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In model reduction of nonlinear dynamical systems and o&peatric systems, a known tech-
nique is to first represent the model as an interpolating spp&tion of some (linear or non-
parametric) local models and to then apply a common ordeucat projection to the overall
model. This common projection must comprise relevant sdesipformation of all local mod-
els, and leads therefore to a relatively high reduced ortiethis note, we present a remedy to
this problem by separating the projection matrix into difet subspaces applied individually
to all the local models, leading to a significantly lower ordinereby making the reduction
more efficient. In addition, by suitable state transforroa$, the state vector of the reduced
interpolating model is given a clear physical interpretati

1 Introduction

The modeling of dynamical systems often leads to large $etsglnary differential equations.
The high order of these models complicates analysis, sydemign and controlModel order
reduction(MOR) aims at finding smaller sets of differential equatigmeserving or at least
approximating the most important properties and the dyodrahavior of the original model.
For the reduction ofinear time-invariantmodels, several well-established families of meth-
ods are available, like balancing and truncation [8, 1], Bla@éduction [5], Krylov subspace
methods [1, 7] and Proper orthogonal decomposition [1]halling their advantages and dis-
advantages. However, for the reductiomohlinearmodels and oparametricmodels (where
the parameters are desired to be preserved in the reducesl)mmay very few methods are
available.

For the reduction ohonlinear systemsf the formx = f(x, u), Proper Orthogonal Decom-
position(POD), e.g. [1, 9, 10] is widely used, requiring the so-acakmapshots of the state
trajectory, gained from a simulation of the full-order mbaéh a suitably chosen input signal.
The reduced order modek, = VZf(Vx,,u), however, requires the expensive evaluation of
the full size vector of nonlinearitie$(.) .

Another leading method for the reduction of nonlinear systes theTrajectory Piecewise
Linear Approximatior{TPWL) [4] which represents the nonlinear model,

x = f(x) + Bu,y = Cx, Q)

by an interpolation between a numbersdbcally linear models,

X = sz‘(x) [f(xi) + Ai(x — x;) + Bu],y = Cx. (2)

'Here and subsequently it is assumed that the projéétis orthogonal, i.e. VTV = I (unless otherwise
noted).



x; denotes states (preferably chosen along the expected state tiejget whichf(.) is eval-
uated together with the JacobiaAs of f. Thew;(x) are weighting functions switching softly
between the different models, thereby interpolating betwteem, depending on the actual state
x. The reduced model is found by applying a projecfiomno (2):

= wi(Vx,) [VI(f(x;) + Ax;) + VIA;Vx, + VIBu], y =CVx,.  (3)

i=1

Other methods of nonlinear model reduction are, for insatiee system matrix optimization
method [6] and the simulation-free approach [3].
For the reduction olinear parametric modelsxpressed with a vectgr of parameters

x = A(p)x+ Bu, y = Cx, (4)

a generalization of moment matching to multivariate morséiats been presented in [11]. Un-
der certain assumptions, the projectigrcan then be calculated, such that the reduced model

= VTA(p)Vx, + VIBu, y = CVx,, (5)

not only matches some of the first moments of the transfertiom& (s, p) with respect to
s, but also with respect to the parameters. However, this odesluffers from the curse of
dimensionality where the order of the reduced system, umber of columns in the projection
matrix V grows very rapidly even for a low number of parameters.

Obviously, an interpolating representation of the paraimetodel (4) is immediately possible
in the way of equation (2)[13]:

X—sz A(p;))x+ Bu], y = Cx, (6)

The parametric matriXA (p) needs only to be known and evaluated aiscrete values of the
vectorp. This significantly simplifies in many practical cases thedelbng process, where it is
often impossible to assume or obtain an affine parametendepey. Accordingly, the reduced
model by projection is

sz [VTA(p;))Vx, + VIBu] , y = CVx,. (7)

Interpolation between linear models is also possible infteguency domain: In [12], a soft
switching between linear reduced order transfer functimasid for different parameters) is
suggested. The reductions are proposed to be done by Bajgarad Truncation.

A difficulty of the interpolating reduced models (3) and (3)the fact that the projectionW
must include the relevant subspace information fadhthe full order local models simultane-
ously. This increases the numlgesf the columns oV (in particular with growing numbes of
local models), therebincreasingthe orderg of the reduced modedignificantly For instance,
if V is calculated to match only one moment of each ofsth@/olved models, then the reduced
order will be s, while reducing a single model and matching only one momentlavlead to
order one.

To solve this problem, a general framework is subsequentigduced, allowing teeparately
reduce all the local models by using separate subspacesebyhehe order of the reduced
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Figure 1. Possible choice of the weighting functions.

model can be reduced by a factor of uptdt is illustrated, that the procedure can efficiently be
applied in (i) Reducing linear parametric models by intémfing between linear non-parametric
models, (ii) Reducing nonlinear dynamical systems by pu&ating between linear ones (like
in TPWL), and (iii) Reducing nonlinear parametric modelsifgrpolating between linear or
nonlinear non-parametric ones. An example is given in ge@&i

2 Subspace separation in parametric model reduction

To ease the presentation, a linear time-invariant staaeespodel with only one scalar param-
eterp € [p1, po] is considered,

X =A(p)x+B(p)u, y = C(p)x. (8)

No assumptions are made on how the paramesdfectsA, B andC. However for now, it is
assumed thaA (p), B(p), andC(p) are only known for the specific valugsandp, of p. Then,
the system (8) can be approximated by

% = wi(p) [A(p1)x + B(p1)u] + w2(p) [A(p2)x + B(p2)u], (9)
y = wi(p)C(p1)x + wa(p)C(p2)x, (10)

where the weights (p), w2 (p) switch softly between the two models, for instance accayttin
figure 1. Obviouslyw, (p) + w2(p) = 1 is a reasonable choice that keeps the time scale of the
dynamic system unchanged.

2.1 Step 1: Subspace Separation

Different from (3) and (7), the two model&(p, ), B(p1), andC(p;), and A(pz), B(p2), and
C(py) are separately reduced, using separate subspaces répdeseseparate projection ma-
tricesV; andV,. These projection matrices can be, for instance, calailayeBalancing and
Truncation, by a Modal approach, by POD, or by Krylov subspaethods.

Applying the projections to both models leads to the redwsyestems

Xip = VlTA(pl)len + V?B<pl)u7 V1= C<p1)lelr (11)
Xop = VQTA(pQ)VQXQr + VQTB(p2)U> Vo = C(pQ)VQXQT (12)



2.2 Step 2: State Transformations

Because the two projections differ, the state vectgrsandx,, have different physical mean-
ing and their time-derivatives can no longer be added upifk@) and (7). Therefore, two
state transformationare subsequently introduced, giving both state vectorsdh® physical

interpretation The approximations at gained from the reduced models are:

X from model 1 = lelra X from model 2 = Voxo, (13)

Now, ¢ technically importanstate variables are chosen from the original state vectord the
corresponding rows oV; andV, are combined into the square matri¢ésandT,, respec-
tively. Then, the; chosen state variables, combined irfcandx; are approximately

)A(T = Tlxlr, )A(; = T2X2r. (14)

Both state vectors have the same physical meaning, anddherafter applyindl’; and T
as state transformations to (11),(12), these two modeldearombined leading to the final
reduced model

Xr = wi(p) [TiVIA(p)ViT %) + TV B(py)u] +
wa(p) [T2V3 A(p2) Vo Ty x5 + TV B(pa)u] (15)
= wiC)ViTy'x; + wa(p)Clp2) V2T 'x;. (16)

Note that at any timeé and for any value of, only onereduced model of orderresults and is
to be evaluated in the numerical simulations. This would ifferent, if we would interpolate
the outputsof different parallel-running reduced models. In this ¢ake reduced order would
be2q.

Obviously, a generalization ferinterpolation point%, . . ., p, (instead of onlyp,, p; ) is
X = wip) [TiVIA(p)ViT; 'x; + T; V] B(pi)u] , (17)
i=1
¥ =Y wip)Clp:)ViT; 'x;. (18)
i=1

p can be avectorof parameters as well; The weightgp) are then multidimensional.

2.3 Remarks

e Intheresult (17), each subsystem is reduced with the looggtion matrixV; designed
for it. The reduced system’s ordergsinstead of; - s when a common projector com-
bined of s local projections each of dimensigns used. In both cases, when reducing
by moment matching for instance, the number of moments redtehthe interpolation
points isq.

e Sometimes, usingbliqueprojectionsW?!, V,; (with W'V, = 1) instead ofV! |V, is
desired, for instance, in two-sided Krylov-subspace ré&daocIn this case, in the results
(17), the termsV! A(p;) and VI B(p;) are to be substituted bWZTVi)_IWZTA(pi)

and(W/'V,) “'WTB(p,), respectively.



e For finding the matriced’; , ¢ technically important state variables from the full state
vectorx have been chosen. With this choice, the state vectaf the reduced model
has aclear physical interpretatioms it directly approximates the corresponding original
state variables. If from technical considerations suchacehis impossible or leads to
singular or badly conditioned matricds , then the following systematic choice is to
be employed: Define the variables to be some linear combination of the originalestat
variablesx* = Rx , whereR is a(q, n)-matrix of full rank. The resulting transformation
matrices are then

T, = RV,. (29)

The best conditioning dT’; occurs wheril'; = RV, ~ 1. Hence, a possible choice is

I--I~R[V,---V,] = R=[---1[Vy - V. (20)

If n > ¢ - s, thenR provides an exact solution in most cases, Te= 1.

e Stability of the reduced model can be investigated by findimgmmon Lyapunov func-
tion, e. g. [14] for all the linear local models simultanelgusctivated by their weights;.

e The superposition of local models can be also done with BystEf the typeE(p)x =
A(p)x + B(p)u. By multiplication with a non-singular matrix from the leffifferent
representations can be generated, leading to differemrgpbf how to represent the
reduced model. One option is

sz [T, VIE@) VT '] % = Zwl [T:VIA(p)ViT;'x; + T;V{B(p;)u] .

3 Subspace separation in nonlinear reduction

Steps 1 and 2 of the previous section can be similarly apptiesd nonlinear system (1) and
its approximation bys local linear models (2). The linear models(A;, B, C) are reduced
separately by individual projectiong;. Before recombining the reduced models, all the state
vectors are given the same physical meaning by applyingansformationd’; from (19) with

R from (20). The reduced model is then:

Xt = Z wi(V T )T V] [f(x) — Ax; + AV, T;'x; 4+ Bu] (21)

i=1

¥=> wi(VT;'x)CV,T; 'x. (22)

i=1

The weightsv; are updated with the state vector. This is different from) (&fiere an update of
w; only occurs, when a parameter changes. Moreover, the veeigitere depend oWV, T; .
Therefore, at each evaluation time, they should be norexdlia sum up to one,

Wi

_ 23
wr+ .ot ws (23)

Wi normalized =
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Figure 2. A schematic of the considered spring-mass-dasystem.

4 Subspace separation in nonlinear parametric reduction

The most general case occurs when a nonlinear parametriel is@gpproximated by a weighted
sum of parametric modéiss follows:

i=1

where the vectorf; can either be linear or nonlinears#and can be valid for certain states
or for certain parameter sgps or for both. The reduced model of orders then

Xr = wi(ViT;'x;, p) TV (VT %), %0, ). (25)
=1

A reduction procedure that can be applied here is POD, winersrapshots defining; are
taken locally in those parts of the state space wheis large.

5 Numerical example

In order to illustrate the framework presented in this papexr apply it for the reduction of
an academic spring-mass-damper system, which schemadtjgasiameter values are shown in

2Input u and output y omitted for simplicity.



figure 2. The equations of motion describing the system’sdyns are the following:

miZ = (u— z1)er + (22 — 21)ca + (22 — 21)da + (24 — 21)cCs,
MoZe = (21 — 22)co + (21 — Z2)da + (23 — 29)c3 + (23 — 29)ds,
mgZs = (20 — 2z3)c3 + (29 — Z3)d3 + (24 — 23)cq + (24 — 23)dy,
myZy = (23 — za)cq + (23 — Za)dy + (21 — za)C5 — Zads — 2466

Setting the state vector = [z1, 21, 29, 29, 23, 23, 24, 24], the input to a displacement acting on
the springc;, and the output to the position of the mass, leads to a state-space model of
order 8. As the stiffness and damping and d; and the stiffnesgs vary within a certain
given interval (see figure 2), the resulting model is a patameodel. In order to keep the
considerations simple, these three variable parameterscanbined to just one parameter
such thate; = (1 + 2«), ds = v andc¢g = (2 + 2a). Hence, by increasing from 0 to 1,
the parameterss, d; andcs are shifted within their corresponding intervals (figure s a
result, a state space model with a matkigy) is obtained and is to be reduced while preserving
this parameter dependency. At the first step, two modelsilzaéd at the lower and upper
bounds of the parameter are generated (with significantly different resonance peakd
denotednodel landmodel 2 Then, each of them is locally reduced using a two-sidedd<syl
based approach with = 0, leading to two nonparametric reduced order modessired 1land
modred 2 each of order 4 (see figures 3 and 4). Now, these reduced snadreinterpolated by
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Figure 3: Amplitude of the Bode Diagram of Figure 4: Amplitude of the Bode Diagram of
model landmodred 1(a = 0). model 2andmodred 2(« = 1).

eq. (15) withw; () = (1 — a) andws(a) = « (similar to figure 1) andv € [0, 1]. For instance,
whena = 0.5 (middle of the parameter interval), the obtained reducedehaverages the
reduced modelsodred landmodred 2and has an order of 4.

To judge the quality of this reduced model, it is comparedeodriginal model of order 8 with
the parameters; = 2, ¢ = 3, andd; = 0.5 (middle of their corresponding intervals), denoted
model 3 Furthermore, a reduced order model (denotePBysy$ is calculated using a com-
mon projection matrix formed by the first two columns of ea€the projection matrices used

to reducemodel landmodel 2 then combined as shown in eq. (7). Finally, a reduced order
model, denoted akocal-sys is found by a local projection matrix calculated framodel 3
Note that this reduction does not lead to a parametric retloedel, however offers the "best’
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Figure 5: Amplitude of the Bode Diagram of the original andueed models of different
methods.

approximation, as it can be seen in figure 5. The reduced notdigined using the new frame-
work is very close to the local reduced model and clearly sapéo the one obtained by a
common projection matrix.

6 Conclusions and Outlook

A framework for order reduction of models represented byrderpolating superposition of
linear/nonlinear/parametric/non-parametric modelddess presented. These local models can
now be reduced separately, leading to lower order reducgtérsg than with a joint projector.
The reduced order is also lower than by interpolating betmeitterent reduced transfer func-
tions, since at any timeand for any parameter spt the system order is constant and equal to
q. Several open questions have still to be treated, like (i) tGa order of the reduced model be
changed along the state trajectory or with changing parnset(ii) What reduction methods
allow for finding error bounds or at least stability guaranite nonlinear reduction? (iii) How
are the parameters of the reduction methods to be chosen?
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