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Abstract:  If the disturbance acting on a dynamic system can be measured or observed, it is 

advantageous to not only apply standard output feedback but to design a disturbance 

feedback, attenuating the influence of disturbances more directly without affecting stability of 

the plant. This note outlines a new straight-forward approach to the design of disturbance 

compensating control, based on a differential flatness approach.  

Introduction:  In the past decade, a differential algebraic approach to the analysis and design 

of nonlinear dynamic systems was introduced by M. Fliess and co-authors: the so-called 

flatness of systems [1-3]. In view of control systems design, flatness can be defined as 

follows: Consider a nonlinear time-invariant dynamical system 

  ,           (1) ),( uxfx =& 0)0( xx =

with the (n,1)-vector x of state variables and the (m,1)-vector u of control input variables (and 

with smooth f and u). This system is called flat or differentially flat if m output variables 
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exist, such that the state vector x and the control input vector u can be expressed in terms of y 

and a finite number of its time-derivatives, 
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If this condition holds (at least locally) then the vector y is called a flat output of the system. 

Note that y includes as many components as u and that y may be a function not only of x but 

of u and a finite number of its time-derivatives. Besides the (fictitious) flat output y, it may be 

helpful to separately define a vector of the (real) output variables to be controlled, the control 

output vector 

 ) .         (5) (xcy realreal =

As an alternative to differential-geometric approaches [4,5], flatness has been successfully 

applied in several fields of control [1-3], like state-feedback design, model-based tracking 

control, and others. In the following section, another application of flatness is outlined, the 

design of a disturbance feedback which – in many cases – can keep the influence of 

disturbance away from the control output vector.  

Disturbance Compensation:  If the disturbances acting on a system are accessible to direct 

measurement or can be estimated or observed then the design of a disturbance feedback turns 

out to be a very effective control measure. Figure 1 illustrates the arrangement: From the 

disturbance signal z, a control input signal u is generated, attenuating or fully compensating 

the influence of the disturbance on the control output  of the system. The design of the 

disturbance feedback can be done as follows: First, the system description (1) is extended to 

realy

 ) , ,       (6) ,,( zuxfx =& 0)0( xx =

where z denotes the (p,1)-vector of external disturbance input variables. Flatness with respect 

to the total number m+p of input variables u and z requires the existence of a (m+p,1)-vector 
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Fig 1   Disturbance feedback control system 

 

For full disturbance compensation we seek a control input u(t) so that  is uneffected by z. 

For instance, we might ask for 

realy

0y ≡)(treal  or, more generally, specify a desired reference 
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while respecting the initial condition )()0( 0xcy realreference = . Assuming that a flat output (7) is 

known, we can substitute x from (8) into (11) and find 
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This is a differential equation to be fulfilled by the flat output y(t). In addition, y has to fulfil 

the differential equation (10) with externally given z(t) and has to fulfil (8) at initial time 0,  
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If a solution of (10), (12), (13) exists and can be found, the disturbance feedback u(t) is given 

by (9). In a practical implementation, the differential equations (10),(12) have to be solved 

online and numerically, while z is measured. In most cases, the number of real output 

variables equals the number m of control inputs; Then, (10) and (12) represent p+q 

differential equations for the p+q components of y. Note that (10), (12), (13) may only be 

solvable under certain conditions between , z(t) and , and that internal stability is 

related to the stability of possible zero-dynamics of the system. These issues will be 

considered in future work.  

0x )(treferencey

Two Examples: (1) Consider a two-tanks-system with filling heights , an inflow u, a 

disturbed but measured outflow z, and a flow q between the tanks, 

21, xx

 uxxqx +−= ),( 211&    , zxxqx −= ),( 212& .      (14) 

The vector  is a flat output since we check (8)-(10) to be Txx ],[ 21=y

),(,),(,, 2122112211 yyqyzyyqyuyxyx +−=+=== && .   (15) 

In order to keep 2xyreal =  at a desired constant height h, we immediately find (12) to be 

 (thus ), and (10) to be , i.e. two algebraic 

equations. Consequently, the disturbance feedback (9) reads 
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provided that (13) holds: , .  hx =)0(2 )),0(()0( 1
1 hzqx −=

(2) Consider the nonlinear model 

 uxxzxhxxxgxxx +−=++−=⋅+−= 331222311 ,)(3),(2 &&& ,   (17) 
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The vector y represents a flat output since with 
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we can solve for x, u and z and find (8)-(10): 
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Assuming , we try 0)0()0( 31 =+ xx 0)( ≡tyreference , i.e.  
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Together with (22) and as a result, the following two differential equations are to be solved 
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with initial conditions  and )0()0( 11 xy = )0()0( 22 xy = . Simulation studies are omitted here, 

because in both examples the real outputs exactly track the constant references; the control 

input effort depends on the initial conditions.  

Conclusion:  Flatness has been interpreted for plants with control inputs u plus disturbance 

inputs z (whereas in [6], disturbances are considered as time-varying parameters). In a new 

and straight-forward manner, differential equations to be fulfilled by the flat output y(t) have 

been introduced, in order to reject z and to form the control output vector . As 

illustrated by the examples, the resulting disturbance feedback may require time derivatives of 

the measured disturbances, i.e. online differentiating of signals. This is typical in disturbance 

compensation [7,8] and, in practice, requires the implementation of differentiating filters. 

Future work will focus on the question of how to generalize the presented results for arbitrary 

initial conditions, i.e. how to combine tracking feedback control with disturbance 

compensation.  

)(trealy
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