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Abstract

   Multiwavelet, a new notion addition to wavelet theory, offer simultaneous orthogonality, symmetry, and short support,
which are not possible with scalar two-band wavelet systems. This paper describes a new approach to characterize texture
image at multiresolution using the discrete multiwavelet transform. Classification experiments with 20 Brodatz textures
indicate that the proposed approach is superior to the method based on standard scalar wavelet transform.

1. Introduction

   Textures provide important characteristics for object recognition from aerial or satellite images, biomedical images, and
many other types of images. Texture classification and segmentation play an important role in several applications, such as
remote sensing, computer vision, and medical diagnosis. Although various methods for texture feature extraction have been
proposed during the last decades, the texture analysis problem is still considered a difficult problem and subjective to
intensive research.
   The earliest texture classification method was proposed by Haralick et al and was based on feature extracted from co-
occurrence matrices[1]. The reported experimental results achieved an overall accuracy of 84% on 11 different types of
textures. The comparative study performed by Weszka et al demonstrated that texture features based on second-order and
difference statistics were superior to those extracted from 2-D power spectrum[2]. The experimental results showed a 90%
accuracy on 3 different types of sample terrain images. Kashyap and Kaotanzad extracted texture features from a circular
symmetric autoregressive model and reported an accuracy of 91% for the classification of 12 natural textures[3]. The
Gaussian Markov Random Fields was used to classify textures by some researchers[4-5]. Derin used Gibbs distribution
theory to discriminate and segment texture image and gave reasonably good performance[6-8]. Laws proposed a simple
scheme used local linear transformations and energy computation to extract texture features[9]. The scheme has been studied
and improved by many researchers[10-11].  However, a weakness shared by all these methods is that the images are analyzed
at one single scale.
  Experiments based on the human visual system indicate that the visual cortex can be modeled as a set of independent
channels, each with a particular orientation and spatial frequency[12-14]. This has lead several researchers to investigate
spatial frequency decompositions in the classification and segmentation of textures. In particular, Gabor filters have been
used for discrimination and segmentation of textures[15-17]. However, a large combination of parameters makes texture
classification using Gabor filters computationally expensive.
  More recently, wavelet theory proposed by Mallat has emerged and became a mathematical framework which provided a
more formal, solid and unified framework for multiscale image analysis[18-19]. Typically, the wavelet transform maps an
image on a low resolution image and a series of detail images. The low resolution image is obtained by iteratively blurring
the image, and the detail images contain the information lost during this operation. The energy or entropy of the detail
images are the most commonly used features for texture classification and segmentation problems[19-20]. Chang and Jay
performed texture analysis using the structured wavelet transform[21]. Uner used the discrete wavelet frame and
characterized the texture by a set of channel variances estimated at the output of a filter bank[22]. Classification experiments



on 12 Brodatz textures showed the DWF method is superior to standard critical sampled wavelet transform feature
extraction. Chen and Kundu utilized rotation and gray scale transform invariant recognition scheme using a combination of
wavelet decomposition and hidden Markov model and reported a 93.33% classification accuracy for 10 natural textures[23].
Lain and Fan used wavelet packets and wavelet packets frame to characterize textures at different scales and achieve very
high classification accuracy[24-25]. Chitre and Dhawan investigated the classification of 20 natural textures with image of
varying sizes using M-band wavelet and obtained fairly good results[26].
   Multiwavelets, which are extension from scalar wavelets, have received considerable attention from the wavelets
research communities both in theory as well as in applications such as signal compression and denoising[27-31].
Multiwavelets have several advantages in comparison to scalar wavelets, such features as short support, orthogonality,
symmetry, and vanishing moments which are known to be important in signal processing. Scalar wavelets except the Haar
system can not posses all these properties at the same time[29]. On the other hand, a multiwavelet system can simultaneously
provide perfect reconstruction while preserving length (orthogonality), good performance at the boundaries (via linear-
phase symmetry), and a high order of approximation (vanishing moments)[29]. Thus, multiwavelets offer the possibility of
superior performance for image processing applications, compared with the scalar wavelets.
  This paper is organized as follows. In Section 2, we briefly review theory of multiwavelet transform. The application of
the DMWT to texture analysis is described in Section 3. Experimental results of texture classification are described in
Section 4. Concluding remarks are given in Section 5.

2. 2-D Discrete multiwavelet transform

  Figure 1 shows the multiwavelet framework for image decomposition. The prefilter is first applied to all the rows of the
image, before the first level decomposition is applied to each of the resultant rows. The first half of each row of the
decomposition results contains coefficients corresponding to the first scaling function and the second half contains
coefficients corresponding to the second scaling function. Then the prefilter and decomposition operations are repeated to
the columns, such that the first half of each column contains coefficients corresponding to the first scaling function and the
second half of each column corresponding to the second scaling function. At the end of the first of 2-D multiwavelet
decomposition, we have a 16-subband intermediate image as follows,

11LL   12LL  11LH  12LH

21LL  22LL  21LH  22LH

11HL  12HL  11HH  12HH

21HL  22HL  21HH  22HH

Here a typical block 12LH contains low pass coefficients corresponding to the first scaling function in the horizontal
direction and high pass coefficients corresponding to the second scaling function in the vertical direction. The next step of
the cascade will decompose the "low-low pass" submatrix

11LL 12LL

21LL 22LL

in a similar manner. No prefiltering is performed for these later 2-D decompositions. In this fashion, a L-level
decomposition of a 2-D image will produce 4(3L+1) subbands. The 2-D reconstruction of a 2-D image is obtained by
simply performing all the steps described above for decomposition in the reverse order. The details of DMWT can be found
in [27-31].
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Figure 1. One level of 2-D multiwavelet decomposition of a 2-D image



3. Texture analysis with DMWT

3.1. Extraction of features

   A 2-D DMWT with depth L typically yields J=4(3*L+1) sub-images. The normalized energy was computed on each
sub-image and defined as
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  The wavelet energy features reflect the distribution of energy along the frequency axis over scale and orientation and
have proven to be very powerful for texture characterization. Since most relevant texture information has been removed by
iteratively lowpass filtering, the energy of the low resolution sub-images are generally not considered as texture features.
An alternative feature for a texture is the entropy
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   Note that since both energy and entropy are measures of the dispersion of the wavelet coefficients, they are strongly
correlated. And some experimental results showed that the performance of the energy feature was statistically the same as
or better than the entropy feature alone and combination of the energy and entropy features[24,26] .

3.2. Classification procedure

  Firstly, class data set is constructed by select one image for each texture class. Every texture image in the set is
decomposed by DMWT into L levels. The energy feature set is consisted of the energies of the decomposed subimages
except of the low-low pass subimages of every texture image. Then to an unknown texture image, the classification
procedure is as follows.
1) Decompose the unknown texture image with the DMWT into L levels.
2) Calculate the energy of decomposed subimage except of the low-low pass subimage and construct the feature set. Denote
this feature set by
       E ( )Jj21 E,,E,,E,E KK= , J=12*L.

3) Calculate the distance measure between energy of the unknown texture image and that of the texture i in the feature set
by

        D(i)=distance(E , Ei)                                                     (3)
   Four such distance functions are as follows.
Euclidean Distance
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where j,ic  is the covariance of feature j and class i, and iC is the covariance matrix of the feature set for texture i.

4) Assign the unknown texture to texture i if D(i)<D(j) for all i ≠ j.

4. Experimental results

   The efficiency of DMWT to discriminate between textures was evaluated on a set of 20 textures selected from the
Brodatz album, which is a benchmark database for texture analysis[33]. The 20 textures are shown in Figure 2. A database of



1280 image regions are constructed by randomly choosing 64 image regions of size 128 128 from each original texture
image.
  Various sets of scalar wavelets and multiwavelets are chosen from the current literatures. They are listed as follows.
1. 'd4' --  Daubechies' 4 coefficient orthogonal scalar filter bank[32]

2. 'la8' --  Daubechies' 8 coefficient least asymmetric orthogonal scalar filter bank[32]

3.'ghm'-- GHM orthogonal symmetric multifilter bank, with biorthogonal interpolation prefilter[29]

4. 'cl'-- CL orthogonal symmetric multifilter bank, with biorthogonal interpolation prefilter[28]

5. 'cardbal4' --orthogonal cardinal 4-balanced multifilter bank, with the identity prefilter[30]

6. 'sa4'     -- orthogonal symmetric multi-filter bank with orthogonal prefilter [31]

Table 1. Classification results with the test database
Wavelet and Level of Distance functions

multiwavelet decomposition D1 D2 D3 D4

1 0.9446 0.9689 0.9712 0.9707

d4 2 0.9495 0.9719 0.9768 0.9756
3 0.9545 0.9801 0.9812 0.9807
1 0.9476 0.9693 0.9719 0.9715

la8 2 0.9500 0.9731 0.9786 0.9791
3 0.9567 0.9797 0.9827 0.9831

ghm 1 0.9553 0.9802 0.9822 0.9812
2 0.9668 0.9967 0.9987 0.9954

cl 1 0.9632 0.9812 0.9824 0.9809
2 0.9798 0.9921 0.9976 0.9951

cardbal4 1 0.9671 0.9814 0.9819 0.9812
2 0.9765 0.9932 0.9986 0.9965

sa4 1 0.9667 0.9811 0.9865 0.9847
2 0.9789 0.9957 0.9985 0.9970

   Table 1 indicates the classification results over the test sets using the minimum distance classifier as described in the
previous section. The overall classification results were obtained by averaging the results over the 20 different partitions of
the data set into sample and test sets. A performance index of 100% indicates a perfect classification.
  The first observation to Table 1 is that the DMWT methods always outperform the DWT, which is consistent with our
expectation. It can be seen that multiresolution decomposition with two or three levels is superior to with one level only.
A comparison of the results between several different distance metrics indicates that Euclidean distance has the worst
performance and the other three distance measures perform well with similar performance. Table 1 also indicates that the
different multiwavelets give a similar performance.

   



   

   

   

   
Figure 2. Samples of the 20 different textures used in the test

5. Conclusions

  We have presented a discrete multiwavelet method for the classification of texture image. Multiwavelets offer the
advantages of combining symmetry, orthogonality, and short support, which can not be achieved by scalar two-channel
wavelet systems at the same time. 20 different types of textures were decomposed using different DMWT and features were
computed on the decomposed sub-images. The minimum distance classifier using several different metrics was used to
classify the textures. The experimental results demonstrate that DMWT have the efficiency to discriminate different
textures with a near perfect classification accuracy.
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