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Some existing approaches

» Multivariate moment matching approach (weile et al. 99, Daniel et al. 04)
+ Moment matching about the Laplace variable s and the parameter p.
- Affine parameter dependency is required
- Curse of dimensionality (reduced order grows rapidly even for small numbers of parameters)

» Common projection approach (Leungetal. 05, Li et al. 05, Peng et al. 05)
+ Common projection matrix calculated from several local models
+ Moment matching property for each of the local models
- Reduced order depends on the number of local models considered
- Affine parameter dependency is required to obtain a parametric reduced model

» TBR-Interpolation-based approach (gauretal. 08, 09)
+ Interpolation between TFs of locally reduced systems obtained by TBR
+ Benefits from error bounds and stability of TBRs.
- Reduced order depends on the number of the local models considered

- Lightly damped modes can cause problems

Can a new approach avoid some of the disadvantages?

Lohmann: Parametric Model Reduction, 17.09.09 3 TU]]_




Part 1:

Interpolation between locally reduced models
as a framework for parametric reduction
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Starting Point

System: ) -
X=A(p)x+b(p)u, y=c (p)x

Matrices A,b,c only available at discrete values py,p,,... of p:
AP)=Ar, A(P)=A; ...
b(p,)=b,, b(p)=b, ...
c(py)=cy, c(P)=Cy ;...
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Interpolation of system coefficients

Linear Interpolation of coefficients (system matrices):

@ (p) @,(p)

Za)i(p);l

weighting functions

Parameter
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X =[_§S]wi(p)AjX + (Zslwi(p)b.ju, y=(iwi(p)0fjx

= exact description if p affine: A=Ay+A,p, b=b,+b,p, c=cy,+c,p

Interpolation of system coefficients

Linear Interpolation of coefficients (system matrices):

X =[_§S]wi(p)AjX + (Zslwi(p)b.ju, y=(iwi(p)0fjx

S w(p)=1
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Interpolation of system coefficients

Nonlin. Interpolation of coefficients (system matrices):

X =(iwi(p)AjX + (iwi(p)b.ju, y=(iwi(p)0?jx

S w(p)=1
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Traditional Reduction

Traditionally: apply one common projector pair V,W:

(zmm/x x+f(2w(p)bju y- (iwi(p)crj,x\

7 f =
WTV \ e y

Problem: V (and W) need many columns to well approxi-
mate all s local models! — large reduced order.

(For instance, to match 2q moments of each local model, the reduced
model’s order will be sq, instead of g in non-parametric reduction)
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New: Reduction by Local Projectors

Apply separate projectors V;, W, to all local models:

x=(iwi<9Agx+(iwi(p)nju, y:(iwi(p)crjx ¢
i=1 i=1 f i=1 f
W)W Vi (V)W Y

+ Almost no additional numerical effort,

+ Much smaller reduced models (factor s when matching
same number of moments).

Open question: are we allowed to sum up physically different
reduced vectors x ? Answer:

Not at once, but after giving the local reduced models a
common physical interpretation of state variables
(by applying state transformations T;)
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State Transformations T; (+ local projectors)

Define a linear combination X = B X of g “important”
(a.n)

state variables and transform all local reduced models, to

represent these state variables:

|* -I 1 .
X; =RV, Xited — X :ILXi,red
T RV

— In (*), substitute V, byV.T, and W," by TW,",
(with T, = RV).
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Some choices of R

How to choose R ?
Option 1: by physical insight or from given output variables.

Option 2: so that the matrices T, = RV, are well-conditioned

orevenT, =1:
[ S VA N (R} ARSA |
Option3: R"=V_,. ,(then, T =1

— Option 4: R" =svd[V,..V,] or R'(p)= s;ig[wl(p)vl...a)s(p)vs]

nxq

Remark: Options 1 and 2 even work when original models are different size!

Lohmann: Parametric Model Reduction, 17.09.09 12 TUTI

Summary: Interpolation of locally reduced models

Full order model:

@w.(p)ajx{gwi(pm]x+@wi(p)b.ju, y=[

¥

Reduced model using local projectors:

[iwi (PWEV, JX = (.Z:: o (P)W," AV, j S [IZ:, o (P)W,"b )u1 *)

v=(Zamey Jx

If required, substitute V, by VT, " and W." by TW,"
(where T, = RV,).
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Types of Weighting Functions w(p) / Interpolations

Implicit interpolation

Explicit weights

Linear Nonlinear
interpolation interpolation
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Part 2:

Moment Matching
for any value of p
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Moments m;

Transfer function: Taylor series at 5,=0
G(s)=c'(sE-A)'b=-c'A'b—c'A'EA™s-..-c"(A'E)' Abs'...
Mo m m,
Sysl Moment matching possible
7 N
Moments @ _ /inbetween?
P~ Answer: yes
; T~~ . Sys2
A

i : > p
pl‘\F)z\

Standard reduction matches moments only here, at p,, p,
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Krylov-Reduction, matching interpolated moments at any p

System:  E(p)x = A(p)X+b(p)u, y=CT(|O)X

Moments: mj ( pl) = ClT (AilEl)j Aflbl
m, (p,) =¢; (A'E) Ab,...
Interpolated moments:  m, (p) =@, (p)M; (p,) + @,(P)M, (P,)...

Reduction steps: 1) Find locally reduced models
WTEV,x=W"AV,x+W,'bu, y=c'V,x <
WTAV)'WTEV,x=x+WTAV,)"W,bu, y=c'V,x
where v, =[A%,(AE)A™,...(A'E) AD]
W, =[A'c,(A'E)AC,...(A'E)" A
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Krylov-Reduction matching interpolated moments at any p

2) Add (weighted) reduced models up to the result:

E,(p)x=x+b (pu, y=c/ (p)x

S

where E, =2 o (P)WAV,) "WEV,

S

b, = Zwi ( p)(VViT AV, )_1WiTt)l

S

1= Z o, (pP)CV,

i=1

This parametric reduced model matches the first q
interpolated moments at any value of p !
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Krylov-Reduction matching interpolated moments at any p

Proof (withpe[p,, p,]):
Mo = CrTbr =
=[0GV, + 2,eV, ][0, W, AV,) W,'b, + @, W, AV,) W, b, |
=[ocV, + 0,CV,][wf, + w,r,] = o] A'b +w,c) A, =m,
where we used b = AA™b = AV.r, with 1, =¢
m,=c/E,b =c'E,g
=.=m

Remarks:

- Arnoldi can be used (instead of simple V, W used above)
requiring a transformation T in low dimension, similar to part 1
(see appendix).

- Other development points than s,=0 can be used (Eid 2008).
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The Beam Model

Parameter: Length L

Thickness and width: 10 mm
Young Modulus: 2.10° Pa.
Damping: Proportional/Rayleigh

§ Force

Order of the original system: 720
Order of the reduced system: 5

4 local models; Weights: Lagrange Int.
R: option 4 ; s,: ICOP (Eid2009);
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Reduced model, L=1000mm
Original model. L=1000mm

—=~ 8VD-based Interpolation

Moment Matching Interpalation

The Beam Model, order 24

Parameter: Length L

g Force

Order of the original system: 720
Order of the reduced system: 24

|Gicel]

Reduced model. L=1000mm
— Interpolation without Modification

=== Interpolation afler Modification

-1 L
10' 10
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The Micro-Thruster Benchmark Model

Parameter: Film coefficient k _—
(from the convection boundary condition) varies between 1 and 10° sio2
Order of the original system: 4725

Fud Shaubstrate
Order of the reduced system: 7

20 local models employed for interpolation; R: option 4; A 2D-axisymmetrical model
of the micro-thruster unit.
(Oberwolfach Benchmark collection)

Weights: RBF-Based Interpolation with cubic basis functions.
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Outlook I: Stability

System X = AX s called y-contractive, if |x(t)| <e€*-[x(0)]
for any x(0) andt >0

Reduction by projection X, =VTAVXr preserves j-contractivity!

Idea: Make original model j-contractive (y depending on the

desired expansion point) by state transformation, and then
reduce by projection.

The required state transformation can be found by a
numerically cheap (mediocre) approximate solution of a
Lyapunov-eq. (Castafié et al. 2009).
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Outlook II: MOR of PCHD Models

Port Hamiltonian Systems X =(J —R)QX+gu are stable, and
passive with output y=0'Qx

A new structure preserving reduction scheme:
The reduced model x=(J, - R )Q,x+g,u ,
y=0/QXx
with J, =VTQIQV
R =VTQRQV
Q =(v'Qv)®
g9 =V'Qg
and with V being a basis of the Krylov subspace
K, =span{(3 -RIQ-51 )9 (9 -RIQ-3,1) *gf
matches g moments around S=s; (Loh. et al 2009, Wolf et al 2009).
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Outlook 11

Nonlinear parametric reduction by interpolation
of locally reduced linear models

Given x=f(X,p)

Locally linear parametric representation (like in TPWL):

x=3 00, p)(f, + A (x—x) fi=1(x.p)
= A =of 1ox], ,

Reduced system:

%, (0= @ V%, 0, p) W (f, + AVx 1-x))

normalize @, to have ) o, =1
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Attention
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Appendix

For numerical reasons, the projection matrices V,, W, are typically orthogonalized by

the famous Arnoldi algorithin before use as projector. If we do so, vectors ry; that solve

A,

'b, = V,ry, are no longer the same for any i, and vectors rq; that solveA, 'E;A 'b, =

Viry; are no longer the same for any ¢, which, however, was needed in the proof above. A
remedy is the following:

e Calculate orthogonal projectors V", W, using the Arnoldi algorithm as in conven-
nal (non-parametric) model reduction. As a byproduct, the algorithm also delivers
upper triangular non-singular matrices * Hy; and Hyy; satisfying

Vi=V/ Hy,. W, =W, Hy.. (37)

e Out of them, choose one pair of matri

es Hyand Hyy; (preferably belonging to a
“central” or “average” value of the parameter or parameter set) and denote these
two matrices by Hy-and Hyy .

e For the reduction of all the local models, use the new projectors

Views = Vi HrHy' | W = Wy HyHy, (38)

With this choice, all matrices V,;, W, can be expressed from their substitutes V,..;. W ..

by

ie.

Vi [A.,_IIJ,'. A.,_IE;&,_II}J- = V,- HH'IHQ'IHV = an'.aﬁl' ,
W, = [A7lc, AT'EA e, ...] = W) Hi Hy Hiy = W, Hir

i

by multiplying the new projector with one common matrix, Hy or Hy. The above

proof of moment matching can now be repeated without essential changes.

» TUM!
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