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Abstract

Given a square matrix A and a pair of starting vectors b and c, the classical Lanczos algorithm generates two
sequences of biorthogonal bases for the Krylov subspaces Kq1(A,b) and Kq2(A

T , c), both with the same rank.
This algorithm is numerically unstable and can nt find more than limited number of biorthogonal vectors. In this
paper, we present a numerical stable Lanczos type algorithm with a simple structure, based on Gram-Schmidt
orthogonalization. This algorithm finds two biorthogonal bases for any pair of Krylov subspaces with more than
one starting vector and each vector in one basis is orthogonal to all other vectors in the other basis except for one
of them. This technique can be used for order reduction of the most general case of a linear time invariant Multi
Input Multi Output (MIMO) system using a two-sided Krylov subspace method. This method of order reduction is
based on matching some of the moments of original and reduced order system. With the help of this algorithm a
projection is found that can be applied to the high order system to find a lower order one.

Key Words. Lanczos Algorithm, Order Reduction, Krylov subspace, Large Scale Systems, MIMO Systems, Pro-
jection.

1 Introduction

For the reduction of very high order systems with ap-
plication to circuit simulation and micro electro me-
chanical systems (MEMS), Krylov subspace methods
are probably the best choice today e.g. [2, 3, 5]. They
define a projection from the high dimensional space of
the original model to a lower dimensional space and
vice versa and thereby find the reduced order model
and match some of the characteristic parameters of the
original and reduced order systems.

The system to be modelled is typically defined via
a set of state equations{

Eẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t), (1)

where E,A ∈ R
n×n, B ∈ R

n×m and C ∈ R
p×n

are given matrices and the components of the vector
valued functions u ∈ R

m, y ∈ R
p and x ∈ R

n are
the inputs, outputs and states of the system respec-
tively. For single-input single-output (SISO) systems,
p = m = 1 and matrices B and C reduce to vectors b
and cT . Throughout this paper, it is assumed that A is
nonsingular.

For system (1), moments (around zero) are defined
as follows

Mi = C(A−1E)iA−1B , i = 0, 1, · · · . (2)

Mi is a p × m matrix in multi input multi output
(MIMO) case and is a scalar in single input single out-
put (SISO) case. The Mis are the coefficients of Tay-
lor series expansion around zero for transfer function
of system (1) with deferent signs.

The block Krylov subspace is defined

Kq(A1,B1) = colspan{B1,A1B1, · · · ,Aq−1
1 B1},

(3)
where A1 ∈ R

n×n and B1 ∈ R
n×m, and starting

vectors are located in the columns of B1 matrix. The
vectors which span the subspace are called the basic
vectors.

Considering the state space representation (1),
two Krylov subspaces Kq1(A

−1E,A−1B) and
Kq2(A

−T ET ,A−T CT ) both with the same rank are
used for model order reduction and are called input
and output Krylov subspaces respectively.
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2 Order reduction using Krylov subspace method

Consider a projection as follows:

x = Vxr,
V ∈ R

n×q,x ∈ R
n,xr ∈ R

q ,
(4)

where q < n. By applying this projection to system (1)
and then multiplying the state equation by transpose
of some matrices W ∈ R

n×q , a model with reduced
order q can be found.
{

WT EVẋr(t) = WT AVxr(t) + WT Bu(t)
y = CVxr(t)

(5)

The reduced order system in state space can be identi-
fied by the following matrices:

Er = WT EV , Ar = WT AV (6)

Br = WT B , Cr = CV

In reduced order model (5), an approximation of
the full state vector x can be found from xr by x̂ =
Vxr. It can be proved that when V is a basis of in-
put Krylov subspace or W is a basis of output Krylov
subspace then the first q

m or q
p moments match re-

spectively and the method is called one-sided Krylov
method. When both V and W are bases of input
and output Krylov subspaces then the first q

m + q
p

moments1 match and the method is called two-sided
Krylov method [11].

Theorem 1 In using two-sided Krylov subspace
methods, the transfer function of the reduced order
system (5) is independent of the particular choice
of the bases V and W of the Krylov subspaces
Kq1(A

−1E,A−1B) and Kq2(A
−T ET ,A−T CT )

[11].

The idea to prove this theorem is that for every two
bases of a subspace there exist a nonsingular matrix
that can be multiplied to one basis from right hand side
to obtain the other basis. According to theorem 1, any
method that can find a pair of basis for input and output
Krylov subspaces leads to reduced order models with
the same input output behaviour.

Suppose that for a system with m inputs and p out-
puts, the reduced model with order q is desired. In this
case each moment has m · p entries. Each column of
matrices V and W leads to match one more row or
column of the moment matrices. So, there is no need
to increase q such that it is a multiplied of both m and
p. In two-sided methods m·q+p·q entries of the char-
acteristic parameters of the original and reduced order
models match and any number of the first columns of
the matrices V and W can be chosen optionally.

1Provided q
m

and q
p

are integers. Otherwise, some of the first
moments and some of the entries in the next moment match.

3 Orthonormalization

In many applications, it is desired to find an orthog-
onal basis for a given subspace. Consider a subspace
identified with a basis, Gram-Schmidt procedure finds
a set of orthnormal vectors that can be considered as a
basis for that subspace [7]. In this section finding an
orthonormal basis is explained.

Suppose that there exists a basis v1,v2, · · · ,vq for
a given subspace and an orthonormal basis for this sub-
space is desired. i.e. a basis like w1,w2, · · · ,wq must
be found such that

wT
i wj =

{
0 , i �= j
1 , i = j

, (7)

for every 1 ≤ i, j ≤ q.
For the beginning, one of the vectors in the basis

like v1 is chosen. The first vector of the new basis is
found by normalization of v1,

w1 =
v1√
vT

1 v1

.

For the next vector of orthonormal basis, we can
choose another vector like v2 and find w2 such that

span{w1,w2} = span{v1,v2}.

w2 can be calculated as a linear combination of v1 and
v2 which is orthogonal to w1,

ŵ2 = v2 − (wT
1 v2)w1.

It is simple to check that ŵ2 is orthogonal to w1. At
the end, this new vector must be normalized,

w2 =
ŵ2√
ŵT

2 ŵ2

.

The i-th vector must be chosen such that

span{w1, · · · ,wi} = span{v1, · · · ,vi}, (8)

and it must be orthogonal to all previous vectors. For
this reason we can calculate the next vector as,

ŵi = vi +
i−1∑
j=1

(wT
j vi)vj .

The last step is normalizing the vector ŵi to find
wi. By repeating these steps until i = q, it is possible
to find the orthonormal basis for that given subspace.

This algorithm is numerically unstable and can not
be used in practical examples. The remedy is using
modified Gram-Schmidt (MGS) [7] which is mathe-
matically the same as the original algorithm but nu-
merically stable. In this way the matrix ŵ is found by
using the following loop:
Set ŵi = vi then for j=1 to i-1 do:

h = wT
i vj , (9)

ŵi = ŵi − hvj .
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4 Modified Lanczos algorithm

As mentioned in section 2, using any bases of input
and output Krylov subspaces in projection leads to
match the first q

m + q
p moments. In most application

related models, the basic vectors used in the definition
of Krylov subspaces tend to be almost linearly depen-
dent even for moderate values of n. So, they should
not be used in numerical computations. Instead, there
exist other suitable bases that can be applied in order
reduction.

One of the ideas to avoid this problem is orthog-
onalizing the vectors. The classical Lanczos algo-
rithm [8] generates two sequences of basis vectors
which span the Krylov subspaces Kq(A1,b1) and
Kq(AT

1 , c1) that are orthogonal to each other,

WT V = I. (10)

The algorithm is only for single starting vectors and
can be applied to a special case of SISO systems with
very bad numerical behaviour. For MIMO case there
exist the block Lanczos algorithm [1]. This algorithm
is limited to the special case that the matrix A is equal
to identity. Otherwise, it is necessary to multiply the
state equation in system (1) by A−1 and then apply the
Lanczos method for this new system. In [6] there ex-
ists a modified version of classical Lanczos algorithm
with better numerical behaviour for order reduction of
MIMO systems. This algorithm is also numerically
unstable and after some iterations biorthogonality of
the vectors is lost. To avoid this problem, reorthogo-
nalization must be used [4]. In this paper we general-
ize the methods in [6, 4] for the general representation
of systems to find an stable algorithm for MIMO sys-
tems. So, the algorithm can be applied directly to the
system (1).

Now, consider the Krylov subspaces,
Kq1(A1,B1) and Kq2(A2,CT

2 ) with the same
rank and A1,A2 ∈ R

n×n, B1 ∈ R
n×m and

C2 ∈ R
p×n. There exist two choices to construct a

pair of basis for them using Lanczos algorithm. One
way is applying the block Lanczos algorithm. The
other way is constructing a pair of bases that each
vector in one basis is orthogonal to all other vectors in
another basis except for one of them like in [6],

WT V = I.

In this paper we present a generalized version of the
second method which is numerically preferable and
there is a choice to find optional number of biorthogo-
nal vectors.

In the following the Lanczos algorithm is presented
for the case that the number of inputs is less than or
equal to the number of outputs i.e. m ≤ p. So, the
starting vectors for input Krylov subspace is less than

or equal to the number of starting vectors for output
Krylov subspace. It is not difficult to modify the algo-
rithm for the other case that m > p. It is also assumed
that all basic vectors are linearly independent. We lo-
cate the biorthonormal bases vectors in the columns
of V and W for input and output Krylov subspaces
respectively.

Algorithm 1 Lanczos algorithm without deflation:

0. Start:
Choose the first m starting vector of output
Krylov subspace and calculate two sets of vec-
tors that are orthogonal to each other and span
the same space as two sets of starting vectors us-
ing MGS procedure i.e.

wT
i vj =

{
0 , i �= j
1 , i = j

for every 1 ≤ i, j ≤ m. These are the first m
columns of V and W.

1. Calculating the next vector:
For input Krylov subspace, the next vectors is
computed as follows,

ri = A1vi−m.

For the output Krylov subspace, if i ≤ p the next
vector is the i-th starting vector. Otherwise, the
next vector is

li = A2wi−p.

2. Orthogonalization:
By using the vectors ri and li in the last step and
MGS, the new columns before normalization can
be found by setting v̂i = ri and ŵi = li then for
j=1 to i-1 do:

h1 = v̂T
i wj ,

v̂i = v̂i − h1vj ,

h2 = ŵT
i vj ,

ŵi = ŵi − h2wj .

3. Normalization:
The i-th columns of matrices V and W are

vi =
sign(v̂T

i ŵi)v̂i√
v̂T

i ŵi

,

wi =
ŵi√
v̂T

i ŵi

.

4. Check for break down:
If i = q stop otherwise go to step 1 and continue.
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Theorem 2 In algorithm 1 the vectors v1, · · · ,vj and
w1, · · · ,wj span a space the same as the first j start-
ing vectors of input and output Krylov subspaces re-
spectively.

Proof: We prove the theorem only for input Krylov
subspace. The theorem for output Krylov subspace
can be proved in a similar way. For the first vector,
it is obvious because, it is a normalized vector of the
first basic vector. At first we prove that the vector vj

is calculated as a linear combination of the first j basic
vectors as follows,

vj = α(pj +
j−1∑
k=1

αkpk), (11)

where pj is the j-th basic vector and α is used for nor-
malization and it is a nonzero number. The first vector
v1 is a normalized form of the first basic vector p1.
Now consider that for the first i vectors the equation
(11) satisfies. For the first m vectors that are calcu-
lated according to orthogonormalization in step 2. For
i > m, the vector vi−m+1 contains the basic vector
pi−m+1 the same as equation (11) and then the vector
ri+1 in step 1 of the Lanczos algorithm, contain pi+1

with a nonzero coefficient. Therefore, vi+1 in step 2
and 3 is a linear combinations of the first i basic vec-
tors as indicated in equation (11).

Now, the first j columns of V are linear combina-
tions of the first j basic vectors. We know that all basic
vectors are linearly independent, so if we prove that
the first j columns of V are independent, the space
spanned by this columns are the same as the space
spanned by the first j basic vectors. Consider the lin-
ear combination,

j∑
i=1

βivi = 0.

If this equation is multiplied by wk for 1 ≤ k ≤ j
according to orthogonality we find,

wkβkvk = 0,

and the coefficient βk is zero. So, it can be proved that
all coefficient are zero and the first j columns of V are
linearly independent. Thus they span the same space
as the first j basic vectors.�

In algorithm 1, it was assumed that all basic vectors
are linearly independent. In general case, the follow-
ing algorithm can be applied which considers the num-
ber of independent starting vectors for input Krylov
subspace is less than or equal to the number of starting
vectors for output Krylov subspace.

Algorithm 2 Lanczos algorithm with deflation:

0. Start:
Delete all linearly dependent starting vectors to
find m1 and p1 independent starting vectors for
input and output Krylov subspaces2 (consider
m1 < p1). Then Choose the first m1 starting
vector of output Krylov subspace and calculate
the first m1 columns of V and W using MGS.

1. Calculating the next vector:
For input Krylov subspace, the next vectors is
computed as follows,

ri = A1vi−m1 .

For the output Krylov subspace, if i ≤ p1 the next
vector is the i-th starting vector. Otherwise, the
next vector is

li = A2wi−p1 .

2. Orthogonalization:
By using the vectors ri and li in the last step and
MGS, the new columns before normalization can
be found by setting v̂i = ri and ŵi = li then for
j=1 to i-1 do:

h1 = v̂T
i wj ,

v̂i = v̂i − h1vj ,

h2 = ŵT
i vj ,

ŵi = ŵi − h2wj .

3. Normalization:
If vector v̂i is zero reduce m1 to m1 − 1 and if
it remains nonzero go to step 1 else, break the
loop. Otherwise, if vector ŵi is zero reduce p1 to
p1 − 1 and if it remains nonzero go to step 1 else,
break the loop. Otherwise, if v̂T

i ŵi �= 0, the i-th
columns of matrices V and W are

vi =
sign(v̂T

i ŵi)v̂i√
v̂T

i ŵi

,

wi =
ŵi√
v̂T

i ŵi

.

4. Check for break down:
Check the stopping criterion, if not satisfied go to
step 1 and continue.

One of the properties of Krylov subspace is that, if
the i-th basic vector related to the starting vector bj is
a linear combination of all previous basic vectors, then
all other basic vectors vi+1, vi+2, · · · related to bj are
linear combination of the first i − 1 basic vectors.

2This can be done by using deflation in MGS in which the de-
pendent starting vectors are automatically deleted.
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In step 2 of algorithm 2, if v̂i or ŵi are zero, it
means that the i-th basic vector is a linear combination
of the previous basic vectors. If one of these vectors
for example v̂i is nonzero, it means that the first i basic
vectors are linearly independent because, as discussed
in theorem 2, v1, · · · , v̂i span the same space as the
first i basic vectors with rank i. Therefore, from this
step on, the corresponding starting vector should be
neglected.

4.1 Properties of Lanczos algorithm

In this subsection, we establish other theoretical prop-
erties of the vectors constructed by Lanczos algorithm
that can be expressed as the following theorem.

Theorem 3 If the Lanczos algorithm is applied to
the Krylov subspaces Kq1(A1,B1) and Kq2(A2,C1)
both with rank q, then the following relations are sat-
isfied:

WT V = I, (12)

WT A1V = H, (13)

VT A2W = T, (14)

where H,T ∈ R
q×q and for the entries of these ma-

trices, hij = 0 for i > j +m and tij = 0 for i > j +p
for all 1 ≤ i, j ≤ q.

Proof: The equation (12) is obvious and is a re-
sult of orthonormalization. Suppose that the Lanczos
algorithm has been repeated to construct enough num-
ber of vectors. Based on part 2 in the algorithm for
i > m1 we have

h(i+m1)(i+m1)vi+m1 = A1vi −
i+m1−1∑

j=1

hijvj ,

where h(i+m1)(i+m1) = v̂T
i+m1

ŵi+m1 and hij =
wT

j A1vi. It is possible to rewrite this equation as the
matrix form bellow,

A1vi =
[

v1 · · · vi+m1

] ×[
h1i · · · h(i+m1)(i+m1)

]T
. (15)

By writing the equations until i = q we have,

A1V = VH +
[

vq+1 · · · vq+m1

]×


h(q+1)i · · · h(q+1)(q+m1)

0 · · · h(q+2)(q+m1)

...
. . .

...
0 · · · h(q+m1)(q+m1)


 ,

(16)

where V = [ v1 · · · vq ]. Now we can multiply
equation (16) by WT = [ w1 · · · wq ]T and by

knowing the biorthigonality of these two sets of vec-
tors, we can find,

WT A1V = H,

where hij = 0 for i > j + m. Equation (14) can be
proved in a similar way.�

In order reduction when one of the matrices A or
E are identity matrix, A1 = AT

2 , and then matrices
H and T will be transpose of each other. In this case,
hij = 0 for i > j+m and j > i+p for all 1 ≤ i, j ≤ q.
By this assumption in SISO systems the matrices H
and T are tridiagonal matrices which is the famous
result in classical Lanczos algorithm.

5 Generalization to rational Lanczos

The algorithm discussed in the previous section were
founded for matching the moments around zero which
leads to approximate the slow dynamics of the original
system. As an alternative, it is possible to match the
moments around points other than zero.

The results of this paper can also be extended to
matching the moments around s0 �= 0 called rational
Krylov subspace method. The moments of the system
(1) around s0 are

Mi = C((A − s0E)−1E)i(A − s0E)−1B, (17)

where i = 0, 1, · · · . By comparing equation (17) and
(2) it can be seen that the matrix A has been substi-
tuted for A − s0E. Thus, in rational Krylov methods,
the subspaces Kq1((A − s0E)−1E, (A − s0E)−1b)
and Kq2((A − s0E)−T ET , (A − s0E)−T c) are con-
sidered.

The next step to find the reduced order model is
finding two bases for these Krylov subspaces that can
be done using Lanczos algorithm. The projection is
then applied to the model (1), as described in equa-
tions (5) and (6) ( i.e. A − s0E in equation (6) is
not substituted by A). With s0 = 0, the reduced and
original model have the same DC gain and steady state
accuracy is achieved. Small values of s0 will also find
a reduced model with good approximation of slow dy-
namics.

6 Application and conclusion

In order to illustrate the way that the algorithm works
the rear axle gear test stand is considered [9]. The or-
der of original model is 19 with 3 inputs and 4 outputs
that are the first 4 states. The algorithm 1 is applied
to reduce the order of the system. For this small sys-
tem, Lanczos algorithm without reorthogonalization
can not find more than 5 biorthogonal vectors.

The step for the second output and singular value
σ(s) for the original and reduced order models to order
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Figure 1: Step response of the 2nd output to the first
input. Solid: Original, Short Dashed: Order 13, Long
Dashed: Order 3

13 and order 3 for has been shown in figures 1 and 2.
As it can be seen the result for model with order 13
is very good and it can approximate the output of the
original system with very small error. For lower orders
this method can not approximate the fast dynamic of
the original model. In this case the step response of
reduced model can approximate the average of the step
response for original system.

The system is not really large scale but by consid-
ering one of the inputs and outputs and go to SISO
case, classical Lanczos method can not find more than
7 biorthogonal vectors and after that the method fails
and at most a reduced model with order 7 can be found
and there is no way to improve the reduced model and
go to higher orders. By applying the the modified
Lanczos algorithm and in the Lanczos algorithm pre-
sented here, it is possible to find more vectors that can
be considered as a basis of Krylov subspace. In this
method, it is possible to generate even 19 orthogonal
vectors and find the original system after applying the
projection.

Application of Lanczos and two-sided Arnoldi [11]
to systems of much higher order was carried out suc-
cessfully as well: the micro electro mechanical system
presented in [10] was reduced to order 11 with less
than 0.4% relative error to approximate the output and
less than 6.2% for approximating all 1071 states of the
original model.

The MATLAB functions can be requested from the
author.
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