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Nothing in life is to be feared, it is
only to be understood. Now is the
time to understand more, so that we
may fear less.

—Marie Skłodowska Curie
(1867–1934)



Abstract

Master’s Thesis

The present work deals with active vibration control on lightweight struc-
tures subject to periodic excitations in fluid-structure interactions. For
this purpose partitioned schemes for co-simulation of computational fluid-
structure-control interaction are developed and implemented. They are
subsequently investigated in numerical experiments. In addition, different
closed-loop control laws are derived and employed.

Thus, this work essentially covers two aspects: First, convergence and
stability properties as well as numerical effort of the proposed schemes are
analyzed. This is supported by investigations on a model problem within
the Honours Project. Second, the effectiveness of the previously established
closed-loop control laws is assessed.

Honours Project

A simple coupled model problem is developed and iteratively solved using
fixed-point formulations for different Gauß-Seidel communication patterns.
Convergence and stability properties of the resulting solution algorithms are
analytically assessed. The results allow predictions on corresponding par-
titioned schemes (co-simulation) for computational fluid-structure-control
interaction. The Honours Project mainly covers Chapter 3 Model Prob-
lem (pp. 32–51) as well as parts of Chapter 9 Fluid–Structure–Control
Interaction (pp. 118–160) of this work.
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Zusammenfassung

Master’s Thesis

Die vorliegende Arbeit befasst sich mit der aktiven Schwingungsdämpfung
an leichten Strukturen unter periodischer Anregung innerhalb von Fluid-
Struktur Interaktionen. Zu diesem Zweck werden partitionierte Ansätze zur
Co-Simulation von numerischer Fluid-Struktur-Regler Interaktion erarbeitet
und umgesetzt. Anschließend werden sie in numerischen Experimenten
näher untersucht. Ergänzend werden verschiedene Regelgesetze abgeleitet
und angewendet.

Diese Arbeit betrachtet daher im Wesentlichen zwei Aspekte: Zum einen
werden Konvergenz- und Stabilitätsverhalten sowie numerischer Aufwand
der vorgeschlagenen Ansätze analysiert. Dies wird von Untersuchungen an
einem Modellproblem im Rahmens des Honours Projects unterstützt. Zum
anderen wird die Leistungsfähigkeit der vorher erarbeiteten Regelgesetze
beurteilt.

Honours Project

Ein einfaches gekoppeltes Modellproblem wird erarbeitet und unter Verwe-
nung von Fixpunktformulierungen für verschiedene Gauß-Seidel Kommuni-
kationsschemata iterativ gelöst. Konvergenz- und Stabilitätsverhalten dieser
Lösungsalgorithmen werden mittels einer analytischen Untersuchung beur-
teilt. Die Ergebnisse lassen Vorhersagen bei entsprechenden partitionierten
Ansätzen (Co-Simulation) für numerische Fluid-Structur-Regler Interaktion
zu. Das Honours Project umfasst im Wesentlichen Kapitel 3 Model Problem
(S. 32–51) sowie Teile von Kapitel 9 Fluid–Structure–Control Interaction
(S. 118–160) dieser Arbeit.
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The important thing is not to stop
questioning. Curiosity has its own
reason for existence. [...] Never
lose a holy curiosity.

—Albert Einstein (1879–1955)

1 Introduction

The present work deals with numerical experiments on fluid-structure-control
interaction, i.e. multi-physics involving fluid dynamics, structural mechanics
and closed-loop control of structures. Purpose of this introductory chapter is
to classify this work within the wide range of numerical simulation strategies.
Please note, that relevant categorizations are emphasized.

In his introductory Sections 1.2 and 1.3 (pp. 2–4) Küttler (2009) briefly,
but critically, discusses the aspects of numerical experiments and math-
ematical modelling. Numerical experiments are "the recalculation of the
differential equations"1, i.e. the process of solving the differential equations,
which are results of mathematical modeling. Mathematical models "are
themselves scientific theories, thus speculatively stated assumptions"2 with a
certain, mostly well-known, associated range of validity. Reliable statements
can therefore be derived within the common physical domain.

Consequently, numerical experiments only allow observations on math-
ematical models whereas physical experiments reveal reality. It becomes
evident that the solution of such simulations can only be as valuable as the
underlying mathematical models. "Substantial surprises can not occur that
way."3

On the contrary, the recombination of such classical mathematical models
outside their common domains thus far, i.e. the application in a non-

1original Ger. "das Nachrechnen der Differentialgleichungen" (Küttler 2009, Section 1.2,
p. 2)

2original Ger. "sind für sich wissenschaftliche Theorien, also spekulativ aufgestellte
Vermutungen" (Küttler 2009, Section 1.2, p. 2)

3"Wirkliche Überraschungen können so nicht auftreten." (Küttler 2009, Section 1.2,
p. 3)
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2 Section 1.0

classical manner demands more attention (Küttler 2009, Section 1.2, p.
2). This exceptional treatment beyond common borders may, however,
lead to new helpful insights and a foundation for further numerical or
physical experiments and applications. Additionally, the use of numerical
experiments convinces with advantages like low effort, low costs and easy
access to all quantities within the simulated spatial and temporal domains.

Multi-physics or multi-physical problems are the simulation of interac-
tions, i.e. the coupling of two or more physical fields within one problem.
This, for instance, can be fluid-structure-signal interactions on wind turbines
(Sicklinger, Lerch, Wüchner, and Bletzinger 2015; Sicklinger 2014), fluid-
structure-fluid interactions (Uekermann, Gatzhammer, and Mehl 2014),
fluid-structure-electromagnetism interactions on hearts (Lafortune, Arís,
Vázquez, and Houzeaux 2012) or fluid-structure-accoustic interactions (Link,
Kaltenbacher, Breuer, and Döllinger 2009).

Field-coupling covers volume- and surface-coupling. Volume-coupling
identifies interactions that take place in subdomains of the same dimension
as the actual computational domain whereas surface-coupling characterizes
interactions that are restricted to lower-dimensional subdomains such as
common surfaces of two fields (interfaces). Signal-coupling refers to the
interactions that are restricted to signals, quantities without affiliation to a
spatial domain.

Fluid-structure interaction (FSI) is surface-coupling of a fluid and a
structural field. Any change in the fluid domain triggers a response of
the structural domain and vice versa. It depicts one of the classical multi-
physical problems that arise in mechanics. In this context, the term fluid-
structure interaction exclusively refers to the free and unforced dynamics
between fluid and solid. Exterior modification of the behavior of any
involved field, fluid or structure, results in an influenced or forced interaction
behavior.

This work exclusively focuses on manipulating the dynamics of the
structural field by a closed-loop controller. The objective is to get the
desired over-all behavior "minimum or at best zero displacement" within
a fluid-structure interaction. This multi-physical problem is referred to as
fluid-structure-control interaction (FSCI). Thus, it involves three domains,
fluid dynamics, structural mechanics and closed-loop control of structures.
The interactions are identified as surface-coupling of fluid and structure and
signal-coupling of structure and closed-loop controller.

In literature, various numerical approaches for solving multi-physical
problems can be found. Basically, they all can be boiled down to a blend of
two basic approaches, the monolithic approach and the partitioned approach.

A monolithic approach is modeling all N physics of a multi-physical
problem at once by formulating one large equation system

Fi
(
Xn+1) = 0 (i = 1, . . . , N)

}
F
(
Xn+1) = 0. (1.1)
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=·

physical field 1

physical field 2

physical field 3

0

interaction of 2 physical fields

interaction of 3 physical fields︸ ︷︷ ︸
A

︸︷︷︸
Xn+1

︸︷︷︸
b

Figure 1.1 Schematic representation of a monolith solver for three
physical fields (N = 3).

This leads to a single monolithic solver F which determines all degrees
of freedom or states Xn+1 simultaneously, e.g. via a Newton-Raphson
procedure each time step.

In a partitioned approach, by contrast, the multi-physical system is split
up into N single-physics subsystems Fi (i = 1, . . . , N) exchanging input
data Un+1

i and output data Y n+1
i via interfaces. This procedure is referred

to as partitioning. Each resultant subsystem i is formulated and solved
separately with own internal states Xn+1

i :

Fi
(
Xn+1
i ,Un+1

i

)
= 0

Y n+1
i = Gi

(
Xn+1
i

) }Y n+1
i = G[Xn+1

i ]
i

(
Un+1
i

)
. (1.2)

Herein operator Gi depicts the mapping of states onto output quantities and
operator G[ ]

i the input-output relation in a black box manner emphasizing
internal states. That way the interaction, i.e. coupling is formulated in
terms of N ! interface constraints Iij between subsystems i and j

Iij
(
Un+1
i ,Y n+1

i ,Un+1
j ,Y n+1

j

)
= 0 (i, j = 1, . . . , N i < j) (1.3a)

i.e. one global interface constraint I between all subsystems

I
(
Un+1
i ,Y n+1

i , i = 1, . . . , N
)

= 0 (1.3b)

simplifying the replacement of solvers and reuse of existing, well established
software tools. However, this modularity may lead to stability and accuracy
issues demanding for special treatment. Partitioned coupling is sometimes
also referred to as co-simulation or N -code coupling.

Partitioned coupling can either be realized as iterative/strong/implicit
coupling or as loose/weak/staggered coupling. The difference lies in fulfill-
ment of the interface constraints (1.3). Iterative coupling strictly satisfies all
interface constraints demanding an interface iteration loop with desired con-
vergence tolerance. Whereas, loose coupling misses any interface iteration
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physical field 1 in subsystem 1

physical field 2 in subsystem 2

physical field 3 in subsystem 3
=·

=·

=·

︸ ︷︷ ︸
A1

︸︷︷︸
Xn+1

1

︸︷︷︸
b1

︸ ︷︷ ︸
A2

︸︷︷︸
Xn+1

2

︸︷︷︸
b2

︸︷︷︸
Xn+1

3

︸︷︷︸
b3

︸ ︷︷ ︸
A3

=·

︸ ︷︷ ︸
AI

︸︷︷︸
Un+1

1,2,3

︸︷︷︸
bI

interaction/coupling of physical fields
in interface constraints

Figure 1.2 Schematic representation of a partitioned solution proce-
dure for three physical fields (N = 3).

allowing partial violation of interface constraints. Therefore, in general, only
iterative coupling matches the monolithic solution (1.1) paying, however,
the price of a usually higher numerical effort. Reviewing fluid-structure
interaction, iterative coupling guarantees kinematic compatibility and equi-
librium of forces at the interface while loose coupling normally just satisfies
kinematic compatibility.

The characterization of partitioned coupling states the exchange of data
between the individual subsystems as an essential property. This tempo-
ral data exchange can be realized with two fundamental communication
patterns: the serial Gauß-Seidel (GS) pattern and the parallel Jacobi (JC)
pattern. The Gauß-Seidel pattern is similar to a chain. The output of one
chain link, subsystem, always provides the input of the next one. These de-
pendencies result in serial execution of the subsystems. The Jacobi pattern,
on the other hand, runs all subsystems independently in parallel. In- and
outputs do not necessarily have to be connectable. For further details it
is referenced to Sicklinger (2014, Sections 3.3, 3.4, 4.6, pp. 57–65, 80–87)
among others.

This work developes iterative coupling strategies using Gauß-Seidel
communication patterns and fixed-point iterations with dynamic relaxation
for solving the interface constraints. Details will be introduced in Chapter
3 Model Problem (pp. 32 ff.) together with Chapters 7 Fluid–Structure
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Interaction (pp. 79 ff.) and 9 Fluid–Structure–Control Interaction (pp.
118 ff.). In literature this approach is also referred to as Dirichlet-Neuman
coupling/iterative strategy with relaxation or block Gauß-Seidel procedure.
Aitken acceleration is used for dynamically updating the relaxation factor.
It is presented in Küttler and Wall (2008) and Küttler (2009). Similar
concepts have already been mentioned in Uekermann, Gatzhammer, and
Mehl (2014) without further investigation.

Differing coupling strategies would also be feasible, e.g. an iterative
coupling strategy using a Jacobi communication pattern and the Inter-
face Jacobian-based Co-Simulation Algorithm (IJCSA) (Sicklinger, Belsky,
Engelmann, Elmqvist, Olsson, Wüchner, and Bletzinger 2014; Sicklinger
2014) for solving the interface constraints. Software limitations lead to post-
ponement of that concept, since full Jacobian information at the interface
(non-black-box) are demanded but not yet provided by the fluid solver. This
fact is also mentioned in Uekermann, Gatzhammer, and Mehl (2014).

It should also be noted that a directly related topic to solving interface
constraints is the realization of data transfer between non-matching spatial
discretizations at the interfaces, also referred to as mapping. For an overview
see for instance Wang (2016) or Wang, Sicklinger, Wüchner, and Bletzinger
(2016).

One last important topic worth mentioning in connection to fluid-
structure (-control) interaction is the added-mass effect. Added-mass is fluid
mass accelerated by the deforming structure. Its amount has a tremendous
effect on the dynamical behavior of the structure in the interaction. The
arising strong non-linear effects themselves are decisive for the stability
properties of the coupling algorithm. The added-mass effect depends on the
ratio of fluid and solid density ρF

ρS
as well as geometrical conditions. Further

discussions on added-mass can be found in Causin, Gerbeau, and Nobile
(2005) and Brummelen (2009).

The remainder of this work is organized as follows: In Part I Theoretical
Considerations (pp. 8 ff.) Chapter 2 Fundamentals (pp. 8 ff.) addresses
some frequently required fundamentals on the mathematics/algorithmics of
numerical initial value problems, i.e. numerical time integration and the
phenomenologics of vortex shedding on cylinders in crossflow. Chapter 3
Model Problem (pp. 32 ff.) presents the above-mentioned coupling schemes
for solving fluid-structure-control interaction problems. They are analyzed
on an analytical basis using a one-dimensional model problem. In Part II
Numerical Experiments (pp. 53 ff.) Chapter 4 The Experiment (pp. 53 ff.)
introduces the multi-dimensional numerical experiment on fluid-structure-
control interaction. Chapters 5 The Fluid (CFD) Subsystem (pp. 57 ff.), 6
The Structural (CSM) Subsystem (pp. 68 ff.) and 8 The Controller (CLC)
Subsystem (pp. 94 ff.) cover details on the respective subsystems. The
structure is realized in two levels, the controller in three. Chapter 7 Fluid–
Structure Interaction (pp. 79 ff.) investigates the fluid-structure interaction
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(FSI) sub-problem. Chapter 9 Fluid–Structure–Control Interaction (pp. 118
ff.) revisits the established coupling schemes and finally applies them to
the multi-dimensional fluid-structure-control interaction (FSCI) problem.
Numerical aspects as well as the applied control algorithms are analyzed.
Part III Conclusion and Outlook (pp. 162 ff.) concludes the work of this
thesis and motivates future investigations. Part III Appendices (pp. 165 ff.)
covers additional material.



Part I

Theoretical
Considerations
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2 Fundamentals

This chapter contains a pure collection of frequently required fundamentals
gathered in the beginning of this theses. Therefore, it makes no claim
to completeness. The content covers certain aspects on the mathematics
and algorithmics of numerical initial value problems, i.e. numerical time
integration, and on the phenomenology of vortex shedding of circular and
square cylinders in crossflow.

2.1 Numerical Initial Value Problems in Ordinary Differ-
ential Equations

Initial value problems (IVP’s) arising in linear dynamics are most generally
described by vectorial, first order, linear, ordinary differential equations
(ODE’s)

φ̇ = Aφ+Bψ (2.1a)
with appropriate initial conditions (IC’s)

φ(t0) = φ0. (2.1b)

The initial velocity is calculated to

φ̇(t0) = φ̇0 = Aφ0 +Bψ(t0) (2.2)

inserting the IC’s (2.1b) into the ODE (2.1a).
By default, accuracy, stability and other properties of a numerical time

integration scheme for first order IVP’s are derived from application to the
8



Chapter 2 Fundamentals 9
scalar, one-dimensional, autonomous ψ ≡ 0 and therefore simplest possible
problem of form (2.1)

φ̇ = aφ (2.3a)
φ(t0) = φ0

φ̇(t0) = φ̇0 = aφ0.
(2.3b)

It possesses one single eigenvalue λ = a.
Certain IVP’s stemming for instance from linear structural dynamics

are more commonly described by second order linear ODE’s

Mφ̈+Cφ̇+Kφ = ψ (2.4a)

with appropriate pairs of IC’s

φ(t0) = φ0

φ̇(t0) = φ̇0.
(2.4b)

In this case the initial acceleration is accordingly calculated to

φ̈0 = M−1 (ψ (t0)−Cφ̇0 −Kφ0
)

(2.5)

applying the ODE (2.4a) on the IC’s (2.4b).
Accuracy, stability and other properties of a particular numerical time

integration scheme for second order IVP’s are analogously derived from
applying the scheme to the simplest possible problem of type (2.4)

mφ̈+ kφ = 0 (2.6a)
φ(t0) = φ0

φ̇(t0) = φ̇0
(2.6b)

φ̈(t0) = φ̈0 = k

m
φ0, (2.6c)

describing an autonomous ψ ≡ 0, undamped c = 0, single degree of
freedom system (SDoF) with the conjugate complex pair of eigenvalues
λ1/2 = ±

√
k
m .

Second order IVP’s (2.4) can also be formulated in the more general
form of first order IVP’s (2.1)[

φ̇

φ̈

]
=
[

0 I
−M−1K −M−1C

][
φ

φ̇

]
+
[

0
M−1

]
ψ (2.7a)[

φ (t0)
φ̇ (t0)

]
=
[
φ0

φ̇0

]
(2.7b)[

φ̇ (t0)
φ̈ (t0)

]
=
[
φ̇0

φ̈0

]
=
[

φ̇0

M−1 (ψ (t0)−Cφ̇0 −Kφ0
)] . (2.7c)
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This way, the simplest possible problem (2.6) reads[
φ̇

φ̈

]
=
[

0 1
− k
m − c

m

][
φ

φ̇

]
(2.8a)[

φ(t0)
φ̇(t0)

]
=
[
φ0

φ̇0

]
(2.8b)[

φ̇(t0)
φ̈(t0)

]
=
[
φ̇0

φ̈0

]
=
[
φ̇0
k
mφ0

]
. (2.8c)

Vice versa, first order IVP’s (2.1) can also be treated as pseudo second
order IVP’s (2.4)

IΦ̈ + (−A) Φ̇ + 0Φ = Bψ (2.9a)
Φ(t0) = Φ0

Φ̇(t0) = Φ̇0 = φ0
(2.9b)

Φ̈(t0) = AΦ̇0 +Bψ(t0) = Aφ0 +Bψ(t0) (2.9c)

defining Φ(t) := Φ0+
∫ t
t0
φ(τ) dτ , i.e. Φ̇(t) := φ(t) and choosing for example

Φ0 = 0 without any loss of generality.

2.1.1 Backward Differentiation Formulae

This subsection is based on Gear (1971, 2007), Süli and Mayers (2003), and
Iserles (2009).

The backward differentiation formulae (BDF’s), also referred to as stiffly
stable methods by Gear (1971), are one-level multi-step time integration
methods for stiff first order IVP’s. For details on stiff equations, the
interested reader is referred to the literature, e.g. Gear (1971).

In the following some definitions of stability are given. Those are needed
for distinction of the BDF’s among themselves and other methods. The
corresponding stability regions in the δtλ-plain are illustrated in Figure 2.1.

Definition 2.1 (A-Stability (Gear 1971, Definition 11.1, p. 212)1)
"A method is said to be A-stable if all numerical approx-

imations tend to zero as n −→ ∞ when it is applied to the
differential equation φ̇ = λφ with a fixed positive δt and a
(complex) constant λ with a negative real part."

Definition 2.2 (A(α)-Stability (Gear 1971, Definition 11.2, p. 213)1)
"A method is A(α)-stable, α ∈

]
0, π2

[
, if all numerical ap-

proximations to φ̇ = λφ converge to 0 as n −→∞ with δt fixed
for all | arg (−λ)| < α, |λ| 6= 0."
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Definition 2.3 (Stiff Stability (Gear 1971, Definition 11.3, p. 213)1)

"A method is stiffly stable if in the region R1 (Re(δtλ) ≤ σ−)
it is absolutely stable, and inR2 (σ− < Re(δtλ) < σ+, | Im(δtλ)| < ω±)
it is accurate."

For details on absolute stability, the interested reader is once again
referred to the literature, e.g. Gear (1971).

Re(δtλ)

j Im(δtλ)

(a) A-stability.

Re(δtλ)

j Im(δtλ)δtλ1

δtλ2

δtλ3

δtλ4

α

α

(b) A(α)-stability.

Re(δtλ)

j Im(δtλ)

σ+σ−

ω±

ω±

(c) Stiff stability.

Figure 2.1 A-stability, A(α)-stability and stiff stability regions
(Gear 1971, Figure 11.4, p. 213, 1971, Figure 11.5, p. 214).

The backward differentiation formula of order N (N = 1, . . . , 6) is
defined as

φn+1 =
N−1∑
l=0

(
αn−lφ

n−l
)

+ δtβn+1φ̇
n+1 (2.10)

along with the coefficients αn−l (l = 0, . . . , N − 1) and βn+1 according to
Table 2.1. Therein also the stability properties are listed. The BDF1 is
most commonly known as backward or implicit Euler method.

Definition (2.10) can be rewritten as

φ̇
n+1 = α̂n+1φ

n+1 +
N−1∑
l=0

(
α̂n−lφ

n−l
)

(2.11a)

α̂n+1 = 1
δtβn+1

(2.11b)

α̂n−l = − αn−l
δtβn+1

(l = 0, . . . , N − 1) (2.11c)

and its first temporal derivative

φ̇
n+1 =

N−1∑
l=0

(
αn−lφ̇

n−l)+ δtβn+1φ̈
n+1 (2.12)

1Notation adapted.
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Table 2.1 Coefficients in the backward differentiation formulae (Gear
1971, p. 217, Table 11.1, 2007, Table "BDF Coefficients"; Süli
and Mayers 2003, Equation 12.36, p. 331, Equations 12.50ff,
p. 349; Iserles 2009, Equations (1.15, 215, 2.16)).

N αn αn−1 αn−2 αn−3 αn−4 αn−5 βn+1 stability

1 1 — — — — — 1 A

2 4
3 − 1

3 — — — — 2
3 A

3 18
11 − 9

11
2
11 — — — 6

11 A(α)/stiff
4 48

25 − 36
25

16
25 − 3

25 — — 12
25 A(α)/stiff

5 300
137 − 300

137
200
137 − 75

137
12
137 — 60

137 A(α)/stiff
6 360

147 − 450
147

400
147 − 225

147
72
147 − 10

147
60
147 A(α)/stiff

7 — — — — — — — none
...

...
...

...
...

...
...

...
...

accordingly

φ̈
n+1 = α̂n+1φ̇

n+1 +
N−1∑
l=0

(
α̂n−lφ̇

n−l)
= α̂2

n+1φ
n+1 +

N−1∑
l=0

(
α̂n+1α̂n−lφ

n−l + α̂n−lφ̇
n−l) . (2.13)

Thus, the forward integration of a first order IVP (2.1) is obtained as[
I −δtβn+1I
−A I

][
φn+1

φ̇
n+1

]

=
N−1∑
l=0

([
αn−lI 0

0 0

][
φn

φ̇
n

])
+
[

0
B

]
ψ
(
tn+1−αf

) (2.14a)

[
φ−l

φ̇
−l

]
=
[
φ−l

φ̇−l

]
(l = 0, . . . , N − 1) (2.14b)

combining Equations (2.10) and (2.1a) or equivalent as

(I− βn+1δtA)φn+1 =
N−1∑
l=0

(
αn−lφ

n−l
)

+ βn+1δtBψ
n+1 (2.14c)

φ̇
n+1 = α̂n+1φ

n+1 +
N−1∑
l=0

(
α̂n−lφ

n−l
)

(2.14d)

φ−l = φ−l (l = 0, . . . , N − 1) (2.14e)
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inserting Equation (2.11) in Equation (2.1a). It remains the problem of
determining φ−l (and φ̇−l) for l = 1, . . . , N − 1 out of φ0 and φ̇0.

With this, also the forward integration of the simplest first order problem
(2.3)

(1− βn+1δta)φn+1 =
N−1∑
l=0

(
αn−lφ

n−l) (2.15a)

φ̇n+1 = α̂n+1φ
n+1 +

N−1∑
l=0

(
α̂n−lφ

n−l) (2.15b)

φ−l = φ−l (l = 0, . . . , N − 1) (2.15c)

is given. As previously mentioned, this formulation is now used to determine
the stability properties of the BDF’s.

Equation (2.15a), i.e. the BDFN (N = 1, . . . , 6) has the characteristic
equation

p(λ) = (1− βn+1δta)λN −
N−1∑
l=0

(
αn−lλ

N−1−l) , (2.16)

i.e. the eigenvalues

{λl, l = 1, . . . , N} =
{
λ ∈ C

∣∣p(λ) = 0
}

(2.17)

and as a consequence the spectral radius

ρ(δta) = max
δta
{|λl| , l = 1, . . . , N}. (2.18)

Absolute stability of the BDFN is ensured, if and only if for its spectral
radius

ρ(δta) ≤ 1 (2.19)

holds.
Analytical evaluation of the statements (2.16) to (2.19) proves difficult,

in particular for the cases N = 2, . . . , 6. Therefore, the resulting contour
lines of the spectral radii and regions of absolute stability are illustrated in
Figure 2.2 for BDF1 through BDF6.

Furthermore, the forward integration of a second order IVP (2.4) is
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(a) BDF1. (b) BDF2.

(c) BDF3. (d) BDF4.

(e) BDF5. (f) BDF6

Figure 2.2 Regions of absolute stability with contour lines of spec-
tral radii for backward differentiation formulae (in ac-
cordance with Gear (1971, Figures 11.6/11.7, pp. 215/216)
and Süli and Mayers (2003, Figure 12.5, pp. 350–351)).
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obtained as

I −δtβn+1I 0
0 I −δtβn+1I
K C M



φn+1

φ̇
n+1

φ̈
n+1



=
N−1∑
l=0



αn−lI 0 0

0 αn−lI 0
0 0 0



φn−l

φ̇
n−l

φ̈
n−l


+


0
0
I

ψn+1

(2.20a)


φ−l

φ̇
−l

φ̈
−l

 =


φ−l

φ̇−l

φ̈−l

 (l = 0, . . . , N − 1) (2.20b)

combining Equations (2.10), (2.12) and (2.4a) or equivalent as(
α̂2
n+1M + α̂n+1C +K

)
φn+1

= −
N−1∑
l=0

(
α̂n−l

(
(α̂n+1M +C)φn−l +Mφ̇

n−l))+ψn+1 (2.20c)

φ̇
n+1 = α̂n+1φ

n+1 +
N−1∑
l=0

(
α̂n−lφ

n−l
)

(2.20d)

φ̈
n+1 = α̂n+1φ̇

n+1 +
N−1∑
l=0

(
α̂n−lφ̇

n−l) (2.20e)

φ−l = φ−l

φ̇
−l = φ̇−l

(l = 0, . . . , N − 1) (2.20f)

inserting Equations (2.11) and (2.13) in Equation (2.4a). It remains the
problem of determining φ−l, φ̇−l (and φ̈−l) for l = 1, . . . , N − 1 out of φ0,
φ̇0 and φ̈0.

2.1.2 The Class of Generalized–α Methods

The following subsection is based on Newmark (1959), Gear (1971), Hilber,
Hughes, and Taylor (1977), Wood, Bossak, and Zienkiewicz (1980), Chung
and Hulbert (1993), Jansen, Whiting, and Hulbert (2000), Shearer and
Cesnik (2006), Brüls and Arnold (2008), and Jay and Negrut (2009). It
holds information on the class of generalized–α methods which includes
the generalized–α method itself as well as the Wood–Bossak–Zienkiewicz–α
(WBZ–α) method, the Hilber–Hughes–Taylor–α (HHT–α) method and the
Newmark–β method. All methods belong to the class of one-step, three-level
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numerically dissipative time integration schemes for second order IVP’s.
The last three and further methods originate from the generalized–α method
by choosing certain sets of parameters.

Generalized–α Method

As the most general form the generalized–α method for second order IVP’s
(2.4) is defined as

φn+1 = φn + δtφ̇
n + δt2

((
1
2 − β

)
φ̈
n + βφ̈

n+1
)

(2.21a)

φ̇
n+1 = φ̇

n + δt
(

(1− γ)φ̈n + γφ̈
n+1) (2.21b)

Mφ̈
n+1−αm +Cφ̇n+1−αf +Kφn+1−αf = ψ

(
tn+1−αf

)
(2.21c)

φ0 = φ0

φ̇
0 = φ̇0

φ̈
0 = φ̈0

(2.21d)

along with

φ̈
n+1−αm = (1− αm) φ̈n+1 + αf φ̈

n (2.21e)

φ̇
n+1−αf = (1− αf ) φ̇n+1 + αf φ̇

n (2.21f)
φn+1−αf = (1− αf )φn+1 + αfφ

n (2.21g)
tn+1−αf = (1− αf ) tn+1 + αf t

n. (2.21h)

In more compact matrix notation this reads
I 0 −δt2βI
0 I −δtγI

(1− αf )K (1− αf )C (1− αm)M



φn+1

φ̇
n+1

φ̈
n+1



=


I δtI δt2

( 1
2 − β

)
I

0 I δt(1− γ)I
−αfK −αfC −αmM



φn

φ̇
n

φ̈
n

+


0
0
I

ψ (tn+1−αf
)

(2.22a)
φ0

φ̇
0

φ̈
0

 =


φ0

φ̇0

φ̈0

 (2.22b)
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i.e.

Φn+1 = AdΦn +Bdψ
(
tn+1−αf

)
(2.22c)

Φ0 = Φ0 (2.22d)

where Φn =
[
φn, φ̇

n
, φ̈

n
]T

, Φ0 =
[
φ0, φ̇0, φ̈0

]T and Ad is called the
discrete amplification matrix.

Eigenvalue analysis of the discrete amplification matrix Ad for the
simplest second order problem (2.6) leads to certain requirements on the
choice of parameters αm, αf , β and γ. Thus, in the best case, the generalized–
α method is unconditionally stable, second-order accurate and possesses
an optimal combination of strictly controllable, maximum high-frequency
dissipation and minimal low-frequency dissipation for

αm = 2ρ∞ − 1
ρ∞ + 1 (2.23a)

∧ αf = ρ∞
ρ∞ + 1 (2.23b)

∧ β = 1
4 (1− αm + αf )2 (2.23c)

∧ γ = 1
2 − αm + αf (2.23d)

where ρ∞ ∈ [0, 1] is the user-specified spectral radius in the high-frequency
limit, i.e. the user-specified high-frequency dissipation. If ρ∞ = 0 is chosen
then frequencies above δt

T will be dissipated within one time step. This is
called asymptotic annihilation (Shearer and Cesnik 2006, p. 3).

If just unconditional stability, second-order accuracy and maximum
high-frequency dissipation are demanded, it is sufficient to fulfill

αm ≤ αf ≤
1
2 (2.24a)

∧ β ≥ 1
4 + 1

2 (αf − αm) (2.24b)

∧ γ = 1
2 − αm + αf . (2.24c)

The generalized–α method can then be described in terms of the two
remaining parameters αm and αf . This is illustrated in Figure 2.3 where
straight line

αf = 1
3 (1 + αm) (2.25)

states the condition for parameter sets corresponding to the best case (2.23)
with additional minimum low-frequency dissipation.
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αf ≤ 1/2

−1/2

αm

αf

10−1/2

−1−3/2−2

1

1/2

−1

−3/2

−2

αm
≤
α f

αf = 1/3(1 + αm) 1/2

HHT-α

WBZ-α

generalized-α

midpoint rule

trapezoidal rule

Figure 2.3 Generalized–α method in the αf -αm-plane, provided Equa-
tion (2.24) holds (Chung and Hulbert 1993, Figure 1, p.
373).

Wood–Bossak–Zienkiewicz–α Method

The Wood–Bossak–Zienkiewicz–α (WBZ–α) method emerges from the
generalized–α method by fixing the parameter αf = 0. For second order
IVP’s (2.4) it is defined as

φn+1 = φn + δtφ̇
n + δt2

((
1
2 − β

)
φ̈
n + βφ̈

n+1
)

(2.26a)

φ̇
n+1 = φ̇

n + δt
(

(1− γ)φ̈n + γφ̈
n+1) (2.26b)

Mφ̈
n+1−αm +Cφ̇n+1 +Kφn+1 = ψn+1 (2.26c)

φ0 = φ0

φ̇
0 = φ̇0

φ̈
0 = φ̈0

(2.26d)

along with

φ̈
n+1−αm = (1− αm) φ̈n+1 + αf φ̈

n (2.26e)
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In more compact matrix notation this reads

I 0 −δt2βI
0 I −δtγI
K C (1− αm)M



φn+1

φ̇
n+1

φ̈
n+1



=


I δtI δt2

( 1
2 − β

)
I

0 I δt(1− γ)I
0 0 −αmM



φn

φ̇
n

φ̈
n

+


0
0
I

ψn+1

(2.27a)


φ0

φ̇
0

φ̈
0

 =


φ0

φ̇0

φ̈0

 (2.27b)

i.e.

Φn+1 = AdΦn +Bdψ
n+1 (2.27c)

Φ0 = Φ0 (2.27d)

where Φn =
[
φn, φ̇

n
, φ̈

n
]T

, Φ0 =
[
φ0, φ̇0, φ̈0

]T and Ad is called the
discrete amplification matrix.

As before, eigenvalue analysis of the discrete amplification matrix Ad
for the simplest second order problem (2.6) leads to certain requirements
on the choice of parameters αm, β and γ. Thus, in the best case, the WBZ–
α method is unconditionally stable, second-order accurate and possesses
strictly controllable, maximum high-frequency dissipation for

αm = ρ∞ − 1
ρ∞ + 1 (2.28a)

∧ β = 1
4 (1− αm)2 (2.28b)

∧ γ = 1
2 − αm (2.28c)

where ρ∞ ∈ [0, 1] is again the user-specified spectral radius in the high-
frequency limit, i.e. the user-specified high-frequency dissipation.

Recalling that αf = 0 and observing that Equation (2.28a) together
with ρ∞ ∈ [0, 1] can also be formulated as

− 1 ≤ αm ≤ 0, (2.29)

the WBZ–α method can also be described in terms of the remaining param-
eter αm. This is also illustrated in Figure 2.3 with point

αm = −1 (2.30a)
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corresponding, however, to a fixed

ρ∞ = 0 (2.30b)

stating the parameter choice for minimum low-frequency dissipation.

Hilber–Hughes–Taylor–α Method

Similar to the WBZ–α method, the Hilber–Hughes–Taylor–α (HHT–α)
method emerges from the generalized–α method by fixing the parameter
αm = 0. For second order IVP’s (2.4) it is defined as

φn+1 = φn + δtφ̇
n + δt2

((
1
2 − β

)
φ̈
n + βφ̈

n+1
)

(2.31a)

φ̇
n+1 = φ̇

n + δt
(

(1− γ)φ̈n + γφ̈
n+1) (2.31b)

Mφ̈
n+1 +Cφ̇n+1−αf +Kφn+1−αf = ψ

(
tn+1−αf

)
(2.31c)

φ0 = φ0

φ̇
0 = φ̇0

φ̈
0 = φ̈0

(2.31d)

along with

φ̇
n+1−αf = (1− αf ) φ̇n+1 + αf φ̇

n (2.31e)
φn+1−αf = (1− αf )φn+1 + αfφ

n (2.31f)
tn+1−αf = (1− αf ) tn+1 + αf t

n (2.31g)

In more compact matrix notation this reads
I 0 −δt2βI
0 I −δtγI

(1− αf )K (1− αf )C M



φn+1

φ̇
n+1

φ̈
n+1



=


I δtI δt2

( 1
2 − β

)
I

0 I δt(1− γ)I
−αfK −αfC 0



φn

φ̇
n

φ̈
n

+


0
0
I

ψ (tn+1−αf
)

(2.32a)
φ0

φ̇
0

φ̈
0

 =


φ0

φ̇0

φ̈0

 (2.32b)



Chapter 2 Fundamentals 21
i.e.

Φn+1 = AdΦn +Bdψ
(
tn+1−αf

)
(2.32c)

Φ0 = Φ0 (2.32d)

where Φn =
[
φn, φ̇

n
, φ̈

n
]T

, Φ0 =
[
φ0, φ̇0, φ̈0

]T and Ad is called the
discrete amplification matrix.

As before, eigenvalue analysis of the discrete amplification matrix Ad
for the simplest second order problem (2.6) leads to certain requirements
on the choice of parameters αf , β and γ. Thus, in the best case, the HHT–
α method is unconditionally stable, second-order accurate and possesses
strictly controllable, maximum high-frequency dissipation for

αf = 1− ρ∞
1 + ρ∞

(2.33a)

∧ β = 1
4 (1 + αf )2 (2.33b)

∧ γ = 1
2 + αf (2.33c)

where ρ∞ ∈
[
0, 1

2
]
is again the user-specified spectral radius in the high-

frequency limit, i.e. the user-specified high-frequency dissipation.
Recalling that here αm = 0 and observing that Equation (2.33a) together

with ρ∞ ∈
[
0, 1

2
]
can also be formulated as

0 ≤ αf ≤
1
3 , (2.34)

the HHT–α method can also be described in terms of the remaining param-
eter αf . This is again illustrated in Figure 2.3 with point

αf = 1
3 (2.35a)

corresponding, however, to a fixed

ρ∞ = 1
2 (2.35b)

stating the parameter choice for minimum low-frequency dissipation.

Newmark–β Method

The Newmark–β method constitutes the combination of WBZ–α method
and HHT–α method, i.e. it emerges from the generalized–α method by
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Figure 2.4 Comparison of spectral radii from generalized–α method,
WBZ–α method and HHT–α method with respective
ρ∞ = 0.8 (Chung and Hulbert 1993, Figure 2, p. 373).

fixing the parameters αm = 0 and αf = 0. For second order IVP’s (2.4) it
is defined as

φn+1 = φn + δtφ̇
n + δt2

((
1
2 − β

)
φ̈
n + βφ̈

n+1
)

(2.36a)

φ̇
n+1 = φ̇

n + δt
(

(1− γ)φ̈n + γφ̈
n+1) (2.36b)

Mφ̈
n+1 +Cφ̇n+1 +Kφn+1 = ψn+1 (2.36c)

φ0 = φ0

φ̇
0 = φ̇0

φ̈
0 = φ̈0

(2.36d)

In more compact matrix notation this reads


I 0 −δt2βI
0 I −δtγI
K C M



φn+1

φ̇
n+1

φ̈
n+1



=


I δtI δt2

( 1
2 − β

)
I

0 I δt(1− γ)I
0 0 0



φn

φ̇
n

φ̈
n

+


0
0
I

ψn+1

(2.37a)


φ0

φ̇
0

φ̈
0

 =


φ0

φ̇0

φ̈0

 (2.37b)
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i.e.

Φn+1 = AdΦn +Bdψ
n+1 (2.37c)

Φ0 = Φ0 (2.37d)

where Φn =
[
φn, φ̇

n
, φ̈

n
]T

, Φ0 =
[
φ0, φ̇0, φ̈0

]T and Ad is called the
discrete amplification matrix.

Once again, an eigenvalue analysis of the discrete amplification matrix
Ad for the simplest second order problem (2.6) leads to certain requirements
on the choice of parameters β and γ. Thus, in the best case, the Newmark–β
method is unconditionally stable and second-order accurate for

β ≥ 1
4 (2.38a)

∧ γ = 1
2. (2.38b)

The demand for second order accuracy results in a loss of any numerical
dissipation, i.e. zero artificial damping.

Furthermore, the best following of phase is given with

β = 1
4 (2.39a)

∧ γ = 1
2 (2.39b)

resulting in the trapezoidal rule method.

Further Methods

Choosing ρ∞ = 1 in (2.23), consequently αm = 1
2 , αf = 1

2 , β = 1
4 and

γ = 1
2 , the generalized–α method possesses no numerical dissipation and

corresponds as such to the midpoint rule method "which is equivalent to the
trapezoidal rule for linear problems" (Jansen, Whiting, and Hulbert 2000).

Alternatively, choosing αm = 0, αf = 0 and β = 1
4 in (2.24), consequently

γ = 1
2 , the generalized–α method possesses no numerical dissipation and

corresponds as such to the trapezoidal rule method. It is the Newmark–β
method with best following of phase.

Further choices of parameters are possible. For example αm = 0, αf = 0,
β = 0 and γ = 1

2 lead to Störmer’s rule.

Generalized–α Method for 1st Order ODEs

The standard generalized–α method presented in passage Generalized–α
Method (pp. 16 ff.) was originally developed as an one-step, three level,
numerically dissipative time integration scheme particularly for second
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order IVP’s. In Jansen, Whiting, and Hulbert (2000) this second order
generalized–α method is now also adapted to first order IVP’s by applying
definition (2.21) to the second-order reformulation (2.9) of a linear first
order IVP. This procedure looses the parameter β and results in an one-step,
two level, numerically dissipative time integration scheme for first order
IVP’s.

For the linear, first order IVP (2.1) it is defined as

φn+1 = φn + δt
(

(1− γ)φ̇n + γφ̇
n+1) (2.40a)

φ̇
n+1−αm = Aφn+1−αf +Bψ

(
tn+1−αf

)
(2.40b)

φ0 = φ0 (2.40c)

φ̇
0 = φ̇0 = Aφ0 +Bψ(t0) (2.40d)

along with

φ̇
n+1−αm = (1− αm) φ̇n+1 + αmφ̇

n (2.40e)
φn+1−αf = (1− αf )φn+1 + αfφ

n (2.40f)
tn+1−αf = (1− αf ) tn+1 + αf t

n (2.40g)

In more compact matrix notation this reads[
I −δtγI

−(1− αf )A (1− αm)I

][
φn+1

φ̇
n+1

]

=
[

I δt(1− γ)I
αfA −αmI

][
φn

φ̇
n

]
+
[

0
B

]
ψ
(
tn+1−αf

) (2.41a)

[
φ0

φ̇
0

]
=
[
φ0

φ̇0

]
(2.41b)

i.e.

Φn+1 = AdΦn +Bdψ
(
tn+1−αf

)
(2.41c)

Φ0 = Φ0 (2.41d)

where Φn =
[
φn, φ̇

n
]T

, Φ0 =
[
φ0, φ̇0

]T and Ad is called the discrete
amplification matrix.

Again, eigenvalue analysis of the discrete amplification matrix Ad for
accordingly the simplest, first order problem (2.3) now leads to certain
requirements on the choice of parameters αm, αf and γ. Thus, in the
best case, the generalized–α method for first order IVP’s is unconditionally
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stable, second-order accurate and possesses strictly controllable, maximum
high-frequency dissipation for

αm = 1
2

3ρ∞ − 1
ρ∞ + 1 (2.42a)

∧ αf = ρ∞
ρ∞ + 1 (2.42b)

∧ γ = 1
2 − αm + αf (2.42c)

where ρ∞ ∈ [0, 1] is the user-specified spectral radius in the high-frequency
limit, i.e. the user-specified high-frequency dissipation.

If just unconditional stability and second-order accuracy are demanded,
it is sufficient to fulfill

αm ≤ αf ≤
1
2 (2.43a)

∧ γ = 1
2 − αm + αf . (2.43b)

The generalized–α method for first order IVP’s can then also be described
in terms of the two remaining parameters αm and αf . This could also be
depicted in a Figure, where

αf = 1
4 (1 + 2αm) (2.44)

would state the condition for parameter sets corresponding to the best
case (2.42) with additional strictly controllable, maximum high-frequency
dissipation.

Choosing αm = 0 and αf = 0 in (2.43), consequently γ = 1
2 , the

generalized–αmethod for first order IVP’s possesses no numerical dissipation
and corresponds as such to the trapezoidal rule method.

Alternatively choosing ρ∞ = 0 in (2.42), consequently αm = − 1
2 , αf =

0 and γ = 1, the generalized–α method for first order IVP’s possesses
maximum numerical dissipation and, in the linear case, corresponds as such
to the BDF2 method (compare definition (2.10) with N = 2). Frequencies
above δt

T will be dissipated within one time step, a so called asymptotic
annihilation (Shearer and Cesnik 2006, p. 3).

Conversely, choosing ρ∞ = 1 in (2.42), consequently αm = 1
2 , αf = 1

2
and γ = 1

2 , the generalized–α method for first order IVP’s possesses no
numerical dissipation and corresponds as such to the midpoint rule method
"which is equivalent to the trapezoidal rule for linear problems" (Jansen,
Whiting, and Hulbert 2000).

Consequently, a range of numerical time integrators in between is given
setting any value ρ∞ ∈ [0, 1].
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2.2 Temporal and Spatial Consistency Considerations
on Partitioned Approaches

The following section outlines briefly the most important and non-neglectable
aspects on temporal and spatial consistency of partitioned approaches. This
means effects arising from the combination of different time integration
schemes (temporal consistency) respectively different spatial discretiza-
tion schemes along with non-matching meshes (spatial consistency) in the
subsystems of a partitioned approach.

Already the suitable choice of time integration schemes, guaranteeing
temporal consistency of the overall problem, is a demanding topic which is
still under research and outside the scope of this work. Having said that, it
nevertheless cannot simply be disregarded. For instance Joosten, Dettmer,
and Perić (2010) present the analytical analysis of a simplest FSI problem
(similar to model problem presented in Chapter 3 Model Problem, pp. 32 ff.)
which is combining the second order generalized–α method in the structural
subsystem (see Equation (2.21), p. 16) with the first order generalized–α
method in the fluid subsystem (see Equation (2.40), p. 24). Their results
demonstrate possible loss of temporal stability and accuracy up to complete
failure of the approach if no special measures are taken.

Generalized–α methods are the common choice in computational solid
mechanics and also on the up in computational fluid dynamics due to
their well definable numerical dissipation properties. Despite that fact,
generalized–α methods are not used in this work to specifically exclude the
problem of temporal consistency. As illustrated with the example cited
above, already the coupling of only two subsystems demands for special treat-
ment. Coupling of three or more subsystems in possible combination with
third- or higher-order subsystem dynamics quickly become unmanageable
with such methods up to now.

As direct consequence, this work throughout uses the BDF2 combined
with equidistant time stepping (see Equation (2.10), p. 11 with N = 2).
As one-level, two-stage method, each level of derivative in the subsystems’
dynamics is treated in the exact same manner. Guaranteeing temporal
consistency therefore reduces to setting consistent initial values in all sub-
systems which can easily be realized. The temporal consistency includes the
conservation of the second order accuracy in time coming with the BDF2.
It should be pointed out that also the mesh updating scheme in the fluid
subsystem uses the BDF2 for recalculating the mesh velocity to guarantee
temporal consistency especially at the moving interface.

Furthermore, the loss of spatial consistency is also eliminated in this work.
As presented subsequently, only the fluid subsystem (see Chapter 5 The
Fluid (CFD) Subsystem, pp. 57 ff.) in fact involves a spatial discretization
scheme. The applied structural SDoF (see Chapter 6 The Structural (CSM)
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Subsystem, pp. 68 ff.) and control subsystems (see Chapter 8 The Controller
(CLC) Subsystem, pp. 94 ff.) are however defined by pure ODE’s without
real spatial affiliation. Even changing to the native structural multi-degree of
freedom subsystem involving its own spatial discretization scheme does not
harm the spatial consistency. The same scheme as in the fluid subsystem in
combination with matching interface meshes is used. A mapping operation
as mentioned in the beginning therefore also becomes redundant. The issues
will be taken up again later.

In summary, it can be stated that all numerical problems investigated
in this work are exact in the sense of matching the respective monolithic
solution. Further analysis e.g. on the temporal stability and accuracy as
performed in Dettmer and Perić (2013, Section 3.2, pp. 6 ff.) becomes
redundant.

2.3 Phenomenology of Vortex Shedding on Cylinders

Material from existing studies, in particular Lienhard (1966), Okajima
(1982) and Blevins (1990), on the phenomenology of vortex shedding on
rigid cylinders in cross-flows is collected in this brief section. At an earlier
stage, it formed a basis for the design of the fluid subsystem (see Section 5
The Fluid (CFD) Subsystem, pp. 57 ff.) in the numerical experiments (see
Section 4 The Experiment, pp. 53 ff.) investigated in this work.

The well-known Turek benchmark (Turek and Hron 2006) served as major
inspiration for the design of the numerical experiments. The original setting
contains a cylinder of circular cross-section which is in this work, however,
changed to a square-shaped one. Square cylinders show uniquely defined
separation points due to their sharp edges. Smooth circular cylinders or
more general bluff bodies in contrast do not possess such distinct separation
points. Therefore, the square cylinder is chosen to, amongst other things,
reduce dependencies on the spatial discretization.

In the scope of this work the Reynolds number of the problem is given
by

Re = vind

νF
(2.45)

and the Strouhal number regarding the vortex shedding by

Sr = fsd

vin
(2.46)

with the cylinder diameter d, kinematic fluid viscosity νF, mean inlet velocity
vin and vortex shedding frequency fs.

Figure 2.5 illustrates the different flow regimes arising on circular cylin-
ders with varying Reynold number respectively inlet velocity.
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With Figures 2.6 to 2.7 and 2.8 the comparison between Strouhal num-
bers of circular and square cylinders is given. For future reference the
characteristic Reynolds numbers of Re = 2, 100 and 200 are highlighted in
blue. They show relevant but not severe deviations between both shapes.
This justifies the simple change from circular to square cylinder without
modifying the overall behavior associated with the Turek benchmark.

Figure 2.5 Different regimes of vortex shedding on circular cylin-
ders (Lienhard 1966, Figure 1, p. 3).
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Figure 2.6 Sr-Re relationship for circular cylinders in 0 ≤ Re ≤ 2×104

(Lienhard 1966, Figure 3, p. 8).

Figure 2.7 Sr-Re relationship for circular cylinders in 40 < Re < 107

(Lienhard 1966, Figure 5, p. 12).
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Figure 2.8 Sr-Re relationship for square cylinders in 0 ≤ Re ≤ 4×104

(Okajima 1982, Figure 2, p. 381).

2.4 Miscellaneous

Some further observations and insights which are worth mentioning are
gathered in this section.

In FSCI simulations in the context of this work three levels of model
fidelity have to be distinguished: the present "infinite-fidelity" real physics,
the chosen high-fidelity mathematical model of the numerical experiments
and the chosen low-fidelity mathematical model in the controller. Ideally,
they would all three be identical which in practice, however, is unfeasible.
Consequently, decreasing fidelity as illustrated by Figure 2.9 is the case.

real physics

fid
el
ity

numerical experiment

controller

high-fidelity math. model

low-fidelity math. model

Figure 2.9 Levels of model fidelity in FSCI simulations.
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It should further be noted that the influence of time step δt is not

exhaustively examined. This applies especially to the finally used fluid
(CFD) (see Chapter 5 The Fluid (CFD) Subsystem, pp. 57 ff.) and
high-fidelity structural (CSM) subsystems (see Chapter 6 The Structural
(CSM) Subsystem, pp. 68 ff.). Along with the low-fidelity structural (CSM)
subsystem an overall time step of δt = 0.01 s is used by default. This
results in rather strong damping of higher eigenmodes in the fluid. Thus,
the performed simulations can only cover basic dynamical effects related
to lower modes. This, however, fits the needs of this work. With the
high-fidelity structural (CSM) subsystem on the other hand a time step of
δt = 0.005 s turns out to be necessary primarily due to the mesh updating
scheme in the fluid (CFD) subsystem.



Everything should be as simple as
it can be, but not simpler.

—Albert Einstein (1879–1955)

3 Model Problem

3.1 Setup

Goal of this chapter is to carefully analyze the proposed solution procedures
for FSI and FSCI problems (see Chapter 7 Fluid–Structure Interaction,
pp. 79 ff. and Chapter 9 Fluid–Structure–Control Interaction, pp. 118
ff.) before they are finally employed in simulations in Part II Numerical
Experiments (pp. 53 ff.) of this thesis. This analysis proves to be extremely
costly and consequently unfeasible for highly multi-dimensional problems.
The opaque superposition of many different effects does not allow for specific
extraction of fundamental statements, in particular not analytical ones.

In the field of computational FSI it therefore became well established
practice to fall back to highly simplified model problems, which represent
only the most basic characteristics of actual FSI problems. Such model
problems are for instance used in Dettmer (2015, pp. 9, 12) and Dettmer
and Perić (2013, Section 3.1, pp. 4–6).

Point mass, linear damper (dashpot) and elastic spring assemble to the
common setting, the linear, one-dimensional SDoF system

mÿ + cẏ + ky = 0 (3.1a)

with its initial conditions
y(0) = y0

ẏ(0) = ẏ0.
(3.1b)

This purely autonomous1 IVP is sufficient for the analysis of a broad
1without external influences like disturbance z(t) or control input u(t)

32
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spectrum of solution schemes for incompressible FSI regarding properties like
stability (convergence behavior), accuracy and high-freuqency damping. It
explains very well the behavior of partitioned strategies for multi-dimensional
FSI. (Dettmer 2015, pp. 9, 10; Dettmer and Perić 2013, Remark I, pp. 5, 6,
Conclusion, pp. 20, 21; Joosten, Dettmer, and Perić 2010, 2009; Causin,
Gerbeau, and Nobile 2005))

As a first analysis of the FSCI approaches employed in this work the
classical SDoF system

mÿ + cẏ + ky = u (3.2a)

is extended by a representative state-feedback controller

u = − kR1y − kR2ẏ (3.2b)

to the modified model problem of a controlled SDoF system

mÿ + (c+ kR2) ẏ + (k + kR1) y = 0 (3.2c)

with initial conditions

y(0) = y0

ẏ(0) = ẏ0.
(3.2d)

In the following it is simply referred to as model problem. An illustration
can be found in Figure 3.1.

−kR1 • −kR2•̇

u(t)
y(t)

k

m

c

(a) Monolithic.

−kR1 • −kR2•̇

u(t)

controller

y(t)

interface

solid

k c

fluid

αm (1− α)m

(b) Towards partitioned.

Figure 3.1 Setup of model problem.

At this stage the system stays linear and in particular still one-dimensional.
Reason for this is that the control input u(t) is treated as an external in-
fluence on the SDoF system of type disturbance or force z(t) not adding
any new displacement degree of freedom. This assumption holds as long
the later introduced u-output factor fu = 0 (see Chapter 6 The Structural
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(CSM) Subsystem, pp. 68 ff.). Conversely, fu 6= 0 implies that the control
input u(t) adds an additional displacement degree of freedom, the root-
point excitation. This case is only considered briefly in a later suggestion
for a better suitable, modified model problem as well as in the numerical
experiments.

A substantial observation is made in this work: Adding a controller,
operating on the structure via force, adjusts the structural dynamics to
desired ones rather than changing the overall physics of the coupled problem.
As direct consequence the justifications made in literature concerning the
FSI model problem are still valid for the expansion to the FSCI model
problem. Therefore, model problem (3.2) is sufficient for the analysis of
fundamental effects in partitioned coupling schemes for FSCI.

The key features of the employed model problem can be summarized
as follows: The coupling of a first order ODE substituting the fluid and a
second order ODE substituting the structure reproduces the FSI subproblem.
With the additional coupling to the algebraic ODE (AODE) of the controller
it extends to the full FSCI problem. Combination of viscosity and inertia
in one subsystem (fluid) and stiffness/inertia in another (structure) also
corresponds to key characteristics of FS(C)I problems. The main physics
are still dominated by the FSI subproblem, since inertia is limited to fluid
and structure and the controller is just adjusting the structural dynamics.
Furthermore, pressure can be seen as Lagrangian multipliers enforcing the
incompressibility constraint (continuity), i.e. the pressure does not directly
drive the interaction. And the classical model problem (3.1) is already
used exactly for the purposes of partitioned FSI approaches with fixed-
point iterative coupling and Gauß-Seidel communication pattern by Joosten,
Dettmer, and Perić (2010) and Joosten, Dettmer, and Perić (2009).

In the following first the BDF1 (see Equation (2.10) with N = 1) will
be used for time integration of occurring ODE’s. Thus, closed solutions
and analytical statements can be derived. Whereas formulations using the
BDFN with N > 1 can only be evaluated graphically.

3.2 Monolithic Solution

The time-continuous, monolithic description of the model problem is given
with Equations (3.2c) and (3.2d). Together with the BDF1 in terms of
Equation (2.10) with N = 1 this leads to the time-discrete, monolithic
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model problem respectively the monolithic solution(

m+ (c+ kR2) δt+ (k + kR1) δt2
)
yn+1

− (2m+ (c+ kR2) δt) yn +myn−1 = 0

i.e. yn+1 = 2m+ (c+ kR2) δt
m+ (c+ kR2) δt+ (k + kR1) δt2 y

n

− m

m+ (c+ kR2) δt+ (k + kR1) δt2 y
n−1

(3.3a)

and its discrete initial conditions

y−1 = y0 − δtẏ0

y0 = y0.
(3.3b)

3.3 Stability Considerations

Meaningful physical properties are

m ≥ 0
c ≥ 0
k ≥ 0.

(3.4)

However, the special case of all being zero at once is excluded since this
would correspond to a "nonexistent system".

Those properties along with the time-continuous (3.2c, 3.2d) and time-
discrete monolith (3.3) allow for the derivation of statements on the kR1-
kR2-stability regions, i.e. on controller settings kR1 and kR2 for which the
controlled SDoF system shows stable dynamics.

3.3.1 Time–Continuous Problem

First of all, the stability region in the kR1-kR2-plane for the time-continuous,
monolithic model problem (3.2c, 3.2d) is considered.

The characteristic polynomial of the system

p(s) = ms2 + (c+ kR2) s+ (k + kR1) (3.5)

is determined from Equation (3.2c). Its roots{
s ∈ C

∣∣p(s) = 0
}

⇔ s1,2 = −c+ kR2

2m ±

√(
c+ kR2

2m

)2
− k + kR1

m

(3.6)
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denote the poles of the system.
In control theory it is distinguished between two basic stability definitions

for time-continuous systems (Kotyczka and Gehring 2015; Lohmann 2015d):
The controlled SDoF system is bounded-input, bounded-output (BIBO)
stable if and only if both its poles lie in the negative complex half-plane.
Furthermore, it is asymptotically stable if and only if both its eigenvalues lie
in the negative complex half-plane. In general, all poles of a system denote
eigenvalues of that system, but only controllable and observable eigenvalues
are poles. Asymptotical stability is therefore in general stronger than BIBO
stability. It covers BIBO stability as well as stability of internal dynamics
which can not be recognized at the output.

Here, the second-order system possesses exactly two eigenvalues which
are entirely specified by the two poles. Thus, asymptotical and BIBO stabil-
ity coincide. The time-continuous, controlled SDoF system is asymptotical
and BIBO stable

⇔ s1,2 ∈
{
s ∈ C

∣∣Re{s} ≤ 0
}

⇔ max
i=1,2

{Re {si}} ≤ 0. (3.7)

Consequently, the kR1-kR2-stability region results in

Ωc =
{
kR1, kR2 ∈ R

∣∣∣∣max
i=1,2

{Re {si}} ≤ 0
}

=
{
kR1, kR2 ∈ R

∣∣∣∣kR1 + k ≥ 0 ∧ kR2 + c

δt
≥ 0
}

=
{
kR1, kR2 ∈ R

∣∣kR1 ≥ −k ∧ kR2 ≥ −c
}
.

(3.8)

It is illustrated in Figure 3.2.

3.3.2 Time–Discrete Problem

In the same way, now the stability region in the kR1-kR2-plane for the
time-discrete, monolithic model problem (3.3) is considered.

The characteristic polynomial of the system

p(z) =
(
m+ (c+ kR2) δt+ (k + kR1) δt2

)
z2 − (2m+ (c+ kR2) δt) z +m

(3.9)
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is determined from Equation (3.3a). Its roots{

z ∈ C
∣∣p(z) = 0

}
⇔ z1,2 = 2m+ (c+ kR2) δt

2 (m+ (c+ kR2) δt+ (k + kR1) δt2)

±

√√√√√√√
(

2m+ (c+ kR2) δt
2 (m+ (c+ kR2) δt+ (k + kR1) δt2)

)2

− m

m+ (c+ kR2) δt+ (k + kR1) δt2

(3.10)

denote the poles of the system.
The two basic stability definitions in control theory change inor the

time-discrete case (Kotyczka 2013): The controlled SDoF system is bounded-
input, bounded-output (BIBO) stable if and only if both its poles lie inside
the unite circle. Furthermore, it is asymptotically stable if and only if
both its eigenvalues lie inside the unite circle. The remaining statements
on eigenvalues and poles respectively asymptotical and BIBO stability in
general and in particular still hold.

With
z = esδt (3.11a)

and vice versa
s = 1

δt
ln (z) (3.11b)

the map between the time-continuous s- and the time-discrete z-plane is
given. esδt herein corresponds to the exact amplification factor which is the
result of going analytically from the initial value yn to the final value yn+1

with time step δt and appropriate eigenvalue s (Kotyczka 2013).
The time-discrete, controlled SDoF system is asymptotical and BIBO

stable

⇔ z1,2 ∈
{
z ∈ C

∣∣ |z| ≤ 1
}

⇔ max
i=1,2

{|zi|} ≤ 1. (3.12)

Consequently, the kR1-kR2-stability region formulated in the z-plane
results in

Ωd =
{
kR1, kR2 ∈ R

∣∣∣∣max
i=1,2

{|zi|} ≤ 1
}
. (3.13a)

And mapped back to the s-plane this reads

Ωd =
{
kR1, kR2 ∈ R

∣∣∣∣ 1
δt

ln
(

max
i=1,2

{|zi|}
)
≤ 0
}

=
{
kR1, kR2 ∈ R

∣∣∣∣kR1 + k ≥ 0 ∧ kR2 + c

δt
≥ − (kR1 + k)

}
=
{
kR1, kR2 ∈ R

∣∣kR1 ≥ −k ∧ kR2 ≥ −c− δt (kR1 + k)
}
.

(3.13b)
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The result is illustrated in Figure 3.2 as well.
Clearly recognizable in Figure 3.2 is the fact that the time-continuous kR1-

kR2-stability region representing real physics gets extended to an apparently
bigger, time-discrete kR1-kR2-stability region. But only real physics with
its time-continuous kR1-kR2-stability region can be decisive for designing
the controller. This must in particular receive attention when numerical
parameter identification for the controller, e.g. in form of a co-simulation
based optimization, is performed.

0
..
.
−
∞

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k
R

2
−
c

δ
t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

kR1 − k

−0.1
−1

0

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

−0.5

−0.4

−0.3

−0.2

−0.1

0

Ωd

Ωc

m

δt

( 1
δt

ln
(

max
i=1,2

{|zi|}
))

= const.

m

δt

(
max
i=1,2

{Re {si}}
)

= const.

Figure 3.2 Stability regions of time-continuous and time-discrete
model problem.

3.4 Partitioned Approach or Co–Simulation

Presented in the previous Chapter 1 Introduction (pp. 1 ff.) and more
detailed in the later Chapters 7 Fluid–Structure Interaction (pp. 79 ff.)



Chapter 3 Model Problem 39
and 9 Fluid–Structure–Control Interaction (pp. 118 ff.) this work employs
one specific partitioned approach in three similar realizations. This chapter
is particularly interested in the convergence properties and consequently
stability of those schemes. For that purposes the model problem (3.2) was
introduced.

3.4.1 Partitioning

The initial step of a partitioned approach is the decomposition of the multi-
physics problem into single-physics subproblems and appropriate interface
constraints covering the interactions. This is referred to as partitioning.

Preparational step for reaching a here suitable partitioning of model
problem (3.2) is the reformulation of the ODE (3.2a)

(αm)ÿ + ((1− α)m) ÿ + cẏ + ky = u+ z + z

∧ z + z = 0.
(3.14)

In combination with Equations (3.2b) and (3.2d) this leads finally to
the partitioned model problem. It may be pointed out that this is still
describing the exact same dynamics.

((1− α)m) ÿF + cẏF = zF (3.15a)

is referred to as the fluid subsystem identified with the indix F,

(αm)ÿS + kyS = uS + zS (3.15b)

as the structural subsystem (index S) and

uC = − kR1yC − kR2ẏC (3.15c)

as controller subsystem (index C). The physical interaction is shiftet to the
interface constraints (index I)

yF − yS = 0 (3.15d)
zF + zS = 0 (3.15e)
yS − yC = 0 (3.15f)
uS − uC = 0. (3.15g)

And initial conditions are given with

yS(0) = y0

ẏS(0) = ẏ0.
(3.15h)

Thus, the structural domain is represented by the elastic spring k and
the point mass share αm, the fluid domain by the linear damper (dashpot)
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c and the point mass share (1 − α)m. The interface constraints cover
the interactions between these two domains (FSI) and between structure
and controller (FSCI). y describes the displacement which corresponds to
the measured output. z is the disturbance (force) originating from the
partitioning and u the control input equivalent here to a force acting on
the system. The partitioning is illustrated in Figure 3.1b.

The appearing parameter α ∈ [0, 1] describes the mass distribution
between fluid and structural subsystem, i.e.

mS

m
= α

mF

m
= 1− α

mS

mF
= α

1− α

(3.15i)

and allows to precisely quantify the added-mass effect. Also other "α"-
parameters regarding damping c and stiffness k would be feasible (compare
Dettmer (2015, Slide 12)). But at this stage only one paramter α associated
with the mass m is considered. In the dominating FSI subproblem the
convergence properties of βA depend simply only on this one parameter
in the limit case δt → 0 (Joosten, Dettmer, and Perić 2009, Section 3, p.
763). Conversely, for δt → ∞ the "α"-parameter for the stiffness k gains
main influence. This explains also the observation of better convergence
behavior for large δt rather than small ones. The more accurate the time
integration scheme the more relevant is this effect, i.e. the more dominant
is the limit of βA for δt → 0. Here only sufficiently small time steps are
of interest to ensure a certain accuracy of the simulations especially with
regard to control. Therefore, considering α is sufficient.

3.4.2 Temporal Discretization

Temporal discretization of the partitioned model problem (3.15) with the
BDF1 (Equation (2.10) with N = 1) leads to the discrete, partitioned model
problem with the discrete fluid subsystem

zn+1
F = (1− α)m+ cδt

δt2
yn+1

F − (1− α)m+ cδt

δt2
ynF −

(1− α)m
δt

ẏnF

i.e. zn+1
F = GF

(
yn+1

F
)
,

(3.16a)
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the discrete structural subsystem

yn+1
S = δt2

αm+ kδt2
zn+1

S + δt2

αm+ kδt2
un+1

S

+ αm

αm+ kδt2
ynS + αmδt

αm+ kδt2
ẏnS

i.e. yn+1
S = GS

(
zn+1

S , un+1
S
)
,

(3.16b)

the discrete controller subsystem

un+1
C = − kR1δt+ kR2

δt
yn+1

C + kR2

δt
ynC

i.e. un+1
C = GC

(
yn+1

C
)
,

(3.16c)

the discrete interface equations

yn+1
F − yn+1

S = 0
i.e. IFS,y

(
yn+1

F , yn+1
S

)
= 0

(3.16d)

zn+1
F + zn+1

S = 0
i.e. IFS,z

(
zn+1

F , zn+1
S

)
= 0

(3.16e)

yn+1
S − yn+1

C = 0
i.e. ISC,y

(
yn+1

S , yn+1
C

)
= 0

(3.16f)

un+1
S − un+1

C = 0
i.e. ISC,u

(
un+1

S , un+1
C
)

= 0
(3.16g)

and the discrete initial conditions

y−1
S = y0 − δtẏ0

y0
S = y0.

(3.16h)

The operators G and I describe the input-output relation for the specific
subsystem and the interface constraint for the specific coupling, respectively.

The FSI subproblem, i.e. the coupling between fluid and structure
converges to the solution of Equations (3.16a), (3.16b), (3.16d) and (3.16e).
The emerging "fluid-structure (FS) subsystem" is given with

yn+1
S = δt2

m+ cδt+ kδt2
un+1

S + m+ cδt

m+ cδt+ kδt2
ynS

+ mδt

m+ cδt+ kδt2
ẏnS

i.e. yn+1
S = GFS

(
un+1

S
) (3.17)

which obviously corresponds to the BDF1-discretization ofmÿS+cẏS+kyS =
uS due to the consistent use of the BDF1 in all subsystems.
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Accordingly, the converged solution of the SCI subproblem, i.e. the
coupling between structure and controller fulfills Equations (3.16b), (3.16c),
(3.16f) and (3.16g). This leads to a "structure-controller (SC) subsystem"

yn+1
S = δt2

αm+ kR2δt+ (k + kR1) δt2 z
n+1
S

+ αm+ kR2δt

αm+ kR2δt+ (k + kR1) δt2 y
n
S

+ αmδt

αm+ kR2δt+ (k + kR1) δt2 ẏ
n
S

i.e. yn+1
S = GSC

(
zn+1

S
)

(3.18)

which obviously meets the BDF1-discretization of (αm)ÿS + kyS = uS +
zS with uS = − kR1yS − kR2ẏS respectively combined αmÿS + kR2ẏS +
(k + kR1) yS = zS again due to the consistent use of the BDF1 in all
subsystems.

3.4.3 Fixed–Point Formulation

Partitioning (3.16) of the underlying monolithic system (3.3) illustrates well
the second fundamental concept of partitioned approaches: The interactions
of the multiple physical fields (multi-physics) are shifted to interface con-
straints. Those couple the resulting single-physics subsystems and need to
be solved in order to provide the subsystems’ inputs. Assuming this can be
done each time step, in a third fundamental step of partitioned approaches
the subsystems can then finally be ran independently and straight forward.
However, the interface constraints are dependent on all subsystems’ inputs
and outputs. The outputs themselves again depend on the systems’ inputs
via input-output relations as part of the dynamics. This makes the overall
solution process in general more complex.

In this work the interface constraints are solved iteratively which implies
the solution of all involved single-physics subsystems in each iteration step.
It becomes obvious that in case of multi degrees of freedom in numerical
experiments the number of overall coupling iterations per time step is
decisive for the efficiency of the solution procedures.

More precisely, the solution of the interface constraints (3.16d) to (3.16g)
is formulated in terms of fixed-point iterations

k+1yn+1
S = 1A

kyn+1
S + bn (3.19)

solving for the structural displacement yn+1
S based on Gauß-Seidel com-

munication patterns which can be read from Figures 9.1 (p. 120), 9.2 (p.
121) and 9.3 (p. 122). The simple form is the result of the linearity of the
underlying model problem.
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Formulation (3.19) can be further improved with a simplest form of

relaxation
k+1yn+1

S = β
(

1A
kyn+1

S + bn
)

+ (1− β) kyn+1
S

i.e. k+1yn+1
S = βA

kyn+1
S + βbn

(3.20)

where β denotes the user-defined relaxation parameter.
Convergence behavior and stability are only determined by the relaxed

iteration factor βA = 1 + β (1A− 1). It is exclusively dependent on the
relaxation parameter β and the non-relaxed iteration factor 1A containing
the time step δt and the problem properties m, c, k and α. bn does not
change over all iterations k = 1, . . . , kend.

Convergence, i.e. reduction of the error in each iteration is guaranteed
for ∣∣

βA
∣∣ < 1. (3.21a)

In terms of the user-specifiable relaxation parameter β this demands for

2
1− 1A

= − 2
1A− 1 < β < 0 (3.21b)

in case of 1A > 1 and for

0 < β <
2

1− 1A
(3.21c)

in case of 1A < 1. The conditions are illustrated in Figure 3.3.
Figure 3.4 shows the convergence and divergence (failure) behavior for

different values of the relaxed iteration factor βA. In particular, with βA = 0
in Figure 3.4a the optimal case of meeting the exact solution after only one
iteration is given. An optimal relaxation factor of

β∗ = 1
1− 1A

(3.22)

for 1A 6= 1 follows. It is also highlighted within Figure 3.3.
The solution of the iteration procedure is finally given as the result of

Equation (3.20) along with Equation (3.22)

lim
k→∞

{
kyn+1

S
}

= bn

1− 1A
(3.23)

in accordance with Joosten, Dettmer, and Perić (2009, Equation (22), p.
762).

It can be concluded that for any 1A 6= 1 there exists a range of β’s such
that convergence is achieved. And even more, inside this range an optimal
relaxation parameter β∗ resulting in convergence within only one iteration
can always be found.
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Figure 3.4 Basic iteration behavior in scalar fixed-point formulation.
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But "it should be emphasized that for multi-degree-of-freedom problems

and long interfaces, evaluation of the optimal relaxation factor is non-
unique even for linear problems" (Joosten, Dettmer, and Perić 2009, p.
769). Therefore, Aitken acceleration (see Küttler and Wall (2008) and
Küttler (2009, Section 3.5, pp. 24–28 and Chapter 7, pp. 73–87)) is used in
numerical experiments. In the present case of one linear degree of freedom
this boils down to the optimal relaxation parameter.

For further details on fixed-point iteration, relaxation and Aitken accel-
eration, it is referred to literature for instance Küttler (2009, Section 3.5,
pp. 24–28 and Chapter 7, pp. 73–87), Küttler and Wall (2008), Sicklinger
(2014, Section 2.2, pp. 9–18) and Joosten, Dettmer, and Perić (2009).

Dettmer and Perić (2013, Equation (48), Section 3.4, p. 10) show that
for FSI

lim
δt→0
α→0

{β∗} = lim
δt→0
α→0

{βcrit} = 0. (3.24)

Consequently, a decreasing mass distribution α→ 0 also demands a suffi-
ciently smaller (β → 0) relaxation parameter. But with this the sensitivity
of the solution method concerning β increases. A drastically bigger amount
of interface iterations is expected especially for the multi-degree of freedom
case where an optimal relaxation parameter β∗ with only one iteration does
not exist. α = 0 would require β = 0 which is inadmissible and thus leads
to failure. The added-mass effect quantified by the mass distribution α is
therefore crucial for the convergence behavior in the region of small δt’s
(δt→ 0) and convergence is getting more and more challenging as α→ 0
(compare Dettmer (2015)).

Pseudo code implementations of the subsequently analyzed algorithms
can be found in Chapter 9 Fluid–Structure–Control Interaction (pp. 118
ff.).

FSCI or no Nesting

In the context of this chapter the acronym FSCI also stands for the more
specific iterative coupling scheme illustrated in Figure 9.1 and the corre-
sponding Algorithm 9.1 (continued in 9.2). The Gauß-Seidel communication
pattern is realized without nesting of any subproblems, i.e. the coupled
problem is solved with a single fixed-point iteration loop. Applied without
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relaxation to model problem (3.16) the algorithm condenses down to

k+1yn+1
S

(3.16b)= GS
(
kzn+1

S , kun+1
S
)

(3.16e),(3.16g)= GS
(
− kzn+1

F , kun+1
C
)

(3.16a),(3.16c)= GS
(
−GF

(
kyn+1

F
)
,GC

(
kyn+1

C
))

(3.16d),(3.16f)= GS
(
−GF

(
kyn+1

S
)
,GC

(
kyn+1

S
))

i.e. k+1yn+1
S = − (1− α)m+ (c+ kR2) δt+ kR1δt

2

αm+ kδt2
kyn+1

S + bn

i.e. k+1yn+1
S = 1AFSCI

kyn+1
S + bn.

(3.25)

The limit of the iteration factor

lim
δt→0

{1AFSCI} = α− 1
α

(3.26)

shows pure dependency on the mass distribution α.
Supplemented by relaxation the FSCI scheme reads

k+1yn+1
S = βGS

(
−GF

(
kyn+1

S
)
,GC

(
kyn+1

S
))

+ (1− β) kyn+1
S

i.e. k+1yn+1
S = −

(β − α)m+ β
(
(c+ kR2) δt+ kR1δt

2)− (1− β)kδt2

αm+ kδt2

· kyn+1
S + βbn

i.e. k+1yn+1
S = βAFSCI

kyn+1
S + βbn.

(3.27)

And the limit of the iteration factor

lim
δt→0

{
βAFSCI

}
= α− β

α
(3.28)

now is obviously determined by the mass distribution α and the relaxation
parameter β.

The optimal relaxation parameter (3.22) becomes

β∗FSCI = αm+ kδt2

m+ (c+ kR2) δt+ (k + kR1) δt2 . (3.29)

Each summand in the denominator is positive non-equal to zero for physically
relevant parameters (3.4) and stable controller setting (3.8. Thus, it can
always be found. This supports the previously made statement.

[FS]CI or Nesting of FSI Sub–Problem

The acronym [FS]CI denotes the specific iterative coupling scheme illustrated
in Figure 9.2 and the corresponding Algorithm 9.3 (continued in 9.4). The
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Gauß-Seidel communication pattern is implemented with nesting of the FSI
sub-problem made clear by bracketing [FS]. This means an inner fixed-point
iteration loop solving the pure FSI sub-problem under constant control input
is nested inside an outer fixed-point iteration finally solving the coupling
between "FS" and fluid subsystem. The scheme is again applied to the
model problem (3.16) without and with relaxation, respectively.

The inner FSI fixed-point iteration of the algorithm condenses down to

k
m+1y

n+1
S

(3.16b)= GS
(
k
mz

n+1
S , kun+1

S = const.
)

(3.16e)= GS
(
− k
mz

n+1
F , kun+1

S = const.
)

(3.16a)= GS
(
−GF

(
k
my

n+1
F
)
, kun+1

S = const.
)

(3.16d)= GS
(
−GF

(
k
my

n+1
S
)
, kun+1

S = const.
)

i.e. k
m+1y

n+1
S = − (1− α)m+ cδt

αm+ kδt2
k
my

n+1
S + kbn

i.e. k
m+1y

n+1
S = 1AFSI

k
my

n+1
S + kbn.

(3.30)

The limit of the inner iteration factor

lim
δt→0

{1AFSI} = α− 1
α

(3.31)

shows pure dependency on the mass distribution α.
Supplemented by relaxation the inner FSI part of the scheme reads

k
m+1y

n+1
S = βGS

(
−GF

(
k
my

n+1
S
)
, kun+1

S = const.
)

+ (1− β) k
my

n+1
S

i.e. k
m+1y

n+1
S = − (β − α)m+ cδt− (1− β)kδt2

αm+ kδt2
k
my

n+1
S + β kbn

i.e. k
m+1y

n+1
S = βAFSI

k
my

n+1
S + β kbn.

(3.32)

And the limit of the inner iteration factor

lim
δt→0

{
βAFSI

}
= α− β

α
(3.33)

now is obviously determined by the mass distribution α and the relaxation
parameter β.

The optimal relaxation parameter (3.22) becomes

β∗FSI = αm+ kδt2

m+ cδt+ kδt2
. (3.34)

It can always be found since each summand in the denominator is positive
non-equal to zero for physically relevant parameters (3.4) independent of
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the controller setting. This supports again the previously made statement
and additionally proofs the unrestricted stability of the pure FSI fixed-point
iterations performed in Chapter 7 Fluid–Structure Interaction (pp. 79 ff.).

Assuming convergence the inner FSI fixed-point iteration can be sub-
stituted by the equivalent "FS subsystem" (3.17) for analyzing the outer
[FS]CI fixed-point iteration. Consequently, this outer [FS]CI fixed-point
iteration of the algorithm condenses down to

k+1yn+1
S

(3.17)= GFS
(
kun+1

S
)

(3.16g)= GFS
(
kun+1

C
)

(3.16c)= GFS
(
GC
(
kyn+1

C
))

(3.16f)= GFS
(
GC
(
kyn+1

S
))

i.e. k+1yn+1
S = −kR2δt+ kR1δt

2

m+ cδt+ kδt2
kyn+1

S + bn

i.e. k+1yn+1
S = 1A[FS]CI

kyn+1
S + bn.

(3.35)

The limit of the outer iteration factor

lim
δt→0

{
1A[FS]CI

}
= 0 (3.36)

is always zero independently of the parameter setting.
Supplemented by relaxation the outer [FS]CI part of the scheme reads

k+1yn+1
S = βGFS

(
GC
(
kyn+1

S
))

+ (1− β) kyn+1
S

i.e. k+1yn+1
S = −

β
(
kR2δt+ kR1δt

2)− (1− β)(m+ cδt+ kδt2)
m+ cδt+ kδt2

kyn+1
S

+ βbn

i.e. k+1yn+1
S = βA[FS]CI

kyn+1
S + βbn.

(3.37)

And the limit of the outer iteration factor

lim
δt→0

{
βA[FS]CI

}
= 1− β (3.38)

shows pure dependency on the relaxation parameter β.
The optimal relaxation parameter (3.22) becomes

β∗[FS]CI = m+ cδt+ kδt2

m+ (c+ kR2) δt+ (k + kR1) δt2 . (3.39)

Each summand in the denominator is positive non-equal to zero for physically
relevant parameters (3.4) and stable controller setting (3.8). Thus, it can
always be found. This supports again the previously made statement.
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F[SC]I or Nesting of SCI Sub–Problem

The acronym F[SC]I denotes the specific iterative coupling scheme illustrated
in Figure 9.3 and the corresponding Algorithm 9.5 (continued in 9.6). The
Gauß-Seidel communication pattern is implemented with a nesting of the
SCI sub-problem made clear by bracketing [SC]. This means an inner
fixed-point iteration loop solving the pure SCI sub-problem under constant
disturbance is nested inside an outer fixed-point iteration finally solving the
coupling between fluid and "SC subsystem". The scheme is again applied to
model problem (3.16) without and with relaxation, respectively.

The inner SCI fixed-point iteration of the algorithm condenses down to

k
m+1y

n+1
S

(3.16b)= GS
(
kzn+1

S = const., kmun+1
S
)

(3.16g)= GS
(
kzn+1

S = const., kmun+1
C
)

(3.16c)= GS
(
kzn+1

S = const.,GC
(
k
my

n+1
C
))

(3.16f)= GS
(
kzn+1

S = const.,GC
(
k
my

n+1
S
))

i.e. k
m+1y

n+1
S = −kR2δt+ kR1δt

2

αm+ kδt2
k
my

n+1
S + kbn

i.e. k
m+1y

n+1
S = 1ASCI

k
my

n+1
S + kbn.

(3.40)

The limit of the inner iteration factor

lim
δt→0

{1ASCI} = 0 (3.41)

is always zero independently of the parameter setting.
Supplemented by relaxation the inner SCI part of the scheme reads

k
m+1y

n+1
S = βGS

(
kzn+1

S = const.,GC
(
k
my

n+1
S
))

+ (1− β) k
my

n+1
S

i.e. k
m+1y

n+1
S = −

β
(
kR2δt+ kR1δt

2)− (1− β)(αm+ kδt2)
αm+ kδt2

k
my

n+1
S

+ β kbn

i.e. k
m+1y

n+1
S = βASCI

k
my

n+1
S + β kbn.

(3.42)

And the limit of the inner iteration factor

lim
δt→0

{
βASCI

}
= 1− β (3.43)

shows pure dependency on the relaxation parameter β.
The optimal relaxation parameter (3.22) becomes

β∗SCI = αm+ kδt2

αm+ kR2δt+ (k + kR1) δt2 . (3.44)
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Summands αm and (k + kR1) δt2 in the denominator are positive non-
equal to zero for physically relevant parameters (3.4) and stable controller
setting (3.8). Thus, it can always be found by additionally requiring
kR2δt 6= −

(
αm+ (k + kR1) δt2

)
. This supports the previous statement.

Assuming convergence the inner SCI fixed-point iteration can accordingly
be substituted by the equivalent "SC subsystem" (3.18) for analyzing the
outer F[SC]I fixed-point iteration. Consequently, this outer F[SC]I fixed-
point iteration of the algorithm condenses down to

k+1yn+1
S

(3.18)= GSC
(
kzn+1

S
)

(3.16e)= GSC
(
− kzn+1

F
)

(3.16a)= GSC
(
−GS

(
kyn+1

F
))

(3.16d)= GSC
(
−GF

(
kyn+1

S
))

i.e. k+1yn+1
S = − (1− α)m+ cδt

αm+ kR2δt+ (k + kR1) δt2
kyn+1

S + bn

i.e. k+1yn+1
S = 1AF[SC]I

kyn+1
S + bn.

(3.45)

The limit of the outer iteration factor

lim
δt→0

{
1AF[SC]I

}
= α− 1

α
(3.46)

shows pure dependency on the mass distribution α.
Supplemented by relaxation the outer F[SC]I part of the scheme reads

k+1yn+1
S = βGSC

(
−GF

(
kyn+1

S
))

+ (1− β) kyn+1
S

i.e. k+1yn+1
S = −

(β − α)m+ βcδt− (1− β)
(
kR2δt+ (k + kR1) δt2

)
αm+ kR2δt+ (k + kR1) δt2

· kyn+1
S + βbn

i.e. k+1yn+1
S = βAF[SC]I

kyn+1
S + βbn.

(3.47)
And the limit of the outer iteration factor

lim
δt→0

{
βAF[SC]I

}
= α− β

α
(3.48)

now is obviously determined by the mass distribution α and the relaxation
parameter β.

The optimal relaxation parameter (3.22) becomes

β∗F[SC]I = αm+ kR2δt+ (k + kR1) δt2

m+ (c+ kR2) δt+ (k + kR1) δt2 (3.49)

It always exists since each summand in the denominator is positive non-
equal to zero for physically relevant parameters (3.4) and stable controller
setting (3.8). This supports again the previously made statement.
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3.5 Résumé

Algorithms 9.1 to 9.6 and Figures 9.1 to 9.3 in Chapter 9 Fluid–Structure–
Control Interaction (pp. 118 ff.) present the three realizations of the iterative
partitioned coupling scheme suggested for the numerical experiments in
Part II Numerical Experiments (pp. 53 ff.) of this work. In this chapter
a much simpler model problem is introduced. It is representative for the
convergence behavior and stability of the original multi-degree of freedom
simulations in case of structural force control, i.e. if control input u states
a Neumann BC of the structure. All three algorithms proof unrestrictedly
stable under this model problem requiring physically relevant parameters
and stable controller settings. For the linear model problem even an optimal
relaxation factor can be determined each time. This is not applicable to the
numerical experiments. Therefore, Aitken acceleration is applied for finding
the best relaxation parameter in each iteration.

The used model problem is not able to sufficiently represent convergence
behavior and stability of multi-degree of freedom simulations subject to
structural displacement control, i.e. in cases where control input u states a
Dirichlet BC of the structure. First numerical experiments indeed show a
drastical influence on the fluid flow around the excited root-point leading
to instabilities. Therefore, an advanced model problem has to be developed
covering additional properties: The first-order ODE of the fluid subsystem
has also to be capable of reproducing internal feedback effects. Those,
probably causing the instabilities, arise from the forced excitation mostly
working in opposite direction to the freely adjusting oscillations of the
structure. Furthermore, the second-order ODE of the structural subsystem
has to fully cover the root-point excitation.

So far, analysis of convergence behavior and stability is covered with
the autonomous model problem, i.e. with the pure IVP formulation. But
the model problem can likely be extended in further analyses: Adding
some prescribed periodic disturbance in the fluid subsystem might allow
for some explanations on the effects of the parameter scaling highlighted
in Chapter 7 Fluid–Structure Interaction (pp. 79 ff.). Measurement of the
iteration count with different grades of non-linearity quantified by f1,2,3,4
could be performed on the model problem after modifying the linear stiffness
ky and viscosity cẏ terms to non-linear ones like for instance

(
kẏf1

)
yf2

and
(
cyf3

)
ẏf4 and employing Aitken acceleration. Comparisons with the

multi-degree of freedom cases might allow for classification of its subsystems
with respect to f1,2,3,4 as well. Thus, further conclusions could be drawn.
At this point it should also be noted that only iterations involving the fluid
subsystem are regarded to be numerically expensive within this work.
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The world we have made as a
result of the level of thinking we
have done thus far creates prob-
lems that we can’t solve at the
same level as the level we created
them at.

—Albert Einstein (1879–1955)

4 The Experiment

Originally, the present thesis was initiated and motivated by the intention
of further assessing co-simulation, i.e. the implementation of partitioned
coupling schemes, for large FSCI problems. Once more, it should be noted
that FSCI in the context of this work denotes the specific multi-physical
problem: interaction of fluid, structure and controller for the structure.

This second part of the thesis takes up exactly on those original in-
tentions: Multi-degree of freedom simulations, hereinafter referred to as
numerical experiments, are performed. Their main objective is investigat-
ing proposed FSCI schemes in a multi-degree of freedom environment for
verifying unrestricted stability concluded with a single-degree of freedom
model problem in Chapter 3 Model Problem (pp. 32 ff.). The addressed
schemes are presented in Algorithms 9.1 (p. 123) to 9.6 (p. 128) along with
Figures 9.1 (p. 120) to 9.3 (p. 122) in Chapter 9 Fluid–Structure–Control
Interaction (pp. 118 ff.).

A secondary goal is the demonstration of exclusive basic principles in
control theory. Especially, limitations of applied simple control strategies
are explored by stressing the assumption of linear dynamics. This is accom-
plished within the numerical experiments by a parameter scaling with the
factor q. It is introduced at a later stage.

Consideration and rejection of various experimental setups in the begin-
ning of this work finally converged to the one setup illustrated by Figure 4.1.
It shows a modification of the well-known Turek benchmark (Turek and
Hron 2006) which itself is based on Wall and Ramm (1998) and Wall (1999).
As originally mere FSI benchmark with a circular cylinder it is adapted to
a full computational FSCI experiment. Furthermore, the circular cylinder
is replaced by a square one. Section 2.3 Phenomenology of Vortex Shedding
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Figure 4.1 Setup of the numerical experiments including dimensions.

on Cylinders (pp. 27 ff.) provides background information.
The final two-dimensional setup attaches an elastic flag of dimensions

l×h to the rigid square cylinder of diameter d. This structure is by intention
placed non-symmetrically in a laminar incompressible channel flow. The
channel has dimensions H × L. In Figure 4.1 the character C, R and E
mark the center of the square cylinder, the root- and the end-point of the
flag, respectively.

First of all, the physics of pure FSI with the given setup is described.
Figure 4.2 shows an example. For FSI experiments the root-point attachment
of the elastic flag is constantly fixed. As soon as the channel flow exceeds a
certain critical Reynolds number, periodic vortex shedding from the cylinder
is setting in. For details on this phenomenon it is again referred to Section
2.3 Phenomenology of Vortex Shedding on Cylinders (pp. 27 ff.) and therein
especially to Figure 2.8 (p. 30). The emerging high and low pressure regions
are washed downstream with the main flow (see especially Figure 4.2b). At
certain points they hit the elastic flag forcing it to oscillate. Those structural
motions in turn affect the fluid flow and linked characteristic quantities
like e.g. the vortex shedding frequency. Therefore, data like in Figure 2.8
(p. 30) for the pure square cylinder anyway can only state approximate
values in case of FSI due to attachment and motion of the flag. Pure FSI
is investigated as sub-problem of FSCI within Chapter 7 Fluid–Structure
Interaction (pp. 79 ff.).

Full FSCI differentiates from FSI as described above in a closed-loop
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(a) Velocity field.

(b) Pressure field.

Figure 4.2 Example of FSI with low-fidelity structural (CSM) sub-
system and parameter scaling q = 101 at t = 14.73 s.

controller actively influencing the dynamics of the structure. Its object
is suppressing or at least reducing the oscillation amplitude at end-point
E. Displacement and force control of the structure are distinguished. In
displacement control, control input u denotes a Dirichlet BC at point R, i.e.
it acts as root-point excitation. Originally intended, the complete simulation
framework already provides the implementation of displacement control.
But due to encountered difficulties presented later investigations are for now
limited to FSCI with force control. This implies control input u denotes a
Neumann BC, i.e. the structure is influenced simply in terms of a prescribed
force. The attachment of the flag at point R stays constantly fixed similar
to FSI. FSCI is extensively presented in Chapter 9 Fluid–Structure–Control
Interaction (pp. 118 ff.).

It is stressed that in the following presented and used spatial and
temporal discretizations are knowingly chosen rather rough. An outcome of
physically meaningful numbers can therefore by no means be expected. This
is also emphasized by the mesh convergence studies seen in Figures 5.3 (p.
61) and 6.3 (p. 71). Nevertheless, the main dynamic phenomenons decisive
with respect to this work are captured while minimizing the numerical
effort.

The remainder of this part can be outlined as follows: Chapters 5
The Fluid (CFD) Subsystem (pp. 57 ff.) and 6 The Structural (CSM)
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Subsystem (pp. 68 ff.) give detailed descriptions of the fluid (CFD) and
structural (CSM) subsystems. Chapter 7 Fluid–Structure Interaction (pp.
79 ff.) couples of both subsystems to the FSI. Resultant findings are needed
to derive the closed-loop controller subsystem (CLC) in Chapter 8 The
Controller (CLC) Subsystem (pp. 94 ff.) which is in Chapter 9 Fluid–
Structure–Control Interaction (pp. 118 ff.) finally coupled to the FSI
subsystems to the full FSCI.



5 The Fluid (Compu-
tational Fluid Dy-
namics) Subsystem

An intrinsic advantage of co-simulation – coupled approaches – is the
modularity the method necessarily implies. Partitioning the multi-physics
system into single-physics subsystems, exchanging information via common
interfaces, allows separate consideration at first. Thus, each physical field or
subsystem can be designed, modeled, implemented, validated and evaluated
on its own. Also the application of different fidelity models is unproblematic.
Afterwards the subsystems can again be coupled together step-by-step to
the multi-physical problem. This procedure can also include the coupling
of pseudo-subsystems missing own dynamics and sending only well-defined
information for testing of either specific subsystems or the coupling logic.
Finally, the real physical subsystems are used. Further details on this
extensively followed gradual procedure will be presented in Chapter 9 Fluid–
Structure–Control Interaction (pp. 118 ff.).

The previously mentioned modularity of coupled approaches also reflects
in the structure of this and subsequent chapters. The subsystems will
first be introduced in an isolated manner and then coupled together to
FSI and FSCI simulations. This chapter covers now all aspects on the
fluid subsystem. In the presented numerical experiments its dynamics are
dominating the solution. It is also the most expensive one in terms of
modeling and numerical effort. Fluid and computational fluid dynamics
(CFD) as well as subsystem, client and model are used synonymously within
this work.

The fluid (CFD) subsystem covers the channel flow which is modeled by
the Navier-Stokes equations (NSE) along with incompressible Newtonian
fluid of constant density ρF and constant kinematic viscosity νF. Situated
in the laminar regime turbulence can be neglected. Shape and dimensions
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of the resulting fluid domain can again be found in Figure 4.1 (gray area, p.
54). The more detailed configuration including the BC’s is illustrated by
Figure 5.1. Those are treated in the following.
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Figure 5.1 Fluid (CFD) subsystem of numerical experiments.

Top wall ΓF,top and bottom wall ΓF,bot constitute the channel’s sidewalls
as well as the non-interface part of the surface of the rigid cylinder ΓF,cyl are
specified as non-moving no-slip walls. The remaining part of the cylinder
surface together with the surface of the elastic flag denotes the actual FSI
interface ΓF,FSI which is set as moving no-slip wall. Its motion is given with
the displacements yF respectively the velocities ẏF. Actual driving force of
the channel flow is the time-constant velocity profile

vF,in(η) =
(

3
2vin4 η

H

(
1− η

H

)
0

)
=
(
vmax4 η

H

(
1− η

H

)
0

)
(5.1)

prescribed at the channel inlet ΓF,in along with the zero-mean value pressure
outlet ΓF,out. The initial and boundary value problem (IBVP) of the
fluid is finally completed by the IC’s zero-velocity and zero-pressure, i.e.
xF(ξ, t = 0) = 0 throughout the entire domain ΩF. Therefore, also the
disturbances disappear at the beginning, i.e. zF(ξ, t = 0) = 0.

Turek and Hron (2006) propose three different parameter settings for the
fluid in their benchmark which are also adopted here. They are summarized
in Table 5.1. Settings CFD1 and CFD2 imply under-critical Reynolds
numbers. No vortex shedding is present leading to a steady-state like
infinite solutions. Setting CFD3 with an over-critical Reynolds number on
the contrary shows vortex shedding, i.e. strongly unsteady fluid flow. The
basic solution behavior and snapshots of the resulting fields can be seen
in Figures 5.6/5.7 and 5.8/5.9, respectively. For the further FSI and FSCI
simulations within this work only parameter setting CFD3 is considered.
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Table 5.1 Parameter settings for fluid (CFD) subsystem.

parameter
setting and value

unit
CFD1 CFD2 CFD3

ρF 1000 1000 1000 kg/m3

νF 0.001 0.001 0.001 m2/s

vin 0.2 1 2 m/s

Re 20 100 200 1

Initially, this work was started using the open source tool OpenFOAM
2.2 (Weller 2004) for implementing the fluid (CFD) subsystem. Its solvers
are based on a segregated finite volume (FV) formulation with BDF2
time integration. Among other things obsolescence, missing accuracy and
unresolved bugs, but especially instabilities of flow and mesh solvers and
missing spatial consistency with FE-formulated structures led to exclusion
of OpenFOAM as the fluid solver. Nevertheless, temporal consistency is
met. Furthermore, it should be noted that a block-structured mesh as
optimal prerequisite was used (compare Sicklinger, Lerch, Wüchner, and
Bletzinger (2015)).

Throughout this work the open source tool Kratos Multi-Physics (Dad-
vand and Rossi 2007a,b) is used by now. It is developed at the Centre
Internacional de Mètodes Numèrics a l’Enginyeria (International Center
for Numerical Methods in Engineering, CIMNE) of the Universitat Politèc-
nica de Catalunya (Technical University of Catalonia, UPC) in Barcelona
(Spain), a partner of the Chair of Structural Analysis. Three appropriate
solvers are currently available. Considering accuracy, temporal consistency
with BDF2, spatial consistency with FE-formulated structures and the ca-
pability of providing additional derivative information needed in the IJCSA
(Sicklinger, Belsky, Engelmann, Elmqvist, Olsson, Wüchner, and Bletzinger
2014; Sicklinger 2014) the solver based on a coupled finite element (FE)
formulation with variational multiscale (VMS) stabilization and BDF2 time
integration is chosen. Some further impacts regarding the last argument
and IJCSA will be discussed in the final Part III Conclusion and Outlook
starting on page 162. Convergence criteria for velocities and pressures of
relative 10−9 and absolute 10−12 are specified.

Substantial problem of finite element (FE) formulated incompressible
flows are numerical instabilities "which are a consequence of the incom-
pressibility constraint and the effect of the convective term in the equations
for convection-dominated flows" (Dalmau 2016, Subsection 1.1.2, pp. 3,
4). At solver level this appears as a zero block in the equation system
which laxly said has to be filled up. Mathematically this is reached by
stabilizing the fluid formulation. As already stated above this is done with
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the VMS method. (Dalmau 2016) gives with paragraph 1 on page 7 a brief
introduction:

"Variational multiscale (VMS) methods [. . . ] provide a the-
oretical framework for the design of stabilized finite element
formulations based on the separation of the solution into re-
solved and unresolved parts, which is achieved through the
definition of large scale and small scale solution spaces. The
projection of the original equations onto the large scale space
gives an equivalent problem that depends on the small scale
variables, while the projection of the original equations onto the
small scale space is used to motivate a model for the effect of
the small scale variables, which are not solved, to the large scale
solution."

For further details on the FE-formulation and stabilization of fluids the
interested reader is referred to literature. In particular, the derivations of
the used FE-formulation and VMS stabilization are for instance found in
Chapter 2 Variational Multiscale Stabilization for Turbulent Flow Problems
(pp. 7 ff.) of Dalmau (2016) and Rossi and Dadvand (2015).

(a) Complete view.

(b) Zoomed view.

Figure 5.2 Mesh for fluid (CFD) subsystem.

The pre-processing step meshing of the fluid domain ΩF is done using
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the pre- and post-processing tool GiD ((unknown) 1998) as well as the pre-
processing tool Pointwise (Chawner and Steinbrenner 1984). 10′515 3-node
(2D) triangular elements (triangles) with 5′505 nodes form the resulting
unstructured mesh shown in Figure 5.2. Its elements’ edge sizes grow from
0.005 m at the inner boundaries of cylinder and flag to 0.02 m at the outer
boundaries of top wall, bottom wall, inlet and outlet. The mesh convergence
study presented in Figure 5.3 clearly shows the insufficient resolution of
the fluid domain which was chosen in order to keep the numerical costs to
a minimum. Consequently, outcome of the simulations can not represent
physically meaningful numbers. Nevertheless, the interesting fundamental
physical phenomenons are captured. Therefore, conclusions on the ability
of the applied approach and schemes can still be drawn. The transferability
of those statements to more detailed and in consequence numerically more
expensive simulations is guaranteed.
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Figure 5.3 Mesh convergence study for fluid (CFD) subsystem.

For performing FSI and FSCI simulations with the fluid (CFD) model
presented thus far the ability of deforming the FSI interface ΓF,FSI still needs
to be implemented. An embedded or an arbitrary Lagrangian-Eulerian
(ALE) formulation is possible. This work employs the second one due to
better resolution of surface phenomenons at the obstacle cylinder with
elastic flag. Herein, the deformation of a boundary is enabled by moving the
boundary nodes and distributing this deformation over the complete fluid
domain by accordingly deforming the remainder of the fluid mesh. This task
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is handled by a mesh updating scheme. The ones used here are the linear
and non-linear version of the structural similarity mesh solver presented in
Mini (2014, especially Section 3.2 Treating the Mesh Similar to a Solid, pp.
61 ff.). Those treat the mesh similar to a linear respectively non-linear solid
(pseudo-structure). Both apply the BDF2 for recalculating the velocities at
the FSI interface. Therefore, temporal consistency in the co-simulations is
also retained at this point. For the resulting mesh displacement field in ΩF
homogeneous Dirichlet BC’s are specified at all boundaries except the FSI
interface ΓF,FSI. Here inhomogeneous Dirichlet BC’s result naturally from
the prescribed interface displacements yF. An example of a resulting mesh
deformation is given in Figure 5.4. Associated velocity and pressure fields
are shown in Figure 4.2 (p. 55).

(a) Deformed mesh.

(b) Mesh displacement field.

Figure 5.4 Example of fluid (CFD) mesh deformation in FSI with
low-fidelity structural (CSM) subsystem and parameter
scaling q = 101 at t = 14.73 s.

The coupling at the final stage of the co-simulation only sees a black box
fluid (CFD) subsystem as illustrated by Figure 5.5. It is interacting with its
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environment via input UF = yF prescribing the deformation (displacement)
of the interface ΓF,FSI and output Y F = zF giving the fluid reaction
(disturbance) at the FSI interface ΓF,FSI. Internal dynamics of the fluid,
represented by the state variable XF = xF denoting all velocities v and
pressures p in the complete domain ΓF, and other implementation details
are hidden inside this black box.

fluid (CFD) subsystem

zn+1
F = G

[
xn+1

F

]
F

(
yn+1

F

)displacements yn+1
F disturbances zn+1

F

Figure 5.5 Block diagram of fluid (CFD) subsystem.

For the sake of completeness also the comparisons made between the
four mentioned solvers are presented here. They can be seen in Figures 5.6
and 5.7. Therein, it can also be recognized that the applied solver shows
satisfying accuracy if taking the solution of the coupled FE-formulated
VMS-stabilized WBZ–α-time integrated solver as a reference. Snapshots of
associated fields resulting from this solver can be seen in Figures 5.8 and
5.9.
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Figure 5.6 Sum of lift forces on cylinder and flag in CFD tests for
comparison of CFD solvers.
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Figure 5.7 Sum of drag forces on cylinder and flag in CFD tests for
comparison of CFD solvers.
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(a) CFD1 test.

(b) CFD2 test.

(c) CFD3 test.

Figure 5.8 Velocity fields of CFD tests with used fluid (CFD) solver
at t = 9.96 s.
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(a) CFD1 test.

(b) CFD2 test.

(c) CFD3 test.

Figure 5.9 Pressure fields of CFD tests with used fluid (CFD) solver
at t = 9.96 s.



Any intelligent fool can make
things bigger, more complex, and
more violent. It takes a touch of
genius – and a lot of courage to
move in the opposite direction.
—Ernst Friedrich Schumacher

(1911–1977)

6 The Structural
(Computational
Solid Mechanics)
Subsystem

The following chapter is presenting full details on the structural (CSM)
subsystem. It states the second module for the FSI and FSCI co-simulations
performed in this work. In comparison to the fluid (CFD) subsystem
presented in the previous chapter this one is far less expensive especially in
terms of modeling and numerical effort. Equivalently, also here structure,
solid and computational solid mechanics (CSM) as well as subsystem, client
or model are used synonymously.

ξ

η

ζ

interface, disturbances ΓS,FSI

control in-
put ΩS,CI

ze
ro

di
sp
la
ce
-

m
en
t

Γ S
,c

yl

uS(t)
zS(ξ, t)

yS(ξ, t) yS(t)

ΩS, qρS, qES, νS

measured
output
ΓS,MO

Figure 6.1 High-fidelity structural (CSM) subsystem of the numeri-
cal experiments.

The structural subsystem is modeling the physics of the elastic flag
attached to the rigid cylinder. Strictly speaking, two distinct CSM models
are developed and applied: a high-fidelity multi-degree of freedom (MDoF)
finite element (FE) model complying exactly with the originally suggested
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CSM model of Turek and Hron (2006) and a low-fidelity single degree of
freedom (SDoF) based one with distribution of its single displacement DoF
over the actual structural domain along with the control input. Further
details will follow.

In pure FSI the structure is subject to disturbances (forces) zS(ξ, t) at
the FSI interface stemming from the fluid. They are causing structural
deformations. In FSCI an additional control input uS(t) determined by a
closed-loop controller (CLC) tries to compensate those deformations. It
acts as root-point excitation on the flag. Therefore, both models, low- and
high-fidelity, already include the necessary implementations for displacement
control. In the low-fidelity CSM model an additional so-called u-output
factor fu is introduced: While the structure undergoes the exact control
input 1 · uS(t) in its dynamics the fluid on the other hand sees the displace-
ments of a scaled control input fu · uS(t), i.e. fu scales the impact of the
incoming control input on the actual outgoing displacements as seen by the
fluid. Specifying fu = 0 results in pure force control: Control input uS(t)
is fully acting on the structure without causing any related displacements
influencing the fluid. It should also be pointed out that the FSI interface
next to the wet surface of the flag contains some parts of the cylinder
surface in order to realize the root-point excitation in combination with an
ALE-formulation of the fluid.

Original plannings at the beginning of the thesis also scheduled the
implementation of additional low-fidelity CSM models: transitional single
and triple degree of freedom and rotational single and triple degree of
freedom. Those were rejected. In the following at first the final high-fidelity
MDoF model is introduced and afterwards the low-fidelity SDoF model is
derived from that.

6.1 High–Fidelity Model

Figure 6.1 shows the detailed configuration of the high-fidelity structural
(CSM) model including all BC’s. Its domain ΩS consists of two distinct parts:
The main one (coarsely cross-hatched) corresponds to the elastic flag. It is
characterized by compressible Saint Venant-Kirchhoff material with constant
Young’s modulus qES, constant Poisson’s Ratio νS and constant density qρS
in the undeformed configuration. The parameter scaling factor q included
in mass and stiffness is needed for the parameter scaling tests performed
along with the FSI simulations. They are specified in Chapter 7 Fluid–
Structure Interaction (pp. 79 ff.). To some extend the structural domain ΩS
also consists of a part of the originally rigid cylinder (finely crosshatched).
This serves for continuous distribution of the root-point excitation along
the back side of the cylinder to match the ALE-formulation of the fluid.
Material parameters are changed here to zero Poisson’s Ratio νS = 0 to
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neglect buckling deformations of the cylinder backsides in ξ-direction and
zero density qρS = 0 to exclude inertial effects like micro-oscillations in
that part of the domain. Therefore, it states some kind of pseudo-material.
Corresponding dimensions and the intentionally non-symmetric placement
in the channel flow can be seen in Figure 4.1.

Homogenous Dirichlet BC’s at top and bottom of the cylinder ΓS,cyl
along with inhomogenous ones [0, uS(t), 0] T at cylinder part ΩS,CI support
the modeling of the root-point excitation and its linear distribution along
the backside of the cylinder. Neumann BC’s at the FSI interface ΓS,FSI
are given by the disturbances (forces) zS(ξ, t) coming from the fluid. Zero-
displacement and zero-velocity IC’s in the entire domain ΩS, i.e. xS(ξ, t =
0) = 0 finally complete the IBVP. Therefore, also interface displacements and
measured output vanish at the beginning yS(ξ, t = 0) = 0 and yS(t = 0) = 0.

Table 6.1 Parameter settings for high-fidelity structural (CSM) sub-
system.

parameter
value

unit
CSM1 CSM2 CSM3

ρS 1000 1000 1000 kg/m3

ES 1.4 5.6 1.4 106 N/m2

νS 0.4 0.4 0.4 1

q — 106...−3 — 1

g 2 2 2 m/s2

In accordance with Turek and Hron (2006) three different parameter
settings CSM1, CSM2 and CSM 3 are used. They are summarized in Table
6.1. Figure 6.10 at the end of this chapter shows results for CSM model
tests with those parameter settings as suggested by Turek and Hron (2006):
CSM1 and CSM2 denote static tests while CSM3 is dynamic. In each the
structure is subject to self load with gravity g missing any fluid. Only
parameter setting CSM2 will be considered further for the low-fidelity CSM
model, FSI and FSCI.

Originally, the FE tool Carat++ ((unknown) 2008) developed by the
Chair of Structural Analysis at the Technical University of Munich was
intended for use. Missing possibilities to implement inhomogeneous BC’s
next to other difficulties however led to a change to the open source FE tool
Kratos Multiphysics (Dadvand and Rossi 2007a,b) which is better fitting
these purposes. In expectation of large structural deformations demanding
a geometrical non-linear formulation fully integrated 4-noded (2D) total
Lagrangian displacement elements are chosen. Until now only implicit time
integration with the generalized–α method is available harming temporal
consistency. Spatial consistency along with the FE-formulated fluid however
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Figure 6.2 Mesh for high-fidelity structural (CSM) subsystem.

is met. Convergence criteria for displacements and residuals of relative
10−9 and absolute 10−12 are specified. 465 nodes and 368 4-node (2D)
quad elements (quadrilaterals) of equal size 0.005 m × 0.005 m form the
used structured mesh presented in Figure 6.2. A mesh convergence study
is performed with the parameter setting CSM2. Corresponding results in
Figure 6.3 show errors of around 5 % for positive and negative maximum,
root mean square, negative mean and frequency. Thus, it can be concluded
that the mesh has sufficient resolution for not only covering basic effects
but also for returning physically meaningful numbers.
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Figure 6.3 Mesh convergence study for high-fidelity structural
(CSM) subsystem.
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Figure 6.4 Low-fidelity structural (CSM) subsystem of the numerical
experiments.

6.2 Low–Fidelity Model

A low-fidelity SDoF CSM model as illustrated in Figure 6.4 is derived from
the previously introduced high-fidelity MDoF model. Its main purpose
is next to a guarantee of structural and temporal consistency to have a
well-defined structural behavior from control theory’s perspective and to
gain better insights in the underlying dynamical effects in FSI and FSCI.
This will partly be taken up again in the introductory words of Chapter 8
The Controller (CLC) Subsystem (pp. 94 ff.). The low-fidelity structure
is principally defined by two displacements: the single state xS(t) stating
also the displacement of end-poind E yS(t) = xS(t) and the control input
uS(t) defining the displacement at root-point R. The dynamics of xS(t) are
based on a simple linear second-order ODE and uS(t) is calculated by the
controller. Therefore, no spatial affiliation is involved. The original BC’s are
included in the simplification process. Distributed interface displacements
yS(ξ, t) between R and E finally seen by the fluid are extrapolated by a
quadratic ansatz. Consequently, the low-fidelity CSM model only needs a
surface mesh seen in Figure 7.2. The disturbances zS(ξ, t) distributed over
the FSI interface are integrated to one single disturbance zS(t) acting on the
replacing SDoF system. IC’s are accordingly set to zero, i.e. xS(t = 0) = 0
and ẋS(t = 0) = 0. Therefore, again also yS(ξ, t = 0) = 0 and yS(t = 0) = 0.
The impact of uS(t) (displacement or force control) is adjusted by the
already mentioned u-output factor fu. It is set to zero for pure force control.
The subsystem is implemented in form of an own C++ dynamics code
providing BDF2 and generalized–α time integration.

The low-fidelity CSM model reduces the real physics to

(qm)ẍS + (qk)xS = (qb2) üS + (qb0)uS + zS (6.1)

where q denotes the parameter scaling factor for the subsequent parameter
scaling tests. The single state xS(t) is directly stating the displacement of
end-point E and therefore also corresponds to the measured output yS = xS
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required by the controller. The concentrated mass m and spring stiffness
k substitute the real system mass and system stiffness, respectively. The
concentrated input coefficients b2 and b0 associated to uS(t) replace the real
root-point excitation.

The complete spatial distribution of the interface displacements yS(ξ, t)
is determined by the root-point excitation uS(t) at position ξR and end-point
displacement respectively state xS(t) at ξE. Along the baseline (dotdashed
straight connection of R and E in the undeformed configuration) a quadratic
ansatz in ξ-direction

yS(ξ, t) = A(t) (ξ − ξR)2 +B(t) (ξ − ξR) + C(t) (6.2a)

is applied. Appropriate Dirichtlet BC’s

yS(ξ = ξR, t) = fuuS(t) (6.2b)

and
yS(ξ = ξR + l, t) = xS(t) (6.2c)

directly follow from the definition. fu is the mentioned u-output factor
controlling the influence of the control input on the interface displacements.
Only vertical movement (η-direction) of the flag along the backside of
the cylinder and therefore conservation of the right angle reflects in the
Neumann BC

y′S(ξ = ξR, t) = 0. (6.2d)

Inserting all BC’s in the ansatz leads to the final spatial distribution

yS(ξ, t) =
[

1−
(
ξ − ξR
l

)2
]
fuuS(t) +

[(
ξ − ξR
l

)2
]
xS(t)

i.e. yS(ξ, t) = yu(ξ)fuuS(t) + yx(ξ)xS(t)
(6.2e)

along baseline RE with both resulting shape functions yu(ξ) = 1−
(
ξ−ξR
l

)2

and yx(ξ) =
(
ξ−ξR
l

)2
plotted in Figure 6.5.

The principle of virtual work (PvW) is formulated with distributed
sectional mass µ = ρwh and distributed sectional stiffness κ∫ ξR+l

ξR

−µÿS(ξ, t)δyS(ξ, t)− κyS(ξ, t)δyS(ξ, t) dξ

+
∑
i

zηS(ξi, t)δyS(ξi, t) = 0.
(6.3a)
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Figure 6.5 Shape functions of low-fidelity structural (CSM) subsys-
tem.

Resolved, this results in

µ

∫ ξR+l

ξR

y2
x(ξ) dξ ẍS + κ

∫ ξR+l

ξR

y2
x(ξ) dξ xS

= −µ
∫ ξR+l

ξR

yx(ξ)yu(ξ) dξ üS

− κ
∫ ξR+l

ξR

yx(ξ)yu(ξ) dξ uS

+
∑
i

yx(ξi)zηS(ξi, t)

i.e. µl

5 ẍS + κl

5 xS

= −µ 2l
15 üS − κ

2l
15uS +

∑
i

(
ξi − ξR

l

)2
zηS(ξi, t)

(6.3b)

what has to be equivalent to Equation (6.1).
Additionally, the stiffness of the low-fidelity flag is obtained from the

static displacement of a cantilever beam: For uS(t) ≡ 0 and zS(t) ≡ ẑS =
const. the displacement of end-point E is x̂S = ẑS/3EIξ

l3
(Gross, Hauger,

Schröder, and Wall 2014, Number 6 in Table 4.3, pp. 138–141) which has
to be equivalent to x̂S = ẑS

k stemming from Equation (6.1). Therefore,
κ = 15EIξ

l4 with the area moment of inertia Iξ = Ewh3

12 (Gross, Hauger,
Schröder, and Wall 2014, Rectangle in Table 4.1, pp. 102, 103).

Thus, parameters and disturbance for the low-fidelity CSM model are
finally obtained as

m = µl

5 = ρwhl

5 (6.4a)
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k = κl

5 = 3ESIξ
l3

= ESwh
3

4l3 (6.4b)

b2 = −2µl
15 = 2ρwhl

15 (6.4c)

b0 = −2κl
15 = −2ESIξ

l3
= ESwh

3

6l3 (6.4d)

and

zS(t) =
∑
i

(
ξi − ξR

l

)2
zηS(ξi, t). (6.4e)

Baseline displacement yS(ξ, t) has to be projected onto the actual dis-
tributed FSI interface seen by the fluid. It is shown in Figure 7.2). As
already mentioned two segments have to be distinguished: the back side
of the cylinder (vertical left) and the flag surface (horizontal and vertical
right).

R fuuS(t)

0

yηS(ξ, t)

fuuS(t)

0
ηR η

Figure 6.6 Projection of baseline displacement to cylinder surface in
low-fidelity structural (CSM) subsystem.

The projection to the cylinder backside is given by linear distributions
from yS(ξR, t) = fuu(t) to 0 as illustrated with Figure 6.6. For the upper
cylinder backside

yηS (ξ, t) =
[

1−
η −

(
ηR + h

2
)

d
2 −

h
2

]
fuuS(t) (6.5a)

and for the lower cylinder backside

yηS (ξ, t) =
[

1−
(
ηR − h

2
)
− η

d
2 −

h
2

]
fuuS(t). (6.5b)

Displacements in ξ-direction are blocked

yξS (ξ, t) = 0. (6.5c)
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The displacements of all points on the cylinder backside are given with
yS = [yξS, yηS] T.

ξηRη

η − ηR

yS(ξ, t)

arctan
(
y′S(ξ, t)

)
yηS(ξ, t)

yξS(ξ, t)

Figure 6.7 Projection of baseline displacement to flag surface in
low-fidelity structural (CSM) subsystem.

The projection to the flag surface including modeling of sectional ro-
tations can be seen in Figure 6.7. Displacements yS = [yξS, yηS] T are
composed of

yξS (ξ, t) = − y′S (ξ, t)√
1 + y′2S (ξ, t)

(η − ηR) (6.6a)

and

yηS (ξ, t) = yS (ξ, t)−
(

1− 1√
1 + y′2S (ξ, t)

)
(η − ηR) . (6.6b)

Finally, the time-discrete low-fidelity CSM model is given with the
adapted time-discretization (3.16b) of the structural subsystem in the
model problem (see Chapter 3 Model Problem, pp. 32 ff.). In order to
simplify the design of the controller in Chapter 8 The Controller (CLC)
Subsystem (pp. 94 ff.) the input parameter for üS is further set to zero, i.e.
b2 = 0. Resulting final parameters are summed up in Table 6.2.

Equivalent to the fluid (CFD) subsystem introduced in the previous
chapter the final FSI and FSCI co-simulations also here only see the black
box structural (CSM) subsystem with its inputs US and outputs Y S as
illustrated by Figure 6.8 completely independent from the fidelity level
of the model. Input zS contains the disturbances on the FSI interface
coming from the fluid and input uS(t) the control input, i.e. the root-point
excitation stemming from the closed-loop controller. Output yS carries
the displacements of the FSI interface and output yS(t) the measured
output for the controller equivalent to the displacement of end-point E.
All implementational details like fidelity level and accompanying internal
dynamics XS are hidden inside the black box.



Chapter 6 The Structural (CSM) Subsystem 77
Table 6.2 Parameter settings for low-fidelity structural (CSM) sub-

system.

parameter
value

unit
CSM1 CSM2 CSM3

m — 0.0144 — kg
k — 2.400549 — N/m

b2 — 0 — kg
b0 — 1.600366 — N/m

q — 106...−3 — 1
fu — 0 — 1

structural (CSM) subsystem[
yn+1

S
yn+1
S

]
=

G

[
xn+1

S

]
S

(
zn+1

S , un+1
S

) measured output yn+1
S

displacements yn+1
S

control input un+1
S

disturbances zn+1
S

Figure 6.8 Block diagram of structural (CSM) subsystem.

For the sake of completeness results of the high-fidelity CSM model tests
with parameter settings CSM1, CSM2 and CSM3 as suggested in Turek
and Hron (2006) are shown. They can be found in Figures 6.9 and 6.10.
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Figure 6.9 End-point displacement in dynamic CSM3 test with high-
fidelity structural (CSM) subsystem.
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(a) Static CSM1 test with a displacement of −0.0074415 m in ξ-direction,
−0.068296 m in η-direction and 0.068701 m absolute at end-point E.

(b) Static CSM2 test with a displacement of −0.00048546 m in ξ-direction,
−0.017536 m in η-direction and 0.017543 m absolute at end-point E.

(c) Dynamic CSM3 test at t = 4.67 s (back), 4.82 s, 4.97 s and 5.12 s (front).

Figure 6.10 Displacement fields of CSM tests with high-fidelity
structural (CSM) subsystem.



Der Urquell aller technischen Er-
rungenschaften ist die göttliche
Neugier und der Spieltrieb des
bastelnden und grübelnden Forsch-
ers und nicht minder die konstruk-
tive Phantasie des technischen
Erfinders. [. . . ] Sollen sich auch
alle schämen, die gedankenlos
sich der Wunder der Wissenschaft
und Technik bedienen, und nicht
mehr davon geistig erfasst haben
als die Kuh von der Botanik der
Pflanzen, die sie mit Wohlbehagen
frisst.

—Albert Einstein (1879–1955)
7 Fluid–Structure In-

teraction

FSI short for fluid-structure interaction identifies the multi-physics of fluid
and structure. The single-physics field fluid is interfering with the single-
physics field solid and vice versa. It denotes one subproblem of fluid-
structure-control interaction (FSCI) as introduced by this work. Therefore,
it can also be closer referred to as the FSI developing freely while FSCI
indicates a FSI influenced by a controller. In FSCI exploring the pure
FSI also states a major subtask in the development and design of the
structural controller based on classical linear theory. Key prerequisite is the
fundamental understanding of the underlying dynamics. Further details on
this will be given in Chapter 8 The Controller (CLC) Subsystem (pp. 94
ff.).

This chapter is investigating the FSCI subproblem class FSI with two
fundamental intentions: First, it is shown that the coupled scheme without
controller can deliver a meaningful system response at all. And secondly,
a basis for the development of a control law and subsequent design of the
controller is provided. During an early stage of this work some first FSCI
simulations of a controlled system, expected to stable, were performed.
But even with testing a variety of further parameter sets the coupled
dynamics always diverged, i.e. the simulations permanently failed. In
order to investigate the causes behind this the FSI parameter scaling tests
as presented in the following were designed. With those the reasons for
previous failure could finally be identified underlining the conclusion that
a fundamental understanding of the underlying dynamical effects in the
interaction is crucial in order to appropriately design a controller.

This work applies a partitioned approach (co-simulation) with iterative
coupling based on a fixed-point formulation on the displacements. It is

79
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Figure 7.1 Block diagram of FSI co-simulation.

supplemented by Aitken acceleration (Küttler and Wall 2008; Küttler
2009) to get an optimal choice of relaxation parameter each iteration.
Thus, the computational FSI problem is formulated in terms of a fluid
(CFD) subsystem and a structural (CSM) subsystem coupled by interface
constraints replacing the actual interaction.

The fluid (CFD) subsystem

FF
(
xn+1

F ,yn+1
F
)

= 0
zn+1

F = GF
(
xn+1

F ,yn+1
F
) } zn+1

F = G[xn+1
F ]

F
(
yn+1

F
)

(7.1)

and the structural (CSM) subsystem

FS
(
xn+1

S , zn+1
S
)

= 0
yn+1

S = GS
(
xn+1

S , zn+1
S
) } yn+1

S = G[xn+1
S ]

S
(
zn+1

S
)

(7.2)

are established in Chapters 5 The Fluid (CFD) Subsystem (pp. 57 ff.) and 6
The Structural (CSM) Subsystem (pp. 68 ff.), respectively. Hereby control
input un+1

S ≡ 0 and measured output yn+1
S is only captured for analysis

purposes. The FSI problem is completed by interface constraints

Iz
(
zn+1

F , zn+1
S
)

= zn+1
F + zn+1

S = 0 (7.3a)
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balancing the disturbances (forces) and

Iy
(
yn+1

F ,yn+1
S
)

= yn+1
F − yn+1

S = 0 (7.3b)

enforcing the kinematic compatibility at the FSI interface ΓF/S,FSI = ΩF∩ΩS
between both subsystems. They can be summarized to

IFSI
(
yn+1

F ,yn+1
S , zn+1

F , zn+1
S
)

= 0. (7.3c)

Figure 7.2 Matching interface meshes of fluid (CFD) and structural
(CSM) subsystem.

The discrete FSI interface with matching interface meshes of fluid (CFD)
and structural (CSM) subsystem can be seen in Figure 7.2. Possessing
additionally equal spatial discretizations reduces mapping operations be-
tween fluid and structural fields to simple copy operations, i.e. renders them
redundant. They are already left out in formulation 7.3 of the interface
constraints. Figure 7.1 shows the block diagram of the underlying Gauß-
Seidel (GS) communication pattern. The resulting coupling algorithm is
presented as pseudo code in Algorithm 7.1. For the numerical experiments
it is implemented in the open source tool enhanced multi-physics interface
research engine (EMPIRE) (Sicklinger and Wang 2013) developed at the
Chair of Structural Analysis at the Technical University of Munich.

Main purpose of this chapter is the investigation of the FSI parameter
scaling tests. In those the basic mass and stiffness properties of the structure
(ρS and ES respectively m and k) are scaled with the parameter scaling
factor q while keeping the impact of the disturbances unscaled. With this
an inversely scaled (1/q) structural response arrives in case of ideal linear
behavior of the coupled problem. Expected deviations from this ideal
behavior allow for conclusions on the real underlying dynamical behavior.
This reflects the main idea and intention behind the FSI parameter scaling
tests.

Up to now extensive investigations of FSCI are limited to the low-fidelity
structural (CSM) model. Thus, only this one is considered during the FSI
parameter scaling tests. This implies the additional advantage of relatively
well behaving Aitken factors resulting from the single structural degree of
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Algorithm 7.1 Pseudo code of partitioned scheme for FSI co-
simulation.

1 // initialize states, i.e. set ICs...
2 kendx0

F ←− x
init
F

3 kendx0
S ←− x

init
S

4 // initialize displacements...
5 kendy0

S ←− y
init
S

6 // do co-simulation...
7 // time loop...
8 for n←− 0 to n←− nend − 1 do
9 // predict displacements...

10 0yn+1
S ←− kendynS

11 // interface iteration loop, i.e. FSI loop...
12 for k ←− 0 to k ←− kmax do
13 // map displacements from solid to fluid...
14 kyn+1

F ←−My

(
kyn+1

S

)
15 // solve fluid...

16 kzn+1
F ←− G

[
kxn+1

F

]
F

(
kyn+1

F

)
17 // map forces from fluid to solid...
18 kzn+1

S ←−Mz

(
kzn+1

F

)
19 // solve solid...

20 kyn+1
S ←− G

[
kxn+1

S

]
S

(
kzn+1

S

)
21 // calculate residuum of displacements...
22 kRn+1

y ←− kyn+1
S − k−1yn+1

S

23 // check for convergence...
24 kεn+1 ←−

∥∥kRn+1
y

∥∥
25 if kεn+1 < maxε then
26 break
27 end if

28 // update Aitken factor...
29 if k = 0 then
30 0βn+1 ←− initβ
31 else
32 if dim

{
kRn+1

y

}
= 1 then

33 kβn+1 ←− k−1βn+1
k−1Rn+1

y

k−1Rn+1
y −kRn+1

y

34 else

35 kβn+1 ←− k−1βn+1
k−1Rn+1

y
T
(
k−1Rn+1

y −kRn+1
y

)∥∥k−1Rn+1
y −kRn+1

y

∥∥2

36 end if
37 end if

38 // update displacements...
39 k+1yn+1

S ←− kyn+1
S + kβn+1 kRn+1

y

40 end for
41 end for
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freedom (DoF). If not noted otherwise in Table 7.1 the FSI parameter scaling
tests with the low-fidelity structural (CSM) subsystem use the following
standard settings next to the ones already given with the introduction of
the respective subsystems: The fluid (CFD) subsystem uses the non-linear
version of the structural similarity mesh updating scheme. A maximum
of 40 interface iterations is allowed to attain the set absolute convergence
criteria of 10−9. Time step size is equally δt = 0.01. The structural
(CSM) subsystem starts not until 3 · δt = 0.03 s to avoid faulty disturbances
outputted by the fluid (CFD) subsystem for the first steps. The simulations
run 1500 · δt = 15.00 s which are evaluated from t1 = 1000 · δt = 10.00 s to
t2 = 1500 · δt = 15.00 s. Used parameter scaling factors can be found in
Table 7.1 presenting the simulation log.

Table 7.1 Log of FSI parameter scaling test with low-fidelity struc-
tural (CSM) subsystem.

co
up

lin
g

sc
he
m
e parameter scaling factor q

106 105 104 103 102 101 100 10−1 10−2 10−3

FSI X X X X \Xf,Xab Xa Xa Xae Xac Xade

achange to linear mesh updating scheme in fluid (CFD) subsystem
bstart structural (CSM) subsystem after 303 · δt = 3.03 s, increase simulation time to

20 s and evaluate from t1 = 1500 · δt = 15.00 s to t2 = 2000 · δt = 20.00 s
c increase absolute convergence criterion to 10−6

dincrease absolute convergence criterion to 2×10−5
emaximal number of 40 interface iterations reached
f mesh updating scheme in fluid (CFD) subsystem fails due to large deformations of

structural (CSM) subsystem for different settings

The results of all performed simulations (see log in Table 7.1) are pre-
sented and evaluated in terms of the disturbance zF(t) and the measured
output yS(t). Both only denote signals and not complete fields. In the
present case of the low-fidelity SDoF structure they sufficiently represent
trends of the developing fields and the underlying dynamics. This is ques-
tionable in case of the high-fidelity MDoF structure where e.g. the simple
measurement of an end-point displacement (measured output) can not be
sufficient to represent the actually distributed structural displacements and
the more complex dynamics. Time responses of the chosen signals zF(t) and
yS(t) are included in Figures 9.11 (p. 139) to 9.20 (p. 148) in Chapter 9
Fluid–Structure–Control Interaction (pp. 118 ff.). Runtime iteration counts
are provided in Figures 9.21 (p. 151) to 9.29 (p. 159) of the same chapter.
In order to draw final conclusions the shown results are condensed further
down to four figures presented and explained in the following.

Trends of disturbance zF(t) and measured output yS(t) with respect
to the parameter scaling factor q are displayed in Figures 7.3a and 7.3b,
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respectively. Illustrated are the positive maximum

max
t∈[t1,t2]

{�(t)} , (7.4a)

the negative maximum
max
t∈[t1,t2]

{−�(t)} , (7.4b)

the root mean square √
1

t2 − t1

∫ t2

t1

�2(t) dt (7.4c)

and the absolute mean ∣∣∣∣ 1
t2 − t1

∫ t2

t1

�(t) dt
∣∣∣∣ . (7.4d)

The variety of time-independent characteristics is chosen to guarantee a
sufficient reliability of subsequently derived statements. For instance the
mean value on its own is only capable of reflecting trends in the static
displacement part.

The Fourier analyses of disturbance zF(t) and measured output yS(t) are
presented in Figures 7.4 and 7.5, respectively. Normalized power spectral
densities (PSD’s) ∣∣∣∣F {�(t)

∣∣∣t2
t1

}∣∣∣∣2
max
f

{∣∣∣F {�(t)
∣∣t2
t1

}∣∣∣2} (7.5)

corresponding to frequency-dependent energy contents are plotted in vertical
direction for all parameter scaling factors in horizontal direction (interpo-
lation between discrete q-values) resulting in a contour plot. Decisive are
regions with dense contour lines indicating main frequencies of the coupled
system. Absolute values of the PSD are not of interest here.

Figures 7.3, 7.4 and 7.5 obviously support the following conclusion: The
range of parameter scaling factor q subdivides into two main regions.

In the range from q = 10∞ to approximately 102 the coupled system
shows indeed the discussed ideal linear behavior. The disturbance from the
fluid on the structure stays constant independent of q and the measured
output and consequently all structural displacements are accordingly scaling
with 1/q. The structure is mainly moving with its own single eigenfrequency
and only partially with the first and second vortex shedding frequency
of the fluid. Those fluid eigenfrequencies are shifted to multiples of the
structural eigenfrequency. I.e. the structure is dominating here. This region
is optimal in terms of the controller design of Chapter 8 The Controller
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Figure 7.3 Trends of disturbance and measured output in FSI pa-
rameter scaling test with low-fidelity structural (CSM)
subsystem.
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Figure 7.4 Fourier analysis of disturbance in FSI parameter scaling
test with low-fidelity structural (CSM) subsystem.
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Figure 7.5 Fourier analysis of measured output in FSI parameter
scaling test with low-fidelity structural (CSM) subsys-
tem.



88 Section 7.0

(CLC) Subsystem (pp. 94 ff.) since the influence of the fluid can simply
be substituted with the recorded disturbance. The Aitken factor, i.e. the
dynamically adopting relaxation factor also stays nearly constant in this
region. Therewith a best initial Aitken factor can be determined by simply
starting a simulation, stopping it after some time steps and taking a second
arriving Aitken factor of one of the last simulated time steps as the future
initial one.

The second region is ranging from q ≈ 101 to 10−∞. It is characterized
by strongly non-linear behavior of the coupled dynamics. Independent of the
actual parameter scaling in the structure the measured output respectively
the displacements stay constant. The disturbance (force) from the fluid
on the structure is simply adopting proportional to q. Thus, the fluid is
absolutely dominating this region forcing the structure (even with controller
as seen later) to the always same displacements. In the Fourier analyses
neither eigendynamics of structure nor structural influence on the fluid’s
vortex shedding frequencies can be identified. One main fluid frequency is
developing. The design of a structural controller for this region is challenging.
With force control and hypothetically unbounded control input a reduction
of the displacement is feasible. Displacement control implying a strongly
bounded control input seems impossible. It is not surprising that the
standard controllers originally designed for the other linear region fail here
as shown subsequently in Chapter 9 Fluid–Structure–Control Interaction
(pp. 118 ff.). Perhaps fluid control with direct adjustment of the fluid flow
can be more effective here. Concerning the Aitken factors in this region, no
clear trend is identifiable.

For the parameter range from q ≈ 102 to approximately 101 a kind
of transfer region can be observed. To this effect a superelevation of the
measured output and connected displacements is observed reflecting as well
in special settings during the co-simulation as noted in Table 7.1. This gives
an indication towards a synchronization process.

It must be pointed out that also the FSI simulations can only deliver
results as qualitative as the underlying subsystems. In consequence of harm
induced by the fluid (CFD) subsystem, physically meaningful quantities
can not be produced. Nevertheless, the underlying dynamical effects and
their trends are well covered and based on that reliable conclusions can be
drawn. The reduction of the structure to a simple SDoF system furthermore
delivers valuable insights in the coupled system dynamics which can also
be assigned to MDoF structures. However, further investigations with the
high-fidelity structure are indispensable. Also the rather rough resolution
in the parameter space should be considered.

For the sake of completeness test cases FSI1, FSI2 and FSI3 as suggested
by Turek and Hron (2006) but employing this work’s deviating CFD model
(with square cylinder) are presented. Their results are shown in Figures
7.6 to 7.9: Different inlet velocities vin lead to different vortex shedding
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frequencies causing the excitation of different structural modes and therefore
delivering different coupled system responses. Here, only the coupling of the
first-order-generalized–α fluid solver and the second-order-generalized–α
structural solver is successful. This results in loss of temporal consistency,
since the mesh updating scheme in the fluid (CFD) subsystem still applies the
BDF2. In the coupling of the default BDF2 fluid solver and the second-order-
generalized–α structural solver the convergence of the interface iterations
fails. Furthermore, some small changes to the standard settings are made:
The time step size is halved (δt = 0.005 s). Convergence criteria are
relaxed to reduce the numerical effort in these purely illustrative simulations
(relative 10−3 for the interface iterations, relative 10−6/absolute 10−9 for
the fluid velocities/pressures, relative 10−6/absolute 10−9 for the structural
displacements/residuals). αf = 0 and αm = −1 are chosen as generalized–α
parameters in both subsystems. The structural (CSM) subsystem starts
not until 1000 · δt = 5.000 s to let the fluid flow fully develop first. In
consequence of the increased interface residuals the time responses of the
interface disturbances show extreme fluctuations and are not plotted here.
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(a) FSI1 test.

(b) FSI2 test.

(c) FSI3 test.

Figure 7.6 Velocity fields of FSI tests with high-fidelity structural
(CSM) subsystem at t = 14.95 s.
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(a) FSI1 test.

(b) FSI2 test.

(c) FSI3 test.

Figure 7.7 Pressure fields of FSI tests with high-fidelity structural
(CSM) subsystem at t = 14.95 s.
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(a) FSI1 test.

(b) FSI2 test.

(c) FSI3 test.

Figure 7.8 Displacement fields of FSI tests with high-fidelity struc-
tural (CSM) subsystem at t = 14.95 s.
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(a) FSI1 test.
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(b) FSI2 test.
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(c) FSI3 test.

Figure 7.9 End-point displacements in FSI with high-fidelity struc-
tural (CSM) subsystem tests.



8 The Controller
(Closed–Loop Con-
trol) Subsystem

8.1 References on Control Theory and Introduction

The analysis and output-feedback control of linear lumped-parameter single-
input single-output (SISO) systems in Laplace or frequency domain con-
stitutes the most classical branch in control theory. Introductions can for
instance be found in Lohmann (2015c), Unbehauen (2008), King (2007)
or Lunze (2014a). (Ger. Die Analyse und Eingrößenregelung von linearen
konzentriert-prarameterischen Systemen im Laplace- bzw. Frequenzbereich
stellt den klassischten Bereich der Regelungstechnik dar. Einführungen sind
zum Beispiel in Lohmann (2015c), Unbehauen (2008), King (2007) oder
Lunze (2014a) zu finden.)

An introduction to issues in systems theory like state-space representa-
tion, controllability, observability, meaning of eigenvalues and eigenvectors
etc. is for example given in Lohmann (2015d), Kotyczka and Gehring (2015),
Unbehauen (2007), King (2008), Lunze (2014a) or Lunze (2014b). (Ger.
Eine Einführung in Fragestellungen der Systemtheory wie Zustandsraum-
darstellung bzw. Zustandsraummodelle, Steuerbarkeit, Beobachtbarkeit, Be-
deutung von Eigenwerten und -vektoren usw. wird zum Beispiel in Lohmann
(2015d), Kotyczka and Gehring (2015), Unbehauen (2007), King (2008),
Lunze (2014a) oder Lunze (2014b) gegeben.)

Among others Lohmann (2015a), Kotyczka and Gehring (2015), Un-
behauen (2007), King (2008) and Lunze (2014b) deal with state-feedback
control in the time domain. This includes constant state-feedback and refer-
ence feedforward control for linear systems. (Ger. Unter anderem Lohmann
(2015a), Kotyczka and Gehring (2015), Unbehauen (2007), King (2008) und

94
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closed-loop
controller (CLC)

u = G[xC]
C (x,y,yd,ξ,t)

yd(ξ, t) controlled system

y = G[x](u, z, ξ, t)

u(ξ, t) y(ξ, t)

state-feedback

output-feedback

x(ξ, t)

IC’s
x|t=t0

z(ξ, t) BC’s
x|ξ∈Γ

IC’s
xC|t=t0

BC’s
xC|ξ∈Γ

Figure 8.1 Block diagram of general closed-loop control from a
control theory point of view.

Lunze (2014b) befassen sich mit der Zustandsregelung im Zeitbereich. Dies
beinhaltet auch die konstante Zustandsrückführung und Führungsgrößenauf-
schaltung für lineare Systeme.)

An optimal state-feedback control law can be stated with respect to
a quadratic cost functional and an infinite control interval. This is also
known as linear quadratic regulator (LQR). See e.g. Lohmann (2015b),
Kotyczka and Gehring (2015), King (2008) or Lunze (2014b). (Ger. Ein
optimales Zustandsregelgesetz kann bezüglich quadratischem Gütemaß und
unendlichem Steuerintervall angegeben werden. Dies ist auch unter dem
Namen Linear-Quadratischer Regler (LQR) bekannt. Siehe z.B. Lohmann
(2015b), Kotyczka and Gehring (2015), King (2008) oder Lunze (2014b).)

Aspects on disturbance feedforward control (disturbance rejection) in-
cluding constant disturbance feedforward control are for instance covered in
Lohmann (2015a), Lohmann (1997), Kotyczka and Gehring (2015) as well
as Lunze (2014b). (Ger. Aspekte bezüglich Störgrößenaufschaltung (Stör-
größenunterdrückung) inklusive konstanter Störgrößenaufschaltung werden
beispielsweise in Lohmann (2015a), Lohmann (1997), Kotyczka and Gehring
(2015) oder auch Lunze (2014b) behandelt.)

Unbehauen (2007) and King (2008) exclusively address state observer
design while Lohmann (2015a), Kotyczka and Gehring (2015) and Lunze
(2014b) also include disturbance models and disturbance observers. (Ger.
Unbehauen (2007) und King (2008) befassen sich ausschließlich mit dem Zu-
standsbeobachterentwurf während Lohmann (2015a), Kotyczka and Gehring
(2015) und Lunze (2014b) auch Störmodelle und Störgrößenbeobachter ein-
beziehen.)

For an introduction to control of distributed-parameter systems it is
exemplarily referred to the works of Franke (1987), Krstic and Smyshlyaev
(2008) and Deutscher (2012). (Ger. Als Einstieg in die Regelung von verteilt-
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parametrischen Systemen wird beispielhaft auf die Werke von Franke (1987),
Krstic and Smyshlyaev (2008) und Deutscher (2012) verwiesen.)

open-loop
controller (OLC)

u = G[xC]
C (yd, ξ, t)

yd(ξ, t) controlled system

y = G[x](u, z, ξ, t)

u(ξ, t) y(ξ, t)

IC’s
x|t=t0

z(ξ, t) BC’s
x|ξ∈Γ

IC’s
xC|t=t0

BC’s
xC|ξ∈Γ

Figure 8.2 Block diagram of general open-loop control from a con-
trol theory point of view.

Figure 8.1 and Figure 8.2 illustrate the difference between closed-loop
control (CLC, Ger. Regelung) and open-loop control (OLC, Ger. Steuerung):
CLC in contrast to OLC involves the continuous feedback of actual system
quantities. Therefore, the controller possesses information about the actual
state of the controlled system at any time. It is distinguished between
output-feedback (Ger. Ausgangsrückführung, outer branch in Figure 8.1)
and state-feedback (Ger. Zustandsrückführung, inner branch in Figure 8.1).

This work uses the following standard terminology presented for the
most general case: The closed-loop controller (Ger. Regler)

FC(xC,x,y,yd, ξ, t) = 0
y = GC(xC,x,y,yd, ξ, t)

}
u = G[xC]

C (x,y,yd, ξ, t) (8.1)

acts on the controlled system (Ger. Regelstrecke)

F(x,u, z, ξ, t) = 0
y = G(x,u, z, ξ, t)

}
y = G[x](u, z, ξ, t) (8.2)

stating the actual physical process or system which should be controlled
through control input u(ξ, t) (Ger. Steuergröße). It constantly receives
feedback of state x(ξ, t) (Ger. Zustandsgröße, state-feedback) and/or mea-
sured output y(ξ, t) (Ger. Regelgröße, output-feedback) from the controlled
system. It additionally receives the desired output yd(ξ, t) (Ger. Führungs-
größe) constituting the target behavior for the measured output. Distur-
bance z(ξ, t) (Ger. Störgröße) covers all known and/or unknown disturbing
environmental impacts on the controlled system. The initial boundary value
problems (IBVP’s) of controller and controlled system are completed by
initial conditions (IC’s, xC|t=t0 and x|t=t0) and boundary conditions (BC’s,
xC|ξ∈Γ and x|ξ∈Γ).

The objective of output- and state-feedback control is to stabilize the
dynamics of the controlled system as well as to compensate initial value
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disturbances (Ger. Anfangswertstörungen). Objective of disturbance feedfor-
ward control, however, is the compensation of unknown respectively known
or estimated steady disturbances (Ger. Dauerstörungen). Combination of
both, feedback and feedforward control, is also possible. This is for instance
done in this work’s LQS controller.

As already introduced several times before this work focuses exclusively
on closed-loop structural control. This means that a closed-loop controller
manipulates the dynamics of the structure via displacement or force control
as explained in Chapter 6 The Structural (CSM) Subsystem (pp. 68 ff.).
The fluid dynamics are only affected indirectly. A direct approach doing
fluid control would for instance be the suppression of vortex shedding by
manipulating the cylinder boundary layer per micro jets.

As previously stated, so far only FSCI in combination with the low-
fidelity structural (CSM) subsystem is considered. Accordingly, this chapter
only deals with the design and implementation of control laws and con-
troller (CLC) subsystems for the low-fidelity CSM model. In fact, the
low-fidelity model was specifically designed in order to reduce the control
effort in FSCI for first investigations and a fundamental understanding. The
simple single degree of freedom (SDoF) dynamics permit treatment of the
actually non-linear distributed-parameter system as a linear time-invariant
lumped-parameter system. Classical control theory can be applied. The
consideration as a distributed-parameter system certainly becomes necessary
with a change to the high-fidelity structure.

For the subsequently presented derivations of control laws the operation
in the linear range of the parameter scaling factor q is assumed (see Chapter
7 Fluid–Structure Interaction, pp. 79 ff.). Therefore, the controllers are
in general expected to fail in the transfer and especially in the strongly
non-linear parameter range. Nevertheless, it will turn out that the applied
controllers are able to extend the linear parameter range over one or two
decades (see Chapter 9 Fluid–Structure–Control Interaction, pp. 118 ff.).

measured output yn+1
C control input un+1

C
controller (CLC) subsystem

un+1
C = G

[
xn+1

C

]
C

(
yn+1
C

)
Figure 8.3 Block diagram of controller (CLC) subsystem.

According to the previously introduced fluid (CFD) and structural
(CSM) subsystems the coupling in the co-simulation sees again only the
black-box controller (CLC) subsystem interacting with its environment via
input and output as illustrated in Figure 8.3. The input is constituted
by measured output UC = yC capturing the end-point displacement of
the structure respectively its single degree of freedom. Output Y C = uC
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denotes the actual control input for the structure corresponding to a root-
point excitation respectively a force in case of u-output factor fu = 0. Any
controller dynamics (8.11/8.13) (LQR), (8.18/8.20) (LQI) or (8.31/8.33)
(LQS), states XC = xC and further implementational details are covert
inside the black box.

The following sections present detailed derivations of three control
laws and their respective implementations in controller (CLC) subsystems,
namely LQR, LQI and LQS. They are successively employed and analyzed in
the FSCI simulations of Chapter 9 Fluid–Structure–Control Interaction (pp.
118 ff.). Controllers LQI and LQS denote enhancements of the respective
priorly presented controller. For convenience, this chapter misses a consistent
indexing with C referring to the controller (CLC) subsystem. Furthermore,
the intended compensation of the end-point displacement reflects in a desired
output of yd(t) ≡ 0. Thus, specification of feedforward matrices Mu and
Mx is redundant.

8.2 State–Feedback Control (LQR)

This section implements state-feedback control following a state observer.
The controller state-feedback matrix is specified via linear-quadratic regula-
tor (LQR) approach. The observer output-feedback matrix is set via pole
placement approach. Figure 8.4 shows the underlying block diagram from a
control theory point of view.

Mx

KR

Mu

y0, ẏ0

z

x̃20

yd = 0 u y

x̃
−

controlled system
(qm) ÿ + (qc) ẏ +

(qk) y = (qb0)u + ez

reduced state
observer

open- and closed-loop controller

Figure 8.4 Block diagram of LQR controller (CLC) subsystem from a
control theory point of view.
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The controlled system is stated by

(qm) ÿ + (qc) ẏ + (qk) y = (qb0)u+ ez (8.3)

with measured output y, control input u and disturbance z. q denotes again
the parameter scaling factor for the scaling tests. As already announced, for
the final parameter exploration afterwards disturbance z will be substituted
by recordings from the FSI simulations. This is possible assuming an
operation in the linear q-range. In regard to Figure 2.9 (p. 30), it should
be noted that the mathematical model of the controller is here completely
equivalent to the mathematical model of the low-fidelity structure in the
numerical experiments. This special case was the original intention for the
design of a low-fidelity structural (CSM) subsystem.

By defining states x1 := y and x2 := ẏ in x = [x1, x2]T Equation (8.3)
can be rewritten as state-space representation with differential equationẋ1

ẋ2

 =

 0 1
− k
m − c

m

x1

x2

+

 0
b0
m

u+

 0
e
qm

 z
i.e. ẋ = Ax+Bu+Ez

(8.4a)

and output equation

y =
[
1 0

]x1

x2


i.e. y = Cx.

(8.4b)

Obviously, the system is fully controllable, i.e. each state (x1 and x2) can
be accessed via control input u, and fully observable, i.e. each state (x1 and
x2) appears in measured output y. Therefore state-feedback control and
state observation will be possible.

The scheduled control law for the state-feedback controller reads

u = −kR1x1 − kR2x2

i.e. u = −KRx
(8.5)

where KR = [kR1, kR2] is the constant state-feedback matrix. Its weights
kR1 and kR2 are determined via the LQR approach. This involves user-
definable weights Q ∈ R2,2 related to state x and r ∈ R1,1 for control input
u. With an appropriate choice Q 6= Q(q) and r 6= r(q) the state-feedback
matrix becomes independent from q since also A 6= A(q), B 6= B(q) and
C 6= C(q).

During later co-simulations y will be directly accessible which corre-
sponds very well to an assumption that in reality only y is measurable. Thus,
first state x1 = y is also directly known. The second state needs estimation
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x2 ≈ x̃2 based on the measurements of the first state by a reduced state
observer. Quantity �̃ with tilde represents here the estimation of exact
quantity �. Omitting the influence of disturbance z, state-space differential
equation (8.4a) can be split up in a part for measurement y and a part for
estimation x̃2

˙̃x = Ax̃+Bu

i.e.

 ẏ
˙̃x2

 =

 0 1
− k
m − c

m

 y
x̃2

+

 0
b0
m

u
i.e.

 ẏ
˙̃x2

 =

a11 a12

a21 a22

 y
x̃2

+

b1
b2

u
(8.6a)

with
a11 = 0 ∧ a12 = 1 ∧ b1 = 0
a21 = − k

m ∧ a22 = − c
m ∧ b2 = b0

m .
(8.6b)

From this the reduced state observer

˙̃x2 = aBx̃2 + bBu+ eBy

x̃2 = x̃2 + kBy
(8.7a)

along with

aB = a22 − kBa12 = − c

m
− kB

bB = b2 − kBb1 = b0
m

eB = (a22 − kBa12) kB + (a21 − kBa11) =
(
− c

m
− kB

)
kB −

k

m

(8.7b)

can be formulated.
Its required value for the output-feedback matrix (here only factor) kB

is determined via the fictive system

ẋf = a22xf + a12uf

uf = −kBxf

}
ẋf = aRfxf (8.8)

with aRf = a22 − a12kB = − c
m − kB and placement of the single eigenvalue

s− aRf
!= s− λB ⇔ kB = − c

m
− λB (8.9)

where R
!
3 λB

!
� Re {λ} = − c

2m ≤ 0.
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The final time discretization of the reduced observer and deactivated

controller

x1 = y

˙̃x2 = aBx̃2 + bBu+ eBy

x̃2 = x̃2 + kBy

u = 0

i.e. ˙̃x2 = aBx̃2 + eBy

(8.10)

with the BDFN (Equation (2.10), p. 11) reads

xn+1
1 = yn+1

[LHS] x̃n+1
2 = −

N−1∑
l=0

(
α̂n−lx̃

n−l
2

)
+ [RHS] yn+1

x̃n+1
2 = x̃n+1

2 + kBy
n+1

un+1 = 0

(8.11a)

where

[LHS] = α̂n+1 − aB = α̂n+1 + c

m
+ kB

[RHS] = eB = −
( c
m

+ kB

)
kB −

k

m
.

(8.11b)

The final time discretization of the reduced observer and activated
controller

x1 = y

˙̃x2 = aBx̃2 + bBu+ eBy

x̃2 = x̃2 + kBy

u = −kR1x1 − kR2x̃2

i.e. ˙̃x2 = (aB − bBkR2) x̃2 + (eB − bB (kR1 + kR2kB)) y

(8.12)

becomes

xn+1
1 = yn+1

[LHS] x̃n+1
2 = −

N−1∑
l=0

(
α̂n−lx̃

n−l
2

)
+ [RHS] yn+1

x̃n+1
2 = x̃n+1

2 + kBy
n+1

un+1 = −kR1x
n+1
1 − kR2x̃

n+1
2

(8.13a)
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where

[LHS] = α̂n+1 − aB + bBkR2 = α̂n+1 + c

m
+ kB + b0

m
kR2

[RHS] = eB − bB (kR1 + kR2kB)

= −
( c
m

+ kB

)
kB −

k

m
− b0
m

(kR1 + kR2kB) .

(8.13b)

A parameter exploration for observer and controller is done in MATLAB
and Simulink (Little and Moler 1984a,b) using the recorded disturbance z
from previously performed FSI simulations. The resulting final parameter
settings are summarized in Table 8.1. For the actual implementation in an
own C++ code Figure 8.5 shows a simplified block diagram from control
theory point of view.

Table 8.1 Parameter settings for LQR controller (CLC) subsystem.

component parameter value unit

controlled system m 0.0144 kg
c 0 Ns/m

k 2.400549 N/m

b0 −1.600366 N/m

e 0.01 1

state-feedback Q I —
r 1 —
kR1 −0.3028 1
kR2 −1.0027 s

state observer λB −2000 rad/s

kB 2000 rad/s

8.3 State– and Integral Output–Feedback Control (LQI)

This section implements state- and integral output-feedback control following
a state observer. It is an extension to the LQR control law from previous
Section 8.2 State–Feedback Control (LQR) (pp. 98 ff.). The controller
feedback matrix covering the state-feedback matrix and the integral output-
feedback matrix is specified by extended state-space model and attached
linear-quadratic regulator (LQR) approach. The observer output-feedback
matrix is defined via pole placement approach. The acronym LQI is used
in context of this work and e.g. also within MATLAB/Simulink (Little and
Moler 1984a,b) to identify the LQR controller with integral extension. The
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KR

F

y0, ẏ0

z

x̃20

yd = 0 u y

x̃

−

open- and closed-loop controller

controlled system
(qm) ÿ + (qc) ẏ +

(qk) y = (qb0)u + ez

reduced state
observer

Figure 8.5 Simplified block diagram of LQR controller (CLC) subsys-
tem from a control theory point of view.

Mx

KR

∫
•dt

kI

Mu

y0, ẏ0

z

x̃20

yd = 0 u y

e

xI

x̃
−

−

open- and closed-loop controller

xI0

controlled system
(qm) ÿ + (qc) ẏ +

(qk) y = (qb0)u + ez

reduced state
observer

Figure 8.6 Block diagram of LQI controller (CLC) subsystem from a
control theory point of view.
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underlying block diagram from a control theory point of view can be seen
in Figure 8.6.

State-space representation (8.4) of the controlled system (8.3) and its
state-feedback control law (8.5) are enhanced by integral output-feedback

u = −kR1x1 − kR2x2 + kIxI

i.e. u = −KRx+ kIxI

i.e. u = −Kx
(8.14)

using x =
[
xT, xI

]T = [x1, x2, xI]T, K = [KR,−kI] = [k1, k2,−kI] and the
additional pseudo state

xI = xI0 +
∫ t

t0

−y dτ

i.e. ẋI = −y
(8.15)

to the extended state-space model with differential equation
ẋ1

ẋ2

ẋI

 =


0 1 0
− k
m − c

m 0
−1 0 0



x1

x2

xI

+


0
b0
m

0

u+


0
e
qm

0

 z

i.e.

 ẋ
ẋI

 =

 A 0
−C 0

[x
xI

]
+

B
0

u+

E
0

 z
i.e. ẋ = Ax+Bu+Ez

(8.16a)

and output equation

y =
[
1 0 0

]
x1

x2

xI


i.e. y = Cx.

(8.16b)

The dedicated extended state-feedback matrix K = [kR1, kR2,−kI] with
weights kR1, kR2 and kI is equally determined via linear-quadratic regulator
(LQR) approach but by using the extended state-space model. Again
choosing the required weights Q ∈ R3,3 related to x and r ∈ R1,1 related to
u independent from q also the extended state-feedback matrix itself becomes
independent from q.

As before only y is accessible respectively measurable and the first state
is therefore directly known x1 = y. The additional integral pseudo state
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identifies no real physical state. That is why its initial value is rather a
choice of the user than related to the physical problem. In this way, direct
calculation of xI is possible. Again only the second state with unknown
physical initial value needs an estimation x2 ≈ x̃2 and the state observer
boils down to the reduced one derived in Equations 8.6 (p. 100) to 8.9 (p.
100).

The final time discretization of the reduced observer and deactivated
controller

x1 = y

ẋI = −y
˙̃x2 = aBx̃2 + bBu+ eBy

x̃2 = x̃2 + kBy

u = 0

i.e. ˙̃x2 = aBx̃2 + eBy

(8.17)

with the BDFN (Equation (2.10), p. 11) reads

xn+1
1 = yn+1

α̂n+1x
n+1
I = −

N−1∑
l=0

(
α̂n−lx

n−l
I
)
− yn+1

[LHS] x̃n+1
2 = −

N−1∑
l=0

(
α̂n−lx̃

n−l
2

)
+ [RHS] yn+1

x̃n+1
2 = x̃n+1

2 + kBy
n+1

un+1 = 0

(8.18a)

where
[LHS] = α̂n+1 − aB = α̂n+1 + c

m
+ kB

[RHS] = eB = −
( c
m

+ kB

)
kB −

k

m
.

(8.18b)

The final time discretization of reduced observer and activated controller
x1 = y

ẋI = −y
˙̃x2 = aBx̃2 + bBu+ eBy

x̃2 = x̃2 + kBy

u = −kR1x1 − kR2x̃2 + kIxI

i.e. ˙̃x2 = (aB − bBkR2) x̃2

+ (eB − bB (kR1 + kR2kB)) y + (bBkI)xI

(8.19)
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becomes

xn+1
1 = yn+1

α̂n+1x
n+1
I = −

N−1∑
l=0

(
α̂n−lx

n−l
I
)
− yn+1

[LHS] x̃n+1
2 = −

N−1∑
l=0

(
α̂n−lx̃

n−l
2

)
+ [RHS] yn+1 + (bBkI)xn+1

I

x̃n+1
2 = x̃n+1

2 + kBy
n+1

un+1 = −kR1x
n+1
1 − kR2x̃

n+1
2 + kIxI

(8.20a)

where

[LHS] = α̂n+1 − aB + bBkR2 = α̂n+1 + c

m
+ kB + b0

m
kR2

[RHS] = eB − bB (kR1 + kR2kB)

= −
( c
m

+ kB

)
kB −

k

m
− b0
m

(kR1 + kR2kB) .

(8.20b)

Again a parameter exploration for observer and controller is performed
via MATLAB and Simulink (Little and Moler 1984a,b) under usage of
recorded disturbances z from FSI simulations. The resulting final parameter
settings are summarized in Table 8.2. Figure 8.7 shows a simplified block
diagram from a control theory point of view for the implementation in an
own C++ code.

Table 8.2 Parameter settings for LQI controller (CLC) subsystem.

component parameter value unit

controlled system m 0.0144 kg
c 0 Ns/m

k 2.400549 N/m

b0 −1.600366 N/m

e 0.01 1

state- and integral Q I —
output-feedback r 1 —

kR1 −0.7944 1
kR2 −1.0071 s
kI −1.0000 1/s

state observer λB −2000 1/s

kB 2000 1/s
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K
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y0, ẏ0

z

x̃20, xI0

u y

x̃

−

open- and closed-loop controller

yd = 0 controlled system
(qm) ÿ + (qc) ẏ +

(qk) y = (qb0)u + ez

reduced state and
integral observer

Figure 8.7 Simplified block diagram of LQI controller (CLC) subsys-
tem from a control theory point of view.
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∫
•dt

kI
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xI0

y0, ẏ0

z

x̃20, w̃0

yd = 0 u y

e

xI

x̃

w̃

−

−

open- and closed-loop controller

controlled system
(qm) ÿ + (qc) ẏ +

(qk) y = (qb0)u + ez

reduced state
and disturbance

observer

Figure 8.8 Block diagram of LQS controller (CLC) subsystem from a
control theory point of view.
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8.4 State– and Integral Output–Feedback and Constant
Disturbance Feedforward Control (LQS)

This section implements state- and integral output-feedback and constant
disturbance feedforward control following an integrated state and distur-
bance observer as further extension to the LQR and LQI controllers from
the previous Sections 8.2 State–Feedback Control (LQR) (pp. 98) ff.) and
8.3 . . . and Integral Output–Feedback Control (LQI) (pp. 102 ff.). The
controller (state- and integral output-) feedback matrix is set via extended
state-space model and linear-quadratic regulator (LQR) approach. The
feedforward matrices are determined via constant feedforward approach.
And the state and disturbance observer output-feedback matrix is finally
defined by pole placement. The acronym LQS only used within this thesis
identifies the LQI controller enhanced by disturbance feedforward. The
underlying block diagram from a control theory point of view is presented
in Figure 8.8. Especially for the mathematical derivations in this section
the open-source computer algebra system SageMath (Stein 2005) is used.

State- and integral output-feedback control law (8.14) is extended by
constant disturbance feedforward

u = KR (Nxw − x) +Nuw + kIxI

i.e. u = −KRx−KSw + kIxI

i.e. u = −K̂x̂+ kIxI

(8.21)

using x̂ =
[
xT,wT]T = [x1, x2, w1, w2, w3, w4, w5]T, K̂ = [KR,KS],KS =

− (KRNx +Nu) and the disturbance model (state-space representation)
with differential equation

ẇ1

ẇ2

ẇ3

ẇ4

ẇ5


=



0 1 0 0 0
− (2πf1)2 0 0 0 0

0 0 0 1 0
0 0 − (2πf2)2 0 0
0 0 0 0 0





w1

w2

w3

w4

w5


i.e. ẇ = Ww

(8.22a)

and output equation

z =
[
1 0 1 0 1

]
w

i.e. z = Zw
(8.22b)

where w = [w1, w2, w3, w4, w5]T are the disturbance states and z is the
disturbance finally acting on the controlled system.

This disturbance model is based on observations made during the FSI
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simulations (see Chapter 7 Fluid–Structure Interaction, pp. 79 ff.). It is
derived from a detailed analysis of the z-data recorded in the linear range of
parameter scaling factor q. This reflects the standard approach in classical
control theory: Only the FSCI sub-problem SCI with recorded or modeled
disturbance substituting the actual fluid is considered. It proves that the
disturbance behavior is dominated by the superposition of two undamped
oscillating modes z1 and z2 with frequencies f1 and f2 and one undamped
constant mode z3

z̈1 + (2πf1)2
z1 = 0 (8.23a)

z̈2 + (2πf2)2
z2 = 0 (8.23b)
ż3 = 0 (8.23c)
z = z1 + z2 + z3. (8.23d)

Definition of disturbance states w1 := z1, w2 := ż1, w3 := z2, w4 := ż2,
w5 := z3 allows the reformulation as state-space model (8.22). An extraction
of initial values w10 = z10, w20 = ż10, w30 = z20, w40 = ż20, w50 = z30
specifying the amount of each mode on outputted disturbance z is not
necessary. This will be carried out by the disturbance observer.

State-feedback weights kR1, kR2 and integral output-feedback weight kI
are specified equivalent to Section 8.3 . . . and Integral Output–Feedback
Control (LQI) (pp. 102 ff.).

The constant feedforward matrices Nx ∈ R2,5 and Nu ∈ R1,5 are
defined via constant feedforward approach

Nx =

0 0 0 0 0
0 0 0 0 0

 = 0 (8.24a)

Nu =
[
− e
b0

0 − e
b0

0 − e
b0

]
. (8.24b)

It follows KS =
[
e
b0
, 0, eb0

, 0, eb0

]
.

System model (8.4), disturbance model (8.22) and control law (8.21) are
combined to an overall state-space model describing the ideally disturbed
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and controlled system with differential equation

ẋ1

ẋ2

ẇ1

ẇ2

ẇ3

ẇ4

ẇ5


=



0 1 0 0 0 0 0
− k
m − c

m
e
m 0 e

m 0 e
m

0 0 0 1 0 0 0
0 0 − (2πf1)2 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 − (2πf2)2 0 0
0 0 0 0 0 0 0





x1

x2

w1

w2

w3

w4

w5


+



0
b0
m

0
0
0
0
0


u

i.e.

 ẋ
ẇ

 =

A EZ

0 W

x
w

+

B
0

u
i.e. ˙̂x = Âx̂+ B̂u,

(8.25a)

output equation for measured output y

y =
[
1 0 0 0 0 0 0

]
x̂

i.e. y =
[
C 0

]x
w


i.e. y = Ĉx̂,

(8.25b)

output equation for disturbance z

z =
[
0 0 1 0 1 0 1

]
x̂

i.e. z =
[
0 Z

]x
w


i.e. z = Ẑx̂

(8.25c)

and control law

u = −
[
kR1 kR2

e
b0

0 e
b0

0 e
b0

]
x̂+ kIxI

i.e. u = −
[
KR KS

]x
w

+ kIxI

i.e. u = −K̂x̂+ kIxI.

(8.25d)
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y is accessible in the co-simulation respectively measurable in reality.

First state x1 = y is therefore directly known. The unphysical integral
state xI with user-defined initial value can directly be computed. As before,
the second state with unknown physical initial value needs an estimation
x2 ≈ x̃2. As well, the newly defined disturbance states with unknown
physical initial values must be estimated w ≈ w̃. A reduced state- and
disturbance observer which includes the reduced state observer from Sections
8.2 State–Feedback Control (LQR) (pp. 98 ff.) and 8.3 . . . and Integral
Output–Feedback Control (LQI) (pp. 102 ff.) is formulated. For this
purpose the overall model (8.25) is split up into the measurable part y and

the estimated part ˜̂x2 =
[
x̃2, w̃

T
]T

˙̂̃
x = Â˜̂x+ B̂u

i.e.

 ẏ
˙̂̃
x2

 =

 â11 Â12

Â21 Â22

 y˜̂x2

+

 b̂1
B̂2

u (8.26a)

and

u = −K̂ ˜̂x+ kIxI

i.e. u = −
[
k̂1 K̂2

] y˜̂x2

+ kIxI
(8.26b)

with
â11 = 0 ∧ Â12 =

[
1 0 0 0 0 0

]
, (8.26c)

Â21 =



− k
m

0
0
0
0
0


∧ Â22 =



− c
m

e
m 0 e

m 0 e
m

0 0 1 0 0 0
0 − (2πf1)2 0 0 0 0
0 0 0 0 1 0
0 0 0 − (2πf2)2 0 0
0 0 0 0 0 0


,

(8.26d)

b̂1 = 0 ∧ B̂2 =



b0
m

0
0
0
0
0


(8.26e)
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and

k̂1 = kR1 ∧ K̂2 =
[
kR2

e
b0

0 e
b0

0 e
b0

]
. (8.26f)

Result is the reduced state and disturbance observer

˙̂̃
x2 = AB ˜̂x2 +BBu+EBy˜̂x2 = ˜̂x2 +KBy

(8.27a)

with

AB = Â22 −KBÂ12

=



− c
m − kB1

e
m 0 e

m 0 e
m

−kB2 0 1 0 0 0
−kB3 − (2πf1)2 0 0 0 0
−kB4 0 0 0 1 0
−kB5 0 0 − (2πf2)2 0 0
−kB6 0 0 0 0 0


,

(8.27b)

BB = B̂2 −KBb̂1 =



b0
m

0
0
0
0
0


(8.27c)

and

EB =
(
Â22 −KBÂ12

)
KB +

(
Â21 −KBâ11

)

=



− k
m −

c
mkB1 + e

m (kB2 + kB4 + kB6)− k2
B1

kB3 − kB1kB2

− (2πf1)2
kB2 − kB1kB3

kB5 − kB1kB4

− (2πf2)2
kB4 − kB1kB5

−kB1kB6


.

(8.27d)
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Its output-feedback matrix KB = [kB1, kB2, kB3, kB4, kB5, kB6]T is de-

fined via the fictive system

ẋf = Â
T
22xf + Â

T
12uf

uf = −KT
Bxf

}
ẋf = ÂRfxf (8.28)

with ÂRf = Â
T
22 − Â

T
12K

T
B and pole placement

det
(
sI− ÂRf

)
!=

6∏
i=1

(s− λBi) ⇔ KB = . . . (8.29)

where either λBi
!
∈ R or λBi

!
∈ C and pairwise complex conjugate and for

all Re {λBi}
!
� Re {λj} =

{
− c
m , 0, 0, 0, 0, 0

}
≤ 0 with i, j = 1, . . . , 6.

The final time discretization of the reduced observer and deactivated
controller

x1 = y

ẋI = −y
˙̂̃
x2 = AB ˜̂x2 +BBu+EBy˜̂x2 = ˜̂x2 +KBy

u = 0

i.e. ˙̂̃
x2 = AB ˜̂x2 +EBy

(8.30)

with the BDFN (Equation (2.10), p. 11) reads

xn+1
1 = yn+1

α̂n+1x
n+1
I = −

N−1∑
l=0

(
α̂n−lx

n−l
I
)
− yn+1

[LHS] ˜̂xn+1
2 = −

N−1∑
l=0

(
α̂n−l ˜̂xn−l2

)
+ [RHS] yn+1

˜̂xn+1
2 = ˜̂xn+1

2 +KBy
n+1

un+1 = 0

(8.31a)
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where

[LHS] = α̂n+1I−AB = α̂n+1I− Â22 +KBÂ12

=



α̂n+1 + c
m + kB1 − e

m 0 − e
m 0 − e

m

kB2 α̂n+1 −1 0 0 0
kB3 (2πf1)2

α̂n+1 0 0 0
kB4 0 0 α̂n+1 −1 0
kB5 0 0 (2πf2)2

α̂n+1 0
kB6 0 0 0 0 α̂n+1


(8.31b)

and

[RHS] = EB =
(
Â22 −KBÂ12

)
KB +

(
Â21 −KBâ11

)

=



− k
m −

c
mkB1 + e

m (kB2 + kB4 + kB6)− k2
B1

kB3 − kB1kB2

− (2πf1)2
kB2 − kB1kB3

kB5 − kB1kB4

− (2πf2)2
kB4 − kB1kB5

−kB1kB6


.

(8.31c)

The final time discretization of the reduced observer and activated
controller

x1 = y

ẋI = −y
˙̂̃
x2 = AB ˜̂x2 +BBu+EBy˜̂x2 = ˜̂x2 +KBy

u = −k̂1x1 − K̂2 ˜̂x2 + kIxI

i.e. ˙̃x2 =
(
AB −BBK̂2

) ˜̂x2

+
(
EB −BB

(
k̂1 + K̂2KB

))
y + (BBkI)xI

(8.32)
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becomes

xn+1
1 = yn+1

α̂n+1x
n+1
I = −

N−1∑
l=0

(
α̂n−lx

n−l
I
)
− yn+1

[LHS] ˜̂xn+1
2 = −

N−1∑
l=0

(
α̂n−l ˜̂xn−l2

)
+ [RHS] yn+1 + (BBkI)xn+1

I

˜̂xn+1
2 = ˜̂xn+1

2 +KBy
n+1

un+1 = −k̂1x
n+1
1 − K̂2 ˜̂xn+1

2 + kIxI

(8.33a)

with

[LHS] = α̂n+1I−AB +BBK̂2

= α̂n+1I− Â22 +KBÂ12 +
(
B̂2 −KBb̂1

)
K̂2

=



α̂n+1 + c
m + b0

mkR2 + kB1 0 0 0 0 0
kB2 α̂n+1 −1 0 0 0
kB3 (2πf1)2

α̂n+1 0 0 0
kB4 0 0 α̂n+1 −1 0
kB5 0 0 (2πf2)2

α̂n+1 0
kB6 0 0 0 0 α̂n+1


(8.33b)

and

[RHS] = EB −BB

(
k̂1 + K̂2KB

)
=
(
Â22 −KBÂ12

)
KB +

(
Â21 −KBâ11

)
−
(
B̂2 −KBb̂1

)(
k̂1 + K̂2KB

)

=



− k
m −

c
mkB1 − b0

m (kR1 + kR2kB1)− k2
B1

kB3 − kB1kB2

− (2πf1)2
kB2 − kB1kB3

kB5 − kB1kB4

− (2πf2)2
kB4 − kB1kB5

−kB1kB6


.

(8.33c)

Once more a parameter exploration for observer and controller in MAT-
LAB and Simulink (Little and Moler 1984a,b) using recorded disturbances
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K̂

F

y0, ẏ0

z

x̃20, w̃0, xI0

u y

˜̂̂
x

−

open- and closed-loop controller

yd = 0 controlled system
(qm) ÿ + (qc) ẏ +

(qk) y = (qb0)u + ez

reduced state,
disturbance and
integral observer

Figure 8.9 Simplified block diagram of LQS controller (CLC) subsys-
tem from a control theory point of view.

z is done. Resulting final parameter settings are summarized in Table 8.3.
For implementational purposes Figure 8.9 shows a simplified block diagram
from a control theory point of view.
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Table 8.3 Parameter settings for LQS controller (CLC) subsystem.

component parameter value unit

controlled system m 0.0144 kg
c 0 Ns/m

k 2.400549 N/m

b0 −1.600366 N/m

e 0.01 1

state- and integral Q̂ I —
output-feedback r̂ 1 —

kR1 −0.7944 1
kR2 −1.0071 s
kI −1.0000 1/s

state and distur- f1 4.1221 1/s

bance observer f2 8.2617 1/s

λB1 −2000 1/s

λB2,3 −20± j2πf1 1/s

λB4,5 −20± j2πf2 1/s

λB6 −200 1/s

kB1 2.2800×103 1/s

kB2/q 2.2076×105 N/m

kB3/q 3.1931×107 N/ms

kB4/q −4.4382×105 N/m

kB5/q 2.1604×107 N/ms

kB6/q 1.0560×106 N/m



Wege enstehen dadurch, dass man
sie geht.

—Franz Kafka (1883–1924)

9 Fluid–Structure–
Control Interaction

This very last chapter is now finally dedicated to full fluid-structure-control
interaction, briefly written as FSCI, bearing the initial intentions of this work.
FSCI in this context characterizes the multi-physical problem involving
fluid, structure and closed-loop structural control: Fluid and structure
form a classical FSI problem as introduced by Chapter 7 Fluid–Structure
Interaction (pp. 79 ff.) in which however the dynamical behavior of the
structure is adapted by a controller. Implied sub-problems are the already
mentioned fluid-structure interaction (FSI) and structure-control interaction
(SCI). The enclosed FSI is governing the underlying dynamics and physics
while SCI on the other hand is only used for derivation and implementation
of appropriate control laws (see Chapter 8 The Controller (CLC) Subsystem,
pp. 94 ff.).

A first intention of this chapter is to investigate the exemplarily im-
plemented LQR, LQI and LQS controller (CLC) subsystems within the
full FSCI. Their control laws are derived in the preceding Chapter 8 The
Controller (CLC) Subsystem (pp. 94 ff.) by decoupling the SCI sub-problem
from the actual FSCI and substituting the fluid (CFD) subsystem with the
appropriate recorded FSI disturbance. This procedure assumes an operation
of the coupled system in the linear parameter scaling factor range. As
already shown in Chapter 7 Fluid–Structure Interaction (pp. 79 ff.) the
actual dominating FSI (sub-) problem can get strongly non-linear depen-
dent on the parameter scaling factor q. Therefore, an operational range
for each control law and controller (CLC) subsystem in terms of q will
be assessed. For this purpose, again extensive parameter scaling tests are
performed. Additional arising dynamical effects differing FSCI from FSI
will also be developed. The second main intention of this final chapter is

118
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the implementation and a subsequent assessment of partitioned schemes
for computational FSCI. The simple model problem of Chapter3 Model
Problem (pp. 32 ff.) already predicted unconditional stability (convergence)
for all schemes. Besides, the numerical effort is measured and analyzed
allowing for comparison and ranking between the suggested schemes. This
includes also the evaluation of necessity of nesting.

9.1 Implementation of Partitioned Schemes

In the following solution procedures for this work’s FSCI problem class are
proposed. They denote partitioned approaches (co-simulations) with itera-
tive coupling formulated in terms of fixed-point iterations on the interface
displacements, measured output inclusive. Aitken acceleration according to
Küttler and Wall (2008) and Küttler (2009) is employed. Thus, computa-
tional FSCI is implemented as 3-code coupling of fluid (CFD), structural
(CSM) and controller (CLC) subsystem. Interface constraints enforce the
balance of disturbances z and the kinematic compatibility in the displace-
ments y at the FSI interface as well as the kinematic compatibility of the
measured output y and the control input u at the SCI interface. Three
different schemes are proposed, namely FSCI, F[SC]I and [FS]CI. FSCI
typifies a scheme with simple interface iteration loop while F[SC]I and
[FS]CI mark schemes with an outer loop nesting the respective sub-problem
FSI or SCI in an inner loop.

Chapter 5 The Fluid (CFD) Subsystem (pp. 57 ff.) establishes the fluid
(CFD) subsystem

FF
(
xn+1

F ,yn+1
F
)

= 0
zn+1

F = GF
(
xn+1

F ,yn+1
F
) } zn+1

F = G[xn+1
F ]

F
(
yn+1

F
)
, (9.1a)

Chapter 6 The Structural (CSM) Subsystem (pp. 68 ff.) the structural
(CSM) subsystem(s)

FS
(
xn+1

S , zn+1
S , un+1

S
)

= 0
yn+1

S = GS
(
xn+1

S , zn+1
S , un+1

S
) } yn+1

S = G[xn+1
S ]

S
(
zn+1

S , un+1
S
)

(9.1b)

and Chapter 8 The Controller (CLC) Subsystem (pp. 94 ff.) the controller
(CLC) subsystem(s)

FC
(
xn+1

C , yn+1
C

)
= 0

un+1
C = GC

(
xn+1

C , yn+1
C

) } un+1
C = G[xn+1

C ]
C

(
yn+1

C
)
. (9.1c)

The interface constraints for the simple loop of scheme FSCI are specified
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as

Iy
(
yn+1

F ,yn+1
S
)

= yF − yn+1
S = 0

Iz
(
zn+1

F , zn+1
S
)

= zn+1
F + zn+1

S = 0
Iy
(
yn+1

S , yn+1
C

)
= yn+1

S − yn+1
C = 0

Iu
(
un+1

S , un+1
C
)

= un+1
S − un+1

C = 0

i.e. IFSCI
(
yn+1

F ,yn+1
S , zn+1

F , zn+1
S , yn+1

S , yn+1
C , un+1

S , un+1
C
)

= 0.

(9.2)

This results in coupling Algorithm 9.1 (continued 9.2). The block diagram
of the underlying Gauß-Seidel (GS) communication pattern can be seen in
Figure 9.1.

fluid (CFD) subsystem

zn+1
F = G

[
xn+1

F

]
F

(
yn+1

F

)
yn+1

F zn+1
F

yn+1
C

un+1
C

yn+1
S

yn+1
S

zn+1
S

un+1
S

structural (CSM) subsystem[
yn+1

S
yn+1
S

]
=

G

[
xn+1

S

]
S

(
zn+1

S , un+1
S

)

controller (CLC) subsystem

un+1
C = G

[
xn+1

C

]
C

(
yn+1
C

)
interface

constraints

IFSCI
(
yn+1

F , yn+1
S ,

zn+1
F , zn+1

S , yn+1
S ,

yn+1
C , un+1

S , un+1
C

)
= 0

Figure 9.1 Block diagram of FSCI co-simulation with FSCI scheme.

Scheme [FS]CI defines the interface constraints for its inner FSI loop as

Iy
(
yn+1

F ,yn+1
S
)

= yF − yn+1
S = 0

Iz
(
zn+1

F , zn+1
S
)

= zn+1
F + zn+1

S = 0

i.e. IFSI
(
yn+1

F ,yn+1
S , zn+1

F , zn+1
S
)

= 0

(9.3a)
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and for its outer [FS]CI loop as

Iy
(
yn+1

S , yn+1
C

)
= yn+1

S − yn+1
C = 0

Iu
(
un+1

S , un+1
C
)

= un+1
S − un+1

C = 0

i.e. I[FS]CI
(
yn+1

S , yn+1
C , un+1

S , un+1
C
)

= 0.

(9.3b)

The result is coupling Algorithm 9.3 (continued 9.4). Figure 9.2 shows the
block diagram of the underlying Gauß-Seidel (GS) communication pattern.

fluid (CFD) subsystem

zn+1
F = G

[
xn+1

F

]
F

(
yn+1

F

)
zn+1

Fyn+1
F

inner interface
constraints

IFSI
(
yn+1

F , yn+1
S ,

zn+1
F , zn+1

S

)
= 0

controller (CLC) subsystem

un+1
C = G

[
xn+1

C

]
C

(
yn+1
C

)
yn+1

S zn+1
S

yn+1
C un+1

C

yn+1
S

un+1
S

structural (CSM) subsystem[
yn+1

S
yn+1
S

]
=

G

[
xn+1

S

]
S

(
zn+1

S , un+1
S

)
FSI

outer interface
constraints

I[FS]CI
(
yn+1
S , yn+1

C ,

un+1
S , un+1

C

)
= 0

Figure 9.2 Block diagram of FSCI co-simulation with [FS]CI scheme.

Scheme F[SC]I implements

Iy
(
yn+1

S , yn+1
C

)
= yn+1

S − yn+1
C = 0

Iu
(
un+1

S , un+1
C
)

= un+1
S − un+1

C = 0

i.e. ISCI
(
yn+1

S , yn+1
C , un+1

S , un+1
C
)

= 0

(9.4a)
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as the interface constraints for its inner SCI loop and

Iy
(
yn+1

F ,yn+1
S
)

= yF − yn+1
S = 0

Iz
(
zn+1

F , zn+1
S
)

= zn+1
F + zn+1

S = 0

i.e. IF[SC]I
(
yn+1

F ,yn+1
S , zn+1

F , zn+1
S
)

= 0

(9.4b)

as the ones for its outer F[SC]I loop. Coupling Algorithm 9.5 (continued 9.6)
is the outcome. The underlying Gauß-Seidel (GS) communication pattern
is illustrated with the block diagram in Figure 9.3.

fluid (CFD) subsystem

zn+1
F = G

[
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F

]
F

(
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)
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F

outer interface
constraints

IF[SC]I
(
yn+1

F , yn+1
S ,

zn+1
F , zn+1

S

)
= 0

controller (CLC) subsystem

un+1
C = G

[
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C

]
C

(
yn+1
C

)
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S

zn+1
S

yn+1
C un+1

C
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S un+1

S

structural (CSM) subsystem[
yn+1

S
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S
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=

G

[
xn+1

S

]
S

(
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S , un+1
S
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inner interface
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(
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C ,

un+1
S , un+1

C

)
= 0

Figure 9.3 Block diagram of FSCI co-simulation with F[SC]I scheme.

Two distinct interfaces can be identified, FSI and SCI, reflecting the
respective sub-problems. The SCI interface simply links the signals y and u
between structural (CSM) and controller (CLC) subsystem and therefore
possesses no spatial distribution. The FSI interface however identifies
the spatially distributed common boundary of fluid (CFD) and structural
(CSM) subsystem with the associated fields z and y (compare Chapter 7
Fluid–Structure Interaction, pp. 79 ff.). Its matching interface meshes have
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Algorithm 9.1 Pseudo code of partitioned scheme FSCI for FSCI
co-simulation.

1 // initialize states, i.e. set ICs...
2 kendx0

F ←− x
init
F

3 kendx0
S ←− x

init
S

4 kendx0
C ←− x

init
C

5 // initialize displacements and measured output...
6 kendy0

S ←− y
init
S

7 kendyS
0 ←− yinit

S

8 // do co-simulation...
9 // time loop...

10 for n←− 0 to n←− nend − 1 do
11 // predict displacements and measured output...
12 0yn+1

S ←− kendynS
13 0yn+1

S ←− kendynS

14 // interface iteration loop, i.e. FSCI loop...
15 for k ←− 0 to k ←− kmax do
16 // map displacements from solid to fluid...
17 // and copy measured output from solid to controller...
18 kyn+1

F ←−My

(
kyn+1

S

)
19 kyC

n+1 ←− kyS
n+1

20 // solve fluid and controller in parallel...

21 kzn+1
F ←− G

[
kxn+1

F

]
F

(
kyn+1

F

)
22 kun+1

C ←− G

[
kxn+1

C

]
C

(
kyn+1

C

)
23 // map forces from fluid to solid...
24 // and copy control input from controller to solid...
25 kzn+1

S ←−Mz

(
kzn+1

F

)
26 kun+1

S ←− kun+1
C

27 // solve solid...

28
[
kyn+1

S
kyn+1

S

]
←− G

[
kxn+1

S

]
S

(
kzn+1

S , kun+1
S

)
29 // calculate residuum of displacements and measured output...
30 kRn+1

y ←− kyn+1
S − k−1yn+1

S
31 kRn+1

y ←− kyn+1
S − k−1yn+1

S

32 kRn+1
y,y :=

[
kRn+1

y

kRn+1
y

]
33 // check for convergence...
34 kεn+1 ←−

∥∥kRn+1
y,y

∥∥
35 if kεn+1 < maxε then
36 break
37 end if
38 ...
39 ...
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Algorithm 9.2 Pseudo code of partitioned scheme FSCI for FSCI
co-simulation (continued).

36
...

37
...

38 // update Aitken factor
39 if k = 0 then
40 0βn+1 ←− initβ
41 else

42 kβn+1 ←− k−1βn+1
k−1Rn+1

y,y
T
(
k−1Rn+1

y,y −
kRn+1

y,y

)∥∥k−1Rn+1
y,y −kR

n+1
y,y

∥∥2

43 end if

44 // update displacements and measured output...
45 k+1yn+1

S ←− kyn+1
S + kβn+1 kRn+1

y

46 k+1yn+1
S ←− kyn+1

S + kβn+1 kRn+1
y

47 end for
48 end for

already been shown in Figure 7.2 (p. 81). Consequently redundant mapping
operations are all left out in formulations (9.2), (9.3) and (9.4) of respective
interface constraints.

For the subsequently presented numerical experiments the proposed
schemes are again implemented in the open source tool Enhanced Multi
Physics Interface Research Engine (EMPIRE) (Sicklinger and Wang 2013)
developed at the Chair of Structural Analysis at the Technical University of
Munich. Extensive testing of all schemes is performed in stages. Therefore,
dummy subsystems are used next to the previously presented ones. Those
send well-defined output data for testing of coupling logic and data handling.
An additional dummy fluid (CFD) subsystem implements the modified
idealized piston problem from Sicklinger (2014) allowing a verification of
the fully coupled problem with the monolithic solution. Dummy subsystems
are step by step upgraded and finally exchanged with the actual subsystems
to verify correct functionality. In particular, the realization of the root-
point excitation is tested within FS"C"I simulations containing the actual
structural (CSM) and fluid (CFD) but only a dummy controller (CLC)
subsystem which is simply prescribing a sinusoidal control input. No test
results are presented here but to get a feel for the effort behind this task:
Two fluid (CFD), three solid (CSM) and four controller (CLC) subsystems
in three partitioned schemes request 2 · 3 · 4 · 3 = 72 test scenarios before
beginning the actual numerical experiments.
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Algorithm 9.3 Pseudo code of partitioned scheme [FS]CI for FSCI
co-simulation.

1 // initialize states, i.e. set ICs...

2 kend
mendx

0
F ←− x

init
F

3 kend
mendx

0
S ←− x

init
S

4 kendx0
C ←− x

init
C

5 // initialize displacements and measured output...

6 kend
mendy

0
S ←− y

init
S

7 kend
mendy

0
S ←− y

init
S

8 // do co-simulation...
9 // time loop...

10 for n←− 0 to n←− nend − 1 do
11 // predict displacements and measured output...

12 0
mendy

n+1
S ←− kend

mendy
n
S

13 0
mendy

n+1
S ←− kend

mendy
n
S

14 // outer interface iteration loop, i.e. [FS]CI loop...
15 for k ←− 0 to k ←− kmax do
16 // copy measured output from solid to controller...
17 kyn+1

C ←− k
mendy

n+1
S

18 // solve controller...

19 kun+1
C ←− G

[
kxn+1

C

]
C

(
kyn+1

C

)
20 // copy control input from controller to solid...
21 kun+1

S ←− kun+1
C

22 // predict displacements...
23 k

0y
n+1
S ←− k

mendy
n+1
S

24 // inner interface iteration loop, i.e. FSI loop...
25 for m←− 0 to m←− mmax do
26 // map displacements from solid to fluid...
27 k

my
n+1
F ←−My

(
k
my

n+1
S

)
28 // solve fluid...

29 k
mz

n+1
F ←− G

[
k
mx

n+1
F

]
F

(
k
my

n+1
F

)
30 // map forces from fluid to solid...
31 k

mz
n+1
S ←−Mz

(
k
mz

n+1
F

)
32 // solve solid...

33
[
k
my

n+1
S

k
my

n+1
S

]
←− G

[
k
mx

n+1
S

]
S

(
k
mz

n+1
S , kun+1

S

)
34 // calculate residuum of displacements...
35 k

mR
n+1
y ←− k

my
n+1
S − k

m−1y
n+1
S

36 ...
37 ...
38 ...
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Algorithm 9.4 Pseudo code of partitioned scheme [FS]CI for FSCI
co-simulation (continued).

33
...

34
...

35
...

36 // check for inner convergence...
37 k

mε
n+1 ←−

∥∥ k
mR

n+1
y

∥∥
38 if k

mε
n+1 < maxε then

39 break
40 end if

41 // update inner Aitken factor...
42 if m = 0 then
43 k

0β
n+1 ←− initβ

44 else
45 if dim

{
k
mR

n+1
y

}
= 1 then

46 k
mβ

n+1 ←− k
m−1β

n+1
k

m−1R
n+1
y

k
m−1R

n+1
y − k

mR
n+1
y

47 else

48 k
mβ

n+1 ←− k
m−1β

n+1
k

m−1R
n+1
y

T
(

k
m−1R

n+1
y − k

mR
n+1
y

)∥∥ k
m−1R

n+1
y − k

mR
n+1
y

∥∥2

49 end if
50 end if

51 // update displacements...
52 k

m+1y
n+1
S ←− k

my
n+1
S + k

mβ
n+1 k

mR
n+1
y

53 end for

54 // calculate residuum of measured output...
55 kRn+1

y ←− k
mendyS

n+1 − k−1
mendyS

n+1

56 // check for outer convergence...
57 kεn+1 ←−

∥∥kRn+1
y

∥∥
58 if kεn+1 < maxε then
59 break
60 end if

61 // update outer Aitken factor...
62 if k = 0 then
63 0βn+1 ←− initβ
64 else

65 kβn+1 ←− k−1βn+1
k−1Rn+1

y

k−1Rn+1
y −kRn+1

y

66 end if

67 // update displacements and measured output...
68 k+1

mendy
n+1
S ←− k

mendy
n+1
S

69 k+1
mendyS

n+1 ←− k
mendyS

n+1 + kβn+1 kRn+1
y

70 end for
71 end for
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Algorithm 9.5 Pseudo code of partitioned scheme F[SC]I for FSCI
co-simulation.

1 // initialize states, i.e. set ICs...
2 kendx0

F ←− x
init
F

3 kend
mendx

0
S ←− x

init
S

4 kend
mendx

0
C ←− x

init
C

5 // initialize displacements and measured output...

6 kend
mendy

0
S ←− y

init
S

7 kend
mendy

0
S ←− y

init
S

8 // do co-simulation...
9 // time loop...

10 for n←− 0 to n←− nend − 1 do
11 // predict displacements and measured output...

12 0
mendy

n+1
S ←− kend

mendy
n
S

13 0
mendy

n+1
S ←− kend

mendy
n
S

14 // outer interface iteration loop, i.e. F[SC]I loop...
15 for k ←− 0 to k ←− kmax do
16 // map displacements from solid to fluid...
17 kyn+1

F ←−My

(
k

mendy
n+1
S

)
18 // solve fluid...

19 kzn+1
F ←− G

[
kxn+1

F

]
F

(
kyn+1

F

)
20 // map forces from fluid to solid...
21 kzn+1

S ←−Mz

(
kzn+1

F

)
22 // predict measured output...
23 k

0y
n+1
S ←− k

mendy
n+1
S

24 // inner interface iteration loop, i.e. SCI loop...
25 for m←− 0 to m←− mmax do
26 // copy measured output from solid to controller...
27 k

my
n+1
C ←− k

my
n+1
S

28 // solve controller...

29 k
mu

n+1
C ←− G

[
k
mx

n+1
C

]
C

(
k
my

n+1
C

)
30 // copy control input from controller to solid...
31 k

mu
n+1
S ←− k

mu
n+1
C

32 // solve solid...

33
[
k
my

n+1
S

k
my

n+1
S

]
←− G

[
k
mx

n+1
S

]
S

(
kzn+1

S , kmu
n+1
S

)
34 // calculate residuum of measured output...
35 k

mR
n+1
y ←− k

my
n+1
S − k

m−1y
n+1
S

36 ...
37 ...
38 ...
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Algorithm 9.6 Pseudo code of partitioned scheme F[SC]I for FSCI
co-simulation (continued).

33
...

34
...

35
...

36 // check for inner convergence...
37 k

mε
n+1 ←−

∥∥ k
mR

n+1
y

∥∥
38 if k

mε
n+1 < maxε then

39 break
40 end if

41 // update inner Aitken factor...
42 if m = 0 then
43 k

0β
n+1 ←− initβ

44 else

45 k
mβ

n+1 ←− k
m−1β

n+1
k

m−1R
n+1
y

k
m−1R

n+1
y − k

mR
n+1
y

46 end if

47 // update measured output...
48 k

m+1y
n+1
S ←− k

my
n+1
S + k

mβ
n+1 k

mR
n+1
y

49 end for

50 // calculate residuum of displacements...
51 kRn+1

y ←− k
mendy

n+1
S − k−1

mendy
n+1
S

52 // check for outer convergence...
53 kεn+1 ←−

∥∥kRn+1
y

∥∥
54 if kεn+1 < maxε then
55 break
56 end if

57 // update outer Aitken factor...
58 if k = 0 then
59 0βn+1 ←− initβ
60 else
61 if dim

{
kRn+1

y

}
= 1 then

62 kβn+1 ←− k−1βn+1
k−1Rn+1

y

k−1Rn+1
y −kRn+1

y

63 else

64 kβn+1 ←− k−1βn+1
k−1Rn+1

y
T
(
k−1Rn+1

y −kRn+1
y

)∥∥k−1Rn+1
y −kRn+1

y

∥∥2

65 end if
66 end if

67 // update displacements and measured output...
68 k+1

mendy
n+1
S ←− k

mendy
n+1
S + kβn+1 kRn+1

y

69 k+1
mendy

n+1
S ←− k

mendy
n+1
S

70 end for
71 end for
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9.2 Assessment of Closed–Loop Control Laws

Here exemplarily the three chosen closed-loop control laws LQR, LQI and
LQS are investigated within full FSCI co-simulations. They are derived for
the SCI sub-problem with prescribed disturbance in Chapter 8 The Con-
troller (CLC) Subsystem (pp. 94 ff.). The assessment is again accomplished
with parameter scaling tests identical to FSI. For explanations it is therefore
referred to Chapter 7 Fluid–Structure Interaction (pp. 79 ff.). Up to now
the extensive investigations of FSCI are still restricted to the low-fidelity
structural (CSM) model. This implies again well behaving Aitken factors
resulting from the single structural degree of freedom.

Table 9.1 Log of FSCI parameter scaling test with low-fidelity struc-
tural (CSM) subsystem.

co
nt
ro
l

la
w

co
up

lin
g

sc
he
m
e parameter scaling factor q

106 105 104 103 102 101 100 10−1 10−2 10−3

LQR FSCI X X X X X \Xh Xa Xaf Xad Xaef

[FS]CI X X X X X \Xh Xaf Xag Xad Xaeg

F[SC]I X X X X X \Xh Xa Xaf Xadf Xaef

LQI FSCI X X X X X \Xh Xa Xaf Xad Xaef

[FS]CI X X X X X \Xh Xa Xag Xad Xaeg

F[SC]I X X X X X \Xh Xa Xaf Xadf Xaef

LQS FSCI Xb Xb Xb Xc Xc Xc \Xh \Xh Xdf Xef

achange to linear mesh updating scheme in fluid (CFD) subsystem
bdecrease absolute convergence criterion to 10−15
cdecrease absolute convergence criterion to 10−12

dincrease absolute convergence criterion to 10−6
e increase absolute convergence criterion to 2×10−5

f maximal number of 40 simple/outer interface iterations reached
gmaximal number of 40 inner interface iterations reached
hmesh updating scheme in fluid (CFD) subsystem fails due to large deformations of

structural (CSM) subsystem for different settings

If not noted otherwise in Table 9.1 the FSCI parameter scaling tests
with the low-fidelity structural (CSM) subsystem use the following standard
settings: The fluid (CFD) subsystem employs the non-linear version of the
structural similarity mesh updating scheme. A maximum of 40 simple/in-
ner/outer interface iterations is allowed to attain the specified absolute
convergence criteria of 10−9. Time step size is consistently δt = 0.01.
The structural (CSM) subsystem starts not until 3 · δt = 0.03 s to avoid
wrong disturbances outputted by the fluid (CFD) subsystem for the first
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steps. The simulations run 1500 · δt = 15.00 s which are evaluated from
t1 = 1000 · δt = 10.00 s to t2 = 1500 · δt = 15.00 s. Used parameter scaling
factors can be found in Table 9.1 presenting the simulation log. For now
FSCI investigations are restricted to force control, i.e. a u-output factor
fu = 0 is set. These standard settings matching the FSI ones are completed
by the specific settings of the subsystems.

The results of the FSCI parameter scaling tests are again evaluated in
terms of the representative signal quantities disturbance z and measured y.
For details it is referred to Chapter 7 Fluid–Structure Interaction (pp. 79
ff.). Time responses can be found in Figures 9.11 (p. 139) for a parameter
scaling of q = 106 through 9.20 (p. 148) for q = 10−3. FSI results are
included for comparison.

Figure 9.4 (p. 132) illustrates trends with respect to parameter scaling
factor q for the relative disturbance

zFSI(t)
zFSCI(t)

(9.5a)

and the relative measured output

yFSCI(t)
yFSI(t)

. (9.5b)

I.e. the first one states the disturbance from FSI relative to the one from
FSCI and the latter one the measured output from FSCI relative to the
one from FSI. Expected are values for the relative measured output smaller
than one indicating the intended reduction of the structural displacements
towards FSI, respectively, the success of the particular control law. For
values bigger than one the control law is graded as failed. A relative
disturbance of one shows the independence of the arriving disturbance
from the impact of the controller. This is expected for the upper q-range
according to the assumptions for the derivations of the control laws. Values
bigger or smaller than one indicate de- or increase, respectively. The plotted
characteristics are specified in Equation (7.4) (p. 84).

Fourier analyses of disturbances and measured outputs for control laws
LQR, LQI and LQS are presented in Figures 9.5 (p. 133) to 9.10 (p. 138).
For explanations it is again referred to Chapter 7 Fluid–Structure Interaction
(pp. 79 ff.).

It should be pointed out that in all aforementioned figures blanc space
indicates failure of the respective control law rather than missing data. An
illustration of consequently diverging dynamics would be meaningless. Long
time simulations with accordingly higher numerical effort would further
more clearly show the diverging responses.

Obviously, all control laws are successful within the linear q-range
according to expectations. Furthermore, they are even able to extend
this linear q-range by one (LQR and LQI) or two (LQS) decades into the
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transfer and non-linear ranges. Thus, the closed-loop control possesses a
linearizing effect on the dynamics. Reductions to around 30 % for LQR,
20 to 10 % for LQI and 0.2 to 0.1 % for LQS are achieved. The values are
estimated on the positive and negative maxima reflecting the maximum
deflections in both directions.

Time responses and derived results cover well the basic functionality
of the distinct control laws: LQR only intends to stabilize (problem is
already stable) and to compensate initial value disturbances. The steady
disturbance, however, corresponds to continuously disturbed initial values.
Thus, LQR is not able to follow and just slightly reduces the deflections
due to increased modal damping. LQI additionally possesses an integrator
which in particular accounts for longtime static-like deflections. This can
be nicely observed by comparing time responses of LQI and LQR. The
disturbance model in the LQS control law finally captures main parts of
the steady disturbance allowing for much better, sufficient compensation.

In the strongly non-linear q-range where the coupled dynamics are
absolutely dominated by the fluid all control laws fail. The system response
with LQR even corresponds exactly to the pure FSI response. Thus, LQR
completely misses any impact. Coupled dynamics with LQI and LQS tend
to long-term divergence. This can probably be traced back to the integrator
continuously accumulating a static-like error which can however never be
compensated finally resulting in a slow drift off.

The assumption made for the control law design finally proofs right: In
the linear q-range all relative disturbances turn out equal to one, i.e. the
forces are clearly similar to the pure FSI ones. In the transfer range a slight
increase of the disturbances can be observed.

In all control laws (LQR, LQI and LQS) the state-feedback based
on the LQR approach maintains the original structural eigenfrequency,
i.e. the original imaginary part of both eigenvalues is retained. This
corresponds to minimization of system constraints in order to keep control
input and energetic effort as little as possible. This can nicely be observed
in the respective illustrations of the Fourier Analyses. In order additionally
minimize the state amplitudes both eigenvalues are shifted in negative
direction, i.e. the modal damping reflecting in the negative real part is
increased. The eigenvalues are said to become faster. All these aspects arise
from the quadratic cost functional in the LQR approach.
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(c) Legend.

Figure 9.4 Trends of disturbance and measured output in FSCI pa-
rameter scaling tests with low-fidelity structural (CSM)
subsystem.
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Figure 9.5 Fourier analysis of disturbance in FSCI parameter scaling
test with LQR controller (CLC) subsystem and low-
fidelity structural (CSM) subsystem.
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Figure 9.6 Fourier analysis of measured output in FSCI parameter
scaling test with LQR controller (CLC) subsystem and
low-fidelity structural (CSM) subsystem.
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Figure 9.7 Fourier analysis of disturbance in FSCI parameter scaling
test with LQI controller (CLC) subsystem and low-
fidelity structural (CSM) subsystem.
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Figure 9.8 Fourier analysis of measured output in FSCI parameter
scaling test with LQI controller (CLC) subsystem and
low-fidelity structural (CSM) subsystem.
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Figure 9.9 Fourier analysis of disturbance in FSCI parameter scaling
test with LQS controller (CLC) subsystem and low-
fidelity structural (CSM) subsystem.
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Figure 9.10 Fourier analysis of measured output in FSCI parameter
scaling test with LQS controller (CLC) subsystem and
low-fidelity structural (CSM) subsystem.
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Figure 9.11 Measured outputs and disturbances in FSCI’s with low-
fidelity structural (CSM) subsystem scaled by q = 106.



140 Assessment of Closed–Loop Control Laws Section 9.2

−1.2×10−5

−9.0×10−6

−6.0×10−6

−3.0×10−6

0.0×10+0

3.0×10−6

6.0×10−6

9.0×10−6

1.2×10−5

0 2 4 6 8 10 12 14

m
ea
su
re
d
ou

tp
ut
y
(m

)

time t (s)
14.5 15

(a) Measured output.

−2.1×10−6

−1.4×10−6

−7.0×10−7

0.0×10+0

7.0×10−7

1.4×10−6

2.1×10−6

2.8×10−6

0 2 4 6 8 10 12 14

m
ea
su
re
d
ou

tp
ut
y
(m

)

time t (s)
14.5 15

(b) Measured output (zoomed view).
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Figure 9.12 Measured outputs and disturbances in FSCI’s with low-
fidelity structural (CSM) subsystem scaled by q = 105.
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(b) Measured output (zoomed view).
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Figure 9.13 Measured outputs and disturbances in FSCI’s with low-
fidelity structural (CSM) subsystem scaled by q = 104.
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(b) Measured output (zoomed view).
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Figure 9.14 Measured outputs and disturbances in FSCI’s with low-
fidelity structural (CSM) subsystem scaled by q = 103.
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(b) Measured output (zoomed view).
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Figure 9.15 Measured outputs and disturbances in FSCI’s with low-
fidelity structural (CSM) subsystem scaled by q = 102.
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(b) Measured output (zoomed view).
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Figure 9.16 Measured outputs and disturbances in FSCI’s with low-
fidelity structural (CSM) subsystem scaled by q = 101.
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Figure 9.17 Measured outputs and disturbances in FSCI’s with low-
fidelity structural (CSM) subsystem scaled by q = 100.
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(a) Measured output.
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Figure 9.18 Measured outputs and disturbances in FSCI’s with low-
fidelity structural (CSM) subsystem scaled by q = 10−1.
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Figure 9.19 Measured outputs and disturbances in FSCI’s with low-
fidelity structural (CSM) subsystem scaled by q = 10−2.
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Figure 9.20 Measured outputs and disturbances in FSCI’s with low-
fidelity structural (CSM) subsystem scaled by q = 10−3.
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9.3 Assessment of Partitioned Schemes

The previous sections of this chapter already proposed partitioned schemes
for FSCI and applied them in the FSCI parameter scaling tests. The
intention behind this very last section is now the assessment of those schemes.
Conclusions concerning their stability and convergence behavior have already
been drawn with the help of a simple single-degree of freedom (SDoF) model
problem in Chapter 3 Model Problem (pp. 32 ff.). Those should now also
be verified for the multi-degree of freedom (MDoF) case. Furthermore, the
numerical effort related with each proposed scheme will be analyzed allowing
for comparisons and ranking. The procedure is exemplarily presented on
the FSCI co-simulations with the low-fidelity strurctural (CSM) and the
LQI controller (CLC) subsystem.

In order to be able to evaluate the numerical effort of each scheme, a
weighting of the individual numerical effort of the subsystems has to be
provided: Within this work the fluid (CFD) subsystem states the most
expensive one. Its numerical effort is estimated to approximately 90 % of
the total amount while structural (CSM) or controller (CLC) subsystem
and coupling logic each demand around 3 %. These numbers are rough,
subjective estimations and therefore do not represent objective studies.

Appropriate time responses which are reflecting the numerical effort of
each scheme in dependency on the parameter scaling factor are shown in
Figures 9.21 (p. 151) for q = 16 to 9.30 (p. 160) for q = 1−3. Illustrated
are the number of total iterations

Ntotal =


kend for FSCI∑kend
k=1 mend for [FS]CI∑kend
k=1 mend for F[SC]I,

(9.6a)

the number of fluid solver runs

NF =


kend for FSCI∑kend
k=1 mend for [FS]CI

kend for F[SC]I,
(9.6b)

the number of structural solver runs

NS =


kend for FSCI∑kend
k=1 mend for [FS]CI∑kend
k=1 mend for F[SC]I,

(9.6c)

and the number controller solver runs

NC =


kend for FSCI
kend for [FS]CI∑kend
k=1 mend for F[SC]I.

(9.6d)
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The number of total iterations is decisive in case of similar subsystem
weightings, while the number of certain subsystem solver runs becomes
meaningful in case of significantly differing weightings. Thus, the number
fluid solver runs determines this work’s numerical effort. Additionally, the
number of total iterations is considered another criterion, however, with
less impact.

All performed FSCI simulations including those with LQR and LQS
control laws confirm the conclusion of unconditional stability (convergence)
for all schemes as predicted with the simple model problem. If certain
simulations fail then this is the result of instable dynamics of the underlying
physical problem. Schemes which are nesting sub-problems show clearly
higher numerical efforts. Only equal stability properties but at the same
time higher numerical efforts render nesting redundant. The single-looped
FSCI scheme works best for all parameter scaling factors as well as all
control laws even if not specifically demonstrated here.

Down to a parameter scaling factor of q = 10−1 the number of fluid
solver runs in the FSI, FSCI and F[SC]I schemes is nearly identical. Thus,
FSCI co-simulations with the FSCI scheme do not possess a significantly
higher numerical effort than pure FSI. Due to the nesting the F[SC]I
scheme however requires a higher number of total iterations. Moreover, it
is drastically increasing with decreasing q. The [FS]CI and FSCI schemes
do not indicate such convergence problems for lower q-values. But again
the nesting of the FSI sub-problem reflects in a higher amount of total
iterations. Therefore, the single-looped FSCI scheme missing any nesting of
sub-problems is the best choice for all q-values and control laws in case of
force control.

First tests of FSCI with displacement control (fu > 0) have been
performed unsuccessfully. Conclusions regarding failure reasons (instable
numerics or instable system dynamics) can not be drawn up to that point.
During FSCI with force control it is observed that the controller in the
outer loop of the [FS]CI scheme seems to improve (stabilize) convergence
of the inner loop. The controller in the inner loop of the F[SC]I scheme
on the other hand seems to harm (destabilize) convergence of the outer
loop. One conjecture is therefore, that this stabilizing nature of the [FS]CI
scheme could also improve the numerics in FSCI with displacement control.
Nevertheless, numerical instabilities need to be proven, or disproven first.
Further testing by adding an additional scaling with the u-output factor fu
to the FSCI parameter scalings tests (e.g. fu = 10−15, 10−12, . . . , 100, 103)
is suggested. Thus, a fu-failure bound can be exploited for each scheme in
terms of q. This possibly provides further hints.
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Figure 9.21 Numerical effort in FSCI with LQI controller (CLC)
subsystem and low-fidelity structural (CSM) subsystem
scaled by q = 106.
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Figure 9.22 Numerical effort in FSCI with LQI controller (CLC)
subsystem and low-fidelity structural (CSM) subsystem
scaled by q = 105.
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Figure 9.23 Numerical effort in FSCI with LQI controller (CLC)
subsystem and low-fidelity structural (CSM) subsystem
scaled by q = 104.
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Figure 9.24 Numerical effort in FSCI with LQI controller (CLC)
subsystem and low-fidelity structural (CSM) subsystem
scaled by q = 103.
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Figure 9.25 Numerical effort in FSCI with LQI controller (CLC)
subsystem and low-fidelity structural (CSM) subsystem
scaled by q = 102.
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Figure 9.26 Numerical effort in FSCI with LQI controller (CLC)
subsystem and low-fidelity structural (CSM) subsystem
scaled by q = 101.
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Figure 9.27 Numerical effort in FSCI with LQI controller (CLC)
subsystem and low-fidelity structural (CSM) subsystem
scaled by q = 100.
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Figure 9.28 Numerical effort in FSCI with LQI controller (CLC)
subsystem and low-fidelity structural (CSM) subsystem
scaled by q = 10−1.
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Figure 9.29 Numerical effort in FSCI with LQI controller (CLC)
subsystem and low-fidelity structural (CSM) subsystem
scaled by q = 10−2.
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Figure 9.30 Numerical effort in FSCI with LQI controller (CLC)
subsystem and low-fidelity structural (CSM) subsystem
scaled by q = 10−3.
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Computational fluid-structure-control interaction (FSCI) is realized. So
far, this covers closed-loop control of the structural part in a fluid-structure
interaction system via Neumann boundary conditions stated by the con-
troller, briefly force control. It is implemented in a single degree of freedom
(SDoF) model problem as well as in full multi-degree of freedom (MDoF)
simulations of an elastic flag attached to a rigid square cylinder in channel
flow. The latter involves computational fluid dynamics, computational solid
mechanics, closed-loop control laws and a coupling logic.

In this regard three solution procedures are proposed: FSCI, [FS]CI and
F[SC]I. They identify partitioned schemes with iterative coupling based on
fixed-point formulations for the displacements and a Gauß-Seidel communi-
cation pattern. Aitken Acceleration is included. Scheme FSCI employs a
single interface iteration loop while [FS]CI and F[SC]I use inner and outer
loops for nesting respective sub-problems FSI and SCI. With the SDoF
model problem unconditional stability (convergence) is predicted for all
schemes. This also proves true for all performed MDoF simulations. The
single-looped FSCI scheme convinces with the least numerical effort.

The full framework for FSCI with displacement control is also provided.
Displacement control identifies here closed-loop structural control via Dirich-
let boundary conditions for the root-point of the elastic flag. The efforts
cover especially the modeling and implementation of the root-point excita-
tion. Schemes FSCI, [FS]CI and F[SC]I can be applied. Up to now, only
scheme FSCI has been tested without results. Failure reasons (e.g. instable
numerics or instable physics) have not been investigated so far. Furthermore,
the SDoF model problem is not capable of reproducing essential effects.
Consequently, it can not be representative for displacement control. A new
model problem must be formulated as already mentioned by Section 3.5
Résumé (p. 51) of Chapter 3 Model Problem. With that, two further ways
are feasible: assessment of stability and accuracy properties for fixed control
law or assessment of requirements on the control law for specified stability
and accuracy properties. Subsequently, the results have to be verified in
full MDoF simulations.

Observations made during the numerical experiments recommend mod-
ifications on the experimental setup: The narrow channel, i.e. the poor
width of the fluid domain causes more demanding numerics, pressure shocks
and a limitation of the maximum structural deflections. The latter refers
to failure of the mesh updating scheme. Thus, the fluid domain should
be widened and boundary conditions of top and bottom wall adjusted to
slip or periodic. Additionally, the mesh quality may be improved to cover
further details. Absolute convergence criteria employed so far should be
replaced by relative ones for better comparison. Furthermore, necessary
maximum values should be investigated. Disturbance responses tend to
show wrinkles in regions of metastable dynamics for residuals left too high.
The partitioned schemes prove sufficiently successful in case of force control.
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Nevertheless, with regard to displacement control other more advanced
schemes should be considered. This is in particular the interface Jacobian-
based co-simulation algorithm (IJCSA) (Sicklinger, Belsky, Engelmann,
Elmqvist, Olsson, Wüchner, and Bletzinger 2014; Sicklinger 2014).

So far, the FSCI investigations primarily focus on numerical aspects.
Only three basic control laws are implemented: LQR, LQI and LQS. They
prove to be successful for force control in their intended parameter ranges.
Further assessment in case of displacement control should be done. In the
following proposals/ideas concerning future research with focus on advanced
control are given: The LQS controller could be improved further by making
it, in particular the frequencies in its disturbance model, adaptive. Actual
distributed-parameter systems can be accessed by classical control theory
via appropriate lumped-parameter models stemming from measurements
during simulations or model order reduction (see e.g. Kotyczka and Wolf
2014). Finally real distributed-parameter control can be realized by using
a one-dimensional cantilever beam model for the elastic flag (compare e.g.
Krstic and Smyshlyaev 2008). One last note: In contrast to Bazilevs, Hsu,
and Bement (2013) the framework and control laws applied in this work
are also feasible in real live applications.
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Notation

Symbols

�A (non-) relaxed iteration factor, for fixed-point iterations, in
model problem

Ad discrete amplification matrix, in time integration schemes
A left hand side matrix, in linear equation system
α angle, in rad
αf coefficient, in time integration scheme generalized–α
α̂n±� modified coefficients, in time integration scheme BDFN
α mass ratio, in 1, in model problem
αm coefficient, in time integration scheme generalized–α
αn±� coefficients, in time integration scheme BDFN
A state/dynamic/system matrix, Ger. Zustands-/Dynamik-

/Systemmatrix, in state-space differential equation/linear first
order IVP

|�| absolute value of quantity �
�|� evaluation of quantity � at �
�|�� evaluation of quantity � from � to �

165



166 Symbols

bd discrete right-hand side, in time integration schemes
β coefficient, in time integration scheme generalized–α
βn+1 coefficient, in time integration scheme BDFN
β relaxation (or Aitken) factor, in 1
B input matrix, Ger. Eingangsmatrix, for control input, in state-

space differential equation/for linear first order IVP
b� lumped input coefficients for control input
�bn constant part, for fixed-point iterations, in model problem
b right-hand side vector, in linear equation system

C complex numbers
C damping matrix, Ger. Dämpfungsmatrix, in linear second-order

IVP
\X failure, unsuccessful simulation
X success, successful simulation
c lumped damping coefficient, in Ns/m

C output matrix, Ger. Ausgangsmatrix, in state-space output
equation

�′ first spatial derivative of quantity �, �′ = d�/dx

d cylinder diameter, in m
δt time step size, in s
δ� variation of quantity �
�̈ second temporal derivative of quantity �, �̈ = d2�/dt2

�̇ first temporal derivative of quantity �, �̇ = d�/dt

e� exponential function
E input matrix, Ger. Eingangsmatrix, for disturbance, in state-

space differential equation
e lumped input coefficient for disturbance, in 1
η Cartesian coordinate, in m, ξ = [ξ η ζ]T

�η component of quantity � in coordinate direction η
�! factorial of quantity �
!
� has to be �
E Young’s modulus, in N/m2
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F{�} Fourier transform of quantity �, in rad/s

f frequency, in 1/s

M� prefilter matrix, Ger. Vorfilter (-matrix), in control law/con-
troller

F(�) system state differential operator, Ger. Systemzustandsdiffer-
entialoperator

fu u-output scaling factor, in 1, for force control fu = 0 or scaled
displacement control fu > 0

Γ boundary
γ coefficient, in time integration scheme generalized–α
g gravity, in m/s2

G(�) system output operator, Ger. Systemausgangsoperator
G[�](�) system transfer operator, Ger. Systemübertragungsoperator,

integrated system state differential and transfer operator, input-
output relation

�̂ combined quantity �, in control law/controller LQŜ̂� combined quantity �, in control law/controller LQS
H channel height, in m
h flag height, in m

I identity matrix
I(�) interface constraints operator, Ger. Interfacezwangsbedingung-

soperator
Im{�} imaginary part of quantity � ∈ C∫ �

�
� d� integral

i running index
Iξ area moment of inertia with respect to coordinate direction ξ,

in m4

j imaginary unit, j2 = −1
j running index



168 Symbols

κ distributed sectional stiffness, in Nm
kB� output-feedback coefficient(s) in state (and disturbance) ob-

server
K� feedback matrix, Ger. Rückführmatrix, in control law/controller
kI integral output-feedback coefficient in control law/controller,

in 1/s

k lumped (spring) stiffness, in N/m

kR� state-feedback coefficients in control law/controller
k simple/inner interface iteration count
K stiffness matrix, Ger. Steifigkeitsmatrix, in linear second-order

IVP

λ eigenvalue, in rad/s, λ = σ + jω
L channel length, in m
l flag length, in m
[LHS] left-hand side, in implementation
lim
�
{�} limit value/limes of quantity � for �

ln{�} natural logarithm function
l running index, in BDFN

max
�
{�} maximum value of quantity � for �

M feedforward gains/matrices, Ger. Matrizen für Vorsteuerung,
in control law/controller

�−1 inverse of quantity �
m lumped mass, in kg
M mass matrix, Ger. Massenmatrix, in linear second-order IVP
m outer interface iteration count
µ distributed sectional mass, in kg/m , µ = ρwh

N� disturbance-feedforward gains/matrices, Ger. Matrizen für
Störgrößenaufschaltung, in control law/controller

N number of solver runs, in numerical effort
N number of subsystems/single-physics, in N -code coupling/multi-

physical problem
N order of/number of steps, in BDFN
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n time step count
ν kinematic viscosity, in m2

/s

ν Poisson ratio, in 1

Ω domain
ω imaginary part of eigenvalue, in rad/s, λ = σ + jω
� combined quantity �, in control law/controller LQI

p(�) characteristic polynomial in �
Φ general time-discrete quantity, Ger. allgemeine zeitdiskrete

Größe, in time integration schemes
φ general time-continuous quantity, Ger. allgemeine zeitkon-

tinuierliche Größe, in time integration schemes
π pi, Ger. Kreiszahl, mathematical constant, π =

3.141′592′653′589′793′238′462′643′383′279′502′884′197′169 . . .
p pressure
p pressures/pressure DoF’s
Ψ general time-discrete input, Ger. allgemeine zeitdiskrete Ein-

gangsgröße, in time integration schemes
ψ general time-continuous input, Ger. allgemeine zeitkontinuier-

liche Eingangsgröße, in time integration schemes

q parameter scaling factor, in 1, in parameter scaling tests
Q weight for states, in LQR approach

Re{�} real part of quantity � ∈ C
Re Reynolds number, in 1
ρ density, in kg/m3

ρ∞ coefficient, in time integration scheme generalized–α
[RHS] right-hand side, in implementation
R real numbers
r weight for control input, in LQR approach

σ real part of eigenvalue, in rad/s, λ = σ + jω√
� square root function



170 Symbols

Sr Strouhal number, in 1
�∗ optimal value of quantity �
s time-continuous frequency/Laplace domain, in rad/s

τ integration variable for time
�̃ estimation of quantity �, in control law/controller
t time variable, in s
�T transposed of quantity �

u control input, Ger. Stellgröße, signal, force/load (force control)
or root-point displacement/excitation (displacement control)

U general (system) input, Ger. allgemeine (System-) Eingangs-
größe, field and/or signal

� intermediate stage to quantity �

v velocities/velocity DoF’s
v velocity

W channel width, in m
W disturbance state/dynamic/system matrix, Ger. Zustands-

/Dynamik-/Systemmatrix im Störmodell, in disturbance state-
space differential equation

w disturbance states, Ger. Zustandsgrößen im Störmodell, signal
w flag width, in m

X general (system) state, Ger. allgemeine (System-) Zustands-
größe, field and/or signal

ξ Cartesian coordinate, in m, ξ = [ξ η ζ]T

ξ Cartesian coordinates, in m, ξ = [ξ η ζ]T

�ξ component of quantity � in coordinate direction ξ
x state, Ger. Zustandsgröße, signal
x states, Ger. Zustandsgrößen, field or signal

yd desired output, Ger. Führungsgröße, signal, desired end-point
displacement
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Y general (system) output, Ger. allgemeine (System-) Ausgangs-

größe, field and/or signal
y interface displacements, Ger. Interfaceverschiebungen, field
y measured output, Ger. Ausgangsgröße, signal, end-point dis-

placement

z disturbance, Ger. Störgröße, signal, force/load, concentrated
equivalent of distributed interface disturbances

Z disturbance output matrix, Ger. Ausgangsmatrix im Störmodell,
in disturbance state-space output equation

�0 initial value of quantity �
0 zero matrix
ζ Cartesian coordinate, in m, ξ = [ξ η ζ]T

�ζ component of quantity � in coordinate direction ζ
z interface disturbances, Ger. Interfacestörgrößen, field,

forces/loads
z time-discrete frequency/Laplace domain, in rad/s

Indices and Acronyms

2D two-dimensional

ALE arbitrary Eulerian-Lagrangian

B observer, Ger. Beobachter
BC boundary condition
BDF backward differentiation formula
BDFN backward differentiation formula of order N
bot bottom wall
BVP boundary value problem

C center point of cylinder
CFD computational fluid dynamics
CI control input domain
CIMNE Centre Internacional de Mètodes Numèrics a l’Enginyeria (Inter-

national Center for Numerical Methods in Engineering), UPC



172 Indices and Acronyms

CLC closed-loop control, Ger. Regelung
C open- and/or closed-loop controller
crit critical value
CSM computational solid mechanics
cyl cylinder wall

DoF degree of freedom

E end-point of elastic flag
EMPIRE enhanced multi-physics interface research engine
end ending value

f. and the following page
FE finite element
ff. and the following pages
f fictive
F fluid
FSCI fluid-structure-control interaction
FSCI partitioned scheme without nesting
[FS]CI partitioned scheme with nesting of FSI
F[SC]I partitioned scheme with nesting of SCI
FSI fluid-structure interaction, sub-problem of FSCI
FSI FSI boundary
FV finite volume

GS Gauß-Seidel communication pattern

HHT Hilber–Hughes–Taylor

IBVP initial boundary value problem
IC initial condition
IJCSA interface Jacobian-based co-simulation algorithm
in inlet boundary
init initial value
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I integral output-feedback
I interface
IVP initial value problem

JC Jacobi communication pattern

LQI state- and integral output-feedback control law/controller
LQR state-feedback control law/controller
LQS state- and integral output-feedback and disturbance-feedforward

control law/controller

max maximum value
MDoF multi degree of freedom
MO measured output boundary

ODE ordinary differential equation
OLC open-loop control, Ger. Steuerung
out outlet boundary

p. page
PDE partial differential equation
pp. pages
PvW principle of virtual work

R root-point of elastic flag
R (state-) feedback, Ger. (Zustands-) Rückführung

S structure/solid
SCI structure-control interaction, sub-problem of FSCI
SDoF single degree of freedom
start starting value

top top wall
TUM Technische Universität München (Technical University of Mu-

nich), Munich, Germany
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UPC Universitat Politècnica de Catalunya (Technical University of
Catalonia), Barcelona, Spain

VMS variational multi-scale

WBZ Wood–Bossak–Zienkiewicz
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