems enables a lower-
order of the reduced subsystems in comparison to the conventional reduction methods in addi-
tion to a better approximation of the overall switched system’s behavior.
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Figure 15: Output of guard auxiliary system extended TBR: subsystems’ order 8.
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Figure 16: TBR without guard auxiliary system extension: subsystems’ order 8.

6 Conclusion and Outlook

A new framework for the reduction of switched linear systemsby conventional MOR meth-
ods has been presented. By introducing a guard auxiliary system, the task of approximating
the output and the states relevant for the calculation of theswitching sequence has been dis-
sociated. This allows a transparent and flexible calculation of separate reduced models for the
approximation of the switching signal dynamics and the output of the original switched linear
system. The introduced approach allows the simultaneous use of different reduction methods
and settings and offers a good approximation of the overall switched system. Thebenefit of this
guard-based model order reduction has been shown by comparing it with conventionalTrun-
cated Balanced Realization(TBR) for two benchmark examples. Thereby, a reduction of the
output signal’s error as well as a lower-order of the reducedswitched subsystems have been
achieved.
Interesting future work involve the extension of the presented framework to nonlinear switching
dynamics and to networked systems. Investigations relatedto stability preserving and error
bounds are also of high interest.
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