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This paper deals with the exact state sensitivity calculation required in the moving horizon esti-
mator (MHE) for nonlinear networked control systems (NCS) presented in [4]. This NCS-MHE
is capable of dealing with the network induced imperfections by formulating the estimation
problem as a suitable optimization problem within a moving horizon framework. The resulting
nonlinear program (NLP) can be efficiently solved by an adapted sequential quadratic program-
ming (SQP) approach which exploits the structure in the associated derivatives by utilizing state
sensitivities. However, their exact calculation via directderivation of the state is infeasible as
no general closed form solution of the state equation can be given. Therefore, a new method
based on first-order sensitivity differential equations isproposed which provides several advan-
tages compared to a finite difference method, like e. g. exactness, reduced numerical complexity
and a higher degree of parallelization.

1 Introduction

Networked control systems(NCS) are spatially distributed systems in which the communication
between sensors, actuators, and controllers occurs through a shared digital communication net-
work, see [1, 5]. The main winning features of those NCS come from their low cost, their high
flexibility and easy re-configurability, their natural reliability and robustness to failure, and their
adaptation capability leading to new control oriented possibilities. In contrast to conventional
control theory, there are also some drawbacks due to the characteristic features of the commu-
nication method adopted, namely there is the need to deal with the following problems: (1)
Data transmission through the communication network unavoidably introducestime delaysand
packet reordering; (2) Data traffic congestion, data collision or interference causepacket loss;
(3) Limited energy supplyof the sensor nodes require strategies which minimize the commu-
nication effort while maintaining a certain performance level; (4) Spatially distributed network
elements possessunsynchronized clocksleading to unsynchronized timescales.
If only the measurements of a wired or wireless sensor are transmitted through a shared multi-
purpose network, this directly results in the NCS structure depicted in Figure 1. In a previous
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Figure 1: Structure of the Networked Control System.



work [4], a nonlinear estimator has been developed that is capable of dealing with all the afore-
mentioned problems by adapting the conventional MHE framework. The estimator requires
an NLP to be solved whenever new measurements arrive at the estimator. Its solution can be
efficiently calculated by means of an adapted SQP approach which exploits the structure in
the associated derivatives by utilizing state sensitivities. Concerning real-time applications, the
performance of the NCS-MHE strongly depends on methods whichcalculate these state sensi-
tivities fast and accurate. However, the finite difference approach does not fulfill any of these
requirements. Therefore, the main objective of this article is to propose a new exact and efficient
method to calculate the state sensitivities by utilizing sensitivity differential equations.
The remainder of this paper is organized as follows: Before insection 3 the role of state sensi-
tivities for the NCS-MHE is detailed, the NCS-MHE presented in[4] is summarized in section
2. The exact state sensitivity calculation problem is formulated in section 4. The key goal of
this paper, namely the exact state sensitivity computationis presented in section 5 before the
paper is concluded in section 6.

2 The Moving Horizon Estimator for Networked Control Systems

In this section, the main part of the NCS-MHE presented in [4] for the NCS structure depicted
in Figure 1 is summarized. To this end, the following notations and assumptions are introduced.

Notation 1. For a vectorx ∈ R
n, x̂ denotes its estimated value. For two vectorsx ∈ R

n

andy ∈ R
m, let col(x,y) denote the column vector inRn+m wherex andy are stacked into

a single column. For two vectorsx, z ∈ R
n, x ≥ z denotes componentwise inequality. A

function with k continuous derivatives is called aCk function. The timest and t̄ denote the
global time and the local sensor time, respectively.

Assumption 1. The relation betweent andt̄ in a sufficiently small time interval is given by the
clock modelt = s t̄+ to.

The plant is described by the nonlinear continuous-time system

ẋ(t) = f(x(t),u(t)) +w(t) (1a)

y(t) = h(x(t)) + v(t), (1b)

wherex(t) ∈ R
n, u(t) ∈ R

m, w(t) ∈ R
n, y(t) ∈ R

p andv(t) ∈ R
p are respectively

the state, input, disturbance, measurement and noise vector. The measurement vectory(t) is
sampled by the sensor at the local sensor timest̄i and these sampled measurements are denoted
with yi. Afterwards, the sampled measurementyi is transmitted through the communication
network together with its relative time stampt̄i as a packet of the form{yi, t̄i}i. If the packet
arrives at the estimator, the packet is augmented by the arrival time stamptj to yield the packet
{yi, t̄i, tj}j. The estimator storesN + 1 packets in a buffer and sorts them by the relative time
stamps̄ti in ascending order and assigns the indicesk −N, . . . , k to them, wherek denotes the
last packet in the sorted buffer, see Algorithm 1 in [4].

Notation 2. The setsI = {k−N, k−N +1, . . . , k}, I = I \{k−N} andI = I \{k} denote
sets of indices corresponding to thek-th buffer. For a global time depending estimated vector
x̂(t), x̂i denotes its value at the estimated global timeŝ t̄i + t̂o according to thei-th packet in
the buffer.



The NCS-MHE consists of two steps, see Algorithm 3 in [4]. The current statêx(t) is prop-
agated in theprediction stepby solving the model equations forward in time. Whenever the
buffer changes, theupdate stepof the NCS-MHE is performed, where the following NLP has
to be solved

min
ŝ,t̂o,x̂k−N ,...,x̂k,ŵk−N ,...,ŵk−1

Γ(ŝ, t̂o, x̂k−N) +
k∑

i=k−N

Υi(yi, x̂i) +
k−1∑

i=k−N

Ψi(ŵi) (2a)

subject to:

x̂i+1 − x̂i −

∫ ŝ t̄i+1+t̂o

ŝ t̄i+t̂o

f(x̂(t),u(t)) dt− ŵi = 0, i ∈ I (2b)

ci(x̂i, ŵi) ≥ 0, i ∈ I (2c)

ck(x̂k) ≥ 0 (2d)

d(ŝ, t̂o) ≥ 0, (2e)

whereci andd are for i ∈ I inequality constraints. Subsequently, the current statex̂(t) is
updated based on the solution of this NLP. A detailed explanation of this NLP can be found in
[4] and is omitted here due to its minor relevance for this paper.
For the functions involved in this NLP, the following assumption is made:

Assumption 2. The functionsf ,h,Γ,Υi,Ψi, ci andd are at leastC2 functions.

Remark1. For simplicity of presentation, only one sensor is considered. It is straightforward to
extend the concept to the general case of several different sensors, each with different timescales
t̄.

3 The role of the state sensitivities for the MHE-NCS

This section concentrates on the relation between the statesensitivities and the NCS-MHE. To
this end, the following notations are introduced.

Notation 3. The vectorp ∈ R
(N+1)n+2 denotes the collected optimization variables, i. e.p =

col(ŝ, t̂o, x̂k−N , ŵk−N , . . . , ŵk−1). The functionc : R(N+1)n+2 7→ R
(N+1)n+2 denotes the over-

all inequalities, i. e. c = col
(
ck−N(x̂k−N , ŵk−N), . . . , ck−1(x̂k−1, ŵk−1), ck(x̂k),d(ŝ, t̂o)

)
.

The setsTi = {t ∈ R
n|ŝ t̄i + t̂o < t ≤ ŝ t̄i+1 + t̂o} define fori ∈ I all admissible global times

between two consecutive measurements in thek-th buffer. The union of these setsT =
⋃

i∈I Ti

denotes all admissible global times in thek-th buffer. The scalarsTi = ŝ(t̄i+1 − t̄i) denote for
i ∈ I the times between two consecutive measurements in thek-th buffer. The inputu(t) for
t ∈ T is denoted byuk.

The equality constraint (2b) uniquely determines all the statesx̂i in the current moving horizon
if the vectorsp anduk are fixed. Thus, an implicit functioñxi(p,uk) that satisfies (2b) for all
p anduk can be defined. Consequently, the constraint (2b) can be replaced in the optimization
problem by substituting the functioñxi(p,uk) with x̂i. Hence, the NLP can be reduced to

min
p

Γ(ŝ, t̂o, x̂k−N) +
k∑

i=k−N

Υi (yi, x̃i(p,uk)) +
k−1∑

i=k−N

Ψi(ŵi) (3a)



subject to: c
(
x̃k−N(p,uk), . . . , x̃k(p,uk), ŵk−N , . . . , ŵk−1, ŝ, t̂o

)
≥ 0. (3b)

The advantage of this approach compared to the original problem is the byNn reduced di-
mension of the optimization variable space. To further simplify the analysis, the arguments of
all functions are in the following suppressed from the notation when the meaning is otherwise
clear.
The NLP (3) can be iteratively solved by applying thesequential quadratic programming(SQP)
method. The basic idea of the SQP approach is to linearize in every iteration step theKarush-
Kuhn-Tucker(KKT) conditions. It turns out that the resulting linear complementary system can
be interpreted as the KKT conditions of the followingquadratic program(QP)

min
∆p

∂L

∂p

T

∆p+
1

2
∆pT ∂

2L

∂p2
∆p, subject to:c+

∂c

∂p
∆p ≥ 0. (4a)

Thereby,L is theLagrange function

L(p,λ) = Γ +
k∑

i=k−N

Υi +
k−1∑

i=k−N

Ψi − λTc, (4b)

whereλ = col(λk−N , . . . ,λk,µ) ∈ R
(N+1)n+2 is a vector of Lagrange multipliers. The accu-

racy as well as the execution time of the SQP method mainly depend on an accurate and fast
computation of the required derivatives∂iL/∂pi, i = 1, 2 of the Lagrange function.
A common method to compute these derivatives is by finite differences. For instance, the ele-
ments of∂L/∂p can be approximated by thecentral-difference formula

∂L

∂pi
≈

L(p+ ǫ ei)− L(p− ǫ ei)

2ǫ
, i = 1, . . . , (N + 1)n+ 2, (5)

whereǫ is a small positive scalar andei is thei-th unit vector. However, it is not recommended to
use this method here due to its high numerical complexity andits poor accuracy. The evaluation
of (5) is as costly as solving2n((N + 1)n+ 2) ODEs overT.
A more subtle approach is to calculate the exact derivativesof (4b) by means of state sensitivities
which leads to the following proposition.

Proposition 1. The exact gradient and Hessian of the Lagrange functionL defined in(4b)with
respect top are

∂L

∂p
=

∂Γ

∂p
+

k∑

i=k−N

∂x̃i

∂p

T ∂Υi

∂x̃i

+
k−1∑

i=k−N

∂Ψi

∂p
−

k∑

i=k−N

∂x̃i

∂p

T ∂ci
∂x̃i

T

λi −
∂d

∂p

T

µ (6a)

∂2L

∂p2
=

∂2Γ

∂p2
+

k∑

i=k−N

∂x̃i

∂p

T ∂2Υi

∂x̃2
i

∂x̃i

∂p
+

k−1∑

i=k−N

∂2Ψi

∂p2
−

k∑

i=k−N

n∑

j=1

λi,j

∂x̃i

∂p

T ∂2ci,j

∂x̃2
i

∂x̃i

∂p

−

q+2
∑

j=1

µj

∂2dj
∂p2

+
k∑

i=k−N

n∑

j=1

(
∂Υi

∂x̃i,j

−

(

λT
i

∂ci
∂x̃i,j

))
∂2x̃i,j

∂p2
. (6b)

whereµj, dj, ci,j, λi,j andx̃i,j denote thej-th element ofµ, d, ci, λi andx̃i, respectively.

Proof. Equations (6a) and (6b) result from differentiating (4b) with respect top once and twice,
respectively, where the dependence ofx̃i onp has to be taken into account.



Note that the complete gradient and almost the complete Hessian information depend on the
first-order state sensitivities∂x̃i/∂p. Therefore, it is often admissible to approximate or even
neglect the second-order sensitivities∂2x̃i,j/∂p

2, see [3]. In other words, one major advantage
of this method is that the calculation of the first-order state sensitivities, which are necessary for
the gradient ofL, often provides an excellent approximation of the Hessian of L for free.

4 Problem formulation

Before dealing with the first-order state sensitivities, theimplicit function x̃i(p,uk) in the cur-
rent moving horizon has to be investigated first. The nonlinear continuous-time system defined
in (1) can be seen in the upper left of Figure 2. The sampled andafterwards transmitted mea-
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ẋ(t) = f(x(t),u(t)) +w(t)

y(t) = h(x(t)) + v(t)

xi+1 = xi +

s t̄i+1+to∫

s t̄i+to

f(x(t),u(t)) dt+

s t̄i+1+to∫

s t̄i+to

w(t) dt

︸ ︷︷ ︸

=:wi
yi = h(xi) + vi

˙̂x(t) = f(x̂(t),u(t)) + θ(t,p)

ŷ(t) = h(x̂(t)) + χ(t,p)

x̂i+1 = x̂i +

ŝ t̄i+1+t̂o∫

ŝ t̄i+t̂o

f(x̂(t),u(t)) dt+ ŵi

ŷi = h(x̂i) + v̂i

Figure 2: Derivation of the system equation in the update step of the NCS-MHE fort ∈ T.

surementsyi can be derived by integrating (1) over the setsTi and be seen in the upper right
of Figure 2. Note thatwi is the integral value ofw(t) over the setTi. The NCS-MHE tries
to mimic this behavior and thus utilizes an estimation of this integrated system dynamics, see
(2b) and the lower right of Figure 2. In order to evaluate thisintegrated system dynamics,
however,̂x(t) is required which is the solution of the associated estimated continuous-time sys-
tem. This system is represented as an ODE and is depicted in the lower left of Figure 2, where
θ : T × R

(N+1)n+2 7→ R
n andχ : T × R

(N+1)n+2 7→ R
p are functions using the information

in the optimization variablesp of the current moving horizon to generate an estimation of the
disturbance vectorw(t) and the noise vectorv(t), respectively. It is important to note, that with-
out any further knowledge about the characteristics ofw(t) andv(t), the mappingsθ(t,p) and
χ(t,p) and thus the ODE cannot be defined uniquely although their integrated representation
is unique. This is due to the fact that only measurements at discrete times are available which
means, that only the integral value ofw(t) over the setTi−1 and onlyv(ŝ t̄i+ t̂o) influences the
measurementyi.
Fortunately, the NCS-MHE requires the estimated measurements only at discrete times and thus
the mappingχ(t,p) is not required. However, the mappingθ(t,p) is needed for the estimated
continuous-time system and thus for the calculation ofŷi. Therefore, the following assumption
is made:



Assumption 3. The functionθ : T×R
(N+1)n+2 7→ R

n in a moving horizon interval is

θ(t,p) =
ŵi

ŝ (t̄i+1 − t̄i)
, ∀t ∈ {t ∈ Ti|i ∈ I},

where the affiliation oft to the setsTi determines the indexi.

This choice ofθ(t,p) leads to a piecewise constant disturbance and satisfies the integral relation
∫ ŝ t̄i+1+t̂o

ŝ t̄i+t̂o
θ(t,p) dt = ŵi. This is illustrated in Figure 3.

...
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ŝ t̄k−1 + t̂o
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t

θ(t)
w(t)

ŵk−1

ŝ (t̄k−t̄k−1)

ŵk−N+1

ŝ (t̄k−N+2−t̄k−N+1)

ŵk−N

ŝ (t̄k−N+1−t̄k−N )

ŵk−2

ŝ (t̄k−1−t̄k−2)

Figure 3: Relation betweenw(t), ŵi andθ(t).

Now the implicit functionx̃(t,p,uk) and the first-order state sensitivities can be defined pre-
cisely:

Definition 1. The implicit functionx̃(t,p,uk) is a mapping̃x : T × R
(N+1)n+2 × R

m 7→ R
n

that satisfies the estimated nonlinear ODE fort ∈ T

∂x̃

∂t
(t,p,uk) = f(x̃(t,p,uk),u(t)) + θ(t,p) (7)

with the initial valuex̃(ŝ t̄k−N + t̂o,p,uk) = x̃k−N = x̂k−N .

Note that in accordance with the introduced notation,x̃i denotes̃xi(p,uk) = x̃(ŝ t̄i+ t̂o,p,uk).

Definition 2. The first-order state sensitivities are the first-order derivatives of the implicit func-
tion x̃(t,p,uk) with respect top for t ∈ T.

The naturally arising question is, how to efficiently calculate the exact first-order state sensitiv-
ities required for the derivatives ofL in (6).

5 Exact first-order state sensitivity calculation

The most obvious idea to calculate the first-order state sensitivities would be to directly differ-
entiate the implicit functioñxi with respect top. However, this procedure is not viable as no
general closed form representation of the implicit function x̃i can be given. Due to the fact that
x̃i is described as a solution to an ODE, a natural approach is to describe the first-order state



sensitivities as (possibly appropriately combined) solutions to appropriate ODEs, too. To this
end, the first-order state sensitivities

∂x̃i

∂p
=

[

∂x̃i

∂ŝ
,
∂x̃i

∂t̂o
,

︸ ︷︷ ︸

category 2

∂x̃i

∂x̂k−N

,
∂x̃i

∂ŵk−N

, . . . ,
∂x̃i

∂ŵk−1
︸ ︷︷ ︸

category 1

]

, i ∈ I (8)

can be classified into the categories 1 and 2, depending on therequired mathematical repre-
sentation level to fully describe the influence of the different parameters inp on x̃i. In other
words, this classification answers the question which levelis sufficient to investigate in order to
calculate the first-order state sensitivities. In category1, the influence of the parameters onx̃i

can be fully covered on the ODE level, i. e. it is sufficient to investigate (7). In category 2, the
integrated system dynamics or the so-called weak solutions

x̃i(p,uk) = x̂k−N +

∫ ŝ t̄i+t̂o

ŝ t̄k−N+t̂o

f(x̃(t,p,uk),u(t)) + θ(t,p) dt, i ∈ I (9)

are additionally required to fully cover the influence of thecorresponding parameters.
In the following, the problem of efficiently computing the exact first-order state sensitivities in
category 1 is tackled. To this end, the following notations are introduced.

Notation 4. The abbreviationX (t) and jZ(t) denote forj ∈ I the first-order sensitivity
∂x̃(t)/∂x̂k−N and∂x̃(t)/∂ŵj, respectively.

Lemma 2. The first-order sensitivityX (t) ∈ R
n×n satisfies the following first-order sensitivity

matrix differential equation fort ∈ T

Ẋ (t) =
∂f

∂x̂
(t)X (t), (10a)

with the initial value

X (ŝ t̄k−N + t̂o) = I. (10b)

The unique solution is

X (t) = φ(t, ŝ t̄k−N + t̂o)X (ŝ t̄k−N + t̂o), (10c)

whereφ(·) ∈ R
n×n denotes the time-varying transition matrix.

Proof. The proof is sketched as follows: Equation (10a) results from differentiating (7) with
respect tox̂k−N . Equation (10b) results from differentiating the initial value on the moving
horizon interval. The solution approach for linear time-varying systems (see [2]) applied to
(10a) combined with (10b) leads to (10c).

Lemma 3. The first-order sensitivityjZ(t) ∈ R
n×n satisfies the following first-order sensitivity

matrix differential equation fort ∈ T

jŻ(t) =
∂f

∂x̂
(t) jZ(t) +







0, t ∈

j−1
⋃

i=k−N

Ti

1

ŝ Tj

I, t ∈ Tj

0, t ∈
k−1⋃

i=j+1

Ti

(11a)



with the initial value

jZ(ŝ t̄k−N + t̂o) = 0. (11b)

The unique solution is

jZ(t) =







0, t ∈

j−1
⋃

i=k−N

Ti

∫ t

ŝ t̄j+t̂o

φ(t, τ)
1

ŝ Tj

dτ, t ∈ Tj

∫ ŝ t̄j+1+t̂o

ŝ t̄j+t̂o

φ(t, τ)
1

ŝ Tj

dτ, t ∈

k−1⋃

i=j+1

Ti

(11c)

whereφ(·) ∈ R
n×n denotes the time-varying transition matrix.

Proof. The proof is sketched as follows: Equation (11a) results from differentiating (7) with
respect toŵj. Equation (11b) results from differentiating the initial value on the moving hori-
zon interval. The solution approach for linear time-varying systems (see [2]) applied to (11a)
combined with (11b) leads to (11c).

Evaluating the non-zero elements in the first-order sensitivities is as costly as solving(N
2
+

3
2
)n2 + n ODEs overT. To further reduce this complexity, the idea now is to break down the

problem of determining the sensitivitiesX (ŝ t̄i+t̂o) andjZ(ŝ t̄i+t̂o) on the setT to independent
problems on the setsTi, i ∈ I. Afterwards, the solutions to these subproblems are assembled
in a suitable manner to yield the desired sensitivities. Theadvantage of this procedure is two-
fold: first, several of these subproblems are identical due to the common underlying structure
and thus need to be solved only once; second, the solutions tothese subproblems can be used
to calculate the first-order sensitivities in category 2. Tothis end, the following notations are
introduced.

Notation 5. The abbreviationXa
b andjZa

b denotes the solution of (10a) and (11a) at the time
ŝ t̄b + t̂o with the initial valueI and0 at the initial timeŝ t̄a + t̂o, respectively.

Lemma 4. The solutionXa
b anddZa

b satisfy fora, b, c ∈ I andd ∈ I with a ≤ d < b < c the
following properties

(i) Xa
c = Xb

cX
a
b (iv) dZa

b = dZd
b

(ii) (Xa
b )

−1 = Xb
a (v) dZd

b = Xd+1
b

dZd
d+1

(iii) Xa
a = I (vi) dZa

a = 0.

Proof. The proof is based on the properties of the state transition matrix φ(·) which are stated
in [2]: (i) φ(t2, t0) = φ(t2, t1)φ(t1, t0), (ii) φ(t1, t0)−1 = φ(t0, t1) and(iii) φ(t0, t0) = I.
Furthermore, the Notation 5 implies together with (10c)Xa

b = φ(ŝ t̄b + t̂o, ŝ t̄a + t̂o). The
combination of both facts proofs the properties(i)-(iii). Writing the first case of the solution
(11c) in terms of the Notation 5 proofs the property(iv). For i > j, the solution (11c) is
transformed by using the properties of the state transitionmatrix

jZk−N
i =

∫ ŝ t̄j+1+t̂o

ŝ t̄j+t̂o

φ(ŝ t̄i + t̂o, τ)
1

ŝ Tj

I dτ = φ(ŝ t̄i + t̂o, ŝ t̄j+1 + t̂o)
jZ

j
j+1 = X

j+1
i

jZ
j
j+1

which proofs the property(v). The property(vi) is just the initial value0.



Theorem 5. The first-order sensitivities
∂x̃i

∂x̂k−N

and
∂x̃i

∂ŵj

in (8) are for i ∈ I

∂x̃i

∂x̂k−N

= X i−1
i X i−2

i−1 . . .X
k−N
k−N+1 (12a)

∂x̃i

∂ŵj

=

{

0, i < j + 1

X i−1
i X i−2

i−1 . . .X
j+1
j+2

jZ
j
j+1, i ≥ j + 1

, j ∈ I. (12b)

Proof. The proof is sketched as follows: Equation (12a) and (12b) are derived by applying the
properties stated in Lemma 4 to the solutions (10c) and (11c), respectively.

The advantage of this Theorem over the finite difference method and the approach described
in Lemma 2 and 3 is two-fold. First, the number of ODEs that have to be solved overT is
independent ofN , namely2n2 + n. In other words, the complexity of determining the first-
order sensitivities is independent of the number of unknownsŵi and independent of the number
of first-order sensitivitiesjZ . Second, each subproblem can be solved independently and thus
in parallel.
Now, the first-order sensitivities in category 2 are considered. The weak solution (9) can be
interpreted as a parameter integral in terms ofŝ andt̂o. Therefore, the Leibnitz-integral rule is
stated in the following Lemma.

Lemma 6. Letα(p) andβ(p) beC1 functions. Suppose that bothf(p, t) and∂f(p, t)/∂p are
continuous in the variablesp andt. Then

∫ β(p)

α(p)
f(p, t) dt exists as a continuously differentiable

function ofp, with derivative

∂

∂p

∫ β(p)

α(p)

f(p, t) dt =

∫ β(p)

α(p)

∂f(p, t)

∂p
dt+

∂β(p)

∂p
f(p, β(p))−

∂α(p)

∂p
f(p, α(p)). (13)

Unfortunately, this Lemma cannot be applied directly to theweak solution (9). Due to the
choice ofθ(t,p), the integrandf(x̃(t,p,uk),u(t)) + θ(t,p) and its derivative with respect to
p are only continuous int ∈ Ti and not int ∈ T. Consequently, the Leibnitz-rule is applied
only to

x̃i+1(p,uk) = x̃i(p,uk) +

∫ ŝ t̄i+1+t̂o

ŝ t̄i+t̂o

f(x̃(t,p,uk),u(t)) + θ(t,p) dt, i ∈ I. (14)

For later use, note that there is a difference between∂x̃/∂ŝ|i and∂x̃i/∂ŝ which is explained in
Figure 4 and can be derived by means of Lemma 6.
These considerations lead to the following Lemma which forms the basis for the general result
of calculating the first-order sensitivity∂x̃i/∂ŝ derived in Theorem 8.

Lemma 7. Two consecutive first-order state sensitivities
∂x̃i

∂ŝ
and

∂x̃i+1

∂ŝ
satisfy fori ∈ I

∂x̃i+1

∂ŝ
= X i

i+1

∂x̃i

∂ŝ
+ t̄i+1

(

f i+1 +
ŵi

ŝ Ti

)

− t̄iX
i
i+1

(

f i +
ŵi

ŝ Ti

)

−
1

ŝ
iZi

i+1ŵi.



x̃i

x̃i

x̃i

x̃(t)

x̃(t)

x̃(t,p,uk)

∂x̃i

∂ŝ

∂x̃

∂ŝ

∣
∣
∣
∣
i

➀➀

➁

➁

sett = ŝ t̄i + t̂o

sett = ŝ t̄i + t̂o

vary ŝ

vary ŝ

t fixed

∂x̃

∂ŝ

∣
∣
∣
∣
i

=
∂x̃i

∂ŝ
− t̄i

(

f i +
ŵi

ŝ Ti

)

Figure 4: Relation between
∂x̃

∂ŝ

∣
∣
∣
∣
i

and
∂x̃i

∂ŝ
.

Proof. Differentiating (14) with respect tôs by means of Lemma 6 yields

∂x̃i+1

∂ŝ
=

∂

∂ŝ

(

x̃i +

∫ ŝ t̄i+1+t̂o

ŝ t̄i+t̂o

(f + θ) dt

)

=
∂x̃i

∂ŝ
+

∫ ŝ t̄i+1+t̂o

ŝ t̄i+t̂o

∂

∂ŝ
(f + θ)

︸ ︷︷ ︸

=:a

dt+ t̄i+1

(

f i+1 +
ŵi

ŝ Ti

)

− t̄i

(

f i +
ŵi

ŝ Ti

)

. (15a)

Performing the derivation in the intermediate terma by repetitive application of the chain-rule
and using the result depicted in Figure 4 leads to

a =
∂

∂ŝ
(f + θ)

=
∂f

∂x̃

(
∂x̃

∂ŝ
+

∂x̃

∂θ

∂θ

∂ŝ

)

+
∂θ

∂ŝ

=
∂f

∂x̃

∂x̃

∂ x̃|i

∂x̃

∂ŝ

∣
∣
∣
∣
i

−

(
∂f

∂x̃

∂x̃

∂θ
+ I

)
ŵi

ŝ2 Ti

=
∂f

∂x̃

∂x̃

∂ x̃|i

[
∂x̃i

∂ŝ
− t̄i

(

f i +
ŵi

ŝ Ti

)]

−

(
∂f

∂x̃

∂x̃

∂θ
+ I

)
ŵi

ŝ2 Ti

. (15b)

Noting thatx̃|i = x̃i, the desired derivative is obtained as

∂x̃i+1

∂ŝ
=

∂x̃i

∂ŝ
+

∫ ŝ t̄i+1+t̂o

ŝ t̄i+t̂o

∂f

∂x̃

∂x̃

∂x̃i

dt

︸ ︷︷ ︸

=:B

[
∂x̃i

∂ŝ
− t̄i

(

f i +
ŵi

ŝ Ti

)]

−

∫ ŝ t̄i+1+t̂o

ŝ t̄i+t̂o

∂f

∂x̃

∂x̃

∂θ
+ Idt

︸ ︷︷ ︸

=:C

ŵi

ŝ2 Ti

+ t̄i+1

(

f i+1 +
ŵi

ŝ Ti

)

− t̄i

(

f i +
ŵi

ŝ Ti

)

, (15c)

where the terms abbreviated withB andC have to be determined. The termB is equivalent to
the integral over the right-hand side of the ODE (10a) fort ∈ Ti

B =

∫ ŝ t̄i+1+t̂o

ŝ t̄i+t̂o

∂f

∂x̃

∂x̃

∂x̃i

dt

= X i
i+1 − I. (15d)



For the determination ofC, the ODE derived by differentiating (7) with respect toθ for t ∈ Ti

∂ ˙̃x

∂θ
=

∂f

∂x̃

∂x̃

∂θ
+ I,

∂x̃

∂θ
(ŝ t̄i + t̂o) = 0 (15e)

is compared to the first-order sensitivity matrix differential equation (11a) multiplied bŷs Tj on
the same setTi

ŝ Ti
iŻ =

∂f

∂x̃
ŝ Ti

iZ + I, ŝ Ti
iZ(ŝ t̄i + t̂o) = 0. (15f)

Both ODEs are identical if∂x̃/∂θ = ŝ Ti
iZ is chosen. This fact is exploited to calculateC

which is the integral over the right-hand side of these ODEs overTi

C =

∫ ŝ t̄i+1+t̂o

ŝ t̄i+t̂o

∂f

∂x̃

∂x̃

∂θ
+ I dt

=

∫ ŝ t̄i+1+t̂o

ŝ t̄i+t̂o

∂f

∂x̃
ŝ Ti

iZ + I dt

= ŝ Ti
iZi

i+1 − ŝ Ti
iZi

i

= ŝ Ti
iZi

i+1. (15g)

SubstitutingB andC in (15c) concludes the proof.

Theorem 8. The first-order sensitivities
∂x̃i

∂ŝ
are for i ∈ I

∂x̃i

∂ŝ
= t̄if i − t̄k−NX

k−N
i fk−N +

i−1∑

j=k−N

(
t̄j+1X

j+1
i − t̄jX

j
i

) ŵj

ŝ Tj

−
1

ŝ

i−1∑

j=k−N

jZk−N
i ŵj.

Proof. The proof is done by induction. LetP (i) be the statement in the above Theorem. For
i = k −N Lemma 7 leads together with∂x̃k−N/∂ŝ = 0 to

∂x̃k−N+1

∂ŝ
= Xk−N

k−N+10+ t̄k−N+1

(

fk−N+1 +
ŵk−N

ŝ Tk−N

)

− t̄k−NX
k−N
k−N+1

(

fk−N +
ŵk−N

ŝ Tk−N

)

−
1

ŝ
k−NZk−N

k−N+1ŵk−N ,

which is equivalent toP (k−N +1), i. e.P (k−N +1) is true. This starts the induction. Now,
assume thatP (i) is true for somei ∈ I. Substituting the assumption in Lemma 7 and applying
the properties stated in Lemma 4 yield to

∂x̃i+1

∂ŝ
= t̄iX

i
i+1f i − t̄k−NX

i
i+1X

k−N
i fk−N +

i−1∑

j=k−N

(
t̄j+1X

i
i+1X

j+1
i − t̄jX

i
i+1X

j
i

) ŵj

ŝ Tj

−
1

ŝ

i−1∑

j=k−N

X i
i+1

jZk−N
i ŵj + t̄i+1

(

f i+1 +
ŵi

ŝ Ti

)

− t̄iX
i
i+1

(

f i +
ŵi

ŝ Ti

)

−
1

ŝ
iZi

i+1ŵi

= t̄i+1f i+1 − t̄k−NX
k−N
i+1 f k−N +

i∑

j=k−N

(
t̄j+1X

j+1
i+1 − t̄jX

j
i+1

) ŵj

ŝ Tj

−
1

ŝ

i∑

j=k−N

jZk−N
i+1 ŵj,

which isP (i+1), completing the inductive step. Thus, by the principle of induction,P (i) is true
for all i ∈ I.



It is straightforward to compute the first-order state sensitivities ∂x̃i/∂t̂o. In fact, the same
method as for the calculation of∂x̃i/∂ŝ can be applied with two differences: first, the corre-
sponding derivative of the bounds of the integral (14) and the corresponding derivative ofθ
change from̄ti to 1 and from−1

s
θ to 0, respectively. These changes lead to the Lemma 9 and

Theorem 10 which are stated in the following. The corresponding proofs are omitted due space
limitation.

Lemma 9. Two consecutive first-order state sensitivities
∂x̃i

∂t̂o
and

∂x̃i+1

∂t̂o
satisfy fori ∈ I

∂x̃i+1

∂t̂o
= X i

i+1

∂x̃i

∂t̂o
+

(

f i+1 +
ŵi

ŝ Ti

)

−X i
i+1

(

f i +
ŵi

ŝ Ti

)

.

Theorem 10. The first-order sensitivities
∂x̃i

∂t̂o
are for i ∈ I

∂x̃i

∂t̂o
= f i −Xk−N

i fk−N +
i−1∑

j=k−N

(
X

j+1
i −X

j
i

) ŵj

ŝ Tj

.

The overall approach for computing the first-order state sensitivities defined in (8) is stated in
the following corollary which is a direct consequence of theTheorems 5, 8 and 10 combined
with Lemma 4.

Corollary 1. The first-order sensitivities in(8) are for i ∈ I

∂x̃i

∂ŝ
= t̄if i − t̄k−NX

i−1
i X i−2

i−1 . . .X
k−N
k−N+1fk−N −

1

ŝ

i−1∑

j=k−N

X i−1
i X i−2

i−1 . . .X
j+1
j+2

jZ
j
j+1ŵj

+
i−1∑

j=k−N

X i−1
i X i−2

i−1 . . .X
j+1
j+2

(
t̄j+1I − t̄jX

j
j+1

) ŵj

ŝ Tj

∂x̃i

∂t̂o
= f i −X i−1

i X i−2
i−1 . . .X

k−N
k−N+1fk−N +

i−1∑

j=k−N

X i−1
i X i−2

i−1 . . .X
j+1
j+2

(
I −X

j
j+1

) ŵj

ŝ Tj

∂x̃i

∂x̂k−N

= X i−1
i X i−2

i−1 . . .X
k−N
k−N+1

∂x̃i

∂ŵj

=

{

0, i < j + 1

X i−1
i X i−2

i−1 . . .X
j+1
j+2

jZ
j
j+1, i ≥ j + 1

, j ∈ I

and fori = k −N all identical to0, except∂x̃k−N/∂x̂k−N which is the identity matrixI.

Note that the ODEs which are necessary for the calculation ofthe first-order sensitivities∂x̃i/
∂x̂k−N and∂x̃i/∂ŵj are sufficient for the calculation of the first-order sensitivities∂x̃i/∂ŝ and
∂x̃i/∂t̂o, i. e. no additional ODEs have to be solved and the advantagesof Theorem 5 still hold.
The advantages of calculating the gradient and the Hessian of the Lagrange functionL via
proposition 1 and corollary 1 compared to the finite difference method (5) are summarized
below:

1) In contrast to the finite difference method, the calculation is exact.



2) The number of ODEs that have to be solved overT is reduced from2n((N +1)n+2) to
2n2 + n and is independent ofN .

3) The ODEs necessary for the calculation of the first-order sensitivities are independent of
each other and can be solved in parallel on the setst ∈ Ti instead on the setT.

4) The computation of the gradient ofL provides an often sufficient approximation of the
Hessian ofL for free and, if∂2f/∂x̂2 = 0 holds, in fact an exact Hessian.

6 Conclusion

In this paper, the relation between first-order state sensitivities and the NCS-MHE are consid-
ered. It is shown, that the gradient and the Hessian of the Lagrange function of the NLP in the
update step can be efficiently calculated based on first-order state sensitivities. A new method
is presented for the efficient calculation of these sensitivities by exploiting the common under-
lying structure of the NLP. Future work will involve experiments at a test-rig to validate the
results presented in this paper.
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