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We develop and apply methods for modeling, discretization and control of multi-physical dynamical systems with
particular attention to their energetic interconnection structure and a consistent description of their couplings. Geometric
approaches that account for the topology of heterogeneous media, configuration spaces in mechanical systems, or the
preservation of structural properties under numerical integration, are natural vehicles to obtain physically consistent solutions
at every stage of system theoretic analysis and control design – for instance in the port-Hamiltonian framework.
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Discrete-Time Port-Hamiltonian Systems and Control

Geometric Modeling and Control of Flexible Robots Port-Hamiltonian FE Models of Nonlinear Elastodynamics

Filamentous bodies – as an example for geometrically nonlinear mechanical
systems – occur in applications like harbor cranes, cable robots, satellite
systems, and many more. They are typically sub-modules of larger
interconnected systems. Therefore, the port-Hamiltonian (PH) framework for
modeling and discretization is ideal to highlight the underlying physical structures
and to clearly represent the couplings. A mixed finite element (FE) approach
leads in an elegant way to finite-dimensional state space models in PH form.

Heat Transfer Models on Heterogeneous Foams

Fig. 3: Comparison of infinite-dimensional PH models and
their approximations of geometrically nonlinear mechanical
systems. 𝑣, 𝜎 and 𝑟 represent velocity, stress and
configuration, 𝑏 is a potential internal volume force, 𝑓(𝑟) an in
general nonlinear function and 𝑛 the outer normal vector.

Fig. 1: Experimental robot
with rigid and flexible links

Fig. 2: Discretized geometri-
cally exact cantilever beam

Using the powerful tools of differential geometry, we
derive global dynamical models that specifically consider
the non-Euclidean configuration space that is inherent to
many mechanical systems. This provides additional
insight into the system behavior, avoids problems of
minimal coordinates (as local coordinates of the
configuration manifold) such as singularities and allows
the design and analysis of controllers that are defined
directly on the configuration manifold.

As an example, global equations of motion for rigid robot
manipulators on the configuration manifold 𝑆1 𝑛 can be
written

in configuration vectors 𝑞𝑖 ∈ 𝑆1 and minimal velocities 𝜔𝑖.

These concepts can be readily extended into the infinite-
dimensional setting, which allows to model robots with
structural flexibility in their links (Fig. 1). To consider large
deformations in 3D space, geometrically exact beam
theories are used that result in models defined on the
special Euclidean group 𝑆𝐸 3 , a Lie group.

Discretization methods are investigated that preserve the
Lie group structure of the configuration space while
resulting in numerically efficient, low-order models that
can be readily used for controller design (Fig. 2).

Fig. 4: Simulation of a thread
pendulum, which is held at its
lower end, and then subjected to
a constant force BC for 0.2 s in
positive 𝑋2 direction. In its free
motion, the total energy is
conserved.

Fig. 5: From finite-dimensional Dirac structures to port-Hamiltonian state space models.

The port-Hamiltonian (PH) framework is an elegant, modular way to represent in a
unified manner interconnected multi-physical systems. Figure 4 shows for the
finite-dimensional case the transition from network-type models in terms of dual
port variables to (here explicit) state space models that are intrinsically passive.

Symplectic or energy-preserving integrators are adequate vehicles to translate
this definition to discrete time – as a modeling basis for sampled-data energy-
based controls. State predictions based on higher order integration are at the
core of highly accurate sampled control implementations with low sampling rates.

Fig. 6: Left: State predictions with the implicit midpoint rule (IMR) for mechanical systems, including velocity
reconstruction. Right: Inputs for trajectory control of the KUKA LWR IV+ with high controlled stiffness (𝜅 = 400 Nm/rad) 
at ℎ = 8 ms. Top: Emulation controller, bottom: IMR implementation with filtered velocity reconstruction (𝑇 = 1/200𝜋 s).

The ANR-DFG project INFIDHEM (2017-2021) dealt with the graph- and port-
based description of heat transfer through open cell foams exploiting the
heterogeneous material structure. The discrete balance equations are set up over
the topology of the foam and expressed in terms of the (co-)incidence matrices
that are split into interior and boundary parts:

1. Define/import nodes, then oriented edges, faces and volumes.

2. Declare border volumes, where Neumann BCs apply.

3. The primal complex is generated.

4. The dual complex is constructed by topological duality.

The discrete counterparts of the linear closure equations 𝑢 = 𝑐 𝑇 and 𝜙 = 𝜆𝑓
(for both phases) and 𝜙𝑠𝑓 = 𝛼𝑓𝑠𝑓 (heat exchange), contain the geometry data.

Fig. 7: Left: Experimental setup at LGPC Lyon. Middle: Tomography picture of a Kelvin cell foam. Right: Illustration 
of a primal complex generated with pyCellFoam. Temperature BCs apply at the solid orange boundary nodes.

The (co-)incidence matrices – e.g., based on data from iMorph image processing
– including the definition of boundary input matrices for temperature (Dirichlet)
and heat flux (Neumann) boundary conditions, can be automatically generated
with the pyCellFoam library, https://github.com/pyCellFoam:


