

Krylov-Reduction matching interpolated moments at **any** p Proof (with $p \in [p_1, p_2]$): $m_{r0} = \boldsymbol{c}_r^T \boldsymbol{b}_r =$ $= \left[\omega_{1}\boldsymbol{c}_{1}^{T}\boldsymbol{V}_{1} + \omega_{2}\boldsymbol{c}_{2}^{T}\boldsymbol{V}_{2}\right] \left[\omega_{1}(\boldsymbol{W}_{1}^{T}\boldsymbol{A}_{1}\boldsymbol{V}_{1})^{-1}\boldsymbol{W}_{1}^{T}\boldsymbol{b}_{1} + \omega_{2}(\boldsymbol{W}_{2}^{T}\boldsymbol{A}_{2}\boldsymbol{V}_{2})^{-1}\boldsymbol{W}_{2}^{T}\boldsymbol{b}_{2}\right]$ $= [\omega_1 \boldsymbol{c}_1^T \boldsymbol{V}_1 + \omega_2 \boldsymbol{c}_2^T \boldsymbol{V}_2] [\omega_1 \boldsymbol{r}_0 + \omega_2 \boldsymbol{r}_0] = \omega_1 \boldsymbol{c}_1^T \boldsymbol{A}_1^{-1} \boldsymbol{b}_1 + \omega_2 \boldsymbol{c}_2^T \boldsymbol{A}_2^{-1} \boldsymbol{b}_2 = m_0$ where we used $\boldsymbol{b}_i = \boldsymbol{A}_i \boldsymbol{A}_i^{-1} \boldsymbol{b}_i = \boldsymbol{A}_i \boldsymbol{V}_i \boldsymbol{r}_0$ with $\boldsymbol{r}_0 = \boldsymbol{e}_1$ $m_{r1} = \boldsymbol{c}_r^T \boldsymbol{E}_r \boldsymbol{b}_r = \boldsymbol{c}_r^T \boldsymbol{E}_r \boldsymbol{e}_1$ $= ... = m_1$ Remarks: - Arnoldi can be used (instead of simple V, W used above) requiring a transformation T in low dimension, similar to part 1 (see appendix). - Other development points than $s_0=0$ can be used (Eid 2008). Lohmann: Parametric Model Reduction, 17.09.09 19 πт

Outlook I: Stability
System $\dot{x} = Ax$ is called γ -contractive, if $ x(t) \le e^{\gamma} \cdot x(0) $ for any $x(0)$ and $t > 0$
Reduction by projection $\dot{\boldsymbol{x}}_r = \boldsymbol{V}^T \boldsymbol{A} \boldsymbol{V} \boldsymbol{x}_r$ preserves γ -contractivity!
Idea : Make original model γ -contractive (γ depending on the desired expansion point) by <i>state transformation</i> , and then reduce by projection.
The required state transformation can be found by a numerically cheap (mediocre) approximate solution of a Lyapunov-eq. (Castañé et al. 2009).
Lohmann: Parametric Model Reduction, 17.09.09 24

References		
1.	Lohmann, B. and Eid, R.: Efficient Order Reduction of Parametric and Nonlinear Models by Superposition of Locally Reduced Models. In Lohmann, B. und Roppenecker, G. (Hrsg.): Methoden und Anwendungen der Regelungstechnik. Shaker Verlag, Aachen, 2009.	
2.	Lohmann, B. and Eid, R.: Challenges in Model Order Reduction. In Oberwolfach Reports and presented at the Oberwolfach Conference "Control Theory: On the Way to New Application Areas", 2227.02.2009.	
3.	Rewienski and J. White, A Trajectory Piecewise-linear Approach to Model Order Reduction and Fast Simulation of Nonlinear Circuits and Micromachined Devices, <i>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems</i> , 22, (2003), 155–170.	
4.	U. Baur, P. Benner: Modellreduktion für parametrisierte Systeme durch balanciertes Abschneiden und Interpolation. Automatisierungstechnik (at) 08/2009, S.411-419.	
5.	A. C. Antoulas, Approximation of Large-Scale Dynamical Systems, SIAM, 2005.	
6.	R. W. Freund, Model reduction methods based on Krylov subspaces. Acta Numerica, 12, (2003), 267–319.	
7.	L. Daniel, C. S. Ong, S. C. Low, K. H. Lee, and J. K. White. A multiparameter moment matching model reduction approach for generating geometrically parameterized interconnect performance models. <i>IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems</i> , 23(5), (2004), 678–693.	
8.	K. Wulf: Quadratic and Non-Quadratic Stability Criteria for Switched Linear Systems, Ph.D Thesis, Hamilton Institute, NUI Maynooth, Ireland, 2005.	
9.	Eid, R.: Time Domain Model Reduction by Moment Matching. Dissertation, TU München 2009.	
10.	Lohmann, B., Wolf, T., Eid, R. and Kotyczka, P.: Passivity Preserving Order Reduction of Linear Port-Hamiltonian Systems by Moment Matching. Tech. Report TRAC-4/2009, No. 1, <u>www.rt.mw.tum.de</u>	
11.	Wolf, T., Lohmann, B., Eid, R. and Kotyczka, P.: Passivity and Structure Preserving Order Reduction of Linear Port-Hamiltonian Systems using Krylov subspaces. Submitted to EJC 2009.	
12.	Castañé, R., Eid, R., Lohmann, B.: Stability Preservation in Krylov-based Model Order Reduction. Workshop des GMA- Fachausschusses 1.30, Salzburg 2009.	
13.	L. Peng, F. Liu, L. T. Pileggi, and S. R. Nassif. Modeling interconnect variabilityusing e±cient parametric model order reduction. In Proc. of the Design, Automationand Test In Europe Conference and Exhibition, Munich, Germany, 958-963 2005.	
14.	A. T. Leung and R. Khazaka. Parametric model order reduction technique for design optimization. Proc. Intl. Symp. Circuits Syst., pages 1290-1293, 2005.	
15.	X. Li, L. Peng, and L. T. Pileggi. Parameterized interconnect order reduction with explicit-and-implicit multi-parameter moment matching for inter/intra-die variations. In International Conference on Computer Aided Design, San Jose, USA, 806-812, 2005.	
16.	D. S. Weile, E. Michielssen, E. Grimme, and K. Gallivan. A method for generating rational interpolant reduced order models of two-parameters linear systems. Appl. math. Letters, 12:93-102, 1999.	
L	ohmann: Parametric Model Reduction, 17.09.09 28	

Appendix

For numerical reasons, the projection matrices \mathbf{V}_i , \mathbf{W}_i are typically orthogonalized by the famous Arnoldi algorithm before use as projector. If we do so, vectors \mathbf{r}_{0i} that solve $\mathbf{A}_i^{-1}\mathbf{b}_i = \mathbf{V}_i\mathbf{r}_{0i}$ are no longer the same for any i, and vectors \mathbf{r}_{1i} that solve $\mathbf{A}_i^{-1}\mathbf{E}_i\mathbf{A}_i^{-1}\mathbf{b}_i = \mathbf{V}_i\mathbf{r}_{1i}$ are no longer the same for any i, which, however, was needed in the proof above. A remedy is the following:

• Calculate orthogonal projectors $\mathbf{V}_i^-, \mathbf{W}_i^-$ using the Arnoldi algorithm as in conventional (non-parametric) model reduction. As a byproduct, the algorithm also delivers upper triangular non-singular matrices ³ \mathbf{H}_{Vi} and \mathbf{H}_{Wi} satisfying

$$\mathbf{V}_i = \mathbf{V}_i^{\neg} \mathbf{H}_{Vi} , \quad \mathbf{W}_i = \mathbf{W}_i^{\neg} \mathbf{H}_{Wi}. \tag{37}$$

- Out of them, choose one pair of matrices \mathbf{H}_{Vi} and \mathbf{H}_{Wi} (preferably belonging to a "central" or "average" value of the parameter or parameter set) and denote these two matrices by $\overline{\mathbf{H}}_{V}$ and $\overline{\mathbf{H}}_{W}$.
- For the reduction of all the local models, use the *new projectors*

$$\mathbf{V}_{new,i} = \mathbf{V}_{i}^{\top} \underbrace{\mathbf{H}_{Vi} \overline{\mathbf{H}}_{V}^{-1}}_{\mathbf{T}_{Vi}}, \quad \mathbf{W}_{new,i} = \mathbf{W}_{i}^{\top} \underbrace{\mathbf{H}_{Wi} \overline{\mathbf{H}}_{W}^{-1}}_{\mathbf{T}_{Wi}}.$$
 (38)

With this choice, all matrices \mathbf{V}_i , \mathbf{W}_i can be expressed from their substitutes $\mathbf{V}_{new,i}$, $\mathbf{W}_{new,i}$ by

$$\begin{split} \mathbf{V}_i &= \left[\mathbf{A}_i^{-1}\mathbf{b}_i, \, \mathbf{A}_i^{-1}\mathbf{E}_i\mathbf{A}_i^{-1}\mathbf{b}_i, \ldots\right] = \mathbf{V}_i^{-1}\mathbf{H}_{Vi}\overline{\mathbf{H}}_V^{-1}\overline{\mathbf{H}}_V = \mathbf{V}_{new,i}\overline{\mathbf{H}}_V, \\ \mathbf{W}_i &= \left[\mathbf{A}_i^{-1}\mathbf{c}_i, \, \mathbf{A}_i^{-1}\mathbf{E}_i\mathbf{A}_i^{-1}\mathbf{c}_i, \ldots\right] = \mathbf{W}_i^{-1}\mathbf{H}_{Wi}\overline{\mathbf{H}}_W^{-1}\overline{\mathbf{H}}_W = \mathbf{W}_{new,i}\overline{\mathbf{H}}_W \end{split}$$

i.e. by multiplying the new projector with one *common* matrix,
$$\overline{\mathbf{H}}_V$$
 or $\overline{\mathbf{H}}_W$. The above proof of moment matching can now be repeated without essential changes. 29

ΠM