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Particle-laden flow
Industrial applications of  interest to us
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Solid-fluid contactor: Fluidized-bed 

Fluidized bed contactor
• Uniform fluid jet
• Strong particle-fluid mixing
•Many regimes
• Geldart B particles
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Solid-fluid contactor: Spouted-bed 

Spouted-bed contactor
• Air jet in a small slit
• Contact in upward 

movement of fluid
• Geldart D particles
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Pneumatic conveying
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Novel processes: LPBF 3D printing
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Summary

Quick recap on high-order methods

Lethe: open-source high-order CFD/DEM/CFD-DEM

Illustration using two turbulent benchmarks

High-order Unresolved CFD-DEM
◦ VANS equation formulation
◦ Void fraction projection scheme
◦ Interesting validation cases

Conclusions and future work
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High-order methods for CFD
A quick introduction
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Order of a scheme?

The order characterizes 
how the error will 
evolve as the mesh (or 
time step) is refined (or 
coarsened)

I.e. :
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Traditional CFD

The traditional state of the art in commercial and open 
source software is mostly centered around 2nd order 
accurate scheme
Commercial:
◦ Fluent
◦ Star-CCM+

Open-source
◦ OpenFOAM
◦ SU2

Why stop there?
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High-order and FEM

In the case of FEM using high-order
methods entails using high order
polynomial interpolations. This can 
be done using either:
◦ Continuous Galerkin - CG
◦ Discontinuous Galerkin - DG
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Efficiency of high-order methods

Same accuracy in 
shorter solution 
time

Depends on:
◦ Geometry
◦ Reynolds number
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Lethe





Solid open-source 
foundations
◦ Based on the deal.II framework
◦ Tested (>340 tests run daily)
◦ Documented (>50 examples)
◦ Used in 5 countries
 (Canada, Germany, UK, Australia, 
USA)

What is the FEM formulation used 
in Lethe for the Navier-Stokes 
equations?



Continuity

∫

Ω

∇ · uqdΩ+
∑

K

∫

Ωk

SR · (τu∇q) dΩk

︸ ︷︷ ︸

PSPG

= 0

Momentum

∫

Ω

(
∂u

∂t
+ u ·∇u

)

· vdΩ+

∫

Ω

ν (∇u : ∇v) dΩ

−

∫

Ω

(

p∇ · v

)

dΩ+
∑

K

∫

Ωk

SR · (τuu ·∇v) dΩk

︸ ︷︷ ︸

SUPG

= 0
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Comments

Stabilized formulation:
◦ Allows QnQn elements, circumvents LBB 

conditions
◦ Implicit LES

Non-linear problem solution strategy
◦ Newton-Raphson method with dynamic 

recalculation of the Jacobian matrix

Linear solver strategy
◦ Monolithic solver using AMG, ILU or GMG 

preconditioning

High order
◦ High order methods move the numerical 

dissipation to higher wave number. Closer to 
where the real viscosity is acting
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A simple turbulent benchmark
Taylor-Green vortex at Re=1600

Wang, Zhij ian J.,  et al.  "High-order CFD methods: current status 
and perspective." International Journal for Numerical Methods in 
Fluids (2013) – Test 3.5

Blais et al.  "Lethe: An open-source parallel high-order adaptative 
CFD solver for incompressible f lows." Software X 12 (2020)
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Taylor-Green test case

Unsteady flow of decaying 
vortices
In 2D:
◦ Exponential decay of the vortices

In 3D:
◦ Generation of a fully 3D flow patterns
◦ Turbulent cascade that generate smaller 

flow structures which then dissipate

The TGV test case is a great 
benchmark for DNS and ILES
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Velocity

Cascade from large 
turbulent structures 
to smaller ones

Small structures 
dissipate the 
energy
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Energy dissipation - Enstrophy

Integrating on a closed or periodic domain, we obtain:

In absence of numerical dissipation, the integral of the 
enstrophy should be equal to the decay of kinetic energy
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Q1-Q1 –256x3

Kinetic energy 
dissipation makes 
sense

Enstrophy is off

67.9M DOFs

Blais et al. "Lethe: An open-source parallel high-order adaptative CFD solver 
for incompressible flows." Software X 12 (2020)



25

Q2-Q2 –1283

Dramatic change

Good agreement 
for enstrophy

¸67.9M DOFs
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Q3-Q3 –1283

250M DOFs
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Q3-Q3 –643

Even coarser mesh 
give decent results

30M DOFs
◦ Runs in 2 hours on a 

desktop
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Enstrophy over time
k Q3Q3 cells
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High-order Unresolved CFD-DEM
Model formulation
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Volume-Averaged Navier-Stokes equations

We discretize the VANS equations using stabilized FEM

∂ (ϵf )

∂t
+∇ · (ϵfuf ) = 0

∂ (ϵfuf )

∂t
+∇ · (ϵfuf ⊗ uf ) = −

ϵf

ρf
∇p+ ϵf∇ · (τf ) +

F
A
pf

ρf



Continuity

∫

Ω

(
∂ (ϵf )

∂t
+ ϵf∇ · u+ u∇ϵf

)

qdΩ+ SR · (τu∇q) dΩk
︸ ︷︷ ︸

PSPG

= 0

Momentum

∫

Ω

ρf

(

ϵf
∂u

∂t
+ ϵfu ·∇u

)

· vdΩ+

∫

Ω

(

ϵfν (∇u : ∇v)
)

+
(

ν∇u∇ϵf · v

)

dΩ

−
1

ρf

∫

Ω

(

ϵfp ·∇v + p∇ϵf · v

)

dΩ+
1

ρf

∫

Ω

Fpf

VΩ

· vdΩdΩ

+
∑

K

∫

Ωk

SR · (τuu ·∇v) dΩk

︸ ︷︷ ︸

SUPG

+
∑

K

∫

Ωk

γ

(
∂ϵf

∂t
+∇ · (ϵfu)

)

(∇ · v) dΩk

︸ ︷︷ ︸

grad−div

= 0
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Multiple stabilization term

SR =
∂ (ϵfuf )

∂t
+∇ · (ϵfuf ⊗ uf ) +

ϵf

ρf
∇p− ϵfν∇

2
u−

F
A
pf

ρf

PSPG: Enables equal-order elements
∑

K

∫

Ωk
SR · (τu∇q) dΩk

SUPG: Implicit LES model
∑

K

∫

Ωk
SR · (τuu ·∇v) dΩk

Grad-div: Enhances mass conservation
∑

K

∫

Ωk
γ
(

∂ϵf
∂t

+∇ · (ϵfu)
)

(∇ · v) dΩk
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Simple example

Flow through a pipe
◦ Slip on the walls
◦ Constant velocity inlet
◦ Jump in the void fraction

Mass must be conserved, so
velocity must increase if the 
porosity decreases

ϵf = ϵf (x)
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Impact of stabilization

SUPG + PSPG leads to 
strong oscillation when the 
void fraction varies

Additional Grad-div 
stabilization in the 
momentum equation 
remedies this issue
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Discrete Element Method
Newton second’s law solved for each particle 

Contact forces are calculated by allowing particle 
overlap
Overlap is decomposed into two directions
◦ Normal
◦ Tangential

mi

∂up,i

∂t
=

∑

j∈Ci

fc,ij +

∑

w

fc,iw +mig + ffp,i
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Contact detection

Binned list
◦ O(np) scaling

Superposed by a Verlet list

Algorithmic decisions
◦ List is refreshed every n 

iterations dynamically
◦ CFD mesh is used as contact 

detection structure
◦ Domain decomposition is used 

to parallelize the calculations
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Parallelization and load-balancing

Underlying grid can be 
decomposed
As particle move, load 
dynamically evolve

Parallel decomposition 
must thus follow
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Load-balancing

Time
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Void fraction calculation 

Challenges:
◦ Continuity in time
◦ Ideally as independent of the mesh 

as possible

Solution is a spherical 
quadrature centered void 
fraction calculation

Q2

Q4Q1

Q3

Particles outside sphere

Particles inside sphere

Particles intersecting sphere

Quadrature points



Unresolved CFD-DEM model
Fluid

Volume-Averaged Navier-Stokes
(VANS form A)

Solid particles

Newton’s second law

Hydrodynamic forces

,

, , , · , Saff ,

1 pn

pf pf i
i

pf i d i p i i i

V

Ñ Ñ

=
D
= + + +

åF f

f f f f ft

• Pressure gradient

• Viscous stress

• Drag

• Lift forces

∂ (ϵf )

∂t
+∇ · (ϵfuf ) = 0

∂ (ϵfuf )

∂t
+∇ · (ϵfuf ⊗ uf ) = −

ϵf

ρf
∇p+

ϵf

ρf
∇ · (τf ) +

F
A
pf

ρf

mi

∂up,i

∂t
=

∑

j∈Ci

fc,ij +

∑

w

fc,iw +mig + ffp,i
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Case 1: Spouted bed
Unresolved CFD-DEM

El Geitani, T., Golshan, S., & Blais, B. (2023). Toward High-Order CFD-
DEM: Development and Validation. Industrial & Engineering Chemistry 
Research, 62(2), 1141-1159.
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Spouted bed contactor

Physical parameters
◦ Glass beads (!! = 2500 "#

$! and &% = 2.5(()
◦ Approx 180k particles
◦ Air
◦ 30s of flow simulated

El Geitani, T., Golshan, S., & Blais, B. (2023). Toward High-Order CFD-DEM: 
Development and Validation. Industrial & Engineering Chemistry 
Research, 62(2), 1141-1159.
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Validation strategy
Simulation Setup Experimental Setup

Scheme of the experimental setup: 
(1) computer, (2) camera 
controller, (3) high-speed camera, 
(4) LED lights, (5) spouted bed 
column, (6) mass and volume 
controller, and (7) valve (unit: 
mm) [9].

Calculate time-averaged 
particle velocity 

magnitude 



Q1 results

Fluid velocityParticles velocity



Q2 results

Fluid velocityParticles velocity
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A more direct comparison

Q1 (2nd order) Q2 (3rd order)
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Case 2: Solid-liquid mixing drum
A simple benchmark for unresolved CFD-DEM

El Geitani, Toni, and Bruno Blais. "Solid-liquid rotary kilns: An 
experimental and CFD-DEM study." Powder Technology 430 
(2023): 119008.
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Solid-liquid mixing drum
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Experimental setup

)* = +&,
-

Besides, Froude number (Fr), the fill level as well as the 
particles’ friction coefficient affect the regime change.
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Materials used
Particles’ Types

(a) 3 mm glass beads, (b) 5 mm glass beads and (c) 5.95 mm Acrylonitrile butadiene styrene (ABS) particles

Fluids’ Composition
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Impact of simulation order

Q1 (2nd order) Q2 (3rd order) Q3 (4th order) Q4 (5th order)
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Observed regimes
Rolling Regime Cascading Regime
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Centrifuging RegimeCataracting Regime

Observed regimes
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Regime capture efficiency

Methodology:
◦ Calibrate friction 

coefficients in rolling 
regime for a given fluid

◦ Simulate all velocity range 
and compare the regime 
obtained in the simulation 
with reality

Result for accuracy:
◦ 96% 3mm glass, 84% for 

6mm ABS, 54% for 5mm 
glass
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Interesting particle rotation
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Challenge and future direction
Onwards to Matrix-free Methods
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What are the challenges?

Time consuming part matrix-based algorithm
◦ Assembly of the system matrix
◦ Assembling the preconditioner (e.g. AMG)
◦ Solving the linear system

Motivation for a matrix-free approach
◦ On modern CPUs access to main memory is the bottleneck
◦ Krylov methods (e.g. GMRES) use matrix-vector multiplications
◦ For large problems, it is faster to compute matrix entries than to load 

them
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Matrix-free: Main idea

Calculate the matrix-vector multiplication defining an 
operator

Other elements
◦ Geometric multigrid preconditioning with global coarsening
◦ Other optimization (vectorization and sum-factorization)
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Result for Taylor-Green vortex

As soon as go to Q2, matrix-free outperforms matrix-based
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Conclusions
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Challenges and conclusion

Modeling granular flow remains highly challenging
◦ Lagrangian strategies are computationally intensive
◦ Turbulent particle-fluid interaction and turbulence modeling in the presence of 

particles is difficult

High-order CFD-DEM are part of the solution
◦ Combined order and mesh resolution give lots of freedom
◦ Matrix-free is the way to go to reduce computational cost

Open-source computational model are a part of the solution
◦ Reproducibility
◦ Capacity to be launched at large scale
◦ Imperfect, but that’s all right



Thanks!
Bruno Blais

Bruno.Blais @polymtl.ca

https://github.com/lethe-cfd

https://github.com/lethe-cfd
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Validation. Industrial & Engineering Chemistry Research, 62(2), 1141-1159.

•El Geitani, T., & Blais, B. (2023). Quadrature-Centered Averaging Scheme for Accurate and Continuous 
Void Fraction Calculation in Computational Fluid Dynamics–Discrete Element Method 
Simulations. Industrial & Engineering Chemistry Research, 62(12), 5394-5407.

•Ferreira, V. O., El Geitani, T., Junior, D. S., Blais, B., & Lopes, G. C. (2023). In-depth validation of 
unresolved CFD-DEM simulations of liquid fluidized beds. Powder Technology, 118652.

•Geitani, TE, Golshan, S, Blais, B. A high-order stabilized solver for the volume averaged Navier-Stokes 
equations. Int J Numer Meth Fluids. 2023; 95( 6): 1011– 1033.

•Golshan, S., Munch, P., Gassmöller, R., Kronbichler, M., & Blais, B. (2023). Lethe-DEM: An open-source 
parallel discrete element solver with load balancing. Computational Particle Mechanics, 10(1), 77-96.

Barbeau, Lucka, et al. "High-order moving immersed boundary and its application to a resolved 
CFD-DEM model." Computers & Fluids 268 (2024): 106094.

Barbeau, Lucka et al. In preparation (2024)


