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Abstract

In recent years, Krylov subspace methods have become popular tools for computing reduced order models of
high order linear time invariant systems. The reduction can be done by applying a projection from high order to
lower order space using bases of some subspaces called input and output Krylov subspaces. One aim of this paper
is describing the invariancies of reduced order models using these methods for MIMO systems: The effects of
changing the starting vectors of Krylov subspaces or its bases and changing the representation and the realization
of original state space model on the input-output behaviour of reduced order system are discussed. The differences
between one-sided Krylov methods (like Arnoldi algorithm) and two-sided methods (like Lanczos algorithm) with
respect to invariancies are pointed out. Furthermore, it is shown that how a matching of the moments and Markov
parameters of original and reduced order models can be achieved at the same time. Finally, a new two-sided
Arnoldi algorithm is suggested.

Keywords: Order Reduction, Krylov subspace, Moment matching, Large Scale Systems, Projection, Markov pa-
rameter.

1 Introduction

The simulation, analysis and controller design of high order control systems are complicated. These tasks can
be simplified by reducing the order of the original system and approximate it by a lower order model. In recent
years, much research has been done in order reduction of large scale systems with application to circuit simulation,
micro-electro-mechanical systems and more e.g. [1, 2, 3].

For the reduction of very high order systems, Krylov subspace methods are probably the best choice today.
They define a projection from the high dimensional space of the original model to a lower dimensional space and
vice versa and thereby define the reduced order model [4].

Degrees of freedom in the design are:

• Input and/or output Krylov subspace: For each state space system, there are two Krylov subspaces that are
dual to each other, input Krylov subspace and output Krylov subspace. For order rduction, it is possible to
use one of these subspaces or both of them in projection. Using only one Krylov subspace, called one-sided
method, leads to match q characteristic parameters and by using both of them, called two-sided method, 2q
characteristic parameters can be matched.

• Starting vectors of subspaces: By suitable choice of starting vectors of the Krylov subspaces, characteristic
parameters of original and reduced order model equal each other: the so called moments and Markov param-
eters. It will be shown that changing the starting vector in an appropriate way leads to match more moments
or more Markov parameters without changing the sum of the matching parameters.

• Choice of bases of Krylov subspaces: After defining the Krylov subspace, a basis of it must be found that
defines the projection. It will be shown that this influences the reduced model but not its transfer function.
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• Representation and the realization of the original state space model: Different representations and realiza-
tions of the same original model may lead to different reduced order systems. This is undesired in most
applications. It is therefore investigated what algorithms are unaffected by change of model representation
and realization.

In the following sections, the influence of these design parameters on the reduced model are discussed, in order
to improve transparency and to facilitate the choice of a particular algorithms like Arnoldi [5] or Lanczos [6].

In section 2, the representation of an LTI system that will be used during the paper is introduced together with
the definition of moments and Markov parameters. The next section is about order reduction and matching the
moments and Markov parameters using Krylov subspaces. In section 4, it is proved that the reduced order model
is independent of the choice of the bases and only depends on the Krylov subspaces used in projection. In sections
5 and 6, the effect of changing the realization and representation of original model on the reduced order system in
one-sided and two-sided methods are investigated. In section 7 we briefly describe two known basic algorithms for
the numerical computation of Krylov bases and as a third option, we recommend a two-sided Arnoldi algorithm.
We conclude by a table summarizing the invariance properties.

2 System representation and moments

We consider the dynamical multi-input multi-output (MIMO) system of the form{
Eẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t), (1)

where E,A ∈ R
n×n, B ∈ R

n×m and C ∈ R
p×n are given matrices and the components of the vector valued

functions u ∈ R
m, y ∈ R

p and x ∈ R
n are the inputs, outputs and states of the system respectively. For

single-input single-output (SISO) systems, i.e. p = m = 1, matrices B and C reduce to vectors b and cT .
The transfer function of the system in (1) is

G(s) = C(sE − A)−1B. (2)

By assuming that A is nonsingular, the Taylor series of this transfer function around zero is:

G(s) = −CA−1B − C(A−1E)A−1Bs − · · · − C(A−1E)iA−1Bsi − · · · . (3)

The coefficients of this series, without negative sign, are called moments according to the following,

Definition 1 In system (1), suppose that A is nonsingular, then the i-th moment (around zero) of this system is

Mi = C(A−1E)iA−1B , i = 0, 1, · · · . (4)

Mi is a p × m matrix in MIMO case and is a scalar in SISO case,

mi = cT (A−1E)iA−1b , i = 0, 1, · · · . (5)

Moments can be defined around points s0 �= 0 by rewriting the transfer function to

G(s) = C[(s − s0)E − (A − s0E)]−1B . (6)

By comparing the equations (2) and (6) the moments around s0 can be computed by substituting A by A − s0E
in definition 1, assuming that A − s0E is nonsingular.

A different series results when s0 −→ ∞. By putting s = 1/ζ in (2) and developing the Taylor series around
ζ = 0, the series is

G(s) = CE−1Bs−1 + C(E−1A)E−1Bs−2 + . . . + C(E−1A)iE−1Bs−i + . . . , (7)

and its coefficients are called Markov parameters [7].
Moments and Markov parameters will be used to describe similarity of original and reduced order models.

In this context, it will be interesting what influence the representation and realization of system (1) have. The
realization of (1) is changed by applying a nonsingular state transformation x = Tz to (1), resulting in{

ETż(t) = ATz(t) + Bu(t),
y(t) = CTZ(t), (8)
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whereas we say the representation is changed by pre-multiplying by a nonsingular matrix T to (1),
{

TEẋ(t) = TAx(t) + TBu(t),
y(t) = Cx(t),

which does not change the state vector.

3 Order reduction

In this section, order reduction is introduced by applying projections to system (1). Suitable projections can be
calculated from Krylov subspaces, defined in 3.1.

3.1 Krylov subspace

Definition 2 The Krylov subspace is defined

Kq(A1,b1) = span{b1,A1b1, · · · ,Aq−1
1 b1}, (9)

where A1 ∈ R
n×n and b1 ∈ R

n is called starting vector. The vectors b1, A1b1, · · · to construct the subspace
are called basic vectors.

If the i-th basic vector in Krylov subspace (9) is a linear combination of the previous vectors, then the next basic
vectors can be written as linear combinations of the first i−1 vectors (this can easily be proved by pre-multiplying
with A1). Therefore, the first independent basic vectors can be considered as a basis for the Krylov subspace.

When there exist more than one starting vector, definition 2 can be generalized to the following form.

Definition 3 The block Krylov subspace is defined

Kq(A1,B1) = colspan{B1,A1B1, · · · ,Aq−1
1 B1}, (10)

where A1 ∈ R
n×n and B1 ∈ R

n×m, and starting vectors are located in the columns of B1 matrix.

The block Krylov subspace with m starting vectors can be considered as a union of m Krylov subspaces applied
to each starting vector. So, finding a basis for (10) using basic vectors is more complicated and is not discussed
in detail here. Instead, in this paper, it is assumed that q is small enough so that all basic vectors are independent
(otherwise, by deleting dependent basic vectors, it is easy to modify MIMO results in this paper).

3.2 Moment matching (SISO)

In this section we calculate reduced order models by applying projections to the original SISO system. We show
that a number of moments of reduced and original models are equal to each other, if the projection is generated
from any basis of some specific Krylov subspaces.

Consider a projection as follows:

x = Vxr,
V ∈ C

n×q,x ∈ C
n,xr ∈ C

q,
(11)

where q < n. By applying this projection to system (1) in SISO case and then multiplying the state equation by
transpose of a matrix W ∈ C

n×q , a reduced model of order q can be found,
{

WT EVẋr(t) = WT AVxr(t) + WT bu(t),
y = cT Vxr(t).

(12)

The reduced order system in state space can be identified by the following matrices:

Er = WT EV , Ar = WT AV,
br = WT b , cT

r = cT V.
(13)

Theorem 1 If the matrix V used in (12), is a basis of Krylov subspace Kq1(A
−1E,A−1b) with rank q and matrix

W is chosen such that the matrix Ar is nonsingular, then the first q moments (around zero) of the original and
reduced order systems match.
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Proof: Based on definition 1, the zeroth moment of the reduced system is

mr0 = cT
r A−1

r br = cT V(WT AV)−1WT b.

The vector A−1b is in the Krylov subspace and it can be written as a linear combination of the columns of matrix
V,

∃r0 ∈ C
q : A−1b = Vr0.

Therefore,

(WT AV)−1WT b = (WT AV)−1WT (AA−1)b = (WT AV)−1WT AVr0 = r0. (14)

With this, mr0 becomes

mr0 = cT V(WT AV)−1WT b = cT Vr0 = cT A−1b = m0.

For the next moment the result in equation (14) will be used and then

(WT AV)−1WT EV(WT AV)−1WT b = (WT AV)−1WT EVr0 = (WT AV)−1WT EA−1b.

The vector A−1EA−1b is also in the Krylov subspace and can be written as

A−1EA−1b = Vr1. (15)

Thus,

(WAV)−1WT (AA−1)EA−1b = (WT AV)−1WT AVr1 = r1 =⇒
mr1 = cT V(WT AV)−1WT EV(WT AV)−1WT b = cT Vr1 = cT A−1EA−1b = m1.

(16)

The theorem for the second moment will be proved by using (14) and (16) and knowing that (A−1E)2A−1b can
be written as linear combination of columns of matrix V. By repeating these steps, the proof can be continued
until mr(q−1) = mq−1 and q moments match.1�

The subspace Kq1(A
−1E,A−1b) is called input Krylov subspace and order reduction using a basis of this

subspace for projection and optionally chosen matrix W is called one-sided Krylov subspace method.
The only constraint on choosing matrix W is nonsingularity of Ar. By appropriate choice of W, it is possible

to match even more than q moments. For this, another Krylov subspace will be introduced in the following theorem.

Theorem 2 If the matrix V and W used in (12), are bases of Krylov subspaces Kq1(A
−1E,A−1b) and

Kq2(A
−T ET ,A−T c) respectively, both with rank q, then the first 2q moments of the original and reduced or-

der system will match. It is assumed that A and Ar are invertible.

Proof: According to theorem 1, the first q moments match. We know that the vector A−T c is in the output
Krylov subspace and it can be written as a linear combination of the columns of matrix W.

∃l0 ∈ C
q : A−T c = Wl0 =⇒

cT V(WT AV)−1WT EV = cT (A−1A)V(WT AV)−1WT EV

= lT0 WT AV(WT AV)−1WT EV

= lT0 WT EV = cT A−1EV. (17)

From the proof of theorem 1 for the moment mq−1, we know that

V[(WT AV)−1WT EV]q−1(WT AV)−1WT b = Vrq = (A−1E)q−1A−1b. (18)

By using equations (17) and (18), for moment mq we have

mrq = (WT AV)−1cT V[(WT AV)−1WT EV]q(WT AV)−1WT b

= cT V[(WT AV)−1WT E]V[(WT AV)−1WT EV]q−1(WT AV)−1WTb

= cT A−1E(A−1E)q−1A−1b = cT (A−1E)qA−1b = mq. (19)

1If system (1) is controllable then q1 in theorem 1 equals q. If q < q1, then all moments match.
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For the next moment equations (19) and (18) must be used. By knowing that the vector A−T ET A−T c is in
the Krylov subspace, it can be proved that the next moment matches. As in the proof of theorem 1, the steps are
repeated until mr(2q−1) = m2q−1 and 2q moments match. 2�

The subspace Kq2(A
−T ET ,A−T c) is called output Krylov subspace and order reduction using both input and

output Krylov subspaces for projection is called two-sided Krylov subspace method.
Input and output Krylov subspaces are dual of each other. By using this duality, it is possible to choose matrix

V optionally and matrix W as a basis of output Krylov subspace and the first q moments match. It can be expressed
as the following corollary.

Corollary 1 If the matrix W used in (12) is a basis of the output Krylov subspace with rank q and matrix V is
chosen such that the matrix Ar is nonsingular, then the first q moments of the original and reduced order system
will match.

This corollary as well as theorems 1 and 2 were founded for matching the moments around zero. The results
can also be extended to matching the moments around s0 �= 0 by substituting A by A − s0E in the definition of
moments and Krylov subspaces. This means that for instance in theorem 2 the subspaces Kq1((A−s0E)−1E, (A−
s0E)−1b) and Kq2((A−s0E)−T ET , (A−s0E)−T c) are considered. The projection is then applied to the model
(1), as described in equations (11) and (13) ( i.e. A in equation (13) is not substituted by A − s0E. With s0 = 0,
the reduced and original model have the same DC gain and steady state accuracy is achieved. Small values of s0

will also find a reduced model with good approximation of slow dynamics. An approximation of the full state
vector x can be found from xr by x̂ = Vxr.

3.3 Matching the Markov parameters (SISO)

Another tool for determining the similarity between LTI systems, specially at high frequencies, is comparing the
Markov parameters. By suitably changing the starting vectors in input and output Krylov subspaces, not only some
of the moments but also some of the Markov parameters can be matched.

In [8] a special case for matching only the Markov parameters, called Oblique Projection, has been introduced.
The oblique projection method leads to a good approximation at high frequencies which most of the time is not
desired. In the following a general case will be discussed.

Theorem 3 If the matrix V used in (12), is a basis of Krylov subspace Kq1(A
−1E, (E−1A)lA−1b) with rank q

where l ∈ Z and 0 ≤ l ≤ q and matrix W is chosen such that the matrices Ar and Er are nonsingular then the
first q − l moments and the first l Markov parameters of the original and reduced order system will match. It is
assumed that A, E, Ar and Er are nonsingular.

Proof: The proof for moments m0, · · · ,mq−l is the same as in theorem 1. For the Markov parameters, we
know that for 1 ≤ l the vector E−1b is in the Krylov subspace and it can be written as a linear combination of the
columns of matrix V. So,

E−1b = Vr0 . (20)

The zeroth Markov parameter for reduced system is

pr0 = cT
r E−1

r br = cT V(WT EV)−1WT b.

By using equation (20) we have

(WT EV)−1WT b = (WT EV)−1WT (EE−1)b = (WT EV)−1WT EVr0 = r0. (21)

Thus,
pr0 = cT V(WT EV)−1WT b = cT Vr0 = cT E−1b = p0.

For the next parameter by using equation (21) we have

(WT EV)−1WT AV(WT EV)−1WT b = (WT EV)−1WT AVr0 = (WT EV)−1WT AE−1b.

2If system (1) is minimal then q1 = q2 = q. Otherwise all moments match and the algorithm finds a minimal realization.
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The vector E−1AE−1b is also in the Krylov subspace and it can be written as a linear combination of the columns
of matrix V. So,

∃r1 ∈ C
q : E−1AE−1b = Vr1 =⇒

(WT EV)−1WT (EE−1)AE−1b = (WT EV)−1WT EVr1 = r1 =⇒
pr1 = cT V(WT EV)−1WT AV(WT EV)−1WT b = cT Vr1 = cT E−1AE−1b = p1.

By means of preceding relations the equality for the next Markov parameter can be shown. By repeating these
steps, the proof can be continued until pr(l−1) = pl−1 and l Markov parameters match.�

In theorem 3 the proof begins from the zeroth moment for matching the q − l moments. Therefore, if the
vector A−1b is not in the Krylov subspace the moments will not match. On the other hand, for matching the
Markov parameters, the vector E−1b must be in the Krylov subspace. To this end, the parameter l must satisfy the
inequality in the theorem. Otherwise, there will be no matching, neither for moments nor for Markov parameters.

By using W as a basis of output Krylov subspace with a suitable starting vector, it is possible to match more
than q parameters (moments and Markov parameters) of reduced and original models. The following theorem
generalizes theorem 2 for matching the Markov parameters.

Theorem 4 If the matrices V and W used in (12), are bases of Krylov subspaces Kq1(A
−1E, (E−1A)l1A−1b)

and Kq2(A
−T ET , (E−T AT )l2A−T c) respectively, both with rank q where l1, l2 ∈ Z and 0 ≤ l1, l2 ≤ q then the

first 2q − l1 − l2 moments and the first l1 + l2 Markov parameters of the original and reduced order system will
match. It is assumed that A, E, Ar and Er are invertible.

Proof:The proof of this theorem is similar to the generalization of theorem 1. In the same way and by using
theorem 3 we can continue the proof by means of the basis of output Krylov subspace. �

There is a similarity between theorems 3 and 4 and their generalization in theorems 1 and 2. In one-sided
Krylov methods the number of matched characteristic parameters (moments and Markov parameter) of original
and reduced order systems is q. In two-sided methods for both theorems, it is double and equals 2q.

3.4 MIMO systems

Order reduction of MIMO systems can be done by using Krylov subspace methods to match some of the moments
or Markov parameters. The generalization of reduced order model (12) for a system with m inputs and p outputs
is {

WT EVẋr(t) = WT AVxr(t) + WT Bu(t)
y = CVxr(t)

(22)

In the following, the theorems 1 and 2 are generalized to the MIMO case. Similar results can be proved for
matching the Markov parameters, but are omitted here.

Theorem 5 If the matrix V used in (22), is a basis of Krylov subspace Kq1(A
−1E,A−1B) with rank q (where q

is a multiple of m) and matrix W is chosen such that the matrix Ar is nonsingular then the first q
m moments of the

original and reduced order system match. It is assumed that A is invertible.

Proof: The proof is the same as the proof in theorem 1 but the parameters r0, r1, · · · are q × m matrices. �

Theorem 6 If the matrices V and W used in (22), are bases of Krylov subspaces Kq1(A
−1E,A−1B) and

Kq2(A
−T ET ,A−T CT ) respectively, both with rank q (where q is a multiple of m and p) then the first q

m + q
p

moments of the original and reduced order system will match. It is assumed that A and Ar are invertible.

Proof: The proof is the same as the proof of theorem 2 but the parameters r0, r1, · · · are q × m matrices and
the parameters l0, l1, · · · are q × p matrices. �

In MIMO case, the moments are not scalars and each moment has m · p entries. Thereby, the number of
matching scalar characteristic parameters is m · p · q

m = p · q for theorem 5 and m · p · ( q
m + q

p ) = p · q + m · q
for theorem 6.

For a system with m inputs and p outputs, each column of the matrices V and W leads to match one more row
or column of the moment matrices. So, by choosing the first q columns of the matrices V and W, it is possible to
find a reduced model of order q and q characteristic parameters of the original and reduced model match and there
is no need to increase q such that it is a multiple of both, m and p.
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4 Invariance to change of Krylov bases

In section 3.2, it was shown that using any basis of input or output Krylov subspaces for order reduction leads to
moment matching. The following theorem states that even the input output behaviour of the reduced model does
not depend on the choice of basis.

Theorem 7 The transfer function of the reduced order system (22) is independent of the particular choice of the
bases V and W of the Krylov subspaces Kq1(A

−1E,A−1B) and Kq2(A
−T ET ,A−T CT ).

Proof: Consider two reduced order models by using bases V1,W1 and V2,W2. The reduced order models
are {

WT
1 EV1ẋr1(t) = WT

1 AV1xr1(t) + WT
1 Bu(t),

y = CT V1xr1(t),
(23)

{
WT

2 EV2ẋr2(t) = WT
2 AV2xr2(t) + WT

2 Bu(t),
y = CV2xr2(t).

(24)

The columns of matrix V2 and W2 are in the input and output Krylov subspaces, respectively. So, they can be
written as a linear combination of the other bases which are columns of matrices V1 and W1,

∃Qv ∈ C
q·m×q·m,Qw ∈ C

q·p×q·p : V2 = V1Qv,W2 = W1Qw. (25)

Since V1, V2, W1 and W2 are full rank, matrices Qv and Qw are invertible. By substituting equations (25) into
equation (24) we find

{
QT

wWT
1 EV1Qvẋr2(t) = QT

wWT
1 AV1Qvxr2(t) + QT

wWT
1 Bu(t),

y = CV1Qvxr2(t).

Qw is invertible and we can multiply both sides of the state equation by Q−T
w ,

{
WT

1 EV1Qvẋr2(t) = WT
1 AV1Qvxr2(t) + WT

1 Bu(t)
y = CV1Qvxr2(t)

Applying the state transformation z = Qvxr2 to this system, converts it into (23). So, the reduced order models
(23) and (24) have the same transfer functions. �

In the proof of the theorem 7, it can be seen that, if projection matrices V and W are changed in the way
that V2 = V1Qv and W2 = W1Qw where Qv and Qw are nonsingular matrices, then the transfer function
of reduced order model does not change. This assumption on changing the projection matrices can be used in
one-sided methods and corresponding invariancy can be proved.

For the one-sided method we define the following set,

S(Mf ) =
{

M : ∃Q,Q−1,M = MfQ
}

.

Corollary 2 If the matrix V used in (22), is a basis of input Krylov subspace with rank q and the matrix W ∈
S(Wf ) with a fixed matrix Wf then the transfer function of the reduced order system is independent of the
particular choice of the bases V and the matrix W.

In many papers about one-sided methods using input Krylov subspace, it is suggested to choose W = V and
then apply the projection [2]. In this case by changing the basis, the matrix W is changed but, according to the
corollary 2 the transfer function of the reduced order model is not changed.

As a dual of corollary 2, one-sided method using output Krylov subspace is also invariant to change of basis:

Corollary 3 If the matrix W used in (22), is a basis of output Krylov subspace with rank q and the matrix V ∈
S(Vf ) with a fixed matrix Vf then the transfer function of the reduced order system is independent of the particular
choice of the bases W and the matrix V.

Corresponding theorems and corollary can be formulated for the subspaces used in Markov parameter match-
ing.
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5 Invariance to representation

So far, it is not clear if the representation of the original system affects the reduced order model or not. In the
following, the invariancy to change of representation for one-sided and two-sided methods will be discussed.

Theorem 8 In order reduction based on projection in theorems 2 and 6 using two-sided method, changing the
representation of the original system does not change the input output behaviour of the reduced order model.

Proof: Consider two different representations of an original system{
E1ẋ(t) = A1x(t) + B1u(t)
y = C1x(t) ,

{
E2ẋ(t) = A2x(t) + B2u(t)
y = C2x(t) ,

where
E2 = TE1 , A2 = TA1 , B2 = TB1 , C1 = C2 .

Based on the assumption in theorems 2 and 6, the matrices A1 and A2 are nonsingular and T = A2A−1
1 . Thus,

A−1
2 E2 = A−1

1 E1 , A−1
2 B2 = A−1

1 B1 , C1 = C2 . (26)

For reducing the first representation, the subspaces Kq(A−1
1 E1,A−1

1 B1) = Ki1 and Kq(A−T
1 ET

1 ,A−T
1 CT

1 ) =
Ko1 and for the second representation the subspaces Kq(A−1

2 E2,A−1
2 B2) = Ki2 and Kq(A−T

2 ET
2 ,A−T

2 CT
2 ) =

Ko2 must be used. According to theorem 7 the basis does not change the input output behaviour of the transfer
function. So, it is enough to prove the theorem for one pair of bases.

We can easily choose the basic vectors of Krylov subspaces for projection. For the representation one

V1 = [ A−1
1 B1 A−1

1 E1A−1
1 B1 · · · (A−1

1 E1)q−1A−1
1 B1 ],

W1 = [ A−T
1 C1 A−T

1 ET
1 A−T

1 CT
1 · · · (A−T

1 ET
1 )q−1A−T

1 CT
1 ],

and for representation two

V2 = [ A−1
2 B2 A−1

2 E2A−1
2 B2 · · · (A−1

1 E1)q−1A−1
1 B1 ],

W2 = [ A−T
2 CT

2 A−T
2 ET

2 A−T
2 CT

2 · · · (A−T
2 ET

2 )q−1A−T
2 CT

2 ].

By using equation (26), for the i-th column of matrices V1 and V2 we can write

v2i = (A−1
2 E2)i−1A−1

2 B2 = (A−1
1 E1)i−1A−1

1 B1 = v1i.

So, the matrices V2 and V1 are equal. For W2 and W1 we have

w2i = (A−T
2 ET

2 )i−1A−T
2 CT

2

= A−T
2 (ET

2 A−T
2 )i−1CT

2

= A−T
2 AT

1 A−T
1 (ET

1 A−T
1 )i−1CT

1

= (A−T
2 AT

1 )(A−T
1 ET

1 )i−1A−T
1 CT

1 = (A−T
2 AT

1 )w1i.

So, W2 = (A1A−1
2 )T W1 and the reduced order models for these two representations are{

WT
1 E1V1ẋr1(t) = WT

1 A1V1xr1(t) + WT
1 B1u(t),

y = C1V1xr1(t),{
WT

2 E2V2ẋr2(t) = WT
2 A2V2xr2(t) + WT

2 B2u(t),
y = C2V2xr2(t),

By using equation (26) and V2 = V1 and W2 = (A1A−1
2 )T W1 we find that

Er2 = WT
2 E2V2 = (WT

1 A1A−1
2 )E2V1 = WT

1 A1A−1
1 E1V1 = WT

1 E1V1 = Er1,

Ar2 = WT
2 A2V2 = (WT

1 A1A−1
2 )A2V1 = WT

1 A1V1 = Ar1,

Br2 = WT
2 B2 = (WT

1 A1A−1
2 )B2 = WT

1 A1(A−1
1 B1) = WT

1 B1 = Br1,

Cr2 = C2V2 = C1V1 = Cr1,

Thus, the reduced order systems are exactly the same.�
The same result can be proved for one-sided method using output Krylov subspace with fixed V. But in

one-sided method using input Krylov subspace a corresponding theorem does not exist, although V1 = V2. In
one-sided methods, like the commonly used Arnoldi algorithm, the reduced order model and its transfer function
matrices are changed when the system representation of original model is changed. In application, this can be an
essential disadvantage, since it makes results depending on representation.
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6 Invariance to realization

In most cases, it is desired to have an order reduction method which only depends on the input-output behaviour
of the original system. So, it is necessary to examine the invariance of Krylov subspace methods to realization of
the original system.

Theorem 9 In two-sided Krylov method, changing the realization of the original system does not change the
input-output behaviour of the reduced order model.

Proof: Consider the two realizations of the original system using an invertible matrix T
{

Eẋ(t) = Ax(t) + Bu(t)
y = Cx(t) ,

{
ETż(t) = ATz(t) + Bu(t)
y = CTz(t) . (27)

The system in the left hand side is the original one and the system on right hand side is another realization of it, as
introduced in equation (8). According to theorem 8 the representation of the system does not affect input-output
relations of reduced order model. Therefore, in the following, it is sufficient to prove the theorem for one of the
possible representations.

With these representations in (27), for the first realization, the subspaces Kq(A−1E,A−1B) = Ki1 and
Kq(A−T ET ,A−T CT ) = Ko1 and for the second realization the subspaces Kq(T−1A−1ET,T−1A−1B) =
Ki2 and

Kq(A−T T−T TT ET ,A−T T−T TT CT ) = Kq(A−T ET ,A−T CT ) = Ko1, (28)

must be used. According to theorem 7 the basis does not change the input output behaviour of the reduced order
system. So, it is enough to prove the theorem for one pair of bases. We choose the basic vectors of Krylov
subspaces for projection. The output Krylov subspaces are the same, so W1 = W2 = W. In the realization one

V1 = [ A−1B A−1EA−1B · · · (A−1E)q−1A−1B ],

and for realization two

V2 = [ T−1A−1B T−1A−1ETT−1A−1B · · · (T−1A−1E1T)q−1T−1A−1B ],

v2i = (T−1A−1E1T)i−1T−1A−1B = T−1A−1(E1TT−1A−1)i−1B

= T−1A−1(E1A−1)i−1B = T−1v1i =⇒
V2 = T−1V1 =⇒ V1 = TV2. (29)

The reduced order models for these two realizations are{
WT EV1ẋr(t) = WT AV1xr(t) + WT Bu(t)
y = CV1xr(t)

,

{
WT ETV2żr(t) = WT ATV2zr(t) + WT Bu(t)
y = CTV2zr(t)

.

By applying equation (29) into the second reduced order model the proof will be completed.�
It is not difficult to check that the corresponding result for one-sided method using output Krylov subspace

with fixed V exists, because output Krylov subspace is independent of realization and the method is independent
of representation. But in one-sided methods using input Krylov subspace, changing the realization of original
model changes the reduced order model, because this method is not independent of representation.

7 Computational aspects

In most application related models, the basic vectors used in the definition of Krylov subspace tend to be almost
linearly dependent even for moderate values of n. So, they should not be used in numerical computations. Instead,
there exist other suitable bases that can be applied in order reduction:

• One of the most popular algorithms which finds a basis for a Krylov subspace, is the Arnoldi algorithm
[5, 1]. This algorithm constructs an orthogonal basis for Krylov subspace and its good accuracy results from
orthogonality. It has successfully been applied to system of order greater than 1000. In this method it is
common to choose W = V. When one of the matrices A or E is identity matrix, this choice of W helps to
find the reduced order model with less computational effort because WT V = I.

9



• In two sided methods, Lanczos algorithm is very common [6, 9, 10]. It finds two bases for input and output
Krylov subspaces that are orthogonal to each other. The numerical accuracy of this algorithm is not as good
as Arnoldi but in many of cases, it leads to acceptable results. In this algorithm, WT V = I which, if A or
E equals to identity matrix, leads to less computational effort and simplifies the reduced order model.

• The authors of this paper propose to use a two-sided method using the Arnoldi algorithm twice, first for the
calculation of a basis V of the input Krylov subspace, then for the calculation of a basis W for the output
Krylov subspace (the reduced model then is (12) or (22)). This method can be called two-sided Arnoldi
algorithm[11]. It is simple to implement, it is numerically more robust than the Lanczos and it leads to
reduced model with the same transfer function as Lanczos. Application of the two-sided Arnoldi algorithm
to different technical systems have led to better result than one-sided Arnoldi, while Lanczos failed for
numerical reasons. No problems in evaluating (13) were observed.

8 Conclusion

In this paper some general invariant properties in moment matching for SISO and MIMO system using Krylov
subspaces in both one-sided and two-sided methods were introduced. As mentioned in section 2 the reduction
methods can be generalized for matching the moments around points s0 �= 0, the methods are then called rational
Krylov subspace methods [1, 9]. In addition, it was shown how matching the Markov parameters and moments can
be combined for better approximation at high frequencies.

The results of our invariance investigations are summarized in table 1. The one-sided methods based on input
Krylov subspace possess the weakest invariance properties, i.e. the transfer function of the resulting reduced order
model depends on how the designer wrote down the equations for the original model. Reduced order models
using two-sided methods not only match more moments than other methods in the table, but also their input-output
behaviour is independent of the realization and representation of original system. In fact, the result of two-sided
method only depends on the transfer function of original model (and on q and s0).

At the end, by knowing that the input-output behaviour of reduced order models is independent of the choice of
bases, it was suggested to use a two-sided Arnoldi algorithm instead of Lanczos algorithm because of numerically
robustness.

Table 1: Invariance properties of Krylov subspace methods in SISO case and its effect on the reduced order model
Method Subspace Used Number of Change of Basis Change of Change of

matching Parameters Representation Realization

One-sided - Input Krylov q Parameters Transfer function Transfer function Transfer function
- W is fixed is unchanged changes changes

One-sided - Input Krylov q Parameters Transfer function Transfer function Transfer function
- W = V is unchanged changes changes

One-sided - output Krylov q Parameters Transfer function Transfer function Transfer function
- V is fixed is unchanged is unchanged is unchanged

One-sided - output Krylov q Parameters Transfer function Transfer function Transfer function
- V = W is unchanged changes changes

Two-sided - output Krylov 2q Parameters Transfer function Transfer function Transfer function
- Input Krylov is unchanged is unchanged is unchanged
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