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Abstract

The basic idea for starting with this thesis work was to validate the tool EMPIRE. The Enhanced Mul-
tiPhysics Interface Research Engine, short EMPIRE, is a N-code coupling tool for doing multiphysic
co-simulation, developed by Stefan Sicklinger and Tianyang Wang at the Chair for Structural Analysis
at Technische Universitdt Miinchen. This idea should be implemented by doing a fluid-structure-signal
co-simulation of a full-scale, turbulent flow scenario containing any flexible structure of interest.

Chosen for this purpose was NREL's Unsteady Aerodynamic Experiment in its VIth Phase, which
performed wind tunnel tests on a 10 m diameter wind turbine. This was done for different reasons. No
other experimental datums are available in such enormous and detailed amount for any other technical
building dealing with the generation of renewable energy. In addition big interest showed up by com-
panies working also in this field. At least the minimum case of three coupled codes, fluid, structure and
gearbox/generator, is simple upgradable to four or more codes, e.g. with adding control components.
Simulating exactly the NREL UAE Phase VI wind turbine enables validation of the simulation results
via comparison to the available experimental data.

This part of the work on developing a turbulent, full-scale fluid-structure-signal co-simulation of
NREL’s UAE Phase VI wind turbine focused on the fluid side, which should be realized with the open
source tool OpenFOAM. The challenge arising with this decision was to fill the lack of documentation,
that comes with OpenFOAM. The best combination and all necessary settings had to be worked out.
This was done stepwise, so debugging and validation was more efficient.

The extend of this tasks however was underestimated by all involved parties. So the results pre-
sented in this thesis are limited to the achievements until one-way coupling of a quasi structural solver

and work will be continued.
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Basics of Computational Fluid
Dynamics

1.1 Basic Equations of Fluid Flow

1.1.1 Model Assumptions

To get the physical and mathematical model for derivation of the basic equations OpenFOAM'’s solvers
and other computational fluid dynamics (CFD) codes are based on, different assumptions have to be
made. The first one is the fluid to be regarded as continuum. That implies for analysis a macroscopic
length scale is used. So molecular structures of matter, molecular motions and other molecular effects are
ignored and the behavior is described by macroscopic properties like the velocity vector u = (1 v w)7,
the pressure p, the density p and the temperature T, which are all averages over a suitable large number
of molecules. After this assumption a so called fluid particle or a point in fluid is the smallest element,

which is not influenced by single molecules.

For the following analysis a infinite small control volume () with sides of the length Jx, Jy and Jz,
six faces and a center with the coordinates x = (x y z)T is used. It is called a fluid element and all its

fluid properties are functions of space and time: p := p(x,y,z,t), p := p(x,y,z,t), u := u(x,y,z,t) and
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(x,y,2)

&) ox
x

Figure 1.1: Fluid element for analysis

T := T(x,y,z,t). Based on the infinite small size means of the first two terms of a Taylor series expansion

are enough to describe changes of these fluid properties, e.g. pressure p:

1. 19p 1 19%p 1 2
p(x—i— E(SX) = p(X) + Fg <(x+ E(SX) —X) + Eﬁ ((x+ E(SX) —x)
1 0% 1 3 ap 1
*maxs<(”z‘5x>") TRt g 0%

(1.1)

For the following steps the well known conservation laws of physics form the basis. They are:

e mass conservation (continuity equation)
e momentum conservation (Newton’s second law)

e energy conservation (first law of thermodynamics)

1.1.2 Mass Conservation

As relativistic effects don’t play any role, because velocities are much smaller than the speed of light
(1, v,w < c), the mass of the fluid has always to be conserved. This is known as the mass conservation

equation or continuity equation. In words it would read

rate of change (in-/decrease) of net rate of mass flow into/out of

mass inside the fluid element the fluid element

And as equation it reads

0
aii:l = Zmin - Zmout (1'2)
S S
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I(pw) 1
pw + =536
\ aait” = %(péxéyéz)
= %—ﬁéxéyéz
Q 0
/ v+ 7(;;) %(Sy
//
pu—a%):)%tx—’ . —»Fu+a(Px”)%§x
1
) (x,y,2)
Py — ((_‘90;) %5]/

Z
]
v pw — 260 157

Figure 1.2: Mass flows into and out of a fluid element

All mass fluxes across the boundary S of a fluid element can be seen in Figure 1.2. Below the rate of

change of mass inside this fluid element and the outgoing mass flux in x-direction are derived.

om 0 _op

Fr 5(p5x5y52) = géxéyéz (1.3)
} o oty 1 [y 9 [\ 1 B d(pu) 1

Mout,x = Mx + Wiéx = (Ax + I (Ax> 25x) oybz = <pu + TE(S.‘X oYz (1.4)

By adding all mass fluxes (see equation (1.4) and Figure 1.2) and equation (1.3) into the general
mass conservation equation (1.2) and doing some rearrangements you get the special mass conservation

equation or continuity equation for a fluid element.

a—péxéyéz = (pu — a(pu);dx> oyéz — (pu + M;M) oyoz

ot ox ox
_9(po)1 B d(pv) 1
+ <pv 3y 25y) 0xéz <pv + 3y 25y ox6z (1.5)

_9(pw) 1 B I(pw) 1
+ (pw s 252) oxdy (pw—l— e 252 oxdy

3
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dp _ d(pu) d(pv) d(pw)

T % T Ty oz (1.6)
dp  d(pu)  d(pv)  d(pw) . . 9p _g = De_
S T ey e 0 T g TYolw=0 = pp=0 47

Term *) represents the rate of change of density (mass per unit volume) inside the fluid element and
term **) the net flow of mass per unit volume across the boundary of the fluid element. Term **) is called

the convective term.

Summary 1.1 (Mass conservation)

Unsteady, three-dimensional mass conservation equation or continuity equation for a fluid element in a

compressible fluid

% +Ve(pu) =0 (L2

Unsteady, three-dimensional mass conservation equation or continuity equation for a fluid element in a

incompressible fluid

Veu=0 (1.9)

Hence u needs to be a divergence free vector field for the incompressible Navier-Stokes Equations.

1.1.3 Momentum Conservation

There are two possible points of view for analyzing the flow of fluids. One is the so called Langrangian
approach, where fluid particles are followed on their way. So each property of such a particle is a
function of the actual position x = (x y z)T and time ¢. The development of numerical methods for this
approach can be done, but it is not common. Instead the the Eulerian approach is used. Here a fixed

region made out of fluid elements is used to develop numerical equations.

e momentum conservation equation respective ewton’s second law in words reads
Th t t t tively Newton’ dl d d

rate of change (in-/decrease) of momen- sum of forces acting on the fluid inside

tum of the fluid inside the fluid element the fluid element




Bachelor’s Thesi . . .
Chosopher Linci 1.1. Basic Equations of Fluid Flow

The rate of change of x-, y- and z-momentum per unit volume of the fluid inside a fluid element

equals the total, substantive or material derivation of the momentum per unit volume with respect to

time.

D(pu)  Du Dp ~ Du  (ou  oudx odudy odudz)

oF P b TPor P\ Taxar Tayar Tazar) T (1.10)
—~—
=0, see eq. (1.7)
Knowing, that the fluid particles follow the flow, it is % =u, % =vand % = w.
u ou ou ou ou

(99 oM M (o 111
p<at+uax+vay+waz> p<at+u0Vu) (1.11)

There are different types of forces acting on fluid particles. Surface forces, more exact pressure and
viscous forces appear explicitly as separate terms in the momentum conservation equations, while body

forces, like gravity, centrifugal, Coriolis and electromagnetic forces, are included as source terms.

T2z
A
Lzy
> Tzx
Q) 4 Tz
Tyy Txz
vy
P Tay
T x:;gp lp . p p <<= Tx
= (59,2
7T
T Wy
Tz p
A
Tox <
T

Z Tzz
L
X

Figure 1.3: Stress components on three faces of a fluid element

The state of stress of a fluid element defined in terms of pressure p, as a normal stress towards the
fluid element, and viscous stresses 7;; is shown in Figure 1.3. With this notation i points in the direction

of the surface normal and j in the direction of the stress component.

In the following the momentum conservation equation for the x-direction will be exemplary derived.

For y- and z-direction only results will be shown, because the procedure of deriving can easily be trans-
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AT ] 5
IZX
Jdz 2

PTyx 1
T e
9Tex 1 yxi—> 4 Ty + Tz L5y
Txx — H 50x x ox 2
B S—

)
x,Y,2) p+ %%53(

—

ox 2 dTyx 1
Tyx - AW zéy

9T 3
Tox — az' joz
B

Figure 1.4: Stress components of a fluid element in x-direction

fered from the x-direction. All stresses acting on a fluid element in this direction can be seen in Figure

1.4.

Summation over the left and right face results in

ap 1 0Ty 1 ap 1 0Ty 1
|:<P — axzéx) — <TXX axzéx) <P + axz(sx) + <Txx + ﬁi(sx 5y5‘z

_ op . OTxx
= ( Fy” + o )5x§y§z

Summation over the front and back face

0Tyx 1 0Tyx 1 _ OTyx
{— (Tyx - 8y25y> + <Tyx + oy 2 y)} 0xbz = W&xéydz

Summation over the upper and lower face

0Tz 1 0Tzx 1 0Ty
{ (sz 5 252) + (sz + azzézﬂ oxdy = s dx6yoz

(1.12)

(1.13)

(1.14)
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Summation over all six faces respectively summation of equations (1.12), (1.13) and (1.14) provides

the sum of all surface forces acting on the fluid element.

0 ot oTyx 0T, 9 T
az+ a;x+ a;Y + a;x - ap+v (Txx Tyx sz) (1.15)

=Ty

Body forces acting in the x-direction are accounted by defining a source term Sy, of x-momentum

(Mx) per unit volume and unit time ([Syy| = m%s).

The x-component of the momentum conservation equations comes up with setting the rate of change

(equation (1.11)) equal to the sum of surface forces (equation (1.15)) and source term Syyy.

Du_ _dp

zu O0Txxy  OTyx 0Ty
PDr = " ox

u 9
Y VetTy Sy = p(at+u-w>:aZ+ Tty e e (116)

The same way the y-component and the z-component of the momentum conservation equations read

Dv  odp . Jv _adp 0Tyy 0Ty 0Ty
pﬁ ay‘i‘V.Tj‘f'SMy = p(at+u0Vv> @-‘r ox + ay + 9z +SMy
D 0 d ad o] a1, 0 (1.17)
77/0 — _l 2 771) _ _l Txz Yz Tsz
PDr = "9z TV eTET oM p<at+“'vw) 2z T ox "oy Tz oM
Equation (1.16) and the equations of (1.17) can be assambled to one equation.
. Ju
th —Vp+VeT+Sy = p m +ueVu | =-Vp+VeT+ Sy
el 9 a xx 9Tyx a Zx
% +ueVu £ =+ 5 TG SMix (118)
=p %—’t’ +ueVuv | = — 3—5 + aw + aTW a;?’ + | Smy
W+ ueVuw g—’; Oz aTyZ + Yz Sz

Tex  Tay Tz

Where T = (1 Ty T2) = and Sy; could for example be gravity in negative z-

Tyx Tyy  Tyz

Tzx  Tzy  Tzz
direction Sy = (Swmx Smy Smz)T = (00 —pg)T.



Bachelor’s Thesi . . .
Chostopher Lonci 1.1. Basic Equations of Fluid Flow

Summary 1.2 (Momentum conservation)

1.1.4 Navier-Stokes Equations for a Newtonian Fluid

The above derived momentum conservation equations contain further unknowns: the nine viscous

stress components T;;. In order to get a solvable system a suitable model is required.

In most fluids the viscous stresses are functions of the local deformation rate or strain rate. A general
suitable and therefore basically used model is the one of a Newtonian fluid. Here a linear relationship
between viscous stresses and local deformation rate exists. More precise this local deformation rate is
the sum of the linear and the volumetric deformation rate. The fluid considered also to be isotropic, six

of this nine stress components are independent respectively the stress tensor T is symmetric.

0 0 0

Tex = 2Usxx + A(Vou) = 2;1% +AVeu Txy = HSxy = Tyx = USyx = U (% + %)
0 0 0

Ty = 2usyy + A(Veu) = 2;1% +AVeu Txz = USxz = Tox = USzx = H (B_Z + %) (1.23)
ow Jv  Jdw

Tzz = 2USzz + /\(V ° u) = Zﬂg +AVeu Tyz = USyz = Tzy = USzy = Y (E + @)

isotropic fluid

Here p is the dynamic viscosity, A is the bulk viscosity, s;; are the linear deformation rates and V e u

is the volumetric deformation rate.
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Exemplary the derivation for the x-component of the momentum conservation equations is shown.

0Ty | OTyx | OTzx O ou d ou dv d ou ow)]
v oy oz oax | PMax TAVeu Ty 1M \Gy Tax )] Tz M \az Tar )|
P P Pu [ R
“HRoE e Tzt [Maxex THaxay THovez T

ox
— azl+azl+azl _|_i aiu_l’_al_l’_aiw E(Av.u) (1'24)
AR ax Mlax Tay "oz )) Tax

0
—yVng—f—{ax<(y+A) Veu

=Au = 0 for incom-

J —(AV e u)_

pressible fluids

Applying equation (1.24) to the momentum conservation equation in x-direction (1.19) comes to the

x-component of the so-called Navier-Stokes equations.

ou % u  Pu  u 0
P(at+uOvu>——aJC+ﬂ<ax2+ay +azz>+[8x((y+/\)vou) + Smix
=55, (1.25)

. Du _ ap

Similar the y-component

v _dp v  9*v %o 0

::SK/Iy (126)
. Dv_ dp

PDr = gy THV e YO+ Sy

and the z-component

ow _adp Pw  FPw  QPw )
p(atJruOVu))—az+y(ax2+ +azz>+[az((y+/\)vou) + Smz

ay?
s (1.27)

N Dw Bp

Pﬁ— +"le VZU"FSMZ

can be derived. For a incompressible fluid the relation Sy;; = Sy; holds.
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Combination of the equations (1.25), (1.26) and (1.27) gives the well-known notation of the unsteady,

three-dimensional Navier-Stokes equations for Newtonian fluids.

p%z—Vp+VVOVu+SK4 = P(a—u+rou> = —Vp+uVeVu+Sy

ot
Ju +ueVu %u + %u + u §*
ot 92 T oy T o2 Mx (1.28)

>

v = — ?v | %v | 2% *
P w—kroU + W—’_W—’_ﬁ + SMy

§e &

w w w w
of +ueVuw + W +

*
nZ o2 SMz

Providing an incompressible fluid (0 = const.) there now exist four equations for a system containing
four unknowns (p, u, v, w). So this system is mathematically closed and solvable in combination with

appropriate initial and boundary conditions.

Summary 1.3 (Navier-Stokes equations for a Newtonian fluid)

1.1.5 Integral Form of the General Transport Equation

By comparing the continuity equation and the three Navier-Stokes equations it becomes obvious, that
there exist significant commonalities between all equations. Introducing the general transport property
@ and the general diffusion coefficient I' comes up with the general transport equation.

D(p®) _ 0(p®)

Df = o + Ve (pdu) =Ve(I'VP)+ Sy (1.33)

10
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Set® =1, I = 0 and S¢ = O for getting the continuity equation and ® = u,vorw, I' = y and
Se = SMxMy or Mz for getting the Navier-Stokes equations.

Integration over a three-dimensional control volume () (see Figure 1.1 on page 2) gives

/a(gf’) dV+/Vo(pCI>u) v — /v-(rvcb) qv + / Sg dV (1.34)
0 o} O

Rewriting the convective and diffusive terms as integrals over the entier bounding surface S of the

control volume by using Gauss’s divergence theorem [, Vea dV = [;nea dAleads to

2 [o® vt [ne(p@u) da= [ne (Vo) dat [sq av (1.35)
O S S Q
N
1) 2) 3) 4)

1) describes the rate of change of the total amount of fluid property ®.

2) describes the net rate of change of ® due to convection across the bounding surface S. n e (p®u) is
the flux component of ® due to fluid flow along outward normal vector n.

3) describes the net rate of change of ® due to diffusion across the bounding surface S. n e (I'V®) is the
diffusion flux component of ® along the outward normal vector n.

4) describes the net rate of change of ® as a result of sources (or sinks).

Final integration over a small time interval At, so from ¢ to t 4+ At, comes up with

t+At P At t+At t+At
/ g/pq)dth—i- //n.(pcpu) dA dt = //n.(rwp) dA dt + / /Sq; 4V dt (1.36)
t @) t S t S t Q

what can be pointed out as the starting point for computational procedures in the finit volume method.

1.2 Basic Idea of the Finite Volume Method

In the following section the basic idea of the finite volume method (FVM) is presented, which is used
by OpenFOAM for its computational fluid dynamics (CFD) calculations. Over all it can be said, that the
FVM is a numerical method for solving partial differential equations (PDEs). Like in other numerical
methods, as a first step, the fluid domain is discretized. This means, the fluid region is decomposed into
a finite number of control volumes, like the one, that can be seen in Figure 1.1 on page 2.

As a next step all conservation equations, named on page 2 and represented by the general transport
equation (1.33) with the general transport property @, are applied to each of such control volumes. In
particularly each conservation equation is integrated over ). So the FVM uses the integral form of a
PDE as starting point, which has already been mentioned at the end of the previous section. Values are
calculated at the computational nodes, located at the center of each control volume, and surface values

are interpolated in terms of nodal values.
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This procedure results in a linear algebraic equation containing only neighbor nodal values for each
conservation quantity in each control volume. Finally the obtained linear algebraic system can be solved

by using a linear solver.

The FVM is perhaps one of the simplest to understand and to program, because all appearing terms
have a physical and thereby demonstrative meaning. The introduction will be done on the subsequent
example of a simple one-dimensional, steady-state convection-diffusion problem for the general trans-

port property ®.

As already mentioned, step 1 is the discretization of the fluid domain into a finite number of control
volumes. This is also known as “mesh generation”, “meshing” or “grid generation”. The used nomen-
clature can be seen in Figure 1.5: The capital I marks values at nodal points, while the small i represents
values at boundary faces. In practice control volumes are chosen in a way, that near domain edges phys-
ical and control volume boundaries coincide. Figure 1.6 shows the simple, uniform mesh used in the

one-dimensional example.

i I i+1

uj Uit

r o N
N

—

Kface Ajp face A1y
(5x1

A
Y

Figure 1.5: Nomenclature of a control volume in discretized, one-dimensional fluid domain

Step 2 is the discretization of the general transport equation, representative for all conservation equa-
tions. This means integration over the control volume ().
Starting with equation (1.36), derived on page 11 et seq.

t+At t+At t+At t+At

/aat!pq)dth—}—//no(pCDu)dAdt— //no(l‘VCD)dAdt—i—/Q/Sepdth

t t S t S t
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and considering a one-dimensional domain (v, w, %, %, Soy, Soz = 0) and steady-state (% = 0) leads to

/1(pCI>u) dA = /1 (r%cf) dA + /S@C av
S 5 Q

i+1 o i+l _
& pAud®|  =TAZZ|  + SeAdx (137)
i ox i I
& pAud|  — pAud| = FAaE - l"AaE + SerAdx
i+1 i 0X |11 0x |; I

The simplest way and well established practice for interpolating the appearing boundary values by

nodal point values is linear interpolation. That way gradients are expressed with the central differencing

scheme
P P — Py P P — P
0P _ P =P g 9P Q=P (138)
ox |; ox 0x |;1q ox
and boundary values — here especially on a uniform grid — become
P 1+ P+ P
= ZELEDL and @y, = L2 (1.39)
and (e.g. the diffusion coefficient I')
Ip1+T Iy+T
r= L0 and 1y = L0 (1.40)

Applying this to equation (1.37) comes up with a simple linear algebraic equation for node I containing
only nodal values of the neighbor nodes I —1 and I + 1 and Sy, the average value of S¢, over the

control volume.

pAu w—pﬁlu Pt P, PP o, w+§©xA(5x
i+1 2 i 2 iv1 o 0X . Ox ;
1 TA 1 TA 1 TA
—coAu— 2| o CpAu+ -2 SoAu+ -2 @
o (a5 o (o 50) | - om0 o
=i =
1 TA _
+ {(pAu— ) :| D = |:Sq> Adx :|
2 0x /)it T
=41 :Zb[
& aj 1P +ar®r+a; 1P = by

(1.41)

It must be mentioned, that until now, it is assumed, that face velocities u; are somehow known. More

details about the significance of this assumption will be presented in the next section.
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Solving the obtained equation system is step 3. In detail equation (1.41) has to be set up for all
internal nodes and modified equations have to be derived from the given boundary conditions for all

boundary nodes. In the example 2, 3, 4 are internal and 1, 5 are boundary nodes.

ll \\ .2 \\ .3 \\ .4 \\ .5 \

Dstart

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Figure 1.6: Simple, one-dimensional, uniform Mesh used in the example

To calculate a solution concrete numerical values and boundary conditions must be given. For the
example the values are p = 1 = const, A = 4 = const, u = 1 = const., Sor = 0.375 = const.,
I' =05 = const.,, | =1 & 6x = 0.2 = const. and the boundary conditions are ®gart = 2, Peng = 10.

With this the linear algebraic equations for internal nodes become

Node2: I=2 — a1P14+aP)+a3P3="0 — —12d; 4+ 209, — 8P3 = 0.3
Node3: =3 — ap®y+a3P3+a4Py=b3 — —12P,+420P3— 8Py, =0.3 (1.42)

Node4d: =4 — a3P3+a,DPy+asPs5 =0y — —12P3 4+ 20P4 — 8P5 = 0.3

Boundary conditions are applied for deriving the modified equations for the boundary nodes 1 and 5.
In this example the values of the transport property ® are explicit given at each end, so no interpolation
of the surface values ®;_1 = Pgtart and Pj_g = Peng is necessary and for the gradients the forward

respectively backward differencing scheme is used.

od DD od Depg — P
| = and o) = > (1.43)
X 1 25}( X 6 jéx
This implies the integrated form of the transport equation for node 1
D+ D D, - D DD -
pAu 21+t % pAu| Pgary = TA| —2——1 —TA| —L—9% 4 5o Adx
2 2 1 ) Ox 1 p0x =1
1 TA 2TA 1 TA
~pAu+ — — | ® ~pAu — — D
= {<2p u+5x)2 ox J 1+{<2p ! 5x)2] ?
=:1,BC =:2,BC (1.44)
2TA =
= [ (pAM + > Dstart + SprAdx :|
ox /)y =1
=:b18c
= Node2: =1 —  a1,8cP1 +a25cPr = bl,BC —  32d; — 8P, =48.3
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and the one for node 5

— O — P,
pAu| Pepng — pAu Pt Ps _ TA M —TA| —= % 1 54, Adx
6 5 2 6 30x 5 x =5
1 rA 1 rA 2T'A
——pAu—-=)| |@ — pAu+ = Lo
< [( 2P ‘5x>5] 4+{< 2° u+§x>5+ ox J ’
=i, 5c =:a5,8C (1.45)

Dong + §¢xA5x
6

2TA
= [(coae %)

=:bsBc

]

& Node5: I=5 — aypcPs+aspcPs=0bspc — —12d,4 4 2895 = 160.3

All five obtained equations for node 1 to 5 can be condensed into one linear algebraic system and e.g.

solved with MATLAB or any other tool holding matrix methods.

32 -8 0 0 0 (] 48.3 (O] 2.2688
-12 20 -8 0 0 D, 0.3 D, 3.0376
0 -12 20 -8 O D3| =1 03 < O3 | = |4.1534 (1.46)
0 0 -12 20 -8 Dy 0.3 Dy 5.7895
0 0 0 —-12 28 (O 160.3 0% 8.2062

In a final step the numerical solution will be compared to the analytical solution to show the accuracy

of this method.

Starting again with the general transport equation (1.33) on page 10

9(pP)
ot

+ Ve (pPu) =Ve(I'VD)+Syp

and applying all simplifications presented on page 13 leads to a linear ordinary differential equation

(ODE) of second order with constant coefficients

0> oD
32 Py + Sox (1.47)

d d od

that can easily be solved with any method to get the analytical solution.

Dend — Dstart exp (/\21)
exp (A1) —exp (Azl)

Dstart exp (/\ll) - CIDend
exp (A1) —exp (Azl)

25
with Au:%i (%) - ;)x:liOE

— P(x) ~ 2.3659 exp (1.5x) — 0.3659 exp (0.5x)

P(x) =

exp (Mx) +

exp (Apx)

(1.48)

Figure 1.7 and Table 1.1 show summarized the comparison between achieved numerical results from

the finite volume method and analytical results. Plotted absolute errors are simply the difference be-
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tween analytical and numerical solution e; = ®(x;) — ®;, while relative ones are same difference in

relation to analytical solution e] = (®(x1) — @)/ P(x1).

—_
NN Wk N o O

o

finite volume solution ®; including boundary conditions (linear interpolation) —e—

I analyticzil solution P(x)

error ef = (®(x7) — ®;)/P(x;) in % (linear interpolation) ----e----
I p

. 7__«.‘\\\\ i /‘/
- Tt -
// h
y _—
—
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x and X;

Figure 1.7: Comparison of numerical (finite volume method) and analytical results

Table 1.1: Comparison of numerical (finite volume method) and analytical results

I| x; | ®; (aum.) | ®(x;) (anal.) | Errore; | Errorej in %
1|01 2.2688 2.3641 0.0953 4.0330
2103 3.0376 3.2854 0.2477 7.5408
3105 41534 4.5388 0.3854 8.4917
4107 5.7895 6.2417 0.4522 7.2446
5109 8.2062 8.5525 0.3462 4.0485
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Summary 1.4 (Finite volume solution for one-dimensional, steady-state convection-diffusion problem)

1.3 Handling Pressure-Velocity Linkage and Non-Linearities in the

Finite Volume Method for Steady-State Flows

Using the finite volume method (FVM) for solving fluid flow equations starts with two problems. The
first one appears with the velocity field u. As mentioned in the previous section, solving the general
transport equation via the FVM is only possible with assuming, that the velocity field is somehow
known. In fact, this is not the case in general. Au contraire the velocity field should be a result of
the overall solution process together with the other flow variables. So equations for all three velocity
components #, v and w are needed. They can be obtained bei setting the general transport property ®

equal to u, v and w and are better known as the momentum conservation equations alias Navier-Stokes

17



Bachelor’s Thesi . . . . e
Chostopher Lixcrs 1.3. Handling Pressure-Velocity Linkage and Non-Linearities

equations. For three-dimensional, steady-state, laminar flow of an incompressible fluid they read in

x-direction

) 0 _dp u  Pu  du .
p<ax(uu)+(vu)+az(wu)> __E)Jc+y(593c2+8]/2+8;z2> + Suix (1.52)

in y-direction

0 0 0 _9p v v v .

and in z-direction

) %) ] _adp Pw  Fw  Pw .
And the continuity equation reads
ou dv  ow
$+@+E—O (1.55)

Taking a closer look at equation (1.52), (1.53) and (1.54) shows the problem, that comes with the
velocity field: The convective terms contain non-linearities, e.g. %(uu). And in addition the three
equations are coupled, because each velocity component appears in each equation.

The pressure field p yields to the second problem, particularly its gradients. They do not appear in
the general transport equation, because they are hidden in the source terms Syy;. However in problems
of engineering importance they form the main momentum source and so they have to be accounted for
separately, e.g. —g—z. In general fluid flows the pressure field and so also the pressure gradients are
unknown and should be part of the solution. For now there is no transport or other special equation for
the pressure, but the continuity equation is still unused.

So in compressible flows the continuity equation forms the transport equation for the density p and
the energy conservation equation the one for the temperature T. With this the pressure can be evaluated
by using the equation of state p = p(p, T) known from thermodynamics. In incompressible fluids in
contrast there is by definition no linkage between p and p, because p = const. # p(p, T). Here instead
another constrain is used, the coupling of pressure and velocity: If the correct pressure field is applied to
the momentum conservation equations, the obtained velocity field satisfies continuity. This is the basic
idea used in algorithms dealing with non-linearity problems and pressure-velocity linkage.

It will now be redescribed on the most basic representative, the SIMPLE algorithm. The acronym
SIMPLE is standing for Semi-Implicit Method for Pressure-Linked Equations. It is a predictor-corrector
procedure for dealing with both above mentioned problems. The strategy is to evaluate the non-linear
convective terms via a guessed velocity field @t and to use a guessed pressure field p to solve the complete
momentum conservation equations. A pressure correction equation is derived evaluating the until now

unused continuity equation and taken to update the pressure and velocity fields. The iteration is started
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with an initial guess @ and p and iterated until convergence of all fields, means the fields are iteratively
improved to a predefined level. Under-relaxation is used to reduce the stepwise pressure and velocity
field correction to get a better stability behavior.

All steps of the SIMPLE algorithm including additional transport properties are shown in Figure 1.8.

( START )

y

STEP Set boundary conditions

y

STEP Initial guess for pressure, velocity

and transport property fields

p,a, @

\

STEP1 Solve discretized momentum

conservation equations

u
y

STEP2  Solve pressure correction equation

Ap

STEP Setp =p,

y

@ =uand
STEP 3  Correct pressure and velocity fields

o
I
o

applying under-relaxatation

p,u

STEP4 Solve all other discretized transport

equations

Convergence?

Figure 1.8: The SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm
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NREL’s Unsteady Aerodynamic
Experiment Phase VI

Figure 2.1: National Renewable Energy Laboratory’s administrative offices and research laboratories in Golden, Colorado, NREL's
logo and its National Wind Technology Center (NWTC) in Louisville, Colorado (taken from [25])

21



Bachelor’s Thesis
Christopher LERCH

“We focus on creative answers to today’s energy challenges.” [25] This statement is representative
of NREL's principles an main assignment. NREL signifies the National Renewable Energy Laboratory
as the primary national laboratory for renewable energy and energy efficiency research and develop-
ment of the U.S. Department of Energy (DOE). It acquires knowledge and innovations with the aim to
achieve the U.S.’s energy and environmental goals. In other words it performs science and engineering
to develop technologies for sustainability with energy. One key field of this program are investigations
towards wind power generation. Therefore NREL maintains its own test area, the National Wind Tech-
nology Center (NWTC), located in Louisville, Colorado for reasons of suitable climatic conditions. All
administrative offices and most research laboratories stand in Golden, Colorado. Both locations are

close to Denver, Colorado. Further information can be found in [25].

The design of wind turbine blades is based on the results of steady-state, two-dimensional wind
tunnel tests on airfoils. The simple expansion from steady-state flow to highly turbulent one and two-
dimensions two three-dimensional blade behavior using corrections out of experience is not the an-
swer to today’s requirements. Collected data from field tests, such as NREL's Unsteady Aerodynamic
Experiments (UAE) Phase I to V started in 1987 confirm this statement. The results show, that three-
dimensional effects are prevalent and that wind turbines are subjected to highly dynamic load condi-
tions caused by enormous turbulent inflow anomalies. Further information on this topic, especially to

points like boundary layer theory see specialized literature.

The primary objective of NRELS’s UAE was to provide information needed to quantify the full-
scale, three-dimensional, aerodynamic behavior of horizontal-axis wind turbines (HAWT). Especially its
phase VI was targeted at the separation of 3-D effects from the ones caused by atmospheric turbulence.
Since this is not possible with field tests, it had to be realized using wind tunnel testing. For this purpose
only the open-loop wind tunnel of the National Aeronautics and Space Administration (NASA) Ames
Research Center’s located in Moffet Field in California’s Silicon Valley was able to satisfy the necessary
size requirements. It can be seen in Figure 2.2 next to the yellow gantry crane. It offers a test section
size of 80 ft (= 24.4 m) x 120 ft (= 36.6 m) and a variable wind speed from 0 up to 50 3 produced by 6
15-bladed fans with a performance of 16,800 kW each. A detailed description and more pictures can be

found in [2], [21], [24] and [26].

A two-bladed test wind turbine with a rotor diameter of approximately 10 m was designed, built and
pre-analyzed in preparation for the phase VI experiments. It was equipped with extensive measuring

technique to ensure all relevant data can be recorded during the test runs and provided later on.

NREL’s UAE Phase VI forms the reference in terms of geometry, settings, results etc. for the simu-
lations developed in this thesis. The test matrix shown in [21]’s Table 1 on page 14 gives an overview
of the wide range of different test scenarios treated during the wind tunnel tests. Sequence H “Upwind
Baseline (F)” defines a pitch angle of &, = 3°. Here both teeter dampers are replaced by rigid links of
the same size, so consequently there were cone angles of o,y = a3 = 0° and a teeter angle of a; = 0°.

Since the tunnel wind speed was ranged from 1. =5 i up to 25 7, for lower wind speeds yaw angles
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Figure 2.2: 80 ft x 120 ft (24.4 m x 36.6 m) wind tunnel used in NREL's Unsteady Aerodynamic Experiment Phase VI located at
NASA Ames Research Center in Moffett Field, Silicon Valley, California (taken from [33])

Figure 2.3: NREL's test wind turbine as focus of the Unsteady Aerodynamic Experiment Phase VI in NASA Ames Research
Center’s wind tunnel (taken from [24])
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from a, = —30° to +180° and for higher ones from &, = —30° to +30° were adjusted. The rotor always
operated at a nominal speed of 72 min~! = 1.2s71 = 432 g = 7.54 %. All simulations will use the
sequence H runs with lowest wind speed (1 = 5 ') and pure upwind configuration (a;, = 0°) exclu-
sively. In this case pure downwind configuration would be a, = 180°. Choosing the lowest available
inflow velocity accounts for the wish to act in pre-stall, since stall begins with a velocity of 1. = 7 3 [9]

and requires special treatment.

Figure 2.4: Upwind (a) and downwind (b) configuration of a wind turbine with definition of the yaw angle a,,

. «
1
wind / &4
Iy

A\

Figure 2.5: Cone angle «, due to presetting, flap angles a1 3 due to wind load and teeter angle a; of a wind turbine

2.1 Geometry Specifications

All listed records and websites in the bibliography dealing with NREL's UAE Phase VI do not give away

any CAD data files neither for hub, nacelle, tower nor for the blades. So a first task was to extract all get-
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table information setting any geometrical specifications on the wind turbine. Best source therefore was
[21] with its technical drawings however containing only sparse details about physical dimensions. So a
remedy was provided by setting a scale in each drawing using the real printing’s dimensions and avail-
able dimensions in the drawing. At worst the same procedure was adapted to pictures from websites to
get missing specifications, where no alternative option was available. All extracted and interpolated ge-
ometrical specifications, as used for generating the CAD data files, and the resulting complete geometry

of the wind turbine can be seen in Figure 2.6 and 2.7.

Tower including nacelle, hub, blade 1 and 3 and additional geometries for the meshing process,
which will be described in detail later on, were designed as parts in CATIA V5. Tower and rotor, the
assembly of both blades and hub, were assembled to the full wind turbine geometry. In addition surface
geometries were derived from all parts. So part and surface geometries are available, which can be
exported in different file types, such as .stp or .stl, for use with different meshing tools. The assembly
of the complete wind turbine was only useful for generating images. All parts are referenced to the
same common origin. It is set in the center of the hub, where the pitch axes of the blades, meaning
its longitudinal axes, and the rotation axes of the rotor are crossing. The sense of this procedure lies
in simplifying the assembly and import process in meshing tools, since there is no position correction,

translation or rotation, of the inserted parts required.

More effort had to be spend on designing the blades. Detailed descriptions hereto using the example
of NREL's 5MW wind turbine can be found in [15] and [35], while in this thesis only a brief introduction
of the procedure will be given. The central idea is to simply describe a three-dimensional blade surface
geometry by specifying cross-sections through the blade normal to the blade’s pitch axes and the corre-
sponding distance (radius) to the rotational axes of the rotor. Each such cross-section is set via an airfoil
profile. Since those come with a standard length of 1, origin in the leading edge and no twist (see Figure
2.9), they have to be modified to fit the blades requirements. First of all the profile is shifted along its
chord line, which is the straight connection between leading and trailing edge, by the value of aerody-
namic axes. Assumed to be positive therewith the new position of the origin inside the profile and ditto
the pitch axes position are set. Next the profile has to be scaled using the value of the real chord length.
Normally both directions are scaled with this factor except in transition areas. Here perhaps a different
scaling in the non-chord direction is necessary via the parameter thickness. The last step is then to rotate
the whole profile around its origin by the value of the local twist angle. Convention here is to rotate in

a way the leading edge moves down and trailing edge up with a positive twist angle.

Airfoils are scheduled via a list of point coordinates for the upper and lower surfaces. So a closed
curve is created via connecting all new obtained points with a spline starting and ending at the trailing
edge. Concerning this sharp trailing edges require a double point at this position. At least all existing
curves each lying in a different level with the distance of radius to the rotational axis, have to be con-
nected via further splines to reach a closed three-dimensional surface. All named physical values are

explained in Figure 2.8.
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Figure 2.6: Two-dimensional views of the designed wind turbine with all extracted and approximated geometrical specifications
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Figure 2.7: Three-dimensional view of the designed wind turbine used in all simulations
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2.1. Geometry Specifications
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Figure 2.8: Used notation for defining the cross-sections
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For NREL's UAE Phase VI wind turbine blade the S809 airfoil exclusively was used. Profile coor-
dinate data of upper and lower surfaces are given in Table 2.1 and Figure 2.9 shows the interpolated
profile shape including given points. Aerodynamic characteristics as result of wind tunnel tests on the
5809 airfoil, what can be interpreted as two-dimensional flow behavior, can be referred to in Appendix
A on pages 69 — 74 in [21]. Cross-section data and thus the blade geometry definition can be seen also
in Table 2.1. Black and gray indicates data taken from [21], while the red data was added to define
the tip cap. It was calculated using geometry specifications from [21] and improved by try-and-error
to fit existing pictures of the short tip cap. Gray data was not used during the blade design process to
obtain a smoother surface. The resulting profiles in CATIA V5 are shown in Figure 2.10. To get those
the MATLAB script presented in Appendix A is importing S809 point data, manipulating it by using
geometry specifications, both from edited Tables 2.1 (see Appendix A), and is exporting the resulting co-
ordinate data to a Microsoft Excel file. This detour enables the option to use the Microsoft Excel macro
from CATIA V5's tutorials to create points, connect them automatically via curves (splines) and make
the complete surface via loft (also splines). Sometimes problems arise from the automatic curve and
surface creation, which then have to be fixed manually. Most of the time loft creation fails, because of
non-closed curves, different peripheral senses of the curves or other inappropriate settings. Sometimes
points are too close, so curve creation fails. To add additional double endpoints, delete too close points
and define splines point-by-point manually will help. Normally the macro was also only used til step
2, the automatic spline definition, since one way or another a full and no surface model was designed.
Therefore it has to be switched from the Generative Shape Design environment, where the macro only

works, to Part Design during the design process in CATIA.
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- 0.1 e e
£ 005 o T
wn \
e 0 —
(¢ L e—
E -0.05 ~_ /,/
£ -0.1 Ty ,x//
—
g 015
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

coordinates towards chord line

Figure 2.9: Illustrated normalized profile point data of the exclusively used 5809 airfoil

For the simulations the boundary of the entire fluid domain is defined coincident with the real phys-
ical boundaries given by the wind tunnel walls, inlet and outlet. So the dimensions of the NASA Ames
Research Center wind tunnel including the position of the NREL test wind turbine inside of it have to

be known (see Figure 2.11).
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Table 2.1: Normalized profil point data of the exclusively used S809 airfoil (left) and profile definition data for the blades of
NREL's test wind turbine (right) (taken from [21])

Lower surface Upper surface Node Airfoil Radius Chord Thickn. Twist Aero axis
x/Chord | y/Chord x/Chord | y/Chord ID in m inm inm in degree in1
inl inl inl in1 1 Cylinder 0.508 0.218 0.218 0.0 0.50
1.00000 0.00000 0.00037 0.00275 2 Cylinder 0.660 0.218 0.218 0.0 0.50
0.99612 0.00024 0.00575 0.01166 3 Cylinder 0.883 0.183 0.183 0.0 0.50
0.98446 0.00065 0.01626 0.02133 4 Cyl./S809 1.008 0.349 0.163 6.7 0.359
0.96509 0.00054 0.03158 0.03136 5 Cyl./S809 1.067 0.441 0.154 9.9 0.335
0.93852 -0.00075 0.05147 0.04143 6 Cyl./S809 1.133 0.544 0.154 13.4 0.319
0.90545 -0.00370 0.07568 0.05132 7 5809 1.257 0.737 0.154 20.040 0.30
0.86677 | -0.00859 0.10390 0.06082 8 5809 1.343 0.728 — 18.074 0.30
0.82348 -0.01559 0.13580 0.06972 9 5809 1.510 0.711 — 14.292 0.30
0.77668 -0.02466 0.17103 0.07786 10 5809 1.648 0.697 — 11.909 0.30
0.72752 -0.03558 0.20920 0.08505 11 5809 1.952 0.666 — 7.979 0.30
0.67710 -0.04792 0.24987 0.09113 12 5809 2.257 0.636 — 5.308 0.30
0.62649 -0.06112 0.29259 0.09594 13 5809 2.343 0.627 — 4.715 0.30
0.57663 -0.07442 0.33689 0.09933 14 5809 2.562 0.605 — 3.425 0.30
0.52837 -0.08697 0.38223 0.10109 15 5809 2.867 0.574 — 2.083 0.30
0.48234 -0.09756 0.42809 0.10101 16 5809 3.172 0.543 — 1.150 0.30
0.43832 -0.10484 0.47384 0.09843 17 5809 3.185 0.542 — 1.115 0.30
0.39541 -0.10842 0.52005 0.09237 18 5809 3.476 0.512 — 0.494 0.30
0.35328 -0.10866 0.56801 0.08356 19 5809 3.781 0.482 — -0.015 0.30
0.31188 -0.10589 0.61747 0.07379 20 5809 4.023 0.457 — -0.381 0.30
0.27129 -0.10060 0.66718 0.06403 21 5809 4.086 0.451 — -0.475 0.30
0.23175 -0.09326 0.71606 0.05462 22 5809 4.391 0.420 — -0.920 0.30
0.19362 -0.08447 0.76314 0.04578 23 5809 4.696 0.389 — -1.352 0.30
0.15752 -0.07467 0.80756 0.03761 24 5809 4.780 0.381 — -1.469 0.30
0.12397 | -0.06408 0.84854 0.03017 24.1 S809 4.938000 | 0.365050 | 0.365050 | -1.686288 0.300000
0.09325 -0.05301 0.88537 0.02335 24.2 S809 4.960750 | 0.360511 0.365000 -1.717574 0.295647
0.06579 -0.04199 0.91763 0.01694 24.3 S809 4.983500 | 0.349601 | 0.360000 | -1.748861 0.278263
0.04223 -0.03144 0.94523 0.01101 24.4 S809 5.006250 | 0.329376 0.300000 -1.780148 0.238827
0.02321 -0.02162 0.96799 0.00600 24.5 5809 5.017625 | 0.312436 0.230000 -1.795791 0.200131
0.00933 -0.01272 0.98528 0.00245 24.6 5809 5.029000 | 0.267577 | 0.030000 -1.811434 0.069038
0.00140 -0.00498 0.99623 0.00054 25 5809 5.000 0.358 — -1.775 0.30
0.00000 0.00000 1.00000 0.00000 26 S809 5.305 0.328 — -2.191 0.30
27 5809 5.532 0.305 — -2.500 0.30
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Figure 2.10: Blade design — points and splines in CATIA V5 generated and imported via MATLAB script and Microsoft Excel
macro

Figure 2.11: Dimensions of NASA’s wind tunnel and position of NREL’s wind turbine inside
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2.2 Available Test Data and its Utilization

As already mentioned “the purpose of [...] [NREL's UAE Phase VI] wind tunnel test was to acquire
accurate quantitative aerodynamic and structural measurements on a wind turbine, geometrically and
dynamically representative of full scale machines, in environment free from pronounced inflow anoma-
lies.” [21] Here great importance was spent on specifying the required measurement data types, which
should later on be used for development and validation of engineering models of recent plants for wind
energy generation. The variety of test sequences produced an enormous output of measurement data.
It was stored completely and is provided for different purposes of use via an online database. It is ac-
cessible via the url https://www.nrel.gov/extranet/uaewtdata/seq.html [26] requiring log
in data from NREL.

In the following a simple introduction of the online database structure will be given, supported
by screen shots seen in Figure 2.12. It is required as step (1) to log in using log in data from NREL.
Based on the naming in Table 1 on page 14 in [21] and its more detailed descriptions on pages 13 to
24 in [21] the selection of the test sequence will be done next (2). Then (3) all executed test runs for
a specific sequence are listed in a table via nominal wind tunnel velocity (line) and yaw angle (row).
Zero, one or two numbers in each cell indicate the number of selectable repetitions. Subsequently (4)
all required measurement data channels, that should be output, can be enabled. Short explanations to
each channel will be reached by just clicking on its naming (5). For detailed ones see [21]. At least the
output options have to be set. Here the entire time history (“Entire raw channel selection”), the average
over the complete run time (“Channel average”), the average over every rotor cycle (“Cycle average”)
or the “Azimuth average” of every enabled channel can be requested. The data will be given as pure
ASCII text on a new web page (“ASCII Text”) or as compressed file (*.zip) also with ASCII data (“ZIP
Compressed”) via clicking “Submit”. Clicking “Reset” will reset the complete page and remove all
selections. (6) shows the data output of some example channels using the “Entire raw channel selection”

and “ASCII Text” options.

One main component of the extended simulations presented in the following chapter is the rotor
blades to be treated as flexible structures. As a consequence they get deformed under the effect of surface
pressure caused by the fluid flow. In this simulations the structural deformation is on the fluid side
realized via mesh motion in consequence of moving blades” boundary patches. Hereby the maximum
mesh motion corresponds to the maximum blade deformation, which normally appears at the blades’
tip (R = 5.029 m) and forms a critical value for evaluating the fluid mesh quality, also presented below.
So consequently an estimation of the (maximum) blade deformation becomes necessary. This is done
via the simple model of a piecewise defined cantilevered Euler-Bernoulli beam seen in Figure 2.13. Its
resp. the real blades’ stiffness properties are summarized in Table 2.2 extracted from Table A-9 on page

76 in [21]. Fixed-end moments Mj were measured during all test runs for both blades respectively in
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Figure 2.12: User’s guide for the online database of NREL's UAE Phase VI: (1) Log in. (2) Select test sequence. (3) Select yaw angle
and wind tunnel velocity. (4) Select data channels and output options. (5) Click on data channel name to get to the wind tunnel
channel description. (6) Output example using “Entire raw channel selection” and “ASCII Text”. (screen shots of [26])
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the y- and z-direction. The labels behind the >-symbols indicate the appropriate measurement channels

the data is stored in.

e fixed-end moment of blade 1 in y-direction Ma 1, = blade 1 root flap bending moment >B1RFB

blade 3 root flap bending moment >B3RFB

e fixed-end moment of blade 3 in y-direction Ma 3
o fixed-end moment of blade 1 in z-direction Mp 1, = blade 1 root edge bending moment >B1REB

o fixed-end moment of blade 3 in z-direction Mp 3, = blade 3 root edge bending moment >B3REB

\

q0

Figure 2.13: Cantilevered Euler-Bernoulli beam with constant line load for estimation of the blade deformation resp. mesh motion

According to the main flow around a blade, the resulting surface pressure distribution and the lower
stiffness properties in this direction, the behavior in y-direction is of greatest interest. Here the assump-
tion of a constant line load g(x) = go causing the fixed-end moment is made. It seams quite reasonable,
since the surface area is shrinking with increasing radius while the inflow velocity in contrast is increas-
ing due to the increasing rotational component. A dummy load F at the position x = % causes the same

fixed-end moment as the line load itself.

!
Mp = /xq(x) dx = /xqo dx = 1lzqo = Fi = q01£ 2.1
2 2 2
0 0
So the line load can be estimated to
2M
q(x) = o = 5~ 2.2)

Figures B.1 to B.6 in Appendix B show the measured flap bending moments for both blades and

wind tunnel velocities of 5, 15 and 25 7. Maximum root flap bending moments of about 920, 3520 and

34



Bachelor’s Thesi . . J .
cﬁifmﬁ.g [T 2.2. Available Test Data and its Utilization

Table 2.2: Stiffness properties of NREL's test wind turbine blade used for estimation of the blade deformation respective mesh
motion (taken from [21])

Radius | Torsional stiffnes | Axial stiffnes | Edgewise stiffnes | Flapwise stiffnes
xinm Glr in Nm?2 EAinN EL. in Nm? El,, in Nm?
5.000 2.73 x 10° 9.36 x 107 6.71 x 10° 6.80 x 10*
4.780 3.34 x 10° 1.09 x 108 8.45 x 10° 9.05 x 10*
4.696 357 x 10° 1.15 x 108 9.14 x 10° 9.97 x 10*
4.391 457 x 10° 1.38 x 108 1.21 x 10° 1.40 x 10°
4.086 5.73 x 10° 1.61 x 108 1.56 x 10° 1.89 x 10°
4.023 5.97 x 10° 1.66 x 108 1.63 x 10° 2.00 x 10°
3.781 7.07 x 10° 1.85 x 108 1.97 x 10° 2.49 x 10°
3.476 8.56 x 10° 2.10 x 108 2.44 x 100 3.20 x 10°
3.185 1.03 x 10° 2.35 x 108 2.97 x 10° 4.03 x 10°
3.172 1.03 x 10° 2.36 x 108 2.99 x 100 4.07 x 10°
2.867 1.22 x 10° 2.56 x 108 3.59 x 100 4.79 x 10°
2.562 1.45 x 10° 2.92 x 108 4.38 x 100 6.08 x 10°
2.343 1.63 x 10° 3.21 x 108 5.02 x 106 7.20 x 10°
2.257 2.19 x 10° 3.52 x 108 6.23 x 10° 8.05 x 10°
1.952 2.45 x 100 3.57 x 108 6.49 x 10° 9.16 x 10°
1.648 2.74 x 100 3.67 x 108 6.69 x 10° 1.07 x 10°
1.510 2.89 x 100 3.84 x 108 6.92 x 10° 1.17 x 10°
1.343 3.09 x 100 4.04 x 108 7.20 x 10° 1.30 x 10°
1.257 3.18 x 10° 4.07 x 108 7.22 x 10° 1.35 x 10°
0.883 4.02 x 10° 3.95 x 108 1.65 x 10° 1.65 x 10°
0.660 2.14 x 10° 1.03 x 10° 4.77 x 100 4.77 x 100
0.610 3.12 x 100 1.33 x 10° 6.10 x 10° 6.10 x 100
0.559 3.68 x 10° 1.48 x 10° 6.85 x 10° 6.85 x 10°
0.508 3.00 x 10° 1.01 x 10° 4.06 x 10° 4.06 x 10°
0.483 1.31 x 107 6.69 x 10° 1.72 x 107 1.72 x 107
0.369 3.16 x 10° 1.04 x 10° 4.16 x 10° 4.16 x 10°

6600 Nm appear, which lead to line loads of g(x) = g9 ~ 73, 279 and 522 % Simulation of the Euler-
Bernoulli beam with Abaqus/CAE 6.12-1 applying the stiffness properties for y-direction from Table 2.2,
which means the flapwise stiffness properties (Ely,), and the estimated line load values, results in the
deformations seen in Figure 2.14. Since this values are based on a static model, deformations for the
dynamic case, which are about twice as big Udyn = 2Ustat, have to be taken into account. This results in

maximum dynamic deformations Udynmax ~ —5.1, —=19.5 and —36.4 mm.

In order to obtain a statement on the expected quality of later simulation results, evaluations con-
cerning the quality of mesh and set simulation parameters have to be performed. This especially is
important in regard to the N-code co-simulation, which is extremely intensive in computational power
and time. The evaluations will be done in two steps. In step A the settings are evaluated to yield the
right surface pressure distribution of the blades, which indicates the right blade deformation from the
fluid side. This is done via comparing normalized pressure coefficients c,, meaning surface pressure
relative to static pressure, measured at specific locations on the blade surface to those calculated using
results of simpler pre-simulations. Figure 2.15 shows those locations, where pressure coefficients will be

evaluated.

Step B is the comparison between the resulting low speed shaft torques from measurement (T1.ss meas)
and simulation (Tisssim). The direct measurement is stored in channel >LSSTQ, the corrected one in

channel >LSSTQCOR. The correction terms can be seen in [21] on page 58. Tisssim is output from
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Figure 2.14: Static deformation of the Euler-Bernoulli beam calculated using Abaqus/CAE 6.12-1
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Figure 2.15: Pressure taps for evaluation of normalized pressure coefficients cp are located at 30, 46.6, 63.3, 80 and 95 % radius
(0m =0 % and 5.029 m = 100 % and at 100, 80, 68, 56, 36, 20, 10, 6, 4, 2, 1 and 0.5 % chord on the upper and at 0, 0.5, 1, 2, 6, 14, 28,
44, 68 and 92 % chord on the lower surface of NREL's test wind turbine blade. E.g. pressure tape number 21, at 46.6 % radius and
0.5 % chord on the upper surface would be stored in channel >P2147.5U (values taken from [21])
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OpenFOAM during the solving process by simply including the tool “forces”. Detailed information on
this will be given in the next chapter. The calculated time history of T sg meas for different wind tunnel
velocities (5, 15 and 25 %) can be seen in Figures B.7 to B.12 in Appendix B.

As it was mentioned before, the introduced evaluation steps A and B will be done on simpler sim-
ulation cases. This has the advantage of less computational power requirements and time. The cases

are

e asteady-state simulation of the quasi-rotating turbine excluding tower using the MRFSimpleFoam

solver (later step 1/5)

e and a transient simulation of the full, rotating, ridgid turbine using the pimpleDyMFoam solver

(later step 2/5).

Both are pure CFD simulations. Details will be presented in the following chapter.
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N-Code Co-Simulation of NREL's UAE
Phase VI Wind Turbine

To achieve the aim of accelerating the development-to-market time in modern product design, new,
more accurate simulation techniques become more and more important. In this context various terms
like “fluid-structure interaction (FSI)”, “multiphysics”, “N-code coupling” or “co-simulation” appear.
To avoid confusion a short introduction to the common terminology should be given here, starting on
the simplest example of a fluid-structure interaction problem. It is quite easy to imagine, e.g. a flag flut-
tering in the wind. This problem bases on two main physical phenomena, a flexible structure alias flag
and fluid flow alias wind. Generally speaking at one moment the fluid is seeing a structure of defined
shape. Fluid flow around this structure is developing and causing a surface pressure field loading the
structure. As a consequence the flexible structure is deforming. This again results in changes in the fluid
flow, what ends in new structural behavior and so on. It becomes clear, that the fluid is influencing the
structure and the other way round. The term “multiphysics” is describing such problems, where more
than one physical phenomenon is involved. Solving just one of both phenomena, like traditional engi-
neering approaches did, is not possible here. One option to get a solution is to describe the complete
fluid-structure system in one set of differential equations to be solved. This solution process is called
monolithic and is afterwards only applicable to this special type of problem again. So to be much more
flexible and reusable another method is used. Simulation tools solving computational solid mechanics
(CSM) meaning pure structural problems, e.g. Abaqus or Ansys, just as pure computational fluid dy-
namics (CFD), e.g. StarCCM+ or OpenFOAM are available. Key step is to combine those tools in order
to solve the coupled problem containing CSM and CFD. In the starting example above, there are two
codes (N = 2) involved. Imaging e.g. a controller enforcing a specific structural behavior depending on

the actual fluid flow and structural deformation, it becomes clear, there can be quite fast more than two
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or three codes — N codes — requiring a structured coupling procedure. This is named “N-code coupling’

or “co-simulation”.

3.1 Enhanced MultiPhysics Interface Research Engine (EMPIRE)

EMPIRE is a tool for doing co-simulation of multiple (N) codes, so it exactly satisfies the above men-
tioned requirements for a structured coupling procedure handling N codes. EMPIRE is the abbrevia-
tion of Enhanced MultiPhysics Interface Research Engine and is developed by Stefan Sicklinger and
Tianyang Wang at the Chair for Structural Analysis (Prof. Dr.-Ing. K.-U. Bletzinger) at Technische Uni-
versitat Miinchen. The vision behind EMPIRE is to be a flexible and efficient tool for doing co-simulation
with multiple codes including parallel applications. It should have a open data structure and interface
smoothly with clients.

EMPIRE is based on a so called client-server approach, which is well known from computer networks
or the world wide web. The server (from lat. servire) called EMPEROR is the connection between all
clients (from lat. cliens). Clients, just another name for solvers or codes in this case, are requesting data
from the server for doing their calculations and responding the result data to the server. With this basic
functionality a N-code co-simulation can be realized. The second main part of EMPIRE is the EMPIRE
APIL API is short for Application Programming Interface. The EMPIRE API ensures the interaction
between all clients and the server. Therefore its input is based on a .xml file. Clients connect via Socket-
like MPI-2.2 communication. It is written in C++ and wrapped in C for better interoperability. All MPI
calls are handled internally, so they are not visible for the user. The server EMPEROR has also an input
based on a .xml file, which is read at the beginning of the co-simulation. With this the complete coupling
scenario is setup. EMPEROR can do asynchronous listening (OpenMP). Clients are connected via Socket-
like MPI-2.2 communication. Open Meta-database data structure is used. EMPEROR is including very
efficient and accurate mapping algorithms based on (Dual) Mortar methods. Mapping gets necessary
in case of non-matching grids at the interface between different clients. Properties on one interface side
(mesh A) have to be transformed into appropriate properties on the opposite interface side (mesh B).

The turbulent, full-scale fluid-structure-signal co-simulation of NREL's UAE Phase VI wind turbine
should demonstrate the functionality and accuracy of the coupling tool EMPIRE. This includes vali-
dation via comparison of obtained simulation results and existing measurement data. The ability of
EMPIRE to handle huge amounts of data should also be shown.

Basically a fluid-structure-signal co-simulation combines, to put it another way couples three mod-
eled and simulated physical phenomena. The main one is the fluid flow through the wind tunnel around
the wind turbine forcing rotation, with that generation of of electric power and deformation of the flex-
ible rotor blades. All other components, e.g. tower with nacelle, are assumed to be ideal rigid. So the
physical boundaries of the rotor with its blades state the coupling interface, where the fluid forces acting
on the blade surface have to be mapped to the structure. The open source tool OpenFOAM was selected

to simulate the physics of the fluid.
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Figure 3.1: The Enhanced MultiPhysics Interface Research Engine (EMPIRE) is based on a so called client-server approach, where
the server EMPEROR is connected to N client codes

The next separately considered physical phenomenon is the structural behavior of the rotor blades.
For this the in-house FEM tool Carat++ will be used, modeling the blades as shell segments with the
stiffness properties from Table 2.2 on page 35. The blades are loaded by the mapped fluid forces. Due
to that, they are deforming. This deformation results in a point displacement, which is mapped back to
the fluid mesh at the interface, where the fluid domain boundaries of the rotor are moving and causing
changes in the fluid flow.

In order to realize a third client code, since until now there are only two of them with the fluid-
structure interaction problem, the parts in the nacelle including gearbox, bearing and generator are also
modeled as autonomous system. This results in a ordinary differential equation (ODE). According to the
normal physical behavior the black-box “Gearbox + Generator” would receive a rotational speed from
the structural solver and react with, respectively send back a resistive torque arising from the generator
and friction. For purposes of better coupling performance, meaning better stability and convergence,
another coupling scheme is used. The “Gearbox + Generator” black-box will receive the moment from
the fluid forces out of Carat++ and send a actual rotational speed to OpenFOAM. Moment and rotational
speed are no field properties, but rather pure signals. The numerical computing environment MATLAB
is coupled to calculate the rotational speed signal out of the moment signal based on the simple ODE.
The basic and detailed concept of the entire coupling scenario can be seen in Figure 3.2.

Combination of overall four main tools, each containing different sub-tools, requires a stepwise evo-
lution to the full co-simulation case. Only that way it is possible to guarantee the best simulation per-
formance including a optimized and tested combination of sub-tools and all settings. Debugging of
errors or problems would be nearly impossible without this stepwise procedure. In the evolutionary
history the last three of five steps are containing the coupling tool EMPIRE. Since step 5/5 stands for
the full co-simulation case, which was already presented above, the remaining steps will be introduced

subsequently in reverse order.
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Figure 3.2: Basic and detailed concept for coupling OpenFOAM, Carat++ and MATLAB to do a full fluid-structure-signal co-
simulation of NREL's UAE Phase VI wind turbine with EMPIRE

Doing a pure fluid-structure interaction co-simulation without simulating the behavior of gearbox,
bearings and generator, means without coupling MATLAB, is step 4/5. In this case the rotational speed
of the rotor is set via OpenFOAM input file to the constant value of 72 min~!.

A even simpler step 3/5 is to do only one-way coupling. That means Carat++ is replaced by the
client meshClientTurbomachinery, which does not receive any input (except the actual time step), but
is sending a user predefined point displacement for the blade surface. This coupling scheme is used to
figure out the possible maximum of mesh deformation on the fluid side and to check the mesh quality
during deformation. A parabolic point displacement only in negative y-direction increasing linearly
with every time step is therefore sent by meshClientTurbomachinery. It is zero at the blades’ root and
has its maximum at the blades’ tip approximating the real blade deformation. A simplified version of
the file AbstractDataCreator.h, where the calculation of the actual point displacements is stated, can be
found in Appendix C on page 93.

Steps 2/5 and 1/5 will be introduced in the next section, since they are pure CFD simulations not

making use of the EMPIRE co-simulation environment.

en-
F(C))KM® Carat ‘
i Yy orce -],
. I OpenFOAM® Carat++
S
N N e CFD displacement CSM of Rotor
. — e P —
CFD CSM of Rotor const. rpm
basic concept detailed concept

Figure 3.3: Basic and detailed concept for coupling OpenFOAM and Carat++ with EMPIRE to do a fluid-structure interaction
co-simulation of NREL's UAE Phase VI wind turbine rotating at constant rpm
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Figure 3.4: Basic and detailed concept for coupling OpenFOAM and meshClientTurbomachinery with EMPIRE to use predefined,
parabolic point displacements for mesh checks

3.2 The CFD Client OpenFOAM

OpenFOAM (Open Source Field Operation and Manipulation) is first and foremost a C++ Library, used
for creating numerical solvers, pre- and post-processing tools for the solution of continuum mechanics
problems, here with a focus on computational fluid dynamics (CFD). OpenFOAM is a free and open
source software. Its code is released under the GNU General Public License, produced by OpenCFD
Ltd. at ESI Group, which is owner of the OpenFOAM trademark, and distributed by the OpenFOAM
Foundation. The object oriented structure holds the opportunity of quite easy customized extensions.
And, as already mentioned in the first chapter, the implemented numerics use the finite volume method
(FVM) on structured and unstructured meshes.

The basics, including the use of OpenFOAM, its case folder structure, the minimum required files,
the mesh definition, available solvers etc., are introduced quite well in its user guide [13]. Especially the
provided tutorials are recommended in purpose of getting started with the software package. But at this
point it should also be mentioned, that one big handy cap is the lack of documentation, which makes it

hard to find detailed information on more special features. Here e.g. discussion boards can help.

3.2.1 Implementation of Rotation - OpenFOAM'’s Arbitrary Mesh Interface (AMI)

OpenFOAM can deal with rotating objects next to static ones. There exist different ways of handling
motion of some boundaries during CFD simulations. In OpenFOAM the so called Arbitrary Mesh In-
terface (AMI) is implemented. Thereby in general two sub meshes are moving relatively to each other
at a sliding interface, which is nothing more then coincident boundaries on both meshes. OpenFOAM
provides an application as cyclic AMI. Therefore the fluid domain bounded by the wind tunnel walls
is divided into two sub-meshes, also called regions. The situation can be seen in Figure 3.5. A static
sub-mesh, here named Stator, contains tower and nacelle, while a second rotating one houses the Rotor
(hub, blade 1 and 3). Part of the sliding interface are the Rotor’s outer boundary (here AMI1) and the
Stator’s inner boundary (here AMI2).
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Figure 3.5: Arbitrary Mesh Interface (AMI) between the static sub-domain (Stator) containing tower and nacelle and the rotating
sub-domain (Rotor) containing hub, blade 1 and 3

To extend a OpenFOAM case to one containing AMI, some adjustments have to be done. They all

can be reproduced doing the recommended tutorials [14]

SFOAM_TUTORIALS/incompressible/pimpleDyMFoam/mixerVessel 2DAMI

(2D spinning rotor and stationary stator) and

SFOAM_TUTORIALS/incompressible/pimpleDyMFoam/propeller

(3D propeller, meshed with snappyHexMesh with feature line conformance).

First of all the single fluid domain has to be split into two independent domains Stator and Rotor. It is
essential for the Rotor to be rotationally symmetric to its rotational axes, so that the sliding interface can
be provided during the whole simulation. Necessary modifications to obtain two regions will be intro-
duced in the next subsection for the third party tool STAR-CCM+. Next the rotor-sided interface bound-
ary patch AMI1 must be typed as cyclicAMI with the corresponding cyclic AMI neighbor patch AMI2

(here). The following lines must exist in the $EMPIRE_CASE/OF/constant/polyMesh/boundary
file:

AMI1
2 {
type cyclicAMI;
nFaces (number) ;
startFace (number) ;

matchTolerance 0.0001;
neighbourPatch AMI2;
transform noOrdering;

© ® N U AW N

The sliding interface boundary patch of the Stator AMI2 has to be defined respectively.
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1 AMI2

2 {

3 type cyclicAMI;
4 nFaces (number) ;
5 startFace (number) ;

matchTolerance 0.0001;
7 neighbourPatch AMI1;
8 transform noOrdering;

The necessary modifications to define the boundary patches during the meshing process will also be
presented in the following subsection.
OpenFOAM takes all specifications concerning the AMI from the dynamicMeshDict dictionary,

which must exist in the SEMPIRE_CASE/OF/constant/ folder.

1/ * x— Ct++ —x *\
2 | ========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
4 A\ / O peration | Version: 2.1.x
5 \\/ A nd | Web: www.OpenFOAM. org
6 \\/ M anipulation |

8 FoamFile
9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "constant";

14 object dynamicMeshDict;

15 }

16 // * % % % % % % % % x %X X x *x Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk k¥ x *x *x x x x x x x x x //
18 dynamicFvMesh solidBodyMotionFvMesh;

20 motionSolverLibs ( "libfvMotionSolvers.so" );

22 solidBodyMotionFvMeshCoeffs

25 {

24 cellZone Rotor;

26 solidBodyMotionFunction rotatingMotion;

27 rotatingMotionCoeffs

28 {

29 CofG (00 0);
30 radialVelocity (0 432 0); // in deg/s

31
32}

B4 /) kkkokkok ok ok ok ok ok ok ok ok ok ok kk Ak kA A A A AR AR ARARRRKRKRKRA KA KA KAk Kk kkk ok k ok k ok kkkkkkkk kA Ak xkxkxxx [/

As it can be seen, the name of the rotating cel1Zone (region or sub-mesh) has to be set, as well as
the center of rotation (Co£G) and the axis and speed of rotation as vector (radialVelocity). In the
latter case values in degree per second (%) are required.

After generating the mesh and before solving, the OpenFOAM pre-processing tool topoSet has
to be executed. It requires the following topoSetDict in the SEMPIRE_CASE/OF/system/ folder,
which simply contains the commands to add the faces of both AMI patches ("AMI. «")to anew faceSet

AMI, which is used by the solver.
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\
|
A\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
AR / O peration | Version: 2.1.x
\\/ A nd | Web: www.OpenFOAM. org |
\\/ M anipulation | |
\ * x/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object topoSetDict;
}
5 // % % % % *x Kk Kk Kk x x x Kk Kk Kk Kk Kk Kk K% Kk Kk Kk Kk Kk ¥ Kx * * * *x x x x x x *x * * [/
7 actions
(
{
name AMI;
type faceSet;

action new;
source patchToFace;
sourceInfo
{
name "AMI.x";

}

9);

/] ok ko ko ko ko ko kK ok ko kK ok ko ko ko ko ko Kk ok Kk k ko k/

It should also be mentioned, that there are no special requirements on both meshes touching the
sliding interface. So e.g. non-matching grids (see Figure 3.10 on page 53) or even different cell types,
like tetrahedrals on one and hexahedrals on the other side, are possible.

For solving OpenFOAM’s pimpleDyMFoam solver is used. It is a extended pimpleFoam solver for
handling dynamic meshes (xDyMx). Step 2/5 of the presented simpler simulations is to do a transient
stand-alone CFD simulation of the full wind turbine using the pimpleDyMFoam solver in combination
with the AMI. All parts are ideal rigid for this purpose and the rotor is rotating at its constant rpm rate
of 72 min~ 1.

Step 1/5 is to do also a stand-alone but steady-state CFD simulation of the rotating turbine. This
is possible with the MRFSimpleFoam solver, which is adding Coriolis forces corresponding to a quasi-
rotation. MRFSimpleFoam can handle AMIs, so the mesh can remain the same at this point. This way
it can be ensured, that the most critical submesh of the Rotor stays the same for all simulation cases. So
useful tests regarding the mesh quality can be provided using the MRFSimpleFoam solver and results
can be mapped to a transient PIMPLE case more easily. Only the surrounding Stator sub-mesh has
to undergo some changes, since the entire mesh has to be rotationally symmetric. The Rotor mesh
automatically satisfies this requirement, while the Stator mesh must be edited accordingly. Therefore
the tower is removed and the cubic wind tunnel is replaced by a cylindrical “wind tunnel” of adequate
dimensions. Taking a normal simpleFoam case from the tutorials, the file MRFZones has to be added
to the SEMPIRE_CASE/OF/constant/ folder. It contains fixed patches (nonRotatingPatches), the
origin, the rotational axes and the rotational speed. Attention has to be spend on the difference, that

an angular velocity w (omega) in radiant per second (%) is required here.
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1 [,k *— CH++ —h————————— *\
2 | ========= |
A\ / F ield | OpenFOAM: The Open Source CEFD Toolbox
4 N\ / O peration | Version: 2.1.x
5 N\ / A nd | Web: www .OpenFOAM. org
\\/ M anipulation |
7 \ % x/

8§ FoamFile
9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "constant";

14 object MRFZones;

5}

16 // * % % % % % % % % * K Kk *x Kk *x Kk *k Kk Kk *x Kk *x Kk *k Kk Kk * Kk *x Kk *x k *x *x *x x * [/
17

18 1

19 (

20 Rotor

21 {

22 // Fixed patches (by default they 'move’ with the MRF zone)
23 nonRotatingPatches ();

24

25 origin (0 0 0);

26 axis (01 0);

27 omega constant 7.5398; // in rad/s

29 )
30

31 [/ xkkkkkkkkkkkkkkkhkkkh ok kkkkkkhk ok kkkkhkhkkkkkkkhkhkhkkkkhkxhkkhkhkkkkkkxhkhkkxkxhkx [/

3.2.2 Mesh Generation Using CD-adapco’s STAR-CCM+

STAR-CCM-+ is a product from the multinational computer software company CD-adapco, which has
its headquarters in Melville, New York in the USA. CCM is standing for Computational Continuum
Mechanics. The software tool was introduced in 2004 and used as pure meshing tool for preprocessing
of the simulation cases presented in this thesis. Available was version 7.06. High quality requirements,
complex geometry and a lack of documentation for OpenFOAM’s meshing tools are reasons, why STAR-
CCM+ was selected.

Appendix D is providing detailed information about all used settings etc. In this subsection the
basic ideas and the basic procedure should be introduced next to a discussion of critical settings. STAR-
CCM+'s user guide [5] contains everything necessary for getting started with the software and also for
advanced usage.

The mesh will be built using seven CAD geometries designed in CATIA V5:
o *WindTunnel*.CATPart/ .stp

o *Tower*.CATPart/ .stp

o *AMI*.CATPart/.stp

¢ *HelpCylinder*.CATPart/.stp

o *Hub*. CATPart/ .stp

e *Bladel*.CATPart/ .stp
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e *Blade3*.CATPart/ .stp

They can be seen in Figure 3.6, while Figure 3.7 provides detailed information about dimensions and
position in the global coordinate system of until now not characterized parts. For details on the miss-
ing tower, blades and hub see chapter 2. Hub, blade 1 and 3, in combination the rotor, are treated as
autonomous parts with the advantage of having independent boundary patches, which can be used
for defining individual surface mesh settings and for advanced use of the forces tool, which will be

introduced later.

v/-*WindTunnel*.CATPar‘r /.stp

f*AMI*.CATPart /.stp

*Tower*.CATPart/.stP\ f*Blade?" .CATPart/ stp

< Hub*.CATPart/ .stp

*HelpCylinder* .CATPart/ st
>eB]adel’*.CATPar’r/.sth pL-yiL art/.stp

Figure 3.6: The Stator domain will be generated substracting *AMI*, *HelpCylinder* and *Tower* from *WindTunnel*, the Rotor
domain subtracting *Bladel*, *Hub*, *Blade3* and *HelpCylinder* from *AMI*

The seven CAD geometries are imported in STAR-CCM+ via .stp format (missing license for CATIA
files) in the tab “Geometry” as new “3D-CAD Models” and then transformed into parts. The final Stator
part representing the static fluid domain is built by subtracting *AMI*, *HelpCylinder* and *Tower*
from *Wind Tunnel*, what is provided as Boolean operation in the tab “Parts”, as well as the final Rotor
part representing the rotating domain by subtracting *Bladel*, *Hub*, *Blade3* and *HelpCylinder*
from *AMI*. Surfaces are edited, so that they fit to the final boundary patches:

e stator

inlet

outlet

statorTower

statorWall

AMI2
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Figure 3.7: Dimensions and coordinate positions for the additional required CAD geometries *WindTunnel*, *AMI*, *WindTun-
nelCylinder* and *HelpCylinder*

e rotor

rotorBladel

rotorHub

rotorBlade2

AMI1

Naming tower and wind tunnel wall as statorTower and statorWall provides the opportunity of shorter
boundary condition file description ("stator. ") in OpenFOAM. The same applies to rotorBladel,
rotorHub and rotorBlade3 ("rotor.«").

Next both final parts are each assigned to a region. Perhaps some renaming and editing of bound-
aries becomes necessary at this point. A more important task is to edit the existing feature curves, which
depend on the settings chosen during the CAD data import. Only really essential feature curves should
remain, since they can effect negatively the local size of the surface mesh. The coarser the mesh the more
importance comes to editing or deleting feature curves. So e.g. for both blades only the trailing edge
feature curve was left, since here a sharp edge is required for modeling the right aerodynamic behavior.

For independent meshing of both regions, each has to be referred to a mesh continuum, which can
be created under the tab “Continua”. Here all surface and volume mesh specific settings have to be

made. Once again they can be read for the later presented case in Appendix D. Detailed explanations
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to all values can be found in [5]. Settings made in this tab are global ones for the related mesh region.
Local changes, e.g. to get a coarser surface mesh at the AMI than at the blades surface — both belong
to the same mesh region and continuum - can be done in the “Region — Boundaries” tab via enabling

custom values.

After the meshing procedure the resulting mesh is exported as .ccm file containing all regions and
boundaries but no results. The conversion from the .ccm format to the OpenFOAM mesh format is
done via the OpenFOAM tool ccm26ToFoam. The tool needs the library 1ibccmio. The .cem file
should be copied into the main OpenFOAM case folder and ccm26ToFoam be executed in the same
directory together with the full file name. One inconvenient task is to edit the AMI boundary defini-
tions in the $EMPIRE_CASE/OF/constant/polyMesh/boundary file using the following help file

boundaryEdit. (number) must be replaced by the actual stored value from the real boundary file.

[ *#— CH+ — - *\
| ========= | |
I \N\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
I \\ / O peration | Version: 2.1.x
| \\/ A nd | Web: www.OpenFOAM.org
| \\/ M anipulation | |
R e x/
FoamFile
{

version 2.0;

format ascii;

class polyBoundaryMesh;

location "constant/polyMesh";

object boundaryEdit;

}

[/ % % Kk ok Kk ko k ko k Kk Kk kK K K K K K K K Kk k Kk K K K K K K x K x Kk x k x )/

/] k k Kk Kk Kk Kk Kk ok ok ok Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk KX x X x x x x x x *x *x * * [/
// % * x % % x * * x x For editing real file "boundary" * % * * x * * x % * //
J] % % % %k %k Kk Kk Kk K K K K Kk Kk ok Kk K K Kk Kk Kk k k Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk [/
AMI1
{
type cyclicAMI;
nFaces (number) ;
startFace (number) ;

matchTolerance 0.0001;
neighbourPatch AMI2;

29 transform noOrdering;

30 }

31

2 // k k K Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk *k Kk Kk k *k x * *x *x x [/
33 // % % % % % *x x x x x For editing real file "boundary" * * * * x x x x % % //
3L /) *x K« x Kk Kk Kk Kk *x Kk *x Kk Kk Kk Kk *x Kk *x Kk Kk Kk Kk *x Kk *x Kk *k * Kk x Kk *x * *x *x *x x *x [/
35

36 AMI2

37 {

38 type cyclicAMI;

39 nFaces (number) ;

40 startFace (number) ;

41 matchTolerance 0.0001;

12 neighbourPatch AMI1;

43 transform noOrdering;

44 }

45

16 // * x Kk ok ok Kk Kk Kk Kk Kk Kk k Kk k Kk Kk Kk k Kk k Kk k Kk kx Kk k Kk k k x Kk x * x * x * [/
47 // % % x x x x x x x x» For editing real file "boundary" x x x * * % * * * * //
U8 [/ % * Kk K K K K K Kk Kk K Kk k K K Kk K K Kk Kk K Kk k K K kK * K kK * * *k x & * x * [/

) /] kkkkkkkkkkkkkkkkkkkkkhkkkhkkhkhkkkkhhkkhkhkhhhhkhhhhkkkhkkkhkhkkkhkhkhkkhkkkkkkkxhknkx //
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The region names Stator and Rotor are not adopted during the conversion process. So afterwards
they are called cellZone_1 and cellZone_2. The correspondence can be identified using e.g. the

tool setSet, which prints detailed mesh information for this purpose.

Next to internal quality checks in STAR-CCM+, OpenFOAM'’s tool checkMesh can be used to check
the mesh quality after import. Most detected errors could be fixed by simply increasing the “Optimiza-
tion Cycles” number in STAR-CCM+ after enabling the “Mesh Expansion Control” in the corresponding
mesh continuum tab. checkMesh’s result (checkMesh. 1og) for the afterwards presented mesh is seen

at the end of Appendix D.

The resulting mesh using the presented CAD geometries and the referenced settings can be seen in

Figures 3.8 to 3.14.
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Figure 3.8: Tetrahedrals on the cutting plane x = 0 through the entire meshed fluid domain. The static and rotating domain with
the Arbitrary Mesh Interface (AMI) and lines due to decomposing of the fluid domain for parallel meshing can be seen

3.2.3 Mesh Motion Based on the Arbitrary Lagrangian Eulerian Method (ALE)

The steps 3/5, 4/5 and the final one 5/5 are treating the wind turbine blades as flexible structures to
model a more accurate physical behavior and to realize an additional client for coupling. Taking a closer
look, the movement of every blade surface point is due to superposition of pure rigid body rotation
and structural deformation mainly in negative y-direction during rotation. Thus for the simulations the
blade behavior is split into this two components. As presented in section 3.2.1 the rigid body rotation is
realized via OpenFOAM’s implementation of the AMI, having a static and a rotating domain. Modeling
the second component, the structural deformation means getting back a displacement vector for every
related boundary point from the CSM client. Here the Arbitrary Lagrangian Eulerian method, short
ALE, is used. The fluid mesh is described as a quasi-material. So if one mesh point is moving, then the

whole mesh is deforming accordingly. This effects, that all mesh affinities (points, edges, faces, etc.) are
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Figure 3.9: Tetrahedrals on the cutting planes x = 0 (left) and y = 0 through the meshed fluid domain with focus on the rotating
domain
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Figure 3.10: Non-matching grids of the rotating (red) and static domain at the Arbitrary Mesh Interface (AMI)

Figure 3.11: Comparison between the surface meshes of blade 1, hub and tower (left) and detailed view of the surface mesh at the
tip of blade 1
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Figure 3.12: Tetrahedrals on the cutting plane z = 0 through the meshed fluid domain with focus on blade 1. Both horizontal lines
are due to decomposing of the fluid domain for parallel meshing. The other line is the Arbitrary Mesh Interface (AMI)

Figure 3.13: Tetrahedrals on the cutting plane z = 0 through the meshed fluid domain with focus on the cells at the tip of blade 1
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Figure 3.14: Tetrahedrals on the cutting plane x = 2.5145 m (50 % radius) through the meshed fluid domain with focus on the
volume mesh around blade 1. The horizontal line is due to decomposing of the fluid domain for parallel meshing
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preserved. The mesh deformation can be influenced by setting the diffusivity value, which describes
the mesh “material’s” stiffness.

So for the steps 3/5 to 5/5 the rotor behavior will be realized as follows: The whole fluid domain
is split into a static and a rotating one using the AMI concept. The rpm rate of the rotating domain
arises from the rotational speed of the rotor. In consequence the rotor is standing still inside the rotating
domain and the ALE concept is applied to realize the deformation of both blades.

The implementation of this concept in OpenFOAM requires some manipulations. Normally Open-
FOAM can only handle one feature, AMI or ALE, at a time. The dynamicMeshDict for a pure AMI

case is seen in Listing 3.3 on page 45, while here the edition for a pure ALE case is printed.

1 [k *— CHt — - *\
2 | ========= |

3 A\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
A AN\ / O peration | Version: 2.1.x |
5 \\/ A nd | Web: www .OpenFOAM. org |
6 \\/ M anipulation | |
7 \* */

8§ FoamFile
9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "constant";

14 object dynamicMeshDict;

15 }
16 // % % % % % % % *x * Kk K k k K K k K K * Kk K K * Kk K *x k Kk K * Kk k x * * x x //

18 dynamicFvMesh dynamicMotionSolverFvMesh;

20 motionSolverLibs ("libfvMotionSolvers.so");
21

22 solver displacementLaplacian;

23

24 diffusivity uniform;

26 [/ hkkkkkkkokkkkkhhkhkhhkkkkhkkkkhkkhhkhkhhhhkhkkhkkkhhkkhkhkhkhkhkkkhkkkkkkkkkhkhkkhkkkkkk //

For the presented concept a combination of both features is required. This was realized by imple-

menting a new dynamic mesh solver called CoSimulationMotionSolverFvMesh.

1 /% *= C++ —x *\
2 | ========= | |
3 AN\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 A\ / O peration | Version: 2.1.x |
5 \\/ A nd | Web: www.OpenFOAM.org |
6 \\/ M anipulation | |
e x/
8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "constant";

14 object dynamicMeshDict;

15 }
16 // * % % *x * * * *x K* k K k Kk k Kk k K k K k Kk k Kk k K k Kk k Kk k Kk x * x * x * [/

18 dynamicFvMesh CoSimulationMotionSolverFvMesh;
20 motionSolverLibs ("libfvMotionSolvers.so");
22 CoSimulationMotionSolverFvMeshCoeffs

23 {
24 cellZone cellZone_1; // Rotor
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25 solidBodyMotionFunction rotatingMotion;
26 rotatingMotionCoeffs
27 {

28 CofG (0 0 0);

29 radialVelocity (0 432 0); // in deg/s
0 }

1}

33 solver displacementLaplacian;

34

35 diffusivity uniform;

36

37 frozenDiffusion off;

38

39 frozenPointsZone frozen;
40

1T /] Fkkkkkkkkkkkk ke ok ok k ok k k ok kA kA AR A AR AR AR KKK A Kk k ok ok kkkkkkkkkkkkhkkkkkkkkkkkkxkxxx [/

So all AMI parameters can be set next to ALE settings. At this stage a constant rpm rate value is
expected, what will later be changed to reading the actual value out of the coupling at each time. For
the ALE method only the displacementLaplacian solver is selectable. It represents a simplified

“material” model, which obeys on a simple Laplacian equation. For setting the local mesh stiffness
different diffusivity models, implemented in OpenFOAM, can be used. They will be discussed in detail
at the end of this section.

Next to adding the dynamicMeshDict dictionary to the $EMPIRE_CASE/OF/constant/ folder
additional changes have to be made. Boundary and initial conditions for the mesh deformation have
to be set creating the SEMPIRE_CASE/OF/0/pointDisplacement file. For solving the coupled sim-
ulation an extended version pimpleDyMFsiFoam of the normal pimpleDyMFoam solver was imple-
mented. It includes the EMPIRE API for connection during the coupling procedure. This way point dis-
placements for a in the SEMPIRE_CASE/OF/constant/EmpireDict defined boundary patch are re-
ceived and corresponding surface forces are sent. The SEMPIRE_CASE/empireOF . xml input file is also
necessary. The topoSetDict presented for the pure AMI case located in the $EMPIRE_ CASE/OF /system/
folder also has to be extended. Defined is a fixed amount of points, that must not be moved during the

simulation. These must contain all Stator and AMI points.

] [ *—— *— CH+ —d——— e *\
2 | ========= |
AN\ / F ield | OpenFOAM: The Open Source CFD Toolbox

4 A\ / O peration | Version: 2.1.x

\\/ A nd | Web: www .OpenFOAM. org

\\/ M anipulation |

7 \* */
8§ FoamFile
9 {
10 version 2.0;
11 format ascii;
12 class dictionary;

location "system";
14 object topoSetDict;
15 }
16 // * % % % % % % % % %x x x x *x *x Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk ¥ x *x * *x x x x x x x *x //

17

18 actions
19 (

20 {

name AMI;

2 type faceSet;
action new;

source patchToFace;
25 sourceInfo

NN

I
H
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name "AMI.*";

name frozen;

type pointSet;

action new;

source cellToPoint;

sourcelInfo

{
set cellZone_2; // Stator
option all;

name frozen;
type pointSet;
action add;
source faceToPoint;
sourcelInfo
{
set AMI;
option all;

52);

[ ] kkkk ko ko ko ko ko ko ko ko ko ok ok ko ko ko ko ok ok ok ok ko ko ko ko ok ok ok ko ko ko ko ko Kok ko k)

A pointSet named frozen is created, which must be transformed to a pointZone afterwards,
since this type is required by the pimpleDyMFsiFoam solver. It is done via executing setsToZones
—-noFlipMap after topoSet. The command to consider a “frozen” point Zone must be set at the end of
the dynamicMeshDict file. The entire case structure for step 3/5 including all files is seen in Appendix
E.

To document the effects of all available diffusivity models, OpenFOAM’s documentation does not
provide this, detailed tests with a simplified step 3/5 case were done. It was called own3DPropeller-
CSMDummy. The rotor geometry was simplified to a rod completely located inside the Rotor domain
and the tower was removed. The extreme coarse mesh was built using OpenFOAM’s blockMesh util-
ity. So a clear structured mesh was realized providing the option of simpler visual evaluation. Similar
dimensions were used to guarantee a basic transferability of obtained results to the right step 3/5 case.
The deformation of the “rotor” was simplified to a complete translation in y-direction, means a con-
stant value for all points of maximum 1 m = 100 % was sent back by the meshClientTurbomachinery.
Therefore the out commanded parts of AbstractDataCreator.h seen in Appendix C have been activated.
Results are discussed in the Figures 3.15, 3.16 and 3.17. It should be noticed, that the views are limited to

the rotational domain and that simulations crashed before reaching the maximum deformation, if Ay/y

values are smaller than 100 %.

3.2.4 Turbulence Modeling and Evaluation of Surface Forces etc.

Turbulence is modeled using Reynolds-averaged Navier Stokes equations. This is better known as
RANS turbulence model. In OpenFOAM it can be selected by setting RASModel as simulationType
in the SEMPIRE_CASE/OF/constant/turbulenceProperties file. RAS is short for Reynolds-aver-

aged Simulations, OpenFOAM’s name for the RANS turbulence models. OpenFOAM offers a large
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Figure 3.15: Results of own3DPropellerCSMDummy for testing available diffusivity models in OpenFOAM (1):

Line 1 shows uniform, directional (1 1 1), exponential 0 inverseDistance 1 (rotor) and exponential 0
inverseDistance 1 (stator) are similar. Line 2 points out directional coefficients in x- or z-direction have almost the
same effect, since main motion direction is y. The effect of increased directional coefficients in y-direction can be seen in line 3
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Figure 3.16: Results of own3DPropellerCSMDummy for testing available diffusivity models in OpenFOAM (2):
Line 1 shows the differences between 1inear or quadratic inverseDistance to rotor or stator. The effect of increased
exponential coefficients to rotor or stator is seen in lines 2 and 3
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Figure 3.17: Results of own3DPropellerCSMDummy for testing available diffusivity models in OpenFOAM (3):
With directional only relative differences between values have any effect. Using negative values is inverting the effects

library of RANS turbulence models, summarized e.g. on http://www.openfoam.com/features/

RAS.php. For this purpose the RASModel kOmegaSST was selected via the RASProperties file lo-
cated in the SEMPIRE_CASE/OF/constant/ folder. Detailed information to the RANS k-w-SST turbu-
lence model can be found on http://www.cfd-online.com/Wiki/SST_k-omega_model orin [34,

p. 91 ff].

Initial and inlet boundary values for k and w are required for the simulations. It can be red in [6],
that the “Turbulence intensity (streamwise component) is typically no greater than 0.5 %”. Referencing
to [1] the turbulence intensity I is defined with the root-mean-square of the velocity fluctuations #’ and

the mean free stream velocity .

SIS

[ = (3.1)

The turbulence length scale [ is a physical quantity for the size of large eddies in turbulent flows. It can
be calculated via an empirical relationship containing a characteristic length L, which for internal flows

can be set as hydraulic diameter dj,. For the rectangular shaped wind tunnel the hydraulic diameter is

4A 2bh

This results in a turbulence length scale of
I =0.07L = 0.07d;, = 2.021 m (3.3)
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For standard RANS turbulence models and variations the turbulent kinetic energy k reads

2
k= %(m)Z = 0.0009375 m? (3.4)

and the turbulent dissipation rate ¢

1643k1> 2
e = % — 0.000002334 % (3.5)

With this the specific dissipation rate w becomes

€ 1
= - =0.002489 — .

for the k-w-SST model.

For evaluation of the surface forces due to fluid flow, which are loading parts like blades, tower etc.,
the run-time post-processing tool forces can be integrated. Therefore the following lines simply have to
be added to the $SEMPIRE_CASE/OF/system/controlDict and adjusted for each patch or group of

patches someone is interested in.

[ hmm k= CH+ —h—mmm *\
********* | |
AN\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

AR / O peration | Version: 2.1.x
\\/ A nd | Web: www.OpenFOAM. org
\\/ M anipulation | |

\ % */

FoamFile

{

version 2.0;

format ascii;

class dictionary;
location "system";
object controlDict;

}

I/ % % % % % % % x Kk k x * Kk Ak x Kk k K K K k X K Kk K x K K x x K & x x Kk x x [/

[...]

[/ % % % % %k £ K K Kk £ £ £ £ Kk Kk k K K Kk Kk Kk k k Kk Kk Kk Kk Kk k Kk Kk Kk Kk Kk Kk Kk & [/

functions
{
forcesRotor
{
type forces;
functionObjectLibs ("libforces.so");
patches ("rotor.x");
rhoName rhoInf;
rhoInf 1.23;

CofR (0 0 0);
outputControl timeStep;
outputInterval 1;

}

forcesStatorTower
{
type forces;
functionObjectLibs ("libforces.so");
patches (statorTower);
rhoName rholInf;
rhoInf 1.23;
CofR (0 -1.401 -12.164); // with reference to root
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outputControl timeStep;
outputInterval 1;

}

[/ kkkkkkokkk ok ok ok ok ok ok ok ok ok ok ok ok ok k ok kKA KA KKK A A KA KA KA Kk kkkkkkkkkkkkkkkhkkhkhkhkhkxkxrxxx //

In this example folders $EMPIRE_CASE/OF/forcesRotor/ and $EMPIRE_CASE/OF/forces—
StatorTower/ will be created storing the output files for the group of patches "rotor. ", which

represents the entire rotor, and statorTower. The structure of the output files is as follows.

timestep forces moments
——
t ((F_x F_y F_z) (F_.x F_y F_z) ) ((Mx My Mz) (Mx My Mz))
pressure viscous pressure viscous

Additional interesting tools are yP1usRAS for evaluating the non-dimensional wall distance y+ and

Co for calculating the Courant-Friedrichs-Lewy (CFL) number for each time step.

3.3 Extracts of the Simulation Results

3.3.1 Step 1/5— Steady-state, Pure CFD Simulation of Quasi-Rotating Turbine

Detailed descriptions of simulation step 1/5 concerning structure and aims have been given in previous
sections. The simulation was run on 12 cores x 12 nodes = 144 cores on the CCCSA! using a mesh
similar to the presented one. The rotating domain is exactly the same, while the static one only differs in
the used CAD geometries (cylindrical “wind tunnel” and no tower) but uses identical meshing param-
eters. The full case structure (folders and files) and all OpenFOAM dictionaries containing initial and
boundary conditions as well as all other settings are printed in Appendix E. 5840 iterations were done
until convergence was reached. Only the last iteration output was reconstructed and stored.

Listing 3.11 shows the first and last lines of the file written by OpenFOAM’s runtime post-processing

tool forces.

Time forces (pressure, viscous) moment (pressure, viscous)
(((-21.50751 -407778.1 -94.26324) (-1.554737e-05 -1.336612 0.0005010323)) ((-185.1514 -425763.5 1764.514)
(-6.500869e-05 -15.81094 -0.001081759)))

32 (((5.459842 118247.4 11.62695) (-0.008794198 12.49909 0.03556726)) ((53.46144 125826.1 -546.488)

(0.001023978 -0.9929004 0.01372964)))
3 (((-910.7024 1358483 831.3459) (-0.0002530239 12.53929 0.07043972)) ((189.6956 1191757 -389.2877)
(-0.002169577 5.555696 0.02445003)))

54 (((-357.4434 900380.7 872.7153) (-0.003767295 4.285001 0.05499132)) ((18.0778 770277.8 476.1936)

(-0.001455948 2.425854 0.004979752)))

5 (((320.8226 -345080.4 -467.9927) (-0.003950646 -2.576337 0.03672611)) ((-89.18284 -293975.1 917.7759)
(-0.003454887 -5.498579 0.01152773)))

6 (((325.7734 -501690.6 910.3741) (0.006675572 -2.24143 0.0291424)) ((-41.54943 -420252.6 -1486.756)
(-0.001038873 -9.284118 0.01715174)))

7 (((1.663545 58426.17 439.9702) (0.009782588 1.050038 0.02483369)) ((12.93046 51985.52 -858.3709)
(-0.000437157 -8.298967 0.01659759)))

8 (((-94.54208 227761.4 -475.0339) (-0.001013052 2.034458 0.0264744)) ((26.82292 191461.1 588.689)
(-0.00134011 -6.729351 0.002500129)))

1The CCCSA is the Compute Cluster of the Chair for Structural Analysis. It has 14 compute nodes, each with two Sockets (2x
Intel E5-2667). As interconnect a QDR InfiniBand is used. The E5-2667 is a six-core Sandy Bridge-EP CPU, hence 168 CPUs are
available in total.

63



Bachelor’s Thesi . .
cﬁifmﬁ.g Lo o0 3.3. Extracts of the Simulation Results

9 (((8.538126 6873.662 -426.8004) (-0.003785352 0.9519546 0.03009518)) ((2.139069 7192.961 595.9179)
(-0.002218444 -7.1538 -0.004722653)))

10  (((24.58096 -101661 308.4132) (-0.006033731 0.2426372 0.03315586)) ((-7.558577 -81815.69 —320.4547)
(-0.002294528 -8.323915 0.00508023)))

3 [...]

5831 (((0.2150052 -860.6512 -1.492614) (-0.0003713517 -0.8254131 0.008689564)) ((0.09669951 375.5506
-2.616494) (-0.0008372611 —-17.68448 0.0005596755))

65832  (((0.2149524 -860.6504 -1.493572) (-0.0003699706 -0.8254171 0.008686745)) ((0.09698376 375.5509

-2.618259) (-0.0008370657 -17.68449 0.0005563564)))

5833 (((0.2148756 -860.6495 -1.494397) (-0.0003685268 -0.8254214 0.008685381)) ((0.09727129 375.5509
—2.619341) (-0.0008367502 —-17.68448 0.0005564307))

5834 (((0.2147891 -860.6488 -1.495193) (-0.0003662133 -0.8254253 0.008681771)) ((0.09757823 375.5504
-2.619312) (-0.000836447 -17.68448 0.0005565244)))

5835 (((0.2147028 -860.6479 -1.496016) (-0.0003644576 -0.8254287 0.008679785)) ((0.09787465 375.5501
-2.619223) (-0.0008360923 -17.68448 0.0005586451))

05836 (((0.2146228 -860.6472 -1.496888) (-0.0003622476 -0.8254317 0.008677596)) ((0.0981603 375.5497

-2.619429) (-0.0008358709 -17.68448 0.0005585455)))

5837 (((0.2145442 -860.6461 -1.497666) (-0.0003601949 -0.8254349 0.008675997)) ((0.09841614 375.5492
-2.620731) (-0.0008357033 -17.68447 0.0005554207))

5838 (((0.2144668 —-860.6452 -1.498235) (-0.0003570651 -0.8254377 0.008673849)) ((0.09866723 375.5491
—2.622227) (-0.0008353555 -17.68447 0.0005599744)))

35839 (((0.2144065 -860.6444 -1.498834) (-0.0003556541 -0.8254399 0.008670852)) ((0.09894338 375.5489

-2.622553) (-0.0008351773 -17.68446 0.0005628843))
5840 (((0.2143465 -860.6435 -1.499433) (-0.0003526077 -0.8254437 0.008669539)) ((0.09921569 375.5485
—2.622792) (-0.000835019 -17.68446 0.0005643102)))

The measurement data of NREL's experiments (cf. Fig. B.1 and B.2, Appendix B, pp. 80) are sum-
marized to four representative values: minimum, maximum, mean value and standard deviation. This
is necessary, because the real time history deals with big fluctuations, which can not be matched to a
specific position of the wind turbine rotor. So the created range between minimum and maximum will
be compared to the simulation result for the low speed shaft torque. It is calculated via summation of
My, due to pressure forces and My, due to viscous forces. Figure 3.18 contains all results. Deviations of

20.5217 % resp. 21.5750 % from the mean values were achieved.

rep. 0 ‘ ‘ ‘ ‘ ' simulation
41.3144 217.1080 296.9291 376.7502: :494.8885
i ‘ ‘ | | | |: 357.86404 | |
49.5!527 | | 214.1808  294.3565 375322 473.6768
rep. 1 mi;n ' ' m;ean - std ' me%m @ean + stéi ' max

0 50 100 150 200 250 300 350 400 450 500

Figure 3.18: NREL's experimental data for the low speed shaft torque vs. simulation output of runtime post-processing tool forces
(step 1/5, MRFSimpleFoam, 5840 iterations)

To indicate the reaching of right simulation results a simple visual validation was done at first. There-
fore simulated pressure and velocity fields at 80 % radius = 4.0232 m presented in [17] were compared

to the own ones. To be able to do this, the same color legend including pressure and velocity ranges was

*x _ P

5 ) , so values had

set. OpenFOAM uses for its calculations pressure normalized with the density ( p

to be converted first.

; —0.3kP. 2 0.25 kP 2
pr. = Pmin _ kga N 244 pro = Pmax kga ~ 203 3.7)
p 123 % s P 123 & s
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Furthermore the MRFSimpleFoam solver outputs absolute velocity values u,ps. But relative velocity
values u,, are required for the comparison, so the velocity field also had to be converted first using the

“Calculator” filter in paraFoam.

. rad T
Upe] = Upps — (w X X)  with @ = (0,7.5489 —,0
S (3.8)

= |ure1| = \/(uabs - wyZ)Z + vgbs + (wabs + wyx)Z

Figure 3.19 shows the results.

Figure 3.19: Pressure and velocity field around a blade at 80 % radius = 4.0232 m: Own simulation results (step 1/5,
MRFSimpleFoam, 5840 iterations) vs. results taken fron [17] (left)

Most importance comes to evaluation of the normalized pressure coefficients c,. Measurement posi-
tions are illustrated in Figure 2.15 on page 36. To extract the appropriate data from the simulation results,
some semiautomatic manipulations have to be done. Cutting planes on the corresponding radial posi-

tions are used to export the surface pressure values (only patch blade 1 is enabled) from paraFoam to
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.csv files. These files are used to calculate ¢, over % chord with a MATLAB script. Normalized was with

relation to the maximum achieved value.

cp = Pt (3.9)

max ( Pcut )

Measurement data is illustrated again via minimum, maximum, mean value and its standard deviation.
As an example the results for position 46.6 % radius = 2.3435 m can be seen in Figure 3.20, while

Appendix F holds figures for all five radial positions.
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Figure 3.20: Normalized pressure coefficients at 46.6 % radius = 2.3435 m: Simulation results (step 1/5, MRFSimpleFoam, 5840 it-
erations) vs. NREL UAE Phase VI (sequence H, yaw angle 0°, wind tunnel velocity 5 ¥, repetition 0) measurements. Measurement
data is represented by minimum, maximum and mean value with its standard deviation

It should be noticed, that upper (lower) values represent the lower (upper) blade surface, since here
overpressure (vacuum) dominates and results in positive (negative) ¢, values. Furthermore could the
big min.-max. range at 56 % upper surface be due to break-off in this region.

This last evaluation is used for further investigations with different mesh and solver settings, which
are still in progress. The coarsest possible mesh with still correct pressure field should be figured out

this way.

3.3.2 Step 2/5 - Transient, Pure CFD Simulation of Full, Rotating Turbine

A transient, pure CFD simulation of the full wind turbine rotating at constant rpm rate, step 2/5, was

introduced in detail above. Aims of this simpler simulation were also discussed. The necessary file
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structure for OpenFOAM is stored in Appendix G. It is the same as for the following two steps, since
pimpleDyMFoam simply ignores components needed for mesh deformation. At this stage of the de-
velopment of a fluid-structure-signal co-simulation step 2/5 was only run with different other meshes
than the presented one. Reason was to simply validate the functionality with all linked features at an
earlier point of time. Furthermore a nominal wind speed of 15 i} was used that time. So usable results
have not been produced, because the used meshes simply were too coarse. In consequence the obtained
low speed shaft torque differs enormous from NREL's measured values. This is due to a too large non-
dimensional wall distance y+ in keeping with wrong modeling of the boundary layer effects and of stall

effects occurring at this speed.

Next to the proof of functionality one interesting flow phenomenon can be shown applying the sim-
ulation results: At the tip of both rotating blades vortices are developing, which get carried downstream
with the main flow. This phenomenon is visualizable by generating an isosurface for a velocity value
slightly bigger than the mean free stream value. Figure 3.21 shows the resulting helix, an isosurface
for a velocity of about 15.6 . The full transient development can be seen in Appendix H as timeline
or online in the Youtube video http://www.youtube.com/watch?v=w-a0szPz5vY. Video and pic-

tures were generated with paraFoam using the “Calculator” filter to compute the velocity magnitude

for every cell and the “Contour” filter to finally create the isosurface.

© 4

Figure 3.21: Vortices developing at the rotating blades’ tip and getting carried downstream with the main flow are visualized
using an isosurface of |u| ~ 15.6 2. Disturbance due to reflexions on the AMI can also be seen
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3.3.3 Step 3/5 - One-Way Coupling with predefined Displacements

Step 3/5, one-way coupling with the substitutional “CSM” client meshClientTurbomachinery to realize
predefined displacements independent of acting fluid forces, was also run on older meshes at this stage.
They were generated with STAR-CCM+ or OpenFOAM’s snappyHexMesh tool. Aim was to check

different functionalities:
1. Coupling EMPIRE,

2. Mapping of surface forces and displacements between non-matching grids of CFD and “CSM”

client,
3. Figuring out the most suitable diffusivity model for realizing mesh deformation,

4. Investigating the parameter range for the diffusivity models and

1

. Observing the development of the mesh quality during deformation using the tool checkMesh.

Coupling was done after fixing different problems concerning the mapping. The results for point 3
and 4 can be summarized to the statement, that maximum deformation values whereby OpenFOAM
crashes are achieved with the diffusivity model directional (1 100 1) and an iterative adjusted
exponential inverseDisatance independent of the used mesh. Only the absolute reached values
from few centimeters to over 20 cm are depending. Point 6 states, that fatal mesh errors occur few time
steps and deformation values before OpenFOAM finally crashes. So mesh quality has to be monitored
during the whole deformation procedure. Just as a footnote the full OpenFOAM file structure with all

dictionaries is available in Appendix G.
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Figure 3.22: Example for parabolic dummy deformation of a blade with meshClientTurbomachinery until OpenFOAM crashes
(Mesh from snappyHexMesh)
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Conclusion and Outlook

All applicable features have been developed and assembled to until now a one-way coupling solution
for simulating NREL’s UAE Phase VI wind turbine at full scale, including a RANS k-w-SST turbulence
model. Critical points, like surface mesh resolution, y+ or the used diffusivity model etc., are now well-
known and can so be handled with special attention in further developments. The geometry of the full
wind turbine was realized using available and estimated data, as well as adaption and evaluation of
measurement data available in an online database.

Based on all made achievements and experiences 2D cuts through the blade at selected positions and
additional available wind tunnel test datum for the S809 airfoil will now as well as the open source tool
Xfoil from the Massachusetts Institute of Technology (MIT) be used to converge surface mesh dimen-
sions and wall functions. Afterwards step 1/5 will be repeated until all parameters and the 3D mesh are
set trying to be as coarse as possible and at the same time keeping the pressure field the same and right
one. Step 2/5 can be canceled, since it was only for testing the AMI environment, and proceeded next
with step 3/5 and 4/5.

Until now all developments were focused on the CFD client, OpenFOAM. Challenges like imple-
menting the CSM client Carat++, adding with MATLAB the third code for gearbox/generator and fi-

nally doing the full simulation will follow.
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MATLAB Script for Blade Geometry

Generation

The MATLAB script for generating spatial points defining the blade surface is presented. In a next

step they are imported in CATIA V5 via Microsoft Excel macro and a part is designed using splines.

Necessary input files, like normalized S809 airfoil data, are also appended.

Listing A.1: bladeCrossSections.m

5% —— - -

clc; clear all;

% ———= - - ——— - - ——— - - -
% —-—- settings ———--—-—mm
% scale factor

SCFAC = 1000; % here in mm/m

% pitch angle

PITCH = 3; % in degree

o

[ —
S

o

—-—-— provide basic data
S809 airfoil

temp = importdata(’S809Airfoil.dat’);

S809 = temp.data;

clear temp;

% Geometry definition

temp = importdata (’geometryDefinition.dat’);
GEODEF = temp.data;

clear temp;

% Cylinder "airfoil"

CYL(:,1) = S809(:,1);

CYL(1:31,2) = - sqgrt(0.25 - (S809(1:31,1) - 0.5)
CYL(32:62,2) = sqgrt(0.25 - (S809(32:62,1) - 0.5)

o

o

o
s

h2);
125

o°

——— generate and export geometries

figure;
for i = [l:length (GEODEF) ]
if GEODEF (i,2) ==
GEO = CYL;
GEO(:,3) = SCFAC » GEODEF (i,4) * (GEO(:,1

GEO(:,2)
GEO(:,1) = SCFAC * GEODEF (i, 3);

temp = GEO(:,3);

SCFAC * GEODEF (i,4) * (-GEO(:,

) — GEODEF (i,7));
2)) i
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38 GEO(:,3) = GEO(:,3) x cosd(GEODEF(i,6) + PITCH) + GEO(:,2)...
39 * sind (GEODEF (i, 6) + PITCH);
40 GEO(:,2) = - temp * sind(GEODEF (i,6) + PITCH) + GEO(:,2)...
41 * cosd (GEODEF (i, 6) + PITCH);
42 clear temp;
43
44 elseif GEODEF (i,2) == 1
45 GEO = S809;
16
47 GEO(:,3) = SCFAC * GEODEF (i,4) = (GEO(:,1) — GEODEF(i,7));
48 GEO(:,2) = SCFAC » GEODEF (i,4) * (-GEO(:,2));
49 GEO(:,1) = SCFAC  GEODEF (i,3);
50
51 temp = GEO(:,3);
52 GEO(:,3) = GEO(:,3) x cosd(GEODEF (i,6) + PITCH) + GEO(:,2)...
53 % sind (GEODEF (i, 6) + PITCH);
54 GEO(:,2) = - temp * sind(GEODEF (i,6) + PITCH) + GEO(:,2)...
55 * cosd (GEODEF (i, 6) + PITCH);
56 clear temp;
57
58 elseif GEODEF (i,2) == 2
59 GEO = S809(1:3:62,:);
60 GEO(21,:) = S809(62,:);
61
62 GEO(:,3) = SCFAC * GEODEF (i,4) * (GEO(:,1) - GEODEF (i, 7));
63 GEO(:,2) = SCFAC * GEODEF (i,5) * (-GEO(:,2));
64 GEO(:,1) = SCFAC * GEODEF (i,3);
65
66 temp = GEO(:,3);
67 GEO(:,3) = GEO(:,3) * cosd(GEODEF (i,6) + PITCH) + GEO(:,2)...
68 * sind (GEODEF (i, 6) + PITCH);
69 GEO(:,2) = - temp * sind(GEODEF (i,6) + PITCH) + GEO(:,2)...
70 % cosd (GEODEF (i, 6) + PITCH);
71 clear temp;
72
73 else
74 disp(’error’);
75 end
76
77 xlswrite ('bladeCrossSections.xls’,GEO, [’ crossSection’ ,num2str(i)]);
78 $dlmwrite ([’bladeCrossSection’,num2str(i),’.txt’], GEO, ’delimiter’,...
79 % '\t’, ’precision’, 9);
80 hold on;
81 plot (GEO(:,3), GEO(:,1), ’"r’,GEO(:,3), GEO(:,2), 'b");
82 end

Listing A.2:
1 Node Airfoil RNodes Chord Thickness AeroTwst AeroAxis
2 1 0 0.508 0.218 0.218 0.0 0.50
3 2 0 0.660 0.218 0.218 0.0 0.50
4 3 0 0.883 0.183 0.183 0.0 0.50
5 4 1 1.257 0.737 NaN 20.040 0.30
6 5 1 1.343 0.728 NaN 18.074 0.30
7 6 1 1.510 0.711 NaN 14.292 0.30
8 7 1 1.648 0.697 NaN 11.909 0.30
9 8 1 1.952 0.666 NaN 7.979 0.30
10 9 1 2.257 0.636 NaN 5.308 0.30
11 10 1 2.343 0.627 NaN 4.715 0.30
2 11 1 2.562 0.605 NaN 3.425 0.30
1312 1 2.867 0.574 NaN 2.083 0.30
14 13 1 3.185 0.542 NaN 1.115 0.30
15 14 1 3.476 0.512 NaN 0.494 0.30
16 15 1 3.781 0.482 NaN -0.015 0.30
1716 1 4.023 0.457 NaN -0.381 0.30
18 17 1 4.086 0.451 NaN -0.475 0.30
v 18 1 4.391 0.420 NaN -0.920 0.30
20 19 1 4.696 0.389 NaN -1.352 0.30
21 20 1 4.780 0.381 NaN -1.469 0.30
2 21 2 4.938000 0.365050 0.365050 -1.686288 0.300000
23 22 2 4.960750 0.360511 0.365000 -1.717574 0.295647
24 23 2 4.983500 0.349601 0.360000 -1.748861 0.278263
25 24 2 5.006250 0.329376 0.300000 -1.780148 0.238827
26 25 2 5.017625 0.312436 0.230000 -1.795791 0.200131
27 26 2 5.029000 0.267577 0.030000 -1.811434 0.069038

Airfoil.dat

1 x/Chord y/Chord
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1.00000 0.00000
0.99612 0.00024
0.98446 0.00065
0.96509 0.00054
0.93852 -0.00075
0.90545 -0.00370
0.86677 -0.00859
0.82348 -0.01559
0.77668 -0.02466
0.72752 -0.03558
0.67710 -0.04792
0.62649 -0.06112
0.57663 -0.07442
0.52837 -0.08697
0.48234 -0.09756
0.43832 -0.10484
0.39541 -0.10842
0.35328 -0.10866
0.31188 -0.10589
0.27129 -0.10060
0.23175 -0.09326
0.19362 -0.08447
0.15752 -0.07467
0.12397 -0.06408
0.09325 -0.05301
0.06579 -0.04199
0.04223 -0.03144
0.02321 -0.02162
0.00933 -0.01272
0.00140 -0.00498
0.00000 0.00000
0.00037 0.00275
0.00575 0.01166
0.01626 0.02133
0.03158 0.03136
0.05147 0.04143
0.07568 0.05132
0.10390 0.06082
0.13580 0.06972
0.17103 0.07786
0.20920 0.08505
0.24987 0.09113
0.29259 0.09594
0.33689 0.09933
0.38223 0.10109
0.42809 0.10101
0.47384 0.09843
0.52005 0.09237
0.56801 0.08356
0.61747 0.07379
0.66718 0.06403
0.71606 0.05462
0.76314 0.04578
0.80756 0.03761
0.84854 0.03017
0.88537 0.02335
0.91763 0.01694
0.94523 0.01101
0.96799 0.00600
0.98528 0.00245
0.99623 0.00054
1.00000 0.00000
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Used Measurement Data Part 1:
Root Flap Bending Moments and Low

Speed Shaft Torque

Part 1 of the used data taken from [26] is presented. It originates from measurements during NREL's
UAE Phase VI sequence H test runs with a yaw angle of 0°. Seen are the root flap bending moments as
well as the low speed shaft torques plotted for different wind tunnel velocities over time. Additional

information is included.
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Point Displacement Definition for the
Dummy CSM Client
meshClientTurbomachinery

The dummy CSM client meshClientTurbomachinery is sending back independent point displacement
data according to the definition in the AbstractDataCreator class. Parabolic (used during step 3/5) and

constant displacement (used for the test case own3DPropellerCSMDummy) was implemented.

Listing C.1: AbstractDataCreator.h

/******************************************************************************//**
x \file AbstractDataCreator.h
« This file holds the class of the AbstractDataCreator

e ok e o K ok K ok Kk K K K Kk KKk K kK ok Kk Kk Kk ok ok ok ok ok ok ok ok o o ok o ok o ok ok ok ok ko ok K ok Kk Kk K ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

#ifndef ABSTRACTDATACREATOR_H_
#define ABSTRACTDATACREATOR_H_

[xkxkkxkxKkk /[ **
* \brief This is the superclass of all solvers of the testAdapter
Kk kkkkxkkkKkx/

#include <string>
#include <iostream>
#include <math.h>
#include <stdlib.h>

using namespace std;

class AbstractDataCreator ({
protected:

int numNodes;

int numElems;

int nodesPerElem;

double *nodeCoors;

int xnodeNumbers;

int xelemTable;

double (*xfuncX) (double, double, double);

double (*xfuncY) (double, double, double);

double (*funcZ) (double, double, double);

double (*funcT) (double, int);

double (*funcXT) (double, double, double, double);
double (*xfuncYT) (double, double, double, double);
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35 double (*funcZT) (double, double, double, double);
36
37
38 [ ]
39
40
41 static double meshClientTurbomachineryX (double x, double y, double z) {
42 return 0.0;
43 }
44 static double meshClientTurbomachineryY (double x, double y, double z) {
45 // NREL UAE Phase VI wind turbine (parabolic)
46 double uMax = -1;
47 double xMin = 0.25; // > 0 !!!
48 double xMax = 5.10; // > 0 !!!
49 double deltay;
50
51 if ((x >= xMin) && (x <= xMax)) {
52 deltaY = uMax * (1 / ((xMax - xMin) % (xMax - xMin)) * x * x —
53 (2 * xMin) / ((xMax - xMin) * (xMax — xMin)) * x +
54 (xMin * xMin) / ((xMax - xMin) * (xMax - xMin)));
55 }
56 else if ((x <= -xMin) && (x >= —-xMax)) {
57 X = -X;
58 deltaY = uMax * (1 / ((xMax - xMin) * (xMax — xMin)) * x * x —
59 (2 * xMin) / ((xMax - xMin) * (xMax - xMin)) * x +
60 (xMin * xMin) / ((xMax — xMin) * (xMax - xMin)));
61 }
62 else {
63 deltaY = 0;
64 }
65 /%
66 // own3DPropellerCSMDummy (constant)
67 double deltaY = -0.3; // = uMax
68 */
69 return deltay;
70 }
71 static double meshClientTurbomachineryZ(double x, double y, double z) {
72 // NREL UAE Phase VI wind turbine (parabolic)
73 double deltaZ = 0.0;
74 [
75 // own3DPropellerCSMDummy (constant)
76 double deltaz = 0.0;
77 %/
78 return deltaz;
79 }
80
81 static double meshClientTurbomachineryT (double space, int timestep) {
82 double timestepfac = 0.02;
83 double deltaXYZofT;
84
85 if (timestep <= 0) {
86 deltaXYZofT = 0;
87 }
88 else {
89 deltaXYZofT = space * (timestep - 0) x timestepfac;
90 }
91 return deltaXYZofT;
92 }
93
94
95 public:
96 [xkKkkxxkK /[ x*
97 RS EEEES RS SRS S SRS S S SRR SRR RS S SRS SESEEEEEEEEEEEEEE SRR R R R SRR EEEEEEEEEEES]
98 * \brief Constructor
99 ok kok ok kkkokkk/
100 AbstractDataCreator (int _numNodes, int _numElems, int _nodesPerElem, double x_nodeCoors,
101 int x_nodeNumbers, int x_elemTable, std::string function)
102 numNodes (_numNodes), numElems (_numElems), nodesPerElem(_nodesPerElem), nodeCoors (
103 _nodeCoors), nodeNumbers (_nodeNumbers), elemTable(_elemTable) {
104
105
106 [...]
107
108
109 else if (function == "meshClientTurbomachinery") {
110 funcX = meshClientTurbomachineryX;
111 funcY = meshClientTurbomachineryY;
112 funcz = meshClientTurbomachineryZ;
113 funcT = meshClientTurbomachineryT;
114 }
115
116 else {
117 std::cerr << std::endl
118 << "AbstractDataCreator::AbstractDataCreator: wrong function type!"
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<< std::endl;
exit (EXIT_FAILURE) ;
}
}
[xkkkxkkKk ][ x*

}i

Kk hkhkhkhkhkhkhkhkhkhkhhkhhkhkhkhkhkhkhk bk kA Ak Ak dhkdhkdkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk kA kA dkhkdk bk hkkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhhhhxhxx
* \brief Destructor
*kkkkkxkkkkx/
virtual ~AbstractDataCreator () {
//empty

[ xkxkxkxk /[ x*
LR RS RS E SRS SRS S S S SSSSESES SRR RS SSSSRE S SRS SRS EEEEE SRR EEE SRR SR EEEEEEEEES]
x \brief Create data on a mesh
* \param[out] data is the created (it is specified to be vector instead of scalar)
ook Kk Kk K Kk ok

virtual void create(double xdata) {};

[xkkkxkkKk /[ x*
LR RS RS R RS EE RS E S EEEEEEEEEE SRR SRR R RS E SRS R R SRR SRR EREREEEEEEEEEEEEEEEEEEEEES]
x \brief Create data on a mesh
* \param[out] data is the created (it is specified to be vector instead of scalar)
* \param[in] time step
ok ok kK kK Kk [

virtual void create(double xdata, int timestep) {};

[xkxkxKkxKk ) [ **
Kk hkhkhkhkhkhhkhkhhhhhhkhkh Ak hhkhhh bk hhhhhhkhhkhhkhkhkhhkhhkhhkhkhkhkhkhkhkhhkhhkhkhrhkhkhhkhhkhhkhhkhkhkhkrhkdhkdhkhhkkkkkx*k
x \brief Create data on a mesh
* \param[out] data is the created (it is specified to be vector instead of scalar)
* \param[in] current Time
ook Kk Kk K Kk ok

virtual void create (double *data, double tau)({};

155 #endif /» ABSTRACTDATACREATOR_H_ +/
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Detailed Settings for STAR-CCM+

Detailed settings for generating the fluid mesh with version 7.06 of CD-adapco’s STAR-CCM+ are pre-
sented in form of screenshots. The resulting mesh is exported as file XXX . ccm, imported in OpenFOAM
via ccm26ToFoam XXX.ccm and validated with the tool checkMesh, whose output concerning the

presented mesh is also appended.
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Screenshots part 2 providing detailed STAR-CCM+ settings. To be read top-down in portrait mode
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Screenshots part 4 providing detailed STAR-CCM+ settings. To be read top-down in portrait mode

Figure D.4
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Screenshots part 5 providing detailed STAR-CCM+ settings. To be read top-down in portrait mode
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Screenshots part 6 providing detailed STAR-CCM+ settings. To be read top-down in portrait mode
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1/ \
2 | | |
31 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
41 \\ / O peration | Version: 2.1.x

5 | \\/ A nd | Web: www.OpenFOAM.org

6 | \\/ M anipulation | |
7 Nk */
8 Build : 2.1.x-73ed96d3e552

9 Exec : checkMesh

10 Date : Mar 13 2013

11 Time : 16:20:59

12 Host : "head"

13 PID 1 29094

14 Case : /home/christopher/starccm+/pimpleDyMFoam/OF

15 nProcs : 1

16 sigFpe : Floating point exception trapping - not supported on this platform
17 fileModificationChecking : Monitoring run-time modified files using timeStampMaster
18 allowSystemOperations : Disallowing user-supplied system call operations

20 // * * * Kk Kk Kk Kk Kk Kk Kk Kk K K K K Kx x x *x Kk Kk Kk Kk Kk Kk K* ¥ ¥ ¥ ¥ x x x x x x x //

21 Create time
23 Create polyMesh for time = 0
25 Time = 0

27 Mesh stats

28 points: 11427259

29 faces: 125121275
30 internal faces: 121203137
31 cells: 61581103

32 boundary patches: 9

33 point zones: 1

34 face zones: 2

35 cell zones: 4

37 Overall number of cells of each type:

38 hexahedra: 0
39 prisms: 0
40 wedges: 0
41 pyramids: 0
12 tet wedges: 0
43 tetrahedra: 61581103
44 polyhedra: 0

46 Checking topology...

47 Boundary definition OK.
48 Cell to face addressing OK.
49 Point usage OK.

50 Upper triangular ordering OK.

51 Face vertices OK.

52 «Number of regions: 2

53 The mesh has multiple regions which are not connected by any face.
54 <<Writing region information to "0/cellToRegion"

56 Checking patch topology for multiply connected surfaces

57 Patch Faces Points Surface topology

58 rotorHub 23615 12247 ok (non-closed singly connected)
59 AMI1 251282 125706 ok (non-closed singly connected)
60 rotorBlade3 1455829 728102 ok (non-closed singly connected)
61 rotorBladel 1457100 728737 ok (non-closed singly connected)
62 statorTower 165058 82693 ok (non-closed singly connected)
63 statorWall 281828 141529 ok (non-closed singly connected)
64 inlet 32628 16571 ok (non-closed singly connected)
65 outlet 32628 16571 ok (non-closed singly connected)
66 AMI2 218170 109146 ok (non-closed singly connected)

68 Checking geometry...
69 Overall domain bounding box (-18.02892 -38.608 -12.164) (18.02892 19.304 11.9052)

7 Mesh (non-empty, non-wedge) directions (1 1 1)

71 Mesh (non-empty) directions (1 1 1)

72 Boundary openness (-3.694238e-14 -3.537392e-15 -5.59639e-15) OK.

73 Max cell openness = 3.279989%e-16 OK.

74 Max aspect ratio = 13.15011 OK.

75 Minimum face area = 1.806004e-07. Maximum face area = 0.1441349. Face area magnitudes OK.
76 Min volume = 8.444738e-11. Max volume = 0.01196118. Total volume = 50256.59. Cell volumes OK.
77 Mesh non-orthogonality Max: 79.92787 average: 15.72573

78 *Number of severely non-orthogonal faces: 5.

79 Non-orthogonality check OK.

80 <<Writing 5 non-orthogonal faces to set nonOrthoFaces

81 Face pyramids OK.

82 Max skewness = 0.7190635 OK.
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Coupled point location match
Mesh OK.

End

(average 0)

OK.
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. E

Full Case Structure with All
OpenFOAM Dictionaries for Step 1/5

Figure E.1 on the next page gives an overview of the fully needed case structure to do a step 1/5 sim-
ulation. Included are also output files of most interest. The subordination in $SEMPIRE_CASE holds
only the general case structure of all five steps. All input files, as they were used with the presented

MRFSimpleFoam results, are plotted here.

Listing E.1: $SEMPIRE_CASE/OF/0/k

1/ k== *— CH++ —x ———x\
2 | ========= | |
31 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
41 \\ / O peration | Version: 2.1.x |
5 | \\ / A nd | Web: www .OpenFOAM. org |
6 | \\/ M anipulation | |
7 \x——— ———%/
8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volScalarField;

13 location "o";

14 object k;

15}

16 // % % % K K Kk Kk Kk Kk Kk Kk Kk K K Kk Kk Kk x Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk k x x x x x x [/
18 dimensions [02 -20000];
20 internalField uniform 0.0009375;

22 boundaryField

23 {

24 inlet

25 {

26 type fixedvValue;

27 value $internalField;
28 }

29

30 outlet

31 {

32 type inletOutlet;

33 inletValue $internalField;
34 value $internalField;
35 }
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- EMPIRE_CASE
|—. OF
-
L x
— nuSgs
—nut
— omega
— P
LU

—' constant
—‘ polyMesh
L

boundaryEdit

— MRFZones

— RASProperties

— transportProperties
'— turbulenceProperties

—- forcesRotor
-wo
L

forces.dat

— forcesStatorTower

I_-o
L

forces.dat

—' system

controlDict
decomposeParDict
fvSchemes
fvSolution
topoSetDict

)]

— MRFSimpleFoam. log
'— ReadMeOpenFOAM

Figure E.1: Full case structure for step 1/5 using MRFSimpleFoam with all OpenFOAM dictionaries and output files of most
interest
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37 "stator.x"
38 {
39 type slip;
40 }
11
2 "rotor.x"
13 {
44 type kgRWallFunction;
45 value $internalField;
46 }
47
48 "AMI.x"
19 {
50 type cyclicAMI;
51 value $internalField;
52 }
53}
54

55 [/ kkkkkkkkkkkkkkkkkkkkhhkk ok kkkkhkhkhkhkhkhhkhkkkkkkkhkkhkkkkkkhxhkhkkhkkkkxkkxkxrx //

Listing E.2: $EMPIRE_CASE/OF/0/nuSgs

1 /% *— CH++ —x *\
2 | ========= | |
30 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
41 A\ / O peration | Version: 2.1.x |
5 | \\ / A nd | Web: www.OpenFOAM. org |
6 | \\/ M anipulation | |
7 \* */
8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volScalarField;

13 location "o";

14 object nutsgs;

15}

16 // % % % K Kk Kk Kk Kk Kk Kk Kk K K K Kk Kk Kk x Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk x x x x x x [/
17

18 dimensions [02-10000];

19

20 internalField uniform 0;

21

22 boundaryField

23 {

24 inlet

25 {

26 type calculated;

27 value uniform 0;

28 }

29

30 outlet

31 {

32 type calculated;

33 value uniform 0;

34 }

35

36 "stator.x"

37 {

38 type calculated;

39 value uniform 0;

40 }

11

12 "rotor.x"

13 {

44 type nutUSpaldingWallFunction;

45 value uniform 0;

46 }

47

48 "AMI.x"

19 {

50 type cyclicAMI;

51 value uniform 0;

52 }

53}

54

55 [/ kkkkkkkkkkkkkkkkkkkkhkkkkkhkhkhkhkhkkhkkhkhhkhhkkhkkkkkhkkkkkkhkkkhxkhkkkkkkkxkxkxrx //

Listing E.3: $SEMPIRE_CASE/OF/0/nut
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1/ \
2| = = | |
3 1 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
41 \\ / O peration | Version: 2.1.x |
5 | \\/ A nd | Web: www . OpenFOAM. org |
6 | \\/ M anipulation | |
7 \*— */
8 FoamFile

9 1
10 version 2.0;
11 format ascii;
12 class volScalarField;
13 location "o";
14 object nut;

15}
16 // % % % % Kk Kk Kk Kk Kk Kk Kk Kk Kk K Kk x x x Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk * * * x x x x x x [/

17

18 dimensions [02 -1 000 07;
19

20 internalField uniform 0;

21

22 boundaryField

23 {

24 inlet

25 {

26 type calculated;
27 value uniform 0;
28 }

29

30 outlet

31 {

32 type calculated;
33 value uniform 0;
34 }

35

36 "stator.x"

37 {

38 type calculated;
39 value uniform 0;
40 }

41

42 "rotor.x"

43 {

44 type nutkWallFunction;
45 value uniform 0;
46 }

47

48 "AMI. "

49 {

50 type cyclicAMI;
51 value uniform 0;
52 }

53 }

54

55 [/ kkkkkokkokkokokokok ok ok ok ok ok ok ok ok ok okokokkokk ok kkk Kk kKKK KA A AKX AR AR KKK KKk kkkkkkkkkkkkkkkhkhknkn [/

Listing E.4: SEMPIRE_CASE/OF/0/omega

1 /*——— —— —— —— —*— CH++ —x* —— —— ————————— *\
2| | |
3| F ield | OpenFOAM: The Open Source CFD Toolbox |
4| O peration | Version: 2.1.x |
5 | A nd | Web: www .OpenFOAM. org |
6 | M anipulation | |
7 \ % */
8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volScalarField;

13 location "o";

14 object omega;

15 }

16 // % % % Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk K K Kk x *k Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk * * * x x x x x x [/
17

18 dimensions [00 -1 000 O01;

20 internalField uniform 0.00248945;

22 boundaryField
23 {
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24 inlet
25 {
26 type fixedvalue;
27 value SinternalField;
28 }
29
30 outlet
31 {
32 type inletOutlet;
33 inletValue $internalField;
34 value $internalField;
35 }
36
37 "stator.x"
38 {
39 type slip;
10 }
1
42 "rotor.x"
43 {
44 type omegaWallFunction;
45 value SinternalField;
16
47 }
48
49 "AMI. x"
50 {
51 type cyclicAMI;
52 value $internalField;
53 }
54}
55

56 [/ kkkkkkkkkkkkkkkkkkkkhkkkkkhkkhkhkhkkhkkhhhkhkkhkkkhkkhkkhkkhkhkkkhxkhkhkkhkkkkxkkxkxrx //

Listing E.5: SEMPIRE_CASE/OF/0/p

1 /% *— CH++ —* ———x\
2 | ========= | |
3 1 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
41 \\ / O peration | Version: 2.1.x |
5 | AN\ A nd | Web: www.OpenFOAM. org |
6 | \\/ M anipulation | |
7 \x——— - - - - - ———%/
8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volScalarField;

13 location "o";

14 object P

15}

16 // % % % % % % Kk x K x Kk x Kk x Kk x Kk x Kk *x Kk x Kk x Kk x Kk *x Kk x Kk x * x * x * //
17

18 dimensions [02-20000];
19

20 internalField uniform 0;

21

22 boundaryField

23 {

24 inlet

25 {

26 type zeroGradient;
27 }

28

29 outlet

30 {

31 type fixedvalue;
32 value uniform 0;
33 }

34

35 "stator.x"

36 {

37 type slip;

38 }

39

40 "rotor.x"

41 {

2 type zeroGradient;
13 }

44

45 "AMI.x"
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46 {
47 type cyclicAMI;
48 value $internalField;
49 }
50 }
51

52 [/ kkkkkkkkkkkkkokkokokokokokokokokokokkokkkkkk Kk kKA KKK XA XA KA KRR KKKk kkkkkkkkkkkkkkkhkhknkk [/

Listing E.6: SEMPIRE_CASE/OF/0/U

1/ %— —%x— CH++ —* - *\
2 | ========= | |
3 1 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 A\ / O peration | Version: 2.1.x |
5 | \\ / A nd | Web: www . OpenFOAM. org |
6 | \\/ M anipulation | |
7 \*——— - - - - e */
8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volVectorField;

13 location "o";

14 object U;

15}

16 // * * % x Kk x Kk Kk Kk Kk Kk Kk Kk k Kk Kk Kk k Kk k Kk k Kk k K k Kk k Kk x Kk x * x * x * //
17

18 dimensions [01 -1 000 07;

19

20 internalField uniform (0 -5 0);

21

22 boundaryField

23 {

24 inlet

25 {

26 type fixedvValue;

27 value uniform (0 -5 0);
28 }

29

30 outlet

31 {

32 type zeroGradient;
33 }

34

35 "stator.x"

36 {

37 type slip;

38 }

39

40 "rotor.x"

41 {

2 type fixedvalue;

43 value uniform (0 0 0);
44 }

45

46 "AMI.*"

47 {

48 type cyclicAMI;

19 value $internalField;
50 }

51}

52

53 // hhkhhkhkhkhhhhhhh Ak A hkhkhhhhh kA bk Ak hk bk hhh A hk A hAhk kb bk hh kA hk kA hkhkhkhhhhhk Ak hkhkdhhhhhhkkkkk kK //

Listing E.7: SEMPIRE_CASE/OF/constant/MRFZones

1 /% *— C++ —% *\
2 | ========= | |
3 1 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
41 \\ / O peration | Version: 2.1.x |
5 | AN\ / A nd | Web: www . OpenFOAM. org |
6 | \\/ M anipulation | |
7 \* */
s FoamFile

9 4

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "constant";
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14 object MRFZones;
15 }
16 // * % % x * x Kk x Kk x Kk x Kk x Kk x Kk x Kk *x Kk x Kk x Kk x Kk *x * x * x * x * x * //
17
181
19 (
20 cellZone_1
21 {
22 // Fixed patches (by default they ’'move’ with the MRF zone)
23 nonRotatingPatches (AMI1 AMI2);
24
25 origin origin [0 1 0 0 O O 0] (0 0 0);
26 axis axis [000O0O0O0 0] (01 0);
27 omega omega [0 0 -1 0 0 0 0] 7.539822;
28 }
29 )
30

31 [/ Fkkkkkkkkkkkkkkhkkkkkhkkhkhkhkkkkkhkkkhhkkhkhhkhkhkkkkhkkhkkhkhhkhkhkkhkkhkkhkhxkkkxkxxx //

Listing E.8: SEMPIRE_CASE/OF/constant/RASProperties

1/% *— CH++ —x %\
2 | ========= | |
31 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
41 A\ / O peration | Version: 2.1.x |
5 | \\ / A nd | Web: www .OpenFOAM. org |
6 | \\/ M anipulation | |
7 \* */
8 FoamFile

9 4

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "constant";

14 object RASProperties;

15}

16 // % % % % * x Kk x Kk x Kk x Kk x Kk x Kk x Kk *x Kk x Kk x Kk x Kk x * x Kk x * x * x * //
17

18 RASModel kOmegaSST;

19

20 turbulence on;

21

22 printCoeffs on;

23

24 /) kokkokkokokok ok ok ok ok ok ok ok k ok k Kk kKA KA AK AKX AKX AR AR AR Kk kkkkkkkkkkkkkkkkkkkkkkkkkkxkxkxxxxx //

Listing E.9: SEMPIRE_CASE/OF/constant/transportProperties

1 /*——— *— CH++ —%-— ———x\
2 | ========= | |
3 ] \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
41 \\ / O peration | Version: 2.1.x |
5 | N/ A nd | Web: www.OpenFOAM. org |
6 | \\/ M anipulation | |
7 \x */
8§ FoamFile

9 4

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "constant";

14 object transportProperties;

15 }

16 // * % % Kk Kk Kk Kk Kk Kk Kk Kk Kk K K K Kk x x Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk * * *x x x x x x x [/
17

18 transportModel Newtonian;

19

20 nu nu [ 02-100001] 1.46e-05;

21

22 /) kkkkkkkhkhkkhkkkkhkkkhhkhkkhhkkkhkkkhkhkhkkhkhkkkhkhkkkkkkkkhkkkkhkkkkhkkkkkkkkkkkkkkxx //

Listing E.10: SEMPIRE_CASE/OF/constant/turbulenceProperties

*— CH+ —x *\
| |
| OpenFOAM: The Open Source CFD Toolbox |
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4 1 \\ / O peration | Version: 2.1.x |
5 | \\ / A nd | Web: www.OpenFOAM. org |
6 | \\/ M anipulation | |
7 \*— */
8 FoamFile
9 4
10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "constant";
14 object turbulenceProperties;
15}

16 // % % % K Kk Kk Kk Kk Kk Kk K K Kk Kk Kk Kk x *k Kk Kk Kk Kk Kk Kk K Kk Kk Kk Kk Kk x *x x x x x x [/

18 simulationType RASModel;
19
20 // Khkkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkrhkdhkhkhkhkhkhkhhkhhhhhkhkhkhkhkhkhkhkrkhkr bk hkkhkkhkkkhkkkkkkk*k //

Listing E.11: SEMPIRE_CASE/OF/constant/polyMesh/boundary

1 /*— — —x— C++ —» — *\
2| | |
3 1 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 \\ / O peration | Version: 2.1.x |
5 | AN\ / A nd | Web: www . OpenFOAM. org |
6 | \\/ M anipulation | |
7 \ */
s FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class polyBoundaryMesh;

13 location "constant/polyMesh";

14 object boundary;

15 }
16 // % % % Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk K Kk Kk x x Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk * * * x x x x x x [/

18 9

19 (

20 rotorHub

21 {

22 type wall;

23 nFaces 23615;

24 startFace 99018528;
25 }

26 AMI1

27 {

28 type cyclicAMI;
29 nFaces 251282;

30 startFace 99042143;
31 matchTolerance 0.0001;

32 neighbourPatch AMI2;

33 transform noOrdering;
34 }

35 rotorBlade3

36 {

37 type wall;

38 nFaces 1455829;

39 startFace 99293425;
40 }

41 rotorBladel

42 {

43 type wall;

44 nFaces 1457100;

45 startFace 100749254;
46 }

47 AMI2

48 {

49 type cyclicAMI;
50 nFaces 96040;

51 startFace 102206354;
52 matchTolerance 0.0001;

53 neighbourPatch AMI1;

54 transform noOrdering;
55 }

56 inlet

57 {

58 type patch;

59 nFaces 17868;

60 startFace 102302394;
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62 statorWall
63 {
64 type wall;
65 nFaces 130000;
66 startFace 102320262;
67 }
68 outlet
69 {
70 type patch;
71 nFaces 17868;
72 startFace 102450262;
73 }
74 statorTower
75 {
76 type wall;
77 nFaces 1788;
78 startFace 102468130;
79 }
80 )

81
82 [/ kkkkkokkokokokok ok ok ok ok k ok k ok kKA KA KK AK AKX AR AR AR Kk kkkkkkkkkkkkkkkkkkkkkkkkkkxkxkxxxxx //

Listing E.12: SEMPIRE_CASE/OF/constant/polyMesh/boundaryEdit

1 *— CH++ —x* ———%\
2 | |
3 ield | OpenFOAM: The Open Source CFD Toolbox |
4 peration | Version: 2.1.x |
5 nd | Web: www .OpenFOAM.org |
6 anipulation | |
N e */
§ FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class polyBoundaryMesh;

13 location "constant/polyMesh";

14 object boundaryEdit;

15 )

16 // * % % % % % K% x Kk x K *x Kk x Kk x Kk *x Kk *x Kk *x Kk x Kk *x Kk *x Kk *x Kk x Kk x K« x * [/
17

18 // % * Kk Kk Kk Kk Kk Kk Kk Kk Kk K K K Kk Kk x x *x Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk * *x x x x x x x [/
19// % * x x x x x x x »x For editing real file "boundary" * * * * * * * * * * //
20 // *x K« x Kk x Kk x Kk x Kk x Kk Kk Kk Kk Kk *x Kk *x Kk *k Kk *k Kk *x Kk *x Kk *x Kk *x k x * x * x [/
21

22 AMI1

23 {

24 type cyclicAMI;

25 nFaces (number) ;

26 startFace (number) ;

27 matchTolerance 0.0001;

28 neighbourPatch AMI2;

29 transform noOrdering;

30 }

31

32 // % x x x x Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk KX KX KX x x x x Kk Kk Kk Kk Kk Kk * * % % % [/
33// % % % % * * * * x x For editing real file "boundary" * * % % * * *x * x x //
34 // % x K x Kk x Kk x K x K x Kk x Kk x Kk x Kk x Kk x Kk x Kk x Kk *x Kk x * x * x * x * [/
35

36 AMI2

37 {

38 type cyclicAMI;

39 nFaces (number) ;

40 startFace (number) ;

41 matchTolerance 0.0001;

2 neighbourPatch AMI1;

43 transform noOrdering;

14 }

45

46 /) x K ok K ok Kk ok Kk k Kk k K Kk Kk k Kk k K Kk K Kk Kk k Kk k Kk Kk Kk Kk Kk *k Kk *x x *x * * [/
47 // % % % % * * * * * x For editing real file "boundary" =+ * * * * * * * x x //
48 [/ x x x x ok ok Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk K K Kk Kk Kk *x *x Kk Kk Kk Kk Kk K« K« * K« * * [/
49

50 [/ kkkkkkkhkkhkkkkkkkkkkkkkkkkk ok ok ok hk ok hk ok k kA KA KA AKX AKX AR AR Ak Ak kkkkkkkkkkkkkkkkkkkkx [/

Listing E.13: SEMPIRE_CASE/OF/system/controlDict

1 /% *— CH++ —* *\
[ | |
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3 ] \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
41 \\ / O peration | Version: 2.1.x
5 | \\  / A nd | Web: www.OpenFOAM. org |
6 | \\/ M anipulation | |
A ettt */
8 FoamFile
9 {
10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "system";
14 object controlDict;

15 }

16 // * % % % % % % % % % * *x K% *x Kk *k K Kk *x Kk *k Kk *k *x K*k *x Kk *x Kk *k *x *k x * x * x [/

18 application MRFSimpleFoam;
19

20 startFrom startTime;
21

22 startTime 0;

23

24 stopAt endTime;
25

26 endTime 100000;

27

28 deltaT 1;

29

30 writeControl timeStep;

32 writeInterval 1000;
34 purgeWrite 0;

36 writeFormat ascii;
38 writePrecision 7;

40 writeCompression onj;

1

42 timeFormat general;
43

44 timePrecision 6;

45

46 runTimeModifiable true;

48 // % x Kk x Kk x Kk x K x Kk x Kk x Kk x Kk x Kk x Kk x Kk x Kk *x Kk *x k x * x * x * x * //

50 functions
51 4

52 forcesRotorBladel

53 {

54 type forces;

55 functionObjectLibs ("libforces.so");
56 patches (rotorBladel);

57 rhoName rhoInf;

58 rhoInf 1.23;

59 CofR (0 0 0);

60

61 outputControl timeStep;

62 outputInterval 1;

63 }

64

65 forcesRotorBlade3

66 {

67 type forces;

68 functionObjectLibs ("libforces.so");
69 patches (rotorBlade3);

7 rhoName rholInf;
rhoInf 1.23;
CofR (0 0 0);

[N
EoN =S

outputControl timeStep;
outputInterval 1;

Gl

N

forcesRotorHub

{

>

RIS NI B |

s 3

type forces;

functionObjectLibs ("libforces.so");
82 patches (rotorHub);

83 rhoName rhoInf;

84 rhoInf 1.23;

85 CofR (0 0 0);

®
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87 outputControl timeStep;
88 outputInterval 1;
89 }
90
91 forcesRotor
92 {
93 type forces;
94 functionObjectLibs ("libforces.so");
95 patches ("rotor.x");
96 rhoName rholInf;
97 rhoInf 1.23;
98 CofR (0 0 0);
99
100 outputControl timeStep;
101 outputInterval 1;
102 }
103
104 forcesStatorTower
105 {
106 type forces;
107 functionObjectLibs ("libforces.so");
108 patches (statorTower);
109 rhoName rhoInf;
110 rhoInf 1.23;
111 CofR (0 -1.401 -12.164); // with reference to root
112
113 outputControl timeStep;
114 outputInterval 1;
115 }
116 }
117

118 // Hkkkkkkhkkhhkkhkhkkkkkhkkkkkkkkkkkhkkkhkkkkhkkkkkkkkhkkkkkkkkkkkxkkkxkkkxk*k //

Listing E.14: SEMPIRE_CASE/OF/system/decomposeParDict

1 /x————— —— —_———————— *— CH++ —*— —— —— —_——————— *\
2 | ========= | |
3 ] \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 \\ / O peration | Version: 2.1.x |
5 | AN\ / A nd | Web: www.OpenFOAM. org |
6 | \\/ M anipulation | |
7 \ k=== ——=%/
8 FoamFile

9 4

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "system";

14 object decomposeParDict;

15 }

17 // % % % Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk *x *k Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk * * * *x x x x x [/

19 singleProcessorFaceSets ((AMI 1));

20 numberOfSubdomains 144;

21 method scotch;
22 distributed no;

23 //strategy speed;
24 roots ()

26 [/ Kkkokokokokokokkok ok ok ok ok k ok k Kk kKKK KA K AK AR AR AR KKKk kkkkkkkkkkkkkkkkkkkkkkkkkkxkxkxrxxx [/

Listing E.15: SEMPIRE_CASE/OF/system/fvSchemes

1 /*——— *— CH++ —*— ———x\
2 | | |
3| ield | OpenFOAM: The Open Source CFD Toolbox |
4| peration | Version: 2.1.x |
5 | nd | Web: www .OpenFOAM. org |
6 | anipulation | |
7 \k————— - - —— - - - - - ———x/
8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "system";

14 object fvSchemes;

15 }
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16 // % * % * K Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk x *k x * *x [/

18 ddtSchemes

19 {

20 default steadyState;
21}

23 gradSchemes

24 {

25 default Gauss linear;

26}

27

28 divSchemes

29 {

30 default none;

31 div (phi,U) Gauss linearUpwindV grad (U) ;
32 div (phi, k) Gauss upwind;

33 div (phi, omega) Gauss upwind;

34 div ((nuEffxdev (T (grad(U))))) Gauss linear;
35 }

36

37 laplacianSchemes

38 {

39 default Gauss linear limited 0.333;
40 //default Gauss linear corrected;
41}

12

43 interpolationSchemes

44 |

45 default linear;

46 interpolate (HbyA) linear;

47}

48

49 snGradSchemes

50 {

51 default limited 0.333;

52}

53
54 fluxRequired

55 {

56 default no;
57 P ;
58 }

59

60 [/ Fokkokokok ok ok ok kokkkk ok ok kk k kA AR KA K AX AR AR AR Kk kkkkkkkkkkkkkkkkkkkkkkkkkkxkxkxxxxx //

Listing E.16: SEMPIRE_CASE/OF/system/fvSolution

1/ \
2| = = | |
3 1 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
41 \\ / O peration | Version: 2.1.x |
5 | \\/ A nd | Web: www . OpenFOAM. org |
6 | \\/ M anipulation | |
7 \*— x/
8 FoamFile

9 1

10 version 2.0;

1 format ascii;

12 class dictionary;

13 location "system";

14 object fvSolution;

15}
16 // * % * * * x Kk Kk Kk k Kk k Kk k Kk k Kk k Kk k Kk k Kk k Kk k Kk k Kk x Kk x * x * x * [/

17

18 solvers

19 {

20

21 P

22 {

23 solver GAMG;

24 smoother DIC;

25 preconditioner FDIC;

26 nPreSweeps 0;

27 nPostSweeps 2;

28 cacheAgglomeration off;
29 agglomerator faceAreaPair;
30 nCellsInCoarsestLevel 32;
31 mergelevels 1;

32 tolerance le—-6;

33 relTol 0;
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34 }
35
36 "(U|lk|omega)"
37 {
38 solver smoothSolver;
39 smoother GaussSeidel;
40 tolerance le-6;
41 relTol 0.0;
2 }
43
44 }
45
46 potentialFlow
47 {
48 nNonOrthogonalCorrectors 8;
49 }
50
51
52 SIMPLE
53 {
54 nNonOrthogonalCorrectors 2;
55 pRefCell 0;
56 pRefvalue 0;
57 residualControl
58 {
59 P le-5;
60 U le-5;
61 }
62}

64 relaxationFactors

65 {

66 fields

67 {

68 o) 0.52;
69 }

70 equations

71 {

72 "(Ulk|omega) .x" 0.63;
73 }

74}

75
T6 [/ kkkxkkkkkkkkkkkkkkkkkkhhkhkkkhkhkkhkhkkkkkkkhkhkhkkkhkkhkhxkhkhkkkkkkkkxkxkxkxxx [/

Listing E.17: SEMPIRE_CASE/OF/system/topoSetDict

1/ *— CH++ —x ———%\
2| | |
3 ] \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
41 \\ / O peration | Version: 2.1.x |
5 | \\ / A nd | Web: www .OpenFOAM. org |
6 | \\/ M anipulation | |
7 \k————— - - ——— - - ——— - e */
8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "system";

14 object topoSetDict;

15}

16 // % % % % % % K% x K« x Kk x Kk x Kk x Kk x Kk *x Kk x Kk x Kk *x Kk *x Kk x Kk x * x * x * [/

18 actions
19 (

20 {

21 name AMTI;

22 type faceSet;

23 action new;

24 source patchToFace;
25 sourcelnfo

26 {

27 name "AMI.*";
28 }

29 }

30 {

31 name frozen;

32 type pointSet;

33 action new;

34 source cellToPoint;
35 sourcelnfo
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36 {
37 set cellZone_2;
38 option all;
39 }
40 }
41 {
42 name frozen;
43 type pointSet;
4 action add;
45 source faceToPoint;
46 sourcelInfo
47 {
48 set AMI;
49 option all;
50 }
51 }
52)
53

B4 /] Kk kkkkkkkhkkkkkkkkk ok hkhk ok khkkhkkkkkhkhkhhkhkkkkkhkhkhkhkhkkkhxkhkhkkhkkhkkxkkxkxk [/

Listing E.18: SEMPIRE_CASE/OF/readMeOpenFOAM

= OF =

1
2
3
4
5 1. ccm26ToFoam NRELUAEPhaseVIWindturbine.ccm
6
7 rm —f 0/cellld.gz 0/cellType.gz

8

9

# edit file "constant/polyMesh/boundary"
10 with file "constant/polyMesh/boundaryEdit"

14 2. topoSet

16 setsToZones -noFlipMap
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Used Measurement Data Part 2:
Normalized Pressure Coeficients

Simulation results for normalized pressure coefficients have been compared to measured ones. The
simulation data has been achieved with MRFSimpleFoam (step 1/5) after 5840 iterations. The measure-
ment data originates from NREL’s UAE Phase VI sequence H test run with a yaw angle of 0° and a wind

tunnel velocity of 5 & (repetition 0). The results for all available radial ranges are presented.
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Figure E.1: Normalized pressure coefficients at 30 % radius = 1.5087 m: Simulation results (step 1/5, MRFSimpleFoam, 5840 iter-
ations) vs. NREL UAE Phase VI (sequence H, yaw angle 0°, wind tunnel velocity 5 %, repetition 0) measurements. Measurement
data is represented by minimum, maximum and mean value with its standard deviation
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Figure F.2: Normalized pressure coefficients at 46.6 % radius = 2.3435 m: Simulation results (step 1/5, MRFSimpleFoam, 5840 iter-
ations) vs. NREL UAE Phase VI (sequence H, yaw angle 0°, wind tunnel velocity 5 %, repetition 0) measurements. Measurement
data is represented by minimum, maximum and mean value with its standard deviation
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Figure F.3: Normalized pressure coefficients at 63.3 % radius = 3.1834 m: Simulation results (step 1/5, MRFSimpleFoam, 5840 iter-
ations) vs. NREL UAE Phase VI (sequence H, yaw angle 0°, wind tunnel velocity 5 %, repetition 0) measurements. Measurement
data is represented by minimum, maximum and mean value with its standard deviation
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Figure F.4: Normalized pressure coefficients at 80 % radius = 4.0232 m: Simulation results (step 1/5, MRFSimpleFoam, 5840 iter-
ations) vs. NREL UAE Phase VI (sequence H, yaw angle 0°, wind tunnel velocity 5 %, repetition 0) measurements. Measurement
data is represented by minimum, maximum and mean value with its standard deviation
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Figure E.5: Normalized pressure coefficients at 95 % radius = 4.7776 m: Simulation results (step 1/5, MRFSimpleFoam, 5840 iter-
ations) vs. NREL UAE Phase VI (sequence H, yaw angle 0°, wind tunnel velocity 5 %, repetition 0) measurements. Measurement
data is represented by minimum, maximum and mean value with its standard deviation
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Full Case Structure with All
OpenFOAM Dictionaries etc. for Steps

2/5, 3/5 or 4/5

An overview of the fully needed case structure to do simulations of type step 2/5,3/5 and 4/5 is given

in Figure G.1 on the next page. Included are also output files of most interest. Only for input files

different or additional to those of a step 1/5 simulation examples are presented here. It must be noticed,

that the final settings still depend on further developments.

Listing G.1: $SEMPIRE_CASE/OF/0/pointDisplacement

1 /*——— *— CH++ —x— ———x\
2 | ========= | |
3 ] \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 A\ / O peration | Version: 2.0.0 |
5 | \\ / A nd | Web: www . OpenFOAM. com |
6 | \\/ M anipulation | |
7 \x——— ———x/
s FoamFile

9 4

10 version 2.0;

11 format ascii;

12 class pointVectorField;

13 location "o";

14 object pointDisplacement;

15 }

16 // % % % Kk Kk Kk Kk Kk Kk Kk K Kk Kk K K Kk x x *k Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk * * * x x x x x [/

17
18 dimensions
19

[01 00O0O0O0];

20 internalField uniform (0 0 0);
21

22 boundaryField

23 {

24 inlet

25 {

26 type slip;
27 }

28

29 outlet

30 {

31 type slip;
32 }
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— P
—pointDisplacement
— U

—- constant
—- polyMesh
L

boundaryEdit

— dynamicMeshDict

— EmpireDict

— RASProperties

— transportProperties
'— turbulenceProperties

—' forcesRotor
-wo
L

forces.dat

— forcesStatorTower

I_-O
L

forces.dat

—' system

controlDict
decomposeParDict
fvSchemes
fvSolution
topoSetDict

)

— pimpleDyM(Fsi)Foam.log
'— ReadMeOpenFOAM

— emperorInput.xml

— empireOF.xml

— meshClientTurbomachinery.xml
‘— ReadMeEMP IRE

Figure G.1: Full case structure for step 2/5, 3/5 or 4/5 using pimpleDyMFoam or pimpleDyMFsiFoam with all OpenFOAM
dictionaries etc. and output files of most interest
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33
34 "stator.x"

35 {

36 type slip;

37 }

38

39 "rotor.x"

40 {

41 type fixedvalue;

42 value uniform (0 0 0);
43 }

44

45 "AMI.x"

16 {

47 type slip;

48 }

19 }

50

51 // Ak Ak hkhkhhhh kA A A A Ak bk hhhhhk A A A hkhhhh kA A A rhkhkhhhh kA hhkhkdk bk hhhhhk A rkhkhkdkhhhhkhhxkkkk kK //

Listing G.2: $SEMPIRE_CASE/OF/0/U

1 /x————— —— —_———————— *— CH++ —*— —— —— —_——————— *\
2 | ========= | |
3 1 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
41 \\ / O peration | Version: 2.1.x |
5 | \N\ O/ A nd | Web: www . OpenFOAM. org |
6 | \\/ M anipulation | |
7 \x */
8 FoamFile

9 1

10 version 2.0;

11 format ascii;

12 class volVectorField;

13 location "o";

14 object U;

15}

16 // * % % Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk K Kk x x x Kk Kk Kk Kk Kk Kk Kk Kk ¥ * * *x x x x x x x [/
17

18 dimensions [01 -1 000 071;

19

20 internalField uniform (0 -5 0);

21

22 boundaryField

23 {

24 inlet

25 {

26 type fixedvalue;

27 value uniform (0 -5 0);

28 }

29

30 outlet

31 {

32 type zeroGradient;

33 }

34

35 "stator.x"

36 {

37 type fixedvalue;

38 value uniform (0 0 0);

39 }

40

41 "rotor.x"

2 {

43 type movingWallVelocity;

44 value uniform (0 0 0);

45 }

46

47 "AMI.x"

48 {

49 type cyclicAMI;

50 value $internalField;

51 }

5}

53

54 /) kkkkkkkkkkkkhkkkkhkkkhhkkhhhkhkkhhkkkkhkkkkhkkhkhhkhkkkkkkkhkkkkhkkhkhkhkkkkkkkkkkkkkhxk //

Listing G.3: $EMPIRE_CASE/OF/constant/dynamicMeshDict
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1/ \
2| = = | |
3 1 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
41 \\ / O peration | Version: 2.1.x |
5 \N\ O/ A nd | Web: www.OpenFOAM. org |
6 | \\/ M anipulation | |
7 \*— */
8 FoamFile
9 1
10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "constant";
14 object dynamicMeshDict;
15 }
16 // % % % % Kk Kk Kk Kk Kk Kk Kk Kk Kk K Kk x x x Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk * * * x x x x x x [/
17
18 dynamicFvMesh CoSimulationMotionSolverFvMesh;

20 motionSolverLibs ("libfvMotionSolvers.so");
21 CoSimulationMotionSolverFvMeshCoeffs

22 {

23 cellZone cellZone_1; // rotor
24 solidBodyMotionFunction rotatingMotion;

25 rotatingMotionCoeffs

26 {

27 CofG (0 0 0);

28 radialVelocity (0 432 0); // in deg/s
29 }

30 }

31

32 solver displacementLaplacian;
33 diffusivity directional (0.1 10 0.1);
34 frozenDiffusion off;

35 frozenPointsZone frozen;

36

37 /] kkkkkkkkkhkkhhhkkkhhkhhhhkkhhkkkhkkkkhkkkkhkhkkhkhk kX kkk Ak hkkkkkhxkkkxkkkxkkkxkkhxx //

Listing G.4: SEMPIRE_CASE/OF/constant/EmpireDict

1 —— —— —%— CH++ —=* —— —— ————————— *\
2 = = | |
3 1 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
41 \\ / O peration | Version: 2.0.0 |
5 | \\/ A nd | Web: www .OpenFOAM. com |
6 | \\/ M anipulation | |
7 \x */
8 FoamFile

9 1

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "constant";

14 object dynamicMeshDict;

15 }

16 // % % % Kk Kk Kk Kk Kk Kk Kk Kk Kk K K Kk x x *x Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk * * * x x x x x x [/
17

18 coupledPatchNames ("rotor.x");

19 densityFluid densityFluid [ 0 2 -1 0 0 0 0 ] 1.23;

20

21 [/ Fokkokokokokokokkok ok ok ok ok ok ok ok k kA A A KA K AX AR AR KA Kk kkkkkkkkkkkkkkkkkhkkkkkkkkxkxkxxxxx //

Listing G.5: SEMPIRE_CASE/OF/system/controlDict

1/ %— - —%x— CH++ —x - *\
2 | ========= | |
3 1 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
41 A\ / O peration | Version: 2.1.x |
5 | \\ / A nd | Web: www . OpenFOAM. org |
6 | \\/ M anipulation | |
7 \*——— - - —— - - —— - e */
8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "system";

14 object controlDict;

15}
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/] x Kk x Kk Kk Kk Kk Kk Kk x K *k Kk K * *

writePrecision 7;
writeCompression on;
general;
timePrecision 6;

runTimeModifiable true;

s adjustTimeStep vyes;

maxCo 2;

/) Kk ok ok K K K K K Kk x x K
functions
{
forcesRotorBladel
{
type forces;
functionObjectLibs
patches
rhoName rhoInf;
rhoInf 1.23;
CofR (00 0);

outputControl
outputInterval

forcesRotorBlade3

{
type forces;
functionObjectLibs
patches
rhoName rhoInf;
rhoInf 1.23;
CofR (0 0 0);

outputControl
outputInterval

forcesRotorHub

{
type forces;
functionObjectLibs
patches (rotorHub);
rhoName rholInf;
rhoInf 1.23;
CofR (0 0 0);

outputControl
outputInterval

forcesRotor
{
type forces;
functionObjectLibs
patches

* ok ok Kk Kk Kk Kk K

application pimpleDyMFoam;
startFrom startTime;
startTime 0;

stopAt endTime;

endTime 60;
s deltaT le—4;

writeControl adjustableRunTime;
writeInterval 2e-2;

purgeWrite 0;

writeFormat ascii;

* ok ok ok Kk K K

("libforces.so");

(rotorBladel);

timeStep;
1;

("libforces.so");

(rotorBlade3);

timeStep;
1;

("libforces.so");

timeStep;
1;

("libforces.so");

("rotor.x");
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100 rhoName rhoInf;
101 rhoInf 1.23;
102 CofR (0 0 0);
103
104 outputControl timeStep;
105 outputInterval 1;
106 }
107
108 forcesStatorTower
109 {
110 type forces;
111 functionObjectLibs ("libforces.so");
112 patches (statorTower);
113 rhoName rholInf;
114 rhoInf 1.23;
115 CofR (0 -1.401 -12.164); // with reference to root
116
117 outputControl timeStep;
118 outputInterval 1;
119 }
120 }

121
122 [/ s,k kkkkhkhkk ok khkkhkkkkkh ok hkhkkkkhkkhkhhhkhkhkkhkkhkhhkkhkkkkkhkkhkkhkkkkkkkkkkkhkkkx //

Listing G.6: SEMPIRE_CASE/OF/system/fvSchemes

1 /% *— C++ —% *\
2 | ========= | |
31 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
41 \\ / O peration | Version: 2.1.x |
5 | \\ / A nd | Web: www.OpenFOAM. org |
6 | \\/ M anipulation | |
7 \x— - - - */
8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "system";

14 object fvSchemes;

15}

16 // % % % % * x % x K% x Kk x Kk x Kk x Kk x Kk *x Kk x Kk x Kk *x Kk *x Kk x Kk x * x * x * //

18 ddtSchemes

19 {

20 default Euler;
21}

23 gradSchemes

24 {

25 default Gauss linear;
26 grad (p) Gauss linear;
27 grad (U) Gauss linear 1;
28 }

30 divSchemes

31 {

32 default Gauss linear;

33 div (phi,U) Gauss linearUpwind grad(U);
34 div (phi, k) Gauss upwind;

35 div (phi,epsilon) Gauss upwind;

36 div (phi, omega) Gauss upwind;

37 div ((nuEffxdev (T (grad(U))))) Gauss linear;
38 }

39

40 laplacianSchemes

a1

12 default Gauss linear corrected;
43 }

44

45 interpolationSchemes

46 {

47 default linear;

48 interpolate (HbyA) linear;

19 }

50

51 snGradSchemes

52 4

53 default corrected;

54}

55
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fluxRequired
{
default no;
pcorr ;
p ;

}

[/ hkkkkkkkkkkkkkkhkhhkkhhkhkkhkkkkkhkkkhhkhkkhkhkkkkkkkkkkkkhkhkhkkkkkkkxkkkxkkkxkkkxk*k //

Listing G.7: $SEMPIRE_CASE/OF/system/fvSolution

/xm—-

*— C++ —%—

|

[ \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
[\ / O peration | Version: 2.1.x
| AN\ A nd | Web: www.OpenFOAM.org
| \\/ M anipulation |
\*———
FoamFile
{

version 2.0;

format ascii;

class dictionary;

location "system";

object fvSolution;

}

16 // % % % Kk Kk Kk Kk Kk Kk Kk Kk K K K Kk Kk Kk x Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk k * *x *x x x x x [/

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

solvers
{

pcorr

{
solver GAMG;
smoother DIC; // GaussSeidel;
preconditioner FDIC;
nPreSweeps 0;
nPostSweeps 2;
cacheAgglomeration off;
agglomerator faceAreaPair;
nCellsInCoarsestLevel 10;
mergelevels 1;
tolerance 0.02;
relTol 0;

}

g

{
$pcorr;
tolerance le-06;
relTol 0;

}

pFinal

{
$p;
tolerance le-06;
relTol 0;

}

"(Ulk|epsilon|nuSgs|omega)"

{
solver
preconditioner
tolerance
relTol

}

PBiCG;
DILU;

le-3;
0.1;//1le-6;

"(Ulk|epsilon|nuSgs|omega)Final"

{
solver
preconditioner
tolerance
relTol

cellDisplacement

{
solver
preconditioner
tolerance

PBiCG;
DILU;
le-5;
0;

PCG;
DIC;
1e-03;
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71 relTol 0;
72 }
73
74
75 cellMotionUx
76 {
77 solver PCG;
78 preconditioner DIC;
79 tolerance le-03;
80 relTol 0;
81 }
82 }
83
84 PIMPLE
85 {
86 correctPhi yes;
87 momentumPredictor yes;
88 nOuterCorrectors 1;
89 nCorrectors 1;
90 nNonOrthogonalCorrectors 2;
91 pRefCell 0;
92 pRefValue 0;
93
94 residualControl
95 {
9% P
97 {
98 tolerance 6e-05;
99 relTol 0;
100 absTol 0;
101 }
102 // p le-5;
103 // U le-5;
104 // nuTilda le-10;
105 }
106 }

107
108 relaxationFactors
109 {

110 fields

111 {

112 }

113 equations

114 {

115 "(Ulk|epsilon|nuSgs) .*" 1;
116 }

17 '}

118
119 [/ hkkkkkhhhkkhhkkkkhkkkkkkhhhkkhkkkkkhkkkkhkhkkkhkkhkkhkkkhkkkkhkhkkkhkkhkkhkkkkkkkxkhkx //

<?xml version="1.0" encoding="UTF-8"?>

1
2 <!-— EMPIRE input file -->

3 <EMPEROR xmlns="http://www.example.org/emperorInput" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
4 xsi:schemalocation="http://www.example.org/emperorInput emperorInput.xsd">

5 <clientCode name="meshClientTurbomachinery">

6 <mesh name="myMeshl">

7 <dataField name="displacements" location="atNode"

8 dimension="vector" typeOfQuantity="field" />

9 <dataField name="forces" location="atNode" dimension="vector"

10 typeOfQuantity="fieldIntegral" />

11 </mesh>

12 </clientCode>
13 <clientCode name="OpenFOAM">

14 <mesh name="myMeshl">

15 <dataField name="displacements" location="atNode"

16 dimension="vector" typeOfQuantity="field" />

17 <dataField name="tractionsElem" location="atElemCentroid"
18 dimension="vector" typeOfQuantity="field" />

19 <dataField name="tractionsNode" location="atNode"

20 dimension="vector" typeOfQuantity="field" />

21 </mesh>

22 </clientCode>

24 <dataOutput name="outputl" interval="1">

25 <dataFieldRef clientCodeName="meshClientTurbomachinery"

26 meshName="myMeshl" dataFieldName="displacements" />

27 <dataFieldRef clientCodeName="meshClientTurbomachinery"

28 meshName="myMeshl" dataFieldName="forces" />

29 <dataFieldRef clientCodeName="0OpenFOAM" meshName="myMeshl"
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dataFieldName="displacements" />
<dataFieldRef clientCodeName="OpenFOAM" meshName="myMeshl"
dataFieldName="tractionsElem" />
<dataFieldRef clientCodeName="OpenFOAM" meshName="myMeshl"
dataFieldName="tractionsNode" />
</dataOutput>

<mapper name="mortarl" type="mortarMapper">
<meshA>
<meshRef clientCodeName="meshClientTurbomachinery" meshName="myMeshl" />
</meshA>
<meshB>
<meshRef clientCodeName="OpenFOAM" meshName="myMeshl" />
</meshB>
<mortarMapper oppositeSurfaceNormal="true" dual="false" enforceConsistency="true"
</mapper>

<connection name="transfer displacements">
<input>
<dataFieldRef clientCodeName="meshClientTurbomachinery"
meshName="myMeshl" dataFieldName="displacements" />
</input>
<output>
<dataFieldRef clientCodeName="OpenFOAM" meshName="myMeshl"
dataFieldName="displacements" />
</output>
<sequence>
<filter type="mappingFilter">
<input>
<dataFieldRef clientCodeName="meshClientTurbomachinery"
meshName="myMeshl" dataFieldName="displacements" />
</input>
<output>
<dataFieldRef clientCodeName="OpenFOAM" meshName="myMeshl"
dataFieldName="displacements" />
</output>
<mappingFilter>
<mapperRef mapperName="mortarl" />
</mappingFilter>
</filter>
</sequence>
</connection>
<connection name="transfer forces">
<input>
<dataFieldRef clientCodeName="OpenFOAM" meshName="myMeshl"
dataFieldName="tractionsElem" />
</input>
<output>
<dataFieldRef clientCodeName="meshClientTurbomachinery"
meshName="myMeshl" dataFieldName="forces" />
</output>
<sequence>
<filter type="locationFilter">
<input>
<dataFieldRef clientCodeName="OpenFOAM" meshName="myMeshl"
dataFieldName="tractionsElem" />
</input>
<output>
<dataFieldRef clientCodeName="OpenFOAM" meshName="myMeshl"
dataFieldName="tractionsNode" />
</output>
</filter>
<filter type="mappingFilter">
<input>
<dataFieldRef clientCodeName="OpenFOAM" meshName="myMeshl"
dataFieldName="tractionsNode" />
</input>
<output>
<dataFieldRef clientCodeName="meshClientTurbomachinery"
meshName="myMeshl" dataFieldName="forces" />
</output>
<mappingFilter>
<mapperRef mapperName="mortarl" />
</mappingFilter>
</filter>
</sequence>
</connection>

<coSimulation>
<sequence>
<couplingLogic type="timeStepLoop">
<timeStepLoop numTimeSteps="100000">
<dataOutputRef dataOutputName="outputl" />
</timeStepLoop>

133

/>



Bachelor’s Thesis

Christopher LERCH
114 <sequence>
115 <couplingLogic type="connection">
116 <connectionRef connectionName="transfer displacements" />
117 </couplingLogic>
118 <couplingLogic type="connection">
119 <connectionRef connectionName="transfer forces" />
120 </couplingLogic>
121 </sequence>
122 </couplingLogic>
123 </sequence>

124 </coSimulation>

125 <general>

126 <portFile>server.port</portFile>
127 <verbosity>INFO</verbosity>

128  </general>

129 </EMPEROR>

Listing G.9: $SEMPIRE_CASE/empireOF.xml

1 <?xml version="1.0" encoding="UTF-8"?>

2 <!-—- EMPIRE input file -->
3 <EMPIRE>
4 <code name="OpenFOAM">

5 <type>field</type>

6 </code>

7 <general>

8 <portFile>server.port</portFile>

9 <verbosity>DEBUG</verbosity>

10 </general>

1 <userDefined>

12 <couplingType>looseCoupling</couplingType>
13 <sendDataField>traction</sendDataField>
14 </userDefined>

15 </EMPIRE>

Listing G.10: SEMPIRE_CASE/meshClientTurbomachinery.xml

1 <?xml version="1.0" encoding="UTF-8"?>

2 <!-— EMPIRE input file -->
3 <EMPIRE>
4  <code name="meshClientTurbomachinery">

5 <type>field</type>

6 </code>

7 <general>

8 <portFile>server.port</portFile>
9 <verbosity>DEBUG</verbosity>

10 </general>

1 <userDefined>

12 <GiDMeshFile>CSM/rotorAbaqus.msh</GiDMeshFile>
13 <numTimeSteps>1000000</numTimeSteps>
14 <couplingType>looseCoupling</couplingType>

15 </userDefined>
16 </EMPIRE>
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Development of the Velocity Isosurface
in Step 2/5

Vortices, which are developing at the tip of both blades during rotation, get carried downstream with
the main flow. This phenomenon is visualizable in simulations by generating an isosurface for a veloc-
ity value slightly bigger than the mean free stream value, which is here about 15.6 . The transient

development of the resulting helix is illustrated in form of a timeline.
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t=04s
¢ =172.8°

t=16s
¢ =691.2°

Figure H.1: Vortices developing at the rotating blades’ tip and getting carried downstream with the main flow are visualized from
t = 0 to 3.0 s using an isosurface of |u| ~ 15.6 =
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