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In this article, a new bound on theH∞ norm for linear port-Hamiltonian systems with or wi-
thout the collocated output is proposed. It is shown that its computation is efficient, compared
to the general algorithms used in numerical analysis software. The requirements for the appli-
cability of the bound are little restrictive, and proven to be met by a large class of technically
relevant systems. Additionally, for purely damped port-Hamiltonian systems without an inter-
connection matrix, the bound is shown to be exact. The performance of the newly introduced
bound is illustrated by two numerical examples.

1 Introduction

Port-Hamiltonian systems are a geometrically defined classof systems developed in recent
years. The modeling approach unifies concepts from theoretical mechanics and electrical engi-
neering. Using energy as a link, the port-Hamiltonian formalism provides a unified framework
for the interdisciplinary modeling of complex dynamical systems by interconnecting subsys-
tems from different physical domains. Due to its conceptualsimplicity and modularity the port-
Hamiltonian approach is suitable for automated model generation, processing and simulation.
Furthermore, the resulting state-space representation reveals physical insight into the system.

Two widely-used measurements used for characterizing linear dynamical systems are theH2

andH∞ norm. For a single-input single-output system these can be interpreted as the integral
of the transfer function over the imaginary axis and the peakin the associatedBodeplot of the
system, respectively. The norms are employed in several tasks of modern control and systems
theory, such as optimal or robust control or model order reduction.

In order to compute the norms of linear dynamical systems different algorithms are implemen-
ted successfully in numerical analysis software, see e. g. [2]. However, dense matrix computati-
ons are required for its implementation. In this article, a new bound on theH∞ norm for linear
port-Hamiltonian systems is proposed, offering faster processing with the drawback of possib-
ly introducing some overestimation. In addition, the results are generalized to systems with a
port-Hamiltonian state-equation and an arbitrary output vector.

The article is organized as follows. In section 2 some preliminaries are reviewed, such as the
port-Hamiltonian system representation, and a problem formulation is given. The new bound on
theH∞ norm is presented for port-Hamiltonian systems in section 3and for arbitrary outputs
in section 4. Purely damped and second-order systems exhibit special properties regarding the
bound, which is discussed in section 5. Two numerical examples demonstrate the performance
of the bound in section 6.

2 Preliminaries and problem statement

In this section some preliminaries are given, together withthe problem formulation.



2.1 Port-Hamiltonian systems

Consider the linear time invariant (LTI) port-Hamiltonian system of the form

ẋ(t) = (J−R)Qx(t) +Bu(t),

y(t) =BTQx(t),
(1)

wherex(t) ∈ R
n, u(t) ∈ R

p andy(t) ∈ R
p denote the states, inputs and outputs of the system,

respectively. The skew-symmetric matrixJ = −JT ∈ R
n×n defines the interconnection of the

energy-storing states, while the positive semi-definite matrix R = RT ≥ 0 ∈ R
n×n describes

the dissipation in the system. The HamiltonianH(x) = 1/2xTQx with the positive-definite
matrixQ = QT > 0 ∈ R

n×n gives the total stored energy in the system. The collocated input-
and output-matrix,B ∈ R

n×p andBTQ, respectively, lead to

Ḣ(x) ≤ yTu, (2)

verifying the passivity of port-Hamiltonian systems. Stability in the sense of Lyapunov follows
from the positive-definiteness of the HamiltonianH > 0. In case the dissipation matrix has full
rank (R > 0), asymptotic stability is given, whereas in caseR is singular, asymptotic stability
can be checked by the invariance principle of Krassowskij-LaSalle. A detailed overview on
port-Hamiltonian systems can be found in [6]. The transfer-matrixG(s) from input to output of
system (1) is readily given by

G(s) = BTQ (sI− (J−R)Q)−1
B, (3)

wheres denotes the Laplace operator. With the usual abuse of notation, both the dynamical
system (1) and the transfer function (3) will be denoted byG(s). For the ease of presentation,
the following abbreviations are introduced:

A := (J−R)Q, (4)

CPH := BTQ. (5)

2.2 Port-Hamiltonian and general LTI-systems

When considering port-Hamiltonian systems, the output is restricted to the collocated output
CPH , defined by the input vector and the energy matrix. However, the output of interest might
not coincide with this collocated output. Nevertheless, the results on theH∞ norm of port-
Hamiltonian systems will be later generalized to port-Hamiltonian state-equations equipped
with any output equation. The dynamics of such systems read as

ẋ(t) = (J−R)Qx(t) +Bu(t),

y(t) =Cx(t),
(6)

whereC 6= BTQ ∈ R
q×n is an arbitrary output vector. Thus, the dimension of the output

q needs not necessarily to be same as the dimension of the inputp. Note that in case of non-
collocated outputs the passivity property might be lost. However, the conclusions about stability
are equal to real port-Hamiltonian systems (1). This can be readily verified, since the state
equation remains unchanged.
The only difference of system (6) to a general LTI-system is the decomposition of the matrix
A. The following lemma shows the relation between these systems.



Lemma 1. The state-equation of a given stable LTI-system

ẋ(t) =Ax(t) +Bu(t),

y(t) =Cx(t),
(7)

can be written in port-Hamiltonian form (6).

Proof. For a stable LTI-system there exist many solutionsQ = QT > 0 to the Lyapunov-
equation:

ATQ+QA ≤ 0. (8)

In [5] it is verified that with the choice

J =
1

2

(
AQ−1 −Q−1AT

)
, (9)

R = −
1

2

(
AQ−1 +Q−1AT

)
, (10)

a port-Hamiltonian decomposition of the dynamic matrixA = (J − R)Q can be obtained by
starting from any Lyapunov solutionQ.

Remark.The results of this paper are presented for port-Hamiltonian state equations. But kee-
ping Lemma 1 in mind, the results are valid for any stable LTI-system, once a solutionQ to
the Lyapunov equation (8) is known. However, since the Lyapunov solution introduces solely a
virtual energy, physical insight might be lost.

2.3 H∞ norm

TheH∞ norm of a dynamical systemG(s) is defined in the frequency-domain as

‖G (s)‖
∞

:= sup
ω

σmax {G (jω)} , (11)

whereσmax {·} denotes the maximum singular value. For a single-input single-output system
theH∞ norm of a system can be identified with the peak in its associated bode-plot. Information
on standard algorithms to compute theH∞ norm of a system can be found in [2].

2.4 The problem

TheH∞ norm can be used to characterize dynamical systems. However, when dealing with
large systems the standard algorithms to compute the norm become numerically demanding.
In this paper, a numerical efficient bound on the norm is presented, that possibly introduces
some overestimation. Based on the results it will be shown, when the new bound is reasonably
applied.

3 Bound on theH∞ norm of linear port-Hamiltonian systems

In this section a bound on theH∞ norm of linear port-Hamiltonian systems is proposed. Before
presenting the bound as the main contribution of this paper,the following auxiliary lemma is
derived, based on the so-calledBounded Real Lemma.

Lemma 2. For a linear port-Hamiltonian systems (1), letγ > 0 ∈ R be a solution to the matrix
inequalityγR−BBT ≥ 0, then‖G (s)‖

∞
≤ γ.



Proof. The proof is based on a rather unusual formulation of the Bounded Real Lemma, to
be found in [8]. It states that‖G(s)‖

∞
< γ for a γ > 0 if and only if there exists a solution

X = XT to the linear matrix inequality

M :=




ATX+XA XB CT
PH

BTX −γIp 0

CPH 0 −γIp


 < 0, (12)

whereIp ∈ R
p×p denotes the identity matrix. For the purpose of this paper, the non-strict

version of the Bounded Real Lemma is preferable. In [7] it is shown, that if there is a solution
X = XT to the non-strict inequalityM ≤ 0, then‖G(s)‖

∞
≤ γ. Thus, by application of the

Schur-Lemma,M ≤ 0 is equivalent to:

−γ I2p ≤ 0, (13)

ATX+XA+
1

γ

(
XBBTX+CT

PHCPH

)
≤ 0. (14)

Obviously, equation (13) holds true. A natural choice for port-Hamiltonian systems isX := Q.
Together with (4) and (5), equation (14) becomes:

Q (−J−R)Q+Q (J−R)Q+
2

γ
QBBTQ ≤ 0. (15)

Multiplication from left and right withQ−1 leads to

−R+
1

γ
BBT ≤ 0, (16)

and completes the proof.

With the help of Lemma 2 the main contribution of this paper can be stated, after giving the
following definition.

Definition 1. Let Y ∈ R
n×k andZ ∈ R

n×(n−k) be bases of the image and kernel ofR, respec-
tively, wherek = rank{R}. Then define:

R̂ := YTRY, (17)

B̂ := YTB. (18)

Theorem 1. Given a linear port-Hamiltonian system (1), assume thatB lies in the range ofR,

i. e.B ⊂ span{Y}. Then a bound on theH∞ norm is given by‖G(s)‖
∞

≤ λmax

{
B̂T R̂−1B̂

}
,

whereλmax{·} denotes the largest eigenvalue of a matrix.

Proof. The proof starts with Lemma 2. Multiplying equation (16) from the right with the square
and full-rank matrix[Y Z] and from the left with its transpose, yields:

γ

[
YT

ZT

]
R

[
Y Z

]
−

[
YT

ZT

]
BBT

[
Y Z

]
≥ 0. (19)

Due toZ being a basis of the kernel ofR, RZ = ZTR = 0. Further note that the assumption
B ⊂ span{Y} implies BTZ = 0, sinceR is symmetric and thus its range and kernel are
orthogonal to each other. For this reason, equation (19) becomes:

γ

[
R̂ 0

0 0

]
−

[
B̂B̂T 0

0 0

]
≥ 0. (20)



Thus, what remains is

γ vT R̂v − vT B̂B̂Tv ≥ 0, ∀v ∈ R
k, (21)

being equivalent to

γ ≥
vT B̂B̂Tv

vT R̂v
, ∀v ∈ R

k, (22)

due to the positive definiteness ofR̂. Introducing theCholesky-factorization ofR̂ = LLT , and
performing a coordinate changew = LTv leads to:

γ ≥
wTL−1B̂B̂TL−Tw

wTw
, ∀w ∈ R

k. (23)

Equation (23) denotes aRayleigh quotient, whose maximum value is the largest eigenvalue of
the matrixL−1B̂B̂TL−T . For arbitrary matricesG andH of appropriate sizeλmax{GH} =
λmax{HG}, and thus:

γ ≥ λmax

{
L−1B̂B̂TL−T

}
= λmax

{
B̂TL−TL−1B̂

}
= λmax

{
B̂T R̂−1B̂

}
, (24)

which completes the proof.

Remark.The assumptions made for Theorem 1 are that the image ofR has to be known or
easily computable and additionally, thatB has to lie in the range ofR. As will be shown in
section 5 this does not constitute a restriction to a large class of technically relevant systems.

Remark.Note that, for the calculation of the bound the inverseR̂−1 does not have to be known
explicitly; it is sufficient to solve the linear system of equationsR̂N = B̂ for N ∈ R

k×p.
Furthermore, it is stressed, thatB̂T R̂−1B̂ is of small dimensionsp×p, such that the eigenvalues
can be easily computed.

Lemma 3. TheH∞ bound for linear port-Hamiltonian systems proposed in Theorem 1 is inva-
riant to state-space transformations of the formz = Tx.

Proof. Let Ã, R̃, B̃ denote the respective matrices of the state-space representation in transfor-
med coordinatesz. To proof the Lemma, it is sufficient to show the equivalence of

(i) γR−BBT ≥ 0, and

(ii) γR̃− B̃B̃T ≥ 0.

Applying the state-transformationx = T−1z to the original formulation (1) leads to:

Ã = TAT−1 = T (J−R)TTT−TQT−1. (25)

Thus, the dissipation matrix in transformed coordinatesz reads as̃R := TRTT . It is easy to
verify thatB̃ = TB. Therefore, (ii) can be rewritten as

γTRTT −TBBTTT ≥ 0, (26)

which is equivalent to (i).



4 Bound on theH∞ norm of stable LTI-systems

In this section the results of the bound on theH∞ norm is generalized to systems of the form
(6), having a port-Hamiltonian state-equation and an arbitrary output. Note that with Lemma
1 this is in fact a generalization to stable LTI-systems where any Lyapunov solution is known.
For the ease of presentation, the matrixG is introduced, collecting the input and output vectors
into one matrix:

G :=
[
B Q−1CT

]
. (27)

Note that for the calculation ofG the inverseQ−1 does not have to be known explicitly. Instead,
it is sufficient to solve the linear set of equationsQN = CT for N ∈ R

n×q.

Lemma 4. For a linear systems of the form (6), letγ > 0 ∈ R be a solution to the matrix
inequalityγ 2R−GGT ≥ 0, then‖G (s)‖

∞
≤ γ.

Proof. Note thatBBT +Q−1CTCQ−1 = GGT . The rest of the proof is similar to the one of
Lemma 2, and hence omitted.

Accordingly to Definition 1, the following abbreviation is introduced:

Ĝ := YTG =
[
YTB YTQ−1CT

]
. (28)

Theorem 2. Given a linear system of the form (6), assume thatG lies in the range ofR, i. e.

G ⊂ span{Y}. Then a bound on theH∞ norm is given by‖G(s)‖
∞

≤ 1
2
λmax

{
ĜT R̂−1Ĝ

}
.

Proof. The proof is conducted similarly to the one of Theorem 1 by substituting2 R̂ for R̂ and
Ĝ for B̂.

Remark.Theorem 2 shows that the results for port-Hamiltonian systems can be generalized to
arbitrary but stable LTI-systems, with the restriction that a Lyapunov solutionQ and the direc-
tionsQ−1CT have to be known. Then the largest eigenvalue of a matrix having the dimension
(p+ q)× (p+ q) has to be computed.

Lemma 5. TheH∞ bound for linear systems of the form (6) proposed in Theorem 2is invariant
to state-space transformations of the formz = Tx.

Proof. Let G̃ denote the matrixG in transformed coordinates. Then,

G̃ =
[
B̃ Q̃−1C̃T

]
=

[
TB TQ−1TTT−TCT

]
= T

[
B Q−1CT

]
= TG. (29)

The rest of the proof is similar to the one of Lemma 3, and henceomitted.

5 Relevant system classes

In this section two particular system classes are highlighted, together with their attributes ac-
cording to the proposedH∞ bound in the previous sections.



5.1 Systems withJ = 0

This paper proposes aboundon theH∞ norm, implicating an overestimation of the realH∞

norm. However, the following Lemma shows that for the case ofJ = 0 the bound is exact.

Lemma 6. Let G(s) be a linear port-Hamiltonian system (1) withJ = 0, then‖G(s)‖
∞

=
λmax

{
BTR−1B

}
.

Proof. The upper bound introduced in Theorem 1 holds true also forJ = 0, i. e. ‖G(s)‖
∞

≤

λmax

{
B̂T R̂−1B̂

}
. The proof will be completed by showing that this bound is actually achieved

at some frequency for the matricesR andB instead ofR̂ andB̂. Chooseω = 0, then:

G (0) = BTQ (0 · I−RQ)−1
B = BTR−1B. (30)

Due to the symmetry ofR:

σmax

{
BTR−1B

}
= λmax

{
BTR−1B

}
, (31)

which yields:

(i) σmax {G (j0)} = λmax

{
BTR−1B

}
,

(ii) ‖G (s)‖
∞

= sup
ω

σmax {G (jω)} ≤ λmax

{
B̂T R̂−1B̂

}
.

In the caseJ = 0 the system has to be fully damped – i.e.rank {R} = n – for asymptotic
stability. ThereforeR = R̂ andB = B̂ which completes the proof for asymptotically stable
systems. IfR was singular, the system would have a pole inλ = 0 leading to‖G (s)‖

∞
→ ∞.

Accordingly,λmax

{
BTR−1B

}
→ ∞, which completes the proof.

5.2 Second-order systems

A technically important class of linear models are second-order systems. These arise for exam-
ple from the modeling of a mechanical system by thefinite-element method(FEM). Likewise,
nodal analysis(NA) of RLC circuits leads to second-order systems, as well. The general for-
mulation reads as follows:

Mq̈(t) +Dq̇(t) +Kq(t) = Fu(t), (32)

whereM, D, K > 0 ∈ R
m×m are symmetric positive definite, denoting for mechanical

systems the mass, damping and stiffness, respectively. Introducing the state-vectorx(t) =
[ qT (t) pT (t) ]T ∈ R

n, wherep(t) = Mq̇(t) andn = 2m, leads to a port-Hamiltonian
state-space representation (1), with:

R =

[
0 0

0 D

]
, Q =

[
K 0

0 M−1

]
,

J =

[
0 I

−I 0

]
, B =

[
0

F

]
.

(33)

Note that the collocated output in this case isy(t) = FT q̇(t). Clearly,

Y :=

[
0

I

]
(34)



defines a basis forspan {R}, which proofs that the assumptions made in Theorem 1, i. e.B ⊂
span(R), always apply to second-order systems. Therefore, the proposed bound on theH∞

norm in Theorem 1 can always be used for second-order systemsin a straight-forward manner,
asR̂ = YTRY = D andB̂ = YTB = F, which leads to:

‖G(s)‖
∞

≤ λmax

{
FTD−1F

}
. (35)

6 Technical example

In this section, the performance and suitability of the proposedH∞ bound is illustrated by two
numerical exmples.

6.1 Thermal Model of an H-Bridge

As a first example, the thermal fitting model for the STMicroelectronics H-bridge motor driver
VNH2SP30-E is considered. The integrated power circuit consists of four power MOSFETs ar-
ranged on three separate chip areas (dice) – the high potential MOSFETs mounted on a common
die. The thermal behavior is described by an equivalent network composed of capacitances and
resistances. Due to the irreversible transformation of thermal energy, the interconnection matrix
J = 0 is absent in the resulting port-Hamiltonian model of ordern = 20. The thermal power
introduced at each MOSFET junction and the resulting temperatures constitute the four inputs
and collocated outputs of the system, respectively. Detailed information on the modeling can be
found in [3], whereas the numerical values are given in [1].

Recalling section 5.1, the bound given by Theorem 1 should be the exact quantity. Indeed,
λmax

{
BTR−1B

}
= 82.31 gives the same as executing the command

”
norm“ in Matlab. Ho-

wever, the command
”
norm“ requires3.3 · 10−2 seconds for computation, whereas the simple

matrix-vector products along with an eigenvalue computation of small order – necessary for the
calculation of the newly introduced bound – needs merely6.7 · 10−4 seconds. This results in an
almost50 times faster calculation of theH∞ norm of the system at hand. Certainly, one might
argue that the time for computation of the command

”
norm“ is still fast enough; however, this

might become crucial for large-scale systems, as discussedin the following.

6.2 FEM-model of a Timoshenko beam

The second example deals with a 3D cantilever Timoshenko beam [4], modeled by the Finite
Element Method. The resulting second-order system (32) is transformed into a first-order state-
space system as shown in section 5.2. Note that the mass matrix M is diagonal, due to lumping
of mass [9], and thus can easily be inverted. The model input is the vertical force applied at
the beam’s free end, leading to the velocity at this point as the collocated output. The beam is
modeled with200 nodes, resulting in a port-Hamiltonian system of ordern = 2400.

Computing the command
”
norm“ requires65.3 seconds and results in‖G (s)‖

∞
= 9.87 for the

system. In contrast, the calculation ofλmax

{
B̂T R̂−1B̂

}
takes only0.077 seconds, providing a

bound on theH∞ norm of25.5. This shows the enormous advantage of the newly introduced
H∞ bound over the command

”
norm“ in Matlab, when it comes to simulation time. However,

an overestimation of approximately2.5 is observed for the example at hand. Nevertheless, when
it comes to large-scale systems – such asn > 105 – the proposed bound might be the only
possibility to gain information about theH∞ norm of a system at all.



7 Conclusion

A bound on theH∞ norm of linear port-Hamiltonian systems is proposed in thisarticle. To
sum up its properties and performance, the bound constitutes a trade-off between tightness and
computational speed. This is due to the fact that it saves computational costs compared to the
general algorithms used in numerical analysis software, but then introduces an overestimation
on the realH∞ norm.

Considering these characteristics of the newH∞ bound, the author suggests its employment
in three different settings. First of all, for purely dampedport-Hamiltonian systems (J = 0)
the bound is preferable since it is shown to be exact with lessnumerical effort. Secondly, for
large-scale systems the bound might be the sole chance for investigating the norm at all. In the
end, in all other circumstances the decision is more involved. The applicability of the bound
is determined by the order of the model, by the system class, if the assumptions of Theorem 1
are met (though being little restrictive), etc. and last butnot least by the eye of the beholder,
whether tightness or computational speed is more crucial. However, it is still an open question,
how the interconnection matrix introduces the overestimation into the bound.
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