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In this article, a new bound on thH& ., norm for linear port-Hamiltonian systems with or wi-
thout the collocated output is proposed. It is shown that@spgutation is efficient, compared
to the general algorithms used in numerical analysis softw&he requirements for the appli-
cability of the bound are little restrictive, and proven te met by a large class of technically
relevant systems. Additionally, for purely damped portstitonian systems without an inter-
connection matrix, the bound is shown to be exact. The peaioce of the newly introduced
bound is illustrated by two numerical examples.

1 Introduction

Port-Hamiltonian systems are a geometrically defined abissystems developed in recent
years. The modeling approach unifies concepts from theatetiechanics and electrical engi-
neering. Using energy as a link, the port-Hamiltonian fdrsma provides a unified framework
for the interdisciplinary modeling of complex dynamicaksyms by interconnecting subsys-
tems from different physical domains. Due to its concepsuaplicity and modularity the port-
Hamiltonian approach is suitable for automated model ggiwar, processing and simulation.
Furthermore, the resulting state-space representatealsephysical insight into the system.

Two widely-used measurements used for characterizingdidgnamical systems are thé,
and#., norm. For a single-input single-output system these camteegreted as the integral
of the transfer function over the imaginary axis and the pedke associateBodeplot of the
system, respectively. The norms are employed in sevela tatsnodern control and systems
theory, such as optimal or robust control or model order c&dn.

In order to compute the norms of linear dynamical systenfergint algorithms are implemen-
ted successfully in numerical analysis software, see @]gHpwever, dense matrix computati-
ons are required for its implementation. In this articleeavbbound on thé{., norm for linear
port-Hamiltonian systems is proposed, offering fastecpssing with the drawback of possib-
ly introducing some overestimation. In addition, the resare generalized to systems with a
port-Hamiltonian state-equation and an arbitrary outgator.

The article is organized as follows. In section 2 some piielimes are reviewed, such as the
port-Hamiltonian system representation, and a problemddation is given. The new bound on
the ., norm is presented for port-Hamiltonian systems in sectiam@ for arbitrary outputs
in section 4. Purely damped and second-order systems egp#aial properties regarding the
bound, which is discussed in section 5. Two numerical exasmmgémonstrate the performance
of the bound in section 6.

2 Preliminaries and problem statement

In this section some preliminaries are given, together thighproblem formulation.



2.1 Port-Hamiltonian systems
Consider the linear time invariant (LTI) port-Hamiltoniaysgem of the form

x(t) =(J — R) Qx(t) + Bu(?),
y(t) =BT Qx(t),

wherex(t) € R™, u(t) € R? andy(t) € R? denote the states, inputs and outputs of the system,
respectively. The skew-symmetric matdx= —J7 € R™*" defines the interconnection of the
energy-storing states, while the positive semi-definitérin® = R” > 0 € R"*" describes

the dissipation in the system. The Hamiltoni&ii{x) = 1/2x” Qx with the positive-definite
matrix Q = Q¥ > 0 € R"*" gives the total stored energy in the system. The collocateati

and output-matrixB € R™*? andB” Q, respectively, lead to

(1)

H(x) < y'u, (2)

verifying the passivity of port-Hamiltonian systems. Slipin the sense of Lyapunov follows
from the positive-definiteness of the Hamiltoni&n> 0. In case the dissipation matrix has full
rank (R > 0), asymptotic stability is given, whereas in cd$as singular, asymptotic stability
can be checked by the invariance principle of Krassowsafpélle. A detailed overview on
port-Hamiltonian systems can be found in [6]. The transfietrix G(s) from input to output of
system (1) is readily given by

G(s)=B'Q(sI- (J-R)Q)"'B, (3)

where s denotes the Laplace operator. With the usual abuse of aptdibth the dynamical
system (1) and the transfer function (3) will be denotedigy). For the ease of presentation,
the following abbreviations are introduced:

A = J-R)Q, (4)
CPH = BTQ (5)

2.2 Port-Hamiltonian and general LTI-systems

When considering port-Hamiltonian systems, the output stricted to the collocated output
Cpry, defined by the input vector and the energy matrix. Howewerpoutput of interest might
not coincide with this collocated output. Nevertheless, tasults on thé{., norm of port-
Hamiltonian systems will be later generalized to port-H&nian state-equations equipped
with any output equation. The dynamics of such systems read a

x(t) =(J — R) Qx(t) + Bu(t),
y(t) =Cx(t),

whereC # BTQ ¢ R?*" is an arbitrary output vector. Thus, the dimension of thepout
g needs not necessarily to be same as the dimension of thejinplatte that in case of non-
collocated outputs the passivity property might be lostweler, the conclusions about stability
are equal to real port-Hamiltonian systems (1). This candaglily verified, since the state
equation remains unchanged.

The only difference of system (6) to a general LTI-systenhes decomposition of the matrix
A. The following lemma shows the relation between these Byste

(6)



Lemma 1. The state-equation of a given stable LTI-system

x(t) =Ax(t) + Bu(t),
y(t) =Cx(1),

can be written in port-Hamiltonian form (6).

(7)

Proof. For a stable LTI-system there exist many soluti@@s= Q? > 0 to the Lyapunov-
equation:
ATQ+QA<oO. (8)

In [5] it is verified that with the choice
J = - (AQ'-Q'AT), 9)

R = —%(AQ‘1+Q‘1AT), (10)

N | —

a port-Hamiltonian decomposition of the dynamic matix= (J — R)Q can be obtained by
starting from any Lyapunov solutioQ. n

Remark.The results of this paper are presented for port-Hamiltostate equations. But kee-
ping Lemma 1 in mind, the results are valid for any stable &ffi$tem, once a solutio@ to
the Lyapunov equation (8) is known. However, since the Lyswsolution introduces solely a
virtual energy, physical insight might be lost.

2.3 Hs norm
TheH., norm of a dynamical systed(s) is defined in the frequency-domain as

1G (8)ll0 := 8UP Omax {G (jw) 7, (11)

whereo,., {-} denotes the maximum singular value. For a single-inputi&ingtput system
the?#., norm of a system can be identified with the peak in its assettiadde-plot. Information
on standard algorithms to compute tHg, norm of a system can be found in [2].

2.4 The problem

The H,, norm can be used to characterize dynamical systems. Howelien dealing with
large systems the standard algorithms to compute the nocaoniee numerically demanding.
In this paper, a numerical efficient bound on the norm is priegsk that possibly introduces
some overestimation. Based on the results it will be showrenthe new bound is reasonably
applied.

3 Bound on theH ., norm of linear port-Hamiltonian systems

In this section a bound on ti¥é., norm of linear port-Hamiltonian systems is proposed. Before
presenting the bound as the main contribution of this paperfollowing auxiliary lemma is
derived, based on the so-callBdunded Real Lemma

Lemma 2. For a linear port-Hamiltonian systems (1), let> 0 € R be a solution to the matrix
inequalityyR — BB” > 0, then||G (s)]|_, < 7.



Proof. The proof is based on a rather unusual formulation of the BedriRleal Lemma, to
be found in [8]. It states thglG(s)||, < ~ fora~y > 0 if and only if there exists a solution
X = X7 to the linear matrix inequality

ATX +XA XB C%,
M = B”X —I, 0 <0, (12)
CPH 0 —’yIp
wherel, € RP*? denotes the identity matrix. For the purpose of this paes,ron-strict
version of the Bounded Real Lemma is preferable. In [7] it issshdhat if there is a solution

X = X7 to the non-strict inequalitp < 0, then||G(s)||,, < 7. Thus, by application of the
SchurLemma,M < 0 is equivalent to:

- I2p 07 (13)
1
ATX + XA + S (XBB"X + CL,Cpy) < 0. (14)

IN

Obviously, equation (13) holds true. A natural choice fortgdamiltonian systems X := Q.
Together with (4) and (5), equation (14) becomes:

Q(-1-R)Q+QU-R)Q+-QBB'Q < 0. (15)

Multiplication from left and right withQ~! leads to
R+ %BBT <0, (16)
and completes the proof. O

With the help of Lemma 2 the main contribution of this papen ba stated, after giving the
following definition.

Definition 1. Let Y € R™** andZ € R™*(»~*) be bases of the image and kerneRyfrespec-
tively, wherek = rank{R}. Then define:

= Y'RY, (17)
= Y'B. (18)

m =

Theorem 1. Given a linear port-Hamiltonian system (1), assume fRdies in the range oR,
i.e.B C span{Y}. Then a bound on th&,, norm is given by|G(s)||, < Amax {ﬁTﬁflﬁ},
where\,...{-} denotes the largest eigenvalue of a matrix.

Proof. The proof starts with Lemma 2. Multiplying equation (16)rfréhe right with the square
and full-rank matriX'Y Z] and from the left with its transpose, yields:

yl‘Z{”R[Y z}—l‘;}BBT[Y Z]>o0. (19)

Due toZ being a basis of the kernel &, RZ = Z”R = 0. Further note that the assumption
B C span{Y} implies BTZ = 0, sinceR is symmetric and thus its range and kernel are
orthogonal to each other. For this reason, equation (19res:

{ R 0 ] - l BB” o

0 0 0 0}20' (20)



Thus, what remains is

’}/VT]/.:\{V —v'BBTv > 0, Vv eRF, (21)
being equivalent to
TBRBT
y>Y 22 VveRk (22)
vIRv

due to the positive definiteness Bf Introducing theCholeskyfactorization ofR = LL7, and
performing a coordinate change= L”v leads to:

wIL'BBTLTw
wlw

, Vw e RF. (23)

Y2

Equation (23) denotesRayleigh quotientwhose maximum value is the largest eigenvalue of
the matrixL-'BB”L~". For arbitrary matrice& and H of appropriate sizé\,...{GH} =
Amax{HG}, and thus:

Y > A {L-lﬁﬁTL-T} -~ {ﬁTL-TL—lﬁ} — {ETﬁ-lﬁ} . (24)
which completes the proof. n

Remark.The assumptions made for Theorem 1 are that the imadge lo&s to be known or
easily computable and additionally, th@thas to lie in the range dR. As will be shown in
section 5 this does not constitute a restriction to a largeschbf technically relevant systems.

Remark.Note that, for the calculation of the bound the invel%eldoes not have to be known
explicitly; it is sufficient to solve the linear system of efionsRN = B for N € RF>P,
Furthermore, it is stressed, tHaf R ~'B is of small dimensions x p, such that the eigenvalues
can be easily computed.

Lemma 3. The H,, bound for linear port-Hamiltonian systems proposed in Theol is inva-
riant to state-space transformations of the fazre= Tx.

Proof. Let A, R, B denote the respective matrices of the state-space repaéisann transfor-
med coordinates. To proof the Lemma, it is sufficient to show the equivalente o

() YR - BBT >0, and
(i) YR — BB” > 0.
Applying the state-transformation= T~z to the original formulation (1) leads to:
A=TAT'=TJ-R)T'T7QT . (25)

Thus, the dissipation matrix in transformed coordinatesads aR := TRT?. Itis easy to
verify thatB = TB. Therefore, (ii) can be rewritten as

AyTRT? — TBB'T? > 0, (26)

which is equivalent to (i). ]



4 Bound on theH ., norm of stable LTI-systems

In this section the results of the bound on tHg, norm is generalized to systems of the form
(6), having a port-Hamiltonian state-equation and an etyitoutput. Note that with Lemma
1 this is in fact a generalization to stable LTI-systems whaamy Lyapunov solution is known.
For the ease of presentation, the maixs introduced, collecting the input and output vectors
into one matrix:

G = [ B Q!CT } : (27)

Note that for the calculation @& the inverseQ —! does not have to be known explicitly. Instead,
it is sufficient to solve the linear set of equatid@®N = C7 for N € R"*¢,

Lemma 4. For a linear systems of the form (6), let> 0 € R be a solution to the matrix
inequalityy 2R — GG* > 0, then||G ()|, < -

Proof. Note thatBB” + Q'CTCQ~! = GGT'. The rest of the proof is similar to the one of
Lemma 2, and hence omitted. O

Accordingly to Definition 1, the following abbreviation istroduced:
G=Y'G=[Y'B Y'Q'C"]. (28)
Theorem 2. Given a linear system of the form (6), assume tHdies in the range oR, i.e.

G C span{Y}. Then a bound on th&., norm is given byiG(s)|| ., < Amas {@Tﬁ—lé}.

Proof. The proof is conducted similarly to the one of Theorem 1 bystitiiting 2 R for R and
G for B. O

Remark.Theorem 2 shows that the results for port-Hamiltonian systean be generalized to
arbitrary but stable LTI-systems, with the restrictiontthd.yapunov solutiorQQ and the direc-
tions Q!C7T have to be known. Then the largest eigenvalue of a matrixgavie dimension
(p+q) x (p+ q) has to be computed.

Lemma 5. The H., bound for linear systems of the form (6) proposed in Theorem®ariant
to state-space transformations of the fazm Tx.

Proof. Let G denote the matrixa in transformed coordinates. Then,

G=|B QC” ] =[TB TQ'T'T’C’ |=T[B Q'C" | =TG. (29)
The rest of the proof is similar to the one of Lemma 3, and hemadted. ]

5 Relevant system classes

In this section two particular system classes are highdightogether with their attributes ac-
cording to the proposeH ., bound in the previous sections.



5.1 Systemswith] =0

This paper proposesk@undon the H,, norm, implicating an overestimation of the rddl,
norm. However, the following Lemma shows that for the casé ef 0 the bound is exact.

Lemma 6. Let G(s) be a linear port-Hamiltonian system (1) with= 0, then||G(s)||,, =
Amax {BTR™'B}.

Proof. The upper bound introduced in Theorem 1 holds true alsd fer 0, i.e. ||G(s)]|, <
Amax {ﬁTﬁ‘lﬁ}. The proof will be completed by showing that this bound isially achieved

at some frequency for the matricBsandB instead ofR andB. Choosev = 0, then:
G(0)=B'Q(0-1-RQ) 'B=B'R!B. (30)
Due to the symmetry dR.:
Omax {B"R7'B} = A\nax {B'R™'B}, (31)
which yields:
() Tmax {G (j0)} = Amax {B"R™'B},

(i) 1 ()]l = 5P O (G (1)} < Auax {B'R'BY.

In the case] = 0 the system has to be fully damped — icenk {R} = n — for asymptotic
stability. ThereforeR = R andB = B which completes the proof for asymptotically stable
systems. IR was singular, the system would have a pole i 0 leading to||G (s)||,, — o.
Accordingly, Ayax { BTR™'B} — oo, which completes the proof. O

5.2 Second-order systems

A technically important class of linear models are secortkonsystems. These arise for exam-
ple from the modeling of a mechanical system by finge-element methoFEM). Likewise,
nodal analysigNA) of RLC circuits leads to second-order systems, as wdie general for-
mulation reads as follows:

Mq(t)+ Dq(t) + Kq(t) = Fu(t), (32)

whereM, D, K > 0 € R™ ™ are symmetric positive definite, denoting for mechanical
systems the mass, damping and stiffness, respectivehpdinting the state-vectot(t) =

[ q”(t) p”(t) ]* € R", wherep(t) = Mq(t) andn = 2m, leads to a port-Hamiltonian
state-space representation (1), with:

o8] e[k
(53] (8]

Note that the collocated output in this casg {$) = F7 ¢(t). Clearly,

(33)

0
Y::{I] (34)



defines a basis fopan {R }, which proofs that the assumptions made in Theorem 1B. €.
span(R), always apply to second-order systems. Therefore, theopszbbound on thé/.,
norm in Theorem 1 can always be used for second-order systearstraight-forward manner,
asR = Y'RY = D andB = Y?B = F, which leads to:

IG(3)]lo < Amax {F'D'F}. (35)

6 Technical example

In this section, the performance and suitability of the -, bound is illustrated by two
numerical exmples.

6.1 Thermal Model of an H-Bridge

As a first example, the thermal fitting model for the STMicemttonics H-bridge motor driver
VNH2SP30-E is considered. The integrated power circuisiia of four power MOSFETSs ar-
ranged on three separate chip areas (dice) — the high ptsi@SFETs mounted on a common
die. The thermal behavior is described by an equivalentotaomposed of capacitances and
resistances. Due to the irreversible transformation ahtlaéenergy, the interconnection matrix
J = 0 is absent in the resulting port-Hamiltonian model of ordes 20. The thermal power
introduced at each MOSFET junction and the resulting teatpegs constitute the four inputs
and collocated outputs of the system, respectively. Detaiiformation on the modeling can be
found in [3], whereas the numerical values are given in [1].

Recalling section 5.1, the bound given by Theorem 1 shoulchbeekact quantity. Indeed,
Amax {BTR*B} = 82.31 gives the same as executing the commamal nf in Matlab. Ho-
wever, the commanghor nf requires3.3 - 10-2 seconds for computation, whereas the simple
matrix-vector products along with an eigenvalue compaiatif small order — necessary for the
calculation of the newly introduced bound — needs megely 10~* seconds. This results in an
almost50 times faster calculation of thH ., norm of the system at hand. Certainly, one might
argue that the time for computation of the commandr nf is still fast enough; however, this
might become crucial for large-scale systems, as discusgbd following.

6.2 FEM-model of a Timoshenko beam

The second example deals with a 3D cantilever Timoshenkmlpéh modeled by the Finite
Element Method. The resulting second-order system (32aimsformed into a first-order state-
space system as shown in section 5.2. Note that the mass iwhis diagonal, due to lumping
of mass [9], and thus can easily be inverted. The model irpthe vertical force applied at
the beam’s free end, leading to the velocity at this pointhascollocated output. The beam is
modeled witi200 nodes, resulting in a port-Hamiltonian system of ordet 2400.

Computing the commanghor nf requires65.3 seconds and results jidr (s)||, = 9.87 for the
system. In contrast, the calculation.xf .. {ﬁTﬁflﬁ} takes only0.077 seconds, providing a

bound on the,, norm of25.5. This shows the enormous advantage of the newly introduced
H_, bound over the commanghor nf in Matlab, when it comes to simulation time. However,
an overestimation of approximatehy is observed for the example at hand. Nevertheless, when
it comes to large-scale systems — sucmas 10° — the proposed bound might be the only
possibility to gain information about th€,, norm of a system at all.



7 Conclusion

A bound on theH,, norm of linear port-Hamiltonian systems is proposed in Hrigcle. To
sum up its properties and performance, the bound congtituteade-off between tightness and
computational speed. This is due to the fact that it savegpatational costs compared to the
general algorithms used in numerical analysis softwarethan introduces an overestimation
on the realH., norm.

Considering these characteristics of the rféw bound, the author suggests its employment
in three different settings. First of all, for purely dampaart-Hamiltonian systemsJ(= 0)

the bound is preferable since it is shown to be exact with hesserical effort. Secondly, for
large-scale systems the bound might be the sole chancevistigating the norm at all. In the
end, in all other circumstances the decision is more inwbIVéhe applicability of the bound
is determined by the order of the model, by the system clatise iassumptions of Theorem 1
are met (though being little restrictive), etc. and last toit least by the eye of the beholder,
whether tightness or computational speed is more cruc@keier, it is still an open question,
how the interconnection matrix introduces the overesimnanto the bound.
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