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In model reduction of nonlinear dynamical systems and of parametric systems, a known tech-
nique is to first represent the model as an interpolating superposition of some (linear or non-
parametric) local models and to then apply a common order reducing projection to the overall
model. This common projection must comprise relevant subspace information of all local mod-
els, and leads therefore to a relatively high reduced order.In this note, we present a remedy to
this problem by separating the projection matrix into different subspaces applied individually
to all the local models, leading to a significantly lower order, thereby making the reduction
more efficient. In addition, by suitable state transformations, the state vector of the reduced
interpolating model is given a clear physical interpretation.

1 Introduction

The modeling of dynamical systems often leads to large sets of ordinary differential equations.
The high order of these models complicates analysis, systemdesign and control.Model order
reduction(MOR) aims at finding smaller sets of differential equationspreserving or at least
approximating the most important properties and the dynamic behavior of the original model.
For the reduction oflinear time-invariantmodels, several well-established families of meth-
ods are available, like balancing and truncation [8, 1], Modal reduction [5], Krylov subspace
methods [1, 7] and Proper orthogonal decomposition [1], allhaving their advantages and dis-
advantages. However, for the reduction ofnonlinearmodels and ofparametricmodels (where
the parameters are desired to be preserved in the reduced model), only very few methods are
available.
For the reduction ofnonlinear systemsof the form ẋ = f(x,u), Proper Orthogonal Decom-
position(POD), e.g. [1, 9, 10] is widely used, requiring the so-called snapshots of the state
trajectory, gained from a simulation of the full-order model with a suitably chosen input signal.
The reduced order model1 ẋ

r
= VT f(Vx

r
,u), however, requires the expensive evaluation of

the full size vector of nonlinearities,f(.) .
Another leading method for the reduction of nonlinear systems is theTrajectory Piecewise
Linear Approximation(TPWL) [4] which represents the nonlinear model,

ẋ = f(x) + Bu,y = Cx, (1)

by an interpolation between a number ofs locally linear models,

ẋ =
s

∑

i=1

ωi(x) [f(xi) + Ai(x − xi) + Bu] ,y = Cx. (2)

1Here and subsequently it is assumed that the projectorV is orthogonal, i.e.VT
V = I (unless otherwise

noted).



xi denotess states (preferably chosen along the expected state trajectory) at whichf(.) is eval-
uated together with the JacobiansAi of f . Theωi(x) are weighting functions switching softly
between the different models, thereby interpolating between them, depending on the actual state
x. The reduced model is found by applying a projectionV to (2):

ẋ
r

=

s
∑

i=1

ωi(Vxr)
[

VT (f(xi) + Aixi) + VTAiVxr + VTBu
]

, y = CVxr. (3)

Other methods of nonlinear model reduction are, for instance, the system matrix optimization
method [6] and the simulation-free approach [3].
For the reduction oflinear parametric modelsexpressed with a vectorp of parameters

ẋ = A(p)x + Bu, y = Cx, (4)

a generalization of moment matching to multivariate moments has been presented in [11]. Un-
der certain assumptions, the projectionV can then be calculated, such that the reduced model

ẋr = VTA(p)Vxr + VTBu, y = CVxr, (5)

not only matches some of the first moments of the transfer function G(s,p) with respect to
s, but also with respect to the parameters. However, this method suffers from the curse of
dimensionality where the order of the reduced system, i. e. number of columns in the projection
matrixV grows very rapidly even for a low number of parameters.
Obviously, an interpolating representation of the parametric model (4) is immediately possible
in the way of equation (2)[13]:

ẋ =
s

∑

i=1

ωi(p) [A(pi)x + Bu] , y = Cx, (6)

The parametric matrixA(p) needs only to be known and evaluated ats discrete values of the
vectorp. This significantly simplifies in many practical cases the modelling process, where it is
often impossible to assume or obtain an affine parameter dependency. Accordingly, the reduced
model by projection is

ẋr =

s
∑

i=1

ωi(p)
[

VTA(pi)Vxr + VTBu
]

, y = CVxr. (7)

Interpolation between linear models is also possible in thefrequency domain: In [12], a soft
switching between linear reduced order transfer functions(valid for different parameters) is
suggested. The reductions are proposed to be done by Balancing and Truncation.
A difficulty of the interpolating reduced models (3) and (7) is the fact that the projection +V
must include the relevant subspace information fromall the full order local models simultane-
ously. This increases the numberq of the columns ofV (in particular with growing numbers of
local models), therebyincreasingthe orderq of the reduced modelsignificantly. For instance,
if V is calculated to match only one moment of each of thes involved models, then the reduced
order will bes, while reducing a single model and matching only one moment would lead to
order one.
To solve this problem, a general framework is subsequently introduced, allowing toseparately
reduce all the local models by using separate subspaces. Thereby, the order of the reduced
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Figure 1: Possible choice of the weighting functions.

model can be reduced by a factor of up tos. It is illustrated, that the procedure can efficiently be
applied in (i) Reducing linear parametric models by interpolating between linear non-parametric
models, (ii) Reducing nonlinear dynamical systems by interpolating between linear ones (like
in TPWL), and (iii) Reducing nonlinear parametric models byinterpolating between linear or
nonlinear non-parametric ones. An example is given in section 5.

2 Subspace separation in parametric model reduction

To ease the presentation, a linear time-invariant state-space model with only one scalar param-
eterp ∈ [p1, p2] is considered,

ẋ = A(p)x + B(p)u, y = C(p)x. (8)

No assumptions are made on how the parameterp affectsA, B andC. However for now, it is
assumed thatA(p), B(p), andC(p) are only known for the specific valuesp1 andp2 of p. Then,
the system (8) can be approximated by

ẋ = ω1(p) [A(p1)x + B(p1)u] + ω2(p) [A(p2)x + B(p2)u] , (9)

y = ω1(p)C(p1)x + ω2(p)C(p2)x, (10)

where the weightsω1(p), ω2(p) switch softly between the two models, for instance according to
figure 1. Obviously,ω1(p) + ω2(p) = 1 is a reasonable choice that keeps the time scale of the
dynamic system unchanged.

2.1 Step 1: Subspace Separation

Different from (3) and (7), the two modelsA(p1), B(p1), andC(p1), andA(p2), B(p2), and
C(p2) are separately reduced, using separate subspaces represented in separate projection ma-
tricesV1 andV2. These projection matrices can be, for instance, calculated by Balancing and
Truncation, by a Modal approach, by POD, or by Krylov subspace methods.
Applying the projections to both models leads to the reducedsystems

ẋ1r = VT
1 A(p1)V1x1r + VT

1 B(p1)u, ŷ1 = C(p1)V1x1r (11)

ẋ2r = VT
2 A(p2)V2x2r + VT

2 B(p2)u, ŷ2 = C(p2)V2x2r (12)



2.2 Step 2: State Transformations

Because the two projections differ, the state vectorsx1r andx2r have different physical mean-
ing and their time-derivatives can no longer be added up likein (3) and (7). Therefore, two
state transformationsare subsequently introduced, giving both state vectors thesame physical
interpretation. The approximations ofx gained from the reduced models are:

x̂from model 1 = V1x1r, x̂from model 2 = V2x2r (13)

Now, q technically importantstate variables are chosen from the original state vectorx and the
corresponding rows ofV1 andV2 are combined into the square matricesT1 andT2, respec-
tively. Then, theq chosen state variables, combined intox∗

1 andx∗

1 are approximately

x̂∗

1 = T1x1r, x̂∗

2 = T2x2r. (14)

Both state vectors have the same physical meaning, and therefore, after applyingT1 andT2

as state transformations to (11),(12), these two models canbe combined leading to the final
reduced model

ẋ∗

r = ω1(p)
[

T1V
T
1 A(p1)V1T

−1

1 x∗

r + T1V
T
1 B(p1)u

]

+

ω2(p)
[

T2V
T
2 A(p2)V2T

−1

2 x∗

r + T2V
T
2 B(p2)u

]

, (15)

ŷ = ω1(p)C(p1)V1T
−1

1 x∗

r + ω2(p)C(p2)V2T
−1

2 x∗

r . (16)

Note that at any timet and for any value ofp, only onereduced model of orderq results and is
to be evaluated in the numerical simulations. This would be different, if we would interpolate
theoutputsof different parallel-running reduced models. In this case, the reduced order would
be2q.
Obviously, a generalization fors interpolation pointsp1, . . . , ps (instead of onlyp1, p2 ) is

ẋ∗

r =
s

∑

i=1

ωi(p)
[

TiV
T
i A(pi)ViT

−1

i x∗

r + TiV
T
i B(pi)u

]

, (17)

ŷ =

s
∑

i=1

ωi(p)C(pi)ViT
−1

i x∗

r. (18)

p can be avectorof parameters as well; The weightsωi(p) are then multidimensional.

2.3 Remarks

• In the result (17), each subsystem is reduced with the local projection matrixVi designed
for it. The reduced system’s order isq, instead ofq · s when a common projector com-
bined ofs local projections each of dimensionq is used. In both cases, when reducing
by moment matching for instance, the number of moments matched at the interpolation
points isq.

• Sometimes, usingobliqueprojectionsWT
i , Vi (with WT

i Vi 6= I ) instead ofVT
i ,Vi is

desired, for instance, in two-sided Krylov-subspace reduction. In this case, in the results
(17), the termsVT

i A(pi) andVT
i B(pi) are to be substituted by

(

WT
i Vi

)

−1
WT

i A(pi)

and
(

WT
i Vi

)

−1
WT

i B(pi), respectively.



• For finding the matricesTi , q technically important state variables from the full state
vectorx have been chosen. With this choice, the state vectorx∗

r of the reduced model
has aclear physical interpretationas it directly approximates the corresponding original
state variables. If from technical considerations such a choice is impossible or leads to
singular or badly conditioned matricesTi , then the following systematic choice is to
be employed: Define theq variables to be some linear combination of the original state
variables,x∗ = Rx , whereR is a(q, n)-matrix of full rank. The resulting transformation
matrices are then

Ti = RVi. (19)

The best conditioning ofTi occurs whenTi = RVi ≈ I. Hence, a possible choice is

[I · · · I] ≈ R [V1 · · · Vs] ⇒ R = [I · · · I] [V1 · · · Vs]
+

. (20)

If n ≥ q · s, thenR provides an exact solution in most cases, i.e.Ti = I.

• Stability of the reduced model can be investigated by findinga common Lyapunov func-
tion, e. g. [14] for all the linear local models simultaneously activated by their weightsωi.

• The superposition of local models can be also done with systems of the typeE(p)ẋ =
A(p)x + B(p)u. By multiplication with a non-singular matrix from the left, different
representations can be generated, leading to different options of how to represent the
reduced model. One option is

s
∑

i=1

ωi(p)
[

TiV
T
i E(pi)ViT

−1

i

]

ẋ∗

r =

s
∑

i=1

ωi(p)
[

TiV
T
i A(pi)ViT

−1

i x∗

r + TiV
T
i B(pi)u

]

.

3 Subspace separation in nonlinear reduction

Steps 1 and 2 of the previous section can be similarly appliedto a nonlinear system (1) and
its approximation bys local linear models (2). Thes linear models(Ai,B,C) are reduced
separately by individual projectionsVi. Before recombining the reduced models, all the state
vectors are given the same physical meaning by applying the transformationsTi from (19) with
R from (20). The reduced model is then:

ẋ∗

r =
s

∑

i=1

ωi(ViT
−1

i x∗

r)TiV
T
i

[

f(xi) − Aixi + AiViT
−1

i x∗

r + Bu
]

, (21)

ŷ =

s
∑

i=1

ωi(ViT
−1

i x∗

r)CViT
−1

i x∗

r . (22)

The weightsωi are updated with the state vector. This is different from (17) where an update of
ωi only occurs, when a parameter changes. Moreover, the weights ωi here depend onViT

−1

i .
Therefore, at each evaluation time, they should be normalized to sum up to one,

ωi,normalized =
ωi

ω1 + . . . + ωs

. (23)



Figure 2: A schematic of the considered spring-mass-dampersystem.

4 Subspace separation in nonlinear parametric reduction

The most general case occurs when a nonlinear parametric model is approximated by a weighted
sum of parametric models2 as follows:

ẋ =

s
∑

i=1

ωi(x,p)fi(x,xi,pi), (24)

where the vectorsfi can either be linear or nonlinear inx and can be valid for certain statesxi

or for certain parameter setspi or for both. The reduced model of orderq is then

ẋ∗

r =
s

∑

i=1

ωi(ViT
−1

i x∗

r ,p)TiV
T
i fi(ViT

−1

i x∗

r,xi,pi). (25)

A reduction procedure that can be applied here is POD, where the snapshots definingVi are
taken locally in those parts of the state space whereωi is large.

5 Numerical example

In order to illustrate the framework presented in this paper, we apply it for the reduction of
an academic spring-mass-damper system, which schematic and parameter values are shown in

2Input u and output y omitted for simplicity.



figure 2. The equations of motion describing the system’s dynamics are the following:

m1z̈1 = (u − z1)c1 + (z2 − z1)c2 + (ż2 − ż1)d2 + (z4 − z1)c5,

m2z̈2 = (z1 − z2)c2 + (ż1 − ż2)d2 + (z3 − z2)c3 + (ż3 − ż2)d3,

m3z̈3 = (z2 − z3)c3 + (ż2 − ż3)d3 + (z4 − z3)c4 + (ż4 − ż3)d4,

m4z̈4 = (z3 − z4)c4 + (ż3 − ż4)d4 + (z1 − z4)c5 − ż4d5 − z4c6.

Setting the state vectorx = [z1, ż1, z2, ż2, z3, ż3, z4, ż4], the input to a displacement acting on
the springc1, and the output to the position of the massm4, leads to a state-space model of
order 8. As the stiffness and dampingc5 and d5 and the stiffnessc6 vary within a certain
given interval (see figure 2), the resulting model is a parametric model. In order to keep the
considerations simple, these three variable parameters are combined to just one parameterα,
such thatc5 = (1 + 2α), d5 = α andc6 = (2 + 2α). Hence, by increasingα from 0 to 1,
the parametersc5, d5 andc6 are shifted within their corresponding intervals (figure 2). As a
result, a state space model with a matrixA(α) is obtained and is to be reduced while preserving
this parameter dependency. At the first step, two models calculated at the lower and upper
bounds of the parameterα are generated (with significantly different resonance peaks) and
denotedmodel 1andmodel 2. Then, each of them is locally reduced using a two-sided Krylov-
based approach withs0 = 0, leading to two nonparametric reduced order modelsmodred 1and
modred 2, each of order 4 (see figures 3 and 4). Now, these reduced models are interpolated by

Figure 3: Amplitude of the Bode Diagram of
model 1andmodred 1(α = 0).

Figure 4: Amplitude of the Bode Diagram of
model 2andmodred 2(α = 1).

eq. (15) withω1(α) = (1− α) andω2(α) = α (similar to figure 1) andα ∈ [0, 1]. For instance,
whenα = 0.5 (middle of the parameter interval), the obtained reduced model averages the
reduced modelsmodred 1andmodred 2and has an order of 4.
To judge the quality of this reduced model, it is compared to the original model of order 8 with
the parametersc5 = 2, c6 = 3, andd5 = 0.5 (middle of their corresponding intervals), denoted
model 3. Furthermore, a reduced order model (denoted byCP-sys) is calculated using a com-
mon projection matrix formed by the first two columns of each of the projection matrices used
to reducemodel 1andmodel 2, then combined as shown in eq. (7). Finally, a reduced order
model, denoted aslocal-sys, is found by a local projection matrix calculated frommodel 3.
Note that this reduction does not lead to a parametric reduced model, however offers the ’best’
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approximation, as it can be seen in figure 5. The reduced modelobtained using the new frame-
work is very close to the local reduced model and clearly superior to the one obtained by a
common projection matrix.

6 Conclusions and Outlook

A framework for order reduction of models represented by an interpolating superposition of
linear/nonlinear/parametric/non-parametric models hasbeen presented. These local models can
now be reduced separately, leading to lower order reduced systems than with a joint projector.
The reduced order is also lower than by interpolating between different reduced transfer func-
tions, since at any timet and for any parameter setpi the system order is constant and equal to
q. Several open questions have still to be treated, like (i) Can the order of the reduced model be
changed along the state trajectory or with changing parameters? (ii) What reduction methods
allow for finding error bounds or at least stability guarantee in nonlinear reduction? (iii) How
are the parameters of the reduction methods to be chosen?
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