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Abstract: The task of input-output decoupling by constant state-feedback is solved
for linear multi-input-multi-output systems. If the conditions for stability or
existence of the controller are injured, the presented approach allows a partial and
stable decoupling with generally only one output affected by several inputs.
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A more complete representation of the results in the decoupling of linear
MIMO systems can be found in german language in
{1} Lohmann, B.: Vollsténdige und teilweise Fihrungsentkopplung im
Zustandsraum. VDI-Fortschrittberichte, Reihe 8, Nr. 244, VDI-Verlag
Dusseldorf 1991, ISBN 3-18-14-4408-1.
{2} Lohmann, B.. Vollstdndige und teilweise Fihrungsentkopplung
dynamischer Systeme durch konstante Zustandsrtickfuhrung.
Automatisierungstechnik 39 (1991) Teil 1: S. 329-334, Teil 2: S. 376-378.
{3} Lohmann, B.: Vollsténdige Entkopplung durch dynamische
Zustandsruckfuhrung. Automatisierungstechnik 39 (1991) S. 459-464.
These contributions include partial decoupling by constant state-feedback as
well as full decoupling by dynamic state feedback, both, for non-minimum
phase systems and for systems having less than n- d finite zeros. The
appropriate choice of the coupling parameters a, is extensively discussed in
{1}.

Today, the term of difference order d. of an output y. is more often referred
to as relative degree of the output y.. Correspondingly, the total difference
order d =d, +...+d_, iscalled relative degree d of the system.



1. Introduction

An input of a dynamic multivariable system generally acts on several
outputs. The controllers derived in the following stabilize the system
and avoid this undesired phenomenon called coupling.

Consider an n-th order linear time-invariant system with the same
number m of inputs and outputs

x(t) = Ax(t) + Bu(t), (1)

y(t) = Cx(t) (2)

where x(t) denotes the (n,1) state vector, u(t) is the (m,1)-input vec-
tor, X(t) is the (m,1) -output vector and A, B, C are constant matrices
of conformal dimensions. Input- output decoupling is achieved if one can
find a constant (m,n)-controller matrix R and a constant
(m,m) - prefilter F such that the control law

u(t) = -R x(t) + Fw(t) (3)

guarantees every output yi(t) to be affectable only by the correspond-
ing wi(t). In this case the transfer - function matrix

G (s) =C(sL- A+BR)"'BF 4)

which describes the input - output behaviour of the closed loop system
by Y(s) = G_(s)-W(s) must be diagonal, i.e.

gu(s)_ 0

G (s) = 0 i : (5)
g8..(8)

Falb and Wolovich (1967) first gave a solution to this problem, which
was also solved in frequency - domain, for example by Cremer (1973).



In this paper decoupling will be achieved by modal state-space meth-
ods. They allow, in the case of non- decouplable systems or non- mini-
mum phase systems (which generally cannot be stabilized and decoupled
by (3)), a partial but stable decoupling of the form

8,8 0
G (5) = | 8;,(9) g (8) - - - £;,09)] - (6)
S

g (s)

With the transfer - function matrix (6) the partial decoupling is an ad-
vantage compared to the triangular or block decoupling (Commault,
Dion 1983, Koussiouris 1970), where a greater or equal number of unde-
sired non - diagonal elements appear in G, (s).

2. Complete decoupling

In order to find an appropriate R, the desired G_(s) must be compared
with equation (4). But first we apply the modal transformation

A-BR=VAV! (7)

(where A denotes the diagonal matrix of the closed-loop eigenvalues
/\” , V= [gl,...,y_n] is the matrix of the closed-loop eigenvectors) and
get from (4)

gw(s)=CV(s1-A)‘1V'lBF=2—"—— (8)
S—

where the yv_'i are the rows of V™ 1. Next the elements gii(s) of the diag-
onal matrix (5) are set up as

5.
[T
k=1

g.(s) = = , i=1..m. 9)
t (s=A ) e (5=X5)




If we assume all poles A, to be different by pairs, then every A, obvi-
ously appears in just one element of G, (s). Now equation (8) can be

compared to (5) with regard to (9): The term C likﬂ'irkﬁ F /(s- ’\ik) of
the sum (8) belonging to the eigenvalue ’\ik’ must not contain more
than one non-zero element, if A, appears in exactly one element of
G, (s). Hence the product C Yo has one non- zero element, i.e.

-

1,...,m,
1 Ifsl (10)

1

_ i
Cvyp =8>

-

where e = [o,...,0, 1, 0,...,0]T with the One on i-th position. Equa-
tion (10) guarantees the strict connection of every eigenvalue ’\ik to one
row of G _ (s). So far

0= 61 o+ b (11)

poles of the elements of G (s) are considered by (10). If § < n (it is
§ < n, Falb, Wolovich 1967, Roppenecker, Lohmann 1988) the remain-
ing n- § eigenvectors must satisfy

CywBF =0, v=6§+l,..n, (12)

since the corresponding A do not appear in the desired G | (s). Assum-

ing controllability of the system!, i.e. gfﬁ F 4 QT, equation (12) sim-
plifies to

Q~gy =0, v=26+1,...,n. (13)

The n conditions (10) and (13) must be satisfied by the closed-loop ei-
genvectors.

A design method which can easily be combined with these conditions is
the so called Complete Modal Synthesis by Roppenecker (1983, 1988). It
is based on the fact that every state-feedback controller R is related to
a set of closed loop eigenvalues /\ﬂ and invariant parametervectors P, by
the equation

1 This assumption can be dropped without the following steps loosing
their suffiency for decoupling.



R = [py-osp ¥y, ], where (14)

- - —1 —
X/‘ (A /\”l) .B. P_” s M 1,...,1’1 ’ (15)

from which R can be calculated directly. Combining (15) with eq. (10)
and (13), we find

>
1
>
os]
<
1o

k= ik i=1,.,m,
= s L _ (16)
C 0 -y, e, k=1,.., 5i,
[A- A1 B \A
v v
=0, v = 6+1,...,n. (17)
C 01 |-p,
If we succeed in solving (16), (17), i.e. if we can find triples A, ,v. ,p.,

and A,Y,P, satisfying (16), (17), then the controller R is known from
(14) and guarantees the closed-loop eigenvalues A, A . In fact, eqns.
(16), (17) are solvable on the following conditions:

o If

det =0 (18)

(@)
o

then (17) has a non-trivial solution v ,p . Since the solutions A of
(18) just define the invariant zeros (MacFarlane, Karcanias 1976) the
eigenvalues A must be prescribed equal to these zeros.

o Equation (16) is surely solvable if the ¢ eigenvalues A, are chosen
unequal to all invariant zeros since the matrix in (16) is regular in
this case.

e A necessary condition for the existence of the required inverse in (14)
is: The degree 6i of the denominator of the desired gﬁ(s), eq. (9), must
not be chosen arbitrarily but must be equal to the difference order of
the output y. This means that §i must be the smallest integer satis-

6.-1
fyingc]A' B #0" (Falb, Wolovich 1967, Lohmann 1989).



e The inverse [gl,...,gn]_l exists, if the system order n decreased by
the difference order § (from (11)) equals the number of finite invari-
ant zeros. This condition is equivalent to that one given by Falb,
Wolovich (1967), proof in (Roppenecker, Lohmann 1989)2.

How is the precompensator F to be chosen? In the desired transfer
functions gii(s) of eq. (9) the numerators avoid steady state error,
hence the precompensator must satisfy the wellknown relation

F=1in [C(sL- A+BR)™!B]"!. (19)
s—(

Together with R this choice of E actually ensures decoupling of the
form (5), (9) (prooved in Lohmann 1989).

We can now summarize the design steps: The § poles Ak of the ele-
ments g.(s) are chosen arbitrary (even self conjugate), different in
pairs and different from the invariant zeros of the system. The corre-
sponding v, p are calculated from (16). The remaining n-é eigenvalues
/\v are prescribed equal to the invariant zeros, we get the vectors v, p
from (17). R and F are calculated from (14), (19).

Necessary and sufficient condition for decoupling:
The number of invariant zeros must be n— . (20)

3. Partial decoupling of non - minimum phase systems

Invariant zeros in the right half of the complex plane (the system is
called non-minimum phase in this case) cause unstability, if the con-
troller of section 2 is applied. The reason is the compensation of the ze-
ros by poles: equation (17) requires the choice of A equal to the possi-
bly "unstable" zeros. Stability can only be achieved, if these compensa-
tions are renounced, generally complete decoupling is not achievable.
The design steps for a partially decoupling stabilizing controller are derived
in the following.

2 Extensive proofs are omitted here due to space and in favor of the
new results in partial decoupling.
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The diagonal elements gii(s), i#j of the desired G (s) from (6) are
again set up by equation (9), the functions gjl(s),...,gjm(s)_ are left un-
defined for the present. Comparing equation (8) to (6), we find in
correspondence to (10)

i=1,..m,i#j,
Cv,=¢+a (21)

k-& T8 k=1,..56.,

1

for the poles A of gii(s), i # . The free parameters a, are introduced,

k
since the appearence of the poles A i # j in elements of the j-th row

of G _(s) must be allowed explicitely. Together with (15) we get

A - /\ l _B.. y. .Q .Q i = L,...,m,
ik ik
= +a, i4ij, (22)
c 0 ~Pix & &1 k=1,..,6.,

1

from which the Voo Py

real . self conjugate A demand the choice of self conjugate a,. Sup-

can be calculated. Real eigenvalues A demand

posing the system to have one "unstable" zero, we may only compen-
sate the remaining n- §- 1 "stable" zeros by satisfying

A- ) B v

1 B v
V- 14

=0, v=§6§+2,...,n (23)

(@]

011-p,

where the A have to be chosen equal to these n-§-1 zeros. The re-
maining §J.+1 pairs of vectors v, p must satisfy the relation

_C_. ij = Q_] (24)

which connects the poles ’\jk to the j-th row of G | (s). With (15) this
yields

[ [e

= k=164 (25)



where the )‘jk can be chosen arbitrarily but unequal to all invariant ze-
ros. With the solutions v, p, of the equations (22), (23), (25), the con-
troller matrix R can be calculated from equation (14), which is solvable
if the system (1), (2) is stabilizable, i.e. doesn’t have uncontrollable ei-
genvalues with non-negative real part. The precompensator F from
(19) exists, if no invariant zero equals zero. Both conditions are satis-
fied by all systems appropriate to be controlled. Systems with several
"unstable" zeros can be treated by the same formalism, the equations
(22), (23), (25) are easy to modify.

Choice of the coupled Channel

The choice of the coupled row j of G, (s) in (6) to allow partial decou-
pling of a system with the "unstable" zero 7 is restricted:

Coupling can be prescribed in the j- th row of Qw(s),
if the j— th element g of the veztor _q_T is non— null. (26)

gT is defined via the solution of
A-n71 B

t'q"] ol = or. (27)

It is _qT # QT, since the matrix in (27) is singular (see (18)) and the
block [A - 7l, B] is, stabilizable systems assumed, of full rank. Hence
there is at least one j €[1,...,m] allowing partial decoupling. If all ele-

ments of gT are non-null, the choice of the coupling row j of G (s) is
free. In order to proof the necessity of the condition (26), we first multi-
ply (27) with a regular matrix:

A-71 B I
r,q"] : =
q ol -

o

I
igs!

(28)



[IT,QT]' = Q.T .

o)

Again multiplying with a suitable matrix, we find an equation contain-
ing the transfer - function matrix G _ (n):

'A-BR-71 BE][I-(A-BR- 7I)"'BE
[IT,Q_T]° =
c 0[]0 I
(29)
A-BR-1l 0
.91 =0
- (@ G (m)

(the inverse (A - BR - 771)'1 exists, since 1 must not be closed-1loop
eigenvalue). From (29) we have

q"-G (n) =0", (30)

which must be satisfied with all obtainable G_(s). Substituting G _(s) in
W -w

(30) by the desired G (s) from (6) and denoting the elements of gT by
qy5--,q,,, We can write

q"G, () = [a,8,,( +8;, (Dr-rrsQ B (Dsoer, 8 (D +A L (D] = O
(31)

Suppose now G_(s) to injure condition (26), i.e. q; = 0. Then, with a

(always existing) q; # 0, the i-th element of QTQW (n) reads qigii(n), an
expression which can never equal zero since gii( n #0,i#jfrom eq. (9).
Hence, with q; = 0 and the transfer - function matrix (6), equation (31)
cannot be satisfied. Therefore, partially decoupling matrices R and F
can only exist, if the coupled channel in the desired G (s) is chosen
such that q; # 0. The sufficiency of condition (26) can be prooved by a
consideration of [y_l,...,gn ] in equation (14) which must be invertible for
the existence of R.
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From equation (31) some properties of the elements gjl(s),...,g.m(s) of
the transfer -function matrix G _ (s) can be derived: The j-th element
of (31) reads qjgjj(n) = (0, i.e. the "unstable" zero 7 is a zero of the dia-
gonal element gjj(s),

§.+1

J

1[N
§=1 v=1 Y

g. = . (32)
. (S_’\j1)°"° °(S—/\j6j+1) ("77)
If we assume a, = 0, the nondiagonal elements of G| (s) are
s~fji i=1,...,m,
gji(s) = ’ 1 # ] (33)

(s-/\j1)~...-(s-/\j§j+1)

where the "s" in the numerator avoids steady state error. Evaluation of
equation (31) element by element with regard to (32) leads to

1

9,
fji = - __gii(n)‘(n-)‘jl)""'(77_’\j6.+1) (34)
an J

and obviously gji(s) = 0 if q, = 0. In words: if an element q; of gT equals

zZero, gji(s) = 0 can be achieved by choosing a, =0, k =1,..,6. If gT
contains only one non- zero element, complete decoupling can be achieved
by choosing all a, =0 In this special case the partially decoupling
G, (s) from (6) is reduced to the completely decoupling G _ (s) (equation
5) with the diagonal elements gii(s), i # j following (9) and the element
gjj(s) from (32). To express it in words, the influence of 7 is restricted
to the output Y ("non-interconnecting zero", Koussiouris 1970) and
allows complete decoupling. This case will also be discussed in the first
example of section 5.

4. Partial decoupling of non - decoupable systems

If the condition for decoupling (20) is injured, partial decoupling can be
achieved for systems having less than n-§ invariant zeros. Systems
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with more than n-§ zeros are not considered here, they are called de-

generated, since their transfer matrix G(s) = C(sI - A) ™~ IE is singular
for all s. In the following, the system is assumed to have n-§-1 "sta-
ble" finite invariant zeros. The relations for the computation of R and
F are the same as in the last section in this case: To achieve G_(s) in
the form (6), equation (22) is solved with n-§-§. arbitrarily chosen
poles A, Equation (25) is solved with 6j+1 poles )‘jk and the n-§-1 fi-
nite zeros are compensated by poles with equation (23). The so found n
pains v, p determine R via (14), the precompensator F can be calcu-
lated from (19). The condition for the choice of the coupled channel j is
different from (26):

Coupling can be prescribed in the j-th row of Qw(s), if
the j—th element Z’j of the vector _'QT is non- null. (35)

QT is defined via the solution of

qt-| =0F. (36)

ccA™ B
-m
It is gT # 07 since the matrix in (36) is singular for non - decoupable sys-

tems (proof in Falb, Wolovich 1967). The elements gjl(s),...,gjm(s) of
the j-th row of Qw(s) are (ifalla, =0 in (22)):

§.+1
j
[1ex0
g..(s) = = (37)
) (s—/\jl)- (s /\J6j+1)
©) s-fji i=1,.,m, (38)
g.(s) = s
! (S-/\jl)' '(S—)\jéj_l_l) 1f )

with
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q
=-2 11 ¢-2). (39)
- i)

The diagonal elements gii(s), i # j are known from (9). The influence of
the coefficients a, on the non-diagonal elements of G, (s) is discussed
in the second example.

5. Examples

Consider the system

c121
A=| 1 -2 0,1_3_=04,g={ } (40)
6 -6 -3 0 0 0 2 0

with the difference orders 61 = 1 (since grfﬁ # QT) and 52 = 1 (since grgﬁ

# QT) and the invariant zero n = 3, calculated from (18). The plant is de-
coupable but non-minimum phase, i.e. the formalism of section 2
would lead to an unstable closed-loop system. For stability the zero
must not be compensated, thus the steps of section 3 must be applied.
From equation (27) we have

q' =12 1-c,] (41)

depending on the element Clq of C. Criterion (26) allows the prescrip-
tion of a transfer - matrix G (s) with coupling in channel one (since q,
# 0) and in channel two only if Co ? 1. With regard to (9) and (32) we
choose

-(s-3

st (s+3) 8120
G (s) = ) ; (42)
0 )
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and calculate from equation (25) with Ap=-LA,= -3

=y 0
In= 01, _p_11=[ }’

(43)
: [ , ]
=10 Pio =
12 ’ E12
L 1 » 0
With A, = -2 and the choice a, =0, we get from (22)
[ (¢,,-6)/10]
L2 (c,,-6)/10
Vo = 1/2 y Py = . (44)
(clz— 6)/40
(3-3¢ 12) /5
The conroller R and the prefilter F from eq. (14) and (19) read
0 (c,,-6)/5 0
-1
R =[Py iy Poyll¥yy ¥y ¥yl = ’ (45)
1/4 0 0
-1 (3¢,,-8)/5
F = (46)

0 1/4

By computation of Qw (s), we can check this result and find the element
£,5(5) of G_(5)

8/5 -
g = s @)
(s+1)(s+3)
in accordance to the relations (33), (34). With ¢, = 1 the vector gT
contains just one non-zero element. As already established, the design
steps of section 3 lead to a completely decoupling G (s) in this case, a
fact which is confirmed by (47) in this example.
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The state-space description of an automative gasturbine, given by
Patel, Munro (1982) reads

A = diag[-0.932, -0.934, -0.217, -0.216, -11.59, -8.06],

B =| 068 -1.64 0.125 0.223 1.42 0.0 (48)
»="[-.041 0.156 0.0217 0.064 -1.558 1.0}

I
I
I I g g

WOOOOO

mooror
vooooo

98 1.34 |

The two system outputs to be controlled are taken as the gas generator
speed and the interturbine temperature, the two inputs are fuel pump
excitation and nozzle actuator excitation. The system is minimum-
phase but non-decoupable. Application of the formalism of section 4

requires the calculation of the vector QT

q" =1[-243,1] (49)

from (36) and criterion (35) allows the prescription of a closed-1loop
transfer matrix with coupling either in channel one or two. With 51 =
6, = 1 we can prescribe

11.25
GF3-3L5) (s73%j15) 81209
G,(5) = : (50)
0 1.5
s+1.5

Evaluation of equation (25) with Ay = -3+j1.5, Ayg = -3-j1.5, of
equation (22) with A,, = -1.5,a,, =0 and of equation (23) with A ,
v = 1,...,3 equal to the zeros of the system leads (via (14)) to the con-
troller

R = -.0118 .0449 .0142 .0422 8.01 -3.34
="1-.25% .621 -.0626 -.103 -5.96 -.562

and the prefilter
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_[ .00 .764
E= [-.629 406 ] (1)

from (19). Fig. 1 shows the time responses of y, to unit step functions
wl(t) = ¢(t) and w2(t) = ¢(t). The coupling influence of gm(s) is ac-
ceptably small, but can be improved by choosing a, = 0.205, which
minimizes the cost function

J= f (h,,(t))dt (52)
0

(where hlz(t) is the step response of glz(s)). The third curve shows the
resulting yl(t) = gmopt(t)*a(t).

6. Conclusions

Starting from the design of completely decoupling controllers, new
methods for the partial decoupling of "bad" systems were introduced.
With a view to greater clarity, the design steps were given for the most
simple cases of non-minimum phase systems (section 3: one non-nega-
tive zero) and non-decoupable systems (section 4: n- §-1 finite zeros)
but can be extended easily.

An application of decoupling state-feedback controllers is the design
of feedforward controllers as shown in Fig. 2. The input - output behav-
iour of the feedforward controller (w — y ) is carried over to the input-
output behaviour of the hole structure (w — y), if the model of the
plant is sufficiently exact, and if the plant-controller attenuates dis-
turbances sufficiently. This concept is applied successfully at the Insti-
tut fiir Regelungs- und Steuerungssysteme, Karlsruhe, in cases where
not all state-variables of the plant are known by measurement.
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Fig. 1 Input-output behavior from w; to y, and from w, to y,, simulated with
unit step functions w (t) =s (t)
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Fig. 2 Structure of a closed-loop system with model-based feedforward controller



