
sssMOR livedemo - control design using reduced order models

This file is part of sssMOR, a Sparse State-Space, Model Order Reduction and System Analysis Toolbox
developed at the Chair of Automatic Control, Technische Universitaet Muenchen. For updates and
further information please visit www.rt.mw.tum.de/?sssMOR.

Author: Alessandro Castagnotto

Last Change: 09 Mar 2017

Copyright (c) 2017 Chair of Automatic Control, TU Muenchen

Introduction to the Control System Toolbox

In this demo, we will use MATLAB functionality available in the Control System Toolbox, designed to
systematically analyze, design, and tune linear control systems.

First, load the system matrices and define a state space model of our system

clear, close all, clc

load('building') %file is provided as a benchmark example within sss

Notice matrices A, B, C (and other data) have been loaded to your workspace. The size of A is
48x48, so this model is fairly small. B and C are vectors, hence the model is single-input, single-output
(SISO)

This model describes the mechanical behaviour of a building in the Los Angeles University Hospital with
8 floors, each having 3 degrees of freedom (rotation only on one axis) [1]

Now, define a dynamic state-space model using ss(A,B,C,D)

https://www.rt.mw.tum.de/?sssMOR

sys = ss(A,B,C,[]);

Warning: The "a" matrix was converted from sparse to full.

(you can disregard the warning for the moment)

This model can be analyzed using all tools provided within the Control System Toolbox, such as bode,
impulse, step, norm, ..., and a controller to meet specific requirements can be designed, for
example using the controlSystemDesigner:

% controlSystemDesigner('bode',sys);

For this model, we could design e.g. a disturbance rejection controller that regulates an impulse
disturbance.

Optimal cooling of a steel profile

Now, we are given a new model that represents the heat transfer process for optimal cooling of a steel
profile in an industrial rail production process [2].

This model is available in different sizes, depending on the granularity of the mesh used. In the
following, we will use the smallest model with N=1357 (to be able to analyze it with built-in MATLAB).

As in the previous example, we can load the system matrices and define a state-space model. As the
model is given in implicit (descriptor) form, we must use the function dss(A,B,C,D,E)

clear, load('rail_1357')
sys = dss(A,B,C,[],E);

Warning: The "a" matrix was converted from sparse to full.
Warning: The "b" matrix was converted from sparse to full.
Warning: The "c" matrix was converted from sparse to full.
Warning: The "e" matrix was converted from sparse to full.

Notice again the warning: The system matrices we loaded were sparse

figure; spy(A); title('A');

figure; spy(E); title('E');

MATLAB's ss objects do not preserve the sparsity of the system matrices, therefore limiting the usage

to models of order at most.

We can use the functions disp and whos to display some informations about the model.

disp(sys)

 6×7 ss array with properties:

 A: [1357×1357 double]
 B: [1357×7 double]
 C: [6×1357 double]
 D: [6×7 double]
 E: [1357×1357 double]
 Scaled: 0
 StateName: {1357×1 cell}
 StateUnit: {1357×1 cell}
 InternalDelay: [0×1 double]
 InputDelay: [7×1 double]
 OutputDelay: [6×1 double]
 Ts: 0
 TimeUnit: 'seconds'
 InputName: {7×1 cell}
 InputUnit: {7×1 cell}
 InputGroup: [1×1 struct]
 OutputName: {6×1 cell}
 OutputUnit: {6×1 cell}
 OutputGroup: [1×1 struct]
 Name: ''

 Notes: {}
 UserData: []
 SamplingGrid: [1×1 struct]

whos sys

 Name Size Bytes Class Attributes

 sys 6x7 29605314 ss

The model has 6 outputs and 7 inputs (MIMO), the inputs corresponding to the temperature boudary

conditions in the domains in the figure above.

To simplify the analysis, we will take a SISO subsystem in the following, e.g. from the 1st input to the
1st output:

sys = sys(1,1);
whos sys

 Name Size Bytes Class Attributes

 sys 1x1 29485482 ss

This model is small enoug to be defined as an ss object, so we can proceed and analyze it. In the
frequency domain, this is commonly done through a Bode plot:

fh.Bode = figure;
w = {1e-7,1e-3}; %frequency range of interest
tic; bodemag(sys,w); t.Bode = toc

t =
 Bode: 42.8605

Although we can store the system as an ss object, the computations performed by built-in MATLAB
will not exploit the sparsity of the system matrices, losing efficiency.

Another important quantity when analyzing a linear dynamical system is given by the spectrum of
eigenvalues

fh.Eig = figure;
 tic, lambda = eig(sys); t.Eig = toc

Warning: Accuracy may be poor in parts of the frequency range. Use the "prescale" command to
maximize accuracy in the range of interest.

t =
 Bode: 42.8605
 Eig: 36.6543

 plot(complex(lambda),'x'); title('Spectrum');

As it can be seen already from this few steps, using ss objects for analysis and control design of large-
scale models becomes a challenging task due to the high computational burden. An interactive
control design as shown with the building model becomes almost impossible.

sss - analysis of large-scale, sparse state-space models

To preserve the sparsity of the system matrices in the model and explot it during analysis, we have
developed the sss toolbox.

doc

Defining a sparse state space model is as easy as in the built-in case, you just need to add an "s"

sysSS = sys; %store the built-in model for comparison
sys = sss(A,B,C,[],E); clear A B C E

You can get a first idea about the model at hand for example by inspecting the sparsity pattern

figure; spy(sys)

or by using the function disp

disp(sys)

 (DSSS)(MIMO)
 1357 state variables, 7 inputs, 6 outputs
 Continuous-time state-space model.

Also in this case we simplify the analysis by taking a SISO subsystem

sys = sys(1,1)

sys =
 (DSSS)(SISO)
 1357 state variables, 1 inputs, 1 outputs
 Continuous-time state-space model.

Now, let's compare the ss and sss models in terms of storage requirements

whos sysSS sys

 Name Size Bytes Class Attributes

 sys 1x1 321120 sss
 sysSS 1x1 29485482 ss

In addition, sss objects include a list of properties that characterize the model, for example symmetry of
E and A

sys.isSym

ans =
 1

or regularity of the E matrix

sys.isDae

ans =
 0

The sss toolbox contains many of the analysis functions available in the Control System Toolbox and
some additions. All functions are programmed to exploit whenever possible the sparsity of the system
matrices.

For example, we can compare the frequency response evaluated with the sss bode function.

figure(fh.Bode), hold on;
 tic; bodemag(sys,w,'r--'); ts.Bode = toc

ts =
 Bode: 0.8935

 legend('ss','sss')

In addition, the computation of the whole eigenvalue spectrum is a dauting task for large-scale models,
as it requires dense computations. However, the computation of a small subset can be achieved by
using the function eigs.

For example, we can compute the first 300 eigenvalues of smallest magnitude:

figure(fh.Eig), hold on;
tic, lambdaSp = eigs(sys,3e2,'sm'); ts.Eig = toc

ts =
 Bode: 0.8935
 Eig: 0.8282

plot(complex(lambdaSp),'ro'); legend('ss','sss')

Note the significant time saving that can be achieved by using sss objects.

t

t =
 Bode: 42.8605
 Eig: 36.6543

ts

ts =
 Bode: 0.8935
 Eig: 0.8282

sssMOR - Classical and state-of-the-art model reduction

To obtain a reduced order model that preserves the dominant input-output dynamics we have
developed the sssMOR toolbox.

doc

In order to make the control design process more efficient, we now look for a low-order approximation of
the original model using model reduction techniques.

For example, we may use the balanced truncation method through the function tbr. If called only
with one input as syr = tbr(sys), the function plots the Hankel Singular Values and waits for user
defined order.

This interactive feature is not available in MATLAB live editor, so we will pick a reuced order of n=10

n = 10;
sysr1 = tbr(sys,10);

Warning: rctol is not satisfied for S: 1.966493e-05 > rctol (1.000000e-09).
Warning: Maximum number of ADI iterations reached (maxiter = 150). rctol is not satisfied
for R: 3.630029e-05 > rctol (1.000000e-09).

Note: tbr finds a low-rank approximation of the Gramian matrices using the M-M.E.S.S. toolbox
developed at the Max Planck Institue in Magdeburg [3]. To notice the difference, try using MATLAB's
built-in balred.

Reduced order models are generally not sparse, so they have their own class called ssRed. These
objects are a subclass of ss and contain information about the reduction.

disp(sysr1)

 (DssRed)(SISO)
 10 state variables, 1 inputs, 1 outputs
 Continuous-time state-space model.
 Reduction Method(s): tbr
 Original order: 1357

sysr1.reductionParameters.params

ans =
 originalOrder: 1357
 type: 'adi'
 redErr: 0
 hsvTol: 1.0000e-15
 lse: 'gauss'
 hsv: [57×1 double]

We compute a second reduced order model using the iterative rational Krylov algorithm (IRKA)

sysr2 = irka(sys,10);

IRKA step 004 - Convergence (combAny): 6.2e-01 1.0e-06

disp(sysr2)

 (DssRed)(SISO)
 10 state variables, 1 inputs, 1 outputs
 Continuous-time state-space model.
 Reduction Method(s): irka
 Original order: 1357

Using the compatibility between sss and ss, we can now analyze the reduction results

figure;
 bodemag(sys,'-b',sysr1,'r--',sysr2,'g--',w)
 legend('FOM','TBR','IRKA')

Note that many more reduction functions are available in sssMOR, such as modalMor, rk, cirka,
cure, isrk, rkIcop, spark, ...

Control design

With the reduced order models, it is now possible to efficiently design a controller that achieves a
desired reference temperature r within the domain.

% controlSystemDesigner('bode',sysr1);

References

[1] Chahlaoui, Y. and Van Dooren, P.: "A collection of benchmark examples for model reduction of linear
time invariant dynamical systems" (2002) http://slicot.org/20-site/126-benchmark-examples-for-model-
reduction

[2] Saak, J.: "Effiziente numerische Lösung eines Optimalsteuerungsproblems für die Abkühlung von
Stahlprofilen." (2003)

[3] Saak, J., Köhler, M. and Benner, P.: "M-M.E.S.S.-1.0.1 -- The Matrix Equations Sparse Solvers
library" (2016) https://gitlab.mpi-magdeburg.mpg.de/mess/mmess-releases

http://slicot.org/20-site/126-benchmark-examples-for-model-reduction
http://slicot.org/20-site/126-benchmark-examples-for-model-reduction
https://gitlab.mpi-magdeburg.mpg.de/mess/mmess-releases

