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Abstract
The numerical solution of the incompressible Navier–Stokes equations requires sophisticated
computational methods. Especially the accurate simulation of high-Reynolds-number turbulent
flows is computationally demanding. This thesis contributes to the development of efficient nu-
merical methods in computational fluid dynamics. A distinctive feature of this work is its holis-
tic view on discretization methods, iterative solvers and preconditioners, and fast implementa-
tion techniques. The discontinuous Galerkin discretization of the incompressible Navier–Stokes
equations uses mixed-order polynomials for velocity and pressure, upwind-like fluxes for the
convective term, the symmetric interior penalty method for the viscous term, and central fluxes
for the velocity–pressure coupling terms. A novel stabilized formulation is developed that en-
forces the divergence-free constraint and normal-continuity of the velocity between elements in
a weak sense. By the use of consistent stabilization terms, robustness problems identified for
standard L2-conforming discretizations of the incompressible Navier–Stokes equations are over-
come, which is attributed to improvements in terms of mass conservation, pressure-robustness,
and energy stability. The discretization scheme is formally high-order accurate in space. More
importantly, however, it exhibits appealing properties in terms of robustness and accuracy when
applied to under-resolved turbulent flows, which are typical of engineering applications. This
approach aims at combining the simplicity of L2-conforming discretizations with the robust-
ness and accuracy of Hdiv-conforming discretizations. This novel discontinuous Galerkin dis-
cretization is extended to coupled flow–transport problems and to problems on moving meshes.
Moreover, applicability to fluid–structure interaction problems is demonstrated. For an efficient
iterative solution of algebraic systems of equations, this work develops novel multigrid methods
for high-order discontinuous Galerkin discretizations. The multigrid methods are hybrid in the
sense that they exploit geometric and polynomial coarsening, an additional transfer to continuous
finite element spaces, and the use of algebraic multigrid techniques as the coarse-level solver. To
evaluate discretized differential operators and preconditioners efficiently, fast matrix-free eval-
uation techniques for tensor-product elements are used, which aim at optimal computational
complexity by the use of the sum-factorization technique and optimal node-level performance
by balancing arithmetic operations and data transfer. The combined efforts in terms of accurate
discontinuous Galerkin discretizations, efficient Navier–Stokes time-stepping techniques, robust
preconditioners, and efficient implementations allow substantial improvements over the state-of-
the-art, which is demonstrated throughout the thesis. The efficiency of high-order discretizations
is assessed critically in an error-vs-costs metric. By the example of the three-dimensional invis-
cid Taylor–Green problem, this work makes the interesting phenomenological observation that
the temporal evolution of the kinetic energy seemingly converges to a dissipative solution under
mesh refinement. These novel results contribute to key questions in fluid dynamics and turbu-
lence research, and require careful discussions by the scientific community. Numerical evidence
of anomalous energy dissipation in the inviscid limit or of the occurrence of finite-time singu-
larities for the incompressible Euler equations according to Onsager’s conjecture is unattained
to date. The present work contributes to the development of incompressible flow solvers that ex-
hibit the required robustness and efficiency to address these grand challenges in fluid dynamics
on today’s and next-generation’s supercomputers. The software contributions of this work are
made available to the scientific community.
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Zusammenfassung

Die numerische Lösung der inkompressiblen Navier-Stokes-Gleichungen erfordert hochentwick-
elte Berechnungsmethoden. Insbesondere die genaue Simulation turbulenter Strömungen mit
hohen Reynoldszahlen ist rechenintensiv. Die vorliegende Arbeit leistet einen Beitrag zur Ent-
wicklung effizienter numerischer Methoden im Bereich der rechnergestützten Fluiddynamik.
Ein charakteristisches Merkmal dieser Arbeit ist eine ganzheitliche Betrachtung von Diskreti-
sierungsmethoden, iterativen Lösern und Vorkonditionierern sowie schnellen Implementierungs-
techniken. Die diskontinuierliche Galerkin-Diskretisierung der inkompressiblen Navier-Stokes-
Gleichungen verwendet Polynome unterschiedlicher Ordnung für Geschwindigkeit und Druck,
Aufwind-artige Verfahren für den konvektiven Term, die SIPG-Methode für den viskosen Term,
und zentrale Flüsse für die Geschwindigkeits-Druck-Kopplungsterme. Eine neuartige stabili-
sierte Formulierung wird entwickelt, welche die Bedingung der Divergenzfreiheit sowie der
Normalstetigkeit der Geschwindigkeit zwischen Elementen in einem schwachen Sinne aufbringt.
Durch die Verwendung konsistenter Stabilisierungsterme werden Robustheitsprobleme überwun-
den, welche für gewöhnliche L2-konforme Diskretisierungen beobachtet werden können, was
sich auf Verbesserungen hinsichtlich Massenerhaltung, Druckrobustheit und Energiestabilität
zurückführen lässt. Das Diskretisierungsschema ist formal von hoher Genauigkeitsordnung im
Raum. Wichtiger erscheinen jedoch dessen ansprechende Eigenschaften hinsichtlich Robust-
heit und Genauigkeit bei Anwendung auf unteraufgelöste turbulente Strömungen, welche für
Ingenieursanwendungen üblich sind. Dieser Ansatz verfolgt das Ziel, die Einfachheit von L2-
konformen Diskretisierungen mit der Robustheit und Genauigkeit vonHdiv-konformen Diskreti-
sierungen zu verbinden. Diese neue diskontinuierliche Galerkin-Formulierung wird auf Strö-
mungsprobleme mit gekoppelten Transportproblemen sowie auf Problemstellungen mit beweg-
ten Rechengittern erweitert. Darüberhinaus wird eine Anwendung auf Probleme der Fluid-Struk-
tur-Wechselwirkung gezeigt. Zur effizienten iterativen Lösung algebraischer Gleichungssysteme
entwickelt die vorliegende Arbeit Mehrgitterverfahren für diskontinuierliche Galerkin-Diskreti-
sierungen hoher Ordnung. Die Mehrgitterverfahren sind hybride Verfahren, da sie geometri-
sche und polynomielle Vergröberung ausnutzen, einen zusätzlichen Transfer zu kontinuierlichen
Funktionenräumen sowie algebraische Mehrgitterverfahren zur Lösung auf dem gröbsten Level
verwenden. Zur effizienten Auswertung von diskretisierten Differentialoperatoren und Vorkon-
ditionierern werden matrixfreie Auswertungstechniken für Elemente mit einer Tensorprodukt-
Struktur angewendet, welche auf optimale Rechenkomplexität durch die Verwendung der Sum-
menfaktorisierungstechnik abzielen sowie auf ein optimales Verhalten auf dem Level von Re-
chenknoten durch Algorithmen mit einem ausgewogenen Verhältnis von Rechenoperationen und
Datentransfer. Die vereinten Bestrebungen nach genauen diskontinuierlichen Galerkin-Diskreti-
sierungen, effizienten Zeitschrittverfahren für die Navier-Stokes-Gleichungen, robusten Vorkon-
ditionierern und effizienten Implementierungen ermöglichen substanzielle Verbesserungen ge-
genüber dem aktuellen Stand der Technik, wie im Laufe der vorliegenden Arbeit gezeigt wird.
Die Effizienz von Diskretisierungen hoher Ordnung wird hinsichtlich einer Genauigkeits-Kosten-
Metrik kritisch hinterfragt. Am Beispiel des reibungsfreien Taylor-Green-Problems macht die
vorliegende Arbeit die interessante phänomenologische Beobachtung, dass die zeitliche Ent-
wicklung der kinetischen Energie bei Gitterverfeinerung scheinbar hin zu einer dissipativen
Lösung konvergiert. Diese neuartigen Ergebnisse leisten einen Beitrag zu Kernfragen der Fluid-
dynamik und Turbulenzforschung und erfordern sorgfältige Diskussionen in der wissenschaft-
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lichen Gemeinde. Ein numerischer Nachweis anomaler Energiedissipation im reibungsfreien
Fall oder für das Auftreten von Singularitäten in endlicher Zeit bei den inkompressiblen Euler-
Gleichungen gemäß der Hypothese nach Onsager ist bis heute unerreicht. Die vorliegende Arbeit
trägt zur Entwicklung von inkompressiblen Strömungslösern bei, welche die nötige Robustheit
und Effizienz aufweisen, um diese großen Herausforderungen der Fluiddynamik auf heutigen
Supercomputern und denen der nächsten Generation anzugehen. Die Software-Beiträge der vor-
liegenden Arbeit werden der wissenschaftlichen Gemeinde zur Verfügung gestellt.
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1 Introduction

Fluid dynamics is ubiquitous. Classical engineering disciplines such as transportation, power
plants, and energy convertion rely in a very fundamental way on fluid dynamics. In terms of
transportation, fluid dynamics often has an adverse effect due to drag forces that need to be
minimized for optimal usage of energy (trains and cars), but is the key element or enabling
mechanism in other cases e.g. by providing the required lift or repulsion (airplanes and ships).
In terms of power plants and green technologies, fluid dynamics is key to hydropower and wind
energy, two of the main sources of regenerable energy. Also conventional forms of energy con-
vertion such as chemical energy transformed into mechanical energy make use of principles of
fluid dynamics. From the level of workstations to the level of supercomputers, the cooling of
microprocessors is also a fluid dynamical problem. While the above examples are all technolo-
gies created by humans, there are fluid dynamical problems not directly influenced by mankind.
These include phenomena in geodynamics such as convection in Earth’s mantle, catastrophic
events such as tsunamis and hurricanes, or just daily weather phenomena. Viruses are transmit-
ted between human beings via aerosoles. The flow of air and transport of oxygen through the
human lung or the flow of blood through the heart or veins and arteries are fluid dynamical prob-
lems. Finally, a multitude of sports fascinating human beings would be inconceivable without
fluid dynamics, e.g., sailing, formula one racing, sky diving, gliding, or ski jumping.

1.1 Motivation

An appropriate physical model for the fluid flow problems mentioned above can be derived by
a continuum description. Mathematically, this description leads to a set of partial differential
equations, the Navier–Stokes equations. In most of the above examples, the fluid flow can be
characterized as incompressible, i.e., the density does not change noticeably along the trajectory
of a fluid element. The Navier–Stokes equations fascinate scientists from various disciplines, as
exemplified by the Clay Millenium problem on the Navier–Stokes equations.1 While the notion
of turbulent flows is intuitively understandable, turbulence is at the same time one of the big
unsolved problems. To exemplarily raise one question subject to controversial debates in physics,
mathematics, and numerics: In the theoretical limit of vanishing viscosity, do turbulent flows still
dissipate energy?

The discipline addressing the understanding of fluid dynamical problems by numerical tech-
niques is called computational fluid dynamics (CFD). Despite immense progress in this field
over the last decades, CFD simulations are still not feasible for many engineering applications
even on today’s supercomputers. A pressing issue in this field are scale-resolving simulations of
high-Reynolds-number turbulent flows, i.e., being able to perform simulations of turbulent flows

1https://www.claymath.org/millennium-problems/
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with billions to trillions of unknowns and millions of time steps in reasonable wall-time limits.
Note that CFD software has somewhat fallen behind expectations dating back to the early times
of large-eddy simulation, in the sense that LES is still not feasible as a standard design tool in
an industrial context in the year of 2020, despite the ever-increasing power of computers. From
such a perspective, a strong need for computationally efficient CFD techniques arises.

In retrospect, one might argue that computational fluid dynamics has often not been the tech-
nology paving the way. Mankind has been very successful in developing new technologies with-
out a complete understanding of the underlying physical mechanisms. As an impressive exam-
ple, airplanes were flying long before the first computer was built. However, from an engineering
perspective, the common element of the applications mentioned in the very beginning is the op-
timization of a system according to a target function. This target function can be the efficiency of
power plants, the lifetime of technical products, or the mortality rate or expectancy of life in the
biomedical sector. This is exactly the perspective from which a main motivation for CFD origi-
nates. Often, flows could also be investigated by experimental techniques such as measurements
in a wind tunnel. However, many applications are not amenable to measurements, because the
scales of the flow might be too large or too small. Experimental setups might not be possible
because certain parameters are not realizable, or because living objects are involved. Finally,
an optimization loop might be easier to realize in a purely digital or virtual environment. Then,
computational techniques might be the only viable approach to predict a system’s behavior.

The development of computational methods enabling the efficient numerical solution of the
incompressible Navier–Stokes equations and, thereby, the prediction and understanding of fluid
dynamical problems is at the heart of the present thesis. To exemplify extensibility of the method-
ology developed in this thesis to multiphysics problems, coupled flow–transport problems and
fluid–structure interaction are also covered by the present thesis. The broad applicability of the
methods developed here is demonstrated by applications motivated from biomechanical prob-
lems such as simulating the flow of air through the human lung during the mechanical ventilation
of neonates, to geodynamical problems such as earth mantle convection.

1.2 Background and embedding into priority
programme for exa-scale computing

The above motivation has used the notion of efficient numerical methods, but what characterizes
an efficient method in the context of PDE solvers? To explain this term, one first needs to inter-
nalize that the outcome of numerical simulations is accompanied by errors, in the very general
sense of models representing an approximation of reality. The main source of errors addressed
in the present work are discretization errors in space and time. Errors due to finite tolerances of
iterative solvers or numerical round-off are also present, but they are typically negligible for the
kind of problems discussed here. Another important class of errors emerges from modeling and
associated uncertainties, which is also not the primary subject of the present work. Assuming
that errors can be quantified, an accurate simulation is one that has a low error, i.e., a simulation
for which the deviation from reality (such as experimental measurements, which are themselves
subject to uncertainties and errors) is small. There is certainly a desire for accurate methods, and
it is natural to ask for the price to pay for. Based on this line of argumentation, one may define
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1.2 Background and embedding into priority programme for exa-scale computing

Efficiency of PDE solvers:

efficiency =
accuracy

computational costs

Efficiency of discretization:

efficiency =
accuracy

DoFs · timesteps

Efficiency of implementation:

efficiency =
DoFs · timesteps · iterations

computational costs

Efficiency of solvers/preconditioners:

efficiency =
1

iterations

Figure 1.1: Discretization, iterative solvers/preconditioners, and implementation as the three
main (multiplicative) contributions to the overall efficiency of PDE solvers.

efficiency as a combination of accuracy and computational costs. The notion of convergence of a
numerical method is a well accepted metric for a method to qualify as reliable. Such a convergent
method increases in accuracy when more computational effort is invested. While convergence is
related to the mathematical notion of a limit process, the notion of efficiency contains an engi-
neering component in the sense that resources are limited, that optimal accuracy is to be realized
with a minimal or limited amount of computational costs.

In the context of PDE solvers for problems typically arising in natural sciences and mod-
eled by continuum mechanics, three main contributors to efficiency can be identified according
to Figure 1.1. This efficiency model assumes unsteady problems tackled by a method-of-lines
discretization approach, where systems of equations arising in each time step are solved by iter-
ative techniques (typically Krylov methods with some robust preconditioners such as multigrid
to obtain mesh-independent convergence rates), for which the evaluation of discretized PDE op-
erators forms a main algorithmic and performance-relevant ingredient of the PDE solver. The
multiplicative splitting of the overall efficiency into three main contributions originates from the
nested-loop character of CFD programs with an outer loop over all time steps, a loop over all
iterations of iterative solvers, and an innermost loop over all elements of a mesh on which dis-
cretized versions of PDE operators need to be evaluated. The following discussion mainly refers
to finite element and discontinuous Galerkin discretization techniques, for which the two main
discretization parameters are the mesh size h and the polynomial degree k describing the space
of polynomial shape functions on each element.

The separation of disciplines according to Figure 1.1 is well-accepted and underlines the mul-
tidisciplinary nature of PDE solver development (and computational fluid dynamics in particu-
lar). The point to make here is that these topics are, however, highly interconnected, requiring a
holistic view to achieve optimal efficiency. From a software perspective, this separation of con-
cerns is reflected in the common choice of using matrix-based iterative solvers that can be ap-
plied in a black-box fashion to the system of equations arising from the discretization of a PDE.

3
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The price to pay for this high degree of generality is a rather poor performance when applied to
high-order discretization methods, that are – under these circumstances – typically considered
inefficient and to not pay off in terms of efficiency. Elementwise matrices are dense, leading
to an at least quadratic complexity in terms of degrees of freedom per element and rendering
high-order methods prohibitively expensive with this implementation technique. A methodol-
ogy that tries to overcome these performance limitations of high-order methods is based on
the idea of eliminating interior degrees of freedom prior to the solution of algebraic systems
of equations (static condensation technique or hybridizable discontinuous Galerkin methods), a
technique which aims at preserving a high degree of generality in terms of clearly separating the
three disciplines from a software perspective and maintaining black-box interfaces to linear al-
gebra packages for the solution of algebraic systems of equations. The present work argues that
this optimization level is not “aggressive” enough to achieve optimal performance, especially for
three-dimensional problems. The term optimal refers to the question whether e.g. high-order dis-
continuous Galerkin methods can be implemented as efficiently as their low-order counterparts
or finite-difference methods with stencil-like matrix-free implementation. To achieve this goal,
matrix-free implementation techniques are required, which can be realized most efficiently for
element types that exhibit a tensor-product structure such as hexahedral elements in three space
dimensions (Kronbichler and Kormann 2019), even though these techniques can also be realized
for simplicial elements at somewhat reduced performance (Moxey et al. 2020a).

The reason why these different implementation techniques vary significantly in computational
efficiency is that they exhibit different characteristics in terms of floating point operations, the
amount of data transferred from main memory, and arithmetic intensity (the ratio of floating
point operations to memory transfer). It should be emphasized that recent developments in com-
puter hardware towards multi-core architectures with increasing SIMD capabilities and arith-
metic performance increasing at a higher speed than memory bandwidth impact the question
regarding an optimal implementation strategy. This question is further complicated by an in-
creasing heterogeneity in the hardware landscape leading to different implementation techniques
being most efficient on different hardware platforms. As shown in the course of this thesis, these
design choices are not about rendering a method twice as fast, but essentially have an orders-
of-magnitude impact on computational costs for high-order methods. Note that fast matrix-free
implementation techniques also introduce several challenges. From the perspective of software
design, the challenge is to preserve generality and a separation-of-concerns. Another main chal-
lenge is the development of matrix-free preconditioners, which is as important as matrix-free
operator evaluation in order to realize fast PDE solvers for high-order discretizations.

This PhD project has been funded by the German Research Foundation (DFG) through the
project ExaDG – High-order Discontinuous Galerkin for the Exa-scale (see Arndt et al. (2020b)
for a summary), which has been part of the second phase of the German priority programme for
Exa-scale2 computing (SPPEXA3 – Software for Exascale Computing). The main goals of the
project ExaDG are novel contributions in terms of (i) robust and accurate discretization methods
for PDE model problems arising in computational fluid dynamics with an emphasis on high-
order discontinuous Galerkin discretization techniques, (ii) the development of fast matrix-free

2An Exa-scale computer is one that is able to perform 1018 floating-point operations per second. Currently, the
world’s largest supercomputer is Fugaku installed in Japan in the year of 2020 with a theoretical peak perfor-
mance of approximately 0.5 EFlop/s, see https://www.top500.org/.

3See http://www.sppexa.de/ for details.
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implementation techniques for high-order continuous and discontinuous Galerkin discretizations
with a focus on node-level performance (i.e., maximizing the throughput of matrix-free operator
evaluation or minimizing time-to-solution), and (iii) the development of robust and fast matrix-
free preconditioners and iterative solvers for such high-order discretization techniques, see also
Figure 1.1. The motivation for the use of discontinuous Galerkin methods originates primarily
from the geometric flexibility and the sound mathematical foundation of finite element methods
on the one hand, and advantageous stability properties for problems with dominant convection by
adapting concepts from finite volume discretizations on the other hand. Discontinuous Galerkin
methods are often motivated from the point of view of parallel scalability, but the grand challenge
and question of scientific interest appears to be that of achieving good single-core or node-
level performance as explained above. Regarding the latter aspect, high-order methods are often
motivated with a higher arithmetic intensity. However, the absolute number of floating point
operations is most often also higher per degree of freedom, i.e., implementations of high-order
discretizations might achieve a significant fraction of a computer’s peak performance, but might
exhibit sub-optimal performance in terms of time-to-solution. In agreement with Figure 1.1,
floating point performance can be considered a metric of subordinate importance. Instead, the
metric of engineering interest is time-to-solution or computational costs.

1.3 Novel contributions of this work

The contributions of this work are twofold. They include software developments on the one
hand, and new method developments in the field of discontinuous Galerkin methods for incom-
pressible flows and natural convection flows, ALE methods and fluid–structure interaction, and
fast matrix-free preconditioners and multigrid methods for high-order DG discretizations on the
other hand. These developments have enabled the numerical investigation of several questions of
scientific interest, for example the efficiency of high-order DG discretizations when applied to
under-resolved turbulent flows by performing detailed mesh refinement studies for the viscous
Taylor–Green problem, or the phenomenon of anomalous energy dissipation in incompressible
Euler flows by performing high-resolution simulations of the challenging inviscid Taylor–Green
problem. As demonstrated at several places in this thesis, these contributions have lead to sig-
nificant performance improvements over many state-of-the-art methods and implementations in
this field.

In the course of this thesis, a new CFD software has been developed, whose main focus is
on efficient discontinuous Galerkin methods for incompressible flow problems, given that an
incompressible flow solver is often a core module of CFD software. In particular, the software
addresses scale-resolving simulations of high-Reynolds-number turbulent flows as a main chal-
lenge in CFD. The software project is called ExaDG and builds upon the generic finite element
library deal.II (Arndt et al. 2020a, Bangerth et al. 2007). Both software projects are written
in C++ and make use of the object-oriented programming paradigm. The separation-of-concerns
design principle allows ExaDG to concentrate on the physics, i.e., the project’s credo is that fluid
dynamics experts without a strong background in computer science should be able to write high-
performance CFD software. The software ExaDG implements the discretized spatial derivative
operators, numerical fluxes, boundary conditions, time integration schemes, and postprocessing
routines for a particular PDE model problem at hand, while deal.II provides core finite ele-
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Figure 1.2: Code project ExaDG with icon (left) and QR code for https://github.com/exadg
project (right). The project aims at fast PDE solvers by using matrix-free imple-
mentation techniques for tensor-product elements, as symbolized by the hexahedral
element in the icon. Alternatively, the icon shows a triangular mesh that symbolizes
the project’s extensibility towards simplicial meshes as part of future work.

ment functionalities such as meshing and parallel domain decomposition, basic FE ingredients
such as finite elements and shape functions, mappings, quadrature rules, the handling of degrees
of freedom, Krylov solvers, and – most importantly in the context of the present thesis – integra-
tors for the matrix-free evaluation of PDE operators. Regarding the latter aspect, the matrix-free
implementation in deal.II provides high-performance kernels for the interpolation of shape
functions and their derivatives into quadrature points, organizes the loops over the elements and
faces of a mesh, and takes care of the parallelization in the form of a generic interface for matrix-
free operator evaluation (Kronbichler and Kormann 2012). The library deal.II itself makes
use of sophisticated third-party libraries. The ExaDG software is available on github (see Fig-
ure 1.2) to allow verification and reproducibility of results obtained in the present thesis, and to
fulfill SPPEXA’s mission of making software contributions for Exa-scale computing available to
the scientific community.

The following publications (listed in chronological order) have been published (or submit-
ted/accepted for publication) prior to the submission of this thesis:

(i) B. Krank, N. Fehn, W. A. Wall, and M. Kronbichler, A high-order semi-explicit discon-
tinuous Galerkin solver for 3D incompressible flow with application to DNS and LES of
turbulent channel flow, Journal of Computational Physics 348, 634–659, 2017.

(ii) N. Fehn, W. A. Wall, and M. Kronbichler, On the stability of projection methods for the
incompressible Navier–Stokes equations based on high-order discontinuous Galerkin dis-
cretizations, Journal of Computational Physics 351, 392–421, 2017.

(iii) N. Fehn, W. A. Wall, and M. Kronbichler, Robust and efficient discontinuous Galerkin
methods for under-resolved turbulent incompressible flows, Journal of Computational
Physics 372, 667–693, 2018.

(iv) N. Fehn, W. A. Wall, and M. Kronbichler, Efficiency of high-performance discontinuous
Galerkin spectral element methods for under-resolved turbulent incompressible flows, In-
ternational Journal for Numerical Methods in Fluids 88, 32–54, 2018.

6

https://github.com/exadg


1.3 Novel contributions of this work

(v) N. Fehn, W. A. Wall, and M. Kronbichler, A matrix-free high-order discontinuous Galerkin
compressible Navier–Stokes solver: A performance comparison of compressible and in-
compressible formulations for turbulent incompressible flows, International Journal for
Numerical Methods in Fluids 89, 71–102, 2019.

(vi) N. Fehn, M. Kronbichler, C. Lehrenfeld, G. Lube, and P. W. Schroeder, High-order DG
solvers for under-resolved turbulent incompressible flows: A comparison of L2 andH(div)
methods, International Journal for Numerical Methods in Fluids 91, 533–556, 2019.

(vii) N. Fehn, W. A. Wall, and M. Kronbichler, Modern discontinuous Galerkin methods for the
simulation of transitional and turbulent flows in biomedical engineering: A comprehensive
LES study of the FDA benchmark nozzle model, International Journal for Numerical
Methods in Biomedical Engineering 35, e3228, 2019.

(viii) N. Fehn, P. Munch, W. A. Wall, and M. Kronbichler, Hybrid multigrid methods for
high-order discontinuous Galerkin discretizations, Journal of Computational Physics 415,
109538, 2020.

(ix) D. Arndt, N. Fehn, G. Kanschat, K. Kormann, M. Kronbichler, P. Munch, W. A. Wall, and
J. Witte, ExaDG: High-Order Discontinuous Galerkin for the Exa-Scale, In H.-J. Bun-
gartz, S. Reiz, B. Uekermann, P. Neumann, and W. E. Nagel (eds.), Software for Exascale
Computing - SPPEXA 2016-2019, pages 189–224, Cham, 2020, Springer International
Publishing.

(x) N. Fehn, M. Kronbichler, P. Munch, and W. A. Wall, Numerical evidence of anoma-
lous energy dissipation in incompressible Euler flows: Towards grid-converged results for
the inviscid Taylor–Green problem, Journal of Fluid Mechanics accepted, arXiv preprint
arXiv:2007.01656, 2021.

(xi) N. Fehn, J. Heinz, W. A. Wall, and M. Kronbichler, High-order arbitrary Lagrangian–
Eulerian discontinuous Galerkin methods for the incompressible Navier–Stokes equations,
Journal of Computational Physics 430, 110040, 2021.

These articles constitute a main contribution of this work and content from many of these publi-
cations is reproduced in this thesis as summarized in Table 1.1. For clarity, the inverse map (chap-
ter→ publications) is additionally highlighted at the beginning of each chapter, to indicate which
publications a particular chapter (or a part of a chapter) is based on. Chapters 3 and 9 present
entirely new content that has not been published or submitted for publication prior to the sub-
mission of this thesis. For reasons of brevity, the content of the works (i), (v), (vi), (vii) is not
presented in the present thesis. These works complement topics discussed in this thesis and
are suggested as further reading material depending on the reader’s interest. To highlight con-
tributions by other PhD students, the work (i) has been developed in close collaboration with
Benjamin Krank, PhD student at the Technical University of Munich, the work (vi) in close col-
laboration with Philipp Schroeder, PhD student at the Georg-August-Universität Göttingen, and
the work (viii) in close collaboration with Peter Munch, PhD student at the Technical University
of Munich. The work (ix) constitutes the final project report of the SPPEXA-ExaDG project, to
which Julius Witte contributed as a PhD student at Heidelberg University.
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Table 1.1: List of publications with references to chapters of this thesis that discuss or reproduce
content of a given publication. The symbol ‘-’ means that the content of a publication
is not subject of the present thesis.

Publication (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) (xi)

Chapter(s) - 2 2 4, 5, 6 - - - 4, 5 6 7 8

The contributions of these publications are as follows: The works (i), (ii), (iii) develop dis-
continuous Galerkin discretization methods with the goal to obtain robust incompressible flow
solvers, overcoming several stability problems reported in previous works. The work (i) reviews
state-of-the-art techniques from the literature and proposes remedies to address instabilities oc-
curring for small time step sizes and for under-resolved problems typically encountered when
simulating turbulent flows. The subsequent work (ii) clarifies the role of the velocity–pressure
coupling terms and their DG discretization in the context of instabilities occurring for small time
step sizes, and the work (iii) the role of consistent divergence and continuity penalty terms in
terms of mass conservation and energy stability (and their stabilizing effect for under-resolved
turbulent flows). To the best of the author’s knowledge, the works (i) and (iii) represent the
first successful application of L2-conforming DG discretizations to the accurate simulation of
turbulent incompressible flows with a robust behavior in under-resolved scenarios. The stabi-
lized L2-conforming DG discretization for incompressible flows discussed in this thesis exhibits
many parallels to exactly divergence-free Hdiv-conforming discretizations. This topic has been
explored in detail in the work (vi), where both approaches are compared regarding their accuracy
and suitability to simulate turbulent flow problems in an implicit LES context without explicit
sub-grid models. This study suggests that both discretization schemes are interesting candidates
for generic turbulent flow solvers, and fosters a perspective where LES modeling might be under-
stood as the problem of devising numerical discretization schemes with suitable mathematical
properties. The work (vii) investigates the capabilities of the present incompressible DG solver
to simulate transitional and turbulent flow problems by the example of the FDA benchmark
nozzle problem, a flow configuration typically occurring in biomedical engineering. The study
concludes that a sensitive behavior related to the definition of the FDA benchmark problem com-
plicates a rigorous quantification of the accuracy and computational efficiency of CFD methods
for the benchmark problem under investigation. An extension of the stabilized DG discretization
for incompressible flows towards moving meshes based on the arbitrary Lagrangian–Eulerian
technique is presented in the work (xi), which contributes to the state-of-the-art in the sense that
an emphasis is put on temporal consistency for projection-type solvers as well as on aspects of
energy stability and fulfillment of the geometric conservation law.

The work (iv) details the efficiency of this high-order DG discretization when applied to tur-
bulent flows by the example of the three-dimensional Taylor–Green benchmark problem. This
work benchmarks the present incompressible Navier–Stokes DG solver in terms of node-level
performance and achieves a significant speed-up over state-of-the-art methods. This work also
proposes a simple efficiency model for high-order PDE solvers and the results shown in this work
suggest that high-order PDE solvers have to strive for optimal algorithmic complexity w.r.t. the
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polynomial degree of the shape functions in order to render high-order methods more efficient
in under-resolved application scenarios. The work (v) presents a high-order DG discretization
for compressible flows using fast matrix-free implementation techniques. It addresses the ques-
tion whether compressible solvers amenable to explicit time stepping pose a computationally
efficient alternative to incompressible formulations when applied in a low Mach number regime.
The incompressible DG solver is found to be significantly more efficient in terms of node-level
performance than the explicit compressible DG solver, where the novel implementation of the
compressible DG solver has been shown to outperform a state-of-the-art implementation from
the literature substantially. The work (viii) develops novel multigrid techniques for high-order
discontinuous Galerkin discretizations that exploit all levels of geometric, polynomial, and alge-
braic coarsening, which is particularly relevant to solve problems with complicated geometries
in a computationally efficient way. In such a regime, pure h-multigrid methods typically show
a rather poor performance for high polynomial degrees if not the number of mesh refinement
level is large. The work (ix) investigates the parallel scalability of the present incompressible
DG solver on the SuperMUC-NG supercomputer with more than 300k cores.

Finally, the study (x) builds upon the developments made in many previous contributions and
addresses the challenging three-dimensional inviscid Taylor–Green vortex problem. An interest-
ing result of this study is the phenomenological observation that the kinetic energy evolution
seemingly converges to a dissipative solution with non-zero dissipation rate for increasing spa-
tial resolution of the DG discretization scheme. The study raises the questions to which extent
these results are related to weak dissipative solutions of the incompressible Euler equations and
to which extent these results can be interpreted as a numerical confirmation of anomalous en-
ergy dissipation. An interesting idea is that observing such a dissipative behavior in numerical
experiments might give indirect hints of finite-time singularities in incompressible Euler flows
according to Onsager’s conjecture. A main contribution to the state-of-the-art is the perspective
elaborated in this work that the use of energy-conserving schemes which are widely used for the
simulation of incompressible Euler flows might not be suitable to address the question regarding
the occurrence of anomalous energy dissipation. As a conclusion, discretization methods such
as those developed in this thesis might constitute a new tool in turbulence research and enable
the numerical investigation of new classes of problems.

Apart from the contributions listed above, the author of this thesis has been involved in other
projects that have led to the following publication, to which the author contributed partly:

• Kronbichler et al. (2018b)

• Kronbichler et al. (2019)

• Nitzler et al. (2020)

The work by Kronbichler et al. (2018b) summarizes early contributions in the field of stabilized
DG methods for the simulation of incompressible turbulent flows and briefly outlines the algo-
rithmic framework in terms of fast matrix-free implementation techniques. The work by Kro-
nbichler et al. (2019) proposes an innovative Hermite-like polynomial basis for DG discretiza-
tions of PDE operators with second derivatives, e.g., the constant coefficient Poisson equation
with symmetric interior penalty discretization. The use of a Hermite-like basis allows to improve
the data access pattern of face integrals for discontinuous Galerkin discretizations with matrix-
free implementation, and, thereby, results in an increased computational efficiency. The work
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by Nitzler et al. (2020) addresses aspects of uncertainty propagation and highlights the need to
simulate the forward problem efficiently. In this context, the incompressible Navier–Stokes DG
solver developed in the present thesis is used.

New developments related to active scalar transport (natural convection flows) and fluid–
structure interaction are presented in this thesis that have not been published prior to the sub-
mission of this thesis. By the example of natural convection flows, this thesis shows that the
formulation of the convective term for active scalar transport plays a decisive role in terms of
the stability of the discretization scheme for coupled flow–transport problems and that instabil-
ities might occur in case that the velocity field is not exactly mass-conserving. An interesting
aspect is that pressure-robust discretizations for the incompressible Navier–Stokes equations
might also be prone to this instability since pressure-robustness does not imply that the veloc-
ity field is exactly mass-conserving. To preserve stability, the flow–transport coupling needs to
fulfill a compatibility condition. In practice, this compatibility condition implies that the trans-
port term should be written in convective formulation in general. With respect to fluid–structure
interaction problems, this thesis proposes a new FSI solver based on an ALE-DG formulation
for the fluid problem and a standard H1-conforming discretization for the solid problem. The
formulation is flexible w.r.t. non-matching grids at the fluid–structure interface. Moreover, the
polynomial degrees used for the numerical approximation of the different fields can be chosen
independently. First numerical results shown for this prototype FSI solver give indications that
the paradigm of partitioned FSI algorithms with fast matrix-free single-field solvers might open
new doors towards a next generation of fluid–structure interaction solvers, potentially overcom-
ing performance limitations of state-of-the-art monolithic FSI algorithms.

1.4 Scope of this work

For reasons of brevity, this thesis does not give an introduction to fluid dynamics, turbulence phe-
nomena, discretization methods in general, and finite element or discontinuous Galerkin tech-
niques in particular. All of this is well-documented in the literature. The present thesis does
also not cover the topic of wall-modeling relevant for the numerical solution of high-Reynolds-
number wall-bounded turbulent flows, see for example the thesis by Krank (2019) in the context
of discontinuous Galerkin discretization methods discussed here. Computational fluid dynam-
ics has always been an interdisciplinary topic, requiring expertise from mathematics, physics,
numerics, engineering, and computer science. This thesis is intended to catch readers from all
of these disciplines. The red threat of this work is certainly the engineering effort striving for
efficient PDE solvers in computational fluid dynamics, with efficient in the sense of robust, ac-
curate, and fast numerical methods. This thesis might be particularly interesting for physicists
and engineers sharing the desire for fluid dynamics solvers of the next generation enabling the ef-
ficient simulation of turbulent flows through novel discretization and implementation techniques.
It might also be particularly relevant for computer scientists interested in the application field of
PDE solvers. Finally, for those engaged in the emerging fields of machine learning, uncertainty
propagation, optimization, etc. applied to PDE-based model problems, this work might be inter-
esting in the sense that the speed at which the forward solution of a problem can be performed
is often a main limiting factor.
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1.5 Outline

This thesis is organized as follows: Chapter 2 discusses discretization methods for the incom-
pressible Navier–Stokes equations, with a focus on efficient and accurate discretization tech-
niques in both space and time. With respect to the temporal component, coupled (or monolithic)
as well as projection-type solution techniques are discussed that are flexible in terms of fully-
implicit or semi-implicit formulations and adaptive time stepping. With respect to the spatial
component, high-order discontinuous Galerkin methods with suitable stabilization techniques
are developed. Extensive numerical investigations detail the discretization properties of the pro-
posed incompressible Navier–Stokes solvers. Here, a focus is on the robust and accurate sim-
ulation of turbulent flow problems. Chapter 3 provides an extension to coupled flow–transport
problems. While this chapter covers both active and passive scalar transport, the focus of this
chapter is on natural convection flows since this is the setting that is more challenging from a
discretization point of view. Incompressible flow and scalar transport solvers are core modules
of every CFD software, so that Chapters 2 and 3 are recommended as reading material for those
readers interested in working with the ExaDG software or in learning more about its theoretical
background in terms of discretization methods applied “under the hood”.

The next three chapters shed light on the computational efficiency of this high-order discon-
tinuous Galerkin discretization framework. Chapter 4 gives an introduction to fast matrix-free
evaluation techniques as a general technique to evaluate discretized PDE operators in an ab-
stract finite element context. Numerical results illustrate the performance of the main operators
forming the kernels of high-order discontinuous Galerkin discretizations of the incompressible
Navier–Stokes equations. Chapter 5 addresses iterative solvers and preconditioners. A main em-
phasis is put on efficient multigrid preconditioners for a Poisson-type model problem that is the
key to a fast incompressible flow solver. In the context of high-order DG methods, the methodol-
ogy of hybrid multigrid techniques exploiting polynomial, geometric, and algebraic coarsening
strategies within the multigrid hierarchy is of particular importance and is explained in detail.
Moreover, block-preconditioners for the saddle-point problem associated to coupled incompress-
ible flow solvers are discussed. Chapter 6 takes an application perspective, with the goal to obtain
accurate solutions of incompressible flow problems with a minimal amount of computational
costs. This chapter also investigates whether high-order discretization methods can be expected
to pay off in terms of computational efficiency. For practitioners and engineers in CFD, this
might be the chapter that is most relevant since it benchmarks high-order DG methods in an
error-vs-cost metric and might allow extrapolations whether this approach is worth giving it a
try in an application context.

The remaining chapters cover advanced topics. Chapter 7 raises the question whether the pro-
posed numerical discretization technique might be suitable to address a grand challenge in fluid
dynamics and turbulence research, namely providing evidence of anomalous energy dissipation
for inviscid incompressible flows and – related to this – addressing the question whether incom-
pressible Euler flows might develop singularities in finite time in three space dimensions accord-
ing to Onsager’s conjecture. Turbulence researchers interested in this question might want to
dive right into this chapter, which is why this content is presented as a stand-alone chapter in this
thesis with pointers to previous chapters. Chapter 8 presents an extension of the discretization
framework for the incompressible Navier–Stokes equations to problems on moving domains,
which is realized by the well-known arbitrary Lagrangian–Eulerian technique. An important
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field of application of this approach are fluid–structure interaction problems that are subject of
Chapter 9. This chapter outlines the algorithmic ingredients and the computational efficiency of
this new FSI solver. Finally, Chapter 10 summarizes this work and gives perspectives on future
work.
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2 Discretization methods for the
incompressible Navier–Stokes
equations

This chapter describes the main method developments of the present thesis in terms of sta-
ble and high-order accurate splitting solvers in combination with robust discontinuous Galerkin
discretizations based on a novel stabilized L2-conforming formulation for the incompressible
Navier–Stokes equations. At the time when this PhD project was initiated, it was observed that
state-of-the-art methods from the literature for L2-conforming DG discretizations of the incom-
pressible Navier–Stokes equations lack robustness when applied to practical flow problems. In
the course of this thesis, it has been possible to trace this lack of robustness back to two sources
of instabilities and to propose suitable remedies for each of them. Instabilities occurring for small
time step sizes (especially for coarse spatial resolutions and large Reynolds numbers) were found
to be related to the DG discretization of velocity–pressure coupling terms, requiring special care
in case of projection-type solution algorithms. Independently of the type of temporal discretiza-
tion approach, both monolithic and projection-type Navier–Stokes DG solvers where found to
lead to instabilities when applied to under-resolved, high-Reynolds-number flows, preventing
the robust simulation of turbulent flow problems that are of primary importance for engineering
applications. This instability was found to originate from problems in mass conservation and
energy stability, and a stabilized approach has been proposed enforcing stability in a weak sense.
The goal is to obtain a robust and accurate discretization approach for LES and DNS of turbulent
flows without the need for explicit turbulence models. These contributions have been published
in a series of research articles (Fehn et al. 2017, 2018b, 2019a, Krank et al. 2017) prior to the
submission of this thesis, and are an advancement of work originally initiated in Fehn (2015).
The content of this chapter is mainly based on work that has already been published in Fehn
et al. (2017) and Fehn et al. (2018b).

The outline of this chapter is as follows. Section 2.1 recapitulates the state-of-the-art in terms
of high-order L2-conforming discretizations for the incompressible Navier–Stokes equations and
explains novel contributions of the present work. Section 2.2 briefly presents the model prob-
lem of the incompressible Navier–Stokes equations. Section 2.3 discusses temporal discretiza-
tion methods, considering both monolithic and projection-type solution algorithms. Robust dis-
continuous Galerkin methods for discretization in space are subject of Section 2.4. Section 2.5
presents the fully-discrete formulation and discusses aspects related to inf–sup stability, numer-
ical integration, and time step restrictions. Detailed numerical investigations on the robustness
and accuracy of the proposed methods are shown in Section 2.6, and a conclusion is provided in
Section 2.7.
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2 Discretization methods for the incompressible Navier–Stokes equations

2.1 Motivation

Discontinuous Galerkin methods are an emerging discretization technique for the numerical sim-
ulation of flow problems. With a focus on the model problem of the incompressible Navier–
Stokes equations, this section gives a detailed summary of both the state-of-the-art and novel
contributions of the present work, which mainly aim at improving the robustness and accuracy of
this discretization approach. This chapter is not meant as a basic introduction to fluid mechanics,
numerical time integration, and finite element or discontinuous Galerkin methods. The reader is,
instead, referred to standard textbooks on computational fluid dynamics, or more specifically to
the textbooks by Hesthaven and Warburton (2007), Karniadakis and Sherwin (2013), Kronbich-
ler and Persson (2021) in the context of high-order methods discussed in this work.

2.1.1 State-of-the-art

The local discontinuous Galerkin method (LDG) is analyzed in Cockburn et al. (2002) for the
steady Stokes equations, in Cockburn et al. (2004) for the Oseen equations, and a locally conser-
vative LDG method for the steady incompressible Navier–Stokes equations is proposed in Cock-
burn et al. (2005). By using a pressure-stabilization term, a stable equal-order formulation for
the steady Navier–Stokes equations is proposed in Cockburn et al. (2009), where an upwind flux
formulation is considered for the convective term and the local discontinuous Galerkin method
or the interior penalty method for the discretization of the viscous term. These early works re-
vealed that spaces other than standard L2-conforming approximations are necessary to exactly
fulfill conservation properties such as mass conservation or energy stability, leading to Hdiv-
conforming and exactly divergence-free approximations, see also Cockburn et al. (2007).

The DG method of Bassi et al. (2006, 2007) for unsteady incompressible flow solves a local
Riemann problem (with artificial compressibility to recover hyperbolic equations) to compute
the inviscid numerical fluxes. The BR2 scheme is used to discretize the viscous term. The authors
report that the method allows the use of equal-order polynomials for velocity and pressure due
to the stabilization inherent to this scheme.

The interior penalty method has found most widespread use for the discretization of sec-
ond derivatives. The discontinuous Galerkin methods proposed in Girault et al. (2005a,b) con-
sider both the symmetric and the non-symmetric interior penalty method for the viscous term,
Lesaint–Raviart upwinding fluxes for the convective term, and central fluxes for the pressure
gradient term and velocity divergence term. In Hesthaven and Warburton (2007), Shahbazi et al.
(2007), the discretization of the viscous term is also based on the symmetric interior penalty
Galerkin (SIPG) method, and the convective term is written in divergence form to ensure lo-
cal conservativity and is discretized using the local Lax–Friedrichs flux. This DG discretization
of the convective term and viscous term is also applied in Klein et al. (2015, 2013). The work
by Ferrer and Willden (2011) uses the symmetric interior penalty method for the viscous term,
while the convective term is written in convective form using Lesaint–Raviart fluxes. An im-
portant difference can be observed with respect to the discretization of the velocity–pressure
coupling terms. While central fluxes are used for the velocity divergence term and pressure gra-
dient term in Klein et al. (2015, 2013), Shahbazi et al. (2007), no integration by parts of these
terms is considered in Ferrer and Willden (2011), Hesthaven and Warburton (2007). This turned
out to be a crucial aspect for stability (Fehn et al. 2017) and is discussed in more detail below.
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Most recent works by Chalmers et al. (2019), Fehn et al. (2017, 2018b), Krank et al. (2017)
use the SIPG method for the viscous term, the Lax–Friedrichs flux for the convective term, and
central fluxes for the velocity–pressure coupling terms.

Mixed discontinuous–continuous approximations for velocity and pressure are proposed
in Botti and Pietro (2011), Gao et al. (2017), Xu et al. (2019). Staggered discontinuous Galerkin
methods with velocity and pressure unknowns defined on staggered grids are proposed in Tavelli
and Dumbser (2014). A hybridizable discontinuous Galerkin method is proposed in Nguyen et al.
(2011) and hybrid discontinuous Galerkin methods are considered in Lehrenfeld and Schöberl
(2016) using a standard DG discretization for the convective term and an Hdiv-conforming
HDG discretization for the velocity occurring in the Stokes operator, which results in an ex-
actly divergence-free velocity. Another HDG method with pointwise divergence-free velocity
field is proposed in Rhebergen and Wells (2018). A fully-explicit divergence-free DG method
that eliminates the pressure from the equations is proposed in Fu (2019).

A zoo of instabilities has been reported for DG discretizations of the incompressible Navier–
Stokes equations. The work by Ferrer and Willden (2011) reports instabilities for small time
step sizes when using an equal-order DG method in combination with the dual splitting scheme,
which has first been proposed in Hesthaven and Warburton (2007). In a later work by Ferrer
et al. (2014), these instabilities are associated to inf–sup instabilities. As explained in Ferrer and
Willden (2011), Ferrer et al. (2014), these instabilities shift to larger time step sizes for coarse
spatial resolutions and low viscosities, so that this lower bound might be in conflict with the
CFL-type upper bound on the time step size, resulting in an impractical scheme under these
circumstances. Similar instabilities occurring for small time step sizes are reported in Emamy
(2014), Emamy et al. (2017), Piatkowski et al. (2018), always in combination with the use of
projection-type methods. The works by Joshi et al. (2016), Steinmoeller et al. (2013) report
instabilities for coarse spatial resolutions and low viscosities in combination with a projection
scheme, and associate the instabilities to inaccuracies of the discrete pressure projection oper-
ator which yields a velocity that is not exactly divergence-free or mass conserving. The work
by Shahbazi et al. (2007) reports instabilities for the two-dimensional Orr–Sommerfeld prob-
lem using mixed-order polynomials and an algebraic splitting scheme. Instabilities for the same
problem are also reported in Klein et al. (2015) using a mixed-order formulation where the in-
compressible Navier–Stokes equations are solved by the SIMPLE algorithm. In Chalmers et al.
(2019), instabilities are reported for a two-dimensional shear layer roll-up problem, where an
algebraic splitting scheme similar to the one in Shahbazi et al. (2007) is used. It is remarkable
that most of the state-of-the-art methods discussed above did not demonstrate robustness for
three-dimensional turbulent flows in under-resolved scenarios. This points to robustness prob-
lems of standard L2-conforming discretizations when applied in such a setting, as explained in
more detail below.

2.1.2 Novel contributions of the present work
It has been a major effort of the present thesis to shed light on the various instabilities mentioned
above, to explain their origin (which actually do not arise from the use of projection methods),
and to propose suitable remedies in order to obtain a robust, L2-conforming DG discretization
for the incompressible Navier–Stokes equations. In a first contribution (Krank et al. 2017), insta-
bilities reported in the literature have been summarized and reviewed, the numerical properties of
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different remedies proposed so far have been investigated, and new improved stabilization tech-
niques have been proposed. Two subsequent contributions (Fehn et al. 2017, 2018b) have been
able to identify essentially two sources of instabilities as explained in more detail below. A key
ingredient in this context has been to simultaneously investigate monolithic and projection-type
Navier–Stokes solvers, in order to study similarities and observe differences for otherwise iden-
tical parameters. These investigations clearly reveal that the instabilities described above are not
related to a particular temporal discretization scheme or operator-splitting technique and also not
to the inf–sup problem, but are instabilities resulting from the DG discretization of the incom-
pressible Navier–Stokes equations. In the following, the origin of these instabilities is discussed
in detail.

2.1.2.1 Instabilities for small time step sizes: Velocity–pressure coupling terms

A discontinuous Galerkin formulation for the high-order dual splitting scheme (Karniadakis
et al. 1991) has first been proposed in Hesthaven and Warburton (2007) using equal-order ap-
proximations for velocity and pressure. Instabilities of this method have been reported in Ferrer
and Willden (2011) for small time step sizes. Similar instabilities are reported in Emamy (2014),
Emamy et al. (2017), Piatkowski et al. (2018). Several remedies have been proposed in the litera-
ture. In Ferrer et al. (2014), the instabilities occurring for small time step sizes are related to inf–
sup instabilities and a stabilization is proposed by scaling the penalty parameter of the interior
penalty method used to discretize the pressure Poisson equation by the inverse of the time step
size. The work by Krank et al. (2017) reports improved stability for this approach, but the simu-
lations eventually become unstable for smaller time step sizes. The works by Joshi et al. (2016),
Steinmoeller et al. (2013) suggest to postprocess the velocity field in the projection step in order
to obtain an exactly or weakly divergence-free velocity and to stabilize the discrete pressure pro-
jection operator. The analysis in Emamy (2014) suggests that the instabilities might be related
to the discretization of the velocity divergence term and pressure gradient term, but the formula-
tion is unclear regarding the imposition of boundary conditions. A modification of the splitting
scheme is proposed in Emamy et al. (2017) to overcome these instabilities. This scheme has al-
ready been proposed by Leriche and Labrosse (2000), Leriche et al. (2006) in a different context
and has previously been analyzed in Krank et al. (2017) in the context of instabilities for small
time step sizes and discontinuous Galerkin discretizations, where the approach is found to be sta-
ble for small time step sizes but to exhibit increased spatial errors and sub-optimal convergence
in space. In Piatkowski et al. (2018), the div–div penalty based projection proposed in Krank
et al. (2017) is compared to a postprocessing technique using Hdiv-reconstruction with Raviart–
Thomas spaces. In retrospect, some of the remedies discussed in Krank et al. (2017), Piatkowski
et al. (2018) might be better described in the context of mass conservation and energy stability
than in the context of the small time steps problem (see the discussion in Section 2.1.2.2), but
the picture has been unclear at that time.

For the DG formulation proposed in Hesthaven and Warburton (2007) and analyzed in Ferrer
and Willden (2011), Ferrer et al. (2014), it is noticeable that the velocity divergence term and
pressure gradient term are not integrated by parts when deriving the weak formulation. This
might be due to the following reasons:

• For the high-order dual splitting scheme (and projection methods in general), one is not
forced to perform integration by parts of these terms since they appear on the right-hand
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side of the pressure Poisson equation and projection equation. Hence, the resulting systems
of equations are still solvable without integration by parts. Note that this is fundamentally
different for a monolithic solution approach. In that case, the system of equations is not
solvable which becomes obvious when looking at the fact that performing integration by
parts and defining numerical fluxes for the pressure gradient term is a necessary prerequi-
site to enforce continuity of the pressure solution in a weak sense.

• Performing integration by parts and defining numerical fluxes also requires a treatment of
boundary conditions. In case of the high-order dual splitting scheme, this is not straightfor-
ward because the intermediate velocity does not fulfill the Dirichlet boundary conditions
prescribed for the velocity. Integration by parts of the velocity divergence term is men-
tioned in Steinmoeller et al. (2013), however, without defining a numerical flux function
and specifying boundary conditions. The work by Piatkowski et al. (2018) only performs
integration by parts for the velocity divergence term with central flux. Integration by parts
of both terms using central fluxes is considered in Emamy (2014), Emamy et al. (2017),
Krank et al. (2017), but uncertainties with respect to the treatment of boundary conditions
are avoided by defining exterior values on domain boundaries as a function of interior
values only, or by using inconsistent velocity Dirichlet boundary conditions.

The work by Fehn et al. (2017) has eventually gained important insights, showing that the
discontinuous Galerkin formulation of the velocity–pressure coupling terms on the right-hand
side of the pressure Poisson equation and the projection step play a crucial role in terms of the
instabilities occurring for small time step sizes. Integration by parts of these terms with con-
sistent boundary conditions should be performed in order to obtain a stable and robust method.
In Fehn et al. (2017), a stable and high-order accurate boundary condition is proposed for the
intermediate velocity field within the high-order dual splitting scheme. By comparing this new
formulation to the discontinuous Galerkin formulation originally proposed in Hesthaven and
Warburton (2007), it is demonstrated that the instabilities analyzed in Ferrer and Willden (2011),
Ferrer et al. (2014) for small time steps sizes can be reproduced and that these instabilities occur
similarly for both equal-order and mixed-order approximations. Using integration by parts of the
velocity–pressure coupling terms along with central fluxes and consistent boundary conditions,
this new formulation is shown to be stable in the limit of small time steps for both equal-order
and mixed-order approximations. An accompanying eigenvalue analysis supports these obser-
vations. The numerical investigations in Fehn et al. (2017) therefore indicate that these insta-
bilities are neither related to inf–sup instabilities nor to inaccuracies of the spatially discretized
projection operator resulting in velocity fields that do not exactly fulfill the divergence-free con-
straint. In addition, the work by Fehn et al. (2017) shows that inf–sup instabilities in form of
spurious pressure oscillations are present and that rates of convergence in space are sub-optimal
when using equal-order polynomial approximations. Although some projection methods inher-
ently introduce inf–sup stabilizing terms, these effects will eventually show up depending on
the parameters of the discretization. As a means of verification of the results, the work by Fehn
et al. (2017) compares the results for the high-order dual splitting scheme to alternative so-
lution strategies such as a fully coupled, monolithic solution approach and pressure-correction
schemes. These results lead to significantly different conclusions than those drawn in Ferrer et al.
(2014) and Emamy et al. (2017). Recently, an independent study by Xu et al. (2019) has been
published supporting the conclusions from Fehn et al. (2017).
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2.1.2.2 Robustness for under-resolved, high-Reynolds-number flows: Mass
conservation and energy stability

The instabilities observed in Chalmers et al. (2019), Klein et al. (2015), Shahbazi et al. (2007)
for high-order L2-conforming DG discretizations applied to high-Reynolds-number two-dimen-
sional flows can not be explained by the small-time-steps instability issue discussed above. In-
stead, standard L2-conforming methods summarized in 2.1.1 suffer from another type of insta-
bility. Interestingly, it can be observed that robust DG discretizations applied to the solution of
three-dimensional, high-Reynolds-number flows that are characterized by turbulent flow struc-
tures and severe under-resolution have not been available for a long time. For comparison, this
vacuum has been filled much earlier by the compressible DG community, see for example the
early works by Collis (2002), Ramakrishnan and Collis (2004). This gives first indications that
the incompressible case is plagued by additional stability problems specifically related to the na-
ture of the incompressible Navier–Stokes equations, apart from the well-known effect of aliasing
generally occurring for non-linear terms (Hesthaven and Warburton 2007). In the incompressible
case, the turbulent flow simulations shown in Bassi et al. (2016), Fambri and Dumbser (2016),
Piatkowski et al. (2018), Tavelli and Dumbser (2016) appear promising, but a closer inspection
might reveal that the spatial resolutions used there are so high that the flow is well-resolved and
the simulation can be described as DNS. A conclusion regarding the robustness of high-order
DG discretizations of the incompressible Navier–Stokes equations for strongly under-resolved
scenarios is therefore not possible. There are many indications that L2-conforming discretiza-
tions are not robust in the under-resolved regime. The approaches presented in Ferrer (2012),
Marek et al. (2015) use an explicit, algebraic subgrid-scale model. The method proposed in Fer-
rer (2017) uses a DG discretization in two dimensions and a purely spectral Fourier approach
in the third dimension. Stability for turbulent flow problems is realized by scaling the penalty
parameter of the SIPG method of the viscous term and a spectral vanishing viscosity (SVV)
method in the Fourier direction. In Joshi et al. (2016), Steinmoeller et al. (2013), instabilities
are reported in under-resolved scenarios and for low viscosities and a postprocessing step is ap-
plied to the projected velocity in order to render the discrete pressure projection operator stable.
Although Joshi et al. (2016), Steinmoeller et al. (2013) originally discussed this postprocessing
in relation to projection methods, the basic idea turned out to be a very general and powerful
stabilization approach (Fehn et al. 2018b). Based on these ideas, consistent penalty terms added
to the weak formulation such as a divergence penalty term and a continuity penalty term are
proposed in Krank et al. (2017) as a means to improve mass conservation. These penalty terms
provide additional control over the incompressibility constraint as well as the continuity of the
velocity field between elements in a weak sense. The div–div penalty term proposed in Krank
et al. (2017) has similarities with the grad–div stabilization term established for continuous finite
element methods (Franca and Hughes 1988, Olshanskii et al. 2009). Around the same time, a
pure grad–div stabilization term for a DG discretization of incompressible natural convection
flows has been proposed in Schroeder and Lube (2017), apparently for the first time in an L2-
conforming setting. Other works have used normal-continuity penalty terms for the velocity,
see Guzmán et al. (2016), Montlaur et al. (2008), and their importance for the robust simulation
of turbulent flows has long been unclear. The work by Fehn et al. (2018b) gives evidence that
a continuity penalty term for the normal components of the velocity across elements in addi-
tion to the divergence penalty term is necessary for robustness. Moreover, the beneficial effect
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of this stabilization approach in terms of energy stability is analyzed. Theoretical justification
for the approach proposed in Fehn et al. (2018b), Krank et al. (2017) is provided in Akbas
et al. (2018), where this approach is described as the analogue of grad–div stabilization for non-
conforming discretizations. Furthermore, the importance of deriving the penalty parameters by
dimensional analysis has been highlighted in Fehn et al. (2018b), an aspect that has been over-
looked in mathematically oriented literature (Akbas et al. 2018, Guzmán et al. 2016, Montlaur
et al. 2008, Schroeder and Lube 2017) where penalty terms do not exhibit physically consis-
tent units. Through a suitable estimate of the penalty parameter as a function of characteristic
quantities, a parameter-free flow solver can be obtained which can be interpreted as a robust and
accurate implicit LES approach. The approach is generic since it realizes dissipation through
consistent penalty terms and an otherwise consistent discretization. By comparing monolithic
and projection-type Navier–Stokes solvers, the work by Fehn et al. (2018b) provides insight into
the stabilization from Joshi et al. (2016), Steinmoeller et al. (2013), in the sense that the need for
stabilization is not specifically related to the pressure projection operator, but more generally to
the L2-conforming nature of the function space.

The stabilized L2-conforming approach proposed here has a strong analogy to exactly diver-
gence-free Hdiv-conforming finite element spaces. An Hdiv-conforming velocity space implies
that the velocity is normal-continuous between elements. In this sense, the continuity penalty
term can be interpreted as an approach that weakly enforcesHdiv-conformity. Moreover, anHdiv-
conforming method yields an exactly divergence-free velocity if the divergence of the velocity
lies within the pressure space, which holds for example for Raviart–Thomas elements (Raviart
and Thomas 1977) in the case of tensor product elements. One can then argue that the divergence
penalty term restricts the velocity to such an exactly divergence-free space in a weak sense. This
analogy has been explored in Fehn et al. (2019a), where the suitability of both approaches for
the simulation of turbulent flows has been investigated in a regime where the spatial discretiza-
tion scheme is challenged through under-resolution. This study reveals that the two approaches
show very similar results in such a regime, and that both approaches are promising candidates
for no-model (implicit) large-eddy simulation of turbulent flows due to their inherent dissipation
mechanisms, see also Fehn et al. (2018b), Schroeder (2019). An important observation is that the
particular formulation of the convective term and its numerical flux function is not the decisive
factor in terms of robustness and accuracy. An upwind-like discretization of the convective term
without further measures is not able to render the overall discretization scheme energy-stable,
which is due to the nonlinearity of the convective term. It is equally important to internalize that
the robustness issue discussed here is not caused by the aliasing related to inexact integration of
the non-linear term, i.e., an exact integration of the non-linear term still shows these problems.
The study by Fehn et al. (2019a) suggests that both energy stability and mass conservation are
essential for a robust and accurate method.

Against this background, DG discretizations for the incompressible Navier–Stokes equations
published to date can be grouped into two categories: Methods fulfilling the properties of mass
conservation and energy stability exactly through the use of tailored function spaces (Hdiv-
conforming, Raviart–Thomas) that restrict the L2-conforming space appropriately (Cockburn
et al. 2005, 2007, 2009, Fu 2019, Guzmán et al. 2016, Lehrenfeld and Schöberl 2016, Montlaur
et al. 2008, Rhebergen and Wells 2018, Schroeder and Lube 2018), and methods enforcing these
properties weakly through suitable stabilization terms (Akbas et al. 2018, Fehn et al. 2018b,
Joshi et al. 2016, Krank et al. 2017, Schroeder and Lube 2017), thereby also “restricting” cer-
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tain degrees of freedom of the L2-conforming space. Having said that, it can be suspected that
robustness remains unclear for standard L2-conforming schemes (Bassi et al. 2006, Botti and
Pietro 2011, Ferrer and Willden 2011, Hesthaven and Warburton 2007, Klein et al. 2013, Shah-
bazi et al. 2007) when applied to high-Reynolds-number and under-resolved flows. In particular,
no good theoretical unterstanding appears to be available in the literature whether the artificial
compressibility flux presented in Bassi et al. (2006) – a formulation that has been applied to the
solution of turbulent flows, see for example Bassi et al. (2016), Franciolini et al. (2017) – im-
proves stability in the context of the mass-conservation and energy-stability problem compared
to other unstabilized L2-conforming DG formulations that have been shown to lack robustness.

2.2 The incompressible Navier–Stokes equations
This section summarizes the mathematical model of the incompressible Navier–Stokes equations
governing incompressible fluid flow in a domain Ω ⊂ Rd over a time interval [0, T ]. The incom-
pressible Navier–Stokes equations are a set of coupled partial differential equations consisting
of the momentum equation written in conservative (divergence) formulation

∂u

∂t
+∇ · Fc(u)−∇ · Fv(u) +∇p = f in Ω× [0, T ] (2.1)

and the continuity equation (incompressibility constraint)

∇ · u = 0 in Ω× [0, T ] , (2.2)

where the unknowns are the velocity u = (u1, ..., ud)
T and the kinematic pressure p. The

body force vector is denoted by f = (f1, ..., fd)
T. The formulation of the convective term in

equation (2.1) is known as the divergence or conservative formulation with Fc(u) = u ⊗ u.
The convective term can alternatively be written in convective formulation ∇ · (u⊗ u) =
(u · ∇)u + u∇ · u = (u · ∇)u since ∇ · u = 0. For ease of notation, the formulation in
equation (2.1) may cover both variants in the sense of

∇ · Fc(u) =

{
∇ · (u⊗ u) divergence formulation
(u · ∇)u convective formulation

,

and it will be explicitly distinguished between the two formulations where necessary. Regarding
the viscous term, the following two formulations of the viscous flux Fv(u) are considered

Fv(u) =

{
2νε(u) divergence formulation
ν∇u Laplace formulation

,

where ε(u) = 1
2

(
∇u+ (∇u)T

)
is the symmetric part of the velocity gradient and ν the kine-

matic viscosity, which is assumed to be constant in space in the following. The Laplace formu-
lation can be derived from the divergence formulation by making use of the incompressibility
constraint

∇ · 2νε(u) = ∇ · (ν∇u+ ν(∇u)T) = ∇ · (ν∇u) + ν∇(∇ · u︸ ︷︷ ︸
=0

) = ∇ · (ν∇u) = ν∇2u .
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By introducing a parameter γ that takes a value of 1 for the divergence formulation and a value
of 0 for the Laplace formulation, the viscous term can alternatively be written as

−∇ · Fv(u) = −ν∇2u− γν∇(∇ · u) . (2.3)

The incompressible Navier–Stokes equations (2.1) and (2.2) are subject to the initial condition

u(x, t = t0) = u0(x) in Ω , (2.4)

where u0(x) has to be divergence-free,∇ ·u0(x) = 0 in Ω. On the boundary Γ = ∂Ω, Dirichlet
and Neumann boundary conditions are prescribed

u = gu on ΓD × [0, T ] , (2.5)

(Fv(u)− pI) · n = h on ΓN × [0, T ] , (2.6)

where the Dirichlet and Neumann part of the boundary are denoted by ΓD and ΓN, respectively,
with Γ = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅. The outward pointing unit normal vector is denoted by n.
The present work also discusses projection methods (introduced in Section 2.3) to numerically
solve the incompressible Navier–Stokes equations, where a splitting of the Neumann boundary
condition according to h = hu − gpn into a viscous part hu and a pressure part gp is neces-
sary due to the operator splitting. Accordingly, the viscous forces and the pressure have to be
prescribed separately on ΓN

Fv(u) · n = hu on ΓN × [0, T ] , (2.7)

p = gp on ΓN × [0, T ] . (2.8)

For the special case of pure Dirichlet boundary conditions, Γ = ΓD, the velocity Dirichlet bound-
ary condition has to fulfill a constraint which can be derived from the incompressibility constraint
by applying Gauss’ divergence theorem∫

Ω

∇ · u dΩ =

∫
Γ=ΓD

u · n dΓ =

∫
ΓD

gu · n dΓ = 0 . (2.9)

Moreover, the pressure is only defined up to an additive constant in this case. To obtain a unique
pressure solution, one can set the mean of the pressure to zero∫

Ω

p dΩ = 0 . (2.10)

The Reynolds number Re describes the ratio of inertial forces to viscous forces

Re =
U L

ν
∼ inertial forces

viscous forces
, (2.11)

where U is a characteristic velocity and L a characteristic length scale of the flow problem. De-
pending on the Reynolds number, two limiting cases can be distinguished. The unsteady (gen-
eralized) Stokes equations are obtained from the incompressible Navier–Stokes equations by
neglecting the convective term, which corresponds to the limit Re→ 0

∂u

∂t
−∇ · Fv(u) +∇p = f in Ω× [0, T ] , (2.12)

∇ · u = 0 in Ω× [0, T ] . (2.13)
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Likewise, the incompressible Euler equations are obtained in the limit ν = 0 (Re→∞)

∂u

∂t
+∇ · Fc(u) +∇p = f in Ω× [0, T ] , (2.14)

∇ · u = 0 in Ω× [0, T ] . (2.15)

2.3 Discretization in time

Methods for the numerical solution of the incompressible Navier–Stokes equations can be classi-
fied into two categories: (i) coupled or monolithic solution methods for which the global system
of equations resulting from discretization in space and time involves both the velocity and pres-
sure unknowns, and (ii) splitting methods which aim at separating the computation of pressure
and velocity unknowns in the solution algorithm.

The coupling of velocity and pressure in the momentum equation in combination with the
incompressibility constraint poses a major challenge in terms of the numerical solution of the
incompressible Navier–Stokes equations (Guermond et al. 2006). The monolithic approach re-
sults in a system of equations of indefinite saddle-point type for both velocity and pressure un-
knowns that requires elaborate preconditioning techniques in order to obtain an efficient solution
algorithm. The main motivation for using splitting methods is, therefore, to improve the compu-
tational efficiency of the solution algorithm. For splitting methods, the problem is decomposed
into a set of equations – a convection–diffusion type problem for the velocity and a Poisson
problem for the pressure – which can be solved more efficiently from a linear algebra point of
view and for which optimal solver techniques are often readily available (Guermond et al. 2006,
Karniadakis and Sherwin 2013).

The class of splitting methods may be subdivided into the four main groups of algebraic split-
ting schemes, pressure-correction schemes, velocity-correction schemes, and consistent splitting
schemes, and the reader is referred to Guermond et al. (2006), Karniadakis and Sherwin (2013)
for a comprehensive overview. Pressure-correction methods are studied in Guermond and Shen
(2004), Minev and Gresho (1998), Timmermans et al. (1996) and velocity-correction methods
in Guermond and Shen (2003), Karniadakis et al. (1991), Orszag et al. (1986). In the present
work the focus is on velocity-correction and pressure-correction methods, which can be clas-
sified as projection methods as explained in more detail below. In case of velocity-correction
and pressure-correction schemes and in contrast to algebraic splitting schemes, the temporal
discretization and operator splitting are applied at the level of differential equations prior to
discretization in space.

The idea of projection methods can be explained by the Helmholtz decomposition of a vector
fieldw = u+∇φ into a divergence-free part u and an irrotational part∇φ. Exploiting that∇ ·
u = 0, the decomposition is a two-step process consisting of the solution of a Poisson problem
and a subsequent projection onto the space of divergence free vectors

∇2φ = ∇ ·w , (2.16)
u = w −∇φ . (2.17)

22



2.3 Discretization in time

Writing the momentum equation of the incompressible Navier–Stokes equations in the form

∂u

∂t
+∇p =

∂û

∂t
, (2.18)

where û is an intermediate velocity field agglomerating convective, viscous, and right-hand side
terms, the term ∂u

∂t
can be interpreted as the divergence-free part and the term ∇p as the irrota-

tional part. Applying the idea of a Helmholtz decomposition described above yields a pressure
Poisson equation and a subsequent projection equation

∇2p = ∇ ·
(
∂û

∂t

)
, (2.19)

∂u

∂t
=
∂û

∂t
−∇p . (2.20)

The convective and viscous terms are treated in other sub-steps of the projection scheme in-
volving only the velocity as unknown field. Although the basic idea of projection methods is as
simple as that, obtaining high-order accurate and stable projection methods in the time-discrete
case is non-trivial as explained below.

A pressure-correction scheme has first been proposed by Chorin (1968). In the first step,
the momentum equation is solved neglecting the pressure gradient term. The pressure and a
divergence-free velocity field are obtained in the second step by projecting the intermediate
velocity onto the space of divergence-free vectors. A modified scheme that uses an extrapola-
tion of the pressure gradient term in the first substep is used by Hirt and Cook (1972), leading
to so-called incremental pressure-correction schemes. The difference to the original splitting
schemes has been noticed by Goda (1979), and Van Kan (1986) has shown that this modifica-
tions achieves second-order accuracy for the velocity as opposed to the original splitting scheme
that is only first-order accurate. Timmermans et al. (1996) proposed the rotational formulation
of the incremental pressure-correction scheme by adding a divergence correction term to the
pressure increment in the pressure Poisson equation. Since this formulation leads to a consistent
Neumann boundary condition for the pressure, it essentially reduces the formation of artificial
boundary layers as analyzed in Guermond and Shen (2004).

In case of velocity-correction schemes, the pressure and a divergence-free velocity field are
calculated in the first substep, while the velocity is corrected in the second substep taking the
viscous term into account. Karniadakis et al. (1991) proposed a high-order accurate velocity-
correction scheme. The formulation of the pressure Neumann boundary condition with the vis-
cous term written in rotational form is based on the analysis of Orszag et al. (1986) and is of
particular importance regarding the accuracy of this scheme. Guermond and Shen (2003) in-
troduce different formulations of velocity-correction schemes in analogy to pressure-correction
schemes, where the incremental velocity-correction scheme in rotational formulation is formally
equivalent to the high-order dual splitting scheme of Karniadakis et al. (1991).

In case of projection methods such as the pressure-correction scheme and velocity-correction
scheme considered in this work, a Neumann boundary condition has to be prescribed for the pres-
sure on Dirichlet boundaries. Inconsistent formulations of this pressure Neumann boundary con-
dition can cause unphysical boundary layers which also limit the temporal accuracy of projection
schemes (Guermond et al. 2006). To obtain higher order accuracy with respect to the temporal
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discretization, consistent formulations of the pressure Neumann boundary condition (leading to
so-called rotational formulations) are crucial. This aspect has been addressed in Guermond and
Shen (2003), Karniadakis et al. (1991), Orszag et al. (1986) for velocity-correction methods,
and in Guermond and Shen (2004), Minev and Gresho (1998), Timmermans et al. (1996) for
pressure-correction methods. Moreover, it is more difficult to obtain higher than second-order
accuracy in time using splitting schemes compared to coupled solution methods. A scheme al-
lowing to obtain third-order accuracy is, e.g., the high-order dual splitting scheme of Karniadakis
et al. (1991) considered in this work. The pressure-correction method considered here is known
to be only conditionally stable for higher than second-order time integration schemes, leading to
a lower bound for the time step size in that case (Guermond et al. 2006).

In the following, the temporal discretization is presented for a coupled solution approach on
the one hand, and two widely used projection methods on the other hand. For both solution
approaches, the convective term can be formulated either explicitly or implicitly in time. An
explicit treatment has the advantage that the discrete system of equations is linear and can be
solved more efficiently. At the same time, an explicit formulation introduces a restriction of the
time step size according to the CFL condition, which might require a time step size smaller than
the physical time scale of the considered problem. An implicit treatment of the convective term
does not introduce a time step restriction and is, therefore, more flexible in the selection of the
time step size, at the cost of a nonlinear system of equations to be solved in each time step.
The pressure-correction scheme is unconditionally stable only up to second-order, but allows
an implicit formulation of the convective term. In contrast, the dual-splitting projection scheme
requires an explicit formulation of the convective term, but the third-order accurate scheme has
been reported to be stable. Against this background, different time integration schemes are dis-
cussed in the following in order to cover different aspects of Navier–Stokes solvers and to obtain
a flexible solver framework providing solvers most efficient for a certain problem.

Remark 2.1 There are also time-stepping techniques that aim at relaxing the CFL condition
while still formulating the convective term explicitly in time, see Löhner (2004), Maday et al.
(1990). These are specialized time stepping techniques that apply several time steps for the
convective term per global or macro time step, each of the convective time steps obeying the
CFL condition. The reader is referred to Riccius (2019) for a documentation and numerical
investigation of this type of approach in the context of the present incompressible Navier–Stokes
solvers with DG discretization in space. In the literature, these techniques have been used for
example in Karakus et al. (2019), Lehrenfeld and Schöberl (2016) in combination with DG-based
incompressible Navier–Stokes solvers.

2.3.1 BDF time integration and extrapolation schemes

This work considers BDF (backward differentiation formula) time integration schemes to
discretize the incompressible Navier–Stokes equations (2.1) and (2.2) in time. Extrapolation
schemes are used in case of explicit formulations of certain terms of the equations. In order to
introduce the BDF schemes, consider the numerical time integration of an ordinary differential
equation of the form
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2.3 Discretization in time

dφ

dt
= f (φ(t), t) , (2.21)

with initial condition φ(t = 0) = φ0. The time interval [0, T ] is divided into N∆t time steps
of variable size. With n = 0, ..., N∆t − 1 denoting the time step number, the equations are
advanced from time tn to tn+1 = tn + ∆tn in time step n, leading to the time grid {ti}N∆t

i=0 =

{
∑i−1

j=0 ∆tj}
N∆t

i=0
. BDF schemes of order J = 1, 2, 3 are considered. Although A-stability is only

achieved for time integration schemes of order J = 1, 2, it is often reported that third-order
accurate schemes are not affected by stability issues for practical problems. The above equation
is advanced from time tn to time tn+1 by solving the following time-discrete problem for φn+1

γn0φ
n+1 −

∑J−1
i=0 α

n
i φ

n−i

∆tn
= f

(
φn+1, tn+1

)
, (2.22)

where γn0 and αni are the coefficients of the BDF scheme. For the general case of variable time
step sizes, the coefficients γn0 , αni , and βni vary from one time step to the next and can be ex-
pressed as simple rational functions of the time step sizes ∆tn, ...,∆tn−J+1 as derived below.
To introduce the extrapolation scheme for explicit terms, consider a decomposition of the right-
hand side f = fex + fim into terms that are treated explicitly (non-stiff terms) and terms that are
treated implicitly (stiff terms). For the explicit terms, an extrapolation of the right-hand side of
order J is used

γn0φ
n+1 −

∑J−1
i=0 α

n
i φ

n−i

∆tn
= fim

(
φn+1, tn+1

)
+

J−1∑
i=0

βni fex

(
φn−i, tn−i

)
, (2.23)

where βni are the coefficients of the extrapolation scheme. To derive the BDF time integration
coefficients, consider a function φ(t) that is approximated by a Lagrange polynomial of order J
with support points at tn+1, tn, ..., tn−J+1

φ(t) ≈
J∑
j=0

`j(t)φ(tn+1−j) , `j(t) =
J∏

i=0,i 6=j

t− tn+1−i

tn+1−j − tn+1−i
. (2.24)

By taking the derivative of the Lagrange interpolation polynomial, the time derivative of φ at
time tn+1 can be approximated as follows

∂φ(t)

∂t

∣∣∣∣
t=tn+1

≈
J∑
j=0

∂`j(t)

∂t

∣∣∣∣
t=tn+1

φ(tn+1−j)

=
1

∆tn

∆tn
∂`0(t)

∂t

∣∣∣∣
t=tn+1︸ ︷︷ ︸

=γn0

φ(tn+1)−
J−1∑
j=0

(−∆tn)
∂`j+1(t)

∂t

∣∣∣∣
t=tn+1︸ ︷︷ ︸

=αnj

φ(tn−j)

 .

(2.25)
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2 Discretization methods for the incompressible Navier–Stokes equations

Table 2.1: Coefficients of BDF time integration scheme and extrapolation scheme for constant
time step size, see Karniadakis et al. (1991).

γ0 α0 α1 α2 β0 β1 β2

J = 1 1 1 - - 1 - -
J = 2 3/2 2 −1/2 - 2 −1 -
J = 3 11/6 3 −3/2 1/3 3 −3 1

Table 2.2: Coefficients of BDF time integration scheme and extrapolation scheme for adaptive
time step sizes.

J = 1 J = 2 J = 3

γn0 1 2∆tn+∆tn−1

∆tn+∆tn−1
1 + ∆tn

∆tn+∆tn−1
+ ∆tn

∆tn+∆tn−1+∆tn−2

αn0 1 ∆tn+∆tn−1

∆tn−1

(∆tn+∆tn−1)(∆tn+∆tn−1+∆tn−2)
∆tn−1(∆tn−1+∆tn−2)

αn1 - − ∆t2n
(∆tn+∆tn−1)∆tn−1

− ∆t2n(∆tn+∆tn−1+∆tn−2)
(∆tn+∆tn−1)∆tn−1∆tn−2

αn2 - - ∆t2n(∆tn+∆tn−1)
(∆tn+∆tn−1+∆tn−2)(∆tn−1+∆tn−2)∆tn−2

βn0 1 ∆tn+∆tn−1

∆tn−1

(∆tn+∆tn−1)(∆tn+∆tn−1+∆tn−2)
∆tn−1(∆tn−1+∆tn−2)

βn1 - − ∆tn
∆tn−1

−∆tn(∆tn+∆tn−1+∆tn−2)
∆tn−1∆tn−2

βn2 - - ∆tn(∆tn+∆tn−1)
(∆tn−1+∆tn−2)∆tn−2

The BDF coefficients are therefore given by the derivative of the Lagrange polynomials evalu-
ated at time tn+1. The procedure is similar for the extrapolation scheme. Consider a Lagrange
interpolation of order J − 1 with support points at tn, tn−1, ..., tn−J+1

fex(t) ≈
J−1∑
j=0

`j(t)fex(tn−j) , `j(t) =
J−1∏

i=0,i 6=j

t− tn−i
tn−j − tn−i

. (2.26)

Then, an approximation for fex(tn+1) by an extrapolation scheme of order J with coefficients βnj
is given as follows

fex(tn+1) ≈
J−1∑
j=0

`j(tn+1)︸ ︷︷ ︸
=βnj

fex(tn−j) . (2.27)

The coefficients γ0 and αi of the BDF time integration scheme as well as the coefficients βi of the
extrapolation scheme are listed in Table 2.1 for the case of a constant time step size ∆t = T/N∆t,
see also Karniadakis et al. (1991). The time integration constants for adaptive time-stepping are
summarized in Table 2.2, and the reader is referred to Wang and Ruuth (2008) for a discussion
of this type of time integration schemes in a broader context.
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2.3 Discretization in time

BDF time integration schemes are multistep schemes, i.e., in order to calculate the current
time step n, the solution at previous instants of time tn−J+1, ..., tn−1 is needed for J > 1. As a
consequence, the method is not self-starting. There are two possibilities to start the time integra-
tion scheme. The first one is relevant if an analytical solution is available and has to be used to
demonstrate optimal rates of convergence with respect to the time discretization. The solution at
the discrete instants of time t−J+1, ..., t−1 for J > 1 is obtained by interpolation of the analytical
solution. The time integration scheme of order J is then applied in the very first time step and all
subsequent time steps. The second approach uses schemes of lower order in the first J − 1 time
steps, i.e., starting with a first-order method in the first time step and successively increasing
the order of the time integration scheme from one time step to the next until the desired order
is reached. This does not necessarily imply a loss of accuracy for practical problems, given that
those problems are typically started with zero initial fields and given that an accurate temporal
resolution of the initial transient related to these initial conditions is typically not relevant.

2.3.2 Coupled solution approach
Applying the BDF time integration scheme introduced above to the incompressible Navier–
Stokes equations (2.1) and (2.2) and using an implicit formulation of the convective term results
in the time-discrete problem

γn0u
n+1 −

∑J−1
i=0 α

n
i u

n−i

∆tn
+∇ · Fc(u

n+1)−∇ · Fv(un+1) +∇pn+1 = f (tn+1) ,

∇ · un+1 = 0 .

(2.28)

The boundary conditions are

un+1 = gn+1
u on ΓD , (2.29)(

Fv(un+1)− pn+1I
)
· n = hn+1 on ΓN . (2.30)

An alternative explicit formulation of the convective term leads to the time-discrete problem

γn0u
n+1 −

∑J−1
i=0 α

n
i u

n−i

∆tn
+

J−1∑
i=0

βni ∇ · Fc(u
n−i)−∇ · Fv(un+1) +∇pn+1 = f (tn+1) ,

∇ · un+1 = 0 ,

(2.31)

where the following boundary condition is used in the convective term

un−i = gn−iu on ΓD . (2.32)

2.3.3 Dual splitting scheme
The high-order dual splitting scheme of Karniadakis et al. (1991) is an operator splitting method
that belongs to the class of projection methods and is based on BDF time integration. The con-
vective term, the pressure term, and the viscous term are treated separately in different sub-steps
of the splitting scheme. While the convective term is formulated explicitly, the viscous term is
formulated implicitly in time.
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2 Discretization methods for the incompressible Navier–Stokes equations

2.3.3.1 Convective step

In the first sub-step, the convective term and the body force term are considered. An intermediate
velocity field û is obtained from the following equation

γn0 û−
∑J−1

i=0 α
n
i u

n−i

∆tn
= −

J−1∑
i=0

βni ∇ · Fc

(
un−i

)
+ f (tn+1) , (2.33)

where Dirichlet boundary conditions are imposed for the velocity field on ΓD at old time in-
stants tn−i

u = gu on ΓD . (2.34)

2.3.3.2 Pressure step and projection step

In the next sub-step, the pressure solution pn+1 at time tn+1 as well as a second intermediate
velocity field ˆ̂u are computed by decomposing the intermediate velocity û into an irrotational
part∇pn+1 and a solenoidal part ˆ̂u (projection method)

γn0
∆tn

ˆ̂u+∇pn+1 =
γn0

∆tn
û , (2.35)

∇ · ˆ̂u = 0 . (2.36)

The fact that ˆ̂u has to be divergence-free is exploited to derive a Poisson equation for the pressure
by taking the divergence of equation (2.35)

−∇2pn+1 = − γn0
∆tn
∇ · û , (2.37)

subject to the boundary conditions

∇pn+1 · n = hp (tn+1) on ΓD , (2.38)

pn+1 = gp (tn+1) on ΓN . (2.39)

The consistent Neumann boundary condition hp is derived by multiplying the momentum equa-
tion of the incompressible Navier–Stokes equations by the normal vector n and solving for the
pressure term (Karniadakis and Sherwin 2013, Karniadakis et al. 1991)

hp (tn+1) = −

[
∂gu (tn+1)

∂t
+

Jp−1∑
i=0

βni
(
∇ · Fc

(
un−i

)
+ ν∇× ωn−i

)
− f (tn+1)

]
· n . (2.40)

The time derivative term and the body force term have been added compared to the formulation
in Karniadakis et al. (1991) in order to extend the formulation to the more general case of time
dependent boundary conditions and right-hand side vectors f 6= 0. Since the velocity u is
prescribed on ΓD, the partial derivative with respect to t occurring in the time derivative term
can be calculated from the given boundary data gu. However, there are scenarios where the
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2.3 Discretization in time

time derivative is not known analytically.1 In this case, the analytical time derivative term in
equation (2.40) is replaced by a BDF time derivative

∂gu (tn+1)

∂t
→ γn0 g

n+1
u −

∑J−1
i=0 α

n
i g

n−i
u

∆tn
. (2.41)

The body force term is evaluated at time tn+1 as it does not depend on the velocity or pressure so-
lution at time tn+1. The convective term and the viscous term are formulated explicitly using an
extrapolation scheme of order Jp since un+1 is unknown at this point of the projection algorithm.
Moreover, the viscous term is written in rotational formulation ∇ × ω, where ω = ∇ × u de-
notes the vorticity. This formulation is obtained by using the Laplace formulation of the viscous
term, Fv (u) = ν∇2u, which can be derived from the divergence formulation using ∇ · u = 0,
and applying the vector identity ∇2u = ∇(∇ · u) − ∇ × (∇× u) = −∇ × (∇× u), again
making use of the incompressibility constraint ∇ · u = 0. The rotational formulation has first
been proposed and analyzed in Karniadakis et al. (1991), Orszag et al. (1986). It is well known
that the rotational formulation effectively reduces boundary divergence errors as compared to
the Laplace formulation and is essential in obtaining high-order accuracy in time, see also Guer-
mond et al. (2006), Karniadakis and Sherwin (2013). An alternative point of view is provided
in Leriche and Labrosse (2000), where it is shown that the ellipticity of the Stokes operator is
lost with the viscous term written in Laplace formulation.

For the intermediate velocity field ûh, a consistent boundary condition gû(tn+1) on ΓD has to
be specified in order to evaluate the divergence operator on the right-hand side of the pressure
Poisson equation (2.37). As first proposed in Fehn et al. (2017), the boundary condition gû(tn+1)
is derived by solving equation (2.33) for the intermediate velocity and using the fact that u = gu
on ΓD

gû (tn+1) =
J−1∑
i=0

αni
γn0
gu(tn−i)−

∆tn
γn0

J−1∑
i=0

βni ∇ · Fc
(
un−i

)
+

∆tn
γn0
f (tn+1) . (2.42)

Note that applying gu(tn+1) as boundary condition is inconsistent and, hence, does not yield
optimal rates of convergence with respect to the temporal discretization. In combination with the
spatial DG discretization discussed in Section 2.4, the consistent boundary condition is therefore
essential in order to obtain a method that (i) is stable in the limit of small time step sizes, and
that (ii) achieves high-order temporal accuracy.

Regarding the convective term, it appears to be less clear from the literature which formulation
to choose and whether the convective form (un−i · ∇)un−i exploiting ∇ · u = 0 should be
preferred over the divergence form in equations (2.40) and (2.42). In the present implementation,
the formulation used in the boundary conditions can be selected independently of the formulation
used for the convective term in equation (2.33), and the convective formulation is used as default
value.

1This is for example the case when using a precursor simulation strategy to prescribe inflow boundary conditions,
or in case of fluid–structure interaction problems with a partitioned solution according to the Dirichlet–Neumann
scheme, where the Dirichlet boundary data is only known at discrete instants of time.
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2 Discretization methods for the incompressible Navier–Stokes equations

The second intermediate velocity ˆ̂u is then obtained from equation (2.35) by projecting û onto
the space of divergence-free vectors

ˆ̂u = û− ∆tn
γn0
∇pn+1 , (2.43)

with the following boundary condition for the pressure

pn+1 = gp (tn+1) on ΓN . (2.44)

2.3.3.3 Viscous step

In the final step of the dual splitting scheme, the viscous term is considered leading to the fol-
lowing Helmholtz-like equation

γn0
∆tn

un+1 −∇ · Fv

(
un+1

)
=

γn0
∆tn

ˆ̂u , (2.45)

where the velocity un+1 has to fulfill the following boundary conditions

un+1 = gu (tn+1) on ΓD , (2.46)

Fv(un+1) · n = hu (tn+1) on ΓN . (2.47)

Remark 2.2 For velocity-correction schemes, theoretical rates of convergence are available for
the case of pure Dirichlet boundary conditions. As shown in Guermond and Shen (2003), the
high-order dual splitting scheme with J = 2 and Jp = 1 is formally equivalent to the rota-
tional velocity-correction scheme proposed by Guermond and Shen (2003) who proved stability
and theoretical rates of convergence of order ∆t2 in the L2-norm of the velocity and ∆t3/2 in
the L2-norm of the pressure for the velocity-correction scheme in rotational form. Numerical
investigations in Leriche et al. (2006) show that the rate of convergence of ∆t3/2 for the pressure
is related to the first order extrapolation Jp = 1 in the pressure Neumann boundary condition
and that Jp = 2 has to be used to obtain optimal rates of convergence (of order ∆t2) also for the
pressure. Moreover, an eigenvalue analysis in Leriche et al. (2006) reveals that the high-order
dual splitting scheme is only conditionally stable for Jp > 2, while it is unconditionally stable
for Jp ≤ 2, independently of the order 1 ≤ J ≤ 4 of the BDF scheme. According to that analysis,
among the schemes that provide unconditional stability, the method with Jp = 2 (and J = 3)
achieves the highest rates of convergence of order ∆t3 for the velocity and ∆t5/2 for the pressure.

2.3.4 Pressure-correction scheme

This section describes the operator splitting technique and the temporal discretization of pressure-
correction schemes, presenting different formulations of pressure-correction schemes that are
summarized in Guermond et al. (2006). In contrast to the dual splitting scheme, the convective
term and the viscous term are treated in the same sub-step of the splitting scheme, where the
convective term can be formulated either explicitly or implicitly.
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2.3 Discretization in time

2.3.4.1 Momentum step

In the first sub-step, the momentum equation is solved by either neglecting the pressure gradient
term (non-incremental formulation) or by using an extrapolation of the pressure gradient term
based on the pressure solution at previous instants of time (incremental formulation). Using an
implicit formulation of the convective term, an intermediate velocity field û is calculated in the
momentum step by solving the following nonlinear equation

γn0 û−
∑J−1

i=0 α
n
i u

n−i

∆tn
+∇ · Fc (û)−∇ · Fv (û) = −

Jp−1∑
i=0

βni ∇pn−i + f (tn+1) . (2.48)

In case of an explicit formulation of the convective term, the momentum step reads

γn0 û−
∑J−1

i=0 α
n
i u

n−i

∆tn
−∇ · Fv (û) =−

J−1∑
i=0

βni ∇ · Fc

(
un−i

)
−

Jp−1∑
i=0

βni ∇pn−i + f (tn+1) .

(2.49)

The order of the extrapolation of the pressure gradient term is denoted by Jp. Schemes with Jp =
0 are called non-incremental pressure-correction schemes, while schemes with Jp ≥ 1 are called
incremental pressure-correction schemes

Jp =

{
0 non-incremental formulation,
≥ 1 incremental formulation .

(2.50)

As shown in Section 2.3.4.2, this is due to the fact that a Poisson equation has to be solved for
the pressure in case of the non-incremental formulation, and for the pressure increment in case
of the incremental formulation. The boundary conditions are

û = gu (tn+1) on ΓD , (2.51)

Fv(û) · n = hu (tn+1) on ΓN (2.52)

for the intermediate velocity field û, and

pn−i = gp (tn−i) on ΓN (2.53)

for the pressure pn−i.

2.3.4.2 Pressure step and projection step

In the second sub-step, the velocity un+1 and the pressure pn+1 at time tn+1 are obtained as the
solution of the following projection method

γn0
∆tn

un+1 +∇φn+1 =
γn0

∆tn
û , (2.54)

∇ · un+1 = 0 , (2.55)
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2 Discretization methods for the incompressible Navier–Stokes equations

where φn+1 is defined as

φn+1 = pn+1 −
Jp−1∑
i=0

βni p
n−i + χν∇ · û , (2.56)

explaining the incremental/non-incremental terminology. Depending on the parameter χ, the
formulation is called standard (χ = 0) or rotational (χ = 1 + γ). In Guermond et al. (2006),
only the Laplace formulation of the viscous term, γ = 0, is considered, for which the rotational
formulation corresponds to χ = 1. As derived in Section 2.3.4.3, a value of χ = 2 yields the
rotational formulation in case that the viscous term is written in divergence formulation, γ = 1.

To obtain the pressure solution, a Poisson equation is solved for the pressure increment which
can be derived by taking the divergence of equation (2.54) and making use of the divergence-free
condition (2.55)

−∇2φn+1 = − γn0
∆tn
∇ · û , (2.57)

with boundary conditions

∇φn+1 · n = hφ(tn+1) = 0 on ΓD , (2.58)

φn+1 = gφ(tn+1) = gp (tn+1)−
Jp−1∑
i=0

βni gp (tn−i) on ΓN . (2.59)

The boundary conditions (2.58) and (2.59) are in line with (Guermond et al. 2006, boundary
conditions (10.3)), except that the formulation is extended towards a more general treatment of
boundary conditions including also inhomogeneous pressure boundary conditions on the Neu-
mann part ΓN of the boundary. Subsequently, pn+1 is calculated from equation (2.56)

pn+1 = φn+1 +

Jp−1∑
i=0

βni p
n−i − χν∇ · û , (2.60)

where boundary condition (2.51) is prescribed when evaluating the velocity divergence operator
in the DG context.

The final velocity un+1 is then obtained from equation (2.54) by projecting û onto the space
of divergence-free vectors

un+1 = û− ∆tn
γn0
∇φn+1 . (2.61)

The evaluation of the gradient operator applied to the pressure increment φn+1 on the right-hand
side of the above equation requires boundary condition (2.59) to be prescribed.

2.3.4.3 Rotational formulation and pressure Neumann boundary condition

If the standard formulation of the pressure correction scheme is used (χ = 0), an unphysical
Neumann boundary condition, ∇pn+1 · n =

∑Jp−1
i=0 βni ∇pn−i · n on ΓD, is imposed for the
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2.4 Discretization in space

presssure according to equations (2.58) and (2.56), leading to ∇pn+1 · n = 0 for the non-
incremental formulation and∇pn+1·n = ∇pn·n = ... = ∇p0·n for the incremental formulation.
As argued in Guermond et al. (2006), this unphysical Neumann boundary condition induces
the formation of numerical boundary layers and limits the temporal accuracy of the projection
method.

Alternatively, by inserting equations (2.48) and (2.56) into equation (2.54) and multiplying
the resulting equation by the normal vector n, the pressure Neumann boundary condition that is
imposed on ΓD reads

∇pn+1 · n =−

[
γn0u

n+1 −
∑J−1

i=0 α
n
i u

n−i

∆tn
+∇ · Fc (û)− f (tn+1)

]
· n

− [−∇ · Fv (û) + χν∇(∇ · û)] · n .

(2.62)

Equation (2.62) can be seen in analogy to equation (2.40) for the dual splitting scheme. The
above equation highlights that the standard formulation of the viscous term −∇ · Fv (û) is
used on the right-hand side of the pressure Neumann boundary condition for χ = 0, while
the rotational formulation ν∇× (∇× û) is applied for χ = 1 + γ

−∇ · Fv (û) + χν∇(∇ · û) = −ν∇2û− γν∇(∇ · û) + χν∇(∇ · û)

= ν∇× (∇× û)− (1 + γ)ν∇(∇ · û) + χν∇(∇ · û)

= ν∇× (∇× û) if χ = 1 + γ .

(2.63)

In the first step of the above derivation, equation (2.3) is inserted, while the vector identity∇2u =
∇(∇ · u)−∇× (∇× u) is used in the second step. The last step highlights that χ = 1 +γ (and
especially χ = 2 in case of the divergence formulation of the viscous term) has to be used to
obtain the rotational formulation.

Remark 2.3 Theoretical rates of convergence of pressure-correction schemes are derived
in Guermond and Shen (2004) and summarized in Guermond et al. (2006). The non-incremental
pressure-correction scheme with J = 1, Jp = 0 in standard form is ∆t accurate in the L2-norm
of the velocity and ∆t1/2 accurate in the L2-norm of the pressure. The incremental pressure-
correction scheme with J = 2, Jp = 1 is ∆t2 accurate in the L2-norm of the velocity for both the
standard formulation and the rotational formulation. While the standard formulation achieves
an accuracy of order ∆t in the L2-norm of the pressure, the rotational form is ∆t3/2 accurate
in the L2-norm of the pressure. As reported in Guermond et al. (2006), numerical results give
evidence that pressure-correction schemes are only conditionally stable for Jp > 1. For this rea-
son, only schemes with Jp ≤ 1 (and J ≤ 2), which are unconditionally stable, are considered in
the present work.

2.4 Discretization in space

This section discusses discontinuous Galerkin – or more precisely – L2-conforming discretiza-
tions of the incompressible Navier–Stokes equations.
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x1 x1

x2x2
u uh

Figure 2.1: Illustration of L2-conforming function space in two space dimensions (d = 2) for
tensor-product elements of polynomial degree k = 2.

2.4.1 Notation
The physical domain Ω is approximated by the computational domain Ωh ∈ Rd with bound-
ary Γh = ∂Ωh, where Γh = ΓD

h ∪ ΓN
h and ΓD

h ∩ ΓN
h = ∅. The computational domain Ωh consists

of Nel non-overlapping finite elements Ωe

Ωh =

Nel⋃
e=1

Ωe , (2.64)

where quadrilateral/hexahedral element geometries with a tensor-product structure are consid-
ered in this work. The velocity u(x, t) and pressure p(x, t) are approximated by functions
uh(x, t) ∈ Vuh and ph(x, t) ∈ Vph. In the context of discontinuous Galerkin finite element meth-
ods, the solution is polynomial inside elements but discontinuous between elements, and the
global solution is typically written as the direct sum of element-local solutions (Hesthaven and
Warburton 2007)

uh (x, t) =

Nel⊕
e=1

ueh (x, t) , ph (x, t) =

Nel⊕
e=1

peh (x, t) . (2.65)

The spaces of test and trial functions for velocity and pressure are defined as

Vuh =
{
uh ∈

[
L2(Ωh)

]d
: uh (xe(ξ)) |Ωe = ũeh(ξ)|Ω̃e ∈ V

u
h,e = [Qku(Ω̃e)]

d ∀e
}
, (2.66)

Vph =
{
ph ∈ L2(Ωh) : ph (xe(ξ)) |Ωe = p̃eh(ξ)|Ω̃e ∈ V

p
h,e = Qkp(Ω̃e) ∀e

}
, (2.67)

respectively, where Qk(Ω̃e) = Pk ⊗ . . . ⊗ Pk denotes the space of polynomials of tensor de-
gree ≤ k on the reference element Ω̃e = [0, 1]d with reference coordinates ξ = (ξ1, ..., ξd)

T. An
illustration of the L2-conforming space is shown in Figure 2.1. A nodal approach is used so that
the approximate solutions of velocity and pressure on element e can be written as

ũeh(ξ, t) =
ku∑

i1,...,id=0

`kui1...id(ξ)uei1...id(t) , p̃eh(ξ, t) =

kp∑
i1,...,id=0

`
kp
i1...id

(ξ)pei1...id(t) , (2.68)

whereuei1...id and pei1...id denote the nodal degrees of freedom of the velocity and pressure solution
on element e, respectively. The multidimensional shape functions `ki1...id are given as the tensor
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product of one-dimensional shape functions, `ki1...id(ξ) =
∏d

n=1 `
k
in(ξn), where `ki (ξ) ∈ Pk are

the Lagrange polynomials of degree k

`ki (ξ) =
k∏
j=0
j 6=i

ξ − ξj
ξi − ξj

, i = 0, . . . , k , (2.69)

where {ξj}kj=0 is the set of nodes defined on the unit interval [0, 1]. The Lagrange polynomials
satisfy the property `ki (ξj) = δij , where δij is the Kronecker delta. It is well-known that the
choice of equidistant interpolation points leads to poor conditioning for high polynomial degrees.
In the course of this thesis, the node distribution is therefore based on the Legendre–Gauss–
Lobatto (LGL) nodes, which ensure optimal interpolation quality by minimizing the Lebesque
constant (Hesthaven and Warburton 2007)

Λ = max
ξ

k∑
i=0

∣∣lki (ξ)∣∣ . (2.70)

Compared to equidistant points, the nodes are distributed more densely towards the edges of the
unit interval for LGL nodes. Nodal Lagrange polynomials based on LGL nodes show beneficial
properties in terms of iteration counts for linear solvers with point-Jacobi-type preconditioners,
such as multigrid methods with Chebyshev-accelerated Jacobi smoothing that are employed in
this work (see Chapter 5). This is due to a better diagonal dominance of the associated linear
operator as compared to a modal basis, used for example in Ferrer and Willden (2011), or a
nodal Lagrange basis with Legendre–Gauss quadrature points as interpolation points.

In the above equations, xe(ξ) : Ω̃e → Ωe denotes the mapping from reference space to
physical space. For the mapping, the same ansatz is used as for approximating the solution, but
with an independent polynomial degree km (typically km ≤ ku) and continuity between elements

xe(ξ) =
km∑

i1,...,id=0

`km
i1...id

(ξ)xei1...id . (2.71)

Remark 2.4 Despite the H1-conforming nature of the mapping space compared to the L2-
conforming solution space, the mapping might be denoted as isoparametric if km = ku.

Unless specified otherwise, mixed-order polynomials of degree (ku, kp) = (k, k − 1) for
velocity and pressure are used for reasons of inf–sup stability. Projection-type Navier–Stokes
solvers might implicitly introduce inf–sup stabilizing terms so that also equal-order polynomials
are sometimes used in this case. The reader is referred to Section 2.5.4 for a more detailed
discussion of this aspect.

The interface of two adjacent elements Ωe− and Ωe+ is denoted by fe−/e+ = ∂Ωe− ∩ ∂Ωe+

where the outward pointing normal vectors on fe−/e+ are denoted byn− for Ωe− andn+ for Ωe+ .
Furthermore, let u−h and u+

h denote the solution uh on fe−/e+ evaluated from the interior of
element e− and element e+, respectively. The set of all interior faces is denoted by Γint

h . The
average operator {{•}} and jump operator J•K are defined as {{u}} = (u− + u+)/2 and JuK =
u− ⊗ n− + u+ ⊗ n+, respectively. Note that both operators can be applied to a scalar, vectorial
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Ωe−
Ωe+

∂Ωe−

∂Ωe+

+−

f = ∂Ωe− ∩ ∂Ωe+

n−n+

(a) Interior face

f = ∂Ωe− ∩ Γh

n−

∂Ωe−

Ωe−

− +

(b) Boundary face

Figure 2.2: Introduction of notation used to formulate numerical fluxes.

or tensorial quantity u. Moreover, the oriented jump operator [u] is introduced as [u] = u− −
u+. This work makes use of the convention that interior information on the current element Ωe

is denoted by the superscript (·)− and exterior information from neighboring elements by the
superscript (·)+. Accordingly, the normal vector n of the current element Ωe is equal to n−,
while n+ = −n− = −n. Following Arnold et al. (2000), some basic properties of a numerical
flux F ∗ approximating the physical flux F (u) can be introduced:

• Local: The numerical flux depends on the solution u−h and u+
h only, F ∗ = F ∗(u−h , u

+
h ).

• Consistent: The physical flux is recovered when inserting the exact solution u−h = u+
h = u

into the numerical flux function, F ∗(u−h = u, u+
h = u) = F (u).

• Conservative: The flux is the same independently of the side of the interface from which
the flux is evaluated, F ∗,−(u−h , u

+
h ) = F ∗,+(u+

h , u
−
h ).

Defining numerical fluxes in terms of {{u}} and JuK guarantees conservativity of the numerical
flux. Adding jump terms to a numerical flux does not change consistency.

An element-by-element formulation is used when deriving the weak formulation, i.e., volume
integrals are performed over the current element Ωe and face integrals over the boundary ∂Ωe

of element e. Integrals over Ωe and ∂Ωe are abbreviated by using the shorthand notation for L2-
products

(v, u)Ωe
=

∫
Ωe

v � u dΩ , (v, u)∂Ωe
=

∫
∂Ωe

v � u dΓ , (2.72)

where the operator � symbolizes inner products, i.e., vu for rank-0 tensors, v · u =
∑

i viui for
rank-1 tensors, and v : u =

∑
i,j vijuij for rank-2 tensors. An integral over the computational

domain is to be understood as (v, u)Ωh
=
∑Nel

e=1 (v, u)Ωe
, and similarly for integrals over all

interior faces, e.g., ({{v}}, u∗)Γint
h

=
∑Nel

e=1

(
1
2
v, u∗

)
∂Ωe\Γh

if u∗ is single-valued.

Remark 2.5 In the literature, methods of degree k ≥ 2 are typically denoted as high-order
methods (Wang et al. 2013). In the course of this thesis, polynomial degrees in the range 2 ≤ k ≤
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2.4 Discretization in space

15 are typically studied, where degrees of k = 2, 3 are denoted as low, degrees of k = 3, . . . , 7
as moderately high, and degrees of k = 8, . . . , 15 as very high polynomial degrees. This cate-
gorization is qualitative in nature and is motivated from aspects of accuracy and computational
efficiency.

2.4.2 Derivation of discontinuous Galerkin formulation

This section derives the weak discontinuous Galerkin formulation of the incompressible Navier–
Stokes equations. The general procedure consists of two steps, and is illustrated by applying it
to the incompressible Navier–Stokes equations (2.1) and (2.2) with the convective term written
in divergence formulation. The variational form is derived by

(i) requiring the residuals of the momentum and continuity equations to be orthogonal to
all test functions vh ∈ Vuh and qh ∈ Vph, respectively. Multiplying the residual of the
momentum equation by test functions vh and the residual of the continuity equation by
test functions qh as well as integration over Ωh yields the following set of equations(

vh,
∂uh
∂t

)
Ωe

+ (vh,∇ · Fc(uh))Ωe

− (vh,∇ · Fv(uh))Ωe
+ (vh,∇ph)Ωe

− (vh,f(t))Ωe
= 0 ∀vh ∈ Vuh,e ,

(2.73)

(qh,−∇ · uh)Ωe
= 0 ∀qh ∈ Vph,e , (2.74)

for all elements e = 1, ...Nel. The problem is stated in an element-wise manner due to the
discontinuity of shape functions between elements.

(ii) and by performing integration by parts. In this step, Gauss’ divergence theorem is applied
in order to transform volume integrals into surface integrals. Subsequently, physical fluxes
are replaced by numerical fluxes in order to enforce continuity in a weak sense. Numerical
fluxes are defined as a function of the approximate solution on both elements adjacent to
an interior face and as a function of the interior solution and prescribed boundary data on
boundary faces. By the example of the convective term, this second step can be generically
written as

(vh,∇ · Fc(uh))Ωe
→ ceh (vh,uh; gu) . (2.75)

This results in the following discontinuous Galerkin formulation: Find uh ∈ Vuh , ph ∈ Vph such
that

me
h,u

(
vh,

∂uh
∂t

)
+ ceh (vh,uh; gu)

+veh (vh,uh; gu,hu) + geh (vh, ph; gp)− beh (vh,f(t)) = 0 ,

(2.76)

−deh(qh,uh; gu) = 0 , (2.77)

for all (vh, qh) ∈ Vuh,e × V
p
h,e and for all elements e = 1, ..., Nel. The minus sign is inserted in

equation (2.74) and equation (2.77) to ensure that the matrix representation of the (linearized)
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2 Discretization methods for the incompressible Navier–Stokes equations

Table 2.3: Choice of exterior values (·)+ on domain boundaries as a function of interior val-
ues (·)− and prescribed boundary data for velocity and pressure in order to weakly
impose boundary conditions according to the mirror principle.

ΓD
h ΓN

h

velocity
u+
h = −u−h + 2gu u+

h = u−h
F+

v (u+
h ) · n = F−v (u−h ) · n F+

v (u+
h ) · n = −F−v (u−h ) · n+ 2hu

pressure
p+
h = p−h p+

h = −p−h + 2gp
∇p+

h · n = −∇p−h · n+ 2hp ∇p+
h · n = ∇p−h · n

system of equations corresponding to the weak formulation (2.76) and (2.77) is symmetric with
respect to the pressure gradient term and the velocity divergence term.

The mass matrix term and body force term do not contain spatial derivative operators. Hence,
there is no need to perform step (ii) described above. The velocity mass matrix operator is given
in elementwise notation as

me
h,u (vh,uh) = (vh,uh)Ωe

, (2.78)

and the body force operator as

beh (vh,f) = (vh,f)Ωe
. (2.79)

A detailed description of the convective term ceh, viscous term veh, pressure gradient term geh,
and velocity divergence term deh is given below. Apart from these operators, the DG formula-
tion of the negative Laplace operator leh is introduced, which is required when discretizing the
projection-type solution methods in space.

2.4.2.1 Convective term

This section derives DG formulations for the divergence formulation and convective formulation
of the nonlinear transport term.

2.4.2.1.1 Divergence formulation The discontinuous Galerkin formulation of the con-
vective term written in divergence formulation is derived by performing step (ii) described
above. Integration by parts of the convective term (vh,∇ · Fc(uh))Ωe

and replacing the phys-
ical flux Fc(uh) by the numerical flux F ∗c (uh) yields

ceh (vh,uh; gu) = − (∇vh,Fc(uh))Ωe
+ (vh,F

∗
c (uh) · n)∂Ωe

. (2.80)

The local Lax–Friedrichs flux is defined as (Hesthaven and Warburton 2007, Klein et al. 2013,
Shahbazi et al. 2007)

F ∗c (uh) = {{Fc(uh)}}+
Λ

2
JuhK , (2.81)
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where Λ = max (λ−, λ+), and where λ is the maximum eigenvalue (in terms of absolute values)
of the flux Jacobian

λ± = max
i

∣∣∣∣∣λi
(
∂F (u) · n

∂u

∣∣∣∣
u±h

)∣∣∣∣∣ = 2|u±h · n| . (2.82)

The flux Jacobian is given as

∂F (u) · n
∂u

= (u · n) I + u⊗ n . (2.83)

The eigenvectors of this tensor are the velocity vector u and the d − 1 vectors n⊥1,...,d−1 that are
perpendicular to the normal vector n. The corresponding eigenvalues are

∂F (u) · n
∂u

· n⊥1,...,d−1 = (u · n)n⊥1,...,d−1 + u
(
n · n⊥1,...,d−1

)
= (u · n)︸ ︷︷ ︸

=λ1,...,d−1

n⊥1,...,d−1 , (2.84)

∂F (u) · n
∂u

· u = (u · n)u+ u (n · u) = 2 (u · n)︸ ︷︷ ︸
=λd

u , (2.85)

revealing λ = maxi |λi| = |2 (u · n) |. In the above equation, u±h is the local velocity evaluated
in each quadrature point, while mean values of the velocity are used in Hesthaven and Warburton
(2007), Klein et al. (2013), Shahbazi et al. (2007). A different value of |u · n| is also used in
some works (Hesthaven and Warburton 2007, Xu et al. 2019). This value for the Lax–Friedrichs
stabilization term turns out to be beneficial in terms of the maximum time step size according to
the CFL condition, enlarging the stability region as compared to the larger value derived from the
maximum eigenvalue of the flux Jacobian. Therefore, an additional parameter ζLF is introduced,
to obtain λ = 2ζLF|u · n|, where a value of ζLF ≈ 1

2
appears to be the sweet spot in terms of the

maximum possible time step size. Finally, note that also different formulations such as λ = 2‖u‖
are for example used in Marek et al. (2015). Boundary conditions are imposed by calculating
exterior values u+

h on Γh as defined in Table 2.3 according to the so-called mirror principle,
see Hesthaven and Warburton (2007). In order to highlight that the convective term depends on
the prescribed boundary data gu on Dirichlet boundaries ΓD

h , the notation ceh (vh,uh; gu) is used.
For implicit formulations of the convective term, with the resulting non-linear system of equa-

tions solved by a Newton–Krylov approach, the linearization of the convective term is required

ceh,lin(vh,uh,lin,∆uh) =
∂ceh(vh,uh)

∂uh

∣∣∣∣
uh,lin

·∆uh , (2.86)

where uh,lin is the point of linearization and ∆uh the solution increment. To derive the lineariza-
tion, the numerical flux definition (2.81) and the convective flux Fc(u) = u ⊗ u are inserted
into equation (2.80)

ceh (vh,uh) = − (∇vh,uh ⊗ uh)Ωe
+

(
vh, {{uh ⊗ uh}} · n+

Λ

2
JuhK · n

)
∂Ωe

.
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2 Discretization methods for the incompressible Navier–Stokes equations

In the following, it is assumed that Λ does not depend on uh when linearizing the convective
term. This asumption is motivated by the estimate ‖JuhK · n‖ � |uh · n|. Accordingly, the
term that is neglected as a consequence of this assumption is significantly smaller than the other
terms. The linearization of the convective term is then given as

ceh,lin(vh,uh,lin,∆uh) = − (∇vh,uh,lin ⊗∆uh + ∆uh ⊗ uh,lin)Ωe

+

(
vh, ({{uh,lin ⊗∆uh}}+ {{∆uh ⊗ uh,lin}}) · n+

Λ

2
J∆uhK · n

)
∂Ωe

,
(2.87)

where Λ = 2ζLF max
(
|u−h,lin · n|, |u

+
h,lin · n|

)
. On domain boundaries, exterior values for uh,lin

and ∆uh are calculated as

u+
h,lin =

{
−u−h,lin + 2gu on ΓD

h

+u−h,lin on ΓN
h

, ∆u+
h =

{
−∆u−h on ΓD

h

+∆u−h on ΓN
h

. (2.88)

2.4.2.1.2 Convective formulation The starting point is the convective formulation of the
convective term (wh · ∇)uh, i.e., the field uh is transported by the velocity wh (Oseen equa-
tion). For the time being, assume that wh is a velocity field that is continuous across elements.
Integration by parts yields

(vh, (wh · ∇)uh)Ωe
= (vh, (∇uh) ·wh)Ωe

= (vh ⊗wh,∇uh)Ωe

= − (∇ · (vh ⊗wh),uh)Ωe
+ (vh ⊗wh,u

∗
h ⊗ n)∂Ωe

= − (∇ · (vh ⊗wh),uh)Ωe
+ (vh, (wh · n)u∗h)∂Ωe

.

(2.89)

In accordance with Hesthaven and Warburton (2007), this formulation is denoted as weak for-
mulation

ceh,weak (vh,wh,uh) =− (∇ · (vh ⊗wh),uh)Ωe
+ (vh, (wh · n)u∗h)∂Ωe

=− (∇vh,uh ⊗wh)Ωe
− (vh, (∇ ·wh)uh)Ωe

+ (vh, (wh · n)u∗h)∂Ωe
.

(2.90)

The strong formulation ceh,strong = ceh is obtained by performing integration by parts once again,
without inserting a numerical flux u∗h

ceh (vh,wh,uh) = + (vh, (∇uh) ·wh)Ωe
− (vh, (wh · n)uh)∂Ωe

+ (vh, (wh · n)u∗h)∂Ωe
.

(2.91)

Using an upwind flux as numerical flux function u∗h,

u∗h = {{uh}}+
1

2
sign (wh · n) [uh] , (2.92)

yields

ceh (vh,wh,uh) = + (vh, (∇uh) ·wh)Ωe
− (vh, (wh · n)uh)∂Ωe

+

(
vh, (wh · n) {{uh}}+

1

2
|wh · n| [uh]

)
∂Ωe

.
(2.93)
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The non-liner term of the Navier–Stokes equations is (uh · ∇)uh instead of (wh · ∇)uh. Since
the numerical velocity uh is discontinuous between elements, wh is replaced by {{uh}} for all
face integrals (Fehn et al. 2019a), to obtain

ceh (vh,uh) = + (vh, (∇uh) · uh)Ωe
− (vh, ({{uh}} · n)uh)∂Ωe

+

(
vh, ({{uh}} · n) {{uh}}+

1

2
|{{uh}} · n| [uh]

)
∂Ωe

.
(2.94)

Boundary conditions are imposed according to Table 2.3. Following the procedure shown above
for the divergence formulation, the linearization of the convective formulation yields

ceh,lin(vh,uh,lin,∆uh) = (vh, (∇uh,lin) ·∆uh)Ωe
+ (vh, (∇(∆uh)) · uh,lin)Ωe

− (vh, ({{uh,lin}} · n) ∆uh)∂Ωe
− (vh, ({{∆uh}} · n)uh,lin)∂Ωe

+ (vh, ({{uh,lin}} · n) {{∆uh}}+ ({{∆uh}} · n) {{uh,lin}})∂Ωe

+

(
vh,

1

2
|{{uh,lin}} · n| [∆uh]

)
∂Ωe

.

(2.95)

Remark 2.6 Numerical investigations revealed that the strong formulation should be used to
obtain optimal rates of convergence. For the weak formulation, sub-optimal rates of convergence
of order ku (instead of ku+1) have been observed for the velocity. For this reason, only the strong
formulation is investigated in this work.

2.4.2.2 Velocity–pressure coupling terms

2.4.2.2.1 Velocity divergence term The DG formulation of the velocity divergence term
is derived by performing integration by parts of (qh,∇ · uh)Ωe

and replacing the physical flux uh
by the numerical flux u∗h, to obtain

deh,weak (qh,uh; gu) = − (∇qh,uh)Ωe
+ (qh,u

∗
h · n)∂Ωe

. (2.96)

Using the central flux u∗h = {{uh}} yields

deh,weak (qh,uh) = − (∇qh,uh)Ωe
+ (qh, {{uh}} · n)∂Ωe

. (2.97)

Under the assumption of an exact evaluation of integrals, the weak formulation is equivalent to
the strong formulation

deh,strong (qh,uh) = (qh,∇ · uh)Ωe
−
(
qh,

1

2
[uh] · n

)
∂Ωe

. (2.98)

Boundary conditions are imposed according to Table 2.3, so that the velocity divergence term
can alternatively be written as

deh,weak (qh,uh; gu) =− (∇qh,uh)Ωe
+ (qh, {{uh}} · n)∂Ωe\Γh + (qh,uh · n)∂Ωe∩ΓN

h︸ ︷︷ ︸
=deh,weak,hom(qh,uh)

+(qh, gu · n)∂Ωe∩ΓD
h︸ ︷︷ ︸

=deh,inhom(qh;gu)

,
(2.99)
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where a decomposition into a homogeneous part (depending on the solution) and an inhomoge-
neous part (depending on inhomogeneous boundary data) has been introduced.

Remark 2.7 As a reference formulation, consider the modified formulation of the velocity di-
vergence term used in Hesthaven and Warburton (2007) in the context of the high-order dual
splitting scheme

deh,ref (qh,uh) = (qh,∇ · uh)Ωe
. (2.100)

This formulation does not perform integration by parts as described in step (ii) above. Accord-
ingly, this formulation does not depend on boundary conditions prescribed for the velocity.

2.4.2.2.2 Pressure gradient term The procedure detailed above for the velocity diver-
gence term is applied to derive the DG formulation geh (vh, ph) of the pressure gradient term

geh,weak (vh, ph; gp) = − (∇ · vh, ph)Ωe
+ (vh, p

∗
hn)∂Ωe

. (2.101)

Using again the central flux p∗h = {{ph}} yields the weak formulation

geh,weak (vh, ph; gp) = − (∇ · vh, ph)Ωe
+ (vh, {{ph}}n)∂Ωe

. (2.102)

Under the assumption of an exact evaluation of integrals, the weak formulation is equivalent to
the strong formulation

geh,strong (vh, ph) = (vh,∇ph)Ωe
−
(
vh,

1

2
[ph]n

)
∂Ωe

. (2.103)

By imposing boundary conditions according to Table 2.3, the pressure gradient term can be
decomposed into homogeneous and inhomogeneous contributions

geh,weak (vh, ph; gp) =− (∇ · vh, ph)Ωe
+ (vh, {{ph}}n)∂Ωe\Γh + (vh, phn)∂Ωe∩ΓD

h︸ ︷︷ ︸
=geh,weak,hom(vh,ph)

+(vh, gpn)∂Ωe∩ΓN
h︸ ︷︷ ︸

=geh,inhom(vh;gp)

.
(2.104)

Remark 2.8 As a reference formulation, consider the modified formulation of the pressure gra-
dient term used in Hesthaven and Warburton (2007) in the context of the high-order dual splitting
scheme

geh,ref (vh, ph) = (vh,∇ph)Ωe
. (2.105)

This formulation does not perform integration by parts as described in (ii) above. Accordingly,
this formulation does not depend on boundary conditions prescribed for the pressure.
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2.4.2.2.3 A note on the symmetry of the velocity–pressure coupling terms In
order to ensure that the (non-)linear system of equations (2.76) and (2.77) is symmetric with
respect to the pressure gradient term and velocity divergence term, a negative sign has been
introduced in front of the velocity divergence term in the weak formulation, −deh(qh,uh). This
can be verified by comparing the homogeneous part of the weak formulations of the pressure
gradient term and the velocity divergence term. In a first step, the velocity divergence term in
weak formulation is integrated by parts once again to obtain the strong formulation

deh,strong,hom(qh,uh) = (qh,∇ · uh)Ωe
−
(
qhn,

1

2
JuhK · n

)
∂Ωe\Γh

− (qhn,uh)∂Ωe∩ΓD
h
.

While the previous derivations used an elementwise formulation, a global formulation that per-
forms integrals over all elements and all faces is introduced by adding the contributions from
both elements Ωe− and Ωe+ adjacent to an interior face f

−
(
q−h n

−,
1

2
JuhK · n−

)
∂Ωe−∩f

−
(
q+
h n

+,
1

2
JuhK · n+

)
∂Ωe+∩f

= − ({{qh}}n, JuhK · n)f

Accordingly, the homogeneous part of the velocity divergence term can be written as

dh,strong,hom(qh,uh) = (qh,∇ · uh)Ωh
− ({{qh}}n, JuhK · n)Γint

h
− (qhn,uh)ΓD

h
. (2.106)

For the pressure gradient term, one obtains(
v−h , {{ph}}n

−)
∂Ωe−∩f

+
(
v+
h , {{ph}}n

+
)
∂Ωe+∩f

= (JvhK · n, {{ph}}n)f

and

gh,weak,hom(vh, ph) = − (∇ · vh, ph)Ωh
+ (JvhK · n, {{ph}}n)Γint

h
+ (vh, phn)ΓD

h
. (2.107)

A comparison of equation (2.106) and equation (2.107) shows that symmetry of both terms is
obtained if −deh(qh,uh) is used in the continuity equation. While the weak and strong formula-
tions are equivalent in case of exact integration, only weak–strong combinations of the velocity–
pressure coupling terms (dh,strong with gh,weak, or dh,weak with gh,strong) yield exact symmetry in
the presence of quadrature errors. The above equations also reveal that exterior values on domain
boundaries have to be chosen according to Table 2.3 to ensure symmetry.

2.4.2.3 Negative Laplace operator

The DG formulations derived above have in common that the underlying operators only involve
derivatives of first order. Another important class are operators with second derivatives, such as
viscous or diffusive terms in computational fluid dynamics. Projection methods for the incom-
pressible Navier–Stokes equations lead to a Poisson equation for the pressure, another example
of a PDE with second derivatives. This section discusses the DG formulation of the Laplace
operator. Consider the Poisson-type model problem

−∇2u = f in Ω , (2.108)

43



2 Discretization methods for the incompressible Navier–Stokes equations

subject to boundary conditions

u = g on ΓD , (2.109)

∇u · n = h on ΓN . (2.110)

Various DG methods have been formulated for this problem and the reader is referred to Arnold
et al. (2002) for a comprehensive overview. The derivation shown here follows the standard
procedure of decomposing the problem into a system of equations with first derivatives, see
also Hesthaven and Warburton (2007), to which integration by parts is applied with suitable
numerical fluxes. This system of equations is then combined to an equation in the primal variable
only, the so-called primal formulation. In terms of numerical fluxes, the present work exclusively
studies the symmetric interior penalty Galerkin (SIPG) method (Arnold 1982, Arnold et al. 2000,
2002). Rewriting equation (2.108) as a system of first-order equations yields

−∇ · σ = f , (2.111)
σ = ∇u , (2.112)

where the auxiliary variable σ has been introduced. The exact solution is approximated by uh ∈
Vh and σh ∈ Vdh , where the space of test and trial functions Vh is defined as

Vh =
{
uh ∈ L2(Ωh) : uh (xe(ξ)) |Ωe = ũeh(ξ)|Ω̃e ∈ Vh,e = Qk(Ω̃e) ∀e

}
. (2.113)

Replacing u and σ in equation (2.111) and equation (2.112) by the approximate solutions uh
and σh, multiplying the residuals by test functions vh ∈ Vh and τh ∈ Vdh , and integration over
element Ωe yields

(vh,−∇ · σh)Ωe
= (vh, f)Ωe

, (2.114)

(τh,σh)Ωe
= (τh,∇uh)Ωe

. (2.115)

The weak formulation of the problem written in flux formulation is obtained by integrating
equations (2.114) and (2.115) by parts and introducing numerical flux functions u∗h and σ∗h

(∇vh,σh)Ωe
− (vh,σ

∗
h · n)∂Ωe

= (vh, f)Ωe
, (2.116)

(τh,σh)Ωe
= − (∇ · τh, uh)Ωe

+ (τh, u
∗
hn)∂Ωe

. (2.117)

The primal formulation is obtained by eliminating the auxiliary variable σh. The right-hand side
of equation (2.117) is first integrated by parts once again

(τh,σh)Ωe
= (τh,∇uh)Ωe

− (τh, (uh − u∗h)n)∂Ωe
. (2.118)

Using τh = ∇vh and inserting equation (2.118) into equation (2.116) yields the primal formula-
tion: Find uh ∈ Vh such that

leh (vh, uh) = (∇vh,∇uh)Ωe
− (∇vh, (uh − u∗h)n)∂Ωe

− (vh,σ
∗
h · n)∂Ωe

= (vh, f)Ωe
, (2.119)
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for all vh ∈ Vh,e and all elements Ωe, e = 1, ..., Nel. For the SIPG method (Arnold 1982, Arnold
et al. 2000, 2002), the numerical fluxes are defined as

u∗h = {{uh}} , (2.120)
σ∗h = {{∇uh}} − τJuhK . (2.121)

The penalty parameter of the SIPG method is denoted by τ and has to be large enough to ensure
coercivity of the bilinear form. Essentially, the penalty parameter depends on the polynomial de-
gree k and a characteristic element length h. An explicit expression for the penalty parameter of
the SIPG method is derived in Shahbazi (2005) for triangular/tetrahedral elements and in Hille-
waert (2013) for other element geometries. For quadrilateral/hexahedral elements the penalty
parameter τe associated to element e is defined as (Hillewaert 2013)

τe = (k + 1)2A (∂Ωe \ Γh) /2 + A (∂Ωe ∩ Γh)

V (Ωe)
, (2.122)

with the element volume V (Ωe) =
∫

Ωe
dΩ and the surface area A(f) =

∫
f⊂∂Ωe

dΓ. Conser-
vativity of the numerical flux definition is fulfilled by choosing the maximum value from both
elements adjacent to an interior face f according to

τ =

{
max (τe− , τe+) if face f ⊆ ∂Ωe \ Γh ,

τe if face f ⊆ ∂Ωe ∩ Γh .
(2.123)

Inserting the numerical fluxes (2.120) and (2.121) into equation (2.119) yields

leh (vh, uh) = + (∇vh,∇uh)Ωe
−
(
∇vh,

1

2
JuhK

)
∂Ωe

− (vh, {{∇uh}} · n)∂Ωe

+ (vh, τJuhK · n)∂Ωe
.

(2.124)

To complete the formulation, exterior values have to be prescribed on Γh in order to weakly
impose boundary conditions. Since equation (2.108) contains second derivatives, both the solu-
tion uh and the gradient in normal direction∇uh · n have to be prescribed

u+
h =

{
−u−h + 2g on ΓD

h

+u−h on ΓN
h

, ∇u+
h · n =

{
+∇u−h · n on ΓD

h

−∇u−h · n+ 2h on ΓN
h

. (2.125)

By inserting the boundary conditions from equation (2.125) into equation (2.124), the weak
formulation of the Laplace operator leh can be separated into a homogeneous part leh,hom and an
inhomogeneous part leh,inhom

leh (vh, uh; g, h) = leh,hom(vh, uh) + leh,inhom(vh; g, h) , (2.126)

where

leh,hom(vh, uh) = + (∇vh,∇uh)Ωe

−
(
∇vh,

1

2
JuhK

)
∂Ωe\Γh

− (∇vh, uhn)∂Ωe∩ΓD
h

− (vh, {{∇uh}} · n)∂Ωe\Γh − (vh,∇uh · n)∂Ωe∩ΓD
h

+ (vh, τJuhK · n)∂Ωe\Γh + (vh, 2τuh)∂Ωe∩ΓD
h

(2.127)
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and

leh,inhom(vh; g, h) = +(∇vh, gn)∂Ωe∩ΓD
h
− (vh, h)∂Ωe∩ΓN

h
− (vh, 2τg)∂Ωe∩ΓD

h
. (2.128)

Then, the weak formulation of problem (2.108) reads: Find uh ∈ Vh such that

leh,hom(vh, uh) = (vh, f)Ωe
− leh,inhom(vh; g, h) ∀vh ∈ Vh,e (2.129)

and for all elements Ωe, e = 1, ..., Nel. Terms arising from inhomogeneous boundary conditions
have been shifted to the right-hand side of the equation.

2.4.2.4 Viscous term

This section derives DG formulations for the Laplace formulation and divergence formulation
of the viscous term.

2.4.2.4.1 Laplace formulation The viscous operator represents a generalization of the La-
place operator to vectorial quantities with the viscosity ν as a scaling factor. In analogy to the
Poisson problem considered in Section 2.4.2.3, the primal formulation of the viscous term is
given as

veh (vh,uh, gu,hu) = + (∇vh, ν∇uh)Ωe
− (∇vh, ν (uh − u∗h)⊗ n)∂Ωe

−
(
vh,F

∗
v,h · n

)
∂Ωe

.
(2.130)

For the symmetric interior penalty Galerkin (SIPG) method, the numerical fluxes are defined as

u∗h = {{uh}} , (2.131)
F ∗v,h = ν{{∇uh}} − ντJuhK , (2.132)

where the interior penalty parameter is defined as in equation (2.123) and equation (2.122).
Again, boundary conditions are incorporated into the formulation by defining exterior values for
the velocity u+

h and the velocity gradient in normal direction ∇u+
h · n. Inserting the numerical

fluxes (2.131) and (2.132) into equation (2.130) yields

veh(vh,uh) = + (∇vh, ν∇uh)Ωe
−
(
∇vh,

ν

2
JuhK

)
∂Ωe

− (vh, ν{{∇uh}} · n)∂Ωe
+ (vh, ντJuhK · n)∂Ωe

.
(2.133)

By inserting boundary conditions according to Table 2.3 into equation (2.133), the viscous term
can be decomposed into

veh (vh,uh; gu,hu) = veh,hom(vh,uh) + veh,inhom(vh; gu,hu) , (2.134)

where the homogeneous part is

veh,hom(vh,uh) = + (∇vh, ν∇uh)Ωe

−
(
∇vh,

ν

2
JuhK

)
∂Ωe\Γh

− (∇vh, ν uh ⊗ n)∂Ωe∩ΓD
h

− (vh, ν{{∇uh}} · n)∂Ωe\Γh − (vh, ν ∇uh · n)∂Ωe∩ΓD
h

+ (vh, ντJuhK · n)∂Ωe\Γh + (vh, 2ντuh)∂Ωe∩ΓD
h

(2.135)
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and the inhomogeneous part

veh,inhom(vh, gu,hu) = + (∇vh, ν gu ⊗ n)∂Ωe∩ΓD
h
− (vh,hu)∂Ωe∩ΓN

h

− (vh, 2ντgu)∂Ωe∩ΓD
h
.

(2.136)

2.4.2.4.2 Divergence formulation This section discusses the DG discretization of the vis-
cous term written in divergence formulation by extracting the model problem

−∇ · Fv = f ,

Fv = ν
(
∇u+ (∇u)T

)
.

(2.137)

The starting point is to split the viscous flux into two contributions F1,v +F2,v = Fv, in order to
rewrite the system of first-order equations (2.137) in an alternative way

−∇ · F1,v −∇ · F2,v = f ,

F1,v = ν∇u ,
F2,v = ν (∇u)T .

(2.138)

The equations are first multiplied by weighting functions and integrated over one element

(vh,−∇ · F1,v,h)Ωe
+ (vh,−∇ · F2,v,h)Ωe

= (vh,f)Ωe
, (2.139)

(wh,F1,v,h)Ωe
= (wh, ν∇uh)Ωe

, (2.140)

(wh,F2,v,h)Ωe
=
(
wh, ν (∇uh)T

)
Ωe

=
(
wT
h , ν∇uh

)
Ωe

.
(2.141)

Then, following the procedure described in Section 2.4.2.3 yields

(∇vh,F1,v(uh))Ωe
+ (∇vh,F2,v(uh))Ωe

−
(
vh,F

∗
1,v,h · n

)
∂Ωe

−
(
vh,F

∗
2,v,h · n

)
∂Ωe

= (vh,f)Ωe
,

(2.142)

and

(wh,F1,v,h)Ωe
= (wh, ν∇uh)Ωe

− (wh, ν (uh − u∗h)⊗ n)∂Ωe
, (2.143)

and

(wh,F2,v,h)Ωe
=
(
wT
h , ν∇uh

)
Ωe
−
(
wT
h , ν (uh − u∗h)⊗ n

)
∂Ωe

=

=
(
wh, ν (∇uh)T

)
Ωe
−
(
wh, ν ((uh − u∗h)⊗ n)T

)
∂Ωe

.
(2.144)

The primal formulation is obtained by setting wh = ∇vh and inserting equations (2.143)
and (2.144) into equation (2.142)

veh(vh,uh) = +
(
∇vh, ν

(
∇uh + (∇uh)T

))
Ωe

−
(
∇vh, ν

(
(uh − u∗h)⊗ n+ ((uh − u∗h)⊗ n)T

))
∂Ωe

−
(
vh,
(
F ∗1,v,h + F ∗2,v,h

)
· n
)
∂Ωe

= (vh,f)Ωe
.

(2.145)
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The symmetric interior penalty fluxes are chosen for the standard Laplace term F1,v

u∗h = {{uh}} , (2.146)
F ∗1,v,h = ν{{∇uh}} − ντJuhK , (2.147)

and due to F2,v = F T
1,v, the following flux is used for F2,v

F ∗2,v,h =
(
F ∗1,v,h

)T
= ν{{(∇uh)T}} − ντJuhKT . (2.148)

The interior penalty parameter is defined as in equation (2.123) and equation (2.122). Inserting
the numerical fluxes, equations (2.146), (2.147), and (2.148), into equation (2.145) yields

veh(vh,uh) = +
(
∇vh, ν

(
∇uh + (∇uh)T

))
Ωe
−
(
∇vh,

ν

2

(
JuhK + JuhKT

))
∂Ωe

−
(
vh, ν{{∇uh + (∇uh)T}} · n

)
∂Ωe

+
(
vh, ντ

(
JuhK + JuhKT

)
· n
)
∂Ωe

.

(2.149)

By inserting boundary conditions according to Table 2.3 into equation (2.149), the weak formu-
lation of the viscous operator veh can be decomposed into

veh (vh,uh, gu,hu) = veh,hom(vh,uh) + veh,inhom(vh, gu,hu) , (2.150)

where the homogeneous part is

veh,hom(vh,uh) = +
(
∇vh, ν

(
∇uh + (∇uh)T

))
Ωe

−
(
∇vh,

ν

2

(
JuhK + JuhKT

))
∂Ωe\Γh

−
(
∇vh, ν

(
uh ⊗ n+ (uh ⊗ n)T

))
∂Ωe∩ΓD

h

−
(
vh, ν{{∇uh + (∇uh)T}} · n

)
∂Ωe\Γh

−
(
vh, ν

(
∇uh + (∇uh)T

)
· n
)
∂Ωe∩ΓD

h

+
(
vh, ντ

(
JuhK + JuhKT

)
· n
)
∂Ωe\Γh

+
(
vh, 2ντ

(
uh ⊗ n+ (uh ⊗ n)T

)
· n
)
∂Ωe∩ΓD

h

(2.151)

and the inhomogeneous part

veh,inhom(vh; gu,hu) = +
(
∇vh, ν

(
gu ⊗ n+ (gu ⊗ n)T

))
∂Ωe∩ΓD

h

− (vh,hu)∂Ωe∩ΓN
h

−
(
vh, 2ντ

(
gu ⊗ n+ (gu ⊗ n)T

)
· n
)
∂Ωe∩ΓD

h

.

(2.152)

2.4.2.4.3 A note on the correct imposition of Neumann boundary conditions In
the weak formulation of the momentum equation (2.76) and during the derivation of the weak
formulation of the viscous term and the pressure gradient term, a splitting of the Neumann
boundary condition h = hu − gpn into a viscous part and a pressure part according to equa-
tions (2.7) and (2.8) has been assumed. However, it is actually equation (2.6) that defines the

48



2.4 Discretization in space

Neumann boundary condition to be prescribed in case of the coupled solution approach. This
section shows that the splitting of boundary conditions does not impact the discrete system of
equations for the coupled solution approach, and that the boundary conditions are imposed cor-
rectly.

The inhomogeneous boundary face integrals of the viscous term, equation (2.136) for the
Laplace formulation and equation (2.152) for the divergence formulation, and the pressure gra-
dient term according to equation (2.104) are added in the monolithic system, equation (2.76), so
that any decomposition h = hu − gpn ensures a correct imposition of the Neumann boundary
condition (2.6)

−(vh,hu)∂Ωe∩ΓN
h

+ (vh, gpn)∂Ωe∩ΓN
h

= −(vh,hu − gpn)∂Ωe∩ΓN
h

= −(vh,h)∂Ωe∩ΓN
h
. (2.153)

Without loss of generality, one can for example use hu = h and gp = 0 for the coupled solu-
tion approach. A decoupled treatment of the Neumann boundary condition according to equa-
tions (2.7) and (2.8) is, however, necessary for the projection methods considered in this work.

2.4.2.5 Consistent stabilization terms

Numerical results give evidence that the L2-conforming discretization introduced above lacks ro-
bustness for small values of the viscosity and coarse spatial resolutions. In particular, this prob-
lem prevents the successful simulation of three-dimensional turbulent flows in under-resolved
scenarios and might even lead to numerical blow-up of the simulation. This section proposes
two additional terms in the variational formulation in order to obtain a robust and accurate dis-
cretization for L2-conforming discontinuous Galerkin formulations. These terms are consistent
stabilizations terms that are motivated from the point of view of mass conservation and energy
stability. This section deals with the first aspect of mass conservation, while Section 2.4.5 below
sheds light on the beneficial effect of these terms in terms of energy stability.

The divergence and continuity penalty terms discussed here have their origin in the works
by Joshi et al. (2016), Steinmoeller et al. (2013), where it was found that a better fulfillment of
the divergence-free constraint and inter-element continuity of the velocity field improves the sta-
bility of the spatially discretized pressure-projection operator in projection-type methods. How-
ever, these works do not introduce these remedies for improved mass conservation as additional
terms in a variational context, but rather as postprocessing techniques applied to the velocity
field. Consistent divergence and continuity penalty terms added to the variational form have
first been proposed in Krank et al. (2017) in the context of a projection method. By comparing
monolithic and projection-type Navier–Stokes solvers, it has been shown in Fehn et al. (2018b)
that the stabilization terms are not specifically related to the use of a projection scheme, but
rather to the L2-conforming nature of the function space. As argued in Akbas et al. (2018), these
stabilization terms – specifically designed for L2-conforming discretizations – can be seen in
analogy to the well-known grad-div stabilization for H1-conforming discretizations (Franca and
Hughes 1988, Olshanskii et al. 2009). The work by Schroeder and Lube (2017) used a grad-div
stabilization term only, and the works by Guzmán et al. (2016), Montlaur et al. (2008) used a
normal-continuity penalty term. A shortcoming of these works is that the stabilization parame-
ters have not been defined in a way to ensure consistent physical units. It should be emphasized
that the use of a divergence penalty term only is not sufficient in case of L2-conforming dis-
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cretizations, and that an additional normal-continuity penalty term is required in general (Fehn
et al. 2018b).

As a motivation, consider the discretized continuity equation (2.77) with the divergence oper-
ator in weak form, equation (2.97),

− (∇qh,uh)Ωe
+ (qh, {{uh}} · n)∂Ωe

= 0 , (2.154)

or using the equivalent strong formulation, equation (2.98),

− (qh,∇ · uh)Ωe
+

(
qh,

1

2
[uh] · n

)
∂Ωe

= 0 . (2.155)

Inserting a constant test function qh = 1 into the weak form yields the conservation property

(1, {{uh}} · n)∂Ωe
=

∫
∂Ωe

{{uh}} · ndΓ = 0 , (2.156)

i.e., the mass fluxes over all boundaries of an element equate to zero, but only in the sense
of the average velocity {{uh}} and not for the interior velocity u−h . The strong formulation of
the continuity equation highlights that the divergence-free constraint and the continuity of the
normal velocity between elements are fulfilled in a weak sense for L2-conforming discretizations
and not in a pointwise exact sense.

To improve mass conservation, two additional terms can be added to the momentum equa-
tion (2.76) of the variational formulation

me
h,u

(
vh,

∂uh
∂t

)
+ ceh (vh,uh; gu) + veh (vh,uh; gu,hu)

+aeD,h(vh,uh) + aeC,h(vh,uh; gu) + geh (vh, ph; gp)− beh (vh,f(t)) = 0 ,

(2.157)

−deh(qh,uh; gu) = 0 , (2.158)

where aeD,h denotes a divergence penalty term and aeC,h a continuity penalty term. These terms are
introduced below and enforce the divergence-free constraint as well as continuity of the velocity
field across elements in a weak sense.

The divergence penalty term aeD,h(vh,uh) has similarities with the grad–div stabilization term
often used in continuous finite element methods, see for example Olshanskii et al. (2009), and is
defined as

aeD,h(vh,uh) = (∇ · vh, τD∇ · uh)Ωe
. (2.159)

The penalty parameter τD is derived by means of dimensional analysis and is expressed in terms
of a characteristic velocity and an effective element length

τD,e = ζD ‖uh‖
h

ku + 1
, (2.160)

where the norm of the velocity ‖uh‖ acts as a characteristic velocity measure, (•) denotes an
elementwise volume-averaged quantity, and h = V

1/3
e a characteristic element length where Ve
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is the element volume. In the time-discrete case, the characteristic velocity is replaced by a high-
order extrapolation of order J using information from previous time steps

un+1,ex
h =

J−1∑
i=0

βiu
n−i
h . (2.161)

A similar expression of the stabilization parameter is obtained in Olshanskii et al. (2009) in
the convection-dominated regime, where the grad–div stabilization term is motivated from the
point of view of variational multiscale methods and residual-based subgrid modeling. The fac-
tor h/(ku + 1) in equation (2.160) is an effective element length scale taking into account shape
functions of higher polynomial degree. The continuity penalty term aeC,h(vh,uh) is defined as

aeC,h(vh,uh) = (vh · n, τC,f [uh] · n)∂Ωe
. (2.162)

While Krank et al. (2017) applied the continuity penalty term to all components of the velocity
field, Fehn et al. (2018b) proposed to apply this term to the normal component of the velocity
only, motivated from the analogy to exactly divergence-freeHdiv-conforming discretizations, see
Section 2.4.3. As suggested in Fehn et al. (2021a), the continuity penalty term is applied to all
faces of an element and not only to the interior faces as in Fehn et al. (2018b), Krank et al. (2017),
where mainly turbulent flow examples with periodic boundaries have been considered. The
penalty parameter τC,f on an interior face f ⊆ ∂Ωe \ Γh is τC,f = {{τC,e}} = (τC,e− + τC,e+) /2.
The elementwise continuity penalty factor is derived by means of dimensional analysis and has
the physical unit of a velocity

τC,e = ζC ‖uh‖ . (2.163)

In the time-discrete case, the characteristic velocity in the above equation is again replaced by a
high-order extrapolation according to equation (2.161). Numerical results in Fehn et al. (2018b,
2019a) demonstrate that a penalty factor of O(1) leads to a discretization scheme that is robust
independently of the discretization parameters h, k and the Reynolds number Re. The default
value of the penalty factors is therefore ζD = ζC = 1, which will be used for numerical experi-
ments unless specified otherwise.

Remark 2.9 It is essential to formulate the penalty terms in a way that the physical units of
these terms are consistent with the other terms of the Navier–Stokes equations, an aspect often
not taken into account in the literature, see Akbas et al. (2018), Guzmán et al. (2016), Montlaur
et al. (2008), Schroeder and Lube (2017). This is necessary in order to obtain a robust discretiza-
tion that does not require a readjustment of parameters depending on the spatial resolution pa-
rameters h, k, the size of the geometry, or the Reynolds number Re. When interpreted from the
point of view of implicit large-eddy simulation, this strategy allows to construct a parameter-
free implicit turbulence model with suitable inbuilt numerical dissipation mechanisms (Fehn
et al. 2018b, 2019a), see also the discussion in Section 2.4.5.3.

Remark 2.10 It is straightforward to verify consistency of the above variational formulation,
equations (2.157) and (2.158). The weak form of the individual terms is derived using integration-
by-parts, defining consistent flux functions, and imposing consistent boundary conditions. Since
the divergence and continuity penalty terms contain the divergence or the jump of the velocity,
both vanishing when inserting the exact solution u, consistency follows immediately.
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2.4.3 Analogy to exactly divergence-free Hdiv-conforming elements

This section briefly points out similarities between the stabilized L2-conforming approach dis-
cussed here and exactly divergence-free Hdiv-conforming discretizations (realized for example
by the well-known space by Raviart and Thomas (1977) in case of tensor-product elements). For
a more thorough discussion, the reader is referred to Fehn et al. (2019a) and references therein.
The work by Fehn et al. (2019a) also provides a one-to-one comparison of the accuracy of both
approaches in the context of under-resolved turbulent flow simulations. The Hdiv-conforming
space is defined as

Vu,H
div

h =
{
uh ∈ [L2(Ωh)]

d : ∇ · uh ∈ L2(Ωh)
}
. (2.164)

Hdiv-conformity implies that the velocity is continuous in normal direction, i.e., [uh] · n = 0.
Raviart–Thomas (RT) elements defined as

Vu,RT
h =

{
uh ∈ Vu,H

div

h : ∇ · uh ∈ Vph
}

(2.165)

are exactly divergence-free, i.e., ∇ · uh = 0. This can easily be derived from the continuity
equation in strong formulation

− (qh,∇ · uh)Ωe
+

(
qh,

1

2
[uh] · n

)
∂Ωe

= 0
Hdiv

−−→ − (qh,∇ · uh)Ωe
= 0

RT−→ ∇ · uh = 0 .

(2.166)

An illustration of these function spaces is given in Figure 2.3. The Raviart–Thomas space leads
to function spaces with different polynomial degrees in different coordinate directions. On Carte-
sian meshes, the condition∇·uh ∈ Vph can be easily realized by using polynomials of degree k in
direction ξi and polynomials of degree k−1 in direction ξj, j 6= i to approximate component uei,h

ueh =

u
e
1,h
...

ued,h

 ∈
Pk ⊗ Pk−1 ⊗ . . .⊗ Pk−1

...
Pk−1 ⊗ . . .⊗ Pk−1 ⊗ Pk

 ∇·−→ ∇ · ueh ∈ Qk−1 = Vph,e . (2.167)

This leads to the following analogy: The use of consistent continuity and divergence penalty
terms might therefore be interpreted as a weak enforcement of Hdiv-conformity and Raviart–
Thomas elements, respectively, even though the limit ζC, ζD → ∞ for the L2-method is not
equivalent to the Hdiv-conforming Raviart–Thomas method (Fehn et al. 2019a).

2.4.4 Pressure-robustness

The penalty terms have been motivated so far from the point of view of mass conservation. Re-
cent works argue that the aspect of poor mass conservation is described better by a discretization
property called “pressure-robustness”, which is briefly discussed in this section.

Several early works on finite element discretizations for the incompressible Navier–Stokes
equations discussed aspects of poor mass conservation and the occurrence of spurious velocities
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x1

x2
u2,h

x1

x2
u1,h

(a) Hdiv-conforming space

x1

x2
u2,h

x1

x2
u1,h

(b) Raviart–Thomas elements

Figure 2.3: Illustration of Hdiv-conforming function space and Raviart–Thomas elements in two
space dimensions (d = 2) for tensor-product elements of maximum polynomial de-
gree k = 2.

for problems with irrotational body forces, see Dorok et al. (1994), Gerbeau et al. (1997), Pel-
letier et al. (1989). More recently, this topic has been explored systematically under the name
“pressure-robustness”, see Akbas et al. (2018), Galvin et al. (2012), Gauger et al. (2019), John
et al. (2017), Lederer et al. (2017), Linke and Merdon (2016a), Linke (2014), Linke et al. (2016),
Piatkowski and Bastian (2019). The term “pressure-robustness” describes the property that the
velocity error is independent of the pressure and the viscosity for a discretization scheme of
the incompressible Navier–Stokes equations. For non pressure-robust discretizations, however,
the velocity error has a dependency on the pressure norm and also the inverse of the viscos-
ity. Pressure-robustness is therefore particularly relevant for problems with large or compli-
cated pressure and small viscosities. Pressure-robustness is related to the question whether an
irrotational body force, i.e., a body force that can be written as the gradient of a scalar quan-
tity, f = ∇φ, causes spurious velocities. In the continuous/analytical case, this body force
should only enter the pressure solution and not affect the velocity solution since the pres-
sure term in the momentum equation, ∇p, has exactly the same structure as the body force,
i.e., f → f +∇φ⇒ (u, p)→ (u, p + φ) (which is known as fundamental invariance property
of the incompressible Navier–Stokes equations). In the discrete case, however, this is fulfilled
only under certain assumptions. The problematic term is the right-hand side of the momentum
equation in case it is a gradient field, f = ∇φ. Consider the right-hand side term (vh,f)Ωe

in
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equation (2.157) with f = ∇φ, let φ ∈ H1(Ω), set vh = uh, and perform integration by parts

Nel∑
e=1

(uh,∇φ)Ωe
=

Nel∑
e=1

(
− (φ,∇ · uh)Ωe

+
(
φ,u−h · n

)
∂Ωe
− (φ, {{uh}} · n)∂Ωe

)
=

Nel∑
e=1

(
− (φ,∇ · uh)Ωe

+

(
φ,

1

2
[uh] · n

)
∂Ωe

)
?
= 0 .

(2.168)

The last term in the first row can be added (assuming periodic boundaries for ease of nota-
tion) since it drops out when summing over all elements, due to the fact that φ is continuous
and {{uh}} is single-valued. For exactly divergence-free Hdiv-conforming finite element for-
mulations discussed in Section 2.4.3, the right-hand side becomes zero for all φ, i.e., gradient
fields are L2-orthogonal to discretely (in this case also exactly) divergence-free velocity fields.
No spurious velocities can be amplified by gradient fields and the formulation is pressure-robust.
For L2-conforming methods discussed in the present work, the right-hand side does not become
zero in general since – unlike in equation (2.155) – the potential φ ∈ H1 * Vph is not in the
pressure space in general, i.e., the divergence-free constraint is relaxed and gradient fields are
not L2-orthogonal to discretely divergence-free velocities. As a result, the velocity solution is
affected for non pressure-robust discretizations such as classical inf–sup stable mixed finite ele-
ment methods (where the velocity error has a ν−1|p| dependency). Projection or reconstruction
techniques have been proposed to improve or ensure pressure-robustness (Gerbeau et al. 1997,
Lederer et al. 2017, Linke and Merdon 2016a, Linke 2014, Linke et al. 2016), which can be in-
terpreted as filtering out problematic contributions of the right-hand side in order to not perturb
the velocity solution (the notion used in John et al. (2017) is repairing the L2-orthogonality).
Other techniques are grad–div stabilization (Akbas et al. 2018, Galvin et al. 2012), which might
be described as diagnostic rather than preventive measures to deal with pressure-robustness. The
discretization scheme of the incompressible Navier–Stokes equations proposed in this chapter is
not pressure-robust due to its L2-conforming nature. It is based on penalty terms for improved
mass conservation and energy stability that do not result in an exactly divergence-free and mass-
conserving velocity field. These penalty terms can be interpreted as the analogue of grad–div
stabilization for DG discretizations and as a weak enforcement of pressure-robustness, reducing
the dependency of the velocity error on the pressure from ν−1|p| to only ν−1/2|p| according to
the analysis in Akbas et al. (2018). An important property in this context is that the stabilized
DG method does not suffer from over-stabilization as reported for other stabilized continuous
finite element methods, and that the solution converges to that of a pressure-robust method for
increasing penalty parameter with a rate of ζ−1/2 (Akbas et al. 2018). Numerical investigations
presented in Piatkowski and Bastian (2019) reveal that the stabilized L2-approach performs very
well compared to a pressure-robust formulation with Hdiv-reconstruction. The results shown
in Fehn et al. (2019a) suggest that the present stabilized L2-conforming approach – although not
being pressure-robust – seems to be not less accurate for under-resolved turbulent flow scenarios
than exactly divergence-free and pressure-robust Hdiv-conforming discretizations.

Remark 2.11 Considering the limit ν → 0 in mathematical error estimates (see for example
the error estimate (3.5) in John et al. (2017)) appears to be somewhat artificial since, from a
physical perspective, the limit ν → 0 typically changes the structure of the flow for general fluid
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dynamical problems and implies turbulent flows, with discretization schemes inevitably operat-
ing in the preasymptotic regime of convergence with large velocity (interpolation) errors. This
raises the question whether pressure-robustness is the effect that limits overall accuracy in such
under-resolved scenarios. While classical no-flow examples with smooth analytical solution and
irrotational forcing are certainly impressive in demonstrating a superior behavior of pressure-
robust discretizations (the velocity term on the right-hand side of the error estimate diminishes
compared to the pressure term), it still appears to be challenging to find practical flow problems
highlighting the need for strict pressure-robustness on top of what stabilized approaches can
provide. Studies by Linke and Merdon (2016b), Linke (2014) state that the aspect of pressure-
robustness has not been sufficiently internalized by the CFD community. Gauger et al. (2019)
state that “pressure-robustness appears to be a prerequisite for accurate incompressible flow
solvers at high Reynolds numbers”, but no turbulent flow example is studied in that work. The
results shown in the present work contribute also to this discussion. According to the author’s
opinion, there still needs to be given motivation that pressure-robustness in the sense of truly
pressure-independent velocity errors is a prerequisite for robust and accurate incompressible
flow solvers. It appears as if theoretical estimates somewhat under-estimate the potential of sta-
bilized methods (see for example the comparative studies by Fehn et al. (2019a), Piatkowski and
Bastian (2019)). It could therefore be very insightful if theoretical estimates could be refined or
extended in this direction.

Numerical results on this topic are shown in Section 2.6.4 for a steady Stokes problem with
manufactured solution. An important class of applications for which the aspect of pressure-
robustness is expected to be relevant are natural convection flows with large irrotational forces
due to buoyancy forces originating from temperature and density variations, a topic discussed in
more detail in Chapter 3.

2.4.5 Energy stability
This section discusses the aspect of energy stability for the continuous-in-time formulation of
the L2-conforming discretization of the incompressible Navier–Stokes equations introduced in
Section 2.4.2. Moreover, this section serves as the second main motivation for the use of consis-
tent stabilization terms introduced in Section 2.4.2.5, apart from the aspect of mass conservation.
The analysis of energy stability is based on the following assumptions:

• The computational domain Ωh is time-invariant.

• Periodic boundaries are applied on Γh = ∂Ωh.

• There are no body forces, f = 0.

• Integrals are computed exactly in the discrete case.

• The solution is sufficiently smooth so that the usual integral transformations (integration-
by-parts, Gauss’ divergence theorem) apply.

The last assumption implies (together with the other assumptions) that, in the continuous case,
energy is conserved exactly in the absence of viscosity, ν = 0. In many numerical works study-
ing the energy conservation properties of a discretization scheme, this assumption is taken as
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valid without justification. However, this assumption can be rather restrictive especially for the
inviscid limit (Euler equations). There is an ongoing debate in the fluid mechanics community
whether the incompressible Euler equations might develop singularities in finite time. Closely
related to this aspect is the occurrence of anomalous energy dissipation in the inviscid limit ac-
cording to Onsager’s conjecture, i.e., anomalous energy dissipation might indeed occur if the
velocity field is no longer differentiable due to singularities. The reader is referred to Chapter 7
for an in-depth discussion of this aspect. With these restrictions in mind, the aim of this section
is to investigate the energy stability of the discretization scheme and not a proof of exact en-
ergy conservation for vanishing viscosity. Regarding the latter aspect of energy conservation, a
provably energy-conserving scheme would then in fact be unable to predict a potential energy
dissipation anomaly.

The numerical scheme is called energy stable if the kinetic energy E fulfills

E(t) =

∫
Ωh

1

2
uh · uh dΩ ≤ 0 . (2.169)

The rate of change of the kinetic energy can be expressed in terms of the velocity mass matrix
operator

dE(t)

dt
= mh,u

(
uh,

∂uh
∂t

)
=

Nel∑
e=1

me
h,u

(
uh,

∂uh
∂t

)
, (2.170)

Inserting the discretized momentum equation (2.157) into equation (2.170) along with the above
assumptions results in

dE(t)

dt
= −

Nel∑
e=1

(
ceh (uh,uh) + veh (uh,uh) + geh (uh, ph) + aeD,h (uh,uh) + aeC,h (vh,uh)

)
= − (ch (uh,uh) + vh (uh,uh) + gh (uh, ph) + aD,h (uh,uh) + aC,h (uh,uh)) .

(2.171)

Under the above assumptions, the discontinuous Galerkin formulation is symmetric with re-
spect to the pressure gradient term and velocity divergence term, gh (uh, ph) = −dh (ph,uh).
Moreover, since −dh (ph,uh) = 0 due to the discretized continuity equation, equation (2.77) or
equation (2.158), the pressure gradient term does not contribute to the rate of change of the ki-
netic energy. In the presence of integration errors, this holds only for weak–strong combinations
of the velocity–pressure coupling terms according to Section 2.4.2.2. The SIPG discretization of
the viscous term is positive semi-definite, vh (uh,uh) ≥ 0, which implies an energy dissipating
behavior in terms of the kinetic energy evolution, irrespective of quadrature errors. Since the
viscous term becomes zero in the inviscid limit, ν = 0, which is most interesting from the point
of view of energy stability, other terms in the energy estimate cannot be balanced by the viscous
term. The viscous term is, therefore, also dropped

dE(t)

dt
≤ −ch (uh,uh)− aD,h (uh,uh)− aC,h (uh,uh) . (2.172)

The divergence and continuity penalty terms are by definition positive semi-definite. These terms
are, however, kept in the energy estimate as their aim is to balance contributions from the nonlin-
ear convective term that might otherwise lead to a blow-up of the discrete solution. To investigate
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the contributions of the convective term to the kinetic energy evolution, the divergence and con-
vective formulations of this term are considered separately in the following.

2.4.5.1 Divergence formulation of the convective term

The goal is to express the convective term as a function of terms like ∇ · uh or [uh] that vanish
in the continuous case. To this end, the convective term in divergence form, Fc(u) = u ⊗ u, is
first reformulated by integrating the first term on the right-hand side of equation (2.80) by parts
once again to obtain the so-called strong formulation

ceh (uh,uh) = (uh,∇ · Fc(uh))Ωe
+ (uh, (F

∗
c (uh)− Fc(uh)) · n)∂Ωe

. (2.173)

Moreover, the following relation is used

(uh,∇ · Fc(uh))Ωe
=

1

2
(∇ · uh,uh · uh)Ωe

+
1

2
(uh,Fc(uh) · n)∂Ωe

, (2.174)

Equation (2.174) can be derived by using the identities

∇ · (u⊗ u) = (∇u) · u+ (∇ · u)u , (2.175)
∇ · (Fc(u) · u) = (∇ · Fc(u)) · u+ Fc(u) : ∇u , (2.176)

as well as integration-by-parts, to obtain∫
Ω

u · (∇ · Fc(u)) dΩ =

∫
Ω

u · ((∇u) · u+ (∇ · u)u) dΩ

=

∫
Ω

(∇ · u)u · u dΩ +

∫
Ω

Fc(u) : ∇u dΩ

=

∫
Ω

(∇ · u)u · u dΩ−
∫

Ω

u · (∇ · Fc(u)) dΩ

+

∫
∂Ω

(Fc(u) · u) · n dΓ .

(2.177)

Equation (2.174) is obtained by shifting the second term on the right-hand side of equation (2.177)
to the left. Inserting equation (2.174) and equation (2.81) for the Lax–Friedrichs flux into equa-
tion (2.173), and summing over all elements yields

−ch (uh,uh) =

=−
Nel∑
e=1

(
1

2
(∇ · uh,uh · uh)Ωe

+

(
uh,

1

2
Fc(u

+
h ) · n

)
∂Ωe

+

(
uh ⊗ n,

Λ

2
JuhK

)
∂Ωe

)
=− 1

2
(∇ · uh,uh · uh)Ωh

−
(
u−h ,

1

2
Fc(u

+
h ) · n−

)
Γint
h

−
(
u+
h ,

1

2
Fc(u

−
h ) · n+

)
Γint
h

−
(

JuhK,
Λ

2
JuhK

)
Γint
h

,

(2.178)
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where Γint
h denotes the set of all interior faces (note that Γh = ∂Ωh = ∅ due to periodic boundary

conditions). The second term and the third term on the right-hand side of equation (2.178) can be
further simplified by algebraic manipulations using the oriented jump operator [uh] = u−h −u

+
h(

u−h ,
1

2
Fc(u

+
h ) · n−

)
Γint
h

+

(
u+
h ,

1

2
Fc(u

−
h ) · n+

)
Γint
h

=

(
u−h ,

(
1

2
u−h ⊗ u

−
h −

1

2
u−h ⊗ [uh]−

1

2
[uh]⊗ u−h +

1

2
[uh]⊗ [uh]

)
· n−

)
Γint
h

+

(
u−h ,

(
1

2
u−h ⊗ u

−
h

)
· n+

)
Γint
h

−
(

[uh],

(
1

2
u−h ⊗ u

−
h

)
· n+

)
Γint
h

=

(
u−h ,

(
−1

2
u−h ⊗ [uh] +

1

2
[uh]⊗ [uh]

)
· n−

)
Γint
h

=

(
u−h ,

(
−1

2
u+
h ⊗ [uh]

)
· n−

)
Γint
h

=

(
−1

2
u−h · u

+
h , [uh] · n

−
)

Γint
h

.

(2.179)

Inserting equations (2.178) and (2.179) into equation (2.172) yields the result

dE(t)

dt
≤− 1

2
(∇ · uh,uh · uh)Ωh

− aD,h (uh,uh)

+
1

2

(
[uh] · n,u−h · u

+
h

)
Γint
h

− aC,h (uh,uh)

−
(

JuhK,
Λ

2
JuhK

)
Γint
h

.

(2.180)

2.4.5.2 Convective formulation of the convective term

The above analysis is repeated for the convective formulation with upwind flux, equation (2.94).
In a first step, the volume term in equation (2.94) is reformulated so that it contains the divergence
of the velocity. Inserting the identity

uh · ∇uh · uh = −1

2
∇ · uh (uh · uh) +

1

2
∇ · (uh (uh · uh)) , (2.181)

into equation (2.94) and applying Gauss’ divergence theorem yields

ceh (uh,uh) =− 1

2
(∇ · uh,uh · uh)Ωe

+
1

2
(uh · uh,uh · n)∂Ωe

− (uh, ({{uh}} · n)uh)∂Ωe

+

(
uh, ({{uh}} · n) {{uh}}+

1

2
|{{uh}} · n| [uh]

)
∂Ωe

.

(2.182)
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Next, face integrals in the second row and third row of the above equation can be combined

ceh (uh,uh) =− 1

2
(∇ · uh,uh · uh)Ωe

+
1

2
(uh · uh,uh · n)∂Ωe

−
(
uh, ({{uh}} · n)

1

2
[uh]

)
∂Ωe

+

(
uh,

1

2
|{{uh}} · n| [uh]

)
∂Ωe

.

(2.183)

Summation over all elements yields

ch (uh,uh) =− 1

2
(∇ · uh,uh · uh)Ωh

+

Nel∑
e=1

(
1

2
(uh · uh,uh · n)∂Ωe

−
(
uh, ({{uh}} · n)

1

2
[uh]

)
∂Ωe

)
+

(
[uh],

1

2
|{{uh}} · n| [uh]

)
Γint
h

.

(2.184)

Finally, it remains to reformulate and simplify the second row on the right-hand side of the above
equation by using the oriented jump operator [uh] = u−h − u

+
h

Nel∑
e=1

(
1

2
(uh · uh,uh · n)∂Ωe

−
(uh

2
, ({{uh}} · n) [uh]

)
∂Ωe

)
= +

1

2

(
u−h · u

−
h ,u

−
h · n

−)
Γint
h

+
1

2

(
u+
h · u

+
h ,u

+
h · n

+
)

Γint
h

− ({{uh}}, ({{uh}} · n) [uh])Γint
h

= . . .

= +
1

2

(
{{uh · uh}}, [uh] · n−

)
Γint
h

.

(2.185)

The details of this step are skipped here as the procedure is similar to equation (2.179). The in-
terested reader is referred to (Fehn et al. 2021a, Appendix C) where the algebraic manipulations
are listed in detail. Inserting equations (2.184) and (2.185) into equation (2.172) yields the result

dE(t)

dt
≤+

1

2
(∇ · uh,uh · uh)Ωh

− aD,h (uh,uh)

− 1

2
([uh] · n, {{uh · uh}})Γint

h
− aC,h (uh,uh)

−
(

[uh],
1

2
|{{uh}} · n| [uh]

)
Γint
h

.

(2.186)

2.4.5.3 Discussion

This section summarizes and discusses the energy estimates (2.180) and (2.186). It is interesting
to realize that the energy estimate contains similar terms independently of the type of formula-
tion used for the convective term. The divergence term in the first row containing∇ ·uh and the
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jump term in the second row containing [uh] · n are sign-indefinite for both formulations of the
convective term and can be identified as potential sources of instabilities if no sufficient control
is provided over divergence errors and jumps of the velocity between elements in the direction
normal to the face. It is a key observation that the stabilization term of the Lax–Friedrichs flux
or upwind flux in the third row of the energy estimates (2.180) and (2.186), despite exhibit-
ing an energy-dissipating behavior, does not render the convective operator energy-stable in the
discrete case. The origin is the nonlinear nature of the convective term in the incompressible
Navier–Stokes equations, rendering the construction of energy-stable schemes non-trivial. This
is in contrast to linear advection terms for which an upwind flux results in an energy-stable
scheme (Hesthaven and Warburton 2007).

Note that these energy estimates are another main motivation for the use of consistent diver-
gence and continuity penalty terms. Their aim is to balance the sign-indefinite terms orginating
from the convective term, as a means to render the overall discretization scheme stable. Apart
from the aspect of mass conservation, equation (2.155), the energy estimates (2.180) and (2.186)
explain why it is sufficient to penalize the jump of the normal component of the velocity, instead
of all velocity components as originally proposed in Krank et al. (2017). Since the divergence-
free constraint and inter-element continuity of the velocity are only enforced in a weak sense
through the use of penalty terms, there is currently no proof that the overall scheme is discretely
energy-stable for the chosen penalty factors of order O(1). The reader is referred to Fehn et al.
(2019a) for a characterization of the discretization scheme for the limit case τC, τD →∞. How-
ever, the effectiveness of the chosen stabilization approach (including the derivation of penalty
factors by means of dimensional analysis) has been demonstrated by numerical experiments
for challenging inviscid flow simulations such as the Taylor–Green vortex on Cartesian and de-
formed meshes (Fehn et al. 2018b). As discussed in detail in Chapter 7, the present discretiza-
tion scheme might be suitable to predict the phenomenon of anomalous energy dissipation, see
also Fehn et al. (2021b).

The problematic sign-indefinite terms vanish in case of an Hdiv-conforming space for the
velocity (for which the normal component of the velocity is continuous across element faces)
along with polynomial spaces providing exactly divergence-free velocity fields in the discrete
case (such as Raviart–Thomas elements for the velocity combined with a discontinuous pressure
one order lower, see Section 2.4.3). The jump penalty term weakly enforces Hdiv-conformity so
that this stabilization can also be denoted asHdiv-stabilization (Akbas et al. 2018). Similarly, the
divergence penalty term might be interpreted as a weak enforcement of exactly divergence-free
velocity spaces and might be seen as a weak realization of Raviart–Thomas elements for the
velocity. The reader is referred to Fehn et al. (2019a) for a comparative study discussing similar-
ities and differences between the present stabilized approach and exactly divergence-free Hdiv-
conforming methods. In this context, the use of standard L2-conforming tensor-product elements
used in the present thesis is motivated by the fact that these elements can be easily implemented,
are already available in most finite element libraries, and extend naturally to deformed elements
by the standard finite element procedure of using high-order mappings. For example, to apply
Raviart–Thomas spaces to non-affine elements, other techniques such as a Piola transformation
are needed. Another aspect concerns the computational efficiency achievable for the different
approaches. In the L2-conforming case, the mass matrix is block-diagonal and cheap to invert in
a matrix-free way, while the mass matrix is no longer block-diagonal in case of Raviart–Thomas
elements.
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In terms of turbulence modeling, the approach proposed in this thesis is a purely numerical
one with inbuilt dissipation mechanisms, commonly known as implicit large-eddy simulation
as opposed to explicit large-eddy simulation. The reader is referred to Grinstein et al. (2007),
Hickel et al. (2006), Margolin et al. (2006), Margolin and Rider (2002) and references therein
for a rationale for implicit LES, and to the textbooks by Pope (2001), Sagaut (2006) for an
overview of explicit LES. Note, however, that the present discretization scheme is neither mo-
tivated from a modified equation analysis nor is it designed to mimic an explicit sub-grid scale
model. The aim of the approach proposed in this thesis is to obtain a parameter-free flow solver.
As the stabilized approach is generic, the same numerical method can applied to laminar, tran-
sitional, and turbulent flows, where the goal is to achieve accurate results by making optimal
use of the polynomial space independently of the type of problem. Generally speaking, it can
be considered very advantageous if no calibration of turbulence model parameters (potentially
depending on the flow configuration, the Reynolds number, or the polynomial degree of the
shape functions used for the simulation) is required. Two requirements can be formulated for
a discretization scheme to qualify for implicit LES: (i) the scheme allows robust simulations
of under-resolved, high-Reynolds-number or even inviscid flows, and (ii) the scheme provides
mechanisms of numerical dissipation as a means to realize the dissipation of scales not resolved
by the discretization scheme.

As indicated in Section 2.1.2, the DG community studying the compressible Navier–Stokes
equations is more experienced in turbulence simulations, so it might be insightful to have a look
at the developments gained there. Since the late 1990s, discontinuous Galerkin methods have
been proposed for the compressible Navier–Stokes equations (Bassi and Rebay 1997, 2000,
Baumann and Oden 1999, Hartmann and Houston 2005, Lomtev and Karniadakis 1999). These
methods have been validated for LES and DNS computations of canonical turbulent flows such
as turbulent channel flow in Chapelier et al. (2014), Collis (2002), Ramakrishnan and Collis
(2004), Wei and Pollard (2011), Wiart et al. (2015), the Taylor–Green vortex problem in Car-
ton de Wiart et al. (2014), Chapelier et al. (2014), Gassner and Beck (2013), and for geometri-
cally more complex transitional and turbulent flow problems in Beck et al. (2014), Uranga et al.
(2011). A rationale for the suitability of high-order DG discretizations for under-resolved tur-
bulent flows is provided by linear dispersion–diffusion analysis, see for example Gassner and
Kopriva (2011), Moura et al. (2015), and is used as a motivation for no-model or implicit large-
eddy simulation in Beck et al. (2014), Gassner and Beck (2013), Moura et al. (2017a), Wiart
et al. (2015). The analysis in Moura et al. (2017a) suggests an improved resolution capability
of high-order discretizations, motivating the use of large polynomial degrees also for turbulence
simulations where the solution can be considered non-smooth. At the same time, the sharper
dissipation behavior of higher polynomial degrees is expected to cause an energy-bump behav-
ior in turbulent energy spectra as compared to low-order discretizations, which is why the use
of moderately high polynomial degrees is recommended in Moura et al. (2019). Explicit LES
subgrid-scale models such as the standard Smagorinsky model and the dynamic Smagorinsky
model have been used in combination with high-order DG discretizations in several publica-
tions (Abbá et al. 2015, Chapelier et al. 2016, 2012, de la Llave Plata et al. 2017, Fernandez
et al. 2018, Flad and Gassner 2017, Manzanero et al. 2020, Ramakrishnan and Collis 2004,
Sengupta et al. 2007, Van Der Bos and Geurts 2010, Zhang et al. 2007). Their outcome is cur-
rently inconclusive in terms of an overall benefit achievable by the addition of an explicit model.
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2 Discretization methods for the incompressible Navier–Stokes equations

For example, the use of explicit models might be primarily motivated as a means to render the
discretization scheme stable.

For the compressible Navier–Stokes equations, the effect of aliasing related to nonlinear terms
is a central topic, where classical remedies are over-integration (also termed polynomial dealias-
ing) (Beck et al. 2014, Gassner and Beck 2013) and filtering (Fischer and Mullen 2001, Flad
et al. 2016, Gassner and Beck 2013). Despite these remedies, instabilities might still occur espe-
cially for under-resolved, inviscid problems and high polynomial degrees (Winters et al. 2018).
For this reason, a transition towards discretely energy-conserving formulations took place more
recently (Flad and Gassner 2017, Winters et al. 2018), which is realized by collocation-type for-
mulations with summation-by-parts property and suitable split-DG formulations (Gassner 2013,
Gassner et al. 2016). The work by Flad and Gassner (2017) suggests to construct a dissipation-
free discretization scheme, which is then combined with an explicit subgrid-scale model. How-
ever, this work discusses accuracy mainly within the metric of fitting the kinetic energy spec-
trum in the inertial range for homogeneous turbulence, while other works foster a more holistic
view (Manzanero et al. 2020).

All in all, it appears as if evidence still needs to be provided that physically motivated LES
subgrid-scale models systematically improve the accuracy of the results as compared to a no-
model LES strategy. The investigations in Van Der Bos and Geurts (2010) reveal that improving
the accuracy by classical LES models is complicated and that optimal values of model con-
stants depend on several parameters. Hence, the a-priori selection of turbulence model param-
eters optimal for a wide range of other parameters (spatial resolution, polynomial degree, flow
configuration, Reynolds number) appears to be an open issue in this context. For the present in-
compressible DG solver, a potential benefit by the use of classical eddy-viscosity sub-grid scale
models has been assessed critically in Dockhorn (2017), Neumann (2018). These works suggest
that demonstrating improved accuracy by an explicit model for a certain example or in a certain
metric is not sufficient to cover the complexity of this topic. A closely related aspect deserving
more attention is the question whether the improved resolution capabilities that high-order dis-
cretizations can provide in an implicit LES setting (Moura et al. 2017a) can be preserved in an
explicit LES setting. It is remarkable that the more recent works by Chapelier et al. (2016), Flad
and Gassner (2017), Manzanero et al. (2020) arguing for explicit LES in combination with high-
order DG discretizations are not able to demonstrate an accuracy advantage of very high-order
discretizations compared to low-order or moderately high-order methods, e.g. with k = 2, 3.
Note, however, that this would be necessary in order to render high-order methods more effi-
cient overall, since other aspects (time step restrictions, iterative solvers, implementation) tend
to increase computational costs for large k, i.e., high-order methods are only more efficient than
low-order methods if they are sufficiently more accurate. These aspects are discussed in detail in
Chapters 4, 5, and 6.

Finally, it appears to be appropriate to dare a view beyond the DG-horizon and to raise
the question which benefits an L2-conforming DG discretization exhibits as compared to H1-
conforming continuous finite element discretizations, which have a long tradition as discretiza-
tion methods for the incompressible Navier–Stokes equations. Although an investigation of this
topic is beyond the scope of this work, some ideas are shared below. It is well known that continu-
ous finite element discretizations require some form of convection-stabilization when convection
becomes dominant. Different remedies have been proposed to address this problem. Important
classes of methods are filtering (Fischer and Mullen 2001, Fischer et al. 2002, Tufo and Fis-
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cher 1999), spectral vanishing viscosity (SVV) (Karamanos and Karniadakis 2000, Kirby and
Karniadakis 2002, Kirby and Sherwin 2006), streamline upwind Petrov–Galerkin (SUPG) sta-
bilization (Brooks and Hughes 1982) and many other stabilized methods such as residual-based
and local projection stabilizations (Arndt et al. 2015). A huge body of literature is available
that interprets many of these methods as variational multiscale methods, see for example the
review articles by Ahmed et al. (2017), Gravemeier (2006), Rasthofer and Gravemeier (2018)
and references therein. A multitude of works investigated these methods for the simulation of in-
compressible turbulent flows, exemplarily mentioning two elaborate approaches by Gravemeier
et al. (2010), Rasthofer and Gravemeier (2013) that have been proposed after years of experi-
ence with stabilized finite element methods. Against this background, DG methods addressing
the simulation of incompressible turbulent flows as proposed in this thesis are still in a very
early stage. Hence, it would be too early to draw conclusions, but comparative studies need to be
performed (some first comparative studies are shown in Section 2.6). Nevertheless, the fact that
the problem of convection-stabilization appears to be less of a concern in the DG case clearly
justifies to investigate this approach in more detail. Both approaches seem to require stabiliza-
tion techniques for improved mass conservation in general (grad–div stabilization for continuous
Galerkin case, div–div and normal continuity stabilization for discontinuous Galerkin case). In
this context, it is interesting that stabilized L2-conforming discretizations do not suffer from
over-stabilization like H1-conforming continuous finite element discretizations (Akbas et al.
2018). Finally, note that more recent studies highlight the parameter-dependency of the SVV
approach (Ferrer et al. 2019, Manzanero et al. 2020).

Often, the development of LES methods concentrates on turbulence modeling aspects in the
sense of optimizing the accuracy that can be achieved for a certain spatial resolution (unknown
degrees of freedom). However, it would be unrealistic to expect ever-increasing accuracy by the
development of new numerical methods for turbulent flows. Decades of LES research revealed
that a multitude of methods – achieving a similar level of accuracy when the spatial resolu-
tion of the schemes is comparable – is available. Typically, common accuracy limits seem to
be reached after having optimized different discretization methods, see also the numerical re-
sults shown in Section 2.6.7. In the end, the spatial resolution is the main factor that drives the
accuracy of LES. This perspective considers LES as a numerical method that yields improved
accuracy when investing more computational effort, and strengthens aspects of computational
efficiency of a LES solver. From this perspective, an optimal LES approach appears to be one
that is theoretically simple, easy to implement, computationally efficient, and that minimizes
parameter-dependency (as a means to predict rather than reproduce results). It is this perspective
that motivated the development of new computational methods for turbulent flow simulations in
the course of this thesis.

2.5 Fully discrete formulation

This section summarizes the fully-discrete formulation for the temporal discretization schemes
discussed in Section 2.3, using the discontinuous Galerkin discretization techniques discussed in
Section 2.4.
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2 Discretization methods for the incompressible Navier–Stokes equations

2.5.1 Coupled solution approach
Combining the discrete-in-time problem (2.28) with the discrete-in-space problem in equa-
tions (2.157) and (2.158) yields: Find un+1

h ∈ Vuh , pn+1
h ∈ Vph such that
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)
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)
+aeD,h(vh,u
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)
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(2.187)

−deh(qh,un+1
h ; gu(tn+1)) = 0 , (2.188)

for all (vh, qh) ∈ Vuh,e × V
p
h,e and for all elements e = 1, ..., Nel. As initial guesses for the

iterative solution of algebraic systems of equations, un+1,(0)
h =

∑J−1
i=0 β

n
i u

n−i
h and pn+1,(0)

h =∑J−1
i=0 β

n
i p

n−i
h are used.

Motivated from the perspective of computational efficiency, another solution strategy is pro-
posed, namely to apply the divergence and continuity penalty terms separately in a postpro-
cessing step instead of adding these terms to the monolithic system. This procedure is similar
to the idea proposed in Cockburn et al. (2005) of postprocessing the velocity field to obtain a
divergence-free velocity. In a first step, an intermediate velocity ûh is calculated by solving the
coupled system of equations without additional stabilization terms
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(2.189)

−deh(qh, ûh; gu(tn+1)) = 0 . (2.190)

Subsequently, the divergence and continuity penalty terms are applied in a postprocessing step
to obtain the final velocity un+1

h

me
h,u(vh,u
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h ) + aeD,h(vh,u
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(2.191)

For this solution strategy, the following initial guesses are used for the iterative solution of alge-
braic systems of equations, û(0)

h =
∑J−1

i=0 β
n
i u

n−i
h , pn+1,(0)

h =
∑J−1

i=0 β
n
i p

n−i
h , and un+1,(0)

h = ûh.
The motivation for this approach is that state-of-the-art preconditioning strategies developed
for the saddle-point type incompressible Navier–Stokes problem can be directly applied to the
coupled system of equations, while the complexity associated to the penalty terms is treated
separately. The postprocessing step is comparably cheap to solve since an appropriate scaling
of the divergence and continuity penalty terms by the time step size renders the inverse mass
matrix operator an effective and computationally efficient preconditioner, especially in the L2-
conforming context considered here where the mass matrix is block-diagonal. As a side note,
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2.5 Fully discrete formulation

a development of block-preconditioners for the coupled solution approach taking into account
additional stabilization terms has been considered in Heister and Rapin (2013) in the context of
conforming finite element discretizations with grad–div stabilization. Aspects of precondition-
ing are discussed in detail in Chapter 5. In terms of accuracy, the postprocessing approach was
found to not perturb accuracy in a significant way and to maintain optimal rates of convergence
in space and time for smooth problems (Fehn et al. 2018b).

Independently of how the penalty terms are treated, the convective term can be formulated
explicitly in time by replacing

ceh
(
vh,u

n+1
h ; gu(tn+1)

)
→

J−1∑
i=0

βni c
e
h

(
vh,u

n−i
h ; gu(tn−i)

)
, (2.192)

which is also motivated from the point of view of computational costs. The resulting coupled
system of equations is then an unsteady Stokes problem, so that the solution of a nonlinear
system of equations is avoided.

2.5.2 Dual splitting scheme

This section summarizes the fully-discrete formulation using the dual splitting scheme presented
in Section 2.3.3 and the DG formulation derived in Section 2.4.2.

2.5.2.1 Convective step

The weak DG formulation of the convective step (2.33) is given as follows: Find ûh ∈ Vuh such
that
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(2.193)

for all vh ∈ Vuh,e and for all elements e = 1, ..., Nel.

2.5.2.2 Pressure step

The weak formulation of the pressure Poisson equation (2.37) reads: Find pn+1
h ∈ Vph such that

leh,hom

(
qh, p

n+1
h

)
= − γn0

∆tn
deh (qh, ûh, gû(tn+1))− leh,inhom (qh, gp(tn+1), hp(tn+1)) , (2.194)

for all qh ∈ Vph,e and for all elements e = 1, ..., Nel. As an accurate initial guess for the iterative
solver, pn+1,(0)

h =
∑J−1

i=0 β
n
i p

n−i
h is used. The boundary condition gû(tn+1) for the intermedi-

ate velocity required to evaluate the discrete divergence operator on the right-hand side of the
pressure Poisson equation is defined in equation (2.42), see also Fehn et al. (2017) for the impor-
tance of the velocity–pressure coupling terms regarding small-time-steps stability. The bound-
ary values gp and hp in the above pressure Poisson equation are defined in equation (2.39) and
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2 Discretization methods for the incompressible Navier–Stokes equations

equation (2.38), respectively. To evaluate gû(tn+1) and hp(tn+1) on the right-hand side of equa-
tion (2.194) according to the boundary conditions (2.42) and (2.40), the convective term and the
viscous term have to be calculated on ∂Ωe as a function of the approximate velocity solution uh
on element e. In the discrete case and if the divergence formulation of the convective term is
used, the convective term is calculated as

∇ · Fc (uh) = uh (∇ · uh) + (∇uh) · uh . (2.195)

The viscous term in equation (2.40) involves second derivatives and is calculated in two steps,
so that the computation of second derivatives is replaced by a sequence of first derivatives. The
vorticity ωh ∈ Vuh in equation (2.40) is calculated by a local L2-projection

(vh,ωh)Ωe
= (vh,∇× uh)Ωe

. (2.196)

The viscous term is then evaluated by calculating the curl of the vorticity ωh on the respective
boundary.

2.5.2.3 Projection step

In elementwise notation, the weak form of the projection step (2.43) is to find ˆ̂uh ∈ Vuh such that

me
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)
, (2.197)

for all vh ∈ Vuh,e and for all elements e = 1, ..., Nel. A pressure Dirichlet boundary condition
prescribed on ΓN

h , see equation (2.39), is required to evaluate the discrete pressure gradient.
As emphasized in Fehn et al. (2017), this is in contrast to formulations that do not perform
integration-by-parts for the velocity–pressure coupling terms and that suffer from instabilities
for small time step sizes.

2.5.2.4 Viscous step

The viscous step computes another intermediate velocity ˆ̂
ûh by solving a Helmholtz-like equa-

tion. As for the pressure Poisson equation, inhomogeneous boundary face integrals are shifted to

the right-hand side to obtain the following weak formulation of equation (2.45): Find ˆ̂
ûh ∈ Vuh

such that
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for all vh ∈ Vuh,e and for all elements e = 1, ..., Nel. An extrapolated velocity serves as initial

guess for the iterative solver, ˆ̂
û

(0)
h =
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2.5.2.5 Penalty step

The divergence and continuity penalty terms are treated in the final step: Find un+1
h ∈ Vuh such

that
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(2.199)

for all vh ∈ Vuh,e and for all elements e = 1, ..., Nel. The converged solution of the viscous step is

used as initial guess for the iterative solution of the penalty step, un+1,(0)
h =

ˆ̂
ûh. The procedure of

treating the penalty terms in a final step slightly differs from the procedure originally proposed
in Fehn et al. (2018b), Krank et al. (2017) where these terms have been added to the projection
step, equation (2.197). As noted in Fehn et al. (2021a), a formulation that applies the continuity
penalty term on all faces including domain boundaries with the imposition of boundary con-
ditions such as gu(tn+1) should be used for reasons of stability. Since this boundary condition
would be inconsistent and would prevent high-order accuracy in time if imposed for the interme-
diate velocity ˆ̂uh in the projection step, the penalty terms are applied in a separate postprocessing
step, equation (2.199).

2.5.3 Pressure-correction scheme

This section summarizes the fully-discrete formulation using the pressure-correction scheme
presented in Section 2.3.4 and the DG formulation derived in Section 2.4.2.

2.5.3.1 Momentum step

The discontinuous Galerkin discretization of the time discrete momentum equation (2.48) to be
solved in the first sub-step of the pressure-correction scheme reads: Find ûh ∈ Vuh such that
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γn0 ûh −
∑J−1

i=0 α
n
i u

n−i
h

∆tn

)
+ ceh (vh, ûh, gu(tn+1))

+veh (vh, ûh, gu(tn+1),hu(tn+1))

+

Jp−1∑
i=0

βni g
e
h

(
vh, p

n−i
h , gp(tn−i)

)
− beh (vh,f(tn+1)) = 0 ,

(2.200)

for all vh ∈ Vuh,e and for all elements e = 1, ..., Nel. An extrapolated velocity is used as initial
guess for the iterative solver, û(0)

h =
∑J−1

i=0 β
n
i u

n−i
h . The boundary conditions gu and hu pre-

scribed for the intermediate velocity ûh are defined in equations (2.51) and (2.52), respectively.
When solving the incremental formulation of the pressure-correction scheme, a boundary con-
dition gp defined in equation (2.53) has to be prescribed for the pressure in order to evaluate the
discrete pressure gradient operator.
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As for the coupled solution approach described in Section 2.5.1, the convective term can be
formulated explicitly in time

ceh (vh, ûh; gu(tn+1))→
J−1∑
i=0

βni c
e
h
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n−i
h ; gu(tn−i)

)
, (2.201)

resulting in a linear system of equations to be solved in the momentum step.

2.5.3.2 Pressure step

The discontinuous Galerkin formulation of the pressure Poisson equation (2.57) is given as:
Find φh ∈ Vph such that
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for all qh ∈ Vph,e and for all elements e = 1, ..., Nel. The initial guess used for the iterative solver
is φn+1,(0)
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h . The boundary values gφ and hφ are defined in

equations (2.59) and (2.58), respectively. The approximate pressure solution pn+1
h at time tn+1

is obtained from equation (2.60). In elementwise notation, the weak formulation of this pressure
update reads: Find pn+1

h ∈ Vph such that
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for all qh ∈ Vph,e and for all elements e = 1, ..., Nel. The pressure mass matrix operator in
the above equation is me

h,p (qh, ph) = (qh, ph)Ωe
. In contrast to the dual splitting scheme, the

intermediate velocity field û fulfills the velocity Dirichlet boundary condition gu, which can
be seen from equation (2.51). Consequently, this boundary condition is used to evaluate the
discrete divergence operator applied to the intermediate velocity ûh on the right-hand side of
equations (2.202) and (2.203).

2.5.3.3 Projection step

The discontinuous Galerkin formulation of the projection step can be stated as: Find ˆ̂uh ∈ Vuh
such that
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)
, (2.204)

for all vh ∈ Vuh,e and for all elements e = 1, ..., Nel. The pressure boundary condition gφ is
defined in equation (2.59).
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2.5.3.4 Penalty step

Finally, the divergence and continuity penalty terms are applied: Find un+1
h ∈ Vuh such that

me
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(2.205)

for all vh ∈ Vuh,e and for all elements e = 1, ..., Nel, using un+1,(0)
h = ˆ̂uh as initial guess

for the iterative solver. The left-hand side of equation (2.204) appears on the right-hand side
of equation (2.205). Hence, both equations can be combined to a single equation, as written
in (Fehn et al. 2018b, equation (B.9)).

2.5.4 Impact of operator splitting on inf–sup stability

Several works use equal-order polynomials for the approximation of velocity and pressure un-
knowns for L2-conforming discontinuous Galerkin discretizations of the incompressible Navier–
Stokes equations, see for example Bassi et al. (2006), Chalmers et al. (2019), Ferrer and Willden
(2011), Hesthaven and Warburton (2007), Klein et al. (2015), Krank et al. (2017), Shahbazi et al.
(2007). However, one might expect that equal-order formulations suffer from inf–sup instabil-
ities. The authors of Bassi et al. (2006) argue that their approach is a stabilized one due to the
artificial compressibility flux, and an explicit pressure stabilization is used in Klein et al. (2015).
For these equal-order formulations, sub-optimal rates of convergence are obtained for the pres-
sure in Bassi et al. (2006), Chalmers et al. (2019), Klein et al. (2015), Shahbazi et al. (2007),
while optimal rates of convergence are reported in Krank et al. (2017) where the dual splitting
scheme is used. Mixed-order formulations typically achieve optimal convergence rates. Notice-
able in this context is the use of equal-order formulations in combination with splitting-type
solution techniques. Depending on the type of operator splitting, an inf–sup stabilizing term is
introduced by the projection method, which could explain the use of equal-order formulations.
As argued in Guermond et al. (2006), the inf–sup condition is still relevant for projection meth-
ods even if the pressure Poisson equation and Helmholtz equation for the velocity are solvable
independently of the polynomial spaces used to represent the velocity and pressure solutions.
Instead, the corresponding steady-state Stokes problem of projection methods is the decisive
metric to evaluate the need of the inf–sup condition.

Following Ferrer et al. (2014), Guermond et al. (2006), this section briefly derives the steady-
state Stokes equations for the dual splitting scheme and the pressure-correction scheme from the
equations shown in Section 2.3, which serves as a basis for the interpretation and explanation of
numerical results shown in Section 2.6.3. For ease of notation, the equations are considered at
the level of differential operators, but similar relations can be derived for discretized operators
or matrix formulations.

For the dual splitting scheme, the following system of equations can be derived for the steady
Stokes problem (

−∇ · Fv(u) +∇p
−∇ · u +∆t

γ0
∇2p

)
=

(
f

∆t
γ0
∇ · f

)
. (2.206)
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The first equation is obtained by adding equations (2.33), (2.35) and (2.45), neglecting the con-
vective term in equation (2.33), assuming that a steady state un+1 = un = ... = un−J+1 = u
is reached, and using the fact that the BDF time integration constants fulfill the property γ0 =∑J−1

i=0 αi. The second equation is obtained by taking the divergence of equation (2.35) and in-
serting equations (2.36) and (2.33). Equation (2.206) highlights that the dual splitting scheme
introduces an inf–sup stabilizing term ∆t/γ0∇2p as compared to the steady-state Stokes prob-
lem for the coupled solution approach. According to this relation, the impact of the stabilization
can be expected to diminish for small time step sizes ∆t.

Similarly, the following system of equations can be derived for the pressure-correction scheme(
−∇ · Fv(û) +∇(χν∇ · û) +∇p
−∇ · û+ ∆t

γ0
∇ · (∇(χν∇ · û)) +∆t

γ0

(
1−

∑Jp−1
i=0 βi

)
∇2p

)
=

(
f
0

)
. (2.207)

To derive these equations, one assumes that the solution reaches a steady state, un+1 = un =
... = un−J+1 = u and pn+1 = pn = ... = pn−Jp+1 = p, and uses the fact that the time
integration constants fulfill γ0 =

∑J−1
i=0 αi and

∑Jp−1
i=0 βi = 1. The first equation is obtained

by adding equations (2.48) and (2.54), neglecting the convective term in equation (2.48), and
replacing φn+1 by equation (2.56). The second equation is derived by taking the divergence of
equation (2.54) and inserting equations (2.55) and (2.56). Equation (2.207) highlights that the
pressure-correction scheme introduces an inf–sup stabilizing term in case of the non-incremental
formulation (Jp = 0), but not in case of the incremental formulation because of 1−

∑Jp−1
i=0 βi = 0

for Jp ≥ 1. The incremental pressure-correction scheme can be expected to show an inf–sup
behavior similar to the coupled solution approach. In this context, the algebraic splitting scheme
in Shahbazi et al. (2007) can be expected to behave like an incremental pressure-correction
scheme.

2.5.5 Numerical integration
Volume and surface integrals are transformed to the reference element Ω̃e where these integrals
are computed numerically using Gaussian quadrature, the standard quadrature formula in finite
element methods. In one space dimension, the integral of a polynomial pn(ξ) = α0ξ

0+. . .+αnξ
n

of degree n is approximated as ∫
[0,1]

pn(ξ)dξ =

nq∑
i=1

p(ξq)wq . (2.208)

where {ξq}nqq=1 is the set of one-dimensional quadrature points with corresponding quadrature
weights wq according to the Legendre–Gauss quadrature rule. In higher space dimensions, the
quadrature rule is constructed as a tensor product of the one-dimensional quadrature rule, with
quadrature points ξq = ξq1...qd = (ξ1,q1 , . . . , ξd,qd)

T and weights wq = wq1...qd = w1,q1 · . . . ·wd,qd .
The quadrature rule has 2nq degrees of freedom that can be chosen such that polynomials of
degree n with n + 1 = 2nq coefficients are integrated exactly. A collocation of nodes and
quadrature points frequently used in the spectral element context is not pursued here, in order
to take advantage of the improved accuracy of the Legendre–Gauss quadrature as compared to a
collocated Legendre–Gauss–Lobatto quadrature (Durufle et al. 2009, Kronbichler 2021a).
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The number of quadrature points selected for the integration of the different terms of the weak
formulation is chosen by requiring that integrals are computed exactly on affine element geome-
tries where the Jacobian is constant throughout the element. This implies that quadrature errors
are introduced on deformed elements due to the transformation of the integral from physical
space to reference space, which gives rise to additional metric terms. Typically, the geometry
representation is smooth as opposed to the under-resolution of flow features, so that geometry-
related errors can be expected to be small under these circumstances (Kirby and Karniadakis
2003, Mengaldo et al. 2015). Having said that, nq = ku + 1 quadrature points are used for the
velocity mass matrix term, which contains polynomials of degree 2ku on affine elements due to
the multiplication of test and solution functions. The same number of quadrature points is used
for the viscous term, the pressure gradient term, the velocity divergence term, the body force
term, and the divergence and continuity penalty terms. The convective term includes quadratic
non-linearities. For this reason, nq = d3ku+1

2
e quadrature points are used for the convective term,

which is also known as the 3/2-rule. This quadrature rule is also used for boundary face integrals
containing the convective term in case of splitting methods. The Laplace operator for the pres-
sure as well as the pressure mass matrix operator occurring in projection-type solution methods
are integrated with kp + 1 quadrature points.

Remark 2.12 A collocation between nodal polynomials and quadrature is widespread. A main
motivation for a collocation approach is to obtain a diagonal mass matrix (also termed mass-
lumping) in order to obtain a mass matrix that is cheap to invert (particularly for continuous
spectral element methods). However, in the context of DG methods, the mass matrix is block-
diagonal already for a non-collocation approach and can therefore be inverted easily in an
element-by-element fashion. Moreover, the mass matrix can be inverted in a matrix-free way by
exploiting the tensor-product structure of the elements (Kronbichler et al. 2016). When char-
acterizing this operation from a computer science point of view, the application of the forward
and inverse (block-diagonal) mass operator is a memory-bound operation for moderately high-
polynomial degrees on curent hardware, i.e., the speed of this operation is limited by the speed at
which the input and output vectors can be transferred from memory, see for example Fehn et al.
(2018a, 2019c). Therefore, a diagonal mass matrix can not be faster.

For operators other than the mass matrix, a collocated basis would reduce operations for
volume integrals since the solution does not have to be interpolated into the quadrature points.
At the same time, the evaluation of face integrals might become more expensive in case of a
collocation basis, especially for operators with first derivatives that need to evaluate only the
solution (but not its gradient) on a face of the element. For a collocated basis with Legendre–
Gauss quadrature points, all degrees of freedom of the element contribute to the solution on a
face of the element. Instead, for a collocated Gauss–Lobatto basis, only one layer of nodes needs
to be touched to evaluate the solution on a face of the element. While a collocated Gauss–Lobatto
basis appears advantageous from this perspective, it results in a loss of accuracy due to inexact
integration on affine elements. For operators with second derivatives, the weak formulation also
needs to evaluate the gradient of the solution on the faces of an element so that all degrees of
freedom have to be touched when using typical Lagrange polynomials. A Hermite-like basis is
proposed in Kronbichler et al. (2019) in order to evaluate face integrals efficiently for opera-
tors with second derivatives. It should be mentioned that arguments regarding computational
efficiency invoked here are subject to changes and recent developments in computer hardware.
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Finally, the conditioning of linear systems of equations in combination with certain multigrid
smoothers contributes to the discussion of an optimal basis. The interested reader is referred
to Kronbichler and Kormann (2019), Kronbichler and Wall (2018), Kronbichler et al. (2019) for
an in-depth discussion of these aspects. In summary, the present work uses Gauss–Lobatto poly-
nomials for good conditioning and fast convergence of iterative solvers, and Gauss quadrature
points for an exact evaluation of integrals on affine geometries (recognizing that the costs of
arithmetic operations for interpolation are moderate on current hardware, see Chapter 4).

2.5.6 CFL condition
An explicit time integration of some of the terms of the equations introduces a time step restric-
tion that limits the range of time step sizes for which the eigenvalue spectrum of the discretization
scheme lies within the stability region of the time integrator. For the convective term of trans-
port equations such as the incompressible Navier–Stokes equations considered here, this time
step restriction is known as the Courant–Friedrichs–Lewy (CFL) condition. In the course of this
thesis, a distinction is made between a global CFL condition, which requires a-priori estimates
of the mesh size and the maximum flow velocity, and a local CFL condition, which evaluates
the critical time step size locally in an element-by-element fashion and selects the time step size
as the minimum over all elements. The global CFL condition is defined as Fehn et al. (2018b),
Hesthaven and Warburton (2007), Shahbazi et al. (2007)

∆t =
Cr

kru

hmin

‖uh‖max

, (2.209)

where Cr is the Courant number, hmin the minimum element length, and ‖uh‖max an estimate of
the maximum velocity occurring in the flow domain. This equation shows the well-known linear
dependency of the time step size on the mesh size h. In the context of high-order discretizations
considered here, the exponent r describes the dependency of the critical time step size on the
polynomial degree of the shape functions, where values of r = 1 or r = 2 can typically be found
in the literature (Chalmers et al. 2019, Hesthaven and Warburton 2007, Shahbazi et al. 2007).
Stability is obtained for Cr < Crcrit, where Crcrit is a parameter related to the discretization
and Cr a parameter of the solver, typically chosen close to the critical value for efficiency. For
reasons of practicability and efficiency, it is desirable that Crcrit is a constant independent of ku,
which motivates to fit the exponent r in a way that a fixed value of Crcrit can be used without
a need to readjust this value when considering a different polynomial degree ku. In the work
by Fehn et al. (2018a) studying the present discretization approach, it was found that a value
of r = 1.5 models the dependency on the polynomial degree very well for a wide range of
polynomial degrees 2 ≤ ku ≤ 15, and is therefore used in this thesis.

The above global CFL condition might introduce inaccuracies since the maximum velocity is
difficult to estimate and since the maximum velocity does not occur in the element of minimum
size, i.e., equation (2.209) leads to a conservative estimate of the time step size for more complex
problems. This motivates the use of a local CFL condition applied in combination with adaptive
time-stepping (Karniadakis and Sherwin 2013)

∆t = min
e=1,...,Nel

∆te, ∆te = min
q=1,...,Nq,e

Cr

kru

h

‖uh‖

∣∣∣∣
q,e

, (2.210)
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where ‖uh‖
h

∣∣∣
q,e

= ‖J−1uh‖q,e, Jij = ∂xi/∂ξj , is a local velocity-to-mesh-size ratio evaluated

at quadrature point q of element e. This CFL condition evaluates the local flow velocity and,
therefore, allows to operate close to the true stability limit for transient problems. Note that this
time step criterion is still a global one in the sense that all elements are advanced with the same
time step size, as opposed to local time-stepping techniques.

2.5.7 From weak forms to algebraic systems of equations
This section introduces the matrix/vector notation corresponding to the fully discrete formula-
tions presented in Sections 2.5.1, 2.5.2, and 2.5.3, in order to present the resulting linear and
nonlinear systems of equations in a compact way and in order to introduce notation for subse-
quent chapters. Considering a discretized operator ah(vh,uh) that is linear in the unknowns uh
and that can be separated into a homogeneous and an inhomogeneous part, the following notation
is introduced

a (u) = ahom (u) + ainhom = Au + ainhom , (2.211)

where a,u ∈ RN and A ∈ RN×N with the problem size N = NDoFs (total number of degrees
of freedom). Note that the matrix formulation Au is used since this is the standard notation in
linear algebra, but that matrices are typically never build or assembled during the solution pro-
cess since matrix-free methods are considered in the course of this thesis, see Chapter 4. Instead,
the matrix-vector product should be understood as an application of the respective homogeneous
operator ahom (u) implemented in a matrix-free way. Nonlinear systems of equations are gener-
ally solved by Newton’s method in this work. The solution of linear(ized) system of equations
is based on state-of-the-art iterative solution techniques (Krylov methods) with suitable precon-
ditioners. This topic is considered as black-box in this chapter and is postponed to Chapter 5
dealing with the efficient solution and preconditioning of linear systems of equations.

2.5.7.1 Newton’s method for nonlinear systems of equations

To solve a nonlinear residual equation of the form

r (u) = 0

by Newton’s method, the nonlinear problem is solved iteratively by solving a sequence of lin-
earized systems of equations. To derive this method, consider the Taylor series expansion of the
nonlinear residual r (u) around an initial or approximate solution ulin

r (u) = r (ulin) +
∂r (u)

∂u

∣∣∣∣
ulin

(u− ulin) + ...
!

= 0 ,

where only the linear term is considered and higher-order terms are neglected (linearization).
This leads to the linearized problem

∂r (u)

∂u

∣∣∣∣
ulin

(u− ulin) = −r (ulin) ,
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Algorithm 2.1 Newton solver
1: function NEWTON(u)
2: Initialization k = 0, u(0) = u
3: Evaluate nonlinear residual r(0) = r(u(0))
4: while ‖r(k)‖/‖r(0)‖ > εrel and ‖r(k)‖ > εabs do
5: Solve linearized problem

∂r (u)

∂u

∣∣∣∣
u(k)

∆u(k+1) = −r(k)

6: Initialize step size ω = 1, and choose parameter τ < 1
7: Update solution u(k+1) = u(k) + ω∆u(k+1)

8: Evaluate nonlinear residual r(k+1) = r(u(k+1))
9: while ‖r(k+1)‖/‖r(k)‖ > 1− τω do

10: Reduce step size ω = ω/2
11: Update solution u(k+1) = u(k) + ω∆u(k+1)

12: Evaluate nonlinear residual r(k+1) = r(u(k+1))
13: end while
14: k ← k + 1
15: end while
16: return u(k)

17: end function

where ∂r(u)
∂u

∣∣∣
ulin

is the Jacobian matrix. This system of equations is solved for the solution in-

crement ∆u = u − ulin, so that the new solution at which to evaluate the residual is given
as u = ulin+∆u, defining an iterative solution procedure. Such a Newton algorithm is illustrated
in Algorithm 2.1, which is an iterative procedure consisting mainly of three steps: evaluation of
the nonlinear residual, solution of the linearized problem, and update of the solution vector. An
accurate initial guess u(0) is for example obtained by using an extrapolation of the solution from
previous instants of time. Convergence of the Newton iteration is checked by a relative and ab-
solute tolerance, and the solution is considered as converged whenever one of these tolerances
is reached. The Newton method is known to converge quadratically for initial solutions suffi-
ciently close to the solution, but convergence is not guaranteed for general nonlinear problems
and general initial solutions, and globalization techniques can be used to improve convergence.
The Newton iteration shown in Algorithm 2.1 also contains a globalization in form of a simple
line-search or damping technique which adjusts the step length (the search direction remains
unchanged) in order to achieve progress in convergence. This technique can also be categorized
as a backtracking method, as opposed to trust region methods.

2.5.7.2 Coupled solution approach

For simplicity, this section only considers the case where the divergence and continuity penalty
terms are applied in a postprocessing step as shown in equation (2.191). Translating equa-
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tions (2.189) and (2.190) into matrix-vector notation yields

[
rm
rc

]
=

[
M
(
γn0 û−

∑J−1
i=0 α

n
i u

n−i
)
/∆tn + c (û) + v (û) + g (pn+1)− b(tn+1)

−d (û)

]
=

[
0
0

]
.

(2.212)

The linearized system of equations required by the Newton solver is given as

[ γn0
∆tn

M + Clin

(
u(k)
)

+ V G
−D 0

] [
∆u(k+1)

∆p(k+1)

]
= −

[
rm
(
u(k),p(k)

)
rc
(
u(k)
) ]

. (2.213)

This linear system of equations is symmetric with respect to the pressure gradient term and the
velocity divergence term under the assumptions discussed in Section 2.4.2.2, −D = GT.

An alternative is to formulate the convective term explicitly, equation (2.192), resulting in the
linear system of equations

[ γn0
∆tn

M + V G
−D 0

] [
û

pn+1

]
=

[
bm

bc

]
, (2.214)

with right-hand side vectors

bm = M
J−1∑
i=0

αni
∆tn

un−i −
J−1∑
i=0

βni c
(
un−i

)
− vinhom − ginhom + b(tn+1) , (2.215)

bc = dinhom . (2.216)

The penalty terms are applied in a postprocessing step, equation (2.191), which reads in matrix-
vector notation

(M + ∆tnAD + ∆tnAC)un+1 = Mû−∆tnaC,inhom . (2.217)

When considering the Euler or Stokes equations as special cases, the viscous and convective
terms are simply dropped from the above equations. Equation (2.217) becomes superfluous if a
formulation without penalty terms is considered, un+1 = û in that case. It is straightforward to
derive similar matrix-vector formulations in case that the penalty terms are added to the mono-
lithic system of equations, equations (2.187) and (2.188), which is therefore not shown explicitly
here.
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2.5.7.3 Dual splitting scheme

This section summarizes the dual splitting scheme, equations (2.193), (2.194), (2.197), (2.198),
and (2.199), in matrix-vector notation

M
γn0 û−

∑J−1
i=0 α

n
i u

n−i

∆tn
= −

J−1∑
i=0

βni c
(
un−i

)
+ b(tn+1) , (2.218)

Lpn+1 = − γn0
∆tn

d (û)− linhom , (2.219)

Mˆ̂u = Mû− ∆tn
γn0

g
(
pn+1

)
, (2.220)(

γn0
∆tn

M + V

)
ˆ̂
û =

γn0
∆tn

Mˆ̂u− vinhom , (2.221)

(M + ∆tnAD + ∆tnAC)un+1 = M
ˆ̂
û−∆tnaC,inhom . (2.222)

The systems of equations for the different sub-steps of the splitting scheme are all linear and
inhomogeneous contributions are shifted to the right-hand side of the equations. Due to the L2-
conforming nature of the shape functions, the mass matrix is block-diagonal, where block refers
to the degrees of freedom within one element. Hence, independently of whether a matrix-based
or matrix-free implementation is chosen, the mass matrix can be inverted in an element-wise
fashion without the need to solve a global system of equations. The convective step, equa-
tion (2.218), and the projection step, equation (2.220), can therefore be considered as explicit
steps.

2.5.7.4 Pressure-correction scheme

In case of an implicit treatment of the convective term, the nonlinear momentum equation (2.200)
reads in matrix-vector notation

r (û) = M
γn0 û−

∑J−1
i=0 α

n
i u

n−i

∆tn
+ c (û) + v (û) +

Jp−1∑
i=0

βni g
(
pn−i

)
− bn+1 = 0 , (2.223)

where the corresponding linearized problem is(
γn0

∆tn
M + Clin

(
u(k)
)

+ V

)
∆u(k+1) = −r

(
u(k)
)
. (2.224)

In case of an explicit treatment of the convective term, equation (2.201), the momentum equation
is linear in the velocity unknowns, so that constant vectors and inhomogeneous parts of discrete
operators are shifted to the right-hand side of the equations. Together with all the remaining (lin-
ear) sub-steps, equations (2.202), (2.203), (2.204), and (2.205), the pressure-correction scheme
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is given as follows in matrix-vector notation(
γn0

∆tn
M + V

)
û = M

J−1∑
i=0

αni
∆tn

un−i − vinhom

−
J−1∑
i=0

βni c
(
un−i

)
−

Jp−1∑
i=0

βni g
(
pn−i

)
+ b(tn+1) ,

(2.225)

Lφn+1 =− γn0
∆tn

d (û)− linhom , (2.226)

Mpp
n+1 = Mp

(
φn+1 +

Jp−1∑
i=0

βni p
n−i

)
− χνd (û) , (2.227)

Mˆ̂u = Mû− ∆tn
γn0

g
(
φn+1

)
, (2.228)

(M + ∆tnAD + ∆tnAC)un+1 = Mˆ̂u−∆tnaC,inhom . (2.229)

The pressure update step with pressure mass matrix Mp, equation (2.227), and the projection
step, equation (2.228), are again explicit steps in the sense that these steps do not involve the
solution of a linear system of equations for the global vector of degrees of freedom. As noted in
Section 2.5.3, equation (2.228) can be inserted into equation (2.229) to obtain a single equation.

2.5.7.5 A note on the solvability of linear system of equations in case of pure
Dirichlet boundary conditions

As mentioned in Section 2.2, the pressure is only defined up to an additive constant in case of
pure Dirichlet boundary conditions for the velocity, Γh = ΓD

h . In terms of the solution of linear
system of equations, equation (2.213) or equation (2.214) for the coupled solution approach,
equation (2.219) for the dual splitting scheme, and equation (2.226) for the pressure-correction
scheme are singular. The pressure solution p representing the state of constant pressure forms
the one dimensional null space of the corresponding matrix. In case of nodal shape functions as
considered in this work, the state of constant pressure corresponds to the 1-vector 1 = (1, ..., 1)T.
In case of equation (2.213) this means[

γ0

∆t
M + Clin

(
u(k)
)

+ V G
−D 0

] [
0
1

]
= 0 , (2.230)

and equivalently for equation (2.214). In case of projection-type solvers, equation (2.219) and
equation (2.226), the pressure Poisson matrix satisfies

L 1 = 0 . (2.231)

Despite the present singularity, the linear system of equations Ax = b is still solvable using a
Krylov subspace method if the system of equations is consistent in the sense that

nTAx = nTb = 0 , (2.232)
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where n denotes the vector that spans the null space of A, i.e., n = [0T, 1T]T for the coupled
problem and n = 1 for the projection methods. If the solvability condition nTb = 0 is not
fulfilled, i.e., the arithmetic mean of the right-hand side vector is unequal zero, a transformed
linear system of equations

Ãx̃ = b̃ (2.233)

is solved by applying a Krylov projection

Ã = PAP , x = Px̃ , b̃ = Pb , (2.234)

where the projector P (fulfilling P = PT and P2 = P) is defined as

P = I− n nT

nTn
, (2.235)

and where I denotes the identity matrix. The projector shifts all entries of a vector by a constant
value so that its mean value becomes zero. It follows immediately that nTb̃ = 0, so that the
transformed system of equations fulfills the solvability condition (2.232).

The condition nTb = 0 can now be investigated for the singular problems mentioned above.
Beginning with equation (2.213), one obtains

[0T, 1T] b = −[0T, 1T]

[
rm
(
u(k),p(k)

)
rc
(
u(k)
) ]

= 1Td (u) . (2.236)

Applying equation (2.99) with Γh = ΓD
h and ΓN

h = ∅ yields

1Td (u) =

Nel∑
e=1

(
− (∇1,uh)Ωe

+ (1, {{uh}} · n)∂Ωe\Γh + (1, gu · n)∂Ωe∩ΓD
h

)
=

∫
ΓD
h

gu · n dΓ
(2.9)
= 0 .

(2.237)

Hence, if the specified Dirichlet boundary condition gu is consistent according to equation (2.9),
the resulting linear system of equations is also consistent. Similarly, one obtains for the linear
Stokes problem (2.214)

[0T, 1T] b = 1Tdinhom , (2.238)

and using the inhomogeneous part of the divergence operator as specified in equation (2.99)
yields

[0T, 1T] b =

Nel∑
e=1

(1, gu · n)∂Ωe∩ΓD
h

=

∫
ΓD
h

gu · n dΓ
(2.9)
= 0 . (2.239)

For the pressure Poisson equation (2.226) of the pressure-correction scheme, a similar result is
obtained

1Tb = − γn0
∆tn

1Td (û)− 1Tlinhom = − γn0
∆tn

1Td (û)
(2.237)

= 0 , (2.240)
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where the result (2.237) has been used and the fact that the inhomgeneous part linhom vanishes
in case of pure Dirichlet boundary conditions according to equations (2.128) and (2.58). Finally,
the pressure Poisson equation (2.219) of the dual splitting scheme is considered

1Tb = − γ0

∆t
1Td (û)− 1Tlinhom , (2.241)

where both terms on the right-hand side are in general unequal zero. On the one hand, according
to equation (2.194), linhom depends on the pressure Neumann boundary conditions (2.40) that it-
self depends on the numerical solutionuh. On the other hand, the intermediate velocity field does
not fulfill the boundary condition gu but the consistent boundary condition gû, equation (2.42),
for which equation (2.9) does not hold in general

1Td (û) =

Nel∑
e=1

(
− (∇1, ûh)Ωe

+ (1, {{ûh}} · n)∂Ωe\Γh + (1, gû · n)∂Ωe∩ΓD
h

)
=

∫
ΓD
h

gû · n dΓ 6= 0 .

(2.242)

Remark 2.13 The theoretical considerations above are in agreement with numerical experi-
ments highlighting the necessity to project the right-hand side vector of the pressure Poisson
equation in case of the dual splitting scheme according to equation (2.234) in order to obtain
a consistent linear system of equations. However, note that the projection of the system ma-
trix according to equation (2.234) can be skipped since the system matrix inherently contains
this projection due to its nullspace. This is beneficial in terms of computational costs, and in
particular in a parallel setting and the strong-scaling limit, since the inner product nTp involv-
ing global communication between all processors (which would otherwise be applied in every
matrix-vector product within the iterative linear solver and its preconditioner) can be avoided.
The above derivations assume exact integration, so that a projection of the right-hand side might
in general be necessary also for the other solution approaches. However, this has to be done only
once per solution of the linear system of equations and is, therefore, negligible in terms of com-
putational costs.

To allow a computation of pressure errors for test cases with analytical solution, the numerical
pressure solution can be shifted by a constant value, e.g., so that its mean value is consistent with
the mean value of the analytical solution.

2.5.8 Analysis of eigenvalue spectrum for unsteady Stokes
equations

To investigate the stability of the discretization scheme for example as a function of the time
step size, it is illustrative to study the so-called propagation matrix and its eigenvalue spectrum.
This section briefly presents the theoretical background for the numerical results shown in Sec-
tion 2.6.2. A similar eigenvalue analysis is performed in Leriche and Labrosse (2000), Leriche
et al. (2006), where the stability of the dual splitting scheme is analyzed for different orders
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of the time integration and extrapolation schemes using a Chebyshev collocation method and a
Legendre spectral element method for discretization in space.

By assuming J = 1 (BDF1 time integration scheme), f = 0, homogeneous boundary con-
ditions, and by neglecting the convective term (Stokes equations), the velocity solution un+1 at
time tn+1 can be written in terms of the velocity solution un at time tn and a velocity propagation
matrix G

un+1 = Gun , (2.243)

where u = (u1, ..., uNDoFs,u
)T ∈ RNDoFs,u is a vector containing the nodal degrees of freedom of

the velocity. By the example of the dual splitting scheme, this equation can be derived from equa-
tions (2.193), (2.194), (2.197), (2.198), and (2.199). For this analysis, the pressure is thought of
as an auxiliary variable and is eliminated by expressing the pressure as a function of the velocity.
The stability condition for this problem is given as follows

max
i
|λi(G)| ≤ 1 . (2.244)

Under the above condition, modes can not be amplified, the solution remains bounded, and the
discrete scheme is stable.

Remark 2.14 To compute the eigenvalue spectrum within a matrix-free implementation frame-
work, the matrix G is assembled columnwise. To obtain column j of matrix G, one time step is
solved with input vector uni = δij, i = 1, ..., NDoFs,u, using the BDF1 scheme, f = 0, neglecting
the convective term, and homogeneous boundary conditions.

2.6 A posteriori quantification of robustness and
accuracy

This section provides an in-depth numerical investigation and verification of the proposed in-
compressible Navier–Stokes solvers. Many of the flow problems studied here are academic in
nature. Widely used benchmark problems are studied which are characterized by a simple setup
in terms of geometry and boundary conditions and for which analytical or accurate reference so-
lutions are available. Despite their simple geometry, they are nevertheless challenging in terms
of the robustness of discretization schemes, in particular when studying high-Reynolds-number
turbulent flows in under-resolved scenarios. The objectives are twofold: (i) Robustness tests are
performed for a series of examples for which state-of-the-art discretization methods from the lit-
erature lacked robustness and for which excellent stability can be demonstrated for the proposed
incompressible DG solvers. (ii) Parameter studies in the form of convergence studies in space
and time are performed, on the one hand to investigate the accuracy of high-order discretiza-
tions, and on the other hand to compare the accuracy of the present approach to state-of-the-art
methods from the literature.

The following topics are addressed in this section. Section 2.6.1 defines default parameters.
By the example of an unsteady Stokes problem, Section 2.6.2 investigates the stability of the
discretization scheme for small time step sizes and Section 2.6.3 addresses the aspect of inf–sup
stability. Different formulations of the velocity–pressure coupling terms are investigated as well
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as both equal-order and mixed-order polynomials for the velocity and pressure. In order to in-
vestigate the influence of different terms of the discretization schemes separately, no divergence
and continuity penalty terms are applied in these sections. Section 2.6.4 studies the aspect of
pressure-robustness for a steady Stokes problem, where formulations with and without diver-
gence and continuity penalty terms are considered. The remaining examples consider the full
Navier–Stokes equations using formulations that ensure stability for small time step sizes and
inf–sup stability, and make use of the divergence and continuity penalty terms. Section 2.6.5
investigates the temporal and spatial convergence behavior for an analytical solution of the tran-
sient incompressible Navier–Stokes equations with non-trivial and time-dependent Dirichlet and
Neumann boundary conditions. Section 2.6.6 analyzes the accuracy of the present high-order DG
solvers for the benchmark problem of laminar flow around a cylinder. Section 2.6.7 addresses
the topics of robustness and accuracy for transitional and turbulent flows by the examples of the
Orr–Sommerfeld stability problem, the three-dimensional Taylor–Green vortex problem, and tur-
bulent channel flow. An emphasis is put on the under-resolved regime and the importance of the
additional stabilization terms is highlighted. Moreover, the accuracy of high-order discretizations
is assessed for coarse spatial resolutions operating in the pre-asymptotic regime of convergence.
Here, accuracy is analyzed as a function of the number of unknowns for a wide range of poly-
nomial degrees, while an efficiency analysis in terms of error-vs-costs and time-to-solution is
postponed to Chapter 6. Finally, a perspective on applications is given by considering the turbu-
lent flow over a backward facing step, where a precursor simulation strategy is used in order to
obtain physically consistent (turbulent) inflow boundary conditions and where numerical results
are validated against experimental data.

2.6.1 Default parameters

Unless specified otherwise, the weak formulation of the velocity–pressure coupling terms is
used, the conservative formulation of the convective term (with a default value of ζLF ≈ 1

2
for

the Lax–Friedrichs flux), and the Laplace formulation of the viscous term. The divergence and
continuity penalty terms are generally used, and are applied in a postprocessing step also for the
coupled solution approach by default. Penalty factors of the interior penalty discretization and
the divergence and continuity penalty terms are set to 1 by default. Mixed order polynomials
of degree (ku, kp) = (k, k − 1) are used by default. Regarding the extrapolation order Jp for
projection methods, the default setup is Jp = min(2, J), J ≤ 3 for the dual splitting scheme,
and Jp = min(2, J) − 1, J ≤ 2 for the pressure-correction scheme, where the so-called ro-
tational formulation is chosen for the latter scheme unless specified otherwise. Regarding the
boundary conditions (2.40) and (2.42) for the dual splitting scheme, the convective formulation
of the convective term is used by default. Regarding the time derivative in the pressure Neumann
boundary condition, either the analytical time derivative as in equation (2.40) or the discrete
BDF time derivative as in equation (2.41) can be used, which will be specified for the test cases
shown in the following. Further, absolute and relative solver tolerances are specified as εabs

and εrel, respectively.
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To perform convergence tests for problems with analytical solution, relative L2-errors are used
that are defined as

eu =
‖u(x, t = T )− uh(x, t = T )‖L2(Ωh)

‖u(x, t = T )‖L2(Ωh)

, ep =
‖p(x, t = T )− ph(x, t = T )‖L2(Ωh)

‖p(x, t = T )‖L2(Ωh)

,

(2.245)

where Gaussian quadrature is used to calculate the volume integrals in the above expressions.
The number of one-dimensional quadrature points is ku+3 for the velocity error and kp+3 for the
pressure error in order to ensure that the calculation of errors is not affected by quadrature errors.
Experimental rates of convergence for two meshes with characteristic element lengths h1 and h2

are calculated as log(eh1/eh2)/ log(h1/h2). Other error measures are defined where necessary.

2.6.2 Stability in the limit of small time step sizes

This section investigates the stability of the proposed discretization schemes for small time step
sizes, where instabilities have been reported previously in the literature, see for example Ferrer
and Willden (2011), Ferrer et al. (2014) and the discussion in Sections 2.1.1 and 2.1.2.

2.6.2.1 Motivation

Although the instabilities discussed here are denoted as instabilities in the limit of small time
step sizes, this does not imply that the relevance of these instabilities is of academic nature. To
avoid the instabilities discussed in Ferrer and Willden (2011), Ferrer et al. (2014), the time step
size has to be larger than a critical time step size, ∆t ≥ ∆tcrit with ν∆tcrit ∼ h2

k3 . However, when
using an explicit treatment of the convective term, the time step size is also restricted according
to the CFL condition, ∆t ≤ ∆tCFL with ∆tCFL = Crcrit

Umax

h
k1.5 . Stability can be obtained only if

C

ν

h2

k3
= ∆tcrit ≤ ∆t ≤ ∆tCFL =

Crcrit

k1.5

h

Umax

. (2.246)

Accordingly, as discussed in detail in Ferrer et al. (2014), the characteristic element length h and
polynomial degree k have to fulfill a condition such as k1.5

h
> Ch/k

Umax

ν
in order to avoid conflicts

of both time step restrictions, i.e., a high spatial resolution is required to ensure stability espe-
cially for large Reynolds numbers. In other words, the method might be unstable for all time step
sizes in case of coarse spatial resolutions and high-Reynolds-number flows. The above relations
point to the high practical relevance of these instabilities, i.e., resolving this stability problem is
a necessary prerequisite to obtain a robust flow solver for complex engineering applications.

2.6.2.2 Problem setup

Since these instabilities already occur for the Stokes equations, a simple unsteady Stokes prob-
lem with analytical solution is studied here in favor of a detailed and careful investigation of the
relevant effects. Additional results (not reproduced here for reasons of brevity) highlighting the
practical relevance of resolving the problem of instabilities for small time step sizes are shown
in Fehn et al. (2017) by the more practical example of laminar Navier–Stokes flow around a
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cylinder. As a numerical example, an unsteady Stokes flow problem is chosen that has already
been analyzed in Ferrer and Willden (2011), Ferrer et al. (2014) in the context of instabilities
occurring for small time step sizes. This analytical solution of the two-dimensional unsteady
Stokes equations with f = 0 is defined as

u(x, t) =

(
sin(x1) (a sin(ax2)− cos(a) sinh(x2))
cos(x1) (cos(ax2) + cos(a) cosh(x2))

)
exp (−λt) ,

p(x, t) = λ cos(a) cos(x1) sinh(x2) exp (−λt) ,
(2.247)

where the parameters λ, ν, a are given as λ = ν(1 + a2) with ν = 1 and a = 2.883356. The
domain Ω = [−L/2, L/2]2 is a square of length L = 2 and the time interval is [0, T ] = [0, 0.1].
Dirichlet boundary conditions are prescribed on the whole boundary, Γ = ΓD. The Dirichlet
boundary condition gu, the time derivative term ∂gu/∂t in equation (2.40), and initial conditions
are deduced from the analytical solution. The solution at previous instants of time t−J+1, ..., t−1

required by the BDF scheme for J > 1 is obtained by interpolation of the analytical solution.
Note that ∇p · n 6= 0 on domain boundaries. Hence, this flow problem is for example also a
suitable test case to assess the temporal convergence properties of the projection-type solution
methods with the important topic of the imposition of pressure Neumann boundary conditions.
A uniform Cartesian grid consisting of quadrilateral elements of length h = L/2l in x1 and x2-
direction is used, where l denotes the level of refinement. To fix the pressure level, the mean
value of the vector containing the pressure degrees of freedom is set to zero. This is consistent
with the exact pressure solution due to the symmetry of the analytical solution and the uniformity
of the mesh. Solver tolerances are εabs = 10−12 and εrel = 10−8.

2.6.2.3 Instabilities for small time step sizes

To investigate the stability of the different solution approaches for small time step sizes, temporal
convergence tests are performed and the time step size ∆t/T is varied over a wide range. Since
the instabilities reported in Ferrer and Willden (2011), Ferrer et al. (2014) occur primarily for
coarse spatial resolutions, a coarse mesh with refine level l = 2 is selected. Moreover, the results
are compared for both equal-order polynomials and mixed-order polynomials and varying poly-
nomial degree. To show the impact of the temporal discretization error, this analysis is performed
for first-order time integration schemes, J = 1. Note, however, that qualitatively similar results
in terms of stability are obtained when using second-order accurate time integration schemes.

The results for the coupled solution approach presented in Figure 2.4 show the expected be-
havior. The error is proportional to ∆t for large time steps. For small time steps, the temporal
error becomes negligible as compared to the spatial discretization error and the overall error ap-
proaches a constant value. The pressure error is significantly larger for equal-order polynomials
than for mixed-order polynomials while the velocity error is almost the same for both equal-order
and mixed-order polynomials. This apsect is analyzed in more detail in Section 2.6.3.

Figure 2.5 shows results obtained for the dual splitting scheme. As a reference method, the
DG discretization proposed in Hesthaven and Warburton (2007) without integration-by-parts of
the velocity divergence term and pressure gradient term is considered, see equations (2.100)
and (2.105). As in Ferrer and Willden (2011), Ferrer et al. (2014), instabilities are observed
for small time step sizes and these instabilities occur similarly for equal-order and mixed-order
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(a) equal-order polynomials

(b) mixed-order polynomials

Figure 2.4: Stability analysis of coupled solution approach (BDF1) for small time step sizes.

polynomials. The situation changes, however, when applying the DG formulations deh and geh ac-
cording to equations (2.97) and (2.102), repectively, along with consistent boundary conditions.
For this formulation, stability is obtained for both equal-order and mixed-order polynomials and
the behavior for small time steps is comparable to the coupled solution approach.

As a further verification of the results, the same simulations are performed for the non-
incremental pressure-correction scheme in standard formulation, see Figure 2.6. Again, the
present DG formulation of the velocity–pressure coupling terms in weak form is compared to
the reference formulation. The stability behavior is the same as for the dual splitting scheme.
Note that the reference slope representing the expected theoretical rate of convergence is ∆t1/2

for the pressure in case of the non-incremental pressure-correction scheme in standard form.
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(a) equal-order polynomials

(b) mixed-order polynomials

Figure 2.5: Stability analysis of dual splitting scheme (BDF1) for small time step sizes. Results
obtained for the reference formulation of the velocity–pressure coupling terms with-
out integration-by-parts are shown as dashed-dotted lines.

2.6.2.4 Eigenvalue analysis

As a further verification of the above results, the eigenvalue spectrum is investigated according
to the theoretical considerations in Section 2.5.8. Eigenvalue spectra for two different time step
sizes of ∆t/T = 10−1 and ∆t/T = 10−5 are visualized in Figure 2.7, where the spatial resolu-
tion is l = 2 with (ku, kp) = (4, 4) in case of equal-order polynomials and (ku, kp) = (4, 3) in
case of mixed-order polynomials. For ∆t/T = 10−1, all eigenvalues are inside the stable regime
for both the reference formulation and the present formulation. For ∆t/T = 10−5, some eigen-
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(a) equal-order polynomials

(b) mixed-order polynomials

Figure 2.6: Stability analysis of pressure-correction scheme (BDF1) for small time step sizes.
Results obtained for the reference formulation of the velocity–pressure coupling
terms without integration-by-parts are shown as dashed-dotted lines.

values are outside the stable regime in case of the reference formulation, while all eigenvalues
are inside the stable regime in case of the present formulation. Note that the eigenvalue spectra
are very similar for equal-order polynomials and mixed-order polynomials. Unstable eigenval-
ues clearly occur also for mixed-order polynomials when using the reference formulation of the
velocity–pressure coupling terms. The reader is referred to Fehn et al. (2017) where additional
results are shown that analyze the maximum eigenvalue as a function of the time step size in
the limit ∆t → 0 for equal-order and mixed-order polynomials, as well as for the reference
formulation and the present formulation. The eigenvalue analysis has also been performed for
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Figure 2.7: Eigenvalue analysis for dual splitting scheme (BDF1): eigenvalue spectra for differ-
ent time step sizes.

the non-incremental pressure-correction scheme in standard formulation, yielding very similar
results.

2.6.2.5 Conclusion

The above results lead to the following conclusions. The results shown here and first published
in Fehn et al. (2017) are in contradiction to the conclusions drawn in Ferrer et al. (2014) where
it was stated that the instabilities for small time steps are related to the temporal discretiza-
tion and inf–sup instabilities but not to the spatial discretization. Instead, the results shown here
suggest that these instabilities are clearly related to the discontinuous Galerkin formulation of
the velocity divergence term and the pressure gradient term. Integration-by-parts of these terms
along with central fluxes and consistent boundary conditions is necessary to ensure stability (and
high-order accuracy) for small time step sizes. The discretization of these operators is a basic
building block of any incompressible Navier–Stokes solver, independently of the temporal dis-
cretization. In fact, the increased pressure error observed for the equal-order formulation is an
indication of inf–sup instabilities and is discussed in more detail below. As for the Stokes flow
problem considered in this section, a qualitatively similar behavior in terms of instabilities for
small time step sizes and the different formulations of the velocity divergence term and pressure
gradient term is observed when considering the full Navier–Stokes equations, e.g., for the two-
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dimensional Taylor–Green vortex problem considered in Section 2.6.5 or the three-dimensional
Beltrami flow problem (Ethier and Steinman 1994). After the present results had been published
in Fehn et al. (2017), an independent study by Xu et al. (2019) confirmed these results in the
meantime.

2.6.2.6 Temporal convergence test

While the above investigations concentrated on the lowest order time integration scheme with J =
1, additional results of a temporal convergence study for schemes of order J = 1, 2 (and both
the standard and rotational forms in case of the pressure-correction scheme) are shown in Fehn
et al. (2017) for the stable formulation that uses integration-by-parts for the velocity–pressure
coupling terms. Optimal rates of convergence of order J are achieved for velocity and pressure
for this Stokes flow problem for the coupled solution approach, the dual splitting scheme, and
the pressure-correction scheme in rotational form.

2.6.3 Inf–sup stability

While stability in the limit of small time step sizes has been obtained in the previous section for
appropriate formulations of the velocity–pressure coupling terms, significantly larger pressure
errors have been observed for equal-order polynomials than for mixed-order polynomials. This
section investigates the aspect of inf–sup stability for different Navier–Stokes solution strate-
gies in order to complement and verify the theoretical investigations from Section 2.5.4. The
emphasis is put on the role that projection-type methods play in the context of inf–sup stability
for equal-order vs. mixed-order polynomials for velocity and pressure. For example, equal-order
polynomials have been used successfully for the dual splitting scheme, see for example Krank
et al. (2017), and this section demonstrates that certain projection schemes indeed exhibit differ-
ent characteristics in terms of inf–sup stability than a coupled solution of velocity and pressure
unknowns. The Stokes flow problem investigated in this section is identical to the problem de-
scribed previously in Section 2.6.2.

For ease of interpretation, graphical illustrations are shown here, and the reader is referred to
additional results of spatial convergence tests shown in Fehn et al. (2017). Figure 2.8 displays
the pressure solution for the dual splitting scheme at final time t = T for equal-order and mixed-
order polynomials of varying degree as well as for different time step sizes of ∆t/T = 10−1

and ∆t/T = 10−3. Since inf–sup instabilities are expected to be pronounced for coarse meshes,
comparably low spatial resolutions are considered and the level of refinement is reduced simul-
taneously when increasing the polynomial degree. For equal-order polynomials, the time step
size has a huge influence on the pressure solution and artificial pressure modes show up for
small ∆t. This is in agreement with equation (2.206), which predicts that the stabilizing effect
is related to ∆t and diminishes when decreasing the time step size. For the mixed-order for-
mulation, the pressure solution is smooth and results for ∆t/T = 10−1 and ∆t/T = 10−3 are
indistinguishable. Hence, results are only presented for the smaller time step size which is the
critical one in this respect. The same simulations have been performed for the non-incremental
pressure-correction scheme in standard formulation. For the equal-order formulation and the
two time step sizes of ∆t/T = 10−1 and ∆t/T = 10−3, very similar results are obtained as
for the dual-splitting scheme in terms of spurious pressure oscillations, which is in line with
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(a) ∆t/T = 10−1, equal-order polynomials (ku, kp) = (k, k), refine level l = 4− k

(b) ∆t/T = 10−3, equal-order polynomials (ku, kp) = (k, k), refine level l = 4− k

(c) ∆t/T = 10−3, mixed-order polynomials (ku, kp) = (k + 1, k), refine level l = 4− k

Figure 2.8: Inf–sup stability of dual splitting scheme: pressure solution at time t = T for equal-
order polynomials and mixed-order polynomials and different time step sizes. The
parameter k = 1, ..., 4 varies from k = 1 to k = 4 from left to right.

equation (2.206) for the dual splitting scheme and equation (2.207) for the non-incremental
pressure-correction scheme. Figure 2.9 shows results of the same stability experiment using the
incremental pressure-correction scheme in rotational formulation. In contrast to the dual split-
ting scheme, inf–sup instabilities also occur for very large time step sizes when using equal-order
polynomials. Again, no oscillations occur for the mixed-order formulation. The coupled solution
approach yields results similar to those for the incremental pressure-correction scheme in rota-
tional form. These results can be seen as a numerical verification of equation (2.207), stating that
the incremental pressure-correction scheme and the coupled solution approach behave similarly
in terms of inf–sup stability.

Additional spatial convergence tests shown in Fehn et al. (2017) reveal that equal-order poly-
nomials lead to increased errors and also to sub-optimal rates of convergence (mainly for the
pressure solution but also for the velocity solution). The situation is improved for the dual split-
ting scheme compared to the coupled solver and the pressure-correction scheme, but the effect
of inf–sup instabilities is present nevertheless. For all schemes, optimal rates of convergence are
obtained for mixed-order polynomials. Due to the influence of the spatial resolution and the time
step size, it is therefore recommended to use an inf–sup stable formulation also for projection
schemes that contain an inf–sup stabilization term. As a sidenote, the term instability might be
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(a) ∆t/T = 10−1, equal-order polynomials (ku, kp) = (k, k), refine level l = 4− k

(b) ∆t/T = 10−3, equal-order polynomials (ku, kp) = (k, k), refine level l = 4− k

(c) ∆t/T = 10−3, mixed-order polynomials (ku, kp) = (k + 1, k), refine level l = 4− k

Figure 2.9: Inf–sup stability of incremental pressure-correction scheme in rotational formula-
tion: pressure solution at time t = T for equal-order polynomials and mixed-
order polynomials and different time step sizes. The parameter k = 1, ..., 4 varies
from k = 1 to k = 4 from left to right. Due to large pressure oscillations, the pres-
sure solution for k = 1 (left picture) in subfigure 2.9(b) is scaled by a factor of 0.2
compared to all other pressure plots.

ambiguous given that polynomial spaces not satisfying the inf–sup condition result in increased
errors rather than a blow-up of the simulation.

2.6.4 Pressure-robustness

This section briefly discusses the aspect of pressure-robustness (see Section 2.4.4) considering
a manufactured solution of the steady Stokes equations in two space dimensions. The example
considered here is taken from Lederer et al. (2017), Linke (2014) and is widely used in this
context. The pressure solution is p = x5

1 + x5
2 − 1

3
, the velocity solution is u = (∇×ψ)2d,

with ψ = (0, 0, ψ)T and ψ = x2
1(x1 − 1)2x2

2(x2 − 1)2. Hence, this problem has a complicated
pressure solution relative to the velocity solution. The right-hand side is set to f = −ν∇2u +
∇p (method of manufactured solutions). The problem is solved on the domain Ω = [0, 1]2 with
pure Dirichlet boundary conditions. Since a steady Stokes problem is considered, the coupled
solution approach is used and the penalty terms (if considered) are added to the momentum
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Table 2.4: Pressure-robustness test: relative L2-errors for velocity and pressure for a mesh with
refinement level l = 2 (42 elements) and polynomial degree k = 4 for different values
of the viscosity ν and for different penalty factors ζ .

ν relative L2-error (ζ = 0) relative L2-error (ζ = 1) relative L2-error (ζ = 10)
uh ph uh ph uh ph

100 2.30E–05 3.78E–04 2.30E–05 3.78E–04 2.29E–05 3.78E–04
10−1 2.30E–04 3.78E–04 2.29E–04 3.78E–04 2.28E–05 3.77E–04
10−2 2.30E–03 3.78E–04 2.28E–03 3.77E–04 2.13E–03 3.71E–04
10−3 2.30E–02 3.78E–04 2.13E–02 3.71E–04 1.37E–02 3.44E–04
10−4 2.30E–01 3.78E–04 1.36E–01 3.44E–04 3.48E–02 3.23E–04
10−5 2.30E+00 3.78E–04 3.48E–01 3.23E–04 4.33E–02 3.20E–04
10−6 2.30E+01 3.78E–04 4.36E–01 3.20E–04 5.79E–01 3.20E–04
10−7 2.30E+02 3.78E–04 1.26E+01 3.20E–04 5.32E+01 3.20E–04

equation. The velocity–pressure coupling terms are used in weak formulation. Solver tolerances
are εabs = 10−12 and εrel = 10−8. The mesh is uniform Cartesian with (2l)2 elements. Only
inf–sup stable mixed-order polynomials are considered.

When selecting a degree of ku = 6 (and kp = 5), the discretization scheme is able to obtain
the exact solution since the analytical solution is within the space of discrete solution functions
for both velocity and pressure. For a degree of ku = 4, the pressure solution is no longer within
the function space, but the velocity space still contains the analytical velocity solution. For a
pressure-robust method, one would expect that the discretization scheme finds a solution with
vanishing velocity error in this case. However, the discretization scheme considered here is not
pressure-robust and the velocity error depends on the pressure and the viscosity. Table 2.4 shows
results for viscosities of ν = 100, . . . , 10−7 (decreasing the viscosity in factors of 10) for mesh
refinement level l = 2 and degree k = 4. Results are shown for the case without divergence and
continuity penalty terms (ζ = 0), for the stabilized case with the standard penalty factor of ζ = 1,
and for a larger penalty factor of ζ = 10. As expected theoretically, the velocity error increases
with ν−1 and the pressure error is unaffected by the viscosity for the non-stabilized case. For
the stabilized case with ζ = 1, the velocity error also increases with ν−1 for higher values of
the viscosity, but a beneficial effect of the stabilization can be seen towards smaller values of
the viscosity. Increasing the penalty parameter to a value of ζ = 10 improves the velocity error
for moderately low viscosity values, but increases the error for the smallest viscosity values
studied here. However, optimizing the penalty factor is not of primary interest in the present
work (given that conditioning of linear systems deteriorates for ζ → ∞). Instead, the goal is
to use one set of parameters for different flow problems. Clearly, the scheme lacks pressure-
robustness and errors would become arbitrarily large in the limit ν → 0. Then, only a finer
spatial resolution helps to improve the velocity error (for example, when refining the mesh once,
the stabilized scheme with ζ = 1 results in a relative velocity error below 6% for the smallest
viscosity of ν = 10−7 studied here). An interesting question is to which extent this sub-optimal
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behavior limits applicability to practical flow problems, see also the discussion in Section 2.4.4.
The reader is referred to Section 2.6.7 from which the main motivation for the use of divergence
and continuity penalty terms originates by studying under-resolved transitional and turbulent
flow problems.

2.6.5 Temporal and spatial convergence behavior for smooth
problems

This section investigates the convergence behavior of the proposed Navier–Stokes solvers with
respect to the temporal discretization and the spatial discretization. In order to verify whether
optimal rates of convergence can be achieved, a problem with a smooth analytical solution is
studied, the two-dimensional Taylor–Green vortex.

2.6.5.1 Problem description: Two dimensional Taylor–Green vortex

The problem setup considered here follows the test case described in Hesthaven and Warburton
(2007). This two-dimensional vortex problem is an analytical solution of the unsteady incom-
pressible Navier–Stokes equations for vanishing body forces f = 0

u(x, t) =

(
− sin(2πx2)
+ sin(2πx1)

)
exp

(
−4νπ2t

)
,

p(x, t) = − cos(2πx1) cos(2πx2) exp
(
−8νπ2t

)
.

(2.248)

The analytical solution is designed so that the time derivative term balances the viscous term,
and the convective term balances the pressure gradient term. The domain Ω = [−L/2, L/2]2 is a
square of length L = 1 and the simulations are performed for the time interval 0 ≤ t ≤ T = 1.
The viscosity is set to ν = 0.025. On domain boundaries, Dirichlet boundary conditions are pre-
scribed at the inflow part of the boundary and Neumann boundary conditions at the outflow part,
so that the coordinate axes split each of the four sides of the rectangular domain into a Dirichlet
part and a Neumann part, see also Hesthaven and Warburton (2007). An illustration of this flow
problem is given in Figure 2.10. Initial conditions as well as the solution at previous instants of
time tn−J+1, ..., tn−1 required by the BDF scheme and extrapolation scheme for J > 1 are ob-
tained by interpolation of the analytical solution. The velocity Dirichlet boundary condition gu,
the discrete time derivative term according to equation (2.41), the velocity gradient in normal
direction hu/ν, and the pressure Dirichlet boundary condition gp are derived from the analyti-
cal solution. In case of the coupled solution approach, the Neumann boundary condition is then
given as h = hu − gpn. Since the velocity boundary conditions gu and hu and the pressure
boundary condition gp are nontrivial and time-dependent, this flow problem is an appropriate
test case to verify the temporal accuracy of the different solution approaches with their respec-
tive boundary conditions. It is further an interesting test case since the CFL condition appears to
be switched off for this example for moderate Reynolds numbers, which might be explained by
the fact that the vortex is not convected in space but only decays over time. This characteristic
eases the experimental investigation of the temporal convergence behavior of unsteady Navier–
Stokes solvers with an explicit treatment of the convective term, since an “active” CFL condition
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Figure 2.10: Illustration of geometry, boundary conditions, and velocity field (velocity magni-
tude with arrows indicating flow direction) for two-dimensional vortex problem.

might otherwise lead to time step sizes too restrictive to measure the temporal discretization er-
ror compared to the spatial one. Note that for this type of flow problem it can be expected that the
solution departs from the analytical solution for high Reynolds numbers and larger times, follow-
ing two-dimensional high-Reynolds-number vortex dynamics with self-organisation into larger
and larger vortices as described for example in Schroeder and Lube (2018). A uniform Cartesian
grid is used for discretization in space, where the element length is h = L/2l for refinement
level l. Solver tolerances are εabs = 10−12 and εrel = 10−6. For nonlinear system of equations,
the absolute solver tolerance of the Newton solver is set to εabs = 10−10 to ensure convergence
for all parameter combinations. Additional results shown in Fehn et al. (2018b) reveal that the
divergence and continuity penalty terms do not impact accuracy for this laminar problem with
smooth solution. Hence, only the case with consistent penalty terms is shown in the following.
The default setup described in Section 2.6.1 is used, apart from the fact that the divergence and
continuity penalty terms are added to the momentum equation in case of the coupled solution ap-
proach instead of applying these terms in a postprocessing step. The following two subsections
show temporal and spatial convergence tests, and the reader is referred to Section 8.5.2 where
the same convergence tests are performed for the case of moving meshes.

2.6.5.2 Temporal convergence

To investigate the temporal convergence behavior, a high spatial resolution, refine level l = 3 and
polynomial degree k = 8, is used in order to make sure that the spatial discretization error is neg-
ligible. Time integration schemes of order J = 1, 2, 3 are investigated for the coupled solution
approach and the dual splitting scheme. For the pressure-correction scheme, instabilities have
been observed for J = 3 in agreement with theory, so that results are only shown for J = 1, 2.
Moreover, both implicit and explicit formulations of the convective term are investigated. Fig-
ure 2.11 shows temporal convergence studies for constant time step sizes and for adaptive time
stepping. In all cases, theoretically optimal rates of convergence of order ∆tJ are observed. For
the coupled solution approach and J = 3, the curves level off at some point for very small time
step sizes, which might be due to the spatial discretization error or the chosen solver tolerances.
In terms of absolute errors, the coupled solution approach with implicit convective term is most
accurate. The error is larger for the coupled solution approach with explicit convective term and
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(a) constant ∆t

(b) adaptive ∆tn

Figure 2.11: Vortex problem: temporal convergence tests for BDF schemes of order J = 1, 2, 3
with Jp = min(2, J) for the dual splitting scheme and Jp = min(2, J) − 1, J ≤ 2
for the pressure-correction scheme. The spatial resolution is l = 3, k = 8.

the dual splitting scheme, which yield almost the same temporal accuracy. The error is largest
for the pressure-correction scheme, where an explicit treatment of the convective term is more
accurate than an implicit one in this case.

2.6.5.3 Spatial convergence

Results of spatial convergence tests are shown in Figure 2.12 for polynomial degrees k =
2, 3, 4, 5 and refinement levels l = 1, . . . , 6. The BDF2 time integration scheme is used with
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(a) spatial convergence for different solution strategies

(b) spatial convergence for alternative formulations of convective and viscous terms

Figure 2.12: Vortex problem: spatial convergence tests for refinement levels l = 1, . . . , 6 and
polynomial degrees k = 2, 3, 4, 5. The BDF2 scheme is used with a fix time step
size of ∆t/T = 5 · 10−5.

a fix time step size of ∆t/T = 5 · 10−5 so that spatial discretization errors are dominant (for
all but the finest spatial resolutions). On the one hand, different solution strategies (coupled ap-
proach, dual splitting scheme, pressure-correction scheme) are analyzed for the default setup in
terms of the DG discretization, i.e., the convective term is written in divergence formulation and
the viscous term in Laplace formulation. All schemes use an explicit treatment of the convec-
tive term, and no differences are expected in case of an implicit formulation of the convective
term (apart from the temporal error level approached for the finest spatial resolutions). On the
other hand, alternative formulations of the convective term and viscous term are investigated,
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i.e., the convective formulation of the convective term and the divergence formulation of the vis-
cous term are studied as variants of the default setup. Here, the coupled solution approach with
an explicit treatment of the convective term is used for discretization in time. In all cases, opti-
mal rates of convergence of order hku|kp+1 are obtained and the errors are virtually the same for
all solution techniques and the different formulations of the convective term and viscous term.
Additional results are shown in Fehn et al. (2018b), where the penalty terms are applied in a
postprocessing step and where optimal rates of convergence are achieved also for this formu-
lation. When interpreting the stabilized DG discretization with penalty terms from the point of
view of turbulence modeling (Fehn et al. 2018b), such an implicit turbulence modeling approach
ensures that the same discretization can be applied to both laminar and turbulent flow problems,
and that the “exact” solution is reproduced in the laminar case.

2.6.6 Laminar flow example – flow around cylinder

In order to demonstrate the geometric flexibility of the present Navier–Stokes solvers and to
analyze the efficiency of high-order polynomial spaces for the approximation of velocity and
pressure on complex domains with curved boundaries, laminar flow around a cylinder with un-
steady vortex shedding is considered. This section studies the benchmark problem proposed in
the 1990s by Schäfer et al. (1996), which has found widespread use in terms of the verification of
incompressible Navier–Stokes solvers. In the present work, the focus is on the two-dimensional,
unsteady test case named 2D-3 for which accurate reference solutions are available (Fehn et al.
2017, John 2004). In the context of high-order DG discretizations, this problem has been inves-
tigated for example in Fehn et al. (2017), Lehrenfeld and Schöberl (2016).

2.6.6.1 Problem description

The geometry is displayed in Figure 2.13. The cylinder with center (x1,c, x2,c) = (0.2, 0.2) and
diameter D = 0.1 is located slightly asymmetrically in a rectangular channel of length L = 2.2
and height H = 0.41. The inflow boundary (left boundary), the channel walls (upper and lower
boundary), and the cylinder surface are treated as Dirichlet boundaries. At the inflow boundary,
a parabolic velocity profile is prescribed (Schäfer et al. 1996)

gu1(x1 = 0, x2, t) = Um
4x2(H − x2)

H2
sin(πt/T ) , gu2(x1 = 0, x2, t) = 0 , (2.249)

where the time interval is 0 ≤ t ≤ T = 8. The Reynolds number Re = ŪD/ν is defined
using the mean inflow velocity Ū = 2Um/3 and the cylinder diameter D. The maximum inflow
velocity is given as Um = 1.5 and the viscosity is ν = 10−3, so that the Reynolds number
reaches a maximum value of Remax = 100 at time t = T/2. On the cylinder surface and the
channel walls, no slip boundary conditions are prescribed for the velocity, gu = 0. The outflow
boundary (right boundary) is treated as a Neumann boundary where the benchmark itself does
not define a specific boundary condition on ΓN. For the splitting approaches, hu = 0 and gp = 0
is prescribed, and h = 0 in case of the coupled solution approach. The discrete time derivative
term according to equation (2.41) is used in the pressure Neumann boundary condition for the
dual splitting scheme.
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Figure 2.13: Laminar flow around cylinder: geometry and boundary conditions according to the
benchmark by Schäfer et al. (1996) as well as coarsest mesh corresponding to refine
level l = 0. Also shown is a visualization of results for test case 2D-3.

Table 2.5: Laminar flow around cylinder: reference results for test case 2D-3.
reference cD,max cL,max ∆p(t = T )

Schäfer et al. (1996) 2.95± 2 · 10−2 0.48± 1 · 10−2 −0.11± 5 · 10−3

John (2004) 2.950921575± 5 · 10−7 0.47795± 1 · 10−4 −0.1116± 1 · 10−4

Fehn et al. (2017) 2.95091839 0.47788776 −0.11161590

The accuracy of the numerical solution is evaluated by calculating the maximum drag coef-
ficient cD,max, the maximum lift coefficient cL,max, and the pressure difference ∆p(t = T ) =
p(xa, t = T )− p(xe, t = T ) between the front and the back of the cylinder at final time t = T ,
where xa = (x1,c − D/2, x2,c)

T and xe = (x1,c + D/2, x2,c)
T. The drag coefficient cD =

F1/(ρŪ
2D/2) and the lift coefficient cL = F2/(ρŪ

2D/2) are obtained by calculating the force
vector F = (F1, F2)T = −ρ

∫
A

(
−pI + ν

(
∇u+∇uT

))
·ndA acting on the cylinder, where A

denotes the cylinder surface and n the outward pointing normal vector of the computational
domain. Reference solutions of these quantities are listed in Table 2.5.

The mesh is visualized in Figure 2.13 for the coarsest refine level l = 0 which consists
of Nel,l=0 = 50 quadrilateral elements. Finer meshes are obtained by uniform refinement so
that the number of elements on level l is Nel,l = Nel,l=0(2d)l. The total number of degrees of
freedom is NDoFs = Nel,lNDoFs,el, where the number of unknowns per element is NDoFs,el =
d(ku + 1)d + (kp + 1)d. In order to accurately resolve the flow near the cylinder, the mesh is
refined towards the cylinder and an isoparametric mapping is used for an improved approxima-
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Figure 2.14: Laminar flow around cylinder: drag coefficient cD,max, lift coefficient cL,max, and
pressure difference ∆p(t = T ) as a function of time for cylinder test case 2D-3.

tion of the curved cylinder boundary. In this respect, the first two layers of elements around the
cylinder are subject to a cylindrical manifold description to enable high-order accuracy. For the
third layer of cells, a volume manifold description has been implemented allowing to prescribe
a cylindrical manifold for one of the four faces of the quadrilateral element with straight edges
on the other faces by transfinite interpolation techniques. Solver tolerances are εabs = 10−12

and εrel = 10−6.

2.6.6.2 Results

Apart from the results shown here, the work by Fehn et al. (2017) shows additional results
demonstrating that integration-by-parts of the velocity–pressure coupling terms (using central
fluxes and consistent boundary conditions) is necessary to obtain a robust flow solver for the
flow past cylinder test case. For reasons of brevity, the focus is here on the accuracy of high-
order discretizations and their suitability for problems with non-trivial geometry. This section
addresses the question whether high-order methods require less degrees of freedom to reach the
same level of accuracy, and also aims to quantify this aspect. Spatial convergence tests are run
for mixed order polynomials (ku, kp) = (k, k − 1) with polynomial degrees in the range k =
2, 4, 6, 8, 10. The high-order dual splitting scheme with J = 3 is used, using adaptive time
stepping according to equation (2.210) with a Courant number of Cr = 0.35 (so that the overall
error is dominated by the spatial discretization error, which has been verified by repeating the
simulations for a smaller Courant number of Cr = 0.175). Since there is no analytical solution
for this test case, the time integration scheme is started with a low-order scheme in the first time
steps. To give an illustration of the flow behavior, Figure 2.14 shows the temporal evolution of
the lift and drag coefficients as well as the pressure difference, and Figure 2.13 visualizes the
velocity field for an instant of time around which periodic vortex shedding occurs. Accuracy of
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Figure 2.15: Laminar flow around cylinder: h-refinement study for various polynomial de-
grees k = 2, 4, 6, 8, 10. Relative errors of cD,max, cL,max, and ∆p(t = T ) are shown
as a function of the number of unknowns NDoFs in order to assess the accuracy of
high polynomial degrees.

the simulations is quantified in terms of the maximum lift and drag coefficients and the pressure
difference at final time, where the accurate reference solution published in Fehn et al. (2017)
and listed in Table 2.5 is used to calculate relative errors for these three quantities. Since this
reference solution has been obtained for two different spatial resolutions (refine level l = 3 and
polynomial degrees k = 8 and k = 10) as well as different time step sizes, it is assumed to be
accurate up to all decimal places.

Figure 2.15 compares the accuracy of different polynomial degrees in terms of error vs. num-
ber of unknowns. In contrast to the previous example, the convergence does not follow the
theoretically optimal behavior expected for smooth solutions. Nevertheless, the results in Fig-
ure 2.15 demonstrate that high-order polynomial degrees can significantly reduce the number
of unknowns required to obtain a certain level of accuracy, and are essential to obtain solutions
of highest accuracy for a given (maximum) number of unknowns. This can be seen by compar-
ing the results for k = 6 to those for k = 2. At the same time, one observes that the increase
in accuracy saturates for polynomial degrees k = 4 or k = 6 and higher (depending on the
quantity of interest and the accuracy of interest). From an engineering perspective where errors
around 10−2 might be acceptable, high-order methods of degree k = 4, 6, 8, 10 have difficulties
in outperforming the lower-order variant k = 2.
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2.6.7 Robustness and accuracy for transitional and turbulent flows
2.6.7.1 Orr–Sommerfeld problem

In a first example towards transitional and turbulent flows, the stability of the proposed incom-
pressible Navier–Stokes solvers is analyzed for the Orr–Sommerfeld stability problem applied to
the two-dimensional Poiseuille flow problem, which has been analyzed, e.g., in Fischer (1997),
Shahbazi et al. (2007).

2.6.7.1.1 Problem description The computational domain is a rectangular channel with
dimensions [0, L] × [−H,H]. No-slip boundary conditions are prescribed at x2 = ±H and
periodic boundary conditions in streamwise direction. Due to the periodic boundary conditions,
a constant body force, f1 = 2νUmax/H

2, has to be prescribed to sustain the mean flow, which is
given as U1(x2)/Umax = 1− (x2/H)2. To obtain the initial solution for this problem, one has to
solve the Orr–Sommerfeld equation. The Orr–Sommerfeld equation is derived by superimposing
a small disturbance upon the mean flow U(x) = (U1(x2), 0)T that fulfills the incompressible
Navier–Stokes equations. The Navier–Stokes equations are subsequently linearized by assuming
that the perturbation is small. To obtain the Orr–Sommerfeld equation, the following ansatz is
used

u1(x, t) = U1(x2) + ε Re

{
dψ(x2)

dx2

exp (i (αx1 − ωt))
}
, (2.250)

u2(x, t) = −ε Re {iαψ(x2) exp (i (αx1 − ωt))} . (2.251)

The perturbation velocity is based on the streamfunction Ψ(x, t) = ε ψ(x2) exp (i (αx1 − ωt))
with wavenumber α, complex frequency ω, and perturbation amplitude ε� 1. The Orr–Sommer-
feld equation then reads

iα
[(
U1 −

ω

α

) (
ψ′′ − α2ψ

)
− U ′′1ψ

]
= ν

(
ψ′′′′ − 2α2ψ′′ + α4ψ

)
, (2.252)

where (·)′ = d(·)
dx2

. The Orr–Sommerfeld equation is a fourth-order homogeneous ordinary dif-
ferential equation with variable coefficients. The boundary conditions are ψ(−H) = ψ(H) = 0
and ψ′(−H) = ψ′(H) = 0. This equation is typically solved for the complex frequency ω = ωr+
iωi and for ψ(x2), by prescribing a wavenumber α, a Reynolds number Re = UmaxH/ν or vis-
cosity ν, and the mean flow U1(x2). Following Fischer (1997), the parameters areH = 1, Umax =
1, Re = 7500, α = 1, and ε = 10−5. The Orr–Sommerfeld equation is discretized using a spec-
tral Galerkin ansatz with one finite element of high polynomial degree k (e.g., k = 200), resulting
in a generalized eigenvalue problem AΨ = λBΨ for the eigenvalue λ = −iω and the eigen-
vector Ψ = (Ψ1, ...,Ψk+1)T. The initial solution prescribed for the Orr–Sommerfeld simulations
performed below is given by equations (2.250) and (2.251), where ω is the complex frequency
corresponding to the only unstable eigensolution of the Orr–Sommerfeld equation, ωi > 0, and
where ψ(x2) =

∑k+1
i=1 `

k
i (x2)Ψi is the interpolation of the corresponding eigenvector Ψ, which is

normalized to a maximum value of 1, maxi |Ψi| = 1. The length L of the computational domain
equals the wavelength of the Tollmien–Schlichting (TS) waves, L = 2π/α. The simulations are
performed for the time interval 0 ≤ t ≤ T = 2T0, where T0 = αL/ωr is the time the TS waves
need to travel through the computational domain.
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Figure 2.16: Orr–Sommerfeld problem: geometry and boundary conditions as well as visualiza-
tion of velocity field.

The perturbation energy E =
∫

Ω
‖u−U‖2dx grows exponentially in time according to linear

stability theory, E(t)/E(t = 0) = exp(2ωit). Similar to Fischer (1997), the quantity e(t) =
| exp(2ωit)−Eh(t)/Eh(t = 0)| is used as an error measure, where Eh is the perturbation energy
calculated using the numerical solution uh.

The computational domain is discretized using a uniform Cartesian grid where l denotes the
number of refinements with Nel(l = 0) = 1. The time step size is calculated according to the
CFL condition (2.209) with Cr = 0.2 and ‖u‖max = Umax. The resulting time step sizes are small
enough so that the error is dominated by the spatial discretization error, which has been verified
by comparing the results for Cr = 0.2 with those for a smaller Courant number of Cr = 0.1. The
coupled solution approach is applied (BDF2 scheme) using small absolute and relative solver
tolerances of 10−14 (which turned out to be important for this test case to allow low error levels),
and penalty terms (if activated) are applied in a postprocessing step.

2.6.7.1.2 Results To analyze the robustness and stability properties of the stabilized ap-
proach with divergence and continuity penalty terms, simulations are performed for various poly-
nomial degrees k = 2, 4, 6, 8, 10 and refinement levels l = 0, 1, 2, ... beginning with very coarse
spatial resolutions consisting of only one element. For k = 2, refinement levels of l = 1, 2, ...
are investigated since the perturbation energy would be zero for refinement level l = 0 at initial
time t = 0. A comparison of the stability of the standard DG discretization without penalty terms
and the stabilized approach including both the divergence and continuity penalty terms is shown
in Figure 2.17 for polynomial degree k = 2 and refinement levels l = 4, 5, 6. For the formula-
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Figure 2.17: Orr–Sommerfeld stability problem: stability for polynomial degree k = 2 and refine
levels l = 4, 5, 6 using the coupled solution approach.

tion without penalty terms, an unphysical growth of the perturbation energy occurs as previously
observed in Shahbazi et al. (2007). Using both divergence and continuity penalty terms, the
method is stable for all refinement levels and all polynomial degrees. The results shown in Fig-
ure 2.17 demonstrate that the solution tends towards the theoretical value for increasing spatial
resolution. Additional results shown in Fehn et al. (2018b) show that the divergence penalty term
only is not able to stabilize the basic DG formulation and leads to an unphysical growth of the
perturbation energy as well. The stability has also been analyzed for the dual splitting scheme
and pressure-correction scheme, and the results are in qualitative agreement with those for the
coupled solution approach. By the present stabilized DG approach, the instabilities reported
in Shahbazi et al. (2007) can be overcome.

Remark 2.15 While mixed-order polynomials are considered here, an unphysical growth of the
perturbation energy has also been observed for equal-order polynomials on coarse meshes when
using the basic DG discretization without stabilization terms. While this behavior appears plau-
sible, stability has been reported in Shahbazi et al. (2007) for equal-order polynomials. This
might be explained by the fact that the spatial resolutions considered there are significantly finer
than the ones analyzed here (Shahbazi et al. (2007) consider a mesh consisting of 128 triangles
for polynomial degrees k = 6, 7, 8).

To analyze the convergence properties for the Orr–Sommerfeld stability problem in more de-
tail, Figure 2.18 shows the error as a function of the number of unknowns for various polynomial
degrees and refinement levels, where the formulation with divergence and continuity penalty
terms is used. Dashed lines indicate optimal rates of convergence, where the slope of N−(k+1)/d

DoFs

is due to the error decreasing with hk+1 and unknowns increasing with h−d. For low refinement
levels, the discretization operates in the pre-asymptotic regime of convergence. For higher refine-
ment levels entering the asymptotic regime, optimal rates of convergence are obtained, which is
to be expected given that the solution is relatively smooth for the Orr–Sommerfeld problem.
For NDoFs > 103, high-order methods are systematically more accurate than low-order methods
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Figure 2.18: Orr–Sommerfeld stability problem: convergence tests and accuracy of high-order
methods for polynomial degrees k = 2, 4, 6, 8, 10 using the coupled solution
approach.

for the same number of unknowns, and the number of unknowns required to reach a certain level
of accuracy can be reduced by a factor of 10 to 100 for high polynomial degrees as compared to
the low-order method with k = 2.

2.6.7.2 3D Taylor–Green vortex problem

The three-dimensional Taylor–Green vortex problem (Taylor and Green 1937) is a widely used
benchmark problem to assess the accuracy as well as computational efficiency of numerical
methods for the simulation of transitional and turbulent flows. It is characterized by a trivial
cube geometry and a simple laminar initial flow field, where vortices break down into com-
plex turbulent flow structures at later times. This problem has already been studied in Brachet
et al. (1983), Brachet (1991) using direct spectral numerical simulation, and is a standard bench-
mark in the high-order CFD community (Wang et al. 2013). In the context of high-order DG
discretizations for the incompressible Navier–Stokes equations, the Taylor–Green vortex prob-
lem has been analyzed for example in Fehn et al. (2018a,b, 2019a), Piatkowski et al. (2018),
Schroeder (2019).

2.6.7.2.1 Problem description The problem setup for the Taylor–Green vortex follows
the benchmark definition from Wang et al. (2013). The computational domain Ωh is a box Ωh =
[−πL, πL]3 where L is a characteristic length scale. Periodic boundary conditions are prescribed
in all coordinate directions and the body force vector is zero, f = 0. The initial solution for the
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three-dimensional Taylor–Green vortex problem is given as

u1(x, t = 0) = U0 sin
(x1

L

)
cos
(x2

L

)
cos
(x3

L

)
, (2.253)

u2(x, t = 0) = −U0 cos
(x1

L

)
sin
(x2

L

)
cos
(x3

L

)
, (2.254)

u3(x, t = 0) = 0 , (2.255)

p(x, t = 0) = p0 +
U2

0

16

(
cos

(
2x1

L

)
+ cos

(
2x2

L

))(
cos

(
2x3

L

)
+ 2

)
. (2.256)

The Reynolds number is defined as Re = U0L
ν

, where a Reynolds number of Re = 1600 is
considered in the following. The parameters are set to p0 = 0 and U0 = 1, L = 1, so that the
viscosity is given as ν = 1

Re
. The simulations are performed for the time interval 0 ≤ t ≤ T

where an end time of T = 20T0 is used with T0 = L
U0

. The mesh is discretized using a uniform
Cartesian grid consisting of (2l)d elements where l denotes the level of refinement. Using mixed-
order polynomials for velocity and pressure, the total number of unknowns is given as NDoFs =
(2l)d(d(ku+1)d+(kp+1)d) = (2l)d(d(k+1)d+kd). Moreover, the effective spatial resolution is
defined as (2l(k+1))d, i.e., the effective resolution is the number of unknowns of one component
of the d-dimensional velocity vector. To give an example, the effective resolution is 643 for refine
level l = 3 (with 8 elements per direction) and polynomial degree k = 7. A visualization of the
solution at times t = 0, 10T0, 20T0 is shown in Figure 2.19.

Solver tolerances are εabs = 10−12 and εrel = 10−3. This choice is motivated by detailed
investigations on the sensitivity of solver tolerances on the accuracy of results shown in Fehn
et al. (2019c), where it was found that accurate results are obtained for the (comparably large)
relative solver tolerance used here. Unless specified otherwise, results shown in the following
have been obtained with the dual splitting scheme, and differences between the different solution
strategies can be expected to be negligible. The BDF2 time integration scheme is used along
with adaptive time stepping and a constant Courant number of Cr = 0.4 relatively close to the
stability limit. This choice is based on an observation made in Fehn et al. (2018a) for this TGV
problem, namely that temporal discretization errors are negligible for under-resolved simulations
characterized by comparably large spatial discretization errors if the time step size is restricted
according to the CFL condition.

The accuracy of numerical results is evaluated by calculating the kinetic energy and its dissi-
pation rate. The total kinetic energy is defined as

E =
1

VΩh

∫
Ωh

1

2
uh · uh dΩ , (2.257)

where the volume of the computational domain is VΩh =
∫

Ωh
1 dΩ. These integrals are calculated

numerically using Gaussian quadrature with ku+1 quadrature points. The kinetic energy dissipa-
tion rate−dE

dt
is calculated using a second-order accurate central difference scheme (for variable

time step sizes if adaptive time stepping is used) for interior time points i = 1, ..., N∆t− 1 and a
first-order accurate, one-sided finite difference scheme for the end points i = 0 and i = N∆t.
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(a) t = 0 (b) t = 10 T0 (c) t = 20 T0

Figure 2.19: Visualization of Taylor–Green vortex problem at Re = 1600: iso-surfaces of Q-
criterion (value of 0.1U0/L) colored by velocity magnitude (same color scale for
all time instants, red indicates high velocity and blue low velocity). The stabilized
approach including divergence and continuity penalty terms is used and the spatial
resolution is l = 6 and k = 3 (effective resolution of 2563).

Remark 2.16 The molecular energy dissipation rate ε (also denoted as physical dissipation rate
or the dissipation rate of the resolved scales) is typically calculated as (Gassner and Beck 2013)

ε =
ν

VΩh

∫
Ωh

∇uh : ∇uh dΩ , (2.258)

and is also frequently used to assess the accuracy of high-order methods. Using the kinetic
energy dissipation rate −dE

dt
and the molecular dissipation rate ε, a numerical dissipation of

the discretization scheme can be obtained as −dE
dt
− ε. The present work mainly focuses on the

temporal evolution of the kinetic energy and its dissipation rate, as this is considered the more
relevant metric in practice. From the point of view of implicit large eddy simulation, one might
argue that it is not of primary importance by which mechanism the dissipation is realized exactly,
as long as the overall scheme is able to predict the dissipation rate accurately, i.e., the present
work understands LES as a numerical approach rather than a modeling approach. Results on
physical and numerical dissipation rates for the present DG scheme are given in Fehn et al.
(2018a,b). The contribution of different terms of the Navier–Stokes equations or stabilization
terms of the discretiztion scheme to the overall dissipation rate is analyzed in detail in Fehn
et al. (2019a). The reader is referred to Lehrenfeld et al. (2018) for some interesting subtleties
related to splitting dissipation rates into physical and numerical contributions in the context of
DG discretizations.

In order to evaluate accuracy quantitatively, a relative L2-error norm edE/dt is defined for the
kinetic energy dissipation rate dE

dt

e2
dE/dt =

∫ T
t=0

(
dE(t)

dt
− dEref(t)

dt

)2

dt∫ T
t=0

(
dEref(t)

dt

)2

dt
. (2.259)
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(a) standard DG discretization without penalty terms

(b) stabilized DG discretization with divergence and continuity penalty terms

Figure 2.20: Taylor–Green vortex problem at Re = 1600: temporal evolution of kinetic energy
and kinetic energy dissipation rate for an effective resolution of 323 and polynomial
degrees of k = 3, 7, 15.

The above integrals are calculated numerically using the trapezoidal rule. For coarse spatial
resolutions, the temporal resolution is also lower compared to the reference solution due to the
CFL condition. Hence, results written after each time step are first interpolated to the discrete
time instants of the reference solution with fine temporal resolution. Then, the trapezoidal rule
is evaluated using the time step size of the reference simulation as step size.

2.6.7.2.2 Results Figure 2.20 shows results for the temporal evolution of the kinetic energy
and the kinetic energy dissipation rate and compares the standard discretization approach with-
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Figure 2.21: Taylor–Green vortex problem at Re = 1600: temporal evolution of kinetic energy
and kinetic energy dissipation rate for an effective resolution of 643 and polynomial
degrees of k = 3, 7, 15 using the stabilized formulation including penalty terms.

Figure 2.22: Taylor–Green vortex problem at Re = 1600: comparison of kinetic energy dissipa-
tion, physical dissipation, and numerical dissipation to state-of-the-art implicit LES
approaches from the literature. The effective resolution is 643 for all approaches.

out additional stabilization terms to the stabilized formulation with divergence and continuity
penalty terms. The spatial resolution is 323 for all polynomial degrees k = 3, 7, 15 by using
mesh refinement levels of l = 3, 2, 1, respectively. The formulation without stabilization terms
lacks robustness and the kinetic energy blows up for all polynomial degrees. To make sure that
these instabilities are not related to the CFL condition, a smaller Courant number of Cr = 0.1
has been used for the simulations without stabilization terms. In contrast, stability is retained by
using additional divergence and continuity penalty terms, and the kinetic energy dissipation rate
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Figure 2.23: Taylor–Green vortex problem at Re = 1600: convergence tests and accuracy of
high-order methods for polynomial degrees k = 2, 3, 5, 7, 11, 15. An accurate ref-
erence solution published in Fehn et al. (2018a) with effective resolution of 10243

for polynomial degree k = 7 is used to calculate the errors.

is positive throughout the simulations as expected physically. In Fehn et al. (2018b), the stability
of the present discretization approach has been investigated in great detail for both the viscous
case at Re = 1600 and the inviscid limit Re → ∞, where the latter is particularly challenging
in terms of robustness due to the absence of viscous dissipation.2 Robustness has been tested for
both Cartesian meshes and deformed, curvilinear meshes. Robustness has been achieved for the
stabilized approach including divergence and continuity penalty terms for all spatial resolutions
covering a wide range of polynomial degrees k = 2, . . . , 15 and mesh refinement levels (start-
ing from coarse meshes consisting of only one element), while the standard formulation without
stabilization terms lacks robustness for several spatial resolution parameters, in particular in the
inviscid limit.

Figure 2.21 shows results for a finer resolution of 643, where only the stabilized approach
is considered. Compared to the 323 resolution, convergence to the DNS reference solution can
clearly be observed. Moreover, higher polynomial degrees tend to predict the dissipation rate
more accurately than lower degrees for the same effective resolution. A comparison to state-
of-the-art discretization schemes from the literature such as the adaptive local deconvolution
method (ALDM) by Hickel et al. (2006) based on a finite volume discretization, the algebraic
variational multiscale multigrid multifractal method (AVM4) proposed in Rasthofer and Grave-
meier (2013), and the implicit LES computations published in Gassner and Beck (2013) for a
compressible high-order DG solver at degree k = 15 is shown in Figure 2.22. This figure shows
the kinetic energy dissipation (left), the phyiscal dissipation (middle), and the numerical dissipa-

2For example, the approach proposed in Ferrer (2017) to stabilize a DG scheme for under-resolved turbulent flow
simulations by scaling the interior penalty parameter of the viscous term can not have an effect if the viscosity
is zero. It is therefore imperative to study the robustness of a turbulent flow solver in the inviscid limit.

108



2.6 A posteriori quantification of robustness and accuracy

Figure 2.24: Taylor–Green vortex problem at Re = 1600: kinetic energy spectraE(k) at time t =
9 for an effective resolution of 643 for polynomial degrees k = 3, 7, 15. Note the
clash of notation in terms of polynomial degree k and wavenumber k.

tion (right). The results for the present DG discretization for polynomial degrees k = 1, 3, 7, 15
reveal the well-known behavior that low polynomial degrees are more dissipative, while the dis-
sipation of the resolved scales is higher for large polynomial degrees. As expected, the present
results at k = 15 agree very well with those shown in Gassner and Beck (2013) for a compress-
ible DG solver at low Mach number for the same degree. The ALDM model exhibits dissipation
characteristics comparable to the present k = 3 scheme, and the results obtained for AVM4 are
comparable to the present k = 1 scheme (which uses an equal-order formulation ku = kp = 1
compared to the mixed-order formulation used for k = 3, 7, 15, in order to make sure that the
pressure shape functions are at least linear). This is plausible given that the variational multi-
scale approach from Rasthofer and Gravemeier (2013) is based on a low-order continuous finite
element discretization of degree k = 1, where the number of elements is 643 for the simula-
tion shown here. Note, however, that the number of elements is only 323 for the present DG
discretization to reach the same effective resolution due to the duplication of degrees of free-
dom between elements in the DG case (a DG simulation with 643 elements turned out to be
significantly more accurate). All in all, these results further verify the present implementation
and demonstrate that the stabilized DG approach is competitive to the most accurate methods
available in the literature. A detailed comparison of the present L2-conforming discretization
to an exactly divergence-free, Hdiv-conforming discretization is shown in Fehn et al. (2019a),
revealing that both approaches exhibit very similar discretization properties in the regime of
under-resolved turbulent flows. The study by Fehn et al. (2019a) also compares different formu-
lations of the nonlinear convective term. These comparisons are omitted here for brevity. The
influence of algebraic sub-grid scale models on dissipation rates for the TGV problem in the
context of the present DG discretization is investigated in Neumann (2018).

To investigate the accuracy of high-order discretizations more quantitatively for this turbulent
flow problem, Figure 2.23 shows results of spatial convergence tests for various polynomial de-
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grees k = 2, 3, 5, 7, 11, 15 in terms of error versus number of unknowns, considering the relative
error (2.259) of the kinetic energy dissipation rate. Clearly, the discretization operates in the
pre-asymptotic regime and rates of convergence appear to depend mainly on the effective spatial
resolution rather than on the polynomial degree. However, high-order methods are found to be
systematically more accurate than lower order methods even though the convergence behavior
does not follow theoretically optimal convergence trends. Furthermore, accuracy seems to satu-
rate for very high polynomial degrees. Overall, these results are encouraging in the sense that an
improvement in accuracy can principally be expected for high-order methods also for scenarios
where optimal rates of convergence are not observed due to under-resolution. The results shown
here complement previous works dealing with DG solvers for compressible flows (Carton de
Wiart et al. 2014, Chapelier et al. 2014, Gassner and Beck 2013), and allow to obtain a more
systematic and complete picture regarding the accuracy of high-order methods by spanning a
wide range of the parameter space in terms of the polynomial degree k and the mesh size h.

Finally, Figure 2.24 shows kinetic energy spectra E(k) at time t = 9 around the time of maxi-
mum dissipation, where k denotes the wavenumber. The spatial resolution is 643 and polynomial
degrees of k = 3, 7, 15 are considered as in Figure 2.21 for the temporal evolution of the kinetic
energy and its dissipation rate. Also shown is the estimated resolution limit k1% for each polyno-
mial degree according to the 1%-rule by Moura et al. (2017a). The results are further compared
to an accurate DNS reference solution corresponding to an effective resolution of 20483 for poly-
nomial degree k = 3. The results agree very well with the DNS data up to the resolution limit
of the discretization. For higher polynomial degrees, an improved resolution capability of the
discretization scheme can be observed for the same number of unknowns, and the resolution
limit agrees well with the 1%-rule. In the inertial range, the energy spectrum is described more
accurately by a k−7/3 decay than the usual k−5/3 decay according to Kolmogorov, which is in
agreement with the results shown in Piatkowski (2019) and might be explained by the fact that
the turbulent flow is not fully homogeneous isotropic at that time. The reader is referred to Chap-
ter 7 for a more detailed discussion of energy spectra with a focus on the inviscid limit ν = 0,
and to Neumann (2018) for additional investigations on explicit sub-grid scale models.

2.6.7.3 Turbulent channel flow

The turbulent channel flow problem is a widely used benchmark problem to validate LES models
for turbulent, wall-bounded flows. In the context of high-order discontinuous Galerkin discretiza-
tions for the incompressible Navier–Stokes equations, this test case has been analyzed in Fehn
et al. (2018b, 2019a), Krank et al. (2017), Piatkowski (2019), Schroeder (2019).

2.6.7.3.1 Problem description The computational domain Ωh is a rectangular box with
physical dimensions (L1, L2, L3) = (2πδ, 2δ, πδ) where δ denotes the channel half-width. On
the walls located at x2 = ±δ, no-slip Dirichlet boundary conditions are prescribed, gu = 0, while
periodic boundaries are used in the x1 (streamwise) and x3 (spanwise) directions. The friction
Reynolds number is Reτ = uτδ/ν, where uτ =

√
τw/ρ denotes the wall friction velocity defined

as a function of the wall shear stress τw and the density ρ. The body force vector f driving the
flow acts in x1-direction, f = (f1, 0, 0). Defining ρ = 1, δ = 1, and f1 = 1, a balance of forces
in x1-direction implies τw = 1 and uτ = 1, so that the viscosity ν is given as ν = 1/Reτ .
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Figure 2.25: Turbulent channel flow problem: geometry/mesh for grid stretch factor γ = 1.8 and
refine level l = 4 (left) and velocity magnitude for Reτ = 180 (right).

To evaluate the accuracy of the results, the profiles in wall normal direction of the mean

velocity 〈u1〉, the root–mean–square values rms(ui) =
〈
u′i

2
〉 1

2 , i = 1, .., d, and the Reynolds
shear stress 〈u′1u′2〉 are considered, where statistical averages are denoted as 〈·〉 and fluctuations
as (·)′ = (·)−〈·〉. Velocities and components of the Reynolds stress tensor are normalized using
the numerically calculated friction velocity uτ , leading to u+

1 = 〈u1〉 /uτ , (u′i)
+ = rms(ui)/uτ ,

and (u′1u
′
2)+ = 〈u′1u′2〉 /u2

τ . The dimensionless wall normal coordinate is x+
2 = (x2 + 1)/l+

with l+ = ν/uτ . Note that the friction velocity uτ obtained as a result of a numerical simulation
is used to normalize profiles for the results shown in the following, which deviates from the
theoretical value uτ = 1 due to discretization errors. The simulated time interval is 0 ≤ t ≤
200T0, where the characteristic time scale T0 = L1/‖u‖max is defined as the flow-through
time based on the mean centerline velocity ‖u‖max = 〈u1〉 (x2 = 0), which is known a priori
from available DNS reference data. The sampling of statistical data is performed over the time
interval 100T0 ≤ t ≤ 200T0 and results are sampled every 10th time step. Accordingly, the
statistics are sampled over 100 flow-through times based on the mean centerline velocity. It has
been verified experimentally that the statistics can be considered as converged and that statistical
errors have a negligible effect on the overall accuracy of the results for the chosen parameters.

For an improved resolution of large velocity gradients close to the no-slip boundaries, a mesh
stretching in x2-direction is applied according to the hyperbolic mesh stretching function f :
[0, 1]→ [−δ, δ] defined in Krank et al. (2017)

x2 7→ f(x2) = δ
tanh(C(2x2 − 1))

tanh(C)
. (2.260)

The parameter C defines the mesh stretching and a value of C = 1.8 is used for all turbulent
channel flow simulations in the following. Due to the homogeneity of the flow in streamwise and
spanwise directions, elements are distributed equidistantly in x1- and x3-directions. A high-order
isoparametric mapping is used so that each individual element is stretched in x2-direction. As
discussed and observed in Fehn et al. (2019a), this improves the accuracy of results compared to
a linear mapping. An illustration of the mesh and the flow field is shown in Figure 2.25. Unless
specified otherwise, the BDF2 time integration scheme is used along with adaptive time stepping
and a constant Courant number of Cr = 0.4 relatively close to the stability limit. Temporal
discretization errors can be expected to be negligible for such a setup. Unless specified otherwise,
the dual splitting scheme is used and the default setup of the DG discretization as described in
Section 2.6.1. Note that the same numerical setup in terms of grid stretch factor and penalty
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Table 2.6: Turbulent channel flow at Reτ = 180: analysis of divergence error εD and continuity
error εC (mean values) for different solution strategies. The spatial resolution is l = 2
and k = 3 corresponding to an effective resolution of 163.

no penalty terms div penalty term div + conti penalty
εD εC εD εC εD εC

coupled solution approach 1.382 0.432 0.062 0.452 0.016 0.014
dual splitting scheme 0.249 0.134 0.028 0.078 0.016 0.013
pressure-correction scheme 1.374 0.430 0.062 0.455 0.015 0.012

factors of the divergence and continuity penalty terms is used for all mesh refinement levels and
for all Reynolds numbers in order to assess the predictive capabilities of the solver. Absolute
solver tolerances of εabs = 10−12 as well as relative solver tolerances of εrel = 10−6 are used for
all linear solvers.

2.6.7.3.2 Stability In a first step, a stability experiment is conducted in order to highlight
the importance of the divergence and continuity penalty terms. Instead of considering the kinetic
energy, the divergence and continuity error measures defined in Krank et al. (2017)

εD(uh) =
L
∫

Ωh
|∇ · uh| dΩ∫

Ωh
‖uh‖ dΩ

, εC(uh) =

∫
∂Ωh\Γh

| [uh] · n| dΓ∫
∂Ωh\Γh

|{{uh}} · n| dΓ
(2.261)

have proven effective in analyzing the stability properties for turbulent flows in the context of
high-order discontinuous Galerkin methods. In the above equations, L is a characteristic length
scale (given as L = δ for the turbulent channel flow problem) and ∂Ωh \ Γh denotes all inte-
rior element faces. Since the relevant effects and instabilities already occur for small Reynolds
numbers, a friction Reynolds number of Reτ = 180 is selected for this analysis. A very coarse
spatial resolution with refinement level l = 2 and a polynomial degree of k = 3 (resulting in
an effective resolution of 163) is chosen, since instabilities are expected to arise particularly in
the under-resolved regime. Principally, a Courant number of Cr = 0.3 is used for this stability
experiment, but smaller Courant numbers (Cr = 0.1) have to be used in case of insufficient
discretization schemes to avoid a blow-up due to a violation of the CFL condition.

Time averaged quantities of the divergence and continuity errors are listed in Table 2.6 for dif-
ferent formulations and for different solution strategies such as the coupled solution approach,
the dual splitting scheme, and the pressure-correction scheme. The formulation without addi-
tional penalty terms serves as a reference, while stabilized formulations with an additional diver-
gence penalty term or both divergence and continuity penalty terms are considerd as well. The
reference formulation shows large divergence and continuity errors of orderO(1) indicating that
this formulation does not lead to a stable and accurate discretization scheme for turbulent flow
problems. Including the divergence penalty term reduces the divergence error significantly, but
the continuity error remains high for the coupled solution approach and the pressure-correction
scheme. Interestingly, including the divergence penalty term does not only reduce the divergence
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error but also the continuity error in case of the dual splitting scheme. However, to obtain small
continuity errors for all solution strategies, the continuity penalty term has to be used as well.
Using both penalty terms leads to a robust discretization scheme where the divergence and con-
tinuity errors are small for all solution techniques. The results for the dual splitting scheme also
explain why the purely divergence penalty based approach has been preferred over the variant
including both divergence and continuity penalty terms in Krank et al. (2017), where only the
dual splitting scheme has been considered for discretization in time. In general, however, both
the divergence penalty term and the continuity penalty term are identified as necessary ingre-
dients to obtain a stable and accurate discontinuous Galerkin discretization for turbulent flow
problems. The large errors in Table 2.6 result in large oscillations and jumps in the velocity field
that prevent the practical use of the reference formulation without penalty terms as demonstrated
in Fehn et al. (2018b), where additional results (omitted here for reasons of brevity) are shown
for the statistical quantities of the flow for the different stabilization variants. Hence, both penalty
terms are used for all simulation results presented below.

2.6.7.3.3 Results The results shown in the following are compared to accurate DNS refer-
ence data from Moser et al. (1999) for Reτ = 180 denoted as DNS MKM99, and to reference
data from Del Alamo et al. (2004), Hoyas and Jiménez (2008) for Reτ = 950 denoted as DNS
AJZM04. Moreover, the results are compared to the AVM4 turbulence model (Rasthofer and
Gravemeier 2013) and the ALDM model (Hickel and Adams 2007) in order to evaluate the ac-
curacy of the present approach. The AVM4 model is a sophisticated turbulence model in the
context of variational multiscale methods using a multifractal approach, where the spatial dis-
cretization is based on continuous, stabilized, low-order finite element methods. The ALDM
model is a state-of-the-art implicit LES approach in the context of finite volume schemes.

Figure 2.26 shows results for a Reynolds number of Reτ = 180. An h-convergence test is
performed for polynomial degree k = 3 by increasing the refinement level from l = 2 to l =
4 so that the effective resolution increases from 163 to 643. Intentionally, also a setup with a
very coarse spatial resolution is studied in order to explicitly show when and how the results
degenerate. The numerical solution tends to the DNS reference solution for increasing spatial
resolution. For an effective resolution of 643 velocity degrees of freedom, the results agree very
well with the DNS data. The results for the 323, 643 resolutions appear to be comparable in
terms of accuracy as those presented in Ramakrishnan and Collis (2004), where an implicit
LES approach is used for DG discretizations of the compressible Navier–Stokes equations and
where comparable spatial resolutions are considered for Reτ = 180. To investigate the question
whether the accuracy of the results obtained for a given number of unknowns can be improved by
increasing the polynomial degree of the shape functions, an effective spatial resolution of 323 is
considered for three different polynomial degrees k = 3, 7, 15. Since the flow is under-resolved
for such coarse discretizations, it is unclear whether high-order methods are superior in terms of
accuracy. Numerical results are shown in Figure 2.26. For all polynomial degrees, the prediction
of statistical quantities is acceptable and the results achieve a similar level of accuracy as those
for the AVM4 and ALDM turbulence models. However, taking both mean velocity profiles and
the fluctuations into account, no clear advantage in terms of accuracy can be observed for very
high-order methods with polynomial degree k = 7, 15 as compared to the lower polynomial
degree k = 3. The results for k = 15 appear to be somewhat less accurate, and it was found
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(a) h-convergence test for polynomial degree k = 3 considering effective resolutions of 163, 323, 643.

(b) comparison to the AVM4 and ALDM turbulence models for the same effective resolution of 323.

Figure 2.26: Turbulent channel flow at Reτ = 180: results obtained for stabilized DG discretiza-
tion with divergence and continuity penalty terms using the dual splitting scheme.

that apparently more accurate results are obtained for k = 15 when using an affine mapping as
in Fehn et al. (2018b). Nevertheless, only results for the isoparametric mapping are shown here,
given that such a behavior can not be known a priori and that the study by Fehn et al. (2019a)
reported generally improved accuracy for isoparametric mappings. Due to the behavior observed
for high polynomial degrees for this example, only k = 3 will be considered in the following.3

3A possible explanation for this behavior could be that small flow structures are in fact better resolved for high
polynomial degrees, but that this effect is counter-balanced by the increased numerical dissipation of lower
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(a) h-convergence test for polynomial degree k = 3 considering effective resolutions of 323, 643, 1283.

(b) comparison to the AVM4 and ALDM turbulence models for the same effective resolution of 1283.

Figure 2.27: Turbulent channel flow at Reτ = 950: results obtained for stabilized DG discretiza-
tion with divergence and continuity penalty terms using the dual splitting scheme.

Figure 2.27 shows results for the turbulent channel flow problem at Reτ = 950. An h-
convergence test using polynomial degree k = 3 and refinement levels l = 3 to l = 5 corre-
sponding to effective resolutions of 323 to 1283 is performed. The results are compared to DNS
reference data as well as to the AVM4 and ALDM turbulence models for an effective resolution
of 1283. As for the lower Reynolds number case, results are shown for a very coarse spatial res-

order methods, such that the macroscopic behavior in terms of statistical quantities of the flow is comparable
for polynomial degrees ranging from k = 3 to k = 15.
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olution in order to demonstrate the accuracy of the scheme in the highly under-resolved regime.
For increasing spatial resolution, the accuracy of the results improves continuously and the re-
sults converge towards the DNS reference solution. Note that the results shown here differ from
those shown in the original publication (Fehn et al. 2018b) for the coarser spatial resolutions.
This is due to a different setup of the discretization scheme. In particular, the continuity penalty
term is here applied on both interior and boundary faces for improved robustness (Fehn et al.
2021a), while it has been applied only on interior faces in Fehn et al. (2018b). In this context,
a general observation made during extensive numerical studies of this flow problem is that a
seemingly perfect prediction of the mean velocity profile for very coarse resolutions might be
coincidence. Compared to the AVM4 and ALDM turbulence models with an effective resolution
of 1283, the present approach achieves a similar level of accuracy or is slightly more accurate
than the reference results for AVM4 and ALDM, e.g., the prediction of the Reynolds shear stress
is clearly more accurate for the present discretization scheme. Based on these results, it can
be concluded that the high-order discontinuous Galerkin discretization approach with consis-
tent stabilization terms is very promising for large-eddy simulation of incompressible flows and
appears to be highly competitive to state-of-the-art LES approaches. The fact that the present
approach is a purely numerical approach can be seen as an advantage over physically motivated
LES models for which model parameters often have to be calibrated to a specific flow problem.
Note also that – unlike the AVM4 and ALDM models – the present approach does not include
a correction term for wall-bounded flows, rendering the present DG discretization a generic nu-
merical approach that aims at obtaining a parameter-free turbulent flow solver.

Apart from the results shown here, a detailed comparison of low-order versus high-order meth-
ods for the turbulent channel flow problem has also been performed in Fehn et al. (2019a), with
an additional one-to-one comparison of the present L2-conforming discretization to an exactly
divergence-free Hdiv-conforming discretization. The work by Fehn et al. (2019a) has also inves-
tigated the impact of affine versus isoparametric element mappings, as well as the influence of
discretization parameters on the accuracy and predictive properties of the results by the example
of turbulent channel flow at Reτ = 395. DNS and LES computations for turbulent channel flow
at Reτ = 180 and Reτ = 590 have been shown in Krank et al. (2017) using an early version of
the present DG discretization approach. In the present work, an emphasis is put onto the robust-
ness and accuracy properties of the discretization scheme in the highly under-resolved regime.
Results of p-refinement studies on a mesh with a fixed number of elements considering Reynolds
numbers of Reτ = 180 and Reτ = 950 have been shown in Fehn et al. (2019c) using the present
incompressible DG solver, along with one-to-one comparisons to a compressible DG solver op-
erating at low Mach number in order to mimic the incompressible case. For reasons of brevity,
these results are omitted here. The influence of algebraic sub-grid scale models for the turbulent
channel flow problem has been investigated in Dockhorn (2017) in the context of the present DG
discretization.

2.6.7.4 Backward facing step

Often, neither an analytical solution nor DNS reference data is available for verification. This
section validates the present turbulent flow solver by comparison to experimental data for the
well-known backward facing step problem, see Figure 2.28 for a visualization of the geometry
and boundary conditions, as well as an instantaneous velocity field. In terms of turbulence, com-
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Figure 2.28: Backward facing step: geometry and boundary conditions for precursor simulation
strategy as well as a visualization of the flow field.

plexity is increased compared to previous examples since the backward facing step problem is
a wall-bounded flow with a free shear layer. A so-called precursor simulation strategy is used
to generate turbulent inflow data, meaning that a turbulent channel flow problem is solved on
a separate domain and the results of this simulation are mapped to the actual backward facing
step domain to prescribe the inflow boundary condition. Both simulations are performed simul-
taneously solving one time step for the precursor domain and afterwards for the actual domain.
The setup chosen here is taken from Rasthofer and Gravemeier (2013) and the reader is re-
ferred to this work for detailed information. The friction Reynolds number is Reτ = uτH/ν =
290 (=̂ReH = UcH/ν = 5540). Using the parameters H = 0.041, ν = 1.5268 · 10−5 yields
a friction velocity of uτ = Reτν/H = 0.107993 and a force of f1 = τw/H = 0.2844518
with τw = u2

τ .
The default setup of parameters is used, considering the dual splitting scheme with BDF2 and

adaptive time stepping (Cr = 0.3 is used for k = 2 and Cr = 0.4 for k = 5). The discrete time
derivative in the pressure Neumann boundary condition according to equation (2.41) is used.
An outflow boundary condition according to Gravemeier et al. (2012) is used in order to ensure
stability in case backflow occurs at the outflow boundary. Solver tolerances are εabs = 10−12

and εrel = 10−3.
Results are compared to experimental data from Kasagi and Matsunaga (1995) and denoted

as KM95 in the following, as well as to LES simulations from Rasthofer and Gravemeier (2013)
with the AVM4 turbulence model. To allow a fair comparison, spatial resolutions with a com-
parable number of unknowns are considered. A coarse resolution with approximately 1 million
unknowns is studied (the AVM4 results are obtained on a mesh with 233, 472 elements resulting
in 0.93 · 106 DoFs), and a fine resolution with approximately 8 million unknowns (the AVM4

results are obtained on a mesh with 1, 867, 776 elements resulting in 7.5 · 106 DoFs). For the
present solver, a coarse mesh with Nel(l = 0) = 21 elements is used. Choosing polynomial
degrees of k = 2 and k = 5, the coarse resolutions with 0.96 · 106 and 1.0 · 106 are obtained
for mesh refinement levels of l = 3 and l = 2, respectively. Increasing the refinement level
to l = 4 and l = 3 for the two polynomial degrees k = 2 and k = 5 results in the fine resolutions
with 7.7 · 106 and 8.3 · 106 unknowns, respectively. In addition, results are shown for a very fine
resolution with approximately 61 · 106 and 66 · 106 unknowns for l = 5, k = 2 and l = 4, k = 5,
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respectively. A mesh stretching function similar to Rasthofer and Gravemeier (2013) is used in
order to refine the mesh near the wall boundaries and to improve the resolution in the boundary
and shear layers, see Dockhorn (2017) for details.

The quality of the results is assessed along vertical lines located at x1/H = 0, 1, . . . , 10 in
terms of the mean streamwise velocity, root-mean-square values for the three velocity com-
ponents, and the Reynolds shear stress 〈u′1u′2〉, where the mean centerline velocity Uc is used
to normalize all profiles. The a-posteriori result Uc of each simulation is used, implying that
〈u1(x1 = −2H, x2 = H)〉 /Uc = 1 for all runs. The simulated time interval is 0 ≤ t ≤ 300T0,
where the characteristic time scale T0 = H/Uc is defined as the flow-through time based on
the mean centerline velocity Uc (where Uc is obtained a-priori from the value of ReH specified
above) and the step height H . The precursor starts earlier at time t = −300T0 in order to obtain
a developed turbulent flow in the precursor domain. The sampling of statistical data is performed
over the time interval 100T0 ≤ t ≤ 300T0 and results are sampled every 10th time step.

Results are shown in Figure 2.29 for the coarse resolution and in Figure 2.30 for the fine
resolution. For the coarse mesh, the mean velocity in streamwise direction is already predicted
quite accurately, while larger deviations from the experimental results can be observed for the
Reynolds stresses. With increasing spatial resolution, convergence towards the experimental re-
sults can clearly be observed. Without going into details, the results for the high polynomial
degree k = 5 appear to be more accurate than those for the lower degree k = 2 overall. When
compared to the results for the AVM4 model from Rasthofer and Gravemeier (2013), a similar
level of accuracy can be observed for a similar number of unknowns. The results for AVM4 are
often between those for k = 2 and those for k = 5. Taking the Reynolds shear stress as an
example, the results for k = 2 are comparable to AVM4 on the coarse mesh, and the results
for k = 5 are comparable to AVM4 on the fine mesh. To evaluate the accuracy of the different
LES computations, additional results are shown for the very fine resolution in Figure 2.31. The
results for k = 2 and k = 5 are close to each other for this resolution, indicating that the solution
becomes more and more resolved. The agreement with experimental results is very good and
deviations can mainly be observed in regions where the experimental results show a large scat-
ter. All in all, the present implicit DG solver gives results in agreement with experimental data
and consistent with state-of-the-art LES approaches. As a sidenote, the predictive capabilities of
the present implicit LES approach become evident when realizing that classical LES sub-grid
scale models may deteriorate the results significantly for this problem, see Dockhorn (2017),
Robalo Rei (2017). The close agreement with the AVM4 results for comparable problem size is
remarkable given that the underlying numerical methods differ significantly and the meshes are
also different.

One conclusion that one might draw from these results is that the impact of turbulence mod-
eling with respect to accuracy is clearly limited for a given spatial resolution, but that the most
reliably way to improve the accuracy in LES is instead increasing the spatial resolution (which
is the big promise of LES compared to RANS). Against this background, a successful LES ap-
proach is one that – apart from good robustness and accuracy properties – is computationally
efficient, which bridges the gap to upcoming chapters.
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Figure 2.29: Backward facing step: results obtained for coarse resolution.
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Figure 2.30: Backward facing step: results obtained for fine resolution.
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Figure 2.31: Backward facing step: results obtained for very fine resolution.
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Figure 2.32: Visualization of numerical results for FDA benchmark nozzle model for Reynolds
numbers of Reth = 500, 2000, 3500, 5000, 6500 (from top to bottom), see Fehn
et al. (2019b).

2.6.7.5 More turbulent flow examples

Apart from the results shown here, the present DG discretization approach has been extensively
validated for the FDA benchmark nozzle model in Fehn et al. (2019b). This benchmark problem
has been designed to obtain a benchmark setup in computational fluid dynamics representative
of flow configurations in biomedical devices. An illustration of the flow problem is shown in
Figure 2.32 for Reynolds numbers of Reth = 500, 2000, 3500, 5000, 6500, covering the laminar,
transitional, and turbulent regimes characteristic of flows in biomedical engineering. In the study
by Fehn et al. (2019b), a precursor simulation approach has been suggested as for the backward
facing step problem shown above. While the original goal of this study has been the validation
of the DG discretization scheme, it turned out that the FDA benchmark problem complicates
the investigation of the discretization properties of a numerical method due to a large sensitivity
of results (in particular the location of the jet breakdown for transitional and turbulent cases)
with respect to certain parameters. The reader is referred to Fehn et al. (2019b) for an in-depth
discussion of these aspects.

Moreover, the present DG discretization framework has also been validated by the example of
the well-known periodic hill flow problem in Krank et al. (2018a), Kronbichler et al. (2018b) in
terms of DNS and LES computations. Extensions to wall-modeling as well as RANS and hybrid
RANS/LES modeling have been developed by Krank et al. (2018b, 2019a,b).

2.7 Conclusion and outlook

This chapter has discussed modern discretization methods for the incompressible Navier–Stokes
equations. With respect to discretization in time, different solution approaches have been dis-
cussed with an emphasis on projection-type methods as computationally efficient alternatives to
a coupled solution approach. Principally, projection methods are state-of-the-art techniques and
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attention is paid here to the imposition of boundary conditions and other pecularities in the con-
text of DG discretizations. The main emphasis has been on obtaining a robust DG discretization
approach as a generic and accurate flow solver for laminar, transitional, and turbulent flow prob-
lems. The problem of instabilities observed for small time step sizes is solved by a consistent
discretization of the velocity–pressure coupling terms based on integration-by-parts with consis-
tent numerical fluxes and boundary conditions. It has been shown that mixed-order polynomials
should be used in order to ensure inf–sup stability, also for projection-type methods that might
inherently contain inf–sup stabilizing terms.

The main novelity of this chapter is a stabilization approach for L2-conforming discretizations
based on divergence and continuity penalty terms in order to ensure robustness and accuracy
in under-resolved scenarios. This approach has been motivated theoretically as a technique to
weakly enforce mass conversation and energy stability, and has been demonstrated to perform
very well in practice by studying a sequence of increasingly complex benchmark problems. Op-
timal convergence behavior has been demonstrated for problems with smooth solutions, and
the accuracy of high-order methods has been assessed critically when applied to more realis-
tic flow problems which either exhibit geometric complexities or operate in the under-resolved
regime. The examples considered here are still academic, but might nevertheless be informative
in terms of which level of accuracy can be expected from high-order discretizations (at best)
when applied in an industrial context. On the one hand, it might be disappointing that optimal
convergence behavior of high-order methods is lost for these turbulent flow problems. On the
other hand, the present results are nevertheless encouraging given that the DG discretization
proposed here is highly competitive to the most accurate LES approaches currently available
and, essentially, does not contain any turbulence model parameters. This makes one confident
that it might be possible to address the long-standing problem of LES modeling by robust and
accurate discretization schemes, with the ultimate goal to remove the burden of physical sub-grid
modeling. This conclusion might be tentative in light of the fact that the examples studied here
are moderate-Reynolds-number flows. In this context, however, it should be noted that a new
class of problems is opened in this thesis by the present DG discretization approach, namely the
goal to obtain grid-converged results for the challenging inviscid Taylor–Green problem with
infinite Reynolds number studied in detail in Chapter 7.

Taking the DG formulation from Hesthaven and Warburton (2007) as a reference (from which
this PhD project has originally started), the state-of-the-art could be improved significantly,
which can be seen as a necessary step towards preparing this type of methods for industrial
LES. In retrospect, parts of the DG community have been over-optimistic in expecting that
an upwind flux will do the job in case of the incompressible Navier–Stokes equations and
convection-dominated flows without further stabilization techniques in an L2-conforming set-
ting. The present thesis identified severe robustness issues for state-of-the-art approaches and
could significantly contribute to the question of which ingredients are actually necessary to ob-
tain desired robustness properties in the incompressible case. Comparisons to Hdiv-conforming
methods (Fehn et al. 2019a) underlined these conclusions, highlighting the importance of mass
conservation and energy stability in addition to well-known techniques such as upwinding for
convective terms and consistent integration of nonlinear terms. An advantage of L2-conforming
discretizations over H1-conforming discretizations might be that convection-stabilization ap-
pears to be less of a concern and that stabilized formulations for improved mass conservation do
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not suffer from over-stabilization. A lack of pressure-robustness for L2-conforming discretiza-
tions is a disadvantage compared to exactly divergence-free Hdiv-conforming discretizations.

The L2-conforming approach is straightforward to implement since it only requires “stan-
dard” finite element ingredients. It is attractive since the inversion of the mass matrix is very
cheap and since fast preconditioning techniques are available. In favor of these attractive prop-
erties, a compromise made is that pressure-robustness is formally given up compared to exactly
divergence-free Hdiv-conforming methods. In the context of method development, an extension
of the present incompressible Navier–Stokes solvers in the ExaDG software project (built upon
the deal.II finite element library) towards Hdiv-conforming elements could therefore be a
very interesting direction for the future. This would enable a comparison of both approaches
within the same implementation framework and allow to address the question of overall com-
putational efficiency. Application to industrial flows would be one of the next logical step. This
naturally calls for meshes composed of simplicial elements, the support of which is currently
being initiated in the deal.II library. Finally, the implementation should be extended towards
enabling adaptively refined hexahedral meshes w.r.t. matrix-free implementations and multigrid
solvers in a high-order DG context.
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3 Extension to natural convection
flows

This chapter presents an extension of the incompresible flow solvers from Chapter 2 to coupled
flow–transport problems. In addition to the incompressible Navier–Stokes equations, a transport
equation is solved for a scalar quantity, where the transport velocity is the solution of the incom-
pressible flow problem. This leads to active or passive scalar transport, depending on whether
the additional transport equation couples back to the incompressible Navier–Stokes equations or
not. An important representative of transport problems with an active scalar are buoyancy-driven
flows based on the Boussinesq approximation, termed natural convection flows in the following.
In the presence of gravitational forces, temperature differences imply differences in the density,
and the related buoyancy force enters the momentum equation as a source term. Variations of
the density are neglected in all other terms of the equations. The set of governing equations is

∂u

∂t
+∇ · Fc(u)−∇ · Fv(u) +∇p = (1− β (θ − θref)) g in Ω× [0, T ] , (3.1)

∇ · u = 0 in Ω× [0, T ] , (3.2)
∂θ

∂t
+∇ · (u θ)− a∇2θ = 0 in Ω× [0, T ] , (3.3)

where β is the thermal expansion coefficient, θ the temperature, θref a reference temperature, g
the gravitational force, and a the thermal diffusivity. The remaining quantities have been de-
scribed in Section 2.2 for the incompressible Navier–Stokes equations. Note that this class of
problems then also contains the more simple case of passive scalar transport as a special case.
Exploiting∇ · u = 0, the transport equation can be alternatively written in convective form

∂θ

∂t
+ (u · ∇) θ − a∇2θ = 0 in Ω× [0, T ] . (3.4)

The following non-dimensional quantities can be introduced

Pr =
ν

a
, Gr =

gβ (θ − θref)L
3
ref

ν2
, Ra = GrPr . (3.5)

whereLref is a characteristic length scale, Pr the Prandtl number, Gr the Grashof number, and Ra
the Rayleigh number. The Prandtl number describes the ratio of molecular transfer of momentum
to molecular transfer of heat, the Grashof number the ratio of buoyancy forces to viscosity, and
the Rayleigh number the ratio of buoyancy forces to combined heat and momentum diffusivities.
Defining the characteristic velocity and the corresponding Reynolds number as

Uref =
√
gβ (θ − θref)Lref , Re =

UrefLref

ν
, (3.6)
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the Grashof number and Rayleigh number can be alternatively written as Gr = Re2 and Ra =
Re2Pr, respectively.

This chapter proposes a novel L2-conforming DG discretization for natural convection flows
using a weakly-coupled solution strategy without sub-iterations in order to efficiently solve the
coupled flow–transport problem. A key ingredient towards robustness in the L2-conforming set-
ting with weakly divergence-free velocity is to formulate the transport term in the temperature
equation in convective form instead of the conservative form. Numerical results investigate and
demonstrate the robustness of the proposed formulation.

3.1 Motivation

It is well-known that natural convection flows pose special requirements in terms of mass con-
servation in order to obtain stable and accurate solutions and to avoid spurios velocities, see for
example Dawson et al. (2004), Dorok et al. (1994), Galvin et al. (2012), Gerbeau et al. (1997),
Pelletier et al. (1989), Waluga et al. (2016). Two aspects appear to be important in terms of the
accuracy and stability of discretization schemes for natural convection problems:

• With respect to the incompressible flow problem, the topic is also closely related to the
aspect of pressure-robustness as discussed in Section 2.4.4. In case of natural convection
flows with large irrotational forces, large velocity errors (spurious velocities) might occur
in particular if the viscosity becomes small.

• With respect to the coupled flow–transport problem, mass-conservation errors of the dis-
crete velocity solution might adversely impact the temperature solution. Since the temper-
ature enters the incompressible Navier–Stokes equations via the body force term according
to the Boussinesq approximation, this feedback might even lead to instabilities.

Discretization schemes such asHdiv-conforming formulations along with a velocity space whose
divergence is in the pressure space yield a velocity that is normal-continuous and exactly diver-
gence-free, see also Section 2.4.3. Such schemes are pressure-robust (see equation (2.168)), and
the discrete velocity is exactly mass-conserving, so that continuity errors can not be amplified
by the temperature equation for coupled flow–transport problems (see Section 3.4 below). The
discretization scheme proposed in Chapter 2 for the incompressible Navier–Stokes equations is
not strictly pressure-robust and is based on penalty terms for improved mass conservation. It is
therefore interesting to analyze how stable and accurate discretization schemes can be devised
for the class of natural convection problems. The analysis in Dawson et al. (2004) suggests
that the discretization scheme for the incompressible Navier–Stokes equations does not have to
be exactly mass-conserving, but that a compatibility condition should be fulfilled between the
discretization schemes for the flow and transport equations.

3.1.1 State-of-the-art

Table 3.1 summarizes previous contributions in the field of discontinuous Galerkin methods
for natural convection problems. The formulations are categorized with respect to the function
spaces for velocity and pressure, the aspect of stabilization techniques for the incompressible
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Table 3.1: Publications from the literature addressing the solution of natural convection prob-
lems by discontinuous Galerkin discretizations. Legend: The symbol !means that
this option is considered in a given study.

Study Function space Stabilization ∇ · (u θ) (u · ∇)θ

Bassi et al. (2007),
Franciolini et al. (2017)

L2 (equal-order) AC inviscid flux !

Schroeder and Lube (2017) L2 (mixed-order) ∇ · uh, [ph] !

L2 (equal-order) ∇ · uh, [ph] !

Hdiv (mixed-order) ∇ · uh = 0, [uh] · n = 0 !

Piatkowski (2019) L2 (mixed-order) Hdiv-reconstr. !

Busto et al. (2020) L2 (equal-order) staggered DG !

Present work L2 (mixed-order) ∇ · uh, [uh] · n ! !

flow problem as well as exact fulfillment of the divergence-free constraint, and the type of for-
mulation (convective, conservative) chosen for the transport term in the temperature equation.
While various formulations have been presented in the literature with application to natural con-
vection problems, the following discussion reveals that there appears to be no clear understand-
ing of which ingredients are necessary to ensure a robust simulation of this type of problems in
an L2-conforming setting:

The method proposed in Bassi et al. (2007) and also used in Franciolini et al. (2017) is an L2-
conforming DG discretization where the computation of the inviscid fluxes is based on an artifi-
cial compressibility approach that acts as a stabilization allowing the use of equal-order polyno-
mials (inf–sup stability) according to Bassi et al. (2007). It is unclear whether this stabilization
also helps regarding the aspects of mass conservation and energy stability highly relevant for L2-
conforming discretizations as discussed in Chapter 2. The convective term in the temperature
equation is used in conservative formulation.

Schroeder and Lube (2017) consider grad-div stabilization for both equal-order and mixed-
order polynomials. Additionally, a pressure-jump penalization is considered in both cases, even
though this stabilization is only necessary for inf–sup stability in case of an equal-order formu-
lation (Cockburn et al. 2009). The used penalty terms have not been designed with consistent
physical units in mind, and heavy grad-div stabilization is considered with penalty factors vary-
ing from order unity up to 109, which might pose difficulties when using iterative solvers. Addi-
tionally, an exactly divergence-free Hdiv-conforming discretization is also considered, for which
additional stabilization would be superfluous. The transport term in the temperature equation is
formulated in convective form without explanation.

Piatkowski (2019) uses an L2-conforming DG discretization with mixed-order polynomials
and an Hdiv-reconstruction as a stabilization technique in the projection step of the pressure-
correction scheme for the incompressible Navier–Stokes equations. The resulting velocity field
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is pointwise divergence-free but not normal-continuous between elements. The convective term
in the temperature equation is written in conservative form.

Busto et al. (2020) present a staggered DG approach for natural convection problems using
equal-order polynomials for velocity and pressure. The convective term of the temperature equa-
tion is written in conservative formulation and no additional stabilization techniques are used for
the incompressible flow problem. However, the authors mention that artificial viscosity has been
used to avoid instabilities. Results are shown mainly for fine spatial resolutions, so that energy
stability and robustness for highly under-resolved scenarios is not entirely clear for this approach.
Note that the present work only refers to the Eulerian approach for the incompressible model un-
der the Boussinesq assumption presented in Busto et al. (2020), where also a semi-Lagrangian
approach and a fully compressible model are presented that are not discussed here.

3.1.2 Novel contributions of the present work
Numerical results in Chapter 2 provide evidence that the use of both divergence and normal-
continuity penalty terms are necessary ingredients to obtain a robust and accurate flow solver,
see also Akbas et al. (2018), Fehn et al. (2018b). Mixed-order polynomials are used to ensure
inf–sup stability, and no pressure stabilization is therefore considered in the present work. An
interesting question to be investigated is whether the design of the penalty parameters by means
of dimensional analysis ensuring consistent physical units is not only appropriate for problems
of forced convection, but also natural convection without the need to readjust the formulation
or the penalty parameters. This chapter investigates in detail the formulation of the transport
term in the temperature equation, with the main conclusion that the convective formulation is
necessary for robustness in case of a velocity approximation that is not exactly mass-conserving.
The motivation behind is as follows (see also Chippada et al. (1998)): The transport equation can
be reformulated as

∂θ

∂t
+ θ∇ · u+ (u · ∇) θ − a∇2θ = 0 . (3.7)

In the continuous case it holds ∇ · u = 0. Then, the temperature equation contains only deriva-
tives of the temperature in either space or time, and also the Boussinesq term in the momentum
equation contains only the temperature difference to a reference value. Hence, the overall tem-
perature level θref can be chosen arbitrarily without affecting the solution of the problem. In
the discrete case, however, the divergence-free constraint is only fulfilled approximately for the
present stabilized DG discretization,∇ ·uh ≈ 0. In this case, it can be expected that the temper-
ature solution depends on the temperature level, since divergence errors of the velocity field are
scaled by the temperature, i.e., this term increases for larger absolute values of the temperature.
Since the temperature equation couples back to the incompressible Navier–Stokes equations, this
effect might even lead to instabilities. Hence, the present work proposes to skip this potentially
problematic term in the temperature equation and to use the convective form of the transport term
in the temperature equation instead of the conservative form. The above discussion is of course
simplified since it is based on the continuous model, and the reader is referred to Section 3.4 for
a more thorough discussion considering the discrete-in-space problem, for which the reasoning
is slightly more complicated. Nevertheless, theoretical and numerical investigations shown in
this chapter justify the above conclusion.
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During the development of the discretization methods presented in this chapter, it has been
observed that some formulations produce stable results when choosing the parameters and spa-
tial resolutions shown in the literature, but that the same formulations lacked robustness when
changing parameters such as the absolute temperature level towards higher values (which should
not affect results for a robust numerical method), or the spatial resolution towards more strongly
under-resolved scenarios. While these observations might point to deficiencies of the present
discretization schemes for certain formulations, these results might also shed light on previous
studies in the sense that it appears to be unclear whether these formulations are really robust
discretization schemes. Concretely, the formulations in Bassi et al. (2007), Busto et al. (2020),
Franciolini et al. (2017), Piatkowski (2019) might not be robust because the conservative formu-
lation ∇ · (u θ) is used for the transport equation along with a velocity field that is not exactly
mass-conserving, i.e., these works do not argue that their discretization schemes fulfill a com-
patibility condition for the coupled flow–transport problem according to Dawson et al. (2004).
Furthermore, energy stability of these schemes is unclear (see also the discussion in Chapter 2).
The L2-conforming formulation in Schroeder and Lube (2017) might not be robust because no
normal-continuity penalty term is used (see also Akbas et al. (2018)), and because the penalty
factor is chosen as a constant factor without paying attention to physically consistent units (see
also Fehn et al. (2018b)). According to the theoretical consideration and numerical results shown
in this chapter, the use of the convective formulation for the transport term can be expected to
yield a robust solver for the flow–transport coupling. In summary, the goal of this chapter is to
provide insights into which formulations are required to obtain a robust discretization scheme.
According to the author’s opinion, a necessary ingredient to achieve this goal is to explicitly
show results for formulations that lack robustness. For this reason, the present work focuses on
robustness tests with a qualitative assessment of results, while a detailed quantitative assessment
of results is omitted given that this is not expected to provide further insights compared to the
state-of-the-art.

Principally, the constant gravitational force g in the momentum equation (3.1) could also
be skipped since this term only adds a hydrostatic component to the pressure solution in the
continuous case, and does not affect the velocity solution for pressure-robust discretizations in
the discrete case. Some works using non pressure-robust discretizations skip this term and solve
only for the dynamic pressure variations. From the point of view of pressure-robustness, this
might result in an easier setup that might prevent numerical inaccuracies or even instabilities.
Since the present discretization scheme is not strictly pressure-robust and since the aim of this
chapter is to identify instabilities, the hydrostatic part is kept in the equations in order to test the
scheme in a potentially more challenging setup. For practical applications, it might nevertheless
be reasonable to skip this term for improved accuracy due to a smaller pressure norm.

Another motivation for developing DG-based discretization schemes as shown in this chap-
ter is to avoid the need for stabilizing the temperature equation, which is typically necessary
when discretizing this equation with continuous finite element methods and when considering
convection-dominated problems, see for example the work by Kronbichler et al. (2012) deal-
ing with problems of earth mantle convection at high Rayleigh numbers and using an entropy
viscosity method for stabilization of the temperature equation.
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3.2 Temporal discretization of scalar transport equation

A weakly-coupled solution strategy without sub-iterations between the incompressible Navier–
Stokes problem and the scalar transport problem is used here for reasons of computational effi-
ciency. A method-of-lines approach is chosen with time integration based on BDF and extrapola-
tion schemes similar to the time integration strategy used in Kronbichler et al. (2012) to solve nat-
ural convection problems under the Boussinesq approximation. In the current implementation,
the three time integration strategies presented in Section 2.3 can be used to solve the incompress-
ible Navier–Stokes problem in case of coupled flow–transport problems. For brevity, equations
are shown only for the coupled solution approach in the following. To resolve the velocity–
temperature coupling, a high-order extrapolation of the temperature is used in the Boussinesq
term on the right-hand side of the momentum equation. Then, if convective terms are treated
implicitly, the following problem needs to be solved (where un+1 in the temperature equation is
already available from the incompressible flow problem)

γn0u
n+1 −

∑J−1
i=0 α

n
i u

n−i

∆tn
+∇ · Fc(u

n+1)−∇ · Fv(un+1) +∇pn+1 =(
1− β

(
J−1∑
i=0

βni θ
n−i − θref

))
g ,

∇ · un+1 = 0 ,

γn0 θ
n+1 −

∑J−1
i=0 α

n
i θ

n−i

∆tn
+
(
un+1 · ∇

)
θn+1 − a∇2θn+1 = 0 ,

(3.8)

using the notation introduced in Section 2.3. If convective terms are treated explicitly, the fol-
lowing problem needs to be solved

γn0u
n+1 −

∑J−1
i=0 α

n
i u

n−i

∆tn
+

J−1∑
i=0

βni ∇ · Fc(u
n−i)−∇ · Fv(un+1) +∇pn+1 =(
1− β

(
J−1∑
i=0

βni θ
n−i − θref

))
g ,

∇ · un+1 = 0 ,

γn0 θ
n+1 −

∑J−1
i=0 α

n
i θ

n−i

∆tn
+

J−1∑
i=0

βni
(
un−i · ∇

)
θn−i − a∇2θn+1 = 0 .

(3.9)

If the convective term is formulated in conservative formulation in the transport equation, the
formulation ∇ · (un+1θn+1) is used in the implicit case and

∑J−1
i=0 β

n
i ∇ · (un−iθn−i) in the ex-

plicit case. Note that the choice of an explicit vs. implicit formulation of convective terms can
be made independently for the incompressible flow solver and the scalar transport solver in the
present implementation. In case of an explicit treatment of the convective term in both the in-
compressible flow problem and the transport equation with a time step restriction according to
the CFL condition, the minimum time step size of the two sub-problems is used as the global
time step size in order to advance both solvers synchronously in time. In case of adaptive time
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stepping, the two solvers of the partitioned algorithm need to communicate the new time step size
after each time step, in addition to the exchange of solution vectors between the weakly-coupled
solvers. As for the incompressible flow solvers, the diffusive term in the transport equation is for-
mulated implicitly to avoid the more severe time step restriction related to differential operators
with second derivatives.

An implicit formulation of the convective term in the temperature equation might be particu-
larly attractive from the point of view of computational costs for applications dealing with creep-
ing flow problems such as earth mantle convection. This type of problem is typically modeled
by solving only the steady Stokes equations instead of the full incompressible Navier–Stokes
equations. Since the temperature equation is much cheaper to solve than the Stokes problem,
overcoming explicit time step restrictions stemming from the temperature equation often proves
more efficient than for an isolated incompressible Navier–Stokes problem (the number of time
steps is reduced and solving the Stokes problem typically does not become more expensive for
larger time step sizes).

3.3 Discontinuous Galerkin discretization of scalar
transport equation

This section briefly describes the DG discretization of the temperature equation for the conser-
vative and convective formulations of the transport term. The reader is referred to Section 2.4 for
an introduction of the notation used here as well as the DG discretization of the incompressible
flow problem. The finite element space chosen for the temperature equation is

Vθh =
{
θh ∈ L2(Ωh) : θh (xe(ξ)) |Ωe = θ̃eh(ξ)|Ω̃e ∈ V

θ
h,e = Qkθ(Ω̃e) ∀e

}
, (3.10)

where kθ is the polynomial degree of the shape functions for the scalar variable θ that may be
chosen independently of ku, kp. Unless specified otherwise, kθ = ku is chosen here. The weak
DG formulation of equation (3.3) or equation (3.4) reads: Find θh ∈ Vθh such that

me
h,θ (ιh, θh) + ceh,θ (ιh, θh,uh) + a leh (ιh, θh) = 0 , (3.11)

for all ιh ∈ Vθh,e and for all elements e = 1, ..., Nel, where me
h,θ denotes the scalar mass matrix

operator and where leh is the SIPG discretization of the scalar Laplace operator discussed in Sec-
tion 2.4.2.3. The DG discretization of the convective term in conservative form, equation (3.3),
is given as

ceh,θ (ιh, θh,uh) = − (∇ιh,uhθh)Ωe
+ (ιh, (uhθh)

∗ · n)∂Ωe
, (3.12)

using the following local Lax–Friedrichs flux

(uhθh)
∗ = {{uhθh}}+

λθ
2

JθhK , (3.13)

where λθ = max
(
|u−h · n|, |u

+
h · n|

)
. For the alternative convective formulation, the DG dis-

cretization reads

ceh,θ (ιh, θh,uh) = + (ιh, (uh · ∇) θh)Ωe
+ (ιh, {{uh}} · n (θ∗h − θh))∂Ωe

, (3.14)
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using the following upwind flux

θ∗h = {{θh}}+
1

2
sign ({{uh}} · n) [θh] . (3.15)

For the temperature field, Dirichlet and Neumann boundary conditions can be prescribed where
the mirror principle is used for the weak imposition of boundary conditions as has been described
in Section 2.4 for the incompressible Navier–Stokes equations. Since the term uhθh is nonlinear,
an over-integration strategy according to the 3/2-rule can be used (assuming kθ = ku) in the
current implementation as an alternative to the standard quadrature rule with kθ + 1 quadrature
points. Unless specified otherwise, this over-integration strategy will be used for the numerical
results shown in this chapter.

3.4 Stability of flow–transport coupling for the discrete
problem

In Section 3.1, the requirement has been formulated that the numerical solution should not de-
pend on the temperature reference value θref for robust flow–transport solvers. To test whether
the absolute temperature level impacts the numerical solution for the discrete problem, one can
insert θh(x, t) = θref + ∆θh(x, t) with θref = const into the weak formulation and exploit the
fact that the transport term is linear in θ for both convective and conservative formulations. For
a robust numerical method, the term containing θref should vanish. In case of the conservative
formulation, this term becomes

ceh,θ (ιh, θref ,uh) = θref

(
− (∇ιh,uh)Ωe

+ (ιh, {{uh}} · n)∂Ωe

) ?
= 0 , (3.16)

The above equation looks like the continuity equation (2.77) with the velocity divergence term
according to equation (2.97). However, care has to be taken since the test function belongs to the
finite element space for the temperature, which might be richer than the space for the pressure.
Hence, the above term does not become zero in general. Indeed, this term vanishes for normal-
continuous and exactly divergence-free velocity approximations under the assumption of exact
numerical integration according to equation (2.166). However, for L2-conforming discretiza-
tions, this term vanishes only if (i) the coupled solution approach is used where the divergence
and continuity penalty terms are applied in the momentum equation (2.187) instead of a sepa-
rate postprocessing equation (2.191), so that the continuity equation (2.188) is fulfilled, (ii) the
velocity divergence term is discretized in weak form, equation (2.97), or integrals are evaluated
exactly so that strong and weak formulations of the discrete velocity divergence term are iden-
tical, and (iii) the temperature weighting functions are within the space of pressure weighting
functions, Vθh ⊆ V

p
h. Applying the penalty terms in a postprocessing step can be expected to

perturb the discrete continuity equation (2.188). The discrete continuity equation will also not
be fulfilled exactly for projection-type solution methods. Using mixed-order polynomials for ve-
locity and pressure, kp = ku − 1, requires kθ ≤ kp < ku in order to fulfill the above condition
for the temperature weighting functions.

Instead, one obtains the following result in case of the convective formulation

ceh,θ (ιh, θref ,uh) = − (ιh, (uh · ∇) θref)Ωe
+ (ιh, {{uh}} · n (θref − θref))∂Ωe

= 0 , (3.17)
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Figure 3.1: Differentially heated cavity: illustration of geometry and boundary conditions as well
as steady-state solution for Ra = 106,Pr = 1.

i.e., this problematic term vanishes for all discrete velocity fields uh, in particular for those
that are not exactly divergence-free or that are discontinuous between elements. Note that this
line of argumentation is identical to the compatibility condition for flow–transport problems dis-
cussed in Dawson et al. (2004), where this property of discretization schemes for flow–transport
problems is denoted as zeroth-order accuracy and is examined for different continuous and dis-
continuous Galerkin schemes. Zeroth-order accuracy means that a constant temperature field
is preserved in the discrete case independently of the discrete velocity field. A discontinuous
Galerkin discretization of the transport term in convective formulation as preferred here has,
however, not been discussed in Dawson et al. (2004). Furthermore, the point here is that this
property does not only affect accuracy, but essentially may trigger numerical instabilities for
coupled flow–transport problems such as problems of natural convection under the Boussinesq
approximation discussed in this chapter. One can conclude that the convective formulation of the
transport term is compatible to all incompressible Navier–Stokes solvers discussed in this work
without requiring exactly mass-conserving velocity fields or a certain polynomial degree for the
temperature shape functions.

Remark 3.1 The diffusive term is unproblematic w.r.t. shifting the temperature level by a con-
stant value, since all terms of the SIPG discretization contain either derivatives or jumps that
vanish in case of a constant solution, i.e., leh (ιh, θref) = 0.

Remark 3.2 According to the above argumentation, one might suspect that the formulations
proposed in Bassi et al. (2007), Busto et al. (2020), Franciolini et al. (2017), Piatkowski (2019)
using the conservative formulation of the transport term (see Table 3.1) do not guarantee robust-
ness regarding the flow–transport coupling if kθ > kp.

Remark 3.3 Note that the discussion regarding the stability of the flow–transport coupling is
very similar to that of pressure-robustness according to equation (2.168). While exactly mass-
conserving formulations heal both problems, it should be emphasized that the effect discussed
here should be considered independently of the aspect of pressure-robustness. A pressure-robust
method is not necessarily exactly mass-conserving and might therefore still suffer from the prob-
lem discussed here.
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3 Extension to natural convection flows

Remark 3.4 Note that there is a strong analogy in the argumentation between the aspect of
zeroth-order accuracy discussed here and the geometric conservation law properties of ALE
formulations for moving meshes (see Section 8.4.5), addressing the question whether the discrete
formulation is able to preserve a constant flow field independently of the mesh velocity (free-
stream preservation property). Interestingly (or expectedly), the convective formulation is also
the natural formulation for ALE-type problems.

3.5 Numerical results

This section shows numerical results for benchmark problems frequently studied in the context
of natural convection solvers. The robustness of the conservative and convective formulations is
investigated for the differentially heated cavity problem. Then, the problem of a rising thermal
bubble in the limit of vanishing viscosity and thermal diffusivity is studied using the convective
formulation. Finally, results are presented for Rayleigh–Bénard convection problems in two and
three space dimensions, and an application on spherical domains is studied which is motivated
by earth mantle convection problems.

3.5.1 Two-dimensional differentially heated cavity

As a first example, the heated cavity problem is considered, which is a standard benchmark for
natural convection flow solvers and has been studied for example in Akbas et al. (2018), Bassi
et al. (2007), Busto et al. (2020), Schroeder and Lube (2017) in the context of high-order DG
discretizations. A large Rayleigh number of Ra = 108 is considered here, focusing on aspects of
robustness of the discretization and under-resolved application scenarios.

The problem setup is described in Figure 3.1. The domain is a rectangular box Ω = [−0.5, 0.5]2

in two space dimensions with no-slip boundary conditions on all boundaries, u = 0. Dirichlet
boundary conditions are prescribed for the temperature at the left and right boundaries, where
the left boundary is heated, θleft = θref + ∆θ > θright = θref . The lower and upper boundaries
are adiabatic, ∇θ · n = 0. At time t = 0, set θ = θref and u = 0. The following parameters are
chosen: L = 1, g = (0,−10)T ,Pr = 1,Ra = 108,∆θ = 1, β = 1/300. Then, the diffusivities
are given as ν =

√
gβ∆θL3Pr/Ra and a = ν/Pr. The simulation is performed over a time

interval of 0 ≤ t ≤ T = 10L/U , where U =
√
gβ∆θL is the characteristic velocity. Note

that a much longer time interval would be necessary to reach the steady-state solution for this
high Rayleigh number. Figure 3.1 visualizes the steady-state temperature and velocity fields for
a smaller Rayleigh number of Ra = 106 and otherwise identical parameters.

The incompressible flow problem is solved using the coupled solution approach. The BDF2
time integration scheme is used for the incompressible flow problem and also for the temper-
ature equation. Convective terms are treated explicitly, where adaptive time stepping is used
with Cr = 0.3. Absolute and relative solver tolerances are set to εabs = 10−12 and εrel = 10−6.
The mesh is uniform Cartesian with (2l)2 elements. In the following, the convective and conser-
vative formulations of the transport term in the temperature equation are compared. Figure 3.2
shows results for the convective form and Figure 3.3 for the conservative form. In both cases,
four different mesh resolutions are considered, l = 2, . . . , 5 (42, . . . , 322 elements) with de-
gree ku = kθ = k = 3 each, and two values of the reference temperature, θref = 0 and 300.
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3.5 Numerical results

(a) l = 2, θref = 0 (b) l = 3, θref = 0 (c) l = 4, θref = 0 (d) l = 5, θref = 0

(e) l = 2, θref = 300 (f) l = 3, θref = 300 (g) l = 4, θref = 300 (h) l = 5, θref = 300

Figure 3.2: Heated cavity problem at Ra = 108: visualization of temperature field θ(x, t = T )
for convective formulation of transport term considering different mesh refinement
levels l = 2, . . . , 5 for polynomial degree k = 3 and for different values of the
reference temperature, θref = 0 and θref = 300.

For the convective form, results are identical for both values of the reference temperature as
expected theoretically. Under-resolution effects are visible for coarse spatial resolutions and the
temperature field appears to be well-resolved for the higher mesh refinement levels. For the
conservative formulation, stable results are obtained for θref = 0. The results are in qualitative
agreement with those for the convective formulation. For θref = 300, however, the simulation
becomes unstable for all refinement levels, where Figure 3.3 shows temperature fields obtained
before the simulation crashes. The results are in agreement with the theoretical considerations
in Section 3.4. According to these results, it would be interesting to test the robustness of some
of the discretization schemes listed in Table 3.1 for the test case studied here. In general, an
interesting robustness test for discretizations using the conservative formulation of the transport
term is to use a temperature degree kθ > kp and then increase θref , since in this case Vθh * Vph,
which might trigger instabilities for discretization schemes that are robust for kθ ≤ kp according
to the considerations in Section 3.4. The work by Schroeder and Lube (2017) uses the convective
formulation that appears to be unproblematic according to the present results.

3.5.2 Two-dimensional rising thermal bubble

The rising thermal bubble test case follows the setup shown in Busto et al. (2020). For this ex-
ample, the limit of vanishing diffusivities is considered, ν = 0 and a = 0, which is the setup

135



3 Extension to natural convection flows

(a) l = 2, θref = 0 (b) l = 3, θref = 0 (c) l = 4, θref = 0 (d) l = 5, θref = 0

(e) l = 2, θref = 300 (f) l = 3, θref = 300 (g) l = 4, θref = 300 (h) l = 5, θref = 300

Figure 3.3: Heated cavity problem at Ra = 108: visualization of temperature field θ(x, t = T )
for conservative formulation of transport term considering different mesh refinement
levels l = 2, . . . , 5 for polynomial degree k = 3 and for different values of the
reference temperature, θref = 0 and θref = 300.

most challenging for a discretization scheme to remain numerically stable and produce accurate
results. The computational domain is a rectangular box, Ω = [0, 1000]2. No-slip boundary con-
ditions are prescribed for the incompressible flow problem, and Dirichlet boundary conditions
with θ = θ0 for the temperature. The initial velocity field is u = 0, and the initial temperature
field describes a warm bubble with center xb = (500, 350)T

θ(x, t = 0) = θ0 +

{
0 , if r > rb ,
θb
2

(
1 + cos

(
πr
rb

))
, if r ≤ rb ,

(3.18)

where r = ‖x − xb‖ is the radial distance to the center xb, rb = 250 the bubble radius,
and θb = 0.5 the maximum temperature difference of the warm bubble. Furthermore, the ref-
erence temperature is θ0 = 303.15, the thermal expansion coefficient is β = 1/θ0, and the
gravitational force is g = 9.81. The simulated time interval is 0 ≤ t ≤ 1000.

The dual splitting scheme is used for the solution of the incompressible flow problem with
standard parameters as defined in Section 2.6.1. Regarding the scalar transport equation, only
the convective formulation is studied. As for the previous example, it was found that the conser-
vative form of the transport term lacks robustness, especially for a large value of the reference
temperature. The BDF2 time integration scheme is used with an explicit formulation of con-
vective terms and adaptive time stepping with Cr = 0.3 is used. Absolute and relative solver
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3.5 Numerical results

(a) θ(x, t = 0) (b) θ(x, t = 200) (c) θ(x, t = 400) (d) θ(x, t = 600) (e) θ(x, t = 800)

Figure 3.4: Rising thermal bubble: visualization of temperature field for a mesh with refinement
level l = 5 (322 elements) and polynomial degree k = 3.

tolerances are set to εabs = 10−12 and εrel = 10−6. The mesh is uniform Cartesian with (2l)2

elements.
Figure 3.4 visualizes the temperature field as a function of time for a spatial resolution of 322

elements with polynomial degree ku = kθ = k = 3. The bubble begins to rise due to buoy-
ancy forces and develops a mushroom-like shape. At later times, more complex flow structures
develop. The tails of the bubble begin to roll up and small flow features form that are triggered
by Kelvin-Helmholtz instabilities. Figure 3.5 shows the temperature field at time t = 800 for a
sequence of spatial resolutions considering meshes from 42 to 1282 elements with polynomial
degree k = 3. Due to the symmetry of the mesh, the results also remain symmetric w.r.t. the
axis x1 = 500. These results demonstrate that the proposed discretization scheme produces a
clean solution without signs of instabilities and for resolutions much coarser than in Busto et al.
(2020), where artificial diffusivity is used for the Eulerian solver and where a mesh composed
of 5172 triangles (and degree k = 4) is considered very coarse. These results also illustrate how
increasingly fine flow structures can be resolved by an increasing spatial resolution, or how small
features get smeared in under-resolved scenarios.

3.5.3 Rayleigh–Bénard convection

The Rayleigh–Bénard convection problems studied here are inspired by the examples shown
in Busto et al. (2020), Franciolini et al. (2017), Piatkowski (2019). The domain is Ω = [0, L] ×
[0, H] in two dimensions and Ω = [0, L] × [0, H] × [0, L] in three dimensions with L/H = 8.
The bottom boundary at x2 = 0 is heated, θb > θref , relative to the top boundary at x2 =
H , θt = θref = 0. No-slip boundary conditions are prescribed for the velocity at the top and
bottom boundaries, and periodic boundary conditions are prescribed in x2 (and x3) directions.
The following parameters are set: Pr = 1, g = 10, β = 1/300, H = 1, U = 1. Then, pre-
scribing Re or Ra = Re2Pr yields ν = UH/Re, a = ν/Pr, ∆θ = U2/(gβH). To introduce
some imperfections and provoke the formation of thermal plumes, a sine-like perturbation of the
temperature is prescribed at the bottom boundary. These perturbations are prescribed only over
the first non-dimensional time unit (decreasing like 1 − t/(H/U) and turning into a spatially
constant Dirichlet boundary condition for t > H/U ) to make sure that the solution obtained at
later times does not directly depend on the initial perturbations.
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3 Extension to natural convection flows

(a) l = 2 (42 elements) (b) l = 3 (82 elements) (c) l = 4 (162 elements)

(d) l = 5 (322 elements) (e) l = 6 (642 elements) (f) l = 7 (1282 elements)

Figure 3.5: Rising thermal bubble: visualization of temperature field θ(x, t = 800) for a mesh
refinment study with refinement levels l = 2, . . . , 7 (42, . . . , 1282 elements) and poly-
nomial degree k = 3.

The dual splitting scheme is used for this problem, the BDF2 scheme, and adaptive time
stepping with Cr = 0.4. Absolute and relative solver tolerances are set to εabs = 10−12 and εrel =
10−6 unless specified otherwise. Figure 3.6 shows results for Ra = 108 on a 256× 32 Cartesian
mesh and polynomial degree k = 3. The temperature field is shown for several time snapshots
illustrating the formation of thermal plumes in the beginning. At later times, the formation of
typical Rayleigh–Bénard convection rolls can be observed. Due to the high Rayleigh number,
the behavior of the coupled flow–transport problem is highly unsteady and chaotic, so that no
steady state is reached. The pictures also illustrate how the fluid heats up continuously over
time (which goes on until an equilibrium state is reached in which the heat flux over the top
boundary equals the heat flux over the bottom boundary). In case of an (alternative) adiabatic
boundary condition at the top boundary, the fluid would finally reach a temperature of θ = θb

throughout the domain.
Figure 3.7 shows results of a three-dimensional Rayleigh–Bénard convection problem for a

Rayleigh number of Ra = 106 as shown in Piatkowski (2019). A mesh with 128 × 16 × 128
elements with polynomial degree k = 3 is considered and the simulation is run over the time
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Figure 3.6: 2D Rayleigh–Bénard convection at Ra = 108: temperature field at t/(H/U) =
16, 32, 64, 100, 200 (from top to bottom) obtained on a 256 × 32 mesh with poly-
nomial degree k = 3 (red indicates a high temperature and blue a low temperature).

interval 0 ≤ t/(H/U) ≤ 200. The time stepping parameters are identical to the two-dimensional
case. Figure 3.7 illustrates how hot thermal plumes are rising up from the heated bottom plate,
while cold plumes are falling down from the cold top plate. Note that the temperature field looks
somewhat different than in Piatkowski (2019) because the same global color scale is used here
for different slices.

In order to give insights into the computational efficiency of the present solver, performance
numbers are compared to results published recently in Franciolini et al. (2017), where a sim-
ulation at Ra = 108 with approximately 52 MDoF and global degree k = 5 simulated over a
time interval of 200H/U has been reported to require a wall time of less than one day on 68
Intel Xeon nodes with 1224 cores in total. For the same setup in terms of Rayleigh number and
simulated time interval, the present solver requires for a problem with approximately 51 MDoF
and tensor degree k = 5 a wall time of 23.5 hours for a relative tolerance of εrel = 10−3 and 41.9
hours for εrel = 10−6, but using only a single Intel Haswell node with 24 cores. This points to a
performance advantage of one to two orders of magnitude for the present solver. Note that this
performance advantage is achieved despite the fact that the mixed implicit/explicit solver used
here can be expected to require significantly more time steps. This already indicates that the
ability to use large time step sizes (Franciolini et al. 2017) might not necessarily be a convincing
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(a) iso-surfaces of temperature for θ = 2θb/3 (left) and θ = θb/3 (right)

(b) contour plots of temperature in planes located at x2/H = 0.1 (left) and x2/H = 0.9 (right)

Figure 3.7: 3D Rayleigh–Bénard convection at Ra = 106: visualization of temperature field at
final time t/(H/U) = 200 obtained on a 128 × 16 × 128 mesh with polynomial
degree k = 3. The same color scale is used for all figures (where red indicates a high
temperature and blue a low temperature).

argument for the use of implicit solvers. It is the content of subsequent chapters to shed light on
these numbers.

3.5.4 Earth mantle convection

As a final application problem, a simplified model for earth mantle convection is studied as ana-
lyzed in Gmeiner et al. (2015a). From a physical point of view, the problem is very similar to the
Rayleigh–Bénard convection problems studied in the previous section, where a main difference
is that a spherical geometry is considered here. The simplified model considers quasi-steady
Stokes flow with constant viscosity under the Boussinesq approximation coupled to an unsteady
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Figure 3.8: 3D mantle convection at Ra = 107,Pe = 1: iso-surfaces of temperature field θ/(θr−
θR) = 0.2 at t/T0 = 10, 15, 50, 100 (from left to right) obtained on a mesh with refine
level l = 4 and polynomial degree k = 3 (approximately 56 MDoF in total).

convection–diffusion problem for the temperature in the following non-dimensional form

−∇2u+∇p = −Ra
1

Pe
θ

(
− x

‖x‖

)
, (3.19)

∇ · u = 0 , (3.20)
∂θ

∂t
+ (u · ∇) θ − 1

Pe
∇2θ = 0 . (3.21)

Due to the large viscosity of the rock material in earth’s mantle, the inertial term and convective
term are neglected in the momentum equation. The problem is solved on a spherical shell with
inner radius r = 0.55 and outer radiusR = 1. The velocity and temperature fields are zero at start
time t = 0. For the temperature, a Dirichlet value of θr = 1 is prescribed at the inner radius and
a value of θR = 0 at the outer radius. As for the previous example, temperature fluctuations are
added to the Dirichlet boundary value at the inner boundary at small times in order to break the
symmetry. No-slip boundary conditions are prescribed for the velocity on all boundaries. The
mesh is dealii::GridGenerator::hyper shell() with 48 elements for the coarse
grid that is refined uniformly l times, where polynomial degree k = 3 is considered in the fol-
lowing. A high-order mapping of degree km = k is used here for an accurate representation of
the geometry, which is assumed spherical here but could also follow a more complex descrip-
tion of the surface topology imposed via transfinite interpolation techniques or mesh movement
algorithms (see also Section 9.1.3). Following Gmeiner et al. (2015a), the non-dimensional pa-
rameters are set to Ra = 107 and Pe = 1. Defining a time unit as T0 = H/U with H = R − r
and U =

√
Ra/H2, the simulations are run over the time interval 0 ≤ t/T0 ≤ 100. Figure 3.8

shows results of 3D simulations for the simplified mantle convection model. Iso-surfaces of the
temperature field are presented for different instants of time showing the development of thermal
plumes and their chaotic behavior at later times.

Since the steady Stokes equations have to be solved, the coupled solution approach is used
here (and no divergence and continuity penalty terms are applied in this example). Adaptive
time stepping is used for the temperature equation, which solely determines the global time step
size for this coupled flow–transport problem since the flow problem itself does not introduce a
time step restriction. In the following, both an explicit treatment of the convective term (as used
in Gmeiner et al. (2015a) with explicit CFL-type time step restriction) and an implicit treatment
of the convective term (in order to relax the CFL condition and improve overall efficiency)
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Table 3.2: 3D mantle convection at Ra = 107,Pe = 1: throughput per time step ∆t and com-
putational costs per time unit T0 for polynomial degree k = 3 and mesh refinement
levels l = 2, 3, 4 resulting in problem sizes of {7.0 · 106, 5.6 · 107, 4.5 · 108} degrees
of freedom solved on {1, 1, 8} Intel Haswell compute nodes with 24 cores each.

l Throughput per time step [MDoF/s/core] Computational costs per time unit [CPUh]
explicit implicit explicit implicit

2 0.401 0.321 0.41 0.05
3 0.380 0.233 4.49 1.06
4 0.278 0.173 74.3 23.4

are considered. For the explicit case, Courant numbers in the range Cr = 0.2 − 0.4 are used
depending on the spatial resolution. For the implicit case, the Courant number is Cr = 2 in
all cases. To solve the Stokes problem, a block-triangular preconditioner is used with a cph-
multigrid preconditioner with Chebyshev(5) smoother for the velocity block and the inverse
pressure mass matrix preconditioner for the Schur-complement block (see also Chapter 5 for
explanations). The inverse mass matrix preconditioner is also used for the unsteady heat equation
to obtain a computationally efficient iterative solver. Linear systems of equations are solved to a
relative tolerance of εrel = 10−3.

The main interest in this example is the aspect of computational efficiency of the solver.
In Gmeiner et al. (2015a), a state-of-the-art high-performance finite element solver for tetra-
hedral grids is presented, for which each time step of a problem with 6.5 ·109 unknowns requires
a wall time of approximately 60 s on 8 nodes (with 32 cores each) of Intel Xeon E7-4830 CPUs.
To compare the node level performance, a suitable quantity is the throughput in terms of de-
grees of freedom solved per second of wall time per time step and per core (see Chapters 5
and 6), which results in a throughput of 0.423 MDoF/s/core for the hierarchical hybrid multigrid
Stokes solver in Gmeiner et al. (2015a). Results for the present solver are listed in Table 3.2
for three different mesh resolutions, considering both explicit and implicit formulations of the
convective term. A metric even better suited for such comparisons is to consider computational
costs for a fixed physical time interval that is simulated (here T0). The corresponding results
are also listed in Table 3.2. However, results for this metric have not been specified in Gmeiner
et al. (2015a). The explicit solver achieves a throughput approaching the performance numbers
from Gmeiner et al. (2015a). The throughput decreases somewhat with the mesh refinement level
and the scalar transport equation consumes less than 10% of the overall costs. The throughput
is lower for the implicit formulation since the scalar transport equation now takes a larger share
of the overall computational costs, and the throughput decreases more strongly with increasing
refinement level since the iteration counts for the scalar transport equation (inverse mass matrix
preconditioner is used) increase significantly with increasing l in case of the implicit formula-
tion with Cr = 2 (aspects of iterative solvers and preconditioners are discussed in more detail in
Chapter 5). Nevertheless, the implicit formulation is significantly more efficient in all cases, with
speed-up factors of 8.1 (l = 2), 4.2 (l = 3), and 3.2 (l = 4) compared to the explicit formulation.
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In summary, these results show that the present high-order DG solver can compete with
highly-optimized software for earth mantle convection problems that uses optimized stencil-like
implementation techniques for linear finite elements to achieve optimal efficiency. The present
results are also encouraging given that a generic DG solver is used here that can be applied to
arbitrary geometries with its only (or main) restriction being hexahedral meshes, which is for ex-
ample no restriction for earth mantle convection applications, see Kronbichler et al. (2012), Rudi
et al. (2015). Of course, it should be taken into account that the present results have been obtained
on newer hardware, and that the high-order approach used in the present work can be expected to
be more accurate than the linear finite element approach used in Gmeiner et al. (2015a). The use
of an implicit solver potentially points to significant performance improvements also for other
earth mantle convection solvers as presented in Gmeiner et al. (2015a), Kronbichler et al. (2012),
provided an increase in time step size does not have a detrimental effect on accuracy (see also
Chapter 6 for more holistic discussions).

3.6 Conclusion and outlook

This chapter has addressed the solution of natural convection problems by high-order L2-con-
forming DG discretizations. To ensure robustness of the coupled flow–transport problem, a key
ingredient is that a compatibility condition is fulfilled, an aspect that has not been addressed by
many previous works. The most straight-forward way to ensure robustness regarding the flow–
transport coupling is to use the convective formulation of the transport term in the temperature
equation, since this formulation does not pose special requirements regarding the mass conserva-
tion properties of the velocity field or regarding the polynomial degree used for the temperature
relative to the pressure degree. Furthermore, the use of a discontinuous Galerkin discretization
for the temperature equation might prove advantageous compared to continuous finite element
discretizations since no convection-stabilization appears to be necessary.

While natural convection problems are an important field of applications in terms of pressure-
robustness of incompressible Navier–Stokes discretization schemes, the stabilized approach with
divergence and continuity penalty terms appears to work very well in this context without re-
quiring a readjustment of parameters compared to purely incompressible flow problems studied
before. Hence, an interesting aspect for future investigations would be to study whether the sta-
bilized L2-conforming scheme exhibits deficiencies for practical applications compared toHdiv-
conforming discretizations that are exactly pressure-robust, given that no problems have been
encountered so far for the examples studied here. According to the present results, it can also
not be excluded that previous studies focusing on pressure-robustness interpreted problems as
pressure-robustness issues that are actually related to the flow–transport coupling as discussed
here. The present work suggests to separate the two concepts of pressure-robustness of an in-
compressible flow solver and compatibility of the flow–transport coupling.

Numerical results demonstrated the versatility and computational efficiency of the present DG
framework that appears to be highly competitive compared to state-of-the-art solvers from the
literature. While results on computational efficiency have been reported in this chapter without
further explanations, it is of course no coincidence that a substantial speed-up has been achieved
compared to the DG solver proposed in Franciolini et al. (2017), and that a performance com-
peting with an optimized linear finite element solver proposed in Gmeiner et al. (2015a) was
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3 Extension to natural convection flows

achieved. Indeed, the present solver shares many properties with the approach in Gmeiner et al.
(2015a) from an algorithmic and implementation point of view. Upcoming chapters will explain
the reasons behind these performance numbers and shed light on the computational efficiency of
the present solver in great detail.
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4 Matrix-free implementation
Matrix-free methods describe algorithms that do not require the explicit storage of a matrix
in order to solve the algebraic system of equations resulting from the discretization of a PDE.
An intuitive way to think of matrix-free methods is a finite difference stencil evaluated on a
uniform Cartesian grid, where the action of the matrix can be described by just a few coeffi-
cients characterizing the stencil. However, matrix-free methods can be realized for all the main
types of discretizations, such as finite difference, finite volume, finite element, and discontinuous
Galerkin schemes, as well as for complex geometries and deformed meshes. The main motiva-
tion for matrix-free methods is to enable the solution of larger problems due to reduced memory
requirements, but more importantly, to solve a problem faster due to a significant reduction in
the number of operations and in the transfer of data from main memory.

In the context of finite element methods, matrix-free methods are typically realized by on-the-
fly operator evaluation using numerical quadrature. The efficiency of matrix-free finite element
operator evaluation as compared to matrix-based approaches essentially depends on the polyno-
mial degree of the shape functions and the type of elements. For quadrilateral and hexahedral el-
ement shapes, the tensor-product structure of the shape functions and of the quadrature rule can
be exploited by a technique called sum-factorization, which leads to improved computational
complexity in terms of operation counts and which is crucial in achieving efficient matrix-free
methods. Moreover, the computer hardware under investigation and its characteristics in terms
of floating point operations available relative to bytes of data transferable from main memory
have an influence on the optimal implementation strategy for a given polynomial degree. The
aim of this chapter is to provide the theoretical background required to understand these design
choices and, through a review of literature, explain the rapid development and paradigm shift
(both in terms of hardware and implementations/algorithms) that took place over the last two
decades. In this sense, this chapter reveals why certain design choices made in the course of this
thesis lead to efficient flow solvers with finite element operator evaluation as a main ingredient.
The developments of matrix-free algorithms presented here is not a novelity of the present thesis
but original work of Kronbichler and Kormann (2012, 2019). This chapter applies these matrix-
free methods to problems of computational fluid dynamics, and documents the computational
efficiency of this approach for the incompressible Navier–Stokes equations on modern computer
hardware. Minor parts of this chapter present content that has already been published in Fehn
et al. (2018a, 2019c, 2020).

The outline of this chapter is as follows. Section 4.1 discusses the state-of-the-art, Section 4.2
briefly introduces hardware characteristics and the roofline performance model, and Section 4.3
reviews important trends in computer hardware. Section 4.4 explains the basics of matrix-free
operator evaluation and discusses differences to other implementation techniques. Numerical
results investigating the efficiency of the present matrix-free implementation for the incompress-
ible Navier–Stokes equations are shown in Section 4.5. Finally, this chapter is summarized in
Section 4.6.
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4.1 State-of-the-art

Matrix-free methods are predominantly used when it comes to large-scale, high-performance
computations exploiting the largest supercomputers available. Independently of the type of dis-
cretization approach, this is the state-of-the-art implementation technique in HPC for fast PDE
solvers, see for example Gmeiner et al. (2015a), Ichimura et al. (2015), May et al. (2014), Rudi
et al. (2015) and the recent exa-scale initiatives in Arndt et al. (2020b), Bastian et al. (2020a),
Bauer et al. (2020), Fischer et al. (2020b).

Matrix-free methods for high-order finite element or spectral element methods and the idea of
sum-factorization date back to the work of Orszag (1980) published in the year 1980. A decade
later (around 1990), the methodology was explored systematically by Fischer (1990), Fischer
and Patera (1991), Fischer et al. (1988) in terms of optimal-complexity algorithms for tensor-
product elements and high-performance, parallel implementations. In these works, the matrix-
free technique with sum-factorization was described for continuous, collocation-type spectral
element discretizations applied to the incompressible Navier–Stokes equations. Another decade
later (around 2000), Fischer et al. (2002), Tufo and Fischer (1999) presented results for three-
dimensional incompressible turbulent flows on complex geometries in a massively-parallel con-
text. Again a decade later (2010-today), the interest in these methods has increased significantly,
first for continuous finite element discretizations (Brown 2010, Cantwell et al. 2011, Kronbichler
and Kormann 2012, May et al. 2014, Vos et al. 2010), and later also for discontinuous Galerkin
discretizations for tensor-product elements (Hindenlang et al. 2012, Kempf et al. 2020, Kron-
bichler and Kormann 2019, Kronbichler et al. 2019, Kronbichler and Allalen 2018, Kronbichler
et al. 2017, Müthing et al. 2017) and simplicial elements (Moxey et al. 2020a). The broad interest
in these methods can also be explained by changes in computer hardware, reducing the break-
even polynomial degree (the polynomial degree at which matrix-free methods become more
efficient than matrix-based ones) continuously over time, and rendering matrix-free methods
more efficient than their matrix-based variants already for quadratic elements of degree k = 2
on modern hardware (Kronbichler and Kormann 2012, 2019, May et al. 2014).

In more detail, trend-setting implementation techniques have been presented in Kronbichler
and Kormann (2012, 2019) with innovative design choices such as vectorization over elements to
exploit the SIMD capabilities of modern hardware in combination with highly-optimized sum-
factorization kernels. These works demonstrate that optimizing both compute parts and memory
access is essential for optimal throughput, which is related to the fact that the arithmetic in-
tensity of matrix-free operator evaluation is in the range of the Flop-to-Byte ratio of current
hardware. While many works have put their focus on the Flop metric, the early work by Tufo
and Fischer (1999) already highlights the memory bandwidth as a potentially limiting resource
for high-order, matrix-free continuous spectral element methods, an observation confirmed by
most recent, leading contributions. In the DG context, the works by Kronbichler and Kormann
(2019), Kronbichler and Allalen (2018), Kronbichler et al. (2017) discuss different strategies
for the computation and scheduling of face integrals, where computing all face integrals corre-
sponding to an element after each other, i.e., driving all work by a loop over elements, is found
to be more efficient than separate loops for face integrals. This is due to a finite difference like
data access pattern with improved temporal data locality for the approach with element-wise
face integrals. DG discretizations for operators with second derivatives require the evaluation of
gradients for face integrals, where typically all nodal degrees freedom contribute to the gradient
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for the usual Gauss or Gauss–Lobatto bases. An innovative Hermite-like basis described in Kro-
nbichler et al. (2019) requires only two layers of nodes to evaluate gradients on faces, since all
other 1D shape functions have zero value and gradient at the boundaries of the unit interval [0, 1].
This Hermite-like basis optimizes the data access pattern and improves the throughput of matrix-
free operator evaluation (Kronbichler and Kormann 2019, Kronbichler and Allalen 2018) and of
multigrid solvers with appropriate smoothers (Kronbichler et al. 2019). The contributions by
Kronbichler et al. are complemented by alternative vectorization strategies and aspects of code
generation in Kempf et al. (2020), Müthing et al. (2017).

The present work considers matrix-free implementations targeting modern CPU hardware.
Recently, several works addressed the topic of GPU acceleration for high-order finite ele-
ment discretizations, see Kronbichler and Ljungkvist (2019), Ljungkvist (2017), Remacle et al.
(2016), Świrydowicz et al. (2019) for Poisson and Helmholtz-like model problems (forming
building blocks of incompressible flow solvers) and Franco et al. (2020), Karakus et al. (2019),
Loppi et al. (2018), Otero et al. (2019) for incompressible flows solvers.

By now, matrix-free implementations have found widespread use in academic software for
high-order finite element methods, e.g., in the deal.II (Arndt et al. 2020a), DUNE (Bastian
et al. 2020b), FLEXI (Krais et al. 2020a), MFEM (Anderson et al. 2020), Nek5000 (Fischer et al.
2020a), Nektar++ (Moxey et al. 2020b), PyFR (Witherden et al. 2014) projects. Recently,
benchmark problems have been defined and a comparative performance study between different
finite element libraries has been performed in Fischer et al. (2020b).

An in-depth discussion of the topic is beyond the scope of this work, in particular the tight
interconnection between low-level code optimizations and hardware concepts, all of which are
required for optimal performance. Instead, this chapter intentionally chooses a high-level pre-
sentation of the general methodology, while the important aspects of low-level performance
optimizations of the implementation used in this work are discussed in the studies by Kronbich-
ler and Kormann (2012, 2019), which are highly recommended as further reading material. The
contributions by Anderson et al. (2020), Cantwell et al. (2011), Vos et al. (2010) include illus-
trative graphical interpretations and are recommended for readers not particularly interested in
aspects of computer science, but in the general concepts and how matrix-free operator evalua-
tion is embedded into finite element codes, e.g., as compared to matrix-based methods. Finally,
the reader is referred to the standard textbooks on spectral element methods (Deville et al. 2002,
Karniadakis and Sherwin 2013, Kopriva 2009), and to Kronbichler (2021b) for a recent overview
of the state-of-the-art.

4.2 Hardware characteristics and the roofline
performance model

This chapter focuses on the most simple performance model of a CPU, the roofline performance
model (Williams et al. 2009). According to this model, a CPU can perform arithmetic operations
such as additions and multiplications whereby its execution units are fed with data streamed from
main memory and passing the cache hierarchy of the CPU. Latency between operations or other
expensive instructions are assumed to be negligible. According to such a simplified model, a
CPU’s performance is described by two characteristic hardware quantities, the maximum number
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Figure 4.1: Visualization of the roofline performance model.

of floating point operations (Flop) that can be performed per unit of time (peak performance)

Ppeak in
Flop

s
, (4.1)

and the amount of data that can be transferred from main memory per unit of time (memory
bandwidth)

bmax in
Byte

s
. (4.2)

An important quantity is the ratio of peak performance and memory bandwidth, denoted as
machine intensity in this work

Im =
Ppeak

bmax

in
Flop
Byte

. (4.3)

Another frequently used term is Flop-to-Byte ratio. Note that the machine intensity used here
is the inverse of the machine balance used in Hager and Wellein (2010). The name machine
intensity indicates that it is a hardware-specific quantity. From a software perspective, the ratio
of floating point operations to data transfer from main memory of a particular code run on a
machine is the code intensity Ic = Pc/bc, also denoted as arithmetic or operational intensity. The
roofline performance model (Williams et al. 2009) allows to characterize a code as compute-
bound or memory-bound for a given hardware, depending on the code intensity Ic relative to
what the hardware offers, the machine intensity Im. If Ic > Im, the code demands more floating
point operations than can be delivered by the hardware, which is why such a code will fully
utilize the compute resources, while the memory bandwidth is under-utilized. If Ic < Im, the
hardware offers more compute resources than required by the code, and the memory bandwidth
will be the resource that limits the speed at which the code is executed according to the roofline
model. The code performance can then be written as

Pc = min (Ppeak, bmaxIc) . (4.4)

A visualization of the roofline model is shown in Figure 4.1, where the ridge point is located
at (Im, Ppeak). A code operating at this point fully utilizes all resources offered by the hardware,
which does not imply that the speed of such a code can not be improved. For example, another al-
gorithm implementing the same functionality might require less data transfer from main memory
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or less operations, and might therefore let the code run faster despite the fact that the operational
point leaves the ridge point in the roofline model. In practice, the operational point of a code
will not be located exactly on the roofline, but within the gray area in Figure 4.1. This is due to
the simplifying assumptions of the roofline model in the sense that data transfer and computa-
tions overlap perfectly and only one of the two machine quantities is the limiting resource for
the whole code. Hence, characterizing a code in terms of the roofline model (by measuring the
rates of data transfer and arithmetic operations) allows to quantify to which extent an algorithm
exploits the capabilities of the hardware (how close does the point come to the roofline?), but
not whether the algorithm itself is efficient or optimal.

To quantify the speed of the implementation, a different metric called throughput is used
throughout this chapter, which is defined as the number of unknowns (degrees of freedom in
finite element methods) processed per second of wall time and per compute unit (one node or
one core per node)

E =
NDoFs

twallNcores|nodes

. (4.5)

Modern computer hardware is much more than floating point performance and memory band-
width. A particularly important concept of CPU hardware, sometimes referred to in this work,
is the concept of caches. Caches can be thought of as a smaller memory located closer to the
CPU, providing higher bandwidth than main memory. Caches are organized in levels (typically
level L1, L2, and L3 caches on modern hardware), which increase in size/capacity, but reduce in
bandwidth and increase in latency in the given order. The aim of caches is to hide the latency and
low bandwidth of main memory and to keep data ready for repeated use during a computation.
The latter property is called temporal data locality, i.e., data touched previously resides in the
cache and can be reused “instantaneously” if required, without transferring the data again from
the slow main memory.

On modern hardware, data can not be transferred from main memory bit-wise or byte-wise,
but is organized in units of so-called cache-lines (typically 64 Byte on current hardware). Since
the memory bandwidth is a limited resource (an aspect discussed in more detail below), it is
essential to make optimal use of the memory bandwidth and not pollute it with useless data that is
not required for computations. This leads to the concept of spatial data locality, i.e., data located
contiguously in memory should be worked on contiguously by the CPU. For scientific computing
codes to be efficient, this requires an appropriate design of data structures. The abstract notion
“data access pattern” already used above refers to the concepts of spatial and temporal data
locality. One of the simplifications made in this chapter is that algorithms and implementations
discussed here are assumed to be well-designed in this regard without diving into this topic in
great detail.

The Single Instruction Multiple Data (SIMD) paradigm allows to perform elementary instruc-
tions simultaneously on an array of integer or floating point numbers, i.e., the size or width of
registers is larger than just one integer or floating point value. This enables to execute more op-
erations per clock cycle, thereby increasing the peak performance of a CPU. Since the register
width is fixed for a given hardware, single precision computations can theoretically be performed
twice as fast as double precision computations since twice as many data items fit into the same
register width. From a software perspective, the technique that exploits this kind of parallelism
offered by modern hardware is called vectorization. Put differently, a non-vectorized code for
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which most lanes remain empty can only reach a small fraction of the peak performance of
today’s hardware.

The above concepts and further aspects of caches (mapping, prefetching, write-allocate or
read-for-ownership) are discussed in more detail in Hager and Wellein (2010). This textbook
also discusses other “advanced” techniques to accelerate the execution of a given instruction
stream such as pipelining, superscalarity, out-of-order execution.

4.3 Recent trends in computer hardware

Computer hardware has undergone significant progress over the last decades and can be char-
acterized by an exponential growth of “complexity” over time. An empirical law formulated by
Gordon Moore in the 1960s states that the number of transistors on a chip doubles every one
to two years (Moore 1965), a trend that still holds today. Figure 4.2 shows the development of
microprocessors over the last 48 years. During that period, the number of transistors increased
by a factor of 107 and shows a N/N0 = 2(t−t0)/t2 growth over time t, which implies a doubling
period of t2 = 2.1 years in accordance with Moore’s law. As a sidenote, it is interesting to
realize that also the peak performance of the world’s largest supercomputer increases exponen-
tially over time in line with Moore’s law at a doubling period of approximately 1.1 years, even
though the curve has somewhat flattened in recent years.1 Figure 4.2 reveals that a paradigm shift
took place around 2005, namely the transition from single-core to multi-core architectures. Until
2005, the clock frequency increased continuously over time, while it is stagnating since 2005 at
around 2 − 4 GHz. Since 2005, a continuous increase in the number of cores per chip can be
observed with up to 100 on today’s hardware. Hence, the increase in floating point performance
is no longer driven by an increasing clock frequency (post frequency era), but mainly by paral-
lelism through multi-core architectures and SIMD units of increasing width. The stagnation in
clock frequency is related to the power consumption of computer chips, which scales with the
third power of the clock frequency (Hager and Wellein 2010). Apart from the economical and
environmental pressure on reducing energy consumption, this aspect renders the cooling of the
hardware an engineering challenge and limits the clock frequency (energy wall). The power dis-
sipation is around 200 W for current high-end CPU hardware chips. On the scale of the largest
supercomputers installed worldwide, power consumption or energy efficiency can be expected
to become an increasingly important topic as well. Given that the largest supercomputers already
have a power consumption of 20 − 30 MW (and that the largest power plants, in comparison,
deliver a power of several GW), the pressure stemming from economical and environmental
aspects on energy-efficient supercomputers becomes evident.

In terms of the roofline performance model, both peak performance and memory bandwidth
are quantities of type speed, i.e., they increase over time as progress is made in computer hard-
ware and follow some form of Moore’s law. This development is shown in Figure 4.3. An im-
portant trend in computer hardware is that peak performance is growing faster than memory
bandwidth. While arithmetics and memory have been more “balanced” for former hardware of
the single-core era, the gap between floating point performance and memory bandwidth is be-
coming wider for most recent hardware of the multi-core era. However, a more detailed analysis

1See the TOP500 list https://www.top500.org/ for detailed information.
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Figure 4.2: Microprocessor trend data over the last 48 years (Original data up to the year 2010
collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L.
Hammond, and C. Batten. New plot and data collected for 2010-2019 by K. Rupp and
publicly available at https://github.com/karlrupp/microprocessor-trend-data is reused
with minor modifications).

reveals that without SIMD and FMA units, the growth in peak performance is very similar to the
growth of the memory bandwidth.2 In other words, the increasing core count of the multi-core
era (at constant clock frequency) is able to compensate the growth in memory bandwidth, while
the growing gap is driven by single-core features (SIMD, FMA, or other specialized instructions
on future hardware). Figure 4.4 shows the development of the Flop-to-Byte ratio over the last
decade and illustrates the paradigm shift from balanced machines (Im ≈ 1) to imbalanced ma-
chines (Im � 1). This trend renders the memory bandwidth the limiting resource for many prob-
lems in scientific computing, a situation described as DRAM gap or memory wall (Wilkes 2001).
This trend can be expected to have an influence on the algorithm or type of implementation that
yields optimal efficiency for a given problem. To give a concrete example in the context of PDE
solvers discussed here, this trend favors matrix-free algorithms over matrix-based algorithms,
rendering the on-the-fly computation of “matrix-entries” faster (depending on the polynomial
degree) than streaming them from main memory in case of sparse matrix-vector products. To
take advantage of the growing machine intensity, it is imperative that the implementation ex-
ploits the vectorization capabilities of modern hardware. These aspects are discussed in detail in
the rest of this chapter. An interesting question is to which extent this trend will continue in the
future. For example, the new Nvidia Tesla A100 architecture released in 2020 has a lower (dou-
ble precision) Flop-to-Byte ratio than its predecessor V100. Finally, it can be expected that the
energy wall will have an impact on future hardware developments. To sum up and in order to

2Private communication with Jan Eitzinger (RRZE).
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Figure 4.3: Development of peak performance and memory bandwidth over last 25 years for
Intel architectures. Plot and data collected by Jan Eitzinger (RRZE) is reused with
permission.

clarify notation, the term “modern computer hardware” is used in this work in order to refer to
the following hardware characteristics and trends:

• cache-based multi-core CPU architectures with increasing core count per chip,

• vectorization capabilities through registers of increasing SIMD width,

• and improvements in memory bandwidth developing at slower pace, leading to machines
of increasing Flop-to-Byte ratio.

Remark 4.1 Figure 4.4 reveals that the Flop-to-Byte ratio of GPU hardware is not higher than
that of CPU hardware. In the literature, GPU implementations are often advertised over CPU
implementations for arithmetically intense algorithms such as matrix-free high-order DG dis-
cretizations due to computations being cheaper relative to memory transfer on the GPU (Klöck-
ner et al. 2009). This argument is not supported by the data given in Figure 4.4. Nevertheless,
the higher peak performance and memory bandwidth of current GPU hardware potentially al-
lows a speed-up by a (small) integer factor when porting a CPU code to the GPU in a given
power budget (Kronbichler and Ljungkvist 2019). Note also that peak performance and memory
bandwidth are currently growing faster for GPU hardware than for CPU hardware according to
the numbers in Ibeid et al. (2020).
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Figure 4.4: Trend in Flop-to-Byte ratio (double precision) over the last decade for CPU and
GPU architectures of different manufacturers (data collected by Karl Rupp and pub-
licly available at https://github.com/karlrupp/cpu-gpu-mic-comparison is reused with
minor modifications).

4.4 From matrix-based to matrix-free operator
evaluation

This section discusses different abstraction levels of finite element operator evaluation, leading
to different implementation strategies characterized by different computational complexities in
terms of memory requirements and floating point operations. These different implementation
strategies can be classified as either matrix-based or matrix-free evaluation techniques. Matrix-
based refers to the classical assembly of finite element matrices stored in a sparse matrix data
format with the subsequent application of sparse matrix-vector products, and matrix-free refers
to on-the-fly operator evaluation without storing matrices explicitly for all elements (but includes
the case of storing a matrix for a single element that can be reused for all other elements). The
basic methodology is explained by the example of the volume integral of the SIPG discretiza-
tion of the Laplace operator, mainly for ease of notation due to the simplicity of this operator.
Having discussed these different operator evaluation concepts, a generalization to other linear
and non-linear operators as well as face integrals in DG is straight-forward given that these more
complex operators make use of essentially the same basic ingredients. This section explains why
the classical abstraction of using a linear algebra interface with a clear separation of finite ele-
ment modules and (non-)linear solver modules operating on sparse matrices comes along with a
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slow execution of the code for high-polynomial degrees, and explains the advantages and disad-
vantages of alternative, matrix-free evaluation techniques.

Independently of the implementation technique chosen for a finite element method, integrals
in the weak form are typically evaluated by numerical quadrature on the reference element and
summation over all elements. The aim is to compute the action of the matrix-vector product y =
Au as required for example in iterative solvers. Then, consider the contribution of element e for
test function `i

(Aeue)i = (∇`i,∇uh)Ωe
=

∫
Ωe

(∇x`i)T∇xuehdx

=

∫
Ω̃e

((J e)−T∇ξ`i)T((J e)−T∇ξueh)| detJ e|dξ

≈
∑
q

(∇ξ`i(ξq))T︸ ︷︷ ︸
(ITe)iq

(
J eq
)−1

(wq| detJ eq |)
(
J eq
)−T︸ ︷︷ ︸

(De)qq

∑
j

∇ξ`j(ξq)︸ ︷︷ ︸
(Ie)qj

uej

=
(
ITeDeIeue

)
i
,∀i = 1, . . . , (k + 1)d .

(4.6)

The integral over the physical domain is first transformed to the reference element, giving rise to
geometry terms such as the Jacobian J e. Integration is then performed by Gaussian quadrature,
introducing the quadrature weight wq and replacing the integral by a sum over all quadrature
points. The last row shows how the elementwise computation of integrals can be interpreted in
terms of an abstract notation that identifies reoccurring building blocks. One of these building
blocks is the interpolation operator Ie that computes the gradient (in reference coordinates) of
the solution at all quadrature points by interpolation of the basis functions (using the polyno-
mial expansion of the solution function). The differential operator De applies the PDE operator
for all quadrature points and depends on geometric data associated to the current element e for
non-Cartesian element geometries. The integration operator ITe multiplies by the gradient of the
test function and sums over all quadrature points (=integration). It can be easily seen from equa-
tion (4.6) that the integration step is the transpose of the interpolation step. Interpolation and
integration are done in reference coordinates and do not depend on the current element e. This
property will be exploited for some of the implementation techniques discussed below. Using
the notation introduced above, the global operator evaluation can be written as

y =

Nel∑
e=1

SeAeue =

Nel∑
e=1

SeAeGeu . (4.7)

The gather operation Ge extracts the local degrees of freedom associated to element e, ue = Geu.
The scatter operation Se = GT

e adds contributions of the integral into the global residual vector
according to the mapping of local-to-global degrees of freedom. The matrix-vector notation is
used for ease of notation only, i.e., these operations are not necessarily implemented as sparse
matrix-vector products for reasons of computational efficiency (for example, one can exploit that
the degrees of freedom of an element are contiguously in memory in the DG case).

Then, the challenge to obtain a computationally efficient numerical method can be formulated
as follows: Which parts of the above algorithm should be precomputed and stored, and which
parts should be evaluated and re-computed on-the-fly? Various levels of abstraction leading to
different implementation techniques can be distinguished as explained in the following.
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Table 4.1: Comparison of operator evaluation costs for matrix-based and matrix-free approaches
in terms of data transfer from main memory, arithmetic operations, and computational
intensity (setup costs are neglected).

matrix-based static condensation / HDG matrix-free w.o. sum-fac. matrix-free

operations O
(
k2d
)

O
(
k2(d−1)

)
O
(
k2d
)

O
(
kd+1

)
data transfer O

(
k2d
)

O
(
k2(d−1)

)
O
(
kd
)

O
(
kd
)

intensity Ic ≈ 1/8 . . . 1/6 ≈ 1/8 . . . 1/6 O(kd)� 1 O(k) > 1

4.4.1 Assembling a sparse matrix
The classical low-order finite element procedure is to assemble a sparse matrix A, and subse-
quently compute the sparse matrix-vector product when required in iterative solvers

y = Au , (4.8)

where the global sparse matrix is obtained by assembly (also termed direct stiffness summation)

A =

Nel∑
e=1

SeAeGe . (4.9)

Assembling the matrix requires O(k3d) operations in case of a naive implementation, i.e., sum-
ming kd quadrature points for k2d matrix entries. By the use of sum-factorization techniques dis-
cussed below, assembly costs can be reduced toO(k2d+1). Application of the matrix-vector prod-
uct requires O(k2d) memory transfer and arithmetic operations, see Table 4.1. Only two floating
point operations (one addition and one multiplication) are performed per double-precision ma-
trix entry loaded from memory (assuming that the matrix does not fit into the cache), resulting
in a low intensity of Ic = 1/4. Taking into account additional data transfer for indexing and
due to non-optimal use of caches, a more realistic estimate of the intensity is a value of 1/8
to 1/6, see also Hager and Wellein (2010). Sparse matrix-vector products are therefore clearly
memory-bound on current hardware, see Figure 4.5 for an interpretation in terms of the roofline
model. Assembly costs are neglected in Table 4.1, but might be performance relevant if frequent
re-assembly is necessary.

4.4.2 Assembling elementwise matrices
An alternative is to only store the elementwise matrices Ae without forming the global sparse
matrix A

y =

Nel∑
e=1

SeAeGeu . (4.10)

This approach also requiresO(k2d) operations for evaluation, as well asO(k2d) memory storage
and data transfer for generally deformed meshes. Compared to the first approach, this approach
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Figure 4.5: Characterization of matrix-based and matrix-free (with sum factorization) algorithms
for operator evaluation in terms of the roofline performance model. Schematic il-
lustration of results published in (Kronbichler and Wall 2018, Figure 2), where the
different symbols indicate meshes composed of Cartesian and deformed elements.

can have advantages in terms of memory requirements in case of trivial geometries, in the sense
that all elements have the same geometry (Jacobian matrix potentially scaled by a simple factor)
and the matrix Ae needs to be stored only once for a single element and might reside in the
cache (for moderately large polynomial degrees) when traversing through all elements of the
mesh during operator evaluation. For this special case, data transfer reduces toO(kd) (streaming
of vectors only) so that this approach might be denoted as matrix-free. This approach has been
used in Ljungkvist (2014) for uniform meshes composed of tensor-product elements. In case
of simplicial elements, the elemental matrices are the same for all elements (up to a scaling
factor) if the mapping is linear with straight-sided faces, which is why this level of abstraction
is a popular approach for high-order finite element solvers on meshes composed of simplicial
elements, see Heinecke et al. (2014), Klöckner et al. (2009). In the DG case, additional matrices
are needed for all possible combinations of face orientations. For such “trivial” geometries, the
computational intensity is Ic = O(kd). This approach has gained interest since it achieves a
significant fraction of the peak performance, but the algorithm is clearly compute-bound on
current hardware for large k and, therefore, sub-optimal in terms of throughput.

Remark 4.2 For general finite element spaces including continuous Galerkin methods, it is of-
ten argued that using such an element-wise interface with corresponding block data structures
can have advantages in terms of faster data access due to a better utilization of cache lines
and caches (Anderson et al. 2020, Vos et al. 2010), since the degrees of freedom of one element
are stored contiguously in memory (data locality), see also Remark 4.6 related to this topic.
Put differently, this perspective gives indications of how to optimally order degrees of freedom
in memory for continuous Galerkin discretizations in order to optimally exploit the available
memory bandwidth (Moxey et al. 2020b).

4.4.3 Matrix-free evaluation without sum-factorization

While Ae is the same for all elements only under certain assumptions on the element geometry,
the interpolation operator Ie operates in reference space and is, therefore, the same for all ele-
ments also for deformed elements. This leads to a true matrix-free evaluation technique that can
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x1x1

GeIeDeITeSe

Figure 4.6: Illustration of matrix-free operator evaluation for the computation of volume inte-
grals for d = 2 for a discontinuous, nodal basis with degree k = 2 and k + 1 = 3
interpolation and quadrature points per coordinate direction. Note that this illustra-
tion shows the non-vectorized case with the volume integral performed for a single
element only.

be written as

y =

Nel∑
e=1

SeI
T
eDeIeGeu . (4.11)

This variant stores the interpolation operator Ie ∈ Rd(k+1)d×(k+1)d explicitly. Compute ∀q (con-
sidering a three-dimensional domain with d = 3)

Ne
DoFs∑
i=1

(Ie)qi (ue)i , where (Ie)qi = ∇ξ`i(ξq) =

`i1,ξ1(ξ1,q1)`i2(ξ2,q2)`i3(ξ3,q3)
`i1(ξ1,q1)`i2,ξ2(ξ2,q2)`i3(ξ3,q3)
`i1(ξ1,q1)`i2(ξ2,q2)`i3,ξ3(ξ3,q3)

 . (4.12)

Since the interpolation operator is the same for all elements also for deformed geometries, it
needs to be stored only once. Assuming that the interpolation operator resides in the cache,
this approach reduces the data transfer to O(kd). The memory requirements of O(kd) originate
from solution vectors proportional to the degree of freedoms and geometry data proportional
to the number of quadrature points. The operation count of this approach is O(k2d) with higher
proportionality constant than for the matrix-based variants discussed above, see the third column
in Table 4.1. The resulting algorithm can be classified as compute-bound on current hardware for
medium and large polynomial degrees. Such an approach typically achieves a high fraction of the
peak performance for large polynomial degrees, but is sub-optimal in terms of throughput due to
the complexity of O(k2d). This approach is the level of abstraction chosen in PyFR (Witherden
et al. 2014). The fact that results are only shown for k ≤ 4 in that work points to the limitations
of this approach for large k on current hardware. Nevertheless, for element types that do not
support sum-factorization (see below), this strategy might be a viable alternative and could gain
further interest in case that the Flop-to-Byte ratio continues to grow in the future. An illustration
of the matrix-free evaluation process is provided in Figure 4.6.

157



4 Matrix-free implementation

4.4.4 Matrix-free evaluation with sum-factorization

In equation (4.12), the tensor-product structure of the shape functions and the quadrature rule
can be exploited for the interpolation and integration steps

Ne
DoFs∑
i=1

∇ξ`i(ξq) (ue)i =
k+1∑
i1=1

`i1,ξ1(ξ1,q1)
`i1(ξ1,q1)
`i1(ξ1,q1)

 k+1∑
i2=1

 `i2(ξ2,q2)
`i2,ξ2(ξ2,q2)
`i2(ξ2,q2)

 k+1∑
i3=1

 `i3(ξ3,q3)
`i3(ξ3,q3)
`i3,ξ3(ξ3,q3)

 (ue)i1i2i3 .

(4.13)

This optimization technique is called sum-factorization and replaces the sum over all nodes i
by d sums over the one-dimensional nodes i1, . . . , id for each of the d components of the gra-
dient. Interpolation in d space dimensions is decomposed into a sequence of 1D interpolations
for each coordinate direction. Applying d one-dimensional interpolation kernels for d gradients
gives rise to d2 kernels. Each of these kernels can be interpreted as a dense matrix-matrix prod-
uct of either the 1D shape values matrix or shape derivative matrix with the matrix of solution
coefficients, which is a reshuffling of the solution vector ue such that one index forms the rows
and the other two indices the columns of that matrix. This amounts to 2(k + 1)2 operations
(additions and multiplications) to be performed for all (k + 1)d−1 1D stripes of the remain-
ing d− 1 dimensions. All in all, this leads to 2d2(k + 1)d+1 operations compared to 2d(k + 1)2d

for a naive evaluation. Below, advanced techniques are described that allow to further reduce
operation counts, e.g., only 2d instead of d2 kernels for the interpolation of the gradient. Data
transfer from main memory such as solution vectors and geometric data stored in quadrature
points scales as (k + 1)d, see the last column in Table 4.1. Matrix-free operator evaluation with
sum-factorization is the state-of-the-art implementation technique for tensor-product elements,
see for example Kronbichler and Kormann (2012, 2019), Müthing et al. (2017). Depending on
the polynomial degree, the arithmetic intensity operates somewhere around the machine intensity
for current hardware, which is illustrated in Figure 4.5. Put differently, current hardware does not
offer enough floating point compute capabilities to render sum-factorization superfluous. Hence,
when talking about matrix-free implementations in the rest of this work, this shall imply that
sum-factorization is exploited without mentioning this explicitly. For simplicial elements, this
technique is currently used rather rarely, since sum-factorization is more difficult in this case
with overhead due to the more complicated indexing. A recent work by Moxey et al. (2020a)
explores sum-factorized matrix-free implementations for non tensor-product elements. The fol-
lowing subsections summarize a list of design choices optimizing node-level performance for
the matrix-free implementation used in this work. A detailed discussion of these aspects can be
found in Kronbichler and Kormann (2012, 2019).

4.4.4.1 Minimizing arithmetic operations and optimizing sum-factorization
kernels

Although modern hardware can sustain more Flops than Bytes can be transferred from memory,
operations are not for free and need to be reduced to a mininum in order to achieve optimal per-
formance on current hardware, a main result of the work by Kronbichler and Kormann (2019).
Regarding the evaluation of the gradient of the solution at all quadrature points through sum-
factorization, the operations can be reduced from d2 to 2d kernels by first interpolating into a col-
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location basis (d kernels) and subsequently evaluating the gradient in the collocation basis (an-
other d kernels), a technique called collocation derivative (Kronbichler and Kormann 2019). An-
other optimization technique reducing the number of operations for the one-dimensional kernels
exploits the symmetry of the one-dimensional shape functions and is called even-odd decom-
position (Kopriva 2009). The asymptotic complexity remains unchanged and is still O(kd+1).
In the current deal.II implementation, the length of the innermost loops over 1D nodes and
quadrature points is a compile time constant, realized through a C++ template parameter and
allowing the compiler to produce optimal code, e.g., by loop unrolling.

4.4.4.2 Evaluation of geometry terms

Regarding the differential operator De applied on the quadrature point level, several abstraction
levels can be distinguished in terms of which geometry terms and which operator-specific terms
such as variable coefficients should be stored, or recomputed on-the-fly. For the special case of
affine element geometries, a single Jacobian J e can be used at all quadrature points of an ele-
ment, which is exploited by the present implementation to minimize memory access. Taking the
example of the Laplace operator discussed above, a separate Jacobian J eq is precomputed for each

quadrature point for deformed geometries and stored as
(
J eq
)−T, which is then accessed during

the operator evaluation and represents the main memory traffic (together with the determinant of
the Jacobian, this amounts to d2 + 1 double precision values per quadrature point). For the com-
putation of face integrals (see Section 4.4.5), the quantity nT

(
J eq
)−T is pre-computed at each

quadrature point for both sides of a face, which amounts to 2d values per face quadrature point
(in d−1 dimensions). For such an implementation (as used in this work), the arithmetic intensity
differs significantly between Cartesian and deformed elements, as illustrated in Figure 4.5. Since
the arithmetic intensity of matrix-free implementations is in a similar range as the Flop-to-Byte
ratio of modern hardware (Kronbichler and Kormann 2019, Kronbichler et al. 2019, Müthing
et al. 2017), it is non-trivial to decide which compromise between increase in memory transfer
or floating point operations shows the best efficiency, see for example the work by Remacle et al.
(2016). The work by Müller et al. (2019) concludes that memory-bound spectral element codes
that stream metric terms from memory could be accelerated by recomputing metric terms on-
the-fly. These aspects are discussed in more detail in Kronbichler and Kormann (2019), where
several variants for the treatment of geometry terms are presented and compared, and in Davy-
dov et al. (2020) for nonlinear elasticity problems, where operations at quadrature points are
more complex compared to a simple Poisson problem due to the material model used in that
work. The arithmetic intensity of the matrix-free approach in relation to the current hardware
landscape requires a PDE or application expert to have profound knowledge about matrix-free
techniques and low-level code optimization to identify the optimal implementation strategy. This
inter-disciplinarity introduces challenges, e.g., how to combine the separation-of-concerns prin-
ciple or black-box concept with optimal implementations. While storing certain quantities that
are more expensive to recompute appears to be a good compromise on current hardware in order
to balance operations and memory access, a shift towards recomputing more and more quantities
could take place on future hardware if the Flop-to-Byte ratio continues to grow.
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Figure 4.7: Illustration of vectorization over elements for single-precision (top row) and double-
precision (bottom row) computations and for different instruction set extensions in
Intel language (columns).

4.4.4.3 Vectorization over elements and faces

The matrix-free operator evaluation performs the same operations for all elements, the only dif-
ference is that integrals over different elements operate on different parts of the solution vector u
and the geometry information J eq has to be stored and loaded separately for each element in case
of deformed element geometries. In order to exploit the single-instruction-multiple-data (SIMD)
vectorization capabilities of modern hardware with wide SIMD units, the present implemen-
tation groups together several elements or faces and performs the integrals in the weak form
concurrently for this batch of elements or faces. This technique has first been proposed in Kron-
bichler and Kormann (2012), and has been adopted in other frameworks in later works by Moxey
et al. (2020a), Sun et al. (2020), where this technique is denoted as cross-element vectoriza-
tion. The basic data type for the operations in the matrix-free evaluation process is therefore
VectorizedArray<Number>, with Number being a template for a C++ data type such
as double or float, currently realized as a wrapper around intrinsics in deal.II. For CPU
hardware used in the present work with support for AVX2 or AVX512, vectorization is done
over 4 or 8 elements/faces in double precision and 8 or 16 in single precision, respectively. An
illustration is given in Figure 4.7. Note that the data might need to be reshuffled when accessing
vector data and before the computations from the array-of-struct (array of elements with struct of
degrees of freedom of type Number) memory layout into an array-of-struct-of-array (each item
of the struct is of type VectorizedArray<Number>) layout. For meshes with the number
of elements/faces not being a multiple of the vectorization width, parts of the vectorized array
remain empty for these corner cases. While this vectorization strategy appears to be the most
efficient one on current hardware (Kronbichler and Kormann 2019), it also comes along with
disadvantages. For example, cross-element vectorization increases pressure on the caches due to
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larger temporary data arrays so that the critical polynomial degree at which caches are exhausted
for the element-wise integrals is reduced by this technique. According to the results in Kro-
nbichler and Kormann (2019), this strategy nevertheless pays off compared to intra-element
vectorization. Another disadvantage is related to strong scalability, since the coarser granular-
ity of the cross-element vectorized case implies that the strong-scaling limit is reached once
the number of elements per core is lower than the SIMD width. Also, Gauss–Seidel iteration
techniques for preconditioning depend on how the elements are grouped together into batches.
Finally, adaptively refined meshes are less homogeneous and might pose restrictions regarding
which elements can be processed at once, causing SIMD arrays to be filled only partially. Other
vectorization strategies are chosen in Müthing et al. (2017), exploiting that the solution and
its gradients fill the SIMD array in case of three space dimensions (d = 3), double-precision
computations, and AVX2 instruction set extensions with a register width of 256 bit. The study
by Kempf et al. (2020) aims at overcoming the limitations of this special vectorization strategy
and proposes more flexibility w.r.t. vectorization in a code-generation context.

4.4.4.4 Complexity and throughput

For volume integrals, the number of operations scales as O(kd+1), i.e., the complexity is linear
in k per degree of freedom. Similarly, face integrals have a complexity ofO(kd) due to the lower
dimensionality of faces, df = d−1. Solution coefficients have to be stored per degree of freedom
and geometry information per quadrature point. Accordingly, the memory requirements and data
transfers to/from main memory scale as O(kd), i.e., the complexity is constant per degree of
freedom. As a result, it is unclear whether the overall efficiency of the implementation shows a
complexity that is constant or linear in k. The behavior depends on the relative costs of volume
integrals compared to face integrals as well as the hardware under consideration, i.e., whether the
method can be characterized as compute-bound or memory-bound. Overall, matrix-free operator
evaluation has an intensity comparable to what current hardware offers. An important result
from Kronbichler and Kormann (2019) is that the present matrix-free implementation tends to
become memory-bound when implemented with a minimum of arithmetic operations on modern
hardware with high Flop-to-Byte ratios. In practice, it is often observed that the throughput of
the present matrix-free implementation measured in degrees of freedom per second depends only
mildly on the polyomial degree, suggesting an almost constant complexity up to moderately high
polynomial degrees, see also the results in Section 4.5. The fact that the observed complexity is
better than the theoretical complexity of volume integrals can be explained by face integrals and
data access (both showing constant complexity per unknown), which are performance relevant
for moderately high polynomial degrees, see also Kronbichler and Kormann (2019), Müthing
et al. (2017).

Remark 4.3 The rapid evolution in hardware and – related to this paradigm shift – the uncer-
tainty regarding optimal numerical algorithms manifests itself in a common mis-communication
that can be observed in the literature, see for example Heinecke et al. (2014), Kempf et al.
(2020), Müthing et al. (2017), Sun et al. (2020), Witherden et al. (2014), namely that an algo-
rithm should have a high Flop-to-Byte ratio to be computationally efficient on modern hardware
and that memory-bound algorithms are per-se blamed inefficient. The argumentation is skewed
in the sense that mainly the last row of Table 4.1 is considered as performance-relevant. However,
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arithmetic intensity is a relative quantity that does not contain information about the complexity
of the algorithm. The aspect that matrix-free operator evaluation with sum-factorization shows
the best complexity on general geometries both in terms of operations and memory access is often
under-represented. Moreover, this also originates from a perspective that considers algorithms
as high-performance realizations if they achieve a significant fraction of the peak performance,
and computer science awards such as the Gordon Bell Prize that award preferably this artificial
metric rather than the actual speed of the implementation (Bell et al. 2017). Other examples are
the well-known LINPACK benchmark and the TOP500 list focusing on Flops rather than memory
bandwidth, although data access is considered the most important performance-limiting factor
in HPC (Hager and Wellein 2010). A more generic and balanced notion of high-performance
computing is given in Hager and Wellein (2010), where high-performance computing is un-
derstood as optimizing throughput by removing bottlenecks. A good example in the context of
spectral element (collocation-type) discretizations of the compressible Navier–Stokes equations
is the work by Müller et al. (2019). Through performance optimizations, the authors obtain a
memory-bound algorithm, and conclude that further performance improvements could be pos-
sible by reducing memory transfer via an on-the-fly computation of metric terms, see also Sec-
tion 4.4.4.2. If the operation counts of a compute-bound algorithm can be reduced so that it
becomes increasingly memory-bound, the numerical method becomes more efficient overall in
terms of the throughput metric (time-to-solution). In general, the overall goal is (i) to minimize
both arithmetic operations and memory access, and (ii) to balance operations and memory ac-
cess in a way that the throughput is maximized, which might lead to different design choices and
algorithms depending on the hardware. Regarding the first aspect, a matrix-free approach with
optimal complexity outperforms a matrix-based approach in the limit k →∞ indepedently of the
Flop-to-Byte ratio of the hardware, since such an algorithm reduces both memory transfer and
operations. In terms of absolute numbers, the proportionality constant for the O(kd+1) arith-
metic operations is such that matrix-free evaluation with sum-factorization requires less opera-
tions than sparse matrix-vector products for polynomial degrees of k = 2 to 3 and higher in three
space dimensions for DG (Kronbichler et al. 2017). Regarding the second aspect, high-order dis-
cretizations realized with optimal complexity have a Flop-to-Byte ratio that fits well to modern
hardware (Kronbichler and Kormann 2019, Kronbichler et al. 2019, Müthing et al. 2017), which
is why such algorithms have seen a significant speed-up over the last years, while the single
core performance of classical matrix-based approaches has not improved significantly, see the
numerical results for various processor generations shown in Arndt et al. (2020b), Kronbichler
and Allalen (2018). For this reason, matrix-free operator evaluation with sum-factorization has
been shown to be faster than sparse matrix-vector products already for polynomial degree k = 2
on modern hardware (Kronbichler and Kormann 2012, 2019, May et al. 2014). This break-even
point became continuously smaller over the last years (consider the publications by Cantwell
et al. (2011), Kronbichler and Kormann (2012, 2019), May et al. (2014), Vos et al. (2010) in
chronological order), due to developments in computer hardware, but also due to algorithmic
improvements of matrix-free techniques that minimize operation counts or make optimal use of
compute resources through vectorization (Kronbichler and Kormann 2019). In contrast, matrix-
free algorithms with sub-optimal computational complexity (Heinecke et al. 2014, Witherden
et al. 2014) become prohibitively expensive for large polynomial degrees on current hardware,
explaining why results are typically not shown for polynomial degrees beyond k = 3 or 4 in
three space dimensions in the literature.
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Algorithm 4.1 Matrix-free operator evaluation with compact face integrals
1: for e = 1, . . . , Nel do . volume integrals
2: IeGe: gather solution coefficients ue and interpolate solution (or its gradient)
3: De: evaluate differential operator for all volume q-points
4: SeI

T
e : test by test function (or its gradient), sum over q-points, and scatter

5: end for
6: for f = 1, . . . , Nfaces,int do . interior face integrals
7: IfGf : gather solution coefficients for both sides and interpolate solution (or its gradient)
8: Df : compute numerical flux for all face q-points, apply geometry terms
9: Sf I

T
f : test by test function (or its gradient) for both sides, sum over q-points, and scatter

10: end for
11: for f = Nfaces,int + 1, . . . , Nfaces do . boundary face integrals
12: IfGf : gather interior solution coefficients and interpolate solution (or its gradient)
13: ∀q: compute exterior states {u+,∇u+ · n}(ξq) = f ({u−,∇u− · n}(ξq), gq, hq)
14: Df : compute numerical flux for all face q-points, apply geometry terms
15: Sf I

T
f : test by test function (or its gradient), sum over q-points, and scatter

16: end for

4.4.4.5 Single precision for increased throughput

The matrix-free algorithm outlined above is perfectly suited for single-precision computations
where the number of elements grouped into one SIMD batch is twice as large as compared to
double-precision computations, which allows to speed up computations by a factor of up to 2,
see for example Kronbichler et al. (2017). This is possible due to the fact that the amount of data
transferred from main memory reduces by a factor of two in case of single precision (allowing
twice the throughput in terms of elements processed per time from the point of view of memory
bandwidth), and the vectorization strategy with explicit vectorization over elements/faces also
allows twice the throughput in terms of arithmetics. While double-precision computations are
often desirable in terms of accuracy for PDE solvers, this technique can successfully be exploited
in preconditioners such as multigrid, see Chapter 5.

4.4.5 Face integrals and discontinuous Galerkin methods

Face integrals are amenable to matrix-free operator evaluation as well, with the difference that
integrals are computed over a d − 1 dimensional domain, that the geometric terms arising from
the transformation of the integral from physical space to reference space are different, and that
the solution or its gradient has to be interpolated from the element interior onto the faces in order
to evaluate numerical fluxes in the face quadrature points. Again, sum-factorization can be used
as for the volume integrals in order to devise algorithms of optimal computational complexity,
requiringO(k ·kd−1) operations for the interpolation onto the face andO(k2 ·kd−1−1) operations
for the subsequent interpolation within the face. An important question is how to organize the
loop over faces, where two options are discussed here:

1. Compact face integrals (see Algorithm 4.1): Face integrals are organized independently
of volume integrals with separate loops over elements (volume integrals), interior faces,
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Algorithm 4.2 Matrix-free operator evaluation with element-wise face integrals
1: for e = 1, . . . , Nel do . volume and face integrals
2: Ge: gather solution coefficients ue
3: Ie: interpolate solution (or its gradient) into all volume q-points
4: De: evaluate differential operator for all volume q-points
5: ITe : test by test function (or its gradient) and sum over q-points
6: for f = 1, . . . , Nfaces,e = 2d do . face integrals
7: If,e−: interpolate solution (or its gradient) into the q-points of face f
8: if interior face then
9: If,e+Gf,e+: gather solution coefficients ue+ of neighbor and interpolate

10: else
11: ∀q: compute exterior states {u+,∇u+ · n}(ξq) = f ({u−,∇u− · n}(ξq), gq, hq)
12: end if
13: Df,e: compute numerical flux for all face q-points, apply geometry terms
14: ITf,e: test by test function (or its gradient) and sum over q-points
15: Sf,e: accumulate into element-local data structures
16: end for
17: Se: write element-local data into global DoF-vector u
18: end for

and boundary faces. The computation of face integrals should happen in temporal prox-
imity to volume integrals for improved data locality and cache reuse. This is realized by
interleaving volume and face integrals (unlike the global for-loops used in Algorithm 4.1).
For this option, numerical fluxes are computed only once on interior faces and tested si-
multaneously with test functions from both elements adjacent to a face. This approach is
generically written as

Au =

Nel∑
e=1

SeI
T
eDeIeGeu +

Nfaces,int∑
f=1

Sf I
T
fDf IfGfu +

Nfaces∑
f=Nfaces,int+1

Sf I
T
fDf IfGfu . (4.14)

Similar to the evaluation of volume integrals, Gf extracts the relevant degrees of freedom
of the two elements e−, e+ required for the computation of the face integral over a face f =

∂Ωe− ∩ ∂Ωe+ , i.e.,
(
uT
e− ,u

T
e+

)T
= Gfu, and Sf = GT

f is a scatter operation that adds
contributions to both elements adjacent to a face.

2. Element-wise face integrals (see Algorithm 4.2): Face integrals are understood as oper-
ations belonging to a particular element in addition to the volume integral performed on
this element. A consequence of this approach is that numerical fluxes are computed twice,
whenever one element requires this flux for testing with its own test functions. This ap-
proach is generically written as

Au =

Nel∑
e=1

Se

ITeDeIeGeu +

Nfaces,e∑
f=1

Sf,eI
T
f,eDf,eIf,(e−,e+)Gf,(e−,e+)u

 . (4.15)
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The scatter operation Sf,e accumulates into the element-local data structures, while Se
finally scatters into the global DoF-vector once the computations for element e are com-
pleted. Note that gathering and interpolating data has to be done for both elements e−

and e+ adjacent to f , while the flux computation, testing, and scattering is done for el-
ement e = e− only. Computing the numerical flux once more for element e+ increases
the arithmetic operations for this strategy. At the same time, results already computed for
volume integrals can be reused for the computation of face integrals and reduce operation
counts. Apart from the aspect of operation counts, this approach is characterized by a fa-
vorable data access pattern similar to finite difference methods. Note also that this is the
natural formulation for block-Jacobi and block-Gauss–Seidel preconditioners where block
refers to the degrees of freedom of one element.

According to the above discussion, it is non-trivial to answer a priori which strategy is com-
putationally more efficient. Different strategies for the computation of face integrals have been
analyzed in Kronbichler and Kormann (2019), Kronbichler and Allalen (2018), Kronbichler et al.
(2017) in terms of throughput. The favorable data access pattern of element-wise face integrals
renders this approach more efficient than separate face loops for operators such as the SIPG
discretization of the Laplace operator or a Lax–Friedrichs discretization of advection terms ac-
cording to Kronbichler and Kormann (2019). For operators with complex numerical flux compu-
tations requiring more arithmetic work, the approach with separate face loops might nevertheless
be faster, a topic that has not been explored in detail to date. Since the element-wise computation
of face integrals has not been available in deal.II by the time of writing, the first option with
separate face integrals is used in the course of this thesis.

Remark 4.4 For general operators, the interpolation operators might not be the same for the
solution function and the test function, i.e., the symmetry of the volume integral of the Laplace
operator w.r.t. solution and test functions is a special case. This complexity is hidden in the above
equations (4.14) and (4.15) by defining the interpolation operator I and the quadrature point
operator D accordingly, i.e., the interpolation operator is formally extended to always include
the computation of values and gradients and the quadrature point operator might no longer be
a diagonal operator. Of course, this is done only for ease of notation, since such a “padding
with zeros” would increase operation counts and reduce computational efficiency. An alterna-
tive formulation would be to use different and operator-dependent interpolation operators for
the solution function and the test function according to the particular operator of interest. In-
terpolation operators for face integrals using sum-factorization are detailed in Kronbichler and
Kormann (2019). For ease of notation, operator evaluation is written as a sequence of matrix-
vector products, but optimal-complexity algorithms such as sum-factorization are used, e.g., to
apply I to a vector.

Remark 4.5 As already mentioned, the variant with compact face integrals interleaves volume
and face integrals for improved data locality. An alternative strategy for the computation of face
integrals is a separate loop for face integrals with separate global data structures for faces and
is used, e.g., in Hindenlang et al. (2012), Klöckner et al. (2009). The study by Kronbichler and
Kormann (2019), where this variant is called “global trace storage”, identified this approach
as computationally least efficient due to increased memory transfer with several sweeps through
global vectors.
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Remark 4.6 The block data structure in the case of discontinuous finite element spaces is of-
ten used to advertise discontinuous over continuous Galerkin methods (given that DG methods
naturally have this block data structure while data access might be irregular for continuous
Galerkin discretizations due to degrees of freedom shared between elements). The performance
numbers shown in Kronbichler and Wall (2018) do not justify the use of DG methods for reasons
of improved data locality. For example, the total number of degrees of freedom increases for DG
and additional face integrals take a significant share of the overall computational costs. More-
over, the quadrature-point based geometry data on generally deformed elements (with regular
data access pattern also for continuous discretizations) amounts to much more data than the
solution vectors as argued in Ljungkvist (2017). The theoretical performance model in Müller
et al. (2019) for a continuous Galerkin discretization does not favor a DG storage scheme over
the CG storage scheme with noncontiguous memory access in terms of optimal runtime.

4.4.6 Other matrix-free techniques optimized for trivial geometries
For Cartesian meshes, there exist other specialized techniques that can be seen as a combination
of the approach from Section 4.4.2 using elementwise matrices and the approach from Sec-
tion 4.4.4 using a matrix-free evaluation with sum-factorization. Under the assumption of Carte-
sian meshes and for certain PDE operators, the operator is separable and the elementwise matrix
can be factorized into a tensor-product structure. The whole operator can then be evaluated by
applying one sweep of one-dimensional sum-factorization kernels, instead of two sweeps for the
interpolation and integration steps of the matrix-free operator evaluation with sum-factorization.
Accordingly, this approach has the same complexity in terms of memory transfer (O(kd)) and
operation counts (O(kd+1)), but reduces the absolute number of arithmetic operations. Combin-
ing static condensation with tensor-product methods, a linear complexity of O(kd) in operation
counts can be achieved (Huismann et al. 2017, 2019). Due to the restrictions of this approach to
Cartesian meshes, it is not discussed in more in detail in this work.

4.4.7 A note on hybridizable discontinuous Galerkin methods
This section briefly characterizes hybridizable discontinuous Galerkin (HDG) methods, see for
example Kirby et al. (2012), Yakovlev et al. (2016), in terms of the above categorization of
implementation strategies. HDG methods aim at reducing the size of the global matrix system.
This is achieved by introducing additional unknowns called trace variables at the interface be-
tween elements. Inner degrees of freedom are then eliminated by static condensation and the
global problem is formulated in terms of the degrees of freedom on the mesh skeleton only. This
results in a matrix-based technique, and Table 4.1 lists the complexity of this approach com-
pared to other evaluation techniques. From these estimates, it can be expected that the HDG
approach is efficient in two space dimensions, d = 2. In three space dimensions, d = 3, the
HDG approach has the same complexity as matrix-free operator evaluation in terms of operation
counts, O(k4), but a higher complexity of O(k4) in terms of data transfer from main memory,
compared to O(k3) for matrix-free operator evaluation. From these theoretical estimates it is
difficult to answer whether the HDG approach is competitive to matrix-free operator evaluation.
A look at the computational intensity of the HDG approach reveals that the O(k4) data transfer
is the performance-limiting factor of HDG methods on hardware that offers Flop-to-Byte ratios
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of one and larger. A recent performance study by Kronbichler and Wall (2018) for a Poisson
model problem reveals that matrix-free operator evaluation is significantly faster than the HDG
method on modern CPU hardware when the comparison is made for a setup in which the dif-
ferent approaches are sufficiently optimized to allow general conclusions regarding their relative
efficiency. To understand this behavior, it is necessary to internalize the hardware developments
that took place over the last two decades, most importantly the trend of increasing Flop-to-Byte
ratio according to Figure 4.4. Moreover, the setup costs of HDG exhibit a complexity in k that
is higher than the operator evaluation costs listed in Table 4.1, and might not be negligible espe-
cially for problems that require a frequent re-assembly of operators. An interesting point of view
is provided in Kronbichler and Wall (2018) in the sense that HDG methods would need to adapt
concepts from matrix-free operator evaluation in order to bring the performance of this method
closer to fast matrix-free techniques.

4.5 Numerical results
This section presents numerical results characterizing the efficiency of the matrix-free implemen-
tation with sum-factorization used in this work for on-the-fly operator evaluation. All operators
listed in Section 4.5.1 refer to discontinuous Galerkin discretizations. Section 4.5.2 describes
the experimental setup. Sections 4.5.3 details how the throughput behaves as a function of the
problem size by the example of the scalar Laplace operator. Section 4.5.4 analyzes the through-
put as a function of the polynomial degree, considering first the scalar Laplace operator and
subsequently also other incompressible Navier–Stokes operators. To complement these results,
Section 4.5.5 shows results of a roofline analysis for these operators.

4.5.1 Operators
The operators selected in this chapter are the pressure Poisson operator

y = Lp , (4.16)

the inverse velocity mass matrix operator

y = M−1u , (4.17)

the penalty operator composed of the mass operator and the divergence and continuity penalty
operators

y = (M + ∆tnAD + ∆tnAC)u , (4.18)

the Helmholtz-like operator using the Laplace formulation of the viscous term

y =

(
γn0

∆tn
M + V

)
u , (4.19)

the nonlinear convective operator using the conservative formulation

y = c (u) , (4.20)
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Table 4.2: Performance specifications for Intel Skylake system of SuperMUC-NG at LRZ in
Garching, Germany. Assuming an AVX512 clock frequency of 2.3 GHz, 48 cores per
node with 2 FMA units each result in a peak floating point performance of 3.5 TFlop/s
per node.

Processor Memory and Caches

Processor type Intel Xeon Platinum 8174 Memory per node (thin/fat) 96/768 GByte
Frequency 2.3 GHz Theoretical memory bandwidth 256 GByte/s
Cores per node 48 (2 sockets, 24 cores each) STREAM memory bandwidth 205 GByte/s
SIMD width 512 bit (AVX512) Cache size (L2 + L3) per node 2 · 57 MByte

and the linearized momentum operator using the Laplace formulation of the viscous term and
the conservative formulation of the convective term

y =

(
γn0

∆tn
M + Clin

(
u(k)
)

+ V

)
∆u . (4.21)

These operators are selected here since they form the main performance-relevant operators of
incompressible Navier–Stokes solvers as explained in detail in Chapter 5. Operators composed
of different basic operators are evaluated in a single matrix-free evaluation step with one sweep
through the data.

4.5.2 Setup of experiments
The numerical experiments shown in this section are performed on an Intel Skylake architec-
ture with AVX512 vectorization. Table 4.2 lists the specifications of the SuperMUC-NG super-
computer in Garching, Germany. The GNU compiler g++ version 9.2 with optimization flags
-std=c++17 -march=native -O3 is used. Unless specified otherwise, all measurements
are conducted for a fully loaded node with 48 MPI processes in order to populate all memory
controllers and to avoid that the heterogeneity of the memory access affects the results. The
background is that access to main memory is a resource shared by several cores and one core
would have access to more than 1/48 of the peak memory bandwidth if the experiment was run
with only a single MPI process, which would then lead to artificially high throughput numbers.
This chapter focuses on the node-level performance, while parallel scalability of the present
matrix-free implementation is investigated in Kronbichler and Wall (2018) on the level of op-
erator evaluation, and in Chapter 6 on the application-level of incompressible Navier–Stokes
solvers. The throughput in degrees of freedom processed per second refers to one matrix-free
evaluation of the discretized operator. In this context, a careful setup of the numerical experi-
ments is required in order to ensure reproducibility of the results. The wall time for operator
evaluation is averaged over 100 applications (inner iterations) of the discretized operator and the
minimum over 10 consecutive runs (outer iterations) is taken. Moreover, the overall wall time of
operator evaluation (inner times outer iterations) should take at least one second, otherwise an-
other 10 outer iterations are conducted until this threshold is reached. The discretized operators
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(a) two-dimensional problem (d = 2) (b) three-dimensional problem (d = 3)

Figure 4.8: Throughput of matrix-free operator evaluation versus problem size measured for
scalar Laplace operator on a d-dimensional cube geometry with Cartesian or curvi-
linear mesh considering polynomial degree k = 3.

are evaluated on a structured Cartesian mesh or curvilinear mesh of a cube geometry with Nd
el,1d

elements and periodic boundary conditions, where Nel,1d is chosen depending on the polynomial
degree of the shape functions in order to meet a predefined range of degrees of freedom. The
coarse grid is refined uniformly until the desired number of unknowns is reached and consists of
either 1d, 3d, or 5d elements so that the total number of unknowns is within the predefined range
of DoFs.

4.5.3 Throughput versus problem size

In a first step, the throughput in DoF/s of the matrix-free operator evaluation is studied for the
scalar Laplace operator (pressure Poisson operator for incompressible Navier–Stokes solvers)
as a function of the problem size for a fixed polynomial degree, where k = 3 is considered
exemplarily. The increasing problem size is then realized by mesh refinements. The experiment
is conducted on a fat memory node in order to study large problem sizes. Figure 4.8 shows results
obtained for d = 2, 3 on Cartesian and curvilinear meshes. The size of the L2 and L3 caches
listed in Table 4.2 corresponds to 14.25 · 106 double precision values. For the Cartesian mesh,
the memory transfer through the caches is due to the input and output vectors (2 double precision
values per degree of freedom), so that the critical number of degrees of freedom is 7.1 MDoF
to saturate caches. For curvilinear meshes, d2 + 1 double values are stored for the geometry
per degree of freedom (for the leading order volume integrals) and need to be streamed from
main memory during operator evaluation in addition to the 2 double values for the input and
output vectors. Hence, the critical problem size saturating caches in case of curvilinear meshes
is 2.0 MDoF for d = 2 and 1.2 MDoF for d = 3. These bounds are shown as vertical lines
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in Figure 4.8. A pronounced cache effect can be observed for the curvilinear mesh, while it
is less pronounced for the Cartesian mesh. For larger problem sizes, the cache effect does not
disappear in form of a sharp border, but rather as a transition zone which corresponds well to the
theoretical estimate. For very large problem sizes, the matrix-free code operates in the saturated
regime characterized by a constant throughput, indicating optimality of the implementation with
respect to problem size. In three space dimensions, the throughput grows slightly in the saturated
regime which might be explained by less MPI communication overhead for larger problem sizes
due to a better volume-to-surface ratio. The range of problem sizes used below for throughput
measurements is indicated by a gray band, ensuring that results are not compromised by cache
effects. A significantly larger throughput is achieved for the Cartesian mesh compared to the
curvilinear mesh. This aspect is related to the amount of data that needs to be transferred from
main memory and is discussed in more detail in Section 4.5.4.

The range of problem sizes discussed above is denoted as throughput regime, where the term
throughput regime refers to a situation in which either the compute capabilities of the hardware
or the memory bandwidth are sufficiently utilized through sufficiently long loops around useful
work, where floating point operations and streaming of data from memory is considered as use-
ful work. Note that this notion is tightly coupled to the roofline performance model. For small
problem sizes, the code does not operate in a throughput regime. Instead, efficiency is limited
by latency effects. All data would fit into caches, but there is not enough work to keep execu-
tion units busy. For this reason, the difference in throughput between Cartesian and curvilinear
meshes observed for large problem sizes diminishes for small problem sizes.

Repeating the same experiments in single-precision (float) yields an increase in throughput
by a factor of 1.7−2.0 in the saturated regime, as expected due to the explicit SIMD vectorization
of the code. In the latency-bound regime at a low number of DoFs, the benefit of single-precision
again diminishes and the curves approach those for double-precision computations.

4.5.4 Throughput versus polynomial degree measured in saturated
regime

According to the results obtained in the previous section, a problem size of 25 − 75 MDoF is
chosen in order to avoid cache effects and to ensure that measurements are conducted in the
regime of saturated caches. Of course, exploiting cache effects intentionally in order to achieve
improved performance is reasonable for the simulation of practical problems. The throughput is
measured for polynomial degrees in the range 1 ≤ k ≤ 15. Figure 4.9 shows the throughput of
the matrix-free versus matrix-based evaluation of the scalar Laplace operator. The matrix-free
version is the performance measured for an interior penalty DG discretization with nodal Gauss–
Lobatto basis. The corresponding horizontal lines represent theoretical upper bounds based on
the following estimate: Assuming that the code is fully memory-bound, 2.56 · 1010 double val-
ues can be transferred from memory per second when operating at the STREAM bandwidth.
Considering first the Cartesian case where no geometry data needs to be streamed from main
memory, the input and output vectors have to be read from memory (the latter due to the read-
for-ownership policy), and the output vector has to be written to memory, resulting in 3 double
values per degree of freedom or a throughput of 8.5 · 109 DoF/s. For the curvilinear case with
deformed elements, the data transfer amounts to 3 + d2 + 1 (vectors, Jacobian, and Jacobian de-
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terminant times quadrature weights) double values per degree of freedom for volume integrals.
Additional data transfer for face integrals is neglected in this estimate (due to the lower dimen-
sionality of face integrals), so that this theoretical limit is only strictly valid in the limit k →∞.
This gives an upper bound of 3.2 · 109 DoF/s for d = 2 or 2.0 · 109 DoF/s for d = 3. The mea-
sured performance yields a throughput almost independent of the polynomial degree. For d = 2,
the measured performance is approximately a factor of 2 smaller than the upper bound for the
Cartesian case, and a factor of 1.5 for the curvilinear case for intermediate and large polyno-
mial degrees. For d = 3, the gap to the upper bound is at least a factor of 4 for the Cartesian
case, but is again as small as a factor of approximately 2 for the curvilinear case for intermediate
polynomial degrees. These results already indicate that the matrix-free implementation is mainly
memory-bound for the curvilinear mesh. The circumstance that the gap to the theoretical upper
bound is somewhat larger in the Cartesian case (especially for d = 3) gives indications that the
implementation might be partially compute-bound for the Cartesian mesh, an aspect that needs
to be verified by a roofline analysis.

According to the analysis in Kronbichler and Kormann (2019), the gap to the upper memory-
bound limit is due to a sub-optimal data access pattern for face integrals and can significantly
be reduced mainly by three measures: (i) element-wise face integrals with finite difference data
access pattern for improved data locality and cache usage, (ii) Hermite-like basis functions for
operators with second derivatives in order to reduce the amount of neighbor data that needs to be
read for the computation of face integrals, and (iii) shared memory parallelization within nodes
in order to reduce the additional data traffic required in case of MPI communication. These op-
timizations are proposed in the recent works by Kronbichler and Kormann (2019), Kronbichler
et al. (2019), Kronbichler and Allalen (2018), which suggest that two thirds of the theoretical
optimal performance can be reached by these measures. Note that the gap can not be closed en-
tirely since the theoretical upper bound neglects geometric data required for face integrals, and
since this limit further assumes an entirely memory-bound code, optimal cache usage with a sin-
gle sweep through the data (caches are assumed large enough), and infinite compute resources.
For d = 3, the throughput is almost constant for small and intermediate polynomial degrees,
which is due to face integrals and/or data access of complexity O(1) per degree of freedom.
However, the throughput decreases slightly for large k, where two explanations are plausible.
On the one hand, arithmetic operations for volume integrals have complexity O(k) per degree
of freedom which would imply a 1/k decrease in throughput for large polynomial degrees if this
effect becomes dominant. On the other hand, this behavior might be related to data locality and
caches either originating from volume integrals or face integrals. Regarding the computation of
volume integrals, the temporary data arrays required might no longer fit into caches for large
polynomial degrees, so that parts of the data are evicted to main memory and need to be read
several times during the computation of volume integrals. Regarding the computation of face
integrals, the data transfer analysis in Kronbichler et al. (2019) reveals that the chosen Lagrange
basis with MPI communication leads to a continuously growing data volume per DoF for in-
creasing polynomial degree, which is attributed mainly to face integrals by a comparison to an
alternative Hermite-like basis and alternative OpenMP parallelization. For the present experi-
ments, the hypothesis that data access causes the decrease in throughput rather than arithmetic
throughput is verified by measuring the floating point performance and the memory bandwidth,
see also the roofline analysis in Section 4.5.5. This analysis reveals that the floating point per-
formance and the Flop rate decrease for large k while the memory bandwidth is close to its
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(a) two-dimensional problem (d = 2)

(b) three-dimensional problem (d = 3)

Figure 4.9: Throughput of matrix-free operator evaluation measured for scalar Laplace operator
on a d-dimensional cube geometry with Cartesian or curvilinear mesh and compari-
son to theoretical optimal implementations of matrix-based variants.

theoretical limit. However, from a theoretical perspective one would expect that the arithmetic
intensity increases for large k (due to the complexity of volume integrals) in case of optimal
data access. This is a clear indication that the decrease in throughput for large k in three space
dimensions is caused by sub-optimal data access rather than the complexity of volume integrals.

The matrix-based implementation in Figure 4.9 assumes an optimal implementation of the
matrix-vector product and neglects assembly costs. The theoretical lower and upper bounds
shown for the matrix-based implementation are related to the type of DG basis and the “stencil-
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width” (sparsity of block-matrices of neighboring elements). If only the block-diagonal is taken
into account and block matrices of neighboring elements are assumed sparse and are neglected,
the matrix-based version will perform closer to the upper bound corresponding to (k + 1)2d

nonzeros per element in the matrix. If the block-matrices of neighboring elements are assumed
dense, it will perform closer to the lower bound corresponding to (2d + 1)(k + 1)2d nonzeros
per element. The assumption of an optimal implementation for the matrix-based variant implies
that the code is assumed to run with full memory throughput at the STREAM bandwidth of the
hardware where only the non-zeros of the matrix as well as the input and output vectors have
to be read from/written to memory. Furthermore, optimal spatial and temporal data locality is
assumed, i.e., perfect utilization of cache-lines and caches. The HDG variant assumes that each
of the d faces of an element couples to 4d− 1 faces resulting in d(4d− 1)(k+ 1)2(d−1) nonzeros
per element, and an otherwise optimal implementation as for the matrix-based DG variant.

The matrix-free DG variant is faster than the matrix-based DG variant for k ≥ 3 if d = 2,
and for k ≥ 2 if d = 3. A speed-up by orders of magnitude can be expected for large poly-
nomial degrees. These results also illustrate that while the HDG approach is attractive in two
space dimensions, it is clearly less efficient than matrix-free operator evaluation in three space
dimensions. Note that actual implementations of the matrix-based variants will result in a lower
throughput than the optimal results shown in Figure 4.9, e.g., due to non-optimal usage of caches
and additional memory transfer for indexing. Further, this comparison neglects cost for assem-
bling matrices as well as static condensation (for HDG), which needs to be performed in case
of the matrix-based variants and which would further increase the gap between matrix-free and
matrix-based approaches. For matrix-based variants, there is no difference in performance be-
tween Cartesian and deformed elements. For the matrix-free implementation, the gap in perfor-
mance between Cartesian and deformed elements can be expected to become smaller in case
of vectorial problems (e.g., velocity in case of the Navier–Stokes equations) as compared to
the scalar Laplace problem shown here, since the amount of data required for the geometric
information becomes smaller relative to the amount of data required for the DoF vectors when
considering an increasing number of components of the vectorial problem.

Next, the throughput is investigated as a function of the polynomial degree k for the incom-
pressible Navier–Stokes operators discussed above. The results are shown in Figure 4.10. The
highest throughput is achieved by the inverse mass matrix operator, which is mainly memory-
bound and operates close to the theoretical limit corresponding to the STREAM bandwidth. The
theoretical limit is shown as horizontal lines and assumes that 3 doubles need to be streamed
from memory in the Cartesian case (one for the input vector and two for the output vector due
to the read-for-ownership policy), and one additional double value per d degrees of freedom
for the Jacobian determinant in each quadrature point in the curvilinear case. A similar perfor-
mance can be expected for vector-update operations occurring in time integration schemes and
iterative solvers. Scaling and adding vectors results in a low arithmetic intensity (around or be-
low one Flop per double value) and the code is clearly memory-bound (a so-called streaming
operation). The throughput of discretized differential operators is generally lower and can be ex-
plained by the complexity of the individual operators. The Helmholtz operator differs from the
Laplace operator only by an additional cheap mass matrix term and, therefore, achieves a com-
parable throughput. The penalty operator and convective operator achieve a somewhat higher
throughput than the Helmholtz operator, which can be explained by the fact that these opera-
tors require only the value (but not the gradient) of the solution in order to evaluate fluxes for
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(a) two-dimensional problem (d = 2)

(b) three-dimensional problem (d = 3)

Figure 4.10: Throughput of matrix-free operator evaluation for performance-relevant incom-
pressible Navier–Stokes operators on a d-dimensional cube geometry with Carte-
sian mesh (dashed lines and open markers) or curvilinear mesh (solid lines and
filled markers).

face integrals. The momentum operator forms the most complex operator since it combines the
mass matrix, convective, and viscous operators. Additionally, the linearized momentum operator
has to read an additional DoF vector for the linearized velocity field and evaluate this velocity
in all quadrature points, increasing both memory transfer and arithmetic operations. For these
reasons, the momentum operator achieves the lowest performance. Moreover, the nonlinear con-

174



4.5 Numerical results

vective operator and the linearized momentum operator use an increased number of quadrature
points, nq = d3ku+1

2
e, further reducing the throughput for these operators. The rounding to the

next larger integer value explains the saw-tooth behavior observable for the throughput results
of the convective and momentum operators.

Comparing the results for d = 2 and d = 3, a fundamentally different behavior can be ob-
served, in accordance with the results shown above for the Laplace operator. In two space dimen-
sions, the throughput is almost independent of the polynomial degree. Put differently, high-order
methods are as efficient as low-order methods for d = 2 in terms of the matrix-free operator
evaluation. In three space dimensions, the throughput is almost constant in the range 2 ≤ k ≤ 7,
but decreases for increasing polynomial degree, rendering very high polynomial degrees more
expensive than moderately large polynomial degrees 2 ≤ k ≤ 7. For the inverse mass matrix
operator, the decrease in throughput for large k can be explained by the fact that the imple-
mentation tends to become compute-bound for large k. For the other operators, however, the
roofline analysis in Section 4.5.5 reveals that the implementation does actually not enter the
compute-bound regime for large k, but the decrease in throughput is due to data access, such as
sub-optimal temporal data locality for volume integrals and an increase in data volume related
to face integrals as discussed above for the Laplace operator. Another factor causing a decrease
in throughput for large polynomial degrees when compared to the (inverse) mass matrix oper-
ator is MPI communcation overhead. For the same number of unknowns and compute cores,
MPI communication overhead increases for large polynomial degrees due to the smaller number
of elements per core as compared to low-order methods and the increased surface-to-volume
ratio relevant for MPI ghost layer communication (Hager and Wellein 2010). The decrease in
throughput for large k is particularly pronounced for the convective operator and the momentum
operator with an increased number of quadrature points, where the throughput decreases signifi-
cantly in the range 8 ≤ k ≤ 10. The size of the temporary data arrays for volume integrals can be
estimated as ndq · d · (d+ 1) · 8 · 8, where the individual factors account for the number of quadra-
ture points nq = d3k+1

2
e, the d velocity components, the fact that both values and gradients need

to be evaluated (d + 1), a SIMD width of 8 double values for AVX512 with 8 Byte each. This
estimate predicts that the L3 cache of 2.375 MByte per core is exceeded for k ≥ 10 and the L2
cache of 1 MByte per core for k ≥ 7. These numbers fit very well to the observed behavior and
indicate that the data required for the computation of volume integrals does not fit into caches
and needs to be streamed more than once from main memory so that the overall memory transfer
increases “unnecessarily”. Additional data might reside in caches related to the input and output
vectors, and to geometry data with d2 double values per quadrature point in case of deformed
elements.

Similar results as those shown here have already been published in Fehn et al. (2018a) for
an Intel Haswell architecture with AVX2 vectorization capabilities. The increased SIMD width
of the Skylake architecture in combination with a cache size per core even smaller compared to
the Haswell architecture lead to throughput results that are more sensitive w.r.t. the polynomial
degree. Performance improvements compared to the Haswell architecture are mainly obtained
in the range of moderately large polynomial degrees, see also the works by Arndt et al. (2020b),
Kronbichler and Allalen (2018) for cross-platform comparisons of the matrix-free implemen-
tation used here. In Kempf et al. (2020), Müthing et al. (2017), Piatkowski (2019), through-
put results for high-order DG discretizations of the incompressible Navier–Stokes equations
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or its performance-relevant operators are published for a matrix-free implementation realized
in the DUNE-PDELab framework and using comparable Intel Haswell/Skylake hardware. The
present results (and those already published in Fehn et al. (2018a) for an Intel Haswell archi-
tecture) achieve a significantly higher throughput. The present results are also faster than the
GPU implementation of matrix-free high-order continuous Galerkin discretizations of the in-
compressible Navier–Stokes equations presented in Franco et al. (2020), despite the fact that
the present work considers more expensive DG methods with face integrals and the fact that
the Nvidia V100 hardware used in Franco et al. (2020) provides a significantly higher absolute
performance in terms of memory bandwidth (900 GByte/s) and floating point operations (7800
GFlop/s) than the Intel Skylake CPU hardware (see Table 4.2) used here.

Remark 4.7 A similar numerical investigation of the matrix-free operator evaluation for a DG
discretization of the compressible Navier–Stokes equations implemented in the course of this
thesis has already been published in Fehn et al. (2019c), where results are shown for an Intel
Haswell architecture.

4.5.5 Roofline analysis
This section characterizes the matrix-free implementation of the performance-relevant incom-
pressible Navier–Stokes operators in terms of the roofline model. For the throughput results
shown above, the flop rate and the data transfer rate from/to main memory are measured with
the open-source tool likwid (Treibig et al. 2010). From these measurements, the arithmetic
intensity can be computed so that data points corresponding to the different operators and poly-
nomial degrees can be inserted into the roofline plot of the considered hardware. The results are
shown in Figure 4.11. The STREAM bandwidth is utilized as the maximum possible memory
bandwidth. The peak performance assumes as clock-frequency of 2.3 GHz (corresponding to
AVX512 vectorization). Additional horizontal lines indicating 25% and 12.5% are shown for
ease of interpretation of the results.

For d = 2, the arithmetic intensity increases for increasing polynomial degree as expected
theoretically under the assumption of optimal data locality and sufficiently large caches to hold
temporary data, see also Table 4.1. The inverse mass matrix operator is memory-bound for the
Cartesian mesh and the curvilinear mesh. For the other operators involving face integrals, all
operators are memory-bound on the curvilinear mesh. For the Cartesian mesh, the results show
an offset from the STREAM bandwidth limit where the distance to the maximum memory band-
width seems to be influenced by the type of operations involved in face integrals. The penalty
operator only evaluates the solution on faces, the Poisson and Helmholtz operators evaluate both
the value and gradient of the solution on faces. The convective and momentum operators addi-
tionally evaluate the convective flux and use an increased number of quadrature points. In this
order, the distance to the maximum memory bandwidth becomes larger. These results indicate
that the d = 2 operator evaluation on Cartesian meshes is partly compute-bound or limited by
instruction throughput or other latency effects.

For d = 3, the results follow a different pattern. Only the inverse mass matrix operator shows
the expected behavior of increasing arithmetic intensity for increasing polynomial degree. The
implementation is memory-bound for small and moderate polynomial degrees and tends to be-
come compute-bound for large polynomial degrees with a performance of approximately 12.5%
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(a) two-dimensional problem (d = 2)

(b) three-dimensional problem (d = 3)

Figure 4.11: Roofline analysis for performance-relevant incompressible Navier–Stokes opera-
tors on a d-dimensional cube geometry with Cartesian mesh (open markers) or
curvilinear mesh (filled markers).

of peak. The other operators show an inverse behavior characterized by a high arithmetic inten-
sity for low polynomial degrees and a lower arithmetic intensity for high polynomial degrees. As
already mentioned above, this does not fit to the (simplified) theoretical model that counts opera-
tions and the minimum required transfer of data from main memory according to Table 4.1. The
number of floating point operations can be considered as fixed for one operator evaluation, so
that an arithmetic intensity lower than the expected theoretical value must be related to an unex-
pectedly high amount of memory transfer. This can occur if the required data is not streamed just
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once from main memory during operator evaluation as would be optimal from the point of view
of data access, but if the same data needs to be streamed repeatedly from main memory during
one operator evaluation or if intermediate results can not reside in fast caches and are evicted
from caches to the slower main memory. For these reasons, the matrix-free operator evaluation
is mainly memory-bound in three space dimensions on deformed meshes, and also on Cartesian
meshes for large polynomial degrees.

Overall, these results demonstrate the high optimization level of the matrix-free implementa-
tion in deal.II. Put differently, the fact that the compute part of the matrix-free algorithms is
well-optimized in terms of minimizing operations and optimally exploiting SIMD vectorization
enables to more and more encounter memory-bound situations on newest hardware with increas-
ing Flop-to-Byte ratio. To put these results into perspective, the studies by Kempf et al. (2020),
Müthing et al. (2017), Piatkowski (2019) consider a similar high-order DG discretizations and
achieve a significant fraction of the peak floating point performance (up to around 50%), but
a lower performance in the practically relevant throughput metric. This highlights that floating
point performance does not give direct insights into the speed of an implementation. Analyzing
the roofline performance of a code should be understood as an accompanying analysis helping
to identify bottlenecks and to improve throughput. This appears to be worth mentioning given
that many works, see for example the recent study by Świrydowicz et al. (2019) on GPU accel-
eration of high-order matrix-free finite element operator evaluation on tensor-product elements,
primarily consider the Flop-metric, insinuating that this metric would be the target of code opti-
mizations.

4.6 Conclusion and outlook

This chapter started with an introduction to the idea of matrix-free operator evaluation, with
a particular emphasis on discontinuous Galerkin methods discretized on meshes composed of
tensor-product elements. The matrix-free approach with sum-factorization is discussed in com-
parison to other matrix-free and matrix-based approaches. A review of developments in com-
puter hardware gives further insights and explains why the matrix-free approach is particularly
interesting on modern computer hardware. The design choices of the present matrix-free im-
plementation are summarized and its practical performance is analyzed numerically by means
of throughput measurements and a roofline analysis for an Intel Skylake computer architec-
ture. The results demonstrate optimal algorithmic complexity and the achieved efficiency is put
into perspective by comparisons to theoretical models with optimal implementation. The present
matrix-free implementation is shown to perform close to the hardware limits for a selection of
performance-relevant incompressible Navier–Stokes operators in two and three space dimen-
sions and for Cartesian and deformed elements. The throughput as a function of the polynomial
degree is almost constant for d = 2 and decreases moderately with increasing k for d = 3. As
a preparation for subsequent chapters, this chapter demonstrates that both low-order and high-
order methods can be implemented very efficiently by matrix-free techniques, i.e., the throughput
shows only a mild dependency on the polynomial degree.

From that point onwards, further performance improvements would only be possible by chang-
ing the algorithm. Some of these measures have already been mentioned above, such as an alter-
native element-wise organization of face integrals and a Hermite-like basis (for operators with
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second derivatives) in order to optimize data transfer for face integrals. In a similar direction,
shared memory parallelization has been shown to further improve performance (Kronbichler and
Kormann 2019). The present results confirm that temporal data locality becomes an increasingly
pressing issue on modern hardware with wider SIMD units in case of the present implementa-
tion with vectorization over elements and especially for vectorial problems that further increase
the size of temporary data arrays compared to scalar PDEs. An optimal implementation might
then use vectorization over elements for small polynomial degrees, and vectorization within ele-
ments for large polynomial degrees. Vectorization within elements is particularly interesting for
high-order elements: The temporary data arrays would become smaller and allow larger poly-
nomial degrees to fit into caches, and also parallel scalability (see also Chapter 6) could be
improved for high-order elements due to a finer granularity. Another route of optimization could
be the treatment of geometric data for deformed elements, e.g., loading less geometry data from
main memory and instead recomputing geometric information from the nodal coordinates could
improve throughput by relaxing the memory bottleneck. However, the current state-of-the-art re-
veals that all of these questions are difficult to answer once and for all. Instead, it can be expected
that different algorithms and implementations are optimal for different operators, different pa-
rameters such as the polynomial degree or Cartesian/deformed elements, and different hardware
platforms.

179





5 Iterative solution techniques and
preconditioning

The use of iterative solution techniques for algebraic systems of equations resulting from dis-
cretization in space and time is indispensable for large-scale applications. Together with robust
preconditioners that ensure mesh-independent convergence rates (e.g., multigrid), these sys-
tems of equations can then be solved with optimal computational complexity, meaning that the
computational costs scale linearly with the number of unknowns. This chapter discusses well-
established block preconditioners for monolithic incompressible Navier–Stokes solvers. For both
coupled and projection-type Navier–Stokes solvers, the main algorithmic component that is at
the heart of a fast incompressible Navier–Stokes solver is an efficient multigrid preconditioner
for the pressure Poisson problem. For reasons of computational efficiency, an emphasis is put on
matrix-free preconditioners that can be realized with optimal computational complexity for large
polynomial degrees. A novelity of this chapter is a matrix-free hybrid multigrid preconditioner
for high-order discontinuous Galerkin discretizations that combines geometric, polynomial, and
algebraic coarsening techniques with an additional transfer to continuous function spaces. A sig-
nificant part of the implementation of the hybrid multigrid algorithm has been done by Münch
(2018). The hybrid multigrid developments have already been published in Fehn et al. (2020)
and are reproduced here. As a second main ingredient, this chapter addresses block precondi-
tioners for the saddle-point problem arising from discretizations of the incompressible Navier–
Stokes equations using a coupled solution approach. Efficient preconditioning techniques for
projection-type Navier–Stokes solvers have already been described in Fehn et al. (2018a).

Section 5.1 reviews the state-of-the-art on multigrid methods for high-order finite element
discretizations and describes novel contributions of the present work. Section 5.2 discusses the
novel hybrid multigrid solver by the example of the Poisson equation. Numerical results for
the hybrid multigrid solver are shown in Section 5.3. Then, Section 5.4 addresses block pre-
conditioners for the incompressible Navier–Stokes equations. Section 5.5 highlights similarities
in preconditioning between different Navier–Stokes solution strategies discussed in this work.
The robustness of preconditioners for the incompressible Navier–Stokes equations is analyzed
in Section 5.6 for a three-dimensional turbulent flow problem. Finally, Section 5.7 summarizes
this chapter.

5.1 Introduction

When solving (non-)linear systems of equations by means of iterative solution techniques, the
evaluation of nonlinear residuals as well as the application of linear(ized) operators in Krylov
solvers are readily available in a matrix-free implementation environment (Brown 2010). More
importantly, however, also preconditioners should rely on matrix-free algorithms with opti-
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mal complexity, since the whole solver will otherwise run into the bottlenecks of matrix-based
solvers characterized by immense memory requirements and overwhelming data transfer. For
elliptic PDEs, multigrid methods (Trottenberg et al. 2001) are among the most efficient solu-
tion techniques (Gholami et al. 2016), since they allow a solution with linear complexity in the
number of unknowns and since they are applicable to problems on complex geometries. In gen-
eral, one can distinguish between geometric multigrid methods with an explicit construction of
coarser representations of the discrete operator (typically through a hierarchy of meshes), and
algebraic multigrid techniques that only require the matrix representation of the operator on the
fine level and that construct coarser levels by purely algebraic techniques. Although attractive
due to their black-box interface to linear solvers, algebraic multigrid methods are inherently
matrix-based, which is why they show – as compared to their matrix-free geometric multigrid
counterparts – severe limitations in problem size due to increased memory requirements for stor-
ing sparse matrices, increased setup costs, and slow execution on modern hardware with growing
machine in-balance (Hager and Wellein 2010), see Chapter 4. As argued in Bauer et al. (2020),
where the solution of a finite element problem with 1013 unknowns is demonstrated by the use
of matrix-free multigrid algorithms, matrix-based methods are limited to significantly smaller
problem sizes. For high-order spectral element discretizations, the limitations of matrix-based
methods are even more severe (Chapter 4), so that the use of matrix-free algorithms becomes
inevitable in designing performant PDE solvers. For example, it can be expected that optimal
complexity of all solver components is crucial to render high-order discretization methods more
efficient in under-resolved application scenarios such as turbulent flows (Fehn et al. 2018a).

5.1.1 Multigrid for high-order discretizations: state-of-the-art
In the context of high-order finite element discretizations, multigrid methods can be categorized
into h-multigrid, p-multigrid, and algebraic multigrid (AMG) techniques.

Geometric or h-multigrid methods rely on a hierarchy of meshes. Robust h-multigrid tech-
niques for high-order DG discretizations have been developed and analyzed in Brenner et al.
(2009), Brenner and Zhao (2005), Gopalakrishnan and Kanschat (2003), Hemker et al. (2003)
for uniformly refined meshes and in Kanschat (2004, 2008) for adaptively refined meshes. Re-
cent improvements of these algorithms towards high-performance, matrix-free implementations
have been developed in Kronbichler and Wall (2018), where a performance comparison of high-
order continuous and discontinuous Galerkin discretizations as well as hybridizable discontin-
uous Galerkin methods is carried out. A GPU variant for continuous finite elements has been
proposed in Kronbichler and Ljungkvist (2019). The parallel efficiency for adaptively refined
meshes is discussed in Clevenger et al. (2020). Large-scale applications of these h-multigrid
methods can be found in the field of computational fluid dynamics (CFD) and the incompress-
ible Navier–Stokes equations (Fehn et al. 2018a, 2021b, Krank et al. 2017).

For spectral element discretizations, p-multigrid, or synonymously spectral element multigrid,
is frequently used, where the multigrid hierarchy is obtained by reducing the polynomial degree
of the shape functions. Coarsening and multigrid transfer is particularly simple since the function
spaces of different multigrid levels are nested (also for element geometries deformed via high-
order mappings) and since all operations are element-local. This approach has first been proposed
and theoretically analyzed in Maday and Munoz (1988), Rønquist and Patera (1987), and later
investigated, for example, in Helenbrook et al. (2003), Helenbrook and Atkins (2008), Huismann
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Figure 5.1: Illustration of combined geometric–polynomial–algebraic multigrid algorithms for
nodal high-order discontinuous Galerkin discretizations.

et al. (2019), Lottes and Fischer (2005), Mascarenhas et al. (2010), Stiller (2016, 2017a,b). A
related hierarchical scale separation solver is proposed in Aizinger et al. (2015). Polynomial
multigrid techniques are also frequently used to solve the compressible Euler equations (Bassi
et al. 2009, Bassi and Rebay 2003, Fidkowski and Darmofal 2004, Helenbrook and Mascarenhas
2016, Hillewaert et al. 2006, Luo et al. 2006, Mascarenhas et al. 2009, Nastase and Mavriplis
2006b, Rasetarinera and Hussaini 2001) and compressible Navier–Stokes equations (Bassi et al.
2011, Diosady and Darmofal 2009, Fidkowski et al. 2005, Ghidoni et al. 2014, Luo et al. 2012,
Persson and Peraire 2008, Shahbazi et al. 2009).

Algebraic multigrid techniques extract all information from the assembled system matrix to
generate coarser levels and are attractive as they can be applied in a black-box fashion. AMG is
considered in Heys et al. (2005) for high-order continuous Galerkin discretizations and in Lasser
and Toselli (2001), Olson and Schroder (2011), Prill et al. (2009) for (high-order) discontinuous
Galerkin discretizations. AMG applied directly to high-order DG discretizations faces several
challenges, among them the construction of robust smoothers for matrices that lose diagonal
dominance, but most importantly the computational complexity of matrix-based algorithms (es-
pecially for three-dimensional problems) compared to their matrix-free counterparts, see Chap-
ter 4. These limitations are also exemplified by the fact that AMG methods for high-order dis-
cretizations have only been applied to small two-dimensional problems in the works mentioned
above. For reasons of computational complexity, it appears to be inevitable to combine algebraic
multigrid techniques with some form of geometric coarsening to achieve a computationally ef-
ficient approach for practical applications (Bastian et al. 2012, Prill et al. 2009, Siefert et al.
2014).

Multigrid transfer operators are negligible in terms of computational costs when implemented
in a matrix-free way with optimal complexity (Bastian et al. 2019, Kronbichler and Ljungkvist
2019) and when the solver is applied away from the strong-scaling limit. Therefore, multigrid
smoothers and coarse-grid solvers remain as the main performance-relevant multigrid compo-
nents. Adhering to the matrix-free paradigm poses two major challenges that need to be ad-
dressed and further improved:

• Matrix-free smoothers: To fully exploit the advantages of matrix-free algorithms with sum-
factorization for operator evaluation, multigrid smoothers should make use of these algo-
rithms as well, but this problem has so far only been solved for certain types of smoothers
and mainly for elliptic problems. Polynomial smoothers based on the Chebyshev itera-
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Figure 5.2: Illustration of combined geometric–polynomial–algebraic multigrid algorithms with
additional c-transfer between discontinuous and continuous shape functions.

tion (Adams et al. 2003, Sundar et al. 2015) or explicit Runge–Kutta methods (Helen-
brook et al. 2003, Hillewaert et al. 2006, Luo et al. 2006, 2012, Rueda-Ramrez et al.
2019) can be immediately realized in a matrix-free way, are inherently parallel, and are
therefore widely used in a high-order context. More challenging are smoothers based on
elementwise inversion of operators such as block Jacobi, block Gauss–Seidel, block ILU,
or (overlapping) Schwarz smoothers. Many implementations rely on matrix-based algo-
rithms for smoothers (Bassi et al. 2009, 2011, Diosady and Darmofal 2009, Fidkowski and
Darmofal 2004, Fidkowski et al. 2005, Ghidoni et al. 2014, Helenbrook and Mascarenhas
2016, Mascarenhas et al. 2009, Nastase and Mavriplis 2006b, Persson and Peraire 2008,
Rasetarinera and Hussaini 2001, Shahbazi et al. 2009), limiting applicability mainly to
two-dimensional problems, while three-dimensional problems become prohibitively ex-
pensive for higher polynomial degrees due to the complexity of O(p2d+1) for the assem-
bly,O(p3d) for factorizations, andO(p2d) for matrix-vector products. On Cartesian meshes
and tensor-product elements, elementwise inversion of operators with optimal complexity
is possible via the fast diagonalization method (Lynch et al. 1964), which has first been ap-
plied in Couzy and Deville (1994, 1995) in the context of spectral element discretizations
and analyzed in more detail in Fischer et al. (2000), Fischer and Lottes (2005), Lottes and
Fischer (2005), Stiller (2016, 2017a,b), Witte et al. (2020) in the context of overlapping
Schwarz preconditioners and multigrid smoothers. Other tensor-product based precondi-
tioners and smoothers for high-order DG discretizations exploiting fast matrix-free opera-
tor evaluation with sum-factorization and applicable to more complex operators and non-
Cartesian meshes have been proposed recently in Bastian et al. (2019) using inner Krylov
iterations to solve the local block-Jacobi problems and in Pazner and Persson (2018) using
SVD-based tensor-product preconditioners.

• Hybrid multigrid algorithms: Due to the improved efficiency of matrix-free evaluation rou-
tines, the generation of coarser multigrid levels should rely on non-algebraic coarsening,
i.e., mesh (or geometric) coarsening and reducing the polynomial degree of the function
space for high-order methods, leading to the idea of hybrid hp- and ph-multigrid meth-
ods as illustrated in Figure 5.1. To benefit from the increased throughtput of matrix-free
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methods as much as possible, it is reasonable to exploit all possibilities of geometric and
polynomial coarsening in the multigrid hierarchy. For complex engineering applications,
the number of geometric mesh levels is low (typically 0, 1, 2) and coarse meshes might
consist of millions of elements so that simple iterative solution techniques like a conjugate
gradient iteration with Jacobi preconditioner used as coarse-level solver would become
too expensive and dominate the overall computational costs of the multigrid solver. Ap-
plying algebraic multigrid techniques for the coarse-grid problem discretized with linear
finite elements is a good compromise between effectiveness of coarse-level precondition-
ing and computational efficiency, given that sparse matrix-vectors products are competitive
to matrix-free evaluation routines in this low-order regime. At the same time, smoothers
for algebraic multigrid methods work best at low polynomial degrees due to a better diag-
onal dominance of the matrix as opposed to high-order shape functions (Kronbichler and
Wall 2018). In Table 5.1, important contributions in the field of hybrid multigrid solvers
are summarized. In Helenbrook et al. (2003), Helenbrook (2001), hybrid multigrid solvers
combining p-MG with h-MG have been presented for high-order discretizations. In Nas-
tase and Mavriplis (2006b), Shahbazi et al. (2009), p-multigrid is used along with alge-
braic multigrid for the coarse problem. In terms of p-multigrid, the works by Bastian et al.
(2012), Dobrev et al. (2006), Siefert et al. (2014) can be categorized as two-level algo-
rithms with transfer to continuous linear shape functions from the fine level to the coarse
level, which is solved by an h-multigrid approach in Dobrev et al. (2006) and an alge-
braic multigrid approach in Bastian et al. (2012), Siefert et al. (2014). These works have
the limitation that the underlying implementation is not matrix-free and, therefore, suf-
fers from the complexity of matrix-based approaches. The main limitation of the approach
in Sundar et al. (2012) for hexahedral meshes based on the octree concept is that it only
supports linear continuous finite elements (a similar approach for tetrahedral elements is
presented in Lu et al. (2014)). An extension towards p-multigrid has been done in Rudi
et al. (2015), but results are limited to linear and quadratic shape functions. The approach
in O’Malley et al. (2017) combines p-multigrid with AMG but uses expensive matrix-
based implementations which could explain why results are only shown for quadratic el-
ements. In more recent works, hybrid multigrid algorithms for high-order methods with
completely matrix-free implementation are discussed in Bastian et al. (2019), extending
a previous work by Bastian et al. (2012) towards a matrix-free implementation devel-
oped in Kempf et al. (2020), Müthing et al. (2017). That work does not exploit geometric
coarsening (h-multigrid) and the high-order discretization with degree p is immediately
reduced to a linear space within the multigrid algorithm (and is therefore categorized as
a two-level algorithm rather than p-multigrid). Algebraic multigrid is employed for the
coarse problem. An elaborate matrix-free implementation in the context of h-multigrid
solvers is presented in Kronbichler and Wall (2018) based on the matrix-free implementa-
tion developed in Kronbichler and Kormann (2012, 2019) and available in the deal.II
finite element library (Alzetta et al. 2018). That work clearly improves the performance
numbers of sophisticated geometric multigrid solvers shown in Gholami et al. (2016). One
drawback of this pure h-multigrid approach is that its applicability is limited to problems
where the coarse grid is comparably simple. As a building block for the present contribu-
tion, this implementation has been extended by additional multigrid transfer operators for
polynomial multigrid and transfer between discontinuous and continuous function spaces
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Table 5.1: Hybrid multigrid algorithms: relevant publications from the literature addressing com-
bined h-, p-, and algebraic multigrid methods are categorized in terms of high-order
discretizations (p > 2), matrix-free implementations, h-MG, p-MG, and AMG. A
similar overview has been given in Münch (2018). Legend:!= fulfilled,(!) = partly
fulfilled, %= not fulfilled. The category p-MG is partly fulfilled (!) if a two-level
algorithm is considered with transfer from high-order space of degree p directly to
linear space with p = 1.

Study high-order matrix-free h-MG p-MG AMG

Helenbrook et al. (2003) ! % ! ! %

Dobrev et al. (2006) % % ! (!) %

Nastase and Mavriplis (2006b) ! % % ! !

Shahbazi et al. (2009) ! % % ! !

Bastian et al. (2012), Siefert et al. (2014) ! % % (!) !

Sundar et al. (2012) % ! ! % !

Lu et al. (2014) % % ! % !

Rudi et al. (2015) % ! ! ! !

O’Malley et al. (2017) % % % ! !

Bastian et al. (2019) ! ! % (!) !

Kronbichler and Wall (2018) ! ! ! % %

present work (see Fehn et al. 2020) ! ! ! ! !

in Münch (2018). Hybrid multigrid techniques in the context of HDG discretizations are
considered, e.g., in Fabien et al. (2019).

There exist other techniques as well with the aim to overcome the complexity of matrix-based
methods for high polynomial degrees. Preconditioners and multigrid methods applied to a low-
order re-discretization of the operator on a mesh with vertices located on the nodes of the high-
order discretization is a well-known technique originating from Deville and Mund (1985, 1990)
and has been analyzed for example in Brown (2010), Fischer (1997), Heys et al. (2005), Lottes
and Fischer (2005), Pazner (2020), Sundar et al. (2015). Such an approach is not considered
here.

5.1.2 Novel contributions of the present work

The present work extends the work in Kronbichler and Wall (2018) towards hybrid multigrid
techniques combining geometric (h), polynomial (p), and algebraic coarsening. The goal is to
devise a multigrid solver applicable to engineering problems with complex geometry, where the
nomenclature “complex” is used to describe problems characterized by coarse grids with many
elements. As can be seen from Table 5.1, the individual components relevant for efficient hybrid
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multigrid methods are covered by different works. However, none of these works fulfills all
properties and it is the aim of the present work to fill this gap.

As a model problem, the constant-coefficient Poisson equation in three space dimensions is
studied for the development of hybrid multigrid methods. With respect to the choice of multigrid
smoothers, this work mainly considers Chebyshev-accelerated Jacobi smoothers which have the
characteristic that convergence rates are independent of h and mildly dependent on p, see Kro-
nbichler and Wall (2018), Sundar et al. (2015). Chebyshev smoothing is particularly attractive
since it only requires application of the matrix-vector product and the inverse diagonal of the sys-
tem matrix, i.e., the smoother benefits from fast matrix-free evaluation routines and is efficient in
a parallel setting. Although more aggressive smoothers based on overlapping Schwarz methods
resulting in lower iteration counts exist, comparative studies would need to be carried out to an-
swer which approach is more efficient, see the initial investigation in Kronbichler et al. (2019).
These aspects are, however, beyond the scope of this thesis. Chebyshev smoothing also works
well for variable-coefficient problems with smoothly varying coefficient (Kronbichler and Wall
2018, Sundar et al. 2015), but it can be expected that more robust smoothers might be neces-
sary for more challenging model equations (such as highly varying coefficients in porous media
problems or convective terms in Navier–Stokes problems). These aspects are also not covered
by the present work.

In case of discontinuous Galerkin discretizations, a transfer from discontinuous to continu-
ous function spaces (denoted here as DG-to-FE transfer) should be considered in addition to h-
and p-coarsening in order to further reduce the size of the coarse-level problem, see Rudi et al.
(2015). For example, the problem size is reduced by a factor of 2d for linear elements with p = 1.
Moreover, this approach is also beneficial in order to reduce iteration counts for the coarse-level
problem, due to the fact that existing AMG implementations and smoothers are often most ef-
fective on continuous function spaces. However, it is unclear whether to perform the DG-to-FE
transfer on the high-order polynomial space p or for the coarse problem at p = 1, or likewise on
the finest mesh or the coarsest mesh. It is a main finding of the present work that a DG-to-FE
transfer at the fine level is beneficial, both in terms of iteration counts and overall computational
costs. Furthermore, this approach results in a multigrid algorithm whose convergence rates are
independent of the interior penalty factor. This leads to multigrid coarsening strategies denoted
as chp- or cph-multigrid and illustrated in Figure 5.2, with a transfer to continuous (c) function
spaces on the finest level followed by geometric (h) and polynomial (p) coarsening before the
coarse-level solver (e.g., AMG) is invoked. This work discusses design choices in the context
of hybrid multigrid algorithms, where computational costs act as the driving force for algo-
rithmic selections. Other relevant factors which are not considered explicitly here are memory
requirements or aspects of parallel scalability. For example, the use of an additional c-transfer or
mixed-precision multigrid is justified by a significant increase in throughput and is assumed to
outweigh the disadvantage of increased memory requirements.

5.2 A hybrid multigrid preconditioner

This section studies the constant coefficient Poisson equation as a model problem

−∇2u = f in Ω ⊂ Rd ,
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with Dirichlet boundary condition u = g on ΓD and Neumann boundary conditions ∇u · n = h
on ΓN, where ΓD∪ΓN = Γ and ΓD∩ΓN = ∅, as well as ΓD 6= ∅ for well-posedness. As introduced
in Chapter 2, a mesh of hexahedral elements is considered and L2-conforming function spaces
are considered

Vh =
{
uh ∈ L2(Ωh) : uh (xe(ξ)) |Ωe = ũeh(ξ)|Ω̃e ∈ Vh,e = Qp(Ω̃e) ∀e

}
, (5.1)

where the polynomial degree is denoted by p in this section for consistency with the term p-
multigrid that has found widespread use in the multigrid context. The shape functions are tensor
products based on the LGL nodes and a tensor product quadrature rule based on Gauss points
with p+ 1 points per coordinate direction is used. A high-order polynomial mapping xe(ξ) may
be used. Discretization is based on the SIPG method, to obtain the weak formulation: Find uh ∈
Vh such that

aeh (vh, uh) = (vh, f)Ωe
∀vh ∈ Vh,e , e = 1, ..., Nel , (5.2)

where aeh (vh, uh) is given by equation (2.124). In matrix-vector notation, the discrete problem
can be written as the linear system of equations

Au = b , (5.3)

where A ∈ RN×N , u,b ∈ RN with the problem size (number of unknowns or degrees of free-
dom) denoted by N = Nel(p + 1)d. Contributions from inhomogeneous boundary conditions
are included in the right-hand side vector b and the matrix A only accounts for the homoge-
neous part aeh,hom (vh, uh). For the multigrid algorithm detailed below, coarser discretizations
of the Laplace operator are required, which is realized by evaluating the operator for modified
discretization parameters h and p (including the interior penalty parameter), i.e., on a coarser
mesh or for a lower polynomial degree p. In the literature, this approach is sometimes denoted
as re-discretization, as opposed to a Galerkin product. Further, a transfer from discontinuous to
continuous function spaces is considered in the hybrid multigrid algorithm. The continuous finite
element (FE) space is given as

VFE
h =

{
uh ∈ H1(Ωh) : uh (x(ξ)) |Ωe = ûeh(ξ)|Ω̃e ∈ Vh,e = Qp(Ω̃e) , ∀e

}
, (5.4)

and the weak form of the (negative) Laplace operator simplifies to

aeh,FE (vh, uh) = (∇vh,∇uh)Ωe
. (5.5)

Dirichlet boundary conditions are imposed strongly for the FE discretization, but only the ho-
mogeneous operator is required inside the multigrid algorithm.

Iterative solvers and multigrid smoothers only require the action of A applied to a vector, so
that an explicit assembly of the matrix A is avoided by the use of matrix-free operator evalu-
ation (see Chapter 4). The operator only needs to be assembled on the coarsest multigrid level
for the AMG coarse-level solver. When assembling the coarse-level matrix, constrained degrees
of freedom are kept in the system with diagonal entries set to 1 to ensure that the matrix is
invertible.

188



5.2 A hybrid multigrid preconditioner

Algorithm 5.1 Preconditioned conjugate gradient algorithm (solves Ax = b to given tolerance)
1: function SOLVERCG(A, x,b)
2: r = b− Ax
3: ‖r0‖ = ‖r‖ = NORM(r)
4: v = P−1r . e.g., MULTIGRIDVCYCLE(L,A, 0, r)
5: p = v
6: δ = rTv
7: while ‖r‖/‖r0‖ > εrel and ‖r‖ > εabs do
8: v = Ap
9: ω = δ/(pTv)

10: x← x + ωp
11: r← r − ωv
12: ‖r‖ = NORM(r)
13: v = P−1r . e.g., MULTIGRIDVCYCLE(L,A, 0, r)
14: δ′ = δ
15: δ = rTv
16: β = δ/δ′

17: p← v + βp
18: end while
19: end function

Algorithm 5.2 Multigrid V-cycle (solves Ax = b approximately)

1: function MULTIGRIDVCYCLE(l,A(l), x(l),b(l))
2: if l = 0 then
3: x(0) ← COARSELEVELSOLVER(A(0), x(0),b(0)) . coarse-level solver, e.g., AMG
4: return x(0)

5: else
6: x(l) ← SMOOTH(A(l), x(l),b(l), ns) . pre-smoothing
7: r(l) = b(l) − A(l)x(l) . calculate residual
8: b(l−1) = Rl−1,lr(l) . restriction
9: x(l−1) ← MULTIGRIDVCYCLE(l − 1,A(l−1), 0,b(l−1)) . coarse-level correction

10: x(l) ← x(l) + Pl,l−1x(l−1) . prolongation
11: x(l) ← SMOOTH(A(l), x(l),b(l), ns) . post-smoothing
12: return x(l)

13: end if
14: end function

5.2.1 Multigrid preconditioned Krylov solver

The basic multigrid idea is to tackle oscillatory errors by smoothing and to tackle smooth er-
rors by coarse-grid corrections, which applies to all types of multigrid coarsening (geometric,
polynomial, algebraic) discussed here. In this work, multigrid is used as a preconditioner inside
a Krylov solver instead of using multigrid as a solver (see for example Benzi et al. (2005) for
an introduction to and overview of Krylov solvers). This approach is sometimes also denoted
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Algorithm 5.3 Chebyshev-accelerated Jacobi smoother (solves Ax = b approximately)
1: function CHEBYSHEVSMOOTHER(A, x0,b, ns)
2: for j = 0, . . . , ns − 1 do
3: xj+1 = xj + σj (xj − xj−1) + θjD

−1 (b− Axj)
4: end for
5: return xns

6: end function

as a Krylov-accelerated multigrid method. The combination of a multigrid cycle with a Krylov
method can be expected to be more robust and to result in lower iteration counts in general
as opposed to pure multigrid solvers, see Lottes and Fischer (2005), Shahbazi et al. (2009),
Stiller (2016, 2017a,b), Sundar et al. (2015), especially for anisotropic problems. This strategy
appears to be the most frequent use case in practice, and is therefore followed in the present
work. Some performance numbers could be improved by alternative multigrid flavors, e.g., by
considering full multigrid cycles (Kronbichler and Ljungkvist 2019), where only a single or only
few iterations are needed on the finest level. Due to the symmetric positive definite nature of the
model problem considered here, the conjugate gradient (CG) algorithm (Hestenes and Stiefel
1952, Saad 2003) is used as Krylov solver, which is detailed in Algorithm 5.1. The algorithmic
components which are of main interest are the application of the discretized operator in line 8
and the application of the preconditioner in line 13. Other components are vector update opera-
tions and inner products (involving global communcation), but these parts of the algorithm are
overall of subordinate importance since the computational costs are mainly determined by op-
erator evaluation and the multigrid cycle called in the preconditioning step. However, it should
be pointed out that the costs of all parts of the algorithm are explicitly taken into account by the
experimental cost measures used in the present work, in the spirit of parallel textbook multigrid
efficiency (Gmeiner et al. 2015b), see the performance metrics defined in Section 5.3.1.

In the preconditioning step of the conjugate gradient solver (preconditioner P), the operator A
is inverted approximately by performing one multigrid V-cycle according to Algorithm 5.2 with
initial solution x(L) = 0, where L denotes the finest level. Pre- and post-smoothing are done in
lines 6 and 11, respectively, and the residual evaluation in line 7. The same number of smoothing
steps ns is used for both pre- and post-smoothing and for all multigrid levels 0 < l ≤ L. These
steps typically form the most expensive part of the multigrid algorithm as long as the workload in
degrees of freedom per core is sufficiently large, i.e., away from the strong-scaling limit where
latency effects become dominant. The coarse-level correction is called in line 9, recursively
calling the multigrid V-cycle for the next coarser level l − 1 until the coarsest level l = 0 is
reached, on which the coarse-level solver is called (line 3). Restriction (operator Rl−1,l) and
prolongation (operator Pl,l−1) are done in lines 8 and 10, respectively.

5.2.2 Chebyshev-accelerated Jacobi smoother

In the context of matrix-free methods analyzed here, an attractive multigrid smoother is a Cheby-
shev-accelerated Jacobi smoother (Adams et al. 2003), which requires the diagonal D of the
operator A as well as the application of the matrix-vector product Au. Therefore, any fast im-
plementation for the evaluation of the discretized operator can be applied inside the smoother
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and parallel scalability is directly inherited from the operator evaluation. Algorithm 5.3 details
the Chebyshev iteration with iteration index j and ns smoothing steps, where the two additional
scalar parameters σj and θj are calculated according to the theory of Chebyshev polynomials
and require an estimation of the maximum eigenvalue λmax of A. The parameters are determined
such that the Chebyshev smoother tackles eigenvalues in the range [0.06λmax, 1.2λmax] on the
current level, while smaller eigenvalues are damped by the coarse-grid correction. Since the
maximum eigenvalue is only estimated, a safety factor of 1.2 is included to ensure robustness
of the smoother. Note that the precise value used for the lower bound is not critical in terms of
robustness and iteration counts. A Chebyshev iteration with ns pre- and post-smoothing steps
is denoted as Chebyshev(ns, ns) in the following. Although iteration counts decrease continu-
ously for increasing number of smoothing steps, the overall solve time is comparably insensitive
w.r.t. the particular value of ns as investigated, e.g., in Fehn et al. (2020). Typical values for which
the smoother is most efficient are ns = 4, . . . , 6 for mixed-precision multigrid (Section 5.2.5),
and a default parameter of ns = 5 is used in the present work. While the constant-coefficient
Poisson case is considered in this section, it should be mentioned that Chebyshev smoothing
has been reported to work well also for variable-coefficient problems with smoothly varying
coefficient (Kronbichler and Wall 2018, Sundar et al. 2015).

The diagonal required by the Chebyshev smoother is calculated in the setup phase and has
storage requirements comparable to the DoF vector u. The maximum eigenvalue needed by the
Chebyshev iteration is estimated by performing 20 conjugate gradient iterations. Compared to
a single solution of the linear system, this cost is not negligible. However, for many large-scale
time dependent problems where thousands to millions of time steps have to be solved, setup costs
are amortized after a few time steps. The setup costs are proportional to the costs of a fine-level
matrix-vector product, and therefore increase similarly under mesh refinement as the solution of
the linear system of equations itself. Hence, these costs are not considered explicitly here, and
the reader is referred to Kronbichler and Ljungkvist (2019) for details on setup costs.

5.2.3 Coarsening strategies and multigrid transfer operations

The multigrid level l introduced in Algorithm 5.2 is uniquely defined by the grid size h, the
polynomial degree p, and the continuity parameter c ∈ {DG,FE}

l = f(h, p, c) .

From one multigrid level to the next, only one of the three parameters may change for the hy-
brid multigrid methods discussed in this work. For example, a transfer from DG space to FE
space leads to two multigrid levels that coincide with respect to grid size h and polynomial de-
gree p, i.e., a combined coarsening from high-order discontinuous space to low-order continuous
space is not considered here. The approach is denoted as h-/p-multigrid if geometric/polynomial
coarsening is employed only. Combined geometric-polynomial multigrid is denoted as hp- or ph-
multigrid, depending on which coarsening is applied first, as illustrated in Figure 5.1. Following
this notation and depending on whether the DG-to-FE transfer is performed at high degree or
at low degree, the approach is denoted as cp-multigrid or pc-multigrid, respectively, or as ch-
multigrid or hc-multigrid if geometric coarsening is involved. Applying all three possibilities for
coarsening would for example result in a cph-multigrid strategy, with the c-coarsening performed
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h-transfer p-transfer c-transfer

Figure 5.3: Illustration of elementary coarsening strategies for nodal high-order discontinuous
Galerkin discretizations.

first, followed by p-coarsening and finally h-coarsening. The different types of coarsening are
illustrated in Figure 5.3. In all cases, algebraic multigrid may be applied as a coarse-level solver.

To introduce a common notation for all types of transfers t ∈ {h, p, c}, the prolongation of
the coarse-level correction from coarse to fine levels is generically written as

u(l) = Pl,l−1u(l−1) =

N
(l)
el∑

e=1

SleP
l,l−1
e Gl−1

e u(l−1) , (5.6)

where the global prolongation operator is expanded into the sum over all elements on the fine
level with elementwise prolongation operator Pl,l−1

e . The gather operator Gl−1
e extracts local

degrees of freedom of a coarse-level element from the global DoF vector. The scatter operator Sle
writes local degrees of freedom into the global fine-level DoF vector and additionally performs
a weighting of degrees of freedom according to the multiplicity of a shared node in case of
continuous function spaces. The elementwise prolongation operator is realized as L2-orthogonal
projection (

v
(l)
h , û

(l)
h

)
Ω̃

(l)
e

=
(
v

(l)
h , û

(l−1)
h

)
Ω̃

(l)
e

→ Pl,l−1
e =

(
Ml

e

)−1
Ml,l−1

e , (5.7)

where Ml
e denotes the mass matrix and Ml,l−1

e the embedding from space l − 1 into l. Note
that the integral is performed in reference space over the fine-level element Ω̃

(l)
e . Therefore, the

operation is the same for all elements and is done only once in the setup phase where the 1D
prolongation matrices are constructed. Prolongation in multiple dimensions is constructed as
the tensor product of 1D operations, exploiting fast matrix-free evaluation techniques. The 1D
prolongation matrices represent the interpolation of coarse-level basis functions into the nodes
of the fine-level basis functions. In the case of h-coarsening and for general mappings from
reference to physical space, however, the coarse-level space is no longer a subset of the fine-level
space. Therefore, the chosen multigrid transfer operations implicitly introduce the approximation
of nested function spaces as also mentioned, e.g., in Lu et al. (2014). In case of p-transfer and c-
transfer, the function spaces are “strictly” nested. Restriction of the residual r onto coarser levels
is defined as the transpose of prolongation,

r(l−1) = Rl−1,lr(l) =
(
Pl,l−1

)T
r(l) =

N
(l)
el∑

e=1

(
Gl−1
e

)T (
Pl,l−1
e

)T (
Sle
)T

r(l) . (5.8)
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5.2.3.1 h-coarsening

A hierarchy of h-levels is constructed based on the octree concept, see for example Burstedde
et al. (2011), Sundar et al. (2012) for details on aspects of the chosen mesh topology. There-
fore, coarser meshes in the multigrid context are not obtained by coarsening a fine mesh, but
rather by starting from a coarse mesh that is refined uniformly several times to obtain the fine
mesh. This coarse mesh also forms the coarse-grid problem in the multigrid algorithm. From
this perspective, it is clear that pure h-multigrid based on the octree approach works well for
cube-like domains of moderate geometrical complexity, but reaches limitations for complex ge-
ometries where only one or two refinement levels applied to the coarse mesh might be affordable
in practice. In these cases, it is essential to further coarsen the problem by the use of p-multigrid
and algebraic multigrid techniques described in more detail below. In the context of this thesis,
meshes without hanging nodes are considered and each octree has the same number of mesh
refinement levels. Multigrid methods for high-order discretizations on adaptively refined meshes
are discussed in Janssen and Kanschat (2011), Kanschat (2004), Kronbichler and Wall (2018),
Kronbichler and Ljungkvist (2019), Sundar et al. (2012) in a pure h-multigrid context.

5.2.3.2 p-coarsening

As opposed to h-multigrid, p-multigrid offers the possibility for various p-coarsening strategies.
Reducing the polynomial degree by one, pl−1 = pl − 1, is frequently applied in literature (An-
tonietti et al. 2015, Bassi et al. 2009, 2011, Bassi and Rebay 2003, Diosady and Darmofal 2009,
Fabien et al. 2019, Fidkowski and Darmofal 2004, Fidkowski et al. 2005, Ghidoni et al. 2014,
Nastase and Mavriplis 2006b, Shahbazi et al. 2009). An alternative is to reduce the polyno-
mial degree by a factor of two, pl−1 = pl/2 (with appropriate rounding operation), which has
been used in Helenbrook et al. (2003), Helenbrook and Atkins (2008), Helenbrook and Mas-
carenhas (2016), Mascarenhas et al. (2009, 2010). This coarsening strategy has a close analogy
to h-coarsening since the number of degrees of freedom is reduced by a factor of two in each
coordinate direction from one level to the next. It is also not uncommon to immediately reduce
the polynomial degree to its minimum, pl−1 = 0 or pl−1 = 1 for all pl (two-level algorithm), see
for example Bastian et al. (2019), Persson and Peraire (2008), Rasetarinera and Hussaini (2001).
Elementwise constant shape functions with pl=0 = 0 are not considered in this work. On the one
hand, the present DG discretization is not consistent for polynomial degree p = 0 on general
meshes and the chosen definition of the penalty parameter, see Bastian et al. (2019) under which
cirumstances the p = 0 DG discretization resembles a consistent finite volume discretization.
On the other hand, as argued in Helenbrook and Atkins (2008), the small-wave-number modes
that remain after smoothing are essentially continuous for diffusive problems and are, therefore,
not well represented by a piecewise constant coarse space with p = 0. For the neutron diffusion
problems studied in O’Malley et al. (2017), a continuous p = 1 coarse space has been found to
be advantageous over a piecewise constant space. It has been observed in Persson and Peraire
(2008), Shahbazi et al. (2009) by the example of the compressible Navier–Stokes equations in-
volving diffusive terms that pl=0 = 1 performs better than pl=0 = 0. A piecewise constant space
with pl=0 = 0 is typically used in the convection-dominated limit and the compressible Euler
equations (Luo et al. 2006, Nastase and Mavriplis 2006b). In Bastian et al. (2019), pl=0 = 0 is
also used for a Poisson problem with variable coefficients. These previous studies indicate that
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the optimal coarse space depends on the model problem under investigation. For the constant-
coefficient Poisson problem considered here, the analysis is therefore restricted to a specific
choice pl=0 = 1 for the coarse space. Discussions and comparisons of different p-sequences
can be found in Helenbrook and Atkins (2008) in the context of iteration counts and in Nastase
and Mavriplis (2006b) in terms of iteration counts and computational costs. In that work, only
a single polynomial degree of p = 4 is investigated. Here, a more rigorous investigation of the
following p-coarsening strategies is fostered

• pl−1 = pl − 1 (decrease by one),

• pl−1 = bpl/2c (bisection),

• pl−1 = 1∀pl (two-level algorithm),

considering a wide range of polynomial degrees p and studying the impact on both iteration
counts and computational costs. Generally, all p-levels are exploited in the proposed multigrid
algorithm until p = 1 is reached.

5.2.3.3 c-coarsening (transfer from discontinuous to continuous space)

A transfer from the discontinuous space to a continuous space at the coarse degree p = 1 is
used in Helenbrook and Atkins (2008), O’Malley et al. (2017), an idea that has already been
described in Lasser and Toselli (2001) in the context of two-level overlapping preconditioners.
A transfer at the highest degree p is suggested in Rudi et al. (2015) without justification and with
results shown only for the lowest degree p = 1. This approach might be counter-intuitive at first
sight since an additional multigrid level at high polynomial degree (and therefore with expensive
smoothers) is introduced and the problem size is only marginally reduced for a DG-to-FE trans-
fer at high degree, i.e., by a factor of (1 + 1/p)d. It is interesting to note that a similar idea called
conforming aggregation is used in Olson and Schroder (2011) in the context of smoothed aggre-
gation algebraic multigrid techniques, where degrees of freedom at the same spatial location are
aggregated on the finest level. For the two-level scheme proposed in Bastian et al. (2012, 2019),
Dobrev et al. (2006), Siefert et al. (2014), the high-order DG space is directly reduced to a linear
conforming space. This could be the reason for the strong increase in iteration counts observed
in Bastian et al. (2019), Siefert et al. (2014) for increasing p (and for a similar two-level pre-
conditioner used in Remacle et al. (2016)). As in O’Malley et al. (2017), an additional multigrid
level is introduced in the present work for the DG-to-FE transfer, i.e., the transfer to the contin-
uous FE space is done at constant degree p and mesh size h and it is found that this is important
for optimal multigrid convergence rates. Two variants of the DG-to-FE transfer are investigated
in this work, namely performing this transfer at highest degree or lowest degree p = 1 (and
similarly on the finest mesh or coarsest mesh). Performing the transfer to continuous elements
on the finest level has very attractive properties. It reduces the iteration counts considerably, and
yields a multigrid solver for SIPG discretizations of the Poisson equation that is robust w.r.t. the
penalty parameter of the SIPG method. Theoretical background for this behavior is provided
in Antonietti et al. (2017), where this approach is motivated from the perspective of space split-
ting and auxiliary space methods. The important difference is that this splitting is here integrated
into multigrid with the same smoother used on all levels.
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The elementwise prolongation matrix is an identity matrix in the case of a DG-to-FE transfer
since the continuous and discontinuous function spaces are the same from an elementwise per-
spective. Accordingly, the degrees of freedom shared by neighboring elements in the continuous
case are simply injected into the degrees of freedom duplicated in the discontinuous case. With
restriction being the transposed operation, the residual contributions of degrees of freedom of
duplicated nodes in the discontinuous case are summed into the uniquely defined degree of free-
dom in the continuous case. The c-transfer can easily be extended to adaptively refined meshes
with hanging nodes according to 2 : 1 refinements (not covered in the present work), but requires
more advanced techniques for generally non-conforming meshes, for which DG discretizations
might be considered a more natural approach.

Remark 5.1 The two-level approaches in Antonietti et al. (2017), Dobrev et al. (2006), Lasser
and Toselli (2001) are also known or interpreted as auxiliary space preconditioning. This nomen-
clature is not used in the present work. Instead, these approaches are categorized as one type
of multigrid coarsening in the generalized framework of hybrid multigrid algorithms. The multi-
grid methods in Bastian et al. (2012), Siefert et al. (2014) are introduced as algebraic multigrid
methods that are “not fully algebraic”. The present work fosters a fine-level point of view and
categorizes these approaches as p-multigrid (potentially with additional c-coarsening) with al-
gebraic multigrid applied as coarse-level solver; for good reasons, because the fine levels are
those where the numerical method spends its time (assuming that the method is applied away
from the strong-scaling limit) and are those that determine the computational efficiency of the
approach.

5.2.4 Coarse-level solver

The coarse-level problem (sometimes also denoted as coarse-grid problem) is usually small,
and it therefore seems to be a reasonable choice to use an iterative Krylov solver with a simple
preconditioner such as point-Jacobi as coarse-grid solver. However, the convergence of such an
iterative scheme is often poor as soon as the coarse grid becomes more complex, and the large
number of global communication steps due to inner products in the coarse-grid solver typically
limits parallel scalability. A remedy to the latter aspect is to use the Chebyshev iteration as coarse
grid solver with a fixed number of iterations. The number of iterations of the Chebyshev solver
is determined a-priori according to the eigenvalue distribution of the coarse-level matrix, and is
estimated in a way that the Chebyshev error estimator reaches a given tolerance (Varga 2009).
This procedure has been used in Krank et al. (2017), Kronbichler and Wall (2018), but it turned
out that this coarse-grid solver forms a bottleneck for more complex geometries, especially for
large polynomial degrees in combination with a pure h-multigrid method.

The bottleneck of expensive coarse-grid solvers can be removed by the use of algebraic multi-
grid methods. Note that an AMG V-cycle does not necessarily converge at the same rate as the
smoothers on the geometric levels of the multigrid hierarchy would allow to. However, the suc-
cess of multigrid methods originates from the fact that the coarse-grid correction ensures mesh-
independent convergence rates as well as low iteration counts and – at the same time – causes
only low computational overhead as compared to the operations on the fine level. It is therefore
important that the coarse-grid correction does not deteriorate the multigrid convergence rate,
which should only be affected by the smoother on the fine level. For this reason, it is reasonable
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to solve the coarse-level problem by an inner Krylov solver preconditioned by an AMG V-cycle
to a specified tolerance, instead of using a single AMG V-cycle as coarse-grid solver. Note that
applying a Krylov solver within the preconditioner does no longer guarantee that the precondi-
tioner is a stationary operation, which might in general require the use of flexible solvers such as
FGMRES (Saad 1993). Nevertheless, a basic CG iteration is used as outer Krylov solver for the
numerical examples in this chapter since no convergence problems have been observed. Extend-
ing AMG solvers designed for continuous discretizations to the discontinuous case is not trivial
without further measures as shown in Olson and Schroder (2011). Since the goal is to apply the
AMG coarse-grid solver in a black-box fashion in its optimal regime, performance numbers are
mainly shown for AMG applied to a continuous discretization of the coarse problem with lowest
degree p = 1, see also Bastian et al. (2012), Siefert et al. (2014). In the present work, the AMG
implementation provided by the Trilinos ML project (Gee et al. 2006) is used, applying one
V-cycle with one smoothing step of an ILU smoother without fill-in and no overlap (i.e., in a
block-Jacobi fashion over the MPI ranks) and an Amesos-KLU coarse solver unless specified
otherwise. A comparative study of different AMG solver frameworks is beyond the scope of this
work, and is for example shown in O’Malley et al. (2017) for the neutron diffusion equation, or
in Offermans et al. (2019) in the context of computational fluid dynamics.

5.2.5 Mixed-precision multigrid

The matrix-free implementation outlined in Chapter 4 is perfectly suited for mixed-precision
computations in the multigrid preconditioned Krylov solver, following the idea of Gropp et al.
(2000). This is due to the fact that the amount of data transferred from main memory reduces by a
factor of two in case of single precision (implying twice the throughput in terms of elements pro-
cessed per time), and the vectorization strategy with explicit vectorization over elements/faces
also allows twice the throughput in terms of arithmetics. The throughput of the matrix-vector
product therefore increases by a factor of approximately 2 when reducing accuracy from dou-
ble precision to single precision. To not spoil accuracy of the numerical solution and to ensure
convergence of the outer Krylov solver, single precision is only used in the multigrid V-cycle.
The outer Krylov solver operates in double precision. Larger round-off errors in the multigrid
cycle can be tolerated since these high-frequency errors introduced by single-precision round-
off errors are tackled by the multigrid smoothers (Kronbichler and Ljungkvist 2019) and since
multigrid is only a preconditioner applied to the residual of the outer Krylov solver, see Algo-
rithm 5.1. Since the Trilinos ML solver used here only supports double precision, the AMG
coarse-grid preconditioner operates in double precision. The performance of mixed-precision is
compared to pure double-precision computations in Section 5.3.

5.3 Numerical results for hybrid multigrid solver

This section shows numerical results for the hybrid multigrid solver. Relevant performance met-
rics used to evaluate the efficiency of multigrid solvers are introduced in Section 5.3.1. Informa-
tion on the hardware under consideration is given in Section 5.3.2. The considered test cases are
briefly summarized in Section 5.3.3, before numerical results are shown for each problem in the
subsequent sections.
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5.3.1 Performance metrics
Frequently used metrics are the average convergence rate ρ and the number of iterations n10

needed to reduce the residual by ten orders of magnitude (ε10 = ‖rn10‖2/‖r0‖2 = 10−10)

ρ =

(
‖rn‖2

‖r0‖2

) 1
n

, n10 =
log10 (‖rn10‖2/‖r0‖2)

log10 ρ
=
−10

log10 ρ
,

where rn denotes the residual after n iterations. These quantities are well suited to demonstrate
mesh-independent convergence rates, or to quantitatively investigate robustness of the multigrid
method, i.e., the influence of certain parameters such as mesh anisotropies, variable coefficients,
or the polynomial degree on the convergence behavior of the multigrid algorithm. However,
they are not suited to quantify the effectiveness of smoothers in terms of computational effi-
ciency. To measure computational costs, theoretical measures such as operation counts required
for the matrix-vector product or matrix nonzeros are often considered (Lottes and Fischer 2005,
Sundar et al. 2015). These quantities should be considered with some care because they inher-
ently contain assumptions on the bottleneck (for example that the algorithm is compute-bound
so that floating point operations are really a cost measure). However, this depends on many
aspects such as the hardware under consideration (Flop-to-Byte ratio), the implementation strat-
egy (matrix-based vs. matrix-free), and the optimization level of the implementation. Due to
these uncertainties and model assumptions of theoretical cost measures, experimental cost mea-
sures determined from the actual performance of the multigrid solver are preferred here, in the
spirit of Bastian et al. (2019), Kronbichler and Wall (2018). An effective number of fine-level
matrix-vector products, denoted as n10,Au in the following, is helpful to incorporate computa-
tional costs for the smoother and to compare different smoothers in the metric of computational
costs instead of global iteration counts. For example, it is unclear whether more aggressive
smoothers achieving lower iteration counts are also superior in terms of time-to-solution. The
quantity n10,Au = twall,u=A−1b(ε10)/twall,Au is defined as the ratio of the wall time for one applica-
tion of the linear solver with tolerance ε10 over the wall time for one operator evaluation. Since
absolute wall times depend on the problem size, it is useful to express n10,Au as a function of two
normalized quantities. The first one is the efficiency EAu of the matrix-free operator evaluation
measured as the number of degrees of freedom N processed per second per core (also denoted
as throughput as introduced in Chapter 4)

EAu =
N

twall,AuNcores

. (5.9)

The second one is the time t10 required by the multigrid solver to solve one degree of freedom
per core with a residual reduction of ε10

t10 =
twall,u=A−1b(ε10)Ncores

N
, (5.10)

or equivalently the throughput E10 = 1/t10 of the linear solver in degrees of freedom solved per
second per core. Then, the effective number of fine-level matix-vector products is determined
experimentally as

n10,Au = t10EAu =
EAu

E10

. (5.11)
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Table 5.2: Performance metrics used to evaluate the efficiency of multigrid solvers.

Quantity description

n10 number of iterations to reduce the residual by ε10 = 10−10

t10 wall time in seconds to solve one unknown per core to reach ε10 = 10−10

E10 throughput of solver in unknowns solved per second per core (= 1/t10)
EAu throughput of matrix-free operator evaluation in DoFs per second per core
n10,Au effective number of fine-level mat-vec products (= EAu/E10) to reach ε10

The aim of n10,Au is to obtain a measure for the algorithmic complexity of the whole multigrid
solver, but as independent of hardware and absolute performance numbers as possible. Table 5.2
summarizes the used performance metrics.

Remark 5.2 The definition of n10,Au has similarities with the parallel textbook efficiency factor
defined in Gmeiner et al. (2015b), with the difference that one fine-level matrix-vector product is
used as work unit here, instead of one fine-level smoothing step. The overall goal is optimizing
time-to-solution and the operator evaluation Au is the only algorithmic component re-occurring
for practically all iterative solvers and preconditioners. Choosing Au as work unit ensures that
the algorithmic complexity of different smoothers is reflected in the values achieved for n10,Au.
The performance advantage achieved by the use of mixed-precision multigrid is also naturally
included in this metric.

5.3.2 Hardware
The numerical experiments shown in this section are performed on an Intel Skylake architec-
ture with AVX512 vectorization, see Table 4.2. The GNU compiler g++ version 7.3 with op-
timization flags -O3 -funroll-loops -std=c++17 -march=skylake-avx512 is
used. All computations are done on thin nodes unless specified otherwise. The present anal-
ysis focuses mainly on the node-level performance because multigrid solvers are well-known
to be scalable even to the largest supercomputers (Gholami et al. 2016, Kronbichler and Wall
2018). The multigrid communication is between nearest neighbors, both horizontally within
the matrix-vector products and vertically between the multigrid levels with one round-trip per
V-cycle through the coarse solver, assuming the latter is sufficiently cheap. This is backed up
by performance projections to exascale machines where multigrid is expected to be primarily
memory-limited within the nodes (Ibeid et al. 2020). Good parallel scalability up to high core
counts on large supercomputers when using AMG coarse-grid solvers is shown in Offermans
et al. (2016, 2019).

5.3.3 Test cases
The hybrid multigrid methods are investigated for a series of test cases with increasing com-
plexity regarding the geometry and the number of elements on the coarse grid, as well as the
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maximum aspect ratio defined as

AR = max
e=1,...,Nel

(
max

Ωe

σ1(J e)

σd(J e)

)
, (5.12)

where σ1 and σd are the largest and smallest singular values of the Jacobian matrix J = ∂x/∂ξ,
which is evaluated at all quadrature points of the element. The following problems are consid-
ered, where a visualization of the geometries and the meshes of the different test cases is shown
in Figure 5.4:

• Cube: the geometry is a unit cube with O(101) − O(102) elements on the coarse grid.
This geometry could also be discretized with a single element on the coarse grid, but con-
figurations with 2d, 3d, 5d elements on the coarse grid are considered to test all multigrid
components and to make sure that the coarse-grid problem is non-trivial (but very small).
This test case is well-suited to test the different multigrid ingredients, identify optimal
multigrid coarsening strategies, perform parameter studies, study the impact of Cartesian
and curved elements on iteration counts and throughput, and to compare the present im-
plementation to the state-of-the-art (since data is mainly available for simple cube-like
geometries in the literature).

• Nozzle: the geometry of this test case is the nozzle geometry of the FDA benchmark,
which has been designed to assess CFD solvers for the simulation of the flow through
medical devices (Malinauskas et al. 2017). The geometry is a tube with gradual or sudden
contractions/expansions of the cross section area, inducing separating flows and involving
laminar, transitional, and turbulent flow regimes. A coarse-grid mesh with O(103) ele-
ments is used in the present work. The tube and cone geometries are known analytically
and used for high-order representations of the geometry via manifolds (using a cubic map-
ping). The blood flow through this device can be modeled as an incompressible flow, and
the pressure Poisson component of the related incompressible Navier–Stokes solver is in-
vestigated here. The mesh contains high-aspect-ratio elements with a moderate distortion,
especially in the outflow part of the domain on the right. A comprehensive LES study of
this flow configuration using the present high-order discontinuous Galerkin discretization
approach has been performed in Fehn et al. (2019b).

• Lung: The most complex test case studied here is the geometry of the upper airway gener-
ations of the human lung, using a patient-specific geometry of a preterm infant, for which
gas exchange mechanisms have been investigated recently in the literature (Roth et al.
2018). The geometry is discretized with a purely hexahedral mesh and the coarse-grid
problem consists of O(104) elements for 8 airway generations. Simulating the flow of
air through the human lung as a numerical solution of the incompressible Navier–Stokes
equations again involves the solution of a pressure Poisson equation, the model problem
studied in this section.

5.3.4 Cube
A simple analytical test case with solution

u(x) = sin(3πx1) sin(3πx2)(3πx3) (5.13)
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(a) Cube: Cartesian mesh (left) and section of curvilinear mesh (right) with 83 elements (h/L =
1/8) and aspect ratios of AR = 1.0 and 2.9, respectively.

(b) Nozzle: coarse mesh h0 of FDA nozzle geometry consisting of 440 elements (AR ≈ 9.2).

(c) Lung: coarse mesh h0 of a patient-specific geometry of the human lung of a preterm infant
for 6, 7, and 8 airway generations (from left to right) with 1968, 4236, and 9396 elements, where
the mesh with 8 generations has an aspect ratio of approximately AR = 67.

Figure 5.4: Visualization of geometries and meshes investigated for the hybrid multigrid solver.
The size of the coarse-grid problem ranges from O(101) to O(104) elements.

is considered on a cube geometry in 3D, Ω = [−1, 1]3. Dirichlet boundary conditions are pre-
scribed on the domain boundary using the known analytical solution. The right-hand side is
determined according to the method of manufactured solutions

f(x) = −∇2u(x) = 27π2 sin(3πx1) sin(3πx2)(3πx3) . (5.14)

Two types of meshes are analyzed, a Cartesian mesh and a curvilinear mesh with deformation

d(x) = a sin(2π(x1 + 1)/2) sin(2π(x2 + 1)/2)(2π(x3 + 1)/2) (5.15)

in each coordinate direction. An amplitude of a = 0.15 is used, leading to elements that are
deformed significantly, see Figure 5.4. For the curvilinear mesh with deformation manifold,
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Table 5.3: Cube test case: iteration count n10 as a function of polynomial degree p for various
multigrid coarsening strategies for 3D Cartesian mesh.

(a) h-multigrid (with pl−1 = bpl/2c if p-transfer is involved)

MG type Polynomial degree p
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

h 14.8 12.5 12.4 12.2 14.4 14.8 17.2 17.5 19.5 19.1 22.3 22.4 24.3 24.5 26.2
hpc 14.8 12.5 12.4 12.2 14.4 14.9 17.2 17.5 19.6 19.1 22.3 22.4 24.2 24.6 26.1
chp 7.5 5.5 5.2 5.1 5.2 5.1 5.5 5.6 6.6 6.7 7.8 7.8 8.8 8.9 9.8

(b) p-multigrid (pl−1 = pl − 1)

MG type Polynomial degree p
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

p 3.3 12.4 11.2 11.2 11.3 10.5 11.0 11.4 11.8 11.5 12.5 12.6 12.8 13.3 13.5
phc 14.8 12.5 11.3 11.3 11.3 10.7 10.9 11.5 11.8 11.6 12.5 12.8 13.3 13.6 13.8
cph 7.5 5.5 5.1 4.9 4.8 5.0 4.7 4.7 4.6 4.7 4.6 4.7 4.6 4.8 4.9

(c) p-multigrid (pl−1 = bpl/2c)

MG type Polynomial degree p
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

p 3.3 12.4 13.0 11.9 14.2 14.1 15.9 15.4 17.9 16.9 20.1 19.4 21.3 22.3 24.3
phc 14.8 12.5 13.9 12.0 14.3 14.2 16.0 15.3 17.8 16.9 20.2 19.8 21.6 21.9 23.9
cph 7.5 5.5 5.1 4.9 5.1 4.8 5.0 5.1 5.6 5.4 6.3 6.3 7.1 7.0 7.8

(d) p-multigrid (pl−1 = 1∀pl)

MG type Polynomial degree p
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

p 3.3 12.4 13.0 16.6 20.3 24.6 29.4 35.6 41.6 44.9 55.8 64.6 74.0 86.9 96.8
phc 14.8 12.5 13.9 16.8 20.7 24.7 29.8 35.6 41.6 44.8 54.7 65.2 75.2 88.6 97.0
cph 7.5 5.5 5.1 5.2 6.6 8.7 10.7 12.9 15.5 17.4 19.9 22.5 24.6 26.9 29.7

element mappings of polynomial degree 3 are used independently of the polynomial degree of
the shape functions. The smoother used for all experiments is Chebyshev(5,5) and the coarse-
grid problem is solved iteratively to a relative tolerance of 10−3 by the conjugate gradient method
with AMG V-cycle as preconditioner.

5.3.4.1 Robustness with respect to p-refinement

In a first numerical experiment, the number of iterations is investigated as a function of the poly-
nomial degree p for various multigrid coarsening strategies. Table 5.3 lists the results obtained
for the Cartesian mesh and Table 5.4 the results obtained for the curvilinear mesh. The tables
distinguish between h-like MG approaches where additional p-coarsening is done on the coars-
est h-level (hp-MG), and p-like MG approaches where additional h-coarsening is done at lowest
degree p = 1 (ph-MG). While the three different p-coarsening strategies from Section 5.2.3.2
are considered for the p-like approaches, the h-like approaches exclusively use the p-coarsening
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Table 5.4: Cube test case: iteration count n10 as a function of polynomial degree p for various
multigrid coarsening strategies for 3D curvilinear mesh.

(a) h-multigrid (with pl−1 = bpl/2c if p-transfer is involved)

MG type Polynomial degree p
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

h 17.7 13.8 14.0 15.0 17.8 19.4 22.6 22.6 25.4 26.4 28.9 29.8 32.3 33.3 35.8
hpc 17.7 13.8 14.0 15.0 17.8 19.4 22.6 23.1 25.3 26.3 28.8 29.7 32.3 32.9 35.5
chp 8.5 5.9 5.5 5.5 5.9 6.6 7.9 8.7 10.1 10.7 12.1 12.6 13.9 14.4 15.7

(b) p-multigrid (pl−1 = pl − 1)

MG type Polynomial degree p
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

p 3.4 13.7 12.8 13.0 13.8 15.0 15.5 16.3 16.6 16.7 17.7 17.9 18.7 18.8 19.6
phc 17.7 14.2 13.2 13.1 13.9 15.1 15.5 16.3 16.7 16.8 17.8 18.0 18.7 18.7 19.7
cph 8.5 5.9 5.4 5.3 5.3 5.2 5.2 5.3 5.8 5.9 6.5 6.7 7.4 7.6 7.9

(c) p-multigrid (pl−1 = bpl/2c)

MG type Polynomial degree p
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

p 3.4 13.7 15.3 14.0 18.5 19.5 22.2 21.7 25.1 25.9 29.1 29.2 33.0 33.8 36.5
phc 17.7 14.2 16.4 14.1 18.6 19.5 22.3 21.9 25.1 25.9 29.1 29.3 32.8 33.7 36.6
cph 8.5 5.9 5.9 5.5 6.5 6.3 7.8 7.8 9.5 9.7 10.9 11.3 12.6 12.7 13.9

(d) p-multigrid (pl−1 = 1∀pl)

MG type Polynomial degree p
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

p 3.4 13.7 15.3 20.3 27.0 34.7 39.2 45.9 54.0 63.7 76.4 94.9 115 137 157
phc 17.7 14.2 16.4 21.0 27.0 34.4 39.1 45.9 53.4 62.9 75.8 93.6 113 135 156
cph 8.5 5.9 5.9 8.4 11.7 15.2 18.9 23.0 27.0 31.4 35.9 40.3 44.9 49.5 54.2

denoted as bisection that approximately halves the number of unknowns per direction from one
multigrid level to the next. A fixed number of elements of 83 is used and the polynomial degree
varies between 1 ≤ p ≤ 15. If h-multigrid is involved, the coarse-grid problem consists of 23

elements. For brevity, only a subset of all possible combinations of multigrid coarsening strate-
gies are listed in Tables 5.3 and 5.4. Additional results are shown in the publication related to
this chapter (Fehn et al. 2020), and comments on additional results can also be found in the text.
The results can be summarized as follows:

• Extending the pure h- or p-multigrid methods towards hybrid multigrid methods with ad-
ditional p- or h-coarsening, respectively, on coarser levels does not change the multigrid
convergence rates. The multigrid convergence rates are also not altered if additional c-
coarsening is performed at the coarsest level before the coarse-grid solver is invoked (hc-,
hpc- and pc-, phc-approaches) or at an intermediate level between h- and p-coarsening
(hcp- and pch-approaches).
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• A different convergence behavior with much lower iteration counts is observed when per-
forming the c-transfer on the finest level before h- or p-coarsening is invoked. For all
multigrid approaches and for both Cartesian and curvilinear meshes, iteration counts are
reduced by a factor of 2 to 3 compared to c-coarsening performed on coarser levels. Per-
forming the c-transfer introduces additional costs as quantified in Section 5.3.4.3.

• With respect to p-robustness, the h-like approaches on the one hand and the p-like ap-
proaches with pl−1 = bpl/2c coarsening on the other hand show a similar relation between
polynomial degree and iteration counts. This is not unexpected, as both approaches reduce
the degrees of freedom in factors of two per direction per level. In combination with the
Chebyshev smoother considered here, these approaches show a slight increase in iteration
counts for large p.

• The p-multigrid methods with pl−1 = 1 ∀pl coarsening show a much stronger increase
in iteration counts for large p. The results shown here also shed light on previous results
in Bastian et al. (2019), Remacle et al. (2016), Siefert et al. (2014), where two-level ap-
proaches with an immediate transfer from highest to lowest polynomial degree have been
used. As shown in the following, this coarsening strategy is not only performing worst in
terms of iteration counts, but also in terms of computational costs.

• The p-multigrid methods with pl−1 = pl − 1 coarsening show the best behavior in terms
of p-robustness w.r.t. iteration counts. On the Cartesian mesh, the iteration counts are com-
pletely independent of p for the cp- and cph-approaches, and the number of iterations
increases only slightly for increasing p on the curvilinear mesh. However, this type of p-
coarsening is also the most complex one introducing the largest numbers of multigrid lev-
els. Hence, from the results shown in Tables 5.3 and 5.4, it is unclear whether this strategy
pays off in terms of computational costs, an aspect investigated in detail in Section 5.3.4.3.

Additional h-robustness tests performed in Fehn et al. (2020) demonstrate mesh-independent
convergence rates for the 3D Cartesian and curvilinear meshes and the different multigrid coars-
ening strategies. Iteration counts under mesh refinement are also shown below for the nozzle and
lung test cases.

5.3.4.2 Robustness with respect to interior penalty parameter

The coarsening strategies with c-transfer on the finest level (such as cph-, chp-coarsening) have
the interesting property that the resulting multigrid algorithm exhibits convergence rates that are
independent of the penalty factor of the interior penalty method. This property is demonstrated
in Table 5.5, where the cph-multigrid method is compared to combined hp- and ph-multigrid
methods without c-transfer (pure p- and pure h-multigrid methods would show a qualitatively
similar behavior). As expected, for standard hp- and ph-coarsening, the iteration counts de-
grade significantly when increasing the interior penalty factor, while the cph-multigrid method
shows constant iteration counts when scaling the penalty factor, equation (2.122), by ζIP =
100, 101, 102, 103. The chp-multigrid approach also shows robustness with respect to the interior
penalty parameter τ , and is not shown explicitly in Table 5.5. Qualitatively, the same results are
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Table 5.5: Cube test case: Robustness of multigrid algorithm w.r.t. interior penalty parameter on
a 3D Cartesian mesh with 83 elements. The table lists the iteration count n10.

(a) hp-multigrid (pl−1 = bpl/2c)

IP factor ζIP Polynomial degree p
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

100 14.8 12.5 12.4 12.2 14.4 14.9 17.2 17.5 19.6 19.1 22.3 22.4 24.2 24.6 26.1
101 25.4 32.6 39.9 39.7 46.8 45.4 52.6 51.8 55.8 56.5 62.0 62.3 67.9 68.5 73.0
102 38.5 53.8 79.9 83.7 109 104 128 117 134 133 147 146 157 166 176
103 45.0 73.3 113 123 172 162 205 190 223 194 221 219 243 249 278

(b) ph-multigrid (pl−1 = bpl/2c)

IP factor ζIP Polynomial degree p
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

100 14.8 12.5 13.9 12.0 14.3 14.2 16.0 15.3 17.8 16.9 20.2 19.8 21.6 21.9 23.9
101 25.4 29.8 33.8 33.2 38.2 38.4 43.2 42.6 48.7 46.4 52.3 52.2 56.7 57.7 61.3
102 38.5 45.2 49.6 52.2 61.7 63.4 67.5 70.7 80.0 77.8 85.7 85.5 96.4 93.3 102
103 45.0 59.1 66.0 70.9 79.4 80.1 89.0 94.8 108 105 116 119 126 125 138

(c) cph-multigrid (pl−1 = bpl/2c)

IP factor ζIP Polynomial degree p
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

100 7.5 5.5 5.1 4.9 5.1 4.8 5.0 5.1 5.6 5.4 6.3 6.3 7.1 7.0 7.8
101 7.7 5.4 5.3 5.3 5.4 5.2 5.3 5.6 5.7 5.7 6.4 6.5 7.4 7.2 8.0
102 7.7 5.4 5.3 5.4 5.5 5.4 5.4 5.7 5.8 5.8 6.5 6.5 7.2 7.2 8.1
103 7.7 5.4 5.4 5.4 5.5 5.4 5.4 5.7 5.9 5.9 6.9 6.8 7.6 7.8 8.8

obtained when repeating this experiment for the 3D curvilinear mesh. An explanation for this τ -
robustness might be that the continuous finite element space covers the DG solution in the limit
of large penalty factors, thereby balancing the deteriorating conditioning of the DG operator, see
also the theory in Antonietti et al. (2017). In other words, the interior penalty parameter does
not only impact the conditioning, but also the approximation properties of the DG solution in
relation to the continuous FE space. This behavior is appealing as it allows to avoid the need to
optimize the IP parameter in order to obtain iteration counts as low as possible and, at the same
time, ensure coercivity of the SIPG discretization.

5.3.4.3 Identification of optimal multigrid sequence maximizing throughput

The results in Section 5.3.4.1 revealed that using more p-levels in the multigrid hierarchy reduces
the number of iterations, at the costs of increased computational load per iteration. However, it
remains unclear which type of p-coarsening is the most efficient one. Likewise, it needs to be
investigated whether a c-transfer at the finest level (with an additional expensive smoothing step
performed on the finest level as opposed to a cheap c-transfer at an intermediate level or at the
coarsest level) reduces overall computational costs, i.e., algorithmic selections should be driven
by the time-to-solution metric.
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Figure 5.5: Throughput E10 versus problem size for polynomial degree p = 3 and cube test
case with Cartesian mesh (dashed lines) and curvilinear mesh (solid lines). A cph-
multigrid coarsening strategy is used with pl−1 = bpl/2c. Standard mixed-precision
multigrid results are shown as lines with markers, and additional computations per-
formed in double precision only are shown as lines without markers. A fat memory
node is used here in order to investigate a wide range of problem sizes. The gray band
indicates the range of problem sizes used for the throughput measurements in Fig-
ure 5.6, for which a fully loaded node (blue curves) is considered with the problem
size large enough to saturate caches.

For throughput measurements, it is important to fully utilize all cores of one compute node
since certain resources are shared by the cores of a node, i.e., the performance reported in de-
grees of freedom solved per second per core would otherwise be extraordinarily high. This is
demonstrated in Figure 5.5, where the throughput is significantly larger if only a single core is
utilized per node instead of a fully loaded node. Figure 5.5 also shows the speed-up that can
be achieved by the use of mixed-precision multigrid, which is around a factor of 1.8 for large
problem sizes. Towards very small problem sizes (strong-scaling limit), the performance breaks
down since performance is limited by latency and the available parallelism instead of arithmetic
throughput or memory throughput, and the performance advantage of mixed-precision multigrid
therefore vanishes in such a scenario. For the computations on a fully-loaded node, an elevation
of the throughput can be observed for problem sizes around 1 MDoF due to the fact that data fits
(partly) into caches, which have a higher bandwidth than main memory. Throughput measure-
ments are therefore run in a saturated regime of sufficiently high workload per core so that the
data does no longer fit into caches. In Figure 5.5, the throughput is shown as a function of the
problem size to highlight these cache effects. The range of problem sizes (25 MDoF to 75 MDoF)
used below for benchmarking the present solver is indicated by a gray band. While it is good
practice to run the solver in a saturated regime for benchmarking, it is of course beneficial to
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explicitly exploit caching effects for practical computations. Note that a constant throughput for
large problem sizes implies optimal complexity of the solver in terms of twall ∼ N .

(a) cube test case on 3D Cartesian mesh

(b) cube test case on 3D curvilinear mesh

Figure 5.6: Iterations n10 versus throughput E10 for different multigrid coarsening strategies
on Cartesian mesh and curvilinear mesh. The problem size is between 25 MDoF
and 75 MDoF for all polynomial degrees 1 ≤ p ≤ 15.

Figure 5.6 details the performance in terms of iteration counts as well as computational ef-
ficiency for different hybrid multigrid algorithms, each of them exploiting all levels of h-, p-,
and c-coarsening (in different orders). For the p-like approaches, the three different types of p-
coarsening are again investigated. The results for n10 in the left panels of the figures visualize
results similar to those shown in Tables 5.3 and 5.4. The cph- and phc-methods with pl−1 = pl−1
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Table 5.6: Iteration count n10 and effective number of fine-level matrix-vector products n10,Au for
Cartesian mesh versus curvilinear mesh in 3D. The cph-multigrid method with pl−1 =
bpl/2c is used. The problem size is between 25 MDoF and 75 MDoF for all polyno-
mial degrees 1 ≤ p ≤ 15. The efficiency measures EAu and E10 are specified in MDoF

s·core
.

(a) 3D Cartesian mesh

Polynomial degree p
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

n10 6.4 5.2 5.3 4.9 5.0 5.0 5.4 5.0 5.4 5.5 6.3 6.2 6.8 7.0 7.6
n10,Au 90 102 97 95 106 94 99 99 92 93 100 85 91 87 93
EAu 26.0 39.0 39.0 37.7 39.0 34.3 30.5 31.4 28.1 26.7 24.5 18.9 17.0 14.2 13.2
E10 0.29 0.38 0.40 0.40 0.37 0.37 0.31 0.32 0.31 0.29 0.25 0.22 0.19 0.16 0.14

(b) 3D curvilinear mesh

Polynomial degree p
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

n10 7.2 6.2 7.6 6.4 7.6 7.9 8.9 8.3 9.7 10.3 11.6 11.7 13.0 13.2 14.4
n10,Au 94 99 109 98 119 122 127 122 133 144 152 140 147 143 158
EAu 16.7 19.8 19.9 20.0 21.0 19.7 18.2 18.1 16.9 16.3 15.3 12.5 11.3 10.0 9.5
E10 0.18 0.20 0.18 0.20 0.18 0.16 0.14 0.15 0.13 0.11 0.10 0.09 0.08 0.07 0.06

coarsening exhibit a constant number of iterations for large p on the Cartesian mesh, and a slight
increase in the number of iterations for the curvilinear mesh. The results in Figure 5.6 highlight
that performing the c-transfer on the finest level is not only beneficial in terms of iteration counts,
but also in terms of computational costs. The chp- and cph-multigrid methods clearly outperform
the hpc- and phc-multigrid methods on the Cartesian mesh as well as on the curvilinear mesh
in this experiment. In terms of p-coarsening, the pl−1 = 1 ∀pl strategy performs worst both in
terms of iteration counts and computational costs. The pl−1 = bpl/2c strategy performs best in
terms of computational costs. The differences between hp- versus ph-multigrid methods are very
small, and small differences in the number of iterations determine which approach is more effi-
cient overall. Despite exhibiting the lowest number of iterations, the pl−1 = pl−1 strategy is not
competitive if the c-transfer is done at the coarse level. However, it is interesting to realize that
the pl−1 = pl−1 strategy can keep up with the pl−1 = bpl/2c coarsening strategy if the c-transfer
is performed on the fine level. Going through all polynomial degrees in the multigrid hierarchy
introduces less overhead in this case since the operator evaluation is significantly faster for the
continuous FE space (e.g., no face integrals) compared to the DG space (Kronbichler and Wall
2018). Although not explicitly shown here, it should be mentioned that the increased number
of multigrid levels for the pl−1 = pl − 1 strategy is disadvantageous due to increased memory
requirements, and also in the strong-scaling limit where overall costs are dominated by the la-
tency of matrix-vector products (and hence the number of multigrid levels). For these reasons,
the chp- and cph-multigrid methods with pl−1 = bpl/2c coarsening strategy are considered most
promising. These multigrid methods are investigated below for the more challenging test cases.

In terms of absolute numbers, a maximum throughput of up to E10 = 0.41 MDoF
s·core

or, equiv-
alently, a minimum solve time of t10 = 2.4 µs·core

DoF
at degree p = 3 is achieved for the Carte-
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sian mesh. The performance is reduced for the curvilinear mesh, with a maximum throughput
of E10 = 0.22 MDoF

s·core
and a minimum solve time of t10 = 4.6 µs·core

DoF
at degree p = 3. The reduced

performance for the curvilinear mesh compared to the Cartesian mesh can be explained by an
increase in iteration counts on the one hand, and a reduced throughput of the matrix-free oper-
ator evaluation on the other hand, as summarized in Table 5.6. In addition to previous results,
Table 5.6 lists the effective number of fine-level matrix-vector products n10,Au. For the Cartesian
mesh, n10,Au ≈ 100 is obtained, i.e., solving the linear system of equations to a relative toler-
ance of ε10 = 10−10 corresponds to the costs of 100 fine-level matrix-vector products. For the
curvilinear mesh, n10,Au ≈ 100 − 150 is obtained with the effective number of matrix-vector
products increasing for higher p. To put these numbers into perspective, the cost per iteration
is equivalent to 10 − 20 fine-level matrix-vector products, while the iterative scheme performs
one double-precision matrix-vector product in the CG solver, 10 single-precision matrix-vector
products in the fine-level smoother in the DG space and the same number in continuous space,
plus additional work on coarser levels as well as vector operations.

5.3.4.4 Comparison to state-of-the-art

To give a perspective on the achieved performance, the present hybrid multigrid solver is com-
pared to state-of-the-art implementations from the literature in the metric t10. Note that the dif-
ferent results vary by the degree of optimization and specialization in the algorithms and imple-
mentations, so the primary intent is to provide a point of reference rather than a benchmark:

• In Stiller (2017b), the Poisson equation is solved using an interior penalty DG dis-
cretization with collocation approach on a 3D Cartesian mesh using overlapping Schwarz
smoothers. A solve time of t10 ≈ 7 µs

DoF is achieved for p = 4 run on a 3.1 GHz In-
tel Core i7-5557U CPU (one core used). Including the difference in throughput between
partially loaded and fully loaded nodes according to Figure 5.5, the present approach can
be considered significantly faster.

• In Huismann et al. (2019), the Poisson equation is solved on a 3D Cartesian mesh using
a collocation variant of the continuous spectral element method. A solve time of t10 ≈
10µs·core

DoF for p = 3 and t10 ≈ 5µs·core
DoF for p = 4 is specified in that work, where simulations

have been run on a single core of a node composed of two Intel Xeon E5-2590-v3 with 12
cores each. A parallel efficiency for a fully loaded node between 52% and 65% is specified
in (Huismann et al. 2019, Table 2) for a Krylov-accelerated MG solver. This aspect needs
to be taken into account and increases solve times roughly by a factor of two, see also
the results in Figure 5.5. For moderately high polynomial degrees p ≤ 5, the present
approach with t10 ≈ 2.5−3 µs·core

DoF
is therefore significantly more efficient, despite the fact

that the implementation in Huismann et al. (2019) uses optimizations that are restricted
to Cartesian meshes and the fact that a computationally cheaper continuous finite element
discretization is used. Somewhat orthogonally, the approach in Huismann et al. (2019) is
clearly faster for very large polynomial degrees such as p = 16, for which solve times as
low as t10 ≈ 1µs·core

DoF when using a single core are specified in that work.

• In Bastian et al. (2019), an interior penalty DG discretization is considered for the constant
coefficient Poisson problem on a 3D Cartesian geometry using block-Jacobi smoothers. A
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maximum performance of t8 ≥ 1.33 µs
DoF is achieved at degree p = 2 on 16 cores of an Intel

Xeon E5-2698v3 node, corresponding to t10 = 26.6µs·core
DoF . Compared to the performance

numbers specified above, the present approach is approximately one order of magnitude
faster. It should be emphasized in this context that the smoothers used in Bastian et al.
(2019) are more complex and designed for variable-coefficient problems. At the same
time, these results demonstrate that a conservative selection of smoothers with a focus on
robustness for potentially more complex PDEs is clearly non-optimal.

• In Kronbichler and Wall (2018), a constant-coefficient Poisson problem is solved on a 3D
Cartesian geometry for an interior penalty DG discretization using a pure h-multigrid ap-
proach with Chebyshev smoother of degree 2. A minimal solve time of t9 = 2.1µs·core

DoF ,
or equivalently t10 = 2.33µs·core

DoF , is achieved at degree p = 4, comparable to what is
achieved in the present work, albeit on older hardware but using matrix-free kernels that
are further optimized compared to the present study. In Kronbichler et al. (2019), an op-
timized code-version of the h-multigrid method from Kronbichler and Wall (2018) using
so called element-wise face integrals and merged vector operations achieves a solve time
as low as t9 ≥ 1.1µs·core

DoF (or equivalently t10 ≥ 1.25µs·core
DoF ) on a hardware comparable to

the present study. These optimizations have not been included in the present study since
they have not been available in the deal.II library by the time of writing, but indicate
further performance improvements of the present hybrid multigrid methods once these
optimizations are integrated.

• Finally, the present DG solver with matrix-free evaluation and sum-factorization is com-
pared to matrix-based hybridizable DG solvers that appear attractive since the HDG ap-
proach reduces the global matrix size considerably by eliminating interior degrees of free-
dom and solving a linear system of equations for the trace variable living on the element
boundaries only. In Yakovlev et al. (2016), a Helmholtz-like equation with constant coeffi-
cients is solved on a unit cube with 93 uniform hexahedral elements of degree p = 1, . . . , 7
and overall costs including mesh generation and setup are reported in that work using a
single core on an Intel Xeon E7-4870 processor. A direct solver is used in that work and
the authors argue that such an approach is effective in serial and for the small problem sizes
considered. The wall times reported in Yakovlev et al. (2016) range from 5.0 s for p = 1,
170 s for p = 3, to 16.2 · 103 s for p = 7. Here, the constant coefficient Poisson equation is
solved on the same mesh, which is at least as difficult to solve as a Helmholtz-like equation
when using iterative solvers. Wall times of 0.59 s for p = 1, 0.86 s for p = 3, and 4.5 s
for p = 7 are obtained for the present solver for the whole application (including setup
and postprocessing) when running the code on a single core, achieving a speed-up by a
factor of 8.5 for p = 1, 200 for p = 3, and 3600 for p = 7 over the HDG results shown
in Yakovlev et al. (2016). These results point in a similar direction as the study by Kron-
bichler and Wall (2018), which provides a thorough comparative study of matrix-free DG
versus matrix-based HDG methods using the same hardware for both approaches.
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Table 5.7: Nozzle test case: robustness and performance of hybrid multigrid solver for cph-
multigrid method with pl−1 = bpl/2c coarsening.

(a) iteration count n10

h Polynomial degree p
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

h0 5.5 8.4 11.4 8.6 10.7 11.8 12.2 10.5 11.7 11.8 12.7 12.0 12.9 13.7 14.5
h0/2 8.3 8.8 12.3 9.6 11.8 12.5 13.4 11.5 12.7 12.0 12.9 12.8 13.7 13.8 14.3
h0/4 8.8 9.8 13.5 9.8 11.7 13.5 14.2 11.7 12.6 12.5 12.9 13.7 13.8 14.6 14.8

(b) throughput E10 in kDoF
s·core

h Polynomial degree p
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

h0 276 338 294 357 306 265 221 251 227 225 203 210 190 177 140
h0/2 3.30 36.1 115 166 129 136 110 114 95.1 90.9 78.8 73.6 66.6 62.2 56.4
h0/4 9.28 82.7 126 159 142 112 92.8 106 94.2 89.4 84.4 74.9 71.0 63.8 59.7

(c) relative share of AMG coarse-grid solver in % of wall time (‘-’ means less than 0.1%)

h Polynomial degree p
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

h0 13.3 4.1 2.0 1.0 0.7 0.4 0.3 0.2 0.2 0.1 - - - - -
h0/2 4.1 6.7 11.6 6.8 3.7 2.6 1.5 0.9 0.6 0.4 0.3 0.2 0.2 0.1 0.1
h0/4 11.4 6.1 5.1 2.3 1.3 0.8 0.5 0.3 0.2 0.1 0.1 - - - -

(d) speed-up of cph-coarsening over phc-coarsening

h Polynomial degree p
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

h0 0.97 2.05 1.48 1.70 1.64 1.47 1.49 1.57 1.53 1.60 1.43 1.47 1.44 1.35 1.42
h0/2 1.33 1.42 2.02 2.04 1.87 2.04 1.66 1.71 1.71 1.62 1.55 1.57 1.55 1.49 1.50
h0/4 1.24 2.19 1.53 1.87 1.71 1.48 1.41 1.62 1.55 1.54 1.56 1.47 1.52 1.46 1.47

5.3.5 Nozzle

This section presents results for the nozzle test case. To mimic the incompressible flow case for
the nozzle problem, a Dirichlet boundary condition with a constant value of 1 is prescribed at the
inflow boundary on the left, and a constant value of 0 at the outflow boundary on the right. On
the walls of the nozzle geometry, homogeneous Neumann boundary conditions are prescribed.
To generate a coarse grid, the nozzle domain is meshed with a minimum number of elements.
The coarse grid shown in Figure 5.4 consists of 440 elements and additional information on the
mesh generation can be found in Fehn et al. (2019b). The coarse grid is identified as the h0 mesh
in the following, and meshes are considered that are refined once (h0/2) and twice (h0/4) via
uniform mesh refinements of the coarse mesh. A cubic mapping is used for all computations
for a high-order representation of the geometry which is described via manifold descriptions.
For polynomial degrees from p = 1, . . . , 15, the problem size ranges from 3.5 · 103 − 1.8 · 106

unknowns for mesh h0, 2.8 ·104−1.4 ·107 unknowns for h0/2, and 2.3 ·105−1.2 ·108 unknowns
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for h0/4. Computations on mesh h0 are performed on one core due to the small problem size, on
mesh h0/2 on one node (48 cores), and on mesh h0/4 on two nodes (96 cores). The smoother
used for all experiments is Chebyshev(5,5) and the coarse-grid problem is solved iteratively to a
relative tolerance of 10−3 by the conjugate gradient method with AMG V-cycle as preconditioner.

Table 5.7 summarizes the numerical results for the nozzle geometry of the FDA benchmark
with a focus on the cph-multigrid method. In terms of iteration counts, mesh-independent con-
vergence is observed, and a slight increase in the number of iterations for large p in agreement
with previous results. Compared to the curvilinear mesh for the cube problem, the number of
iterations is larger, explaining the reduced throughput E10 compared to the results on the curvi-
linear mesh for the cube geometry in Table 5.6. An increased throughput is measured on the
coarse mesh h0, since the computations are performed on a single core, see also Figure 5.5. On
the finer meshes, the throughput is small for low polynomial degrees. This is due to the fact that
the problem size covers a broad range from a very low to high workload per core when going
from p = 1 to p = 15 for a fixed number of elements (in contrast, the number of elements has
been adapted for the cube test case to obtain a similar problem size for all p).

Table 5.7 also lists the relative share of the AMG coarse-grid solver in % of the overall wall
time required by the linear solver. The coarse-grid solver accounts for up to 13% of the computa-
tional costs for linear shape functions (p = 1), and becomes negligible in terms of computational
costs for increasing polynomial degree and finer meshes. By the use of hybrid multigrid meth-
ods, the overall computational efficiency of the method is determined by the fast matrix-free
operator evaluation on the finest levels as intended.

The computationally efficient cph- and chp-coarsening strategies show a similar performance
for the nozzle test case both in terms of iteration counts and computational costs, so that no
significant advantage of one over the other method could be identified. As shown in Table 5.7,
the cph-multigrid method is more efficient than the phc-method for all polynomial degrees and
meshes considered for the nozzle problem. Robustness w.r.t. the interior penalty factor is ob-
tained for the cph-multigrid method (and similarly for chp-coarsening), while a strong increase
in iteration counts is observed in case of phc-coarsening, see Fehn et al. (2020).

5.3.6 Lung

The complex lung geometry shown in Figure 5.4 is meshed with purely hexahedral elements
by the use of a specialized mesh generator as well as facilities of the deal.II library (Arndt
et al. 2020a). The patient-specific geometry of the first three generations is obtained from a seg-
mentation of MRI scans, while higher airway generations are constructed using a recursive tree
growing algorithm that mimics the true anatomy of the preterm infant and respects anatomical
length and diameter ratios of airways reported for the preterm infant (Roth et al. 2018). In a
first step, a 3D cylinder tree is created, which is subsequently deformed according to the patient-
specific geometry of upper airway generations obtained from magnetic resonance imaging and
described via B-splines. When refining the mesh, new nodes are placed correctly on the patient-
specific geometry. A tri-linear mapping of the geometry is used in the present work. Also for the
lung test case, the application in mind is the solution of the pressure Poisson equation as part of
an incompressible Navier–Stokes solver. Therefore, a Dirichlet boundary value of 1 is prescribed
at the upper boundary and homogeneous Dirichlet boundary conditions at all outlets where the
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Table 5.8: Lung test case: robustness and performance of hybrid multigrid solver for cph-
multigrid method with pl−1 = bpl/2c coarsening.

(a) iteration count n10

h Polynomial degree p
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

h0 12.3 19.3 27.6 19.9 26.8 29.4 30.7 27.9 32.6 32.9 36.5 36.4 39.5 39.4 41.9
h0/2 17.6 20.0 28.9 22.6 29.6 30.8 36.8 33.7 38.6 38.0 42.5 40.7 43.0 43.9 45.7
h0/4 18.5 21.0 30.9 25.9 32.6 34.6 39.7 35.9 40.7 40.5 44.4 43.7 47.9 47.4 51.5

(b) throughput E10 in kDoF
s·core

h Polynomial degree p
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

h0 5.47 36.8 53.2 80.9 64.7 57.3 49.0 49.8 40.9 37.8 33.2 31.3 27.9 26.5 23.5
h0/2 39.8 90.4 68.3 76.3 57.4 52.1 42.0 44.2 38.0 37.2 32.3 31.2 28.2 25.3 22.6
h0/4 24.2 77.8 58.1 61.8 48.2 43.6 37.3 40.1 35.6 34.2 30.6 29.3 25.2 23.5 20.4

(c) relative share of AMG coarse-grid solver in % of wall time (‘-’ means less than 0.1%)

h Polynomial degree p
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

h0 15.0 21.7 18.5 8.5 5.6 3.4 2.1 1.4 0.9 0.7 0.5 0.4 0.3 0.2 0.2
h0/2 19.7 6.3 2.7 1.2 0.8 0.4 0.3 0.2 0.1 - - - - - -
h0/4 18.1 9.8 3.9 1.9 1.1 0.7 0.4 0.3 0.2 0.1 0.1 - - - -

(d) speed-up of cph-coarsening over phc-coarsening

h Polynomial degree p
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

h0 0.72 1.80 1.51 1.88 1.62 1.36 1.47 1.59 1.55 1.47 1.51 1.47 1.48 1.47 1.51
h0/2 1.83 2.18 1.51 1.60 1.34 1.32 1.27 1.35 1.35 1.35 1.36 1.37 1.48 1.35 1.39
h0/4 1.77 2.22 1.52 1.67 1.37 1.27 1.29 1.40 1.41 1.30 1.34 1.36 1.38 1.38 1.38

airways that are resolved by this lung model end. Homogeneous Neumann boundary conditions
are prescribed on all airway walls.

The problem is solved on the coarse mesh labeled h0, and on two finer meshes h0/2 and h0/4
obtained via uniform mesh refinements. In the following, results are shown for the mesh resolv-
ing 8 generations of the lung with a coarse mesh consisting of 9396 elements, see Figure 5.4.
The lung mesh contains bad-aspect-ratio elements so that this test case represents more prac-
tical, difficult problems. For polynomial degrees from p = 1, . . . , 15, the problem size ranges
from 7.5 · 104 − 3.8 · 107 unknowns for mesh h0, 6.0 · 105 − 3.1 · 108 unknowns for h0/2,
and 4.8 · 106 − 2.5 · 109 unknowns for h0/4. Computations on meshes h0 and h0/2 are done on
one fat compute node (48 cores) and computations on mesh h0/4 on 8 fat nodes (384 cores).
The smoother used for all experiments is Chebyshev(5,5) and the coarse-grid problem is solved
iteratively to a relative tolerance of 10−1 by the conjugate gradient method preconditioned by
an AMG V-cycle with Chebyshev(3,3) smoother. For the lung test case, the AMG coarse-grid
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preconditioner with ILU smoother lacks robustness with respect to the number of cores, so that
a Chebyshev smoother is used for the AMG coarse-grid preconditioner for this problem.

Table 5.8 lists the results for the lung test case mainly focusing on the cph-multigrid method.
The number of iterations n10 increase slightly on finer meshes, and more strongly for increas-
ing p. The number of iterations is highest for the lung test case explaining the reduction in
throughput E10 compared to the results for the cube geometry with curvilinear mesh. The cph-
multigrid method is faster than the phc-multigrid method for all polynomial degrees due to a
significant reduction in iteration counts. Regarding the interior penalty parameter, robustness is
obtained for cph- and chp-coarsening, and a strong increase in iterations counts is observed, e.g.,
in case of phc- and hpc-coarsening. The cph- and chp-methods (and similarly the phc- and hpc-
methods) perform similarly for the lung problem with a small advantage for ph-type approaches
due to slightly smaller iteration counts in agreement with the results in Figure 5.6 for the cube
problem. The costs of the AMG coarse-grid solver are negligible for high-order methods and the
coarse-grid solver does also not form a bottleneck for the lowest polynomial degrees, demon-
strating a proper design of the present multigrid algorithms by the use of hybrid coarsening
strategies. Additional results are shown in Fehn et al. (2020) for pure h- and p-multigrid meth-
ods. Due to the rather complex coarse-grid problem for the lung test case, most of the time is
spent in the coarse-grid solver unless the polynomial degree is very high in case of p-multigrid,
or the mesh refinement level is very high in case of h-multigrid. A substantial speed-up by more
than one order of magnitude is achieved by the use of hybrid multigrid techniques, demonstrating
that the approach developed here becomes mandatory in order to obtain a versatile PDE solver
that is efficient for a wide range of problems and spatial resolution parameters h and p.

5.4 Block preconditioners for indefinite saddle point
problem

This section discusses preconditioners for incompressible flow solvers. When using a monolithic
or coupled solution approach, the linear(ized) system of equations for the velocity and pressure
unknowns arising from the discretization of the incompressible Navier–Stokes equations in space
and time, equations (2.213) and (2.214), is an indefinite saddle point problem of the form[

A BT

B 0

] [
u
p

]
=

[
bm

bc

]
, (5.16)

where A is the matrix of the velocity block and B is given as

B = −D = GT . (5.17)

As discussed in Section 2.4.2.2, the above relation is, in general, strictly valid only under the
assumption of exact integration, or for certain formulations of the velocity divergence term and
pressure gradient term also in case of inexact integration. Depending on the temporal treatment
of the convective term (explicit or implicit), the system of equations can be further characterized
as symmetric or non-symmetric. In case of an implicit treatment of the convective term, the
matrix A is

A =
γn0

∆tn
M + Clin

(
u(k)
)

+ V , (5.18)
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and in case of an explicit treatment of the convective term (or when considering the generalized
Stokes problem)

A =
γn0

∆tn
M + V . (5.19)

When dealing with the numerical solution of linear systems of equations, the term Stokes prob-
lem is therefore also used even when solving the Navier–Stokes equations with an explicit treat-
ment of the convective term. As in Section 2.5.7, this section discusses the case where the diver-
gence and continuity penalty terms are applied in a postprocessing step and, therefore, do not oc-
cur explicitly in the saddle point problem. The idea behind is to be able to apply well-established
preconditioners for the incompressible Navier–Stokes equations, originally developed for other
types of discretization in space. If added to the monolithic system, the penalty terms would ap-
pear as additional contributions in the matrix A. A block-preconditioner explicitly taking into
account the grad–div stabilization term for continuous finite element discretizations has been
developed in Heister and Rapin (2013).

The saddle point structure makes the numerical solution more complicated as compared to
projection-type solution methods for incompressible flows (see Sections 2.5.7.3 and 2.5.7.4). An
overview of the numerical solution of saddle point problems is given in Benzi et al. (2005) and
literature mentioned therein. The saddle point problem is solved by the generalized minimum
residual (GMRES) method (Saad and Schultz 1986) with right preconditioning in this work. The
development of efficient preconditioners is the key requirement in order to obtain robust and ef-
ficient solvers. A well established approach is based on so-called block-preconditioners (Benzi
et al. 2005, Elman et al. 2014). The derivation of these block preconditioners makes use of the
Schur complement factorization of the saddle point matrix. The idea of block-preconditioning
is to develop optimal (spectrally-equivalent) preconditioners for the velocity and pressure Schur
complement blocks separately. The preconditioner for the coupled system is then obtained by
combining the respective preconditioners for the velocity block and Schur complement block in
a block-diagonal or block-triangular manner. This technique allows a modular implementation
since the problem of constructing efficient preconditioners for the coupled system is reduced
to the problem of designing efficient preconditioners for the velocity block and the Schur com-
plement block. Moreover, projection-type and monolithic Navier–Stokes solvers can make use
of the same type of preconditioners for the velocity and pressure blocks. Block preconditioners
are widely used for large-scale geodynamic problems such as earth mantle convection simula-
tions (Kronbichler et al. 2012, May et al. 2014, Rudi et al. 2015).

The starting point for the derivation of block preconditioners is to consider a block factoriza-
tion of the system matrix[

A BT

B 0

]
=

[
I 0

BA−1 I

] [
A 0
0 S

] [
I A−1BT

0 I

]
=

[
I 0

BA−1 I

] [
A BT

0 S

]
=

[
A 0
B S

] [
I A−1BT

0 I

]
,

(5.20)
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where the Schur complement S is defined as

S = −BA−1BT . (5.21)

Based on the above block factorization, different types of block preconditioners can be derived
by neglecting parts of that factorization. In the following, three types of block preconditioners of
varying complexity are considered: a block diagonal preconditioner, a block triangular precon-
ditioner, and a preconditioner based on an exact block triangular factorization, see Benzi et al.
(2005) for details. For all of them, the main challenge lies in developing efficient precondition-
ers Â and Ŝ for the velocity block A and the Schur complement block S, respectively.

5.4.1 Block diagonal preconditioner
The simplest block preconditioner is obtained by only considering the diagonal blocks A and S,
see first row of equation (5.20)

P =

[
Â 0

0 −Ŝ

]
 P−1 =

[
Â
−1

0

0 −Ŝ
−1

]
, (5.22)

Hence, this preconditioner consists of one application of Â
−1

and −Ŝ
−1

, respectively, where
the minus sign in front of the Schur complement preconditioner will become clear from the
following considerations.

5.4.2 Block triangular preconditioner
The block triangular preconditioner also takes into account the matrix of the discrete pressure
gradient (right preconditioning)

P =

[
Â BT

0 Ŝ

]
 P−1 =

[
Â
−1
−Â

−1
BTŜ

−1

0 Ŝ
−1

]
=

[
Â
−1

0
0 I

][
I BT

0 −I

][
I 0

0 −Ŝ
−1

]
,

(5.23)

In numerical experiments, this preconditioner typically leads to a significantly lower number
of iterations compared to the block diagonal preconditioner. In terms of computational costs,
the block triangular preconditioner is comparable to the block diagonal preconditioner since the
computational costs for applying the discrete pressure gradient B are low as compared to ap-
proximately inverting the velocity block Â

−1
and the Schur complement block Ŝ

−1
, typically

involving more expensive operations such as a multigrid V-cycle. Assuming optimal precondi-
tioners for the velocity block, Â

−1
= A−1, and the Schur complement block, Ŝ

−1
= S−1, the

preconditioned system is (right preconditioning)[
A BT

B 0

]
P−1 =

[
I 0

BA−1 I

]
, (5.24)

which follows immediately from the second row of equation (5.20).
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5.4.3 Preconditioner based on block triangular factorization
Considering all terms in the block factorization (5.20) results in the following preconditioner

P =

[
Â 0

B Ŝ

][
I Â

−1
BT

0 I

]
(5.25)

and its inverse

P−1 =

[
I Â

−1
BT

0 I

]−1 [
Â 0

B Ŝ

]−1

=

[
I −Â

−1
BT

0 I

][
I 0

0 −Ŝ
−1

] [
I 0
B −I

][
Â
−1

0
0 I

]
.

(5.26)

Assuming optimal preconditioners for the velocity block, Â
−1

= A−1, and the Schur comple-
ment block, Ŝ

−1
= S−1, equation (5.20) shows that this preconditioner approximates the system

matrix exactly (implying convergence after one iteration)[
A BT

B 0

]
P−1 =

[
I 0
0 I

]
. (5.27)

Compared to the block diagonal and block triangular preconditioners, this preconditioner is more
expensive since applying P−1 to a vector involves two applications of the velocity precondi-
tioner Â

−1
and one application of the pressure Schur complement preconditioner Ŝ

−1
. In case

that Â
−1

forms the most expensive part, this preconditioner increases costs by up to a factor of
two compared to the other block preconditioners described above. In numerical experiments, a
typical observation is that this preconditioner reduces the number of iterations only moderately
or slightly compared to the block triangular preconditioner.

Remark 5.3 Note that the above block preconditioners can be realized in a matrix-free way
provided that a matrix-free representation can be found for Â

−1
and Ŝ

−1
. The following sections

discuss such preconditioners.

5.4.4 Preconditioners for the velocity block
According to the modular design of block preconditioners, the efficiency of this approach essen-
tially depends on the availability of efficient preconditioners for the velocity block and the Schur
complement block. This section discusses preconditioners Â

−1
for the unsteady convection–

diffusion operator A acting on the velocity unknowns.

• Inverse mass matrix preconditioner Â
−1

= M−1: This preconditioner can be derived by
neglecting both the convective term and the viscous term in A. As suggested in Shahbazi
et al. (2007), it can be expected that this preconditioner is efficient if the mass matrix term
is dominant, i.e., for small time step sizes ∆t, and that the performance degrades if the
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convective term or the viscous term become important, i.e., for large time steps sizes. This
preconditioner is particularly efficient in the context of discontinuous Galerkin methods
where the mass matrix is block diagonal. Consequently, applying the inverse mass matrix
is a local, element-by-element operation. However, assembling and factorizing or invert-
ing the diagonal blocks would still be an expensive operation especially for very large
polynomial degrees, with an overall complexity of at least O(k2d). However, as first pre-
sented in Kronbichler et al. (2016), a matrix-free representation is available for the inverse
mass matrix, which exploits the tensor-product structure and uses sum-factorization with
optimal complexity ofO(kd+1). This algorithm applies the inverse of the 1D interpolation
from nodes to quadrature points and inverse quadrature weights. As explained in Krank
et al. (2017), an alternative interpretation is the transformation from a Gauss–Lobatto basis
to a Gauss basis, application of the inverse mass matrix, which is diagonal in the Gauss
basis, and a subsequent transformation back to the Gauss–Lobatto basis. From a perfor-
mance perspective, the inverse mass matrix is then as cheap as the forward application of
the mass matrix, and can be characterized as a memory-bound operation for moderately
large polynomial degrees on modern hardware. The speed of this operation is then deter-
mined by the speed at which the vectors can be streamed from memory, while arithmetic
operations can be hidden behind the memory transfer.

• Jacobi and Gauss–Seidel preconditioning: In order to incorporate the convective and vis-
cous terms, Jacobi-type preconditioners can be used. In the context of high-order discon-
tinuous Galerkin discretizations it is typically found that point-Jacobi preconditioners are
ineffective and that block-Jacobi techniques are required for robustness at high polynomial
degrees, where block refers to the degrees of freedom of one element. As explained in the
introduction of this chapter, such block-Jacobi approaches have so far most often been re-
alized in a matrix-based fashion (see Section 5.1 for references to the literature). It is often
argued that storing only the block-diagonal is acceptable as it is only a fraction of the whole
matrix. However, these matrix-based approaches come along with significantly increased
complexity for large k, O(k2d+1) for assembly, O(k3d) for factorizations, and O(k2d) for
matrix-vector products. Recently, progress towards matrix-free block-type preconditioners
applicable to general operators and non-Cartesian meshes has been made in Bastian et al.
(2019), Pazner and Persson (2018). In Bastian et al. (2019), inner Krylov solvers are used
to solve the local block-Jacobi problems. In the course of this thesis, vectorized versions
of local CG and GMRES solvers have been implemented in order to exploit the favorite
vectorization strategy of the matrix-free implementation in deal.II which vectorizes
over several elements. The Krylov solver is run simultaneously for several elements and
convergence is achieved once all elements of the vectorization batch report convergence.
This preconditioner relies entirely on matrix-free algorithms with sum-factorization and
each iteration has complexity O(kd+1). The overall efficiency of this preconditioner then
essentially depends on how fast the local Krylov solver converges, where it was found
in Bastian et al. (2019) that coarse tolerances can be used for the local problem without
impacting convergence of the outer global solver. In this context, it should be taken into
account that the data can reside in the cache for moderately large k due to the locality
of the problem. For non-symmetric and convection-dominated problems, a Gauss–Seidel
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iteration strategy is also popular for improved robustness and faster convergence.1 ILU
preconditioners might also be effective as long as the polynomial degree k does not be-
come too large (matrix-based approach), see for example Kronbichler et al. (2018a).

• Multigrid: A more robust but also more expensive preconditioner is to use a multigrid cycle
with appropriate smoother as a means to invert the operator. For Navier–Stokes problems
with an explicit treatment of the convective term or for Stokes problems, the operator is
symmetric and the favorite multigrid smoother used in this work is a fast Chebyshev it-
eration around the point-Jacobi method. For problems involving convection the operator
becomes non-symmetric. In this case, one can either restrict the multigrid preconditioner
to the (symmetric) Helmholtz-like part of the operator which still works well as long as the
convective term does not become dominant, or apply the multigrid preconditioner to the
whole operator with suitable smoothers for non-symmetric problems. In the latter case,
the Jacobi and Gauss–Seidel preconditioners discussed above are often used as multi-
grid smoothers, requiring a relaxation in general for robustness and optimal convergence.
Sometimes, a fixed number of GMRES iterations with Jacobi or Gauss–Seidel precondi-
tioner is also used as multigrid smoother. The reader is also referred to Section 5.2 for
a discussion of efficient multigrid algorithms in the context of high-order discontinuous
Galerkin discretizations.

5.4.5 Preconditioners for the Schur complement block
In order to derive preconditioners for the Schur complement, a well-known approach is based on
the theory of pseudo differential operators, see Benzi et al. (2005) and references therein. This
means that the matrices contained in S are replaced by their respective spatial derivative oper-
ators. For this analysis, the convective term is neglected. Moreover, the Laplace formulation of
the viscous term is used, while the preconditioner derived by this analysis is then also used when
considering the divergence formulation of the viscous term. This derivation therefore includes
the implicit assumption that the formulation of the viscous term plays a minor role in terms of
constructing preconditioners that approximate the Schur complement in a spectrally equivalent
way. Using pseudo differential operators, the Schur complement is written as

S =̂− (−∇ · )
(
γn0

∆tn
Id− ν∆

)−1

∇ . (5.28)

Then, efficient Schur complement preconditioners can be derived for two limiting cases:

• Limit of large time steps or large viscosities: Neglecting the term originating from the
discrete time derivative and assuming commutativity of spatial derivative operators results
in the following preconditioner

S =̂− (−∇ · ) (−ν∆)−1∇ ≈ −1

ν
Id  −Ŝ

−1
= νM−1

p , (5.29)

where Mp denotes the pressure mass matrix. For the steady Stokes problem this is an op-
timal preconditioner for the Schur complement showing mesh-independent convergence.

1A Gauss–Seidel type iteration strategy is currently not supported by the matrix-free infrastructure available
in deal.II.
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• Limit of small time steps or small viscosities: Under these assumptions the viscous term
can be neglected, leading to

S =̂− (−∇ · )
(
γn0

∆tn
Id

)−1

∇ ≈ +

(
γn0

∆tn

)−1

∆  −Ŝ
−1

=
γn0

∆tn
L−1 , (5.30)

where L is the matrix of the discrete negative Laplace operator using the same DG dis-
cretization (SIPG method) as for the discretization of the pressure Poisson equation in case
of projection-type solution methods. To approximately invert the negative Laplace opera-
tor in a spectrally equivalent way, one multigrid V-cycle can be performed, leading to the
approximation L̂

−1
. An exact inversion of the negative Laplace operator, e.g., by using an

iterative solver with multigrid preconditioner, should be avoided since such a nested ap-
plication of iterative solvers becomes very expensive computationally, but typically shows
only minor improvements in iteration counts.

By combining both approaches, a robust preconditioner has been developed in Cahouet and
Chabard (1988) for the generalized Stokes problem

−Ŝ
−1

= νM−1
p +

γn0
∆tn

L−1 , (5.31)

where an approximation L̂
−1

should again be used for computational efficiency. This precondi-
tioner forms a spectrally equivalent approximation for the generalized Stokes problem and results
in mesh-independent convergence rates for the whole range of time step sizes and viscosities.
Hence, this preconditioner allows to obtain optimal computational complexity with costs propor-
tional to the problem size. The additional application of the inverse pressure mass matrix comes
at almost no extra costs compared to a multigrid V-cycle used for the inversion of the Laplace
operator.

The convective term has been neglected in the above derivations. Extending these approaches
to the Navier–Stokes equations (Elman and Silvester 1996, Kay et al. 2002) shows that these
preconditioners allow to obtain mesh-independent convergence but the number of iterations in-
creases roughly as ν−1 for decreasing viscosity for steady Navier–Stokes problems. To address
small viscosities and to develop Schur complement preconditioners that incorporate the convec-
tive operator, the goal is to find a formulation that does not need to invert the convective operator
but only involves a forward application of this operator. By assuming commutativity of spatial
derivative operators, the inversion of the velocity convection–diffusion operator in the Schur
complement preconditioner can be avoided (Elman et al. 2006)

ABT = BTAp  A−1BT = BTA−1
p  −S−1 =

(
BA−1BT

)−1
= Ap

(
BBT

)−1
. (5.32)

Herein, the matrix Ap represents a pressure convection–diffusion operator in analogy to the ve-
locity convection–diffusion operator A. Accordingly, the inverse Schur complement can be ap-
plied to a vector without the need to invert the velocity convection–diffusion system A. The
operator BBT is a discrete Laplace operator which can be inverted efficiently by using multi-
grid. This idea leads to the so-called pressure convection–diffusion preconditioner proposed and
analyzed in Elman et al. (2008, 2002a,b), Kay et al. (2002), Silvester et al. (2001). The pressure
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convection–diffuion preconditioner yields mesh-independent convergence rates and for decreas-
ing viscosity the number of iterations increases approximately with ν−1/3 for steady Navier–
Stokes problems. In Kay et al. (2002) this preconditioner is derived by considering the funda-
mental solution tensor for the Oseen operator. In Elman et al. (2002b), Silvester et al. (2001)
this preconditioner is motivated by assuming commutativity of differential operators (including
scalings by the inverse mass matrix)(

M−1A
) (

M−1BT
)
≈
(
M−1BT

) (
M−1

p Ap

)
, (5.33)

or equivalently

S = −BA−1BT ≈ −
(
BM−1BT

)
A−1
p Mp  −Ŝ

−1
= M−1

p Ap

(
BM−1BT

)−1
. (5.34)

The operator BM−1BT is known as compatible discretization of the Laplace operator compared
to the classical discretization L, see for example Cahouet and Chabard (1988). This operator is
impractical since each application of the operator involves three operator evaluations and since
a computation of the diagonal of this operator (required for example by multigrid smoothers) is
expensive and difficult to realize in a matrix-free context. However, the compatible discretization
of the Laplace operator can be replaced by the classical discretization L

−Ŝ
−1

= M−1
p ApL

−1 , (5.35)

where a spectrally equivalent approximation L̂
−1

that is cheap to compute is used in practice.
The operator Ap denotes the discretization of an unsteady convection–diffusion operator for the
pressure

γn0
∆tn

ph +∇ · (ulinph)− ν∆ph , (5.36)

where the diffusivity is ν and the advection velocity is the current solution ulin of the Newton
solver. DG discretizations of such a scalar transport equation have been derived in Chapter 3,
where the convective term can be used in both the conservative formulation and convective for-
mulation (the former being used as the default setup unless specified otherwise). On domain
boundaries, Dirichlet boundary conditions are prescribed on ΓN

h and Neumann boundary condi-
tions on ΓD

h . The inverse negative Laplace operator is the most expensive step of this precondi-
tioner, since only a forward application of the pressure convection–diffusion operator is needed
and due to the explicit character of the inverse mass matrix in DG.

Remark 5.4 The need to implement a scalar convection–diffusion operator for a scalar quan-
tity (in this case the pressure) is often seen as a disadvantage of this preconditioner since this
operator is initially not needed for the discretization of the Navier–Stokes equations. However,
the scalar convection–diffusion equation is often already implemented in computational fluid
dynamics solvers, so that this preconditioner does not require additional implementations.

Remark 5.5 The pressure convection–diffusion operator can also be used for problems that do
not involve convection. Inserting Ap =

γn0
∆tn

Mp + νL into equation (5.35) and assuming L̂
−1

=
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L−1 shows that the pressure convection–diffusion preconditioner is equivalent to the precondi-
tioner (5.31) for the generalized Stokes problem

−Ŝ
−1

= M−1
p ApL

−1 = M−1
p

(
γn0

∆tn
Mp + νL

)
L−1 = νM−1

p +
γn0

∆tn
L−1 . (5.37)

Remark 5.6 Another Schur-complement preconditioner that takes into account the convective
term is the BFBt preconditioner developed in Elman et al. (2006), Elman (1999). However, the
BFBt preconditioner is less robust than the pressure convection–diffusion preconditioner. The
dependence of the number of iterations on the viscosity is approximately ν−1/2 for a steady
Navier–Stokes problem, and this preconditioner does also not yield mesh-independent conver-
gence rates (iterations increase roughly with h−1/2 as mentioned in Kay et al. (2002)). For this
reason, this preconditioner is not discussed in detail here.

5.5 A unifying perspective
The above discussion of block-preconditioners for the coupled Navier–Stokes problem revealed
that the construction of efficient preconditioners for the coupled system can be broken down into
developing preconditioners for the velocity convection–diffusion system(

γn0
∆tn

M + Clin

(
u(k)
)

+ V

)
u = bu , (5.38)

and the pressure Poisson problem

Lp = bp . (5.39)

The same types of problem have to be solved for the dual splitting scheme, equations (2.221)
and (2.219), and for the pressure-correction scheme, equations (2.224) and (2.226). Hence, it
is a general observation that various types of incompressible Navier–Stokes solution strategies
require the same basic ingredients in terms of preconditioning in order to obtain a fast solver.

Remark 5.7 Other solution approaches which are not discussed here, such as the algebraic
splitting scheme used in Shahbazi et al. (2007) or the SIMPLE-based solution strategy used
in Klein et al. (2015, 2013) in combination with DG discretizations, contain essentially the same
ingredients. In this context, it is interesting to realize that algebraic approaches such as the
Schur-complement preconditioners discussed above, the algebraic splitting scheme in Shahbazi
et al. (2007), or the SIMPLE-based approach in Klein et al. (2015) make use of an analogy to
operator splitting techniques and resort to the classical discretization L of the Laplace operator
for ease of implementation or reasons of computational efficiency instead of the compatible ver-
sion BM−1BT that naturally arises from the algebraic system of equations. An interpretation of
the SIMPLE algorithm in terms of block factorizations or block preconditioners for the coupled
system is given in Elman et al. (2008, 2014).

In the context of stabilized DG discretizations for the incompressible Navier–Stokes equations
discussed in the present thesis, an additional velocity system needs to be solved consisting of the
mass matrix and additional divergence and continuity penalty terms

(M + ∆tnAD + ∆tnAC)u = bu , (5.40)
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see equation (2.217) for the coupled solution approach, equation (2.222) for the dual splitting
scheme, and equation (2.229) for the pressure-correction scheme. This system of equations is
symmetric positive-definite. Similar to the momentum equation (5.38), an efficient precondi-
tioner for this system of equations is the inverse mass matrix preconditioner. Results shown
in Fehn et al. (2018a) indicate that the inverse mass matrix preconditioner can yield robust it-
eration counts for equations (5.38) and (5.40) for turbulent flow examples in case that the time
step size is restricted according to the CFL condition. This is due to the scaling of the mass ma-
trix by the inverse of the time step size. For increasing spatial resolution, the time step size has
to be reduced according to equations (2.209) and (2.210), and the system of equations remains
well-conditioned. Alternative preconditioners for equation (5.40) are a point-Jacobi or block-
Jacobi preconditioner, or multigrid (with Chebyshev or Jacobi smoother) for faster and robust
convergence, similar to the preconditioners discussed in Section 5.4.4.

Remark 5.8 In general, the choice of optimal preconditioners depends on the problem as well
as the physical and discretization parameters. Unless the problem size is very small, a multigrid
preconditioner appears to be the most efficient option for the pressure Poisson problem with wide
consensus throughout the literature. For the velocity convection–diffusion system, a multigrid
preconditioner is likely the optimal choice for a steady Stokes problem, while the inverse mass
matrix might result in the most efficient solution algorithm in case of a high-Reynolds-number
problem with explicit convective term and the time step size restricted according to the CFL
condition. However, providing a general answer to the question of optimal preconditioners is
beyond the scope of this work. In particular, the question regarding the efficiency of explicit
versus implicit formulations of the convective term (and, related to this, the use of matrix-free
versus matrix-based preconditioners) appears to be open, see also Section 6.3. A point that can
be made in a very general context is that the metric to be optimized should be computational
costs and not iteration counts.

5.6 Numerical results for Navier–Stokes solvers

The implementation of block preconditioners discussed in Section 5.4 has been validated in de-
tail, and the main conclusions are briefly reported below. Since block-preconditioners are state-
of-the-art techniques that are well-documented in the literature, no detailed results for all the
different variants are shown here for reasons of brevity.

The block-triangular preconditioner typically results in a more efficient preconditioner com-
pared to the block-diagonal version since the number of iterations is reduced significantly, but the
costs to apply the preconditioner increase only marginally. Using a block-triangular factoriza-
tion typically reduces the number of iterations only moderately compared to the block-triangular
preconditioner, but a complete block-triangular factorization is significantly more expensive to
apply since the velocity block has to be inverted twice. Therefore, the block-triangular precon-
ditioner proves very efficient overall and often serves as a reasonable default choice. For the
steady Stokes equations, multigrid for the velocity block and an inverse mass matrix precondi-
tioner for the pressure block ensure robust convergence. For the unsteady Stokes equations, a
Cahouet–Chabard preconditioner for the pressure block ensures mesh-independent convergence
as well, in agreement with theory (Cahouet and Chabard 1988). For the incompressible Navier–
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Table 5.9: Taylor–Green vortex problem: iteration counts for coupled solution approach con-
sidering a wide range of refinement levels and polynomial degrees (adaptive time
stepping is used with a Courant number of Cr = 0.4 for all simulations).

(a) coupled system (momentum equation and
continuity equation)

l Polynomial degree k
2 3 5 7 11 15

0 − 3.0 3.0 3.5 4.5 4.5
1 2.0 3.9 4.0 4.2 4.8 5.4
2 4.4 5.3 5.7 5.8 6.4 7.4
3 5.5 5.7 5.8 6.1 7.3 8.7
4 5.9 5.8 6.1 7.0 8.9 10.2
5 5.9 6.0 4.5 8.5 9.4 11.3
6 6.4 7.0 8.2 8.3 − −
7 7.2 8.1 8.0 − − −
8 8.3 − − − − −

(b) penalty step (including divergence and continu-
ity penalty terms)

l Polynomial degree k
2 3 5 7 11 15

0 − 5.0 7.5 7.7 8.3 9.3
1 3.0 6.8 8.4 9.0 10.2 11.6
2 7.8 8.1 8.7 9.4 11.1 12.6
3 8.8 9.1 9.7 10.7 12.8 14.9
4 9.1 9.4 10.5 11.6 13.9 15.6
5 9.5 9.9 11.4 12.4 14.2 15.5
6 9.9 10.6 11.7 12.3 − −
7 10.0 11.0 11.3 − − −
8 9.9 − − − − −

Stokes equations involving the convective term, it was found that the pressure convection–
diffusion preconditioner ensures mesh-independent convergence by the example of the driven
cavity problem considering the steady Navier–Stokes equations. There is currently no block-
preconditioner available that also ensures robustness w.r.t. the viscosity. Note, however, that
flows become turbulent (and therefore inherently unsteady in nature) for small viscosities. Then,
the presence of a time derivative term in the equations improves conditioning and the above
block-preconditioners still enable an efficient iterative solution of low-viscosity, high-Reynolds-
number turbulent flows.

To demonstrate the robustness of preconditioners for the unsteady incompressible Navier–
Stokes equations, results are reported for the three-dimensional Taylor–Green vortex problem as
a representative of transitional and turbulent flows. Similar results as those shown here have al-
ready been published in Fehn et al. (2018a) for the dual splitting scheme. The mesh is a uniform
Cartesian grid on a periodic box where the coarse grid consists of only one element. An explicit
formulation of the convective term is used along with adaptive time stepping where the time
step sizes is calculated according to the CFL condition, and solver tolerances of εabs = 10−12

and εrel = 10−3 are used here. The parameters for this flow problem can be found in Sec-
tion 2.6.7.2. For the coupled solution approach, the inverse mass matrix preconditioner is used
for the velocity block, and the Cahouet–Chabard preconditioner for the pressure block with
a cph-MG V-cycle with Chebyshev(5) smoother and Chebyshev coarse-grid solver to approxi-
mately invert the Laplace operator in the Schur-complement preconditioner. The dual splitting
and pressure-correction schemes use the same multigrid preconditioner for the pressure Poisson
equation, and an inverse mass matrix preconditioner for the viscous step or momentum equa-
tion. For all solvers, the penalty step is preconditioned by the inverse mass matrix operator.
The saddle-point problem is solved by the GMRES method, while symmetric positive definite
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problems are solved by the CG algorithm. Results are summarized in Table 5.9 for the coupled
solution approach and in Table 5.10 for the dual splitting scheme. For the pressure-correction
scheme, iteration counts are almost identical to the dual splitting scheme and are therefore not
shown explicitly here. This behavior is expected given that both projection methods are algorith-
mically very similar.

Table 5.10: Taylor–Green vortex problem: iteration counts for dual splitting scheme considering
a wide range of refinement levels and polynomial degrees (adaptive time stepping is
used with a Courant number of Cr = 0.4 for all simulations).

(a) pressure step (Poisson equation)

l Polynomial degree k
2 3 5 7 11 15

0 − 2.0 3.0 2.9 3.8 4.5
1 0.4 2.9 3.8 3.6 4.1 4.5
2 2.8 3.5 3.4 3.9 4.3 5.4
3 3.0 3.2 3.8 4.2 4.9 6.3
4 3.0 3.1 4.1 4.6 5.9 8.6
5 2.8 3.3 4.5 5.3 7.4 11.1
6 2.8 3.6 5.2 6.7 − −
7 2.7 4.2 6.6 − − −
8 2.4 − − − − −

(b) viscous step (Helmholtz-like equation)

l Polynomial degree k
2 3 5 7 11 15

0 − 2.0 2.0 2.0 2.0 2.2
1 2.0 2.0 2.0 2.0 2.4 3.0
2 2.0 2.2 2.5 2.8 3.4 4.4
3 2.4 2.7 3.0 3.2 4.7 5.5
4 2.9 3.0 3.4 4.4 5.7 6.9
5 3.2 3.5 4.6 5.6 6.6 8.2
6 4.0 4.6 5.8 6.3 − −
7 5.1 6.0 6.4 − − −
8 6.6 − − − − −

(c) penalty step (including divergence and continu-
ity penalty terms)

l Polynomial degree k
2 3 5 7 11 15

0 − 5.0 7.5 7.7 8.3 9.4
1 3.0 6.8 8.4 8.8 9.8 11.5
2 7.8 8.3 8.9 9.3 11.1 12.4
3 9.0 9.2 9.7 10.6 12.6 14.2
4 9.3 9.6 10.6 11.6 13.2 14.3
5 9.7 10.2 11.4 12.0 13.4 14.9
6 10.1 10.6 11.6 12.0 − −
7 10.4 11.1 11.2 − − −
8 10.1 − − − − −

A slight increase in iteration counts is observed for increasing spatial resolution, i.e, increas-
ing mesh refinement level l and increasing polynomial degree k. Nevertheless, the number of
iterations is very small, which is remarkable given that a simple inverse mass matrix precondi-
tioner is used for the velocity system. Note that this is also related to the fact that the time step
size decreases for increasing spatial resolution according to the CFL condition. Since the mass
matrix term becomes more dominant with decreasing time step size (and decreasing viscosity),
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Table 5.11: Taylor–Green vortex problem: throuhgput per time step for polynomial degrees k =
2, 3, 5, 7, 11, 15. The time interval is 0 ≤ t ≤ T = 20. Adaptive time stepping with a
Courant number of Cr = 0.4 is used for all computations.

k throughput per time step [MDoF/s/core]
coupled solver dual splitting scheme pressure-correction scheme

2 0.43 . . . 0.77 0.75 . . . 1.26 0.74 . . . 1.27
3 0.45 . . . 0.61 0.69 . . . 0.92 0.66 . . . 0.90
5 0.40 . . . 0.44 0.60 . . . 0.70 0.61 . . . 0.72
7 0.36 . . . 0.36 0.53 . . . 0.58 0.56 . . . 0.61

11 0.20 . . . 0.20 0.32 . . . 0.36 0.34 . . . 0.36
15 0.11 . . . 0.12 0.18 . . . 0.20 0.19 . . . 0.22

this strategy allows robust preconditioning for high-Reynolds-number turbulent flows. Due to a
small number of iterations already for the simple inverse mass matrix preconditioner, multigrid
preconditioners for the velocity block involve a computational overhead that often does not pay
off in terms of overall computational costs despite a further decrease in iteration counts. For this
reason, the setup chosen here proved highly efficient for the class of scale-resolving turbulent
flow simulations that are of primary interest in the present work. For projection-type methods,
it is typically found that the computational costs are well-balanced between the different sub-
steps of the projection schemes, see also the results shown in Fehn et al. (2018a). In particular,
the pressure Poisson equation does not form a bottleneck due to the use of efficient matrix-free
multigrid methods. According to Section 5.3, this can be expected to also hold for complex ge-
ometries with larger coarse-grid problems due to the use of hybrid multigrid techniques. In terms
of wall time, the relative share of computational costs for evaluating the convective term is typi-
cally only a few percent despite using exact integration for the nonlinear convective term with an
increased number of quadrature points. Therefore, the convective term is negligible in terms of
overall computational costs for incompressible Navier–Stokes solvers that treat this term explic-
itly. In contrast, exact integration used for the convective term can be expected to significantly
deteriorate the overall performance for fully-implicit incompressible Navier–Stokes solvers, see
Figure 4.10.

Table 5.11 lists the average throughput per time step in degrees of freedom solved per second
of wall time and per core. The simulations have been performed on the hardware specified in
Table 4.2. Only those simulations from Tables 5.9 and 5.10 are listed for which the problem
size is large enough to saturate at least one compute node. The dual splitting scheme and the
pressure-correction scheme achieve almost the same throughput. Compared to the coupled so-
lution approach, the throughput is a factor of 1.5 to 1.8 larger for the projection-type methods,
which results in a reduction in absolute run time by the same factor. This result is very inter-
esting, given that such comparative studies are rarely available in the literature, especially not
for solvers using the same implementation routines such that a fair comparison is possible. Of
course, it should be noted that the observed speed-up of projection methods over the coupled so-
lution approach is problem dependent. However, one might intuitively expect that more complex
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problems, e.g. involving anisotropies or convective terms, result in a further performance advan-
tage of projection methods, since the effect converging most slowly affects the convergence rate
of the whole solver for the coupled solution approach, while it only affects a single sub-step in
case of projection methods. In terms of absolute numbers, a throughput of up to one million de-
grees of freedom solved per time step per core per second of wall time is achieved. In Arndt et al.
(2020b), a throughput of 1.05 MDoF/s/core per time step has been reported for the present DG
solver at degree k = 3 for an inviscid TGV simulation with 1011 degrees of freedom run on 150k
cores. The author is currently not aware of other high-order DG solvers for the incompressible
Navier–Stokes equations achieving this level of performance. Towards high polynomial degrees,
the throughput reduces continuously. On the one hand, this is due to a decrease in efficiency
of the matrix-free operator evaluation for large polynomial degrees in three space dimensions
according to Figure 4.10. On the other hand, this decrease in throughput is due to an increase in
iteration counts for increasing polynomial degrees according to Tables 5.9 and 5.10. Note that
this aspect is critical for the success of high-order discretizations applied in a setting where the
solution is under-resolved such as high-Reynolds-number turbulent flows and where high-order
discretizations do not show high-order accuracy. Chapter 6 investigates this aspect in detail.

5.7 Conclusion and outlook

This chapter has addressed the efficient iterative solution of algebraic systems of equations. The
main novelity is the development of hybrid multigrid techniques for high-order DG discretiza-
tions, i.e., multigrid coarsening strategies that exploit all levels of geometric, polynomial, and
algebraic coarsening with an additional transfer from discontinuous to continuous finite element
spaces. This chapter has discussed the relevant design choices in the context of hybrid multigrid
methods and has conducted performance comparisons for various multigrid methods and differ-
ent types of p-coarsening in the metric of computational costs. Optimal-complexity matrix-free
operator evaluation is exploited on all multigrid levels, smoothers, and transfer operators except
for the coarse-grid solver. The performance is further improved by the use of mixed-precision
multigrid. The results of these developments can be summarized as follows:

(i) A pl−1 = bpl/2c coarsening strategy that reduces the number of unknowns roughly in
factors of 2d from one level to the next performs better than other p-coarsening types that
reduce the polynomial degree by one until the lowest degree is reached, or directly from
high-order to the lowest polynomial degree within one level.

(ii) Performing the c-transfer from discontinuous to continuous space at the fine level is supe-
rior to an alternative c-transfer performed at the coarse level before the coarse-grid solver
is invoked. Moreover, this approach yields a multigrid algorithm with iteration counts that
are independent of the penalty factor of the interior penalty method, which is an important
result of the present thesis. The cph- and chp-multigrid methods are identified as most
promising (and could also be interesting in a full multigrid context).

(iii) By the development of hybrid multigrid methods that exploit all possibilities of h-, p-,
and c-coarsening, the bottleneck of expensive coarse-grid solvers, which would otherwise
dominate overall computational costs, is significantly relaxed. An extension of the hybrid
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multigrid methods proposed here towards hp-adaptivity (preferably h-adaptivity) is also
expected to improve overall efficiency of the solver by making optimal use of degrees of
freedom.

This chapter has also discussed preconditioning strategies for different incompressible Navier–
Stokes solvers, including block preconditioners for saddle-point problems that are required in
case of a coupled solution approach. The main ingredients for all types of Navier–Stokes solvers
are preconditioners for a reaction–(convection–)diffusion problem for the velocity unknowns,
and a preconditioner for the pressure Poisson operator. Hence, the incompressible Navier–Stokes
solvers can make use of the same hybrid multigrid techniques developed in this chapter. The fact
that the inverse mass matrix can be applied very efficiently in a matrix-free way renders this
preconditioner highly efficient in the context of high-Reynolds-number turbulent flow problems.
The effectiveness of these preconditioning techniques has been demonstrated by the example
of the three-dimensional Taylor–Green vortex problem. A direct comparison of coupled and
splitting-type Navier–Stokes solvers gives insights into their relative performance and the in-
crease in costs due to the solution of a saddle-point problem compared to projection solvers.
Such numbers are often difficult to extract from the literature since the use of different imple-
mentation frameworks typically excludes a one-to-one comparison.

For the solution of fully-implicit problems involving non-symmetric convective terms, matrix-
based block-Jacobi or block-Gauss–Seidel techniques are currently the state-of-the-art. As briefly
described in this chapter, these techniques can be used as preconditioners or as smoothers in a
multigrid context. A partially matrix-based implementation of these preconditioners as well as a
matrix-free implementation with an iterative solution of the local block-Jacobi problems as first
presented in Bastian et al. (2019) has been realized in the course of this thesis, but using a vec-
torized implementation that solves the local problems simultaneously for several elements. Parts
of this implementation are currently restricted to the serial case. Furthermore, only a Jacobi-like
iteration over the elements of the mesh is currently possible, while Gauss–Seidel-type itera-
tion strategies are currently not supported by the matrix-free infrastructure (and would require
a special treatment such as multiple colors in parallel). The partially matrix-based variant can
be expected to be efficient in two space dimensions, but to become prohibitively expensive in
three space dimensions for high polynomial degrees. For the fully matrix-free variant, the de-
velopment of efficient matrix-free preconditioners for the elementwise block-Jacobi problems
appears to be crucial, where the inverse mass matrix is currently mainly used as preconditioner.
Here, techniques based on the fast diagonalization method could prove efficient, even though
this field is scarcely explored so far in the field of DG methods and for general differential op-
erators, see also Pazner and Persson (2018). According to the author’s opinion, fully matrix-free
block-Jacobi preconditioners are a key ingredient to render fully implicit solvers computationally
efficient for high-order methods in three space dimensions. One could also imagine matrix-based
block-Jacobi preconditioners with some sparsification, see for example the tri-diagonal precon-
ditioner used for the iterative solution of local block-Jacobi problems in Bastian et al. (2019).
Hence, the highest potential for further performance improvements is expected to lie in the de-
velopment of fast multigrid smoothers that are robust for anisotropic problems (stretched meshes
such as boundary layers in turbulent flows or variable coefficients) and problems involving con-
vection, and that can be realized in an entirely matrix-free way.
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This chapter addresses the practically relevant aspect of simulating application problems effi-
ciently. Generally speaking, the goal is to achieve a certain level of accuracy with a minimal
amount of computational costs, e.g., in a minimum of time. Likewise, a numerical method can
be considered more efficient if it produces more accurate results for a given amount of compu-
tational costs. This leads to the following generic definition of efficiency (Wang et al. 2013)

efficiency =
accuracy

computational costs
. (6.1)

The metric accuracy is typically a problem-specific quantity of interest, such as the lift or drag
coefficient, the reattachment length, or the kinetic energy dissipation rate in the context of fluid
dynamical problems considered here. A definition of computational costs is more involved. Con-
sider the example that a simulation run on a workstation produces the same level of accuracy
within the same amount of time as another numerical method simulated on a compute cluster or
even supercomputer. Clearly, the former method is more efficient since it requires significantly
less resources. From this perspective, it is obvious that computational costs must also include
the amount of utilized resources in order to obtain an objective cost metric in a general setting.
Various definitions are conceivable and will be discussed in more detail in this chapter.

Investigations of type error-vs-costs are highly interdisciplinary and include various aspects,
from properties related to the spatial discretization scheme, the time integration strategy, the so-
lution of nonlinear and linear systems of equations, preconditioners, the type of algorithms used
to implement these methods in relation to the hardware under consideration, the parallelization
strategy, to aspects of parallel scalability. Each of these aspects allows different design choices
with different characteristics in terms of robustness, generality, and efficiency. What renders this
topic challenging is the fact that a numerical approach optimal w.r.t. the metric (6.1) can not be
found by optimizing each category and its parameters separately with black-box interfaces to
other aspects. Instead, these aspects are strongly inter-connected with changes made regarding
one aspect affecting others. This chapter presents a methodology to analyze these aspects sys-
tematically. Due to the complexities mentioned above, this work does not reclaim completeness,
but instead proposes one particular approach, however, with the goal to motivate this approach
and its design choices with a holistic view on various aspects. Parts of this chapter are based
on work that has already been published in Fehn et al. (2018a). Results of a parallel scalability
study shown in this chapter have already been published in Arndt et al. (2020b).

This chapter assembles many ingredients from previous chapters. The accuracy and robustness
of high-order DG discretizations (Chapter 2), optimal-complexity linear solvers and precondi-
tioners (Chapter 5), and the fast matrix-free evaluation of discretized operators (Chapter 4) form
the main building blocks determining overall efficiency, as discussed at length in this chapter.
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Section 6.1 gives an introduction with a definition of important metrics, Section 6.2 discusses
efficiency models, and Section 6.3 presents numerical results in terms of the error-vs-cost metric
for different benchmark problems in computational fluid dynamics. A conclusion and outlook is
given in Section 6.4.

6.1 Introduction
Due to the interdisciplinary nature of the topics discussed here (and CFD in general as empha-
sized in (Löhner 2008, Chapter 1)), a critical assessment of the state-of-the-art appears to be
imperative. Although computational science and engineering is an established discipline, com-
putational efficiency is a topic that is often treated shabbily in the literature on high-order dis-
cretization methods. Benchmarking can be understood as putting errors and computational costs
of a numerical approach into relation. The present work wants to foster a view that considers
benchmarking and computational efficiency a necessary ingredient in order to make progress,
and therefore puts a main emphasis onto these topics. In this context, great efforts have been
made in the comparative study by Wang et al. (2013) in setting standards of how to evaluate the
efficiency of high-order methods in an objective manner. This section highlights the need for
computationally efficient flow solvers by recalling well-known estimates describing the compu-
tational complexity as a function of the Reynolds number. Then, the state-of-the-art is discussed
in terms of the efficiency of high-order discretizations, the relevance of parallel scalability, and
suitable metrics to measure computational costs.

6.1.1 Influence of Reynolds number on computational complexity
As a background for subsequent discussions, this section briefly summarizes and discusses the
usual estimates of how computational complexity grows with the Reynolds number for direct nu-
merical simulations of turbulent flows, see for example Ferziger and Peric (2008), Pope (2001).
A direct numerical simulation of a turbulent flow resolves all scales down to the Kolmogorov
scale η = (ν3/ε)

1/4, where the dissipation rate is estimated as ε ∼ U3/L with a characteristic
velocity U describing the large scales of the flow and an integral length scale L. Considering a
numerical method of fixed polynomial degree k of the shape functions, the number of elements
required to resolve the flow increases with the Reynolds number as follows

Nel ∼
(
L

h

)3

∼
(
L

η

)3

∼
(
U L

ν

)(3/4)·3

= Re
9/4
L . (6.2)

Assuming that a fixed number of eddy turnover times or flow-through times L/U need to be
simulated and that the time step size is restricted according to the CFL condition, ∆t ∼ h/U ,
the total number of time steps increases with the Reynolds number as follows

N∆t ∼
L/U

∆t
∼ L

h
∼ L

η
∼ Re

3/4
L . (6.3)

From these estimates it is clear that computational complexity or costs increase with the Reynolds
number, independently of how a definition of computational costs looks like exactly. Put differ-
ently, on a given hardware, the maximum Reynolds number for which a scale-resolving simu-
lation of a turbulent flow can be computed is limited for different reasons. It is the content of
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subsequent sections to discuss these limits. Note that estimates leading to other exponents for the
Reynolds number, e.g. for boundary layer flows, are available as well, see for example Löhner
(2008, Section 4.6) and Jiménez (2003).

6.1.2 Efficiency of high-order discretizations
A fundamental question accompanying the development of high-order discretization schemes is
whether the use of high-order methods pays off in terms of overall computational efficiency. In
other words, the question is which combination of the discretization parameters h and k yields
the best efficiency. The term “efficiency” is used here in the sense of equation (6.1) with a vague
definition of computational costs, given that the works cited in this section use different cost
metrics. Then, this question can be addressed by theoretical/analytical investigations and by
numerical/experimental investigations:

• theoretical approach: Both computational costs and the discretization error are estimated
by analytical models as a function of the parameters h, k, d. Inserting both relations into
each other yields the error-vs-cost relation with the polynomial degree k as the main pa-
rameter, providing insight which polynomial degree is most efficient depending on the
other parameters.

• numerical approach: A specific PDE model problem is considered and solved numerically
for a specific geometry and boundary conditions for a set of parameters h, k, d. Measuring
the computational costs and the discretization error (requires analytical solution or other
accurate reference data) allows to identify optimal discretization parameters, that might
then be generalized to other problems, e.g., flow configurations with similar characteristics
in terms of the Reynolds number.

Examples of the theoretical approach can be found in Huerta et al. (2013), Löhner (2011,
2013). These works assume optimal convergence behavior according to ε ∼ hk+1 and naive
matrix-based implementations of high-order continuous or discontinuous Galerkin discretiza-
tions, where the number of non-zeros of the matrix, O((k + 1)2d), or the number of floating
point operations,O((k+1)2d) for the matrix-vector product andO((k+1)3d) orO((k+1)2d+1)
for assembly, are used as cost metric. The works by Löhner (2011, 2013) conclude that lin-
ear elements are most efficient for a level of accuracy that is of engineering interest (error of
approximately 1%) and claim an efficiency advantage of several orders of magnitude for finite
difference schemes (with matrix-free implementation) over the quadrature-based finite element
discretizations with matrix-based implementation. The work by Huerta et al. (2013) concludes
that methods exploiting static condensation (including the HDG approach) are superior com-
pared to methods without static condensation, and that high-order methods may be more ef-
ficient than linear elements if this technique is exploited. In both cases, conclusions drawn in
these works should be taken with some care due to the assumption of matrix-based implemen-
tations, for example: (i) another study by Kronbichler and Allalen (2018) has demonstrated that
efficient implementations of high-order discontinuous Galerkin discretizations are indeed able
to approach finite-difference performance where the performance penalty is a small integer fac-
tor rather than orders of magnitude as suspected in Löhner (2013); (ii) another study by Kro-
nbichler and Wall (2018) has shown that high-order (dis-)continuous Galerkin discretizations
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Table 6.1: Selected publications from the literature numerically addressing the question of op-
timal discretization parameters for high-order discretization methods, with a charac-
terization in terms of smooth versus non-smooth solutions and matrix-based versus
matrix-free implementations.

smooth solution,
asymptotic regime

non-smooth solution,
pre-asymptotic regime

matrix-based
implementation

Fidkowski and Darmofal (2004) Vos et al. (2010)
Nastase and Mavriplis (2006a,b)
Vos et al. (2010)
Chang et al. (2018)

matrix-free
implementation

Fischer et al. (1988) Kronbichler and Wall (2018)
Kronbichler and Wall (2018) Vermeire et al. (2017)
Vermeire et al. (2017) Fehn et al. (2018a, 2019c)
Rojas et al. (2021)
Krank et al. (2017)
Fehn et al. (2018a)

with matrix-free implementation of optimal complexity (using the sum-factorization technique
as discussed in Chapter 4) outperform matrix-based approaches based on the static condensation
idea (including HDG) significantly in three space dimensions on modern computer hardware.
Other works by Fehn et al. (2018a), Fidkowski and Darmofal (2004) also briefly discuss the
efficiency of high-order discretizations from a theoretical perspective in terms of error and cost
estimates, mainly with a focus on the asymptotic behavior of high-order methods.

The above discussion reveals that inappropriate assumptions do not allow to identify optimal
discretizations. The theoretical approach has severe limitations, most importantly the definition
of computational costs, assumptions about the implementation strategy, and the assumption of
an optimal convergence behavior of ε ∼ hk+1. The latter behavior can not be observed for most
practical problems, calling for a numerical investigation of this question. Table 6.1 lists con-
tributions from the literature evaluating the efficiency of high-order discretization methods in
a (rigorous) error-versus-cost metric. Four categories are distinguished, depending on whether
a matrix-based or matrix-free implementation is used and whether smooth or non-smooth prob-
lems are considered. Instead of considering smoothness of the solution in an absolute sense,
characterizing the resolution of the discretization scheme as operating in the regime of asymp-
totic or pre-asymtotic convergence leads to a similar classification. By definition, LES and DNS
of turbulent flows can be categorized as operating in the pre-asymptotic regime. The comparative
study by Wang et al. (2013) covers different panels, but the missing categorization in terms of
implementation strategies and algorithms renders an interpretation of the results difficult.

For “smooth” solutions, the picture appears to be rather clear in the literature and high-order
methods have a clear advantage in particular if a solution of high-accuracy is required, see also
the conclusions drawn in Wang et al. (2013). This is even the case if matrix-based implemen-
tations of sub-optimal complexity w.r.t. the polynomial degree k are considered. This holds for
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simple Poisson, Helmholtz, or convection–diffusion model problems (Chang et al. 2018, Fischer
et al. 1988, Kronbichler and Wall 2018, Vos et al. 2010), but also for Euler and Navier–Stokes
problems with smooth, laminar solutions (Fehn et al. 2018a, Fidkowski and Darmofal 2004,
Krank et al. 2017, Nastase and Mavriplis 2006a,b, Rojas et al. 2021, Vermeire et al. 2017). This
behavior is also confirmed by theoretical estimates (Huerta et al. 2013, Löhner 2011, 2013) and
can be explained as follows. The exponential convergence ε ∼ hk+1 causes the error to decrease
faster for increasing k than the computational costs increase with k, since the costs increase only
algebraically with k even if the implementation has sub-optimal complexity like O((k + 1)2d)
or worse.

If the solution is non-smooth (or the discretization operates in the pre-asymptotic regime)
and a matrix-based implementation is used, it appears to be difficult to achieve a performance
advantage by the use of high-order discretizations, since high-order methods are only as accurate
as or slightly more accurate than low-order discretizations1 in this regime, but significantly more
expensive per degree of freedom due to a matrix-based implementation. The rareness of literature
demonstrating the opposite might indicate an intrinsic difficulty. As argued in Brown (2010), for
high-order methods to be competitive in the pre-asymptotic regime, they must have comparable
cost per DoF as low-order methods, which can not be realized by matrix-based implementations.
The example with singularity considered in Vos et al. (2010) appears to be an exception and
favors a high polynomial degree of k ≈ 5 for a matrix-based implementation (using a direct
solver), but is a two-dimensional problem for which the increased complexity of matrix-based
methods is typically less severe. The results shown in Kronbichler and Wall (2018) for a problem
with singularity in three space dimensions confirm that the use of optimal-complexity matrix-
free implementations is essential in order to render high-order discretizations more efficient,
where optimal efficiency is achieved around k = 5.

While many works consider simple Poisson or Helmholtz-like model problems with smooth
analytical solution, the present work is particularly interested in application problems in com-
putational fluid dynamics and the simulation of turbulent flow problems. In this context, the
most interesting regime is therefore the lower right panel in Table 6.1. On the one hand, this
is due to the fact that problems operating in the pre-asymptotic regime such as under-resolved
turbulent flows or flows involving singularities and shocks have a high practical relevance in
computational fluid dynamics. The accuracy of high-order DG discretizations per degree of
freedom is for example investigated in Beck et al. (2014), Gassner and Beck (2013) for the
compressible Navier–Stokes equations, and in Fehn et al. (2017, 2018b, 2019a) for the incom-
pressible Navier–Stokes equations, where a focus is put on under-resolved turbulent flows (see
Section 2.4 for further references to the literature). These results motivate to investigate the effi-
ciency of high-order methods in more detail in terms of error-vs-costs, see for example Vermeire
et al. (2017) and Fehn et al. (2019c) for high-order flux-reconstruction or DG discretizations of
the compressible Navier–Stokes equations, and Fehn et al. (2018a) for DG discretizations of the
incompressible Navier–Stokes equations. On the other hand, the lower right panel in Table 6.1
is so important because fast matrix-free implementations of high-order methods can be consid-
ered a necessary ingredient to achieve an efficiency advantage for high-order discretizations. By
the example of the three-dimensional viscous Taylor–Green vortex problem at Re = 1600, the

1A common argument is that high-order discretizations have smaller error constants and better dispersive proper-
ties that might render the scheme more accurate in the absence of optimal rates of convergence.
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works by Fehn et al. (2018a, 2019c) highlight the importance of using iterative solvers, precon-
ditioners, and matrix-free implementation techniques of optimal computational complexity2 in
order to render high-order methods more efficient for such turbulent flow problems. In the field
of high-order DG discretizations of the incompressible Navier–Stokes equations (which is the
primary target of the present thesis), it has been difficult to find works of other authors rigor-
ously quantifying efficiency in an error-vs-costs metric. The comparative study by Wang et al.
(2013) mainly considers compressible Navier–Stokes solvers based on high-order DG methods.
A shortcoming of the study by Wang et al. (2013) is that it did not identify the aspect of matrix-
based versus matrix-free implementations as a main performance-relevant factor for high-order
methods (only the high memory requirements of implicit time stepping schemes are mentioned
vaguely). This is exactly where the present thesis contributes to the state-of-the-art.

Remark 6.1 Section 6.1.1 only considers h as discretization parameter instead of the pair h, k.
The underlying assumption is that LES and DNS are operating in the pre-asymptotic regime.
High-order methods can not be expected to converge with optimal rates of convergence in such
a setting. Instead, the use of high-order methods of degree k is advantageous in the sense of
reducing the number of unknowns required to reach a certain level of accuracy by a constant
factor, i.e., how many points per wavelength does a disretization scheme of degree k require to
obtain an acceptable accuracy. This aspect is discussed in more detail in Section 6.2.4.2. Then,
the relation h ∼ η still holds but with a proportionality constant depending on the polynomial
degree k (and a similar proportionality constant accounting for the polynomial degree in the
CFL condition), so that the estimates from Section 6.1.1 appear to be appropriate also for the
high-order case.

6.1.3 Parallel scalability
Parallel scalability describes the property that a problem of fixed size can be solved faster
by using more processors (strong scaling), or that larger problems can be solved within the
same amount of time when increasing the number of processors proportionally to the problem
size (weak scaling). Assuming optimal scalability, a program that runs over a wall-clock time
of twall,1 on P = 1 processor will need a wall-clock time of twall,P = twall,1/P when run on P
processors (strictly speaking, processor is here a node or multiple nodes in case of classical CPU
compute clusters and not a single core due to the heterogeneity of modern multicore CPUs with
respect to memory access). However, this parallel wall-time is typically not reached due to com-
munication overhead or non parallelizable work. Hence, it makes sense to define the parallel
speedup S and parallel efficiency η

S =
twall,1

twall,P

, η =
twall,1

twall,P · P
. (6.4)

The parallel efficiency is typically η ≤ 1, but might also be larger than one due to cache effects,
see Section 4.5, e.g., the program runs in a saturated regime for P = 1 and reaches the regime
where data fits into caches for large P . The reader is referred to (Hager and Wellein 2010,
Chapter 5) for more detailed models on parallel scalability.

2Optimal computational complexity is used here in the sense of using algorithms and implementations minimizing
time-to-solution.
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Parallel scalability and in particular parallel speedup (strong scaling) should not be misunder-
stood as a stand-alone metric, as has been the case in the early times of the Gordon Bell prize
where the first year’s prize was awarded to the group demonstrating the highest speedup (Bell
et al. 2017), and still is the case nowadays to some extent, see for example the ACM Gordon Bell
prize winner paper by Rudi et al. (2015), from which it is difficult to extract the code’s node-level
performance. Instead, parallel scalability should be inherently linked to the time-to-solution met-
ric as the metric that reports on the true speed of an implementation, see for example the works
by Fischer (2015), Offermans et al. (2016). As emphasized in Hager and Wellein (2010), parallel
scalability should be addressed once the single-core or node-level performance has been suffi-
ciently optimized (time-to-solution). Despite efforts made to establish standards in the field of
scientific computing (Bailey 2009), it is still common practice to only show normalized speedup
factors against a baseline simulation run on a smaller number of cores, see for example the re-
cent works by Altmann et al. (2013), Cantwell et al. (2015), Hindenlang et al. (2012), Loppi
et al. (2018), Witherden et al. (2014), Yakovlev et al. (2016) in the field of high-order continuous
and discontinuous Galerkin discretization methods, the works by Heinecke et al. (2014), Rudi
et al. (2015) with a focus on HPC, and other contributions by Houba et al. (2019). Normalizing
the computation time against a baseline is problematic since this creates wrong incentives in the
sense that using a slower code (a code with worse serial performance) yields “better” speed-up
factors. For this reason, practitioners remind the CFD community of what the actual interest is,
namely completing the simulation of unsteady turbulent flow problems with millions of time
steps in a reasonable amount of time (Löhner 2019, Löhner et al. 2020). The work by Löhner
(2019) describes the circumstance that LES of industrial problems often requires wall-times of
weeks rather than hours no matter how many processors are used as “LES crisis” (and the fact
that this circumstance has not improved dramatically over the last two decades as compared to
other progress made in computer hardware). This circumstance is attributed to the large number
of time steps (typically millions of time steps) required to gather turbulent statistics and it is
argued that the strong-scaling limit (the minimal wall-time per time step for an arbitrarly large
number of processors) is the relevant metric to overcome the LES crisis. The term “LES crisis”
considers equation (6.3) as the limiting factor, thereby restricting the Reynolds number for which
turbulent flow simulations are affordable. A practical example is given in the work by Löhner
et al. (2020) which targets overnight LES of external car aerodynamics. The work by Müller
et al. (2019) addressing PDE solvers for numerical weather prediction also reflects this attitude
in the sense of how many days of forecast are possible within one wall-clock day.

Following this time-to-solution credo, parallel scalability in the field of high-order discretiza-
tion methods has been investigated on the level of matrix-free operator evaluation in Kronbich-
ler and Kormann (2012), Müthing et al. (2017), on the application level of geometric multigrid
solvers with matrix-free smoothers on uniformly refined meshes in Arndt et al. (2020b), Gho-
lami et al. (2016), Kronbichler and Wall (2018), and on adaptively refined meshes in Clevenger
et al. (2020). Parallel scalability for incompressible Navier–Stokes solvers is shown in Arndt
et al. (2020b), Krank et al. (2017), Offermans et al. (2016, 2019). A domain-decomposition-
based evaluation of discretized PDE operators involving communication with nearest neighbors
can be considered to be a scalable algorithm, where the present work essentially builds upon
parallelization and implementation concepts developed in Bangerth et al. (2012). The reason for
this scalability is that in a weak scaling setup the computation-to-communication ratio (volume-
to-surface ratio) stays constant. The minimum wall-time in the strong-scaling limit is typically
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workload

strong-scaling limit

twall,max

N∆t

wall time per time step twall
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hardware

constrained case

Figure 6.1: Illustration of various limits for PDE solvers in terms of workload per core and wall-
time per time step. The impact of main hardware and software quantities is also
highlighted. The red scaling curve corresponds to the unconstrained case.

dominated by internode latency for this type of operation (Fischer 2015), for moderately large
polynomial degrees. Strong scalability of such PDE solvers is not described well by Amdahl’s
law with a certain (constant) proportion of non-parallelizable work, since the non-parallelizable
part of such a PDE solver depends on the problem size. The share of non-parallelizable work
decreases for increasing problem size and allows scalability to an increasing number of cores
if the problem becomes larger. While explicit time stepping solvers only require this form of
nearest-neighbor communication, scalability for implicit solvers is potentially limited by global
communications (all-reduce) of complexity O(logP ) involved in Krylov solvers and multigrid
preconditioners. However, theoretical models and performance extrapolations to exa-scale ma-
chines (Fischer 2015, Ibeid et al. 2020) are optimistic in the sense that this effect is not dominat-
ing for the largest supercomputers currently available and also for next-generation’s exa-scale
supercomputers.

There are also works that put a main emphasis onto the other end of strong scalability, namely
the maximum problem size that can be solved on a given supercomputer, see for example the
work by Bauer et al. (2020) dealing with problems of earth mantle convection. This metric favors
algorithms optimized for memory efficiency. From such a perspective, the maximum Reynolds
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number would be limited by equation (6.2). The question whether this memory limit is prac-
tically relevant depends on whether the large number of time steps required by the physical
problem and the application at hand, see equation (6.3), can be simulated for the largest pos-
sible problem sizes in such a setting, since the high workload per core will imply a very large
wall-time already for a single time step. These different points of view are summarized visually
in Figure 6.1. In terms of the workload per core, one can distinguish between the strong-scaling
limit and the memory limit (maximum problem size). The relevant limit for a PDE solver is then
determined by the maximum wall-time (e.g. the wall-time limit on a cluster or supercomputer)
divided by the number of time steps N∆t depending on the application (PDE model, resolution,
Reynolds number, etc.). In this context, three cases can be distinguished: The first one is the
unconstrained case implicitly assumed in the work by Bauer et al. (2020), where the underlying
assumption is that one time step can be solved fast enough to not pose a constraint in terms of
overall runtime of the simulation. The limiting resource is then the maximum problem size fit-
ting into memory. The other limit is the constrained case, sententiously described as “LES crisis”
in Löhner (2019). The underlying assumption of this limit is that the number of time steps re-
quired by the application is too large to complete the simulation with a desired spatial resolution
within the wall-time limit. Apart from optimizing the code, the only solution to this constraint
is to solve a smaller problem (with fewer time steps). As problem size and number of time steps
increase monotonously with the Reynolds number for scale-resolving simulations according to
equations (6.2) and (6.3), this puts an upper bound on the maximum Reynolds number that can
be simulated. In between these two cases it the balanced case, i.e., the workload per core (the
number of processors for a given problem size) is chosen such that the desired wall-time limit is
reached, without constraints in terms of strong scalability or the memory capacity.

Remark 6.2 Note that the assessment of whether the memory limit is practically relevant (un-
constrained case in Figure 6.1) essentially depends on the ratio of memory size to memory band-
width (or peak performance) of current supercomputers, which is difficult to answer once and
for all. However, the work by Bauer et al. (2020), which is pioneering in exploring the largest
possible problem sizes, appears to be primarily oriented to stationary problems given that the
solution of one system of equations requires a wall-clock time of more than 700 s for the largest
problem size of 1.1 · 1013 unknowns, which in turn would allow to simulate only around 100 time
steps in wall-clock times of a day. In contrast, unsteady simulations of a simplified earth mantle
convection model run in Gmeiner et al. (2015a) already require O(104) time steps for a much
smaller problem size of less than 1010 unknowns. This indicates that the problem size fitting
into memory is not the limiting resource for time-dependent problems, since the memory band-
width (or peak performance) of the hardware is too low to complete such unsteady simulations
in reasonable wall-times. As a consequence, the problem size appears to be constrained more
severely on this hardware by the required number of time steps large enough for the simulation
to make sufficient progress in physical time (within a given wall-time limit).

Remark 6.3 Understanding high-performance computing as the iterative process of removing
the most pressing bottlenecks, it is clear that one must first understand the limits of a PDE solver
and its intended range of applications prior to optimizing the algorithm and implementation. The
use of matrix-free methods as opposed to matrix-based methods is an important measure to relax
the memory limit and to allow large problem sizes (Bauer et al. 2020). The present work demon-
strates the range of problem sizes in form of a strong-scaling study, but does not explicitly address
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the memory limit in terms of improved, memory-lean algorithms, for reasons indicating a limited
practical relevance on current supercomputers for the type of problems (scale-resolving simula-
tions of unsteady flow problems) and the type of matrix-free implementation addressed here, see
also Remark 6.2. An observation typically made for application runs is that the code operates
either in the balanced regime or the strong-scaling regime. The quantities to look at during code
optimization are then node-level performance and strong scalability, see for example Fischer
et al. (2020b). To give an example, the largest problem solved in this work (Chapter 7) with more
than 1011 unknowns and 105 time steps for the inviscid Taylor–Green problem (which shares the
characteristics of homogeneous isotropic turbulence) operates in the balanced regime, i.e., the
number of processors has been selected to complete the simulation in an acceptable wall-time.
On the one hand, larger problem sizes exhausting the supercomputer’s memory would have ex-
ceeded wall-time limits of several weeks, and on the other hand, the number of cores available
was too small to reach the strong-scaling limit for the simulated maximum problem size. For very
high polynomial degrees such as k = 15, the minimum wall-time per time step is typically found
to be a pressing issue for the considered matrix-free implementation. The transport velocity in
other canonical turbulent flows (free stream jets, channel flows, boundary layer flows) in stream-
wise direction causes significantly smaller time step sizes according to the CFL condition (and
more time steps are required in case of long time intervals for statistical averaging), such that
the point of operation can be expected to be shifted towards the strong-scaling limit compared
to the case of homogeneous isotropic turbulence. For these reasons, the present work focuses on
aspects of node-level performance and strong scalability.

Remark 6.4 The new ARM-based A64FX chip by Fujitsu (32 GB on-chip memory with a band-
width of 1 TB/s) exhibits a significantly higher memory bandwidth relative to the memory capac-
ity than the Intel Skylake architecture listed in Table 4.2. Future hardware might be characterized
by on-chip memory providing increased bandwidth (high bandwidth memory) but reduced ca-
pacity. For future HPC systems developing in this direction, it can be expected that the memory
limit in Figure 6.1 moves closer to the strong-scaling limit.

In order to highlight that parallel scalability should be inherently linked to time-to-solution,
this chapter addresses the topic of parallel scalability (or the problem termed “LES crisis”) in the
form of the following question: What is the largest problem size for which the three-dimensional
viscous Taylor–Green benchmark problem can be solved in real-time? Likewise, what is the min-
imum wall-time in which grid-converged results can be obtained for this Taylor–Green vortex
problem?

6.1.4 Definitions of computational costs
Various definitions of “computational costs” are conceivable. For CPU hardware, the metric
computational costs is typically defined as the product of the wall-clock time times the number
of cores utilized, i.e.,

computational costs c = wall-time twall × cores Ncores [CPUh] , (6.5)

which is the typical currency of supercomputing facilities. For GPU hardware, “core” has a dif-
ferent meaning and node hours might be more approriate for heterogeneous architectures. The
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Figure 6.2: Illustration of computational costs c = twall · Ncores (left) and wall-clock time twall

(right) as a function of the number of processors P . Optimal scalability is assumed
until the strong-scaling limit (indicated by ∗) is reached, and twall = t∗wall for P ≥ P ∗.

main advantage of this metric is that the amount of computational costs required by a simula-
tion is independent of the number of processors used to simulate the problem as long as one is
operating away from the strong-scaling limit. This is somewhat orthogonal to defining computa-
tional costs as the wall-clock time (time-to-solution metric), which scales inversely proportional
to the number of processors away from the strong-scaling limit and becomes minimal in the
strong-scaling limit. This is illustrated in Figure 6.2. The suitability of both metrics depends on
the constraints that render a simulation “expensive”. CPUh as cost metric is appropriate if aqui-
sition and operating costs dominate, which is the typical use case for research groups applying
for a certain amount of compute resources on a supercomputer. Furthermore, the CPUh met-
ric assumes that computational resources are limited and need to be distributed between users.
As argued in Löhner (2019), in an industrial context the amount of time after which simulation
results are available (with “overnight” as the relevant time scale) might be more critical. Compa-
nies might be willing to invest into large compute clusters to achieve this goal, since this might
be less expensive than a delay in production or exceeding project deadlines. The time-to-solution
metric therefore assumes infinite compute resources. The metric CPUh also has the advantage
that it is a suitable metric for simulations performed on the node-level, allowing to compare the
computational efficiency of different codes that are not optimized for parallel scalability. The
present work mainly uses CPUh as cost metric, but results are also discussed for the alternative
wall-time metric in order to highlight the impact of the chosen cost metric on the decision of
finding the optimal polynomial degree that provides the best overall efficiency.

The comparative study by Wang et al. (2013) normalizes computational costs (in CPUh as
defined above) in order to obtain non-dimensional work units. The TauBench code is run on
the same hardware for a well-defined problem size and number of time steps, which defines the
cost of one work unit. This procedure has both advantages and disadvantages. On the one hand,
hardware progress is extracted from the cost metric (under the assumption that the TauBench
reference code and the code of interest profit similarly from progress made in hardware). If re-
duced costs can be reported in terms of work units, this indicates that improvements have been
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made in numerical algorithms rather than faster hardware. On the other hand, one might consider
hardware progress as one factor among others enabling more efficient simulations of CFD prob-
lems and, therefore, waive a normalization of costs. Further, the dependency on another software
required to define one work unit appears impractical. Instead, the same effect is achieved if the
memory bandwidth of the hardware (the accumulated bandwidth of all nodes occupied by a sim-
ulation) was used for normalization of costs, a quantity that is easily accessible for both CPU and
GPU hardware. This leads to a cost metric of unit Byte, the amount of data that can be transferred
to/from main memory during the time a simulation has occupied a certain amount of resources.
This is in line with the observation that memory-bandwidth is often the main bottleneck for PDE
solvers on current hardware instead of arithmetic throughput (Flops), see also the discussion in
Chapter 4.

A disadvantage of the metric CPUh is that comparisons to other hardware such as graphics
processing units is difficult. For this purpose, energy consumption appears to be a more appropri-
ate metric to allow a fair comparison between CPU and GPU implementations. Since the hetero-
geneity in hardware can be expected to grow in the future and Flops can be expected to become
a less relevant metric on future hardware for many applications in scientific computing (Ibeid
et al. 2020), energy consumption could establish itself as a unifying metric. Yet another metric is
suggested in Vermeire et al. (2017), where resource utilization, defined as the purchase price of
a hardware times the wall-clock time this hardware is occupied for a simulation, is used as cost
metric. This metric also aims at allowing fair comparisons between CPU and GPU implemen-
tations. The downside is, however, that GPUs can typically not be used standalone but need a
host as well as a network in a massively parallel context (with certain additional purchase costs),
that the share of the hardware used for scientific computing is rather small in terms of the over-
all market in order to stimulate pricing, and that the cost-performance relationship for different
models provided by a hardware manufacturer is rather nonlinear and further difficult to compare
between companies. From such a perspective, this cost metric appears to be rather suitable to
guide supercomputing facilities in deciding which hardware to buy, than to address the question
of scientific interest of identifying the software and implementation that makes most efficient
use of a certain class of hardware.

Remark 6.5 Combining equations (6.2) and (6.3) leads to the conclusion that computational
costs defined as the product of wall-time and number of cores increases at least as fast as Re3

for increasing Reynolds number. Note, however, that it would be a premature conclusion that the
larger the supercomputer the higher the maximum Reynolds number that can be simulated, even
though the promise or hope that exponential growth of the peak performance of supercomput-
ers according to Moore’s law will solve the problem is common textbook knowledge (Ferziger
and Peric 2008, Jiménez 2003, Pope 2001, 2004). Such a conclusion is essentially based on the
assumption that parallelization can be exploited equally in space and time. State-of-the-art tur-
bulent flow solvers use a method-of-lines approach, solving systems of equations of size NDoFs

in each time step with a domain-decomposition approach for parallelization in space. For this
“standard” approach, the promise that larger computers will continuously extend the range
of DNS-realizable Reynolds numbers assumes a situation termed “unconstrained case” in Fig-
ure 6.1. As discussed above, the large number of time steps to be completed in a certain wall-time
limit might, however, be the limiting factor (Löhner 2019). The challenge in extending the range
of applicability towards higher Reynolds numbers then lies in being able to solve larger and
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larger systems of equations in lower and lower wall-times when operating in the strong-scaling
limit (with the relevant limiting hardware characteristics differing from those for the uncon-
strained case, see Figure 6.1). Extrapolations such as “Even if we take the conservative estimate
of an increase in computer speed by a factor of 100 every decade, we will be able to run our
ultimate LES [refers to LES with 100003 grid points] in 2 days by 2020, in 30 min by 2030, and
in 20 s by 2040.” taken from Jiménez (2003) assume that the increase in peak performance is
accompanied by a decrease in network latency and increase in network bandwidth by the same
factor, which is an unrealistic scenario according to (Hager and Wellein 2010, Figure 3.1). In
order to highlight the different origins of limiting resources, equations (6.2) and (6.3) are kept
separated in the present work.

6.2 Efficiency models
The methodology presented in this section has already been published in Fehn et al. (2018a).
The time-accuracy-size spectrum analysis published later in Chang et al. (2018) exhibits many
parallels to the efficiency model discussed here. The present modeling approach can be consid-
ered more general since it naturally includes time-dependent problems and uses computational
costs instead of wall-time.

6.2.1 A general efficiency model for PDE solvers
This section discusses a general efficiency model for unsteady PDE solvers that are based on
time stepping techniques according to a method-of-lines discretization approach separating dis-
cretization in space and time. A further assumption is that the system of linear or nonlinear equa-
tions to be solved within each time step is addressed by iterative solution techniques. Expanding
equation (6.1) allows to identify three main contributions to the efficiency of PDE solvers under
the given assumptions

efficiency =
accuracy

DoFs · timesteps︸ ︷︷ ︸
discretization

· 1

iterations︸ ︷︷ ︸
solvers/preconditioners

· DoFs · timesteps · iterations
computational costs︸ ︷︷ ︸

implementation

, (6.6)

or in a more mathematical notation

E(h, k,∆t) = Eh,k,∆t(h, k,∆t) · Ex=A−1b(h, k,∆t) · EAx(h, k) . (6.7)

According to this model, the three main factors for an efficient numerical method are aspects of
discretization in space and time (Chapter 2), efficient iterative solvers and preconditioners (Chap-
ter 5), and the efficient evaluation of discretized PDE operators (Chapter 4).

The efficiency of the spatial and temporal discretization is denoted as Eh,k,∆t and depends
on the characteristic element length h, the polynomial degree k of the shape functions, and the
time step size ∆t. The order J of the time integration scheme does not appear explicitly as
a parameter since it is considered to be constant; typically J = 2, 3 is used for the type of
incompressible Navier–Stokes solvers discussed in this work. Apart from aspects of robustness
and stability, a discretization is considered efficient if it requires few degrees of freedom or
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few time steps to reach a desired accuracy. The selection of discretization schemes is often one
of the first decisions to be made when developing new PDE solvers. Quantifying accuracy is
straightforward if an analytical solution is available, but might be challenging in the absence of
exact reference solutions. This is particularly important when dealing with large-eddy simulation
of turbulent flows, since the accuracy of a particular method is difficult to evaluate in case that
only experimental results or numerical reference solutions of the same level of accuracy are
available, and since statistical errors are also present for this type of problems.

The efficiency of solvers and preconditioners is denoted as Ex=A−1b(h, k,∆t), where state-of-
the-art iterative solution techniques are considered in the present work to solve linear or nonlinear
system of equations, aiming at optimal-complexity algorithms with costs scaling linearly with
the total number of unknowns (e.g., Krylov solvers with multigrid preconditioners). This selec-
tion is justified by the fact that other approaches such as direct solvers with sub-optimal complex-
ity would render the solution of large algebraic systems of equations, e.g. arising from numerical
models of LES or DNS-type for turbulent flows, prohibitively expensive. The efficiency Ex=A−1b

mainly depends on the type of preconditioner used to solve these equations. Note that iterations
should not be understood as the number of outer iterations required to solve the linear system
of equations, but rather as an effective number of matrix–vector products (operator evaluations)
applied during the whole iterative solution procedure including preconditioning operations, see
for example the quantity n10,Ax defined in Section 5.3.1. Hence, this term also includes other
operations such as level 1 BLAS vector operations (addition, scaling, inner product) which can
account for a significant part of the overall computational costs once operator evaluation is suf-
ficiently optimized (Kronbichler and Allalen 2018). This quantity is not defined explicitly here
since this aspect is typically difficult to investigate theoretically by cost models, but should be
investigated numerically. The condition number and, hence, the efficiency of solvers and precon-
ditioners Ex=A−1b = Ex=A−1b(h, k,∆t) depends on the parameters of the spatial and temporal
discretization, which also implies that different preconditioners are most efficient for different
equations or parameters.

The efficiency of the implementation EAx is defined as the number of degrees of freedom per
time step and per operator evaluation that can be processed within a given amount of computa-
tional costs. In Chapter 4, this metric has also been introduced as throughput. The fact that the
efficiency of solvers/preconditioners and the efficiency of the implementation are written as sep-
arate factors in equation (6.7) is based on the assumption that the application of discretized
operators is the basic ingredient of iterative solution techniques such as Krylov solvers and
multigrid preconditioners. To efficiently evaluate discretized finite element operators for high
polynomial degrees, a high-performance implementation based on matrix-free operator evalua-
tion is used (Chapter 4). Equation (6.7) naturally demonstrates that the metric Flop/s often used
to measure the efficiency of implementations is less relevant, i.e., performance optimizations
should always target an increase in throughput rather than floating point operations. There is no
direct relation between the number of floating point operations performed per second and the
number of degrees of freedom processed per second because the algorithm selection is not fixed
and a variety of possible implementations is available. The above efficiency model also reveals
that all the components of solvers and preconditioners should be implemented in a matrix-free
way in order to obtain a method that is efficient as a whole. In general, the efficiency of the
implementation EAx = EAx(h, k) depends on the parameters of the spatial discretization, where
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the throughput would be independent of the mesh resolution and the polynomial degree in case
of an optimal implementation.

While the individual factors have been introduced and discussed separately in previous chap-
ters, it is clear that these are highly inter-connected. The type of temporal discretization approach
essentially defines the type of algebraic systems of equations to be solved, e.g., nonlinear systems
of equations for implicit formulations, linear systems of equations for mixed implicit-explicit
formulations, and no algebraic systems of equations for fully explicit formulations; or a saddle-
point problem for a monolithic solution of the incompressible Navier–Stokes equations versus a
set of symmetric positive definite systems of equations for splitting-type approaches. This does
not only result in different algebraic systems of equations, but also in different time step limita-
tions and preconditioners of different complexity most suitable to solve these equations, which in
turn have a direct impact on the computational efficiency of the overall approach. The choice of
the spatial discretization method (DG versus HDG) affects the resulting system of equations and
the type of preconditioning most suitable to solve these equations. The implementation strat-
egy (matrix-free versus matrix-based) directly affects the efficiency of evaluating discretized
operators, but also how efficiently algebraic systems of equations can be solved since opera-
tor evaluation is a main ingredient in iterative solvers. Deciding for an HDG approach, which
is typically inherently linked to the idea of a matrix-based solution of systems of equations,
should be based on much more than degrees of freedom or matrix size. As argued in Chapter 4, a
matrix-based approach is difficult to realize efficiently for high-order discretizations on modern
hardware. In fact, the matrix-free implementation used in this work is the central design choice
in this context. At the same time, it prevails the use of certain preconditioning strategies (such as
algebraic multigrid) or renders the design of robust preconditioners for non-symmetric problems
more challenging than in a matrix-based environment with direct access to the matrix entries.
Having said this, it might be possible that partially matrix-based preconditioners outperform a
matrix-free variant in the range of intermediate degrees k = 2, 3, 4. Finally, note that the type
of interpolation basis and quadrature rule chosen for a high-order discretization approach af-
fects the conditioning of systems of equations and impacts the number of iterations required by
iterative solvers, but also the speed at which discretized operators can be evaluated.

Remark 6.6 The above efficiency model does not explicitly include the aspect of parallel scal-
ability. Ideally, the overall efficiency does not depend on the parallelization of the numerical
algorithm, i.e., the computational costs are constant in case of ideal parallel scalability of the
code according to twall ∼ 1/P . Formally, parallel scalability could be understood as part of the
efficiency of the implementation, reducing throughput in case of sub-optimal parallel efficiency,
e.g., due to ghost layer communication. Alternatively, the above efficiency model could be un-
derstood as a model for the node-level performance that needs to be extended by an additional
factor η(h, k,∆t, P ) for the parallel efficiency, which depends – apart from the discretization
parameters – on the number of processors P used for parallel computations.

Remark 6.7 The above efficiency model contains other hidden parameters. An important factor
on efficiency is for example the use of float vs. double precision computations, which can
be seen as an additional parameter of the implementation. In the present work, this is exploited
by mixed-precision multigrid preconditioners in order to improve efficiency, see Chapter 5. The
present matrix-free implementation also distinguishes between affine and deformed elements for
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optimal efficiency, see Chapter 4. Another important parameter of iterative solvers and precon-
ditioners are solver tolerances ε. These should be chosen small enough to not affect accuracy,
but for efficiency reasons algebraic system of equations should not be over-solved. These param-
eters are not highlighted explicitly since they are typically chosen once and for all and since the
primary interest is in the {h, k,∆t} parameter space.

Remark 6.8 Too strong an encapsulation of the three aspects in equation (6.7) often hinders the
development of efficient numerical methods when focusing on only a single aspect with black-box
interfaces to the other aspects. Many examples can be given in this context, which are discussed
controversially in the literature and where conclusions are far from obvious. The items listed
below explain how an efficiency model as the one proposed here can help to avoid certain pitfalls
if another perspective is taken:

• Discretization: Explicit time integration schemes are often motivated due to better parallel
scalability compared to implicit solvers that involve global communication. However, op-
timal time integration schemes can not be designed with a look at the maximum possible
time step size only (favoring implicit schemes, see Franciolini et al. (2017)) or by con-
sidering the wall-time per time step only (favoring explicit schemes, see Löhner (2019)).
The wall-time per characteristic time of the flow problem would be much more suitable to
compare methods with different characteristics in terms of explicit time step restrictions.
Optimality of spatial discretization schemes is often evaluated with a view on optimal con-
vergence behavior for smooth problems only, or by evaluating the costs of discretization
schemes by counting unknowns, the non-zeros of a matrix, or operation counts (Flops).
For example, this does not give a realistic estimate of how methods with adaptive mesh re-
finement perform relative to methods with uniform mesh refinement, or how matrix-based
methods perform relative to matrix-free methods.

• Solvers: Developing iterative solvers and preconditioners with a view on iteration counts
or multigrid convergence rates only does not necessarily lead to fast solvers. Adhering to
black-box matrix-based interfaces for iterative solvers and preconditioners will not allow
to take advantage of fast matrix-free methods. Motivation for HDG often falls short by con-
centrating on the reduction in problem size by static condensation instead of comparisons
to fast matrix-free techniques operating on the full problem size.

• Implementation: Parallel scalability is used to motivate DG methods in the literature due
a communication pattern with less neighbors compared to continuous Galerkin discretiza-
tions (Fischer 2015). At the same time, face integrals introduce additional costs with non-
negligible communication costs on the node level (Kronbichler and Wall 2018, Kronbichler
et al. 2019).

6.2.2 Optimality assumptions

The efficiency model (6.7) and its dependency on parameters can be simplified by certain op-
timality assumptions regarding the implementation and regarding iterative solvers and precon-
ditioners. As discussed in Chapter 4, the efficiency of the implementation does not depend on
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the mesh size h (or problem size) for fixed polynomial degree k as long as the workload is suf-
ficiently high. Furthermore, numerical results for the present matrix-free implementation have
shown that the throughput depends only mildly on k for a fixed problem size in three space
dimensions, and is almost independent of k in two space dimensions. Motivated by these obser-
vations, the implementation is denoted as optimal if it holds

EAx(h, k) ≈ f(k) ≈ const . (6.8)

Iterative solvers and preconditioners are termed optimal or robust if the convergence rate is inde-
pendent of the mesh resolution parameters h, k. This property is also termed mesh-independent
convergence and allows to construct solvers with costs scaling linearly with the number of un-
knowns NDoFs under assumption (6.8). In Chapter 5, preconditioners are discussed for which
iteration counts are independent of h. The multigrid preconditioners with polynomial Cheby-
shev smoothing depend mildly on the polynomial degree k of the shape functions. This leads to
the following simplifying assumption in case of optimal solvers

Ex=A−1b(h, k,∆t) ≈ g(k) ≈ const . (6.9)

Note that the absolute costs of a preconditioner are also important apart from its asymptotic
complexity. For operators including the mass matrix operator scaled by the inverse of the time
step size, the linear system of equations might be solved more efficiently in the context of high-
order, matrix-free DG methods by using the inverse mass matrix as a preconditioner instead
of multigrid preconditioners. In that case, the efficiency also mildly depends on h, k,∆t, but
the absolute efficiency is improved as compared to more complex preconditioners. In practice,
this preconditioner often allows to obtain robust and fast convergence in case that the time step
size is selected according to the CFL condition, i.e., if the time step size is reduced under mesh
refinement.

6.2.3 Optimal selection of time step size
Under the optimality assumptions introduced above, the spatial discretization and temporal dis-
cretization emerge as the main factors impacting the overall efficiency of the numerical method
w.r.t. the parameters h, k,∆t. A remaining question is how to select the time step size in an opti-
mal sense. The goal is to express the time step size ∆t as a function of the parameters h, k such
that overall efficiency is maximized. Generally speaking, the time step size should be selected
such that spatial and temporal discretization errors are balanced. The argumentation behind is
that one could otherwise either increase the time step size or reduce the spatial resolution without
increasing the overall error, which would lead to a more efficient simulation. The optimal time
step size ∆topt is illustrated in Figure 6.3, which schematically shows the overall discretiza-
tion error as a function of the time step size for a fixed spatial resolution. The optimal time
step size can be expressed analytically under the assumption of optimal rates of convergence in
space, εh,k = Ch,k(k)hk+1, and time, ε∆t = C∆t(J)∆tJ , leading to

εh,k
!

= ε∆t  ∆t = C∆topt(k, J)h
k+1
J . (6.10)

However, some of the time integration strategies discussed in this work introduce a restriction of
the time step size according to the CFL condition, which might be restrictive or non-restrictive
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Figure 6.3: Illustration of selection of time step size in order to optimize efficiency for a given
spatial resolution. The CFL condition is restrictive on the left (∆tCFL < ∆topt) and
non-restrictive on the right (∆topt < ∆tCFL).

in terms of the optimal selection of the time step size. Both cases are visualized in Figure 6.3.
In terms of the notation used here, the CFL condition (2.209) is written as follows (considering
the case with constant time step size is sufficient for the purpose of efficiency models discussed
here)

∆t = C∆tCFL
(k, r,Cr)h . (6.11)

In the limit k → ∞, the condition (6.10) can be expected to be more restrictive than the con-
dition (6.11) due to the more rapid exponential decrease of the time step size h

k+1
J compared

to the CFL-type algebraic decrease according to k−r. For small and moderate polynomial de-
grees, a typical observation is that the CFL condition is indeed restrictive even if asymptotic,
optimal rates of convergence in space are observed with comparably low spatial errors. In cases
where optimal spatial convergence as assumed in equation (6.10) is inappropriate (as typically
observed in under-resolved scenarios), it can be expected that the CFL condition becomes more
restrictive. For ease of notation, the following unifying notation is introduced

∆t = C∆t(k)hs , (6.12)

where the parameter s depends on the type of time step criterion. Exemplarily, the following
three cases are distinguished:

• s = 0: constant time step size independent of h and small enough such that the spatial
error is dominant (includes steady problems)

• s = 1: CFL-type time step restriction (typical use case for practical simulations such as
LES and DNS of turbulent flows)

• s = k+1
J

: time step size which balances spatial and temporal errors (assuming optimal
rates of convergence in space and time)
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6.2.4 Analytical efficiency estimates
Similar to equation (6.6), the following relation can be derived for the computational costs

computational costs = DoFs · timesteps︸ ︷︷ ︸
discretization

· iterations︸ ︷︷ ︸
solvers/preconditioners

· computational costs
DoFs · timesteps · iterations︸ ︷︷ ︸

implementation

.

(6.13)

Under the assumptions of Section 6.2.2, the factors related to iterative solvers and the imple-
mentation are assumed constant w.r.t. the mesh size h and mildly dependent on k, so that the
computational costs c depend mainly on the number of unknowns NDoFs and the number of time
steps N∆t

c = NDoFsN∆tf
−1(k)g−1(k) . (6.14)

The number of unknowns can be expressed as a function of the discretization parameters h and k
as follows

NDoFs ∼ (k + 1)d h−d . (6.15)

The number of time steps is inversely proportional to the time step size, N∆t ∼ ∆t−1. Using
equation (6.12) yields

N∆t ∼ C−1
∆t (k)h−s . (6.16)

To investigate the efficiency of high-order methods from an analytical perspective, the goal is to
obtain error-cost-relations. This requires assumptions about the error behavior (convergence) as
a function of the discretization parameters. As introduced in Section 6.1.2, one can distinguish
between smooth and non-smooth solutions (or asymptotic and pre-asymptotic convergence) as
detailed below.

6.2.4.1 Smooth solutions or asymptotic convergence behavior

In the asymptotic regime, the error decreases under h-refinement with optimal rates of conver-
gence according to

εh,k = Ch,k(k)hk+1 . (6.17)

The computational costs can be expressed as follows by inserting equations (6.15) and (6.16)
into equation (6.14)

c = C−1
∆t (k)f−1(k)g−1(k) (k + 1)d h−(d+s) . (6.18)

Equations (6.17) and (6.18) describe error and costs as a function of h (and other parameters). To
obtain the desired ε-c-relation (error-cost-relation) for mesh refinement studies, the parameter h
needs to be eliminated

ε(c) = Ch,k(k) (C∆t(k)f(k)g(k))−
k+1
d+s (k + 1)

d(k+1)
d+s︸ ︷︷ ︸

=C(k,d,J)

c−
k+1
d+s . (6.19)

Then, depending on the type of time step criterion used (parameter s), the following three cases
can be distinguished:
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• s = 0: This is the case for which the error decreases most rapidly when investing more
computational costs (i.e., for a series of simulations with decreasing mesh size h)

ε(c) ∼ c−
k+1
d . (6.20)

• s = 1: For the practical use case of a CFL-type time step restriction, the error decreases as

ε(c) ∼ c−
k+1
d+1 . (6.21)

• s = k+1
J

: The academic case of balancing spatial and temporal errors leads to the error-
cost-relation

ε(c) ∼ c
− k+1

d+ k+1
J = c

− J

1+ dJ
k+1 , (6.22)

with the limit ε(c)→ c−J for k →∞.

In all cases, the error decreases the faster the larger the polynomial degree when increasing
computational costs. Since the slope of the curves in a log ε-log c-diagram becomes steeper
with increasing polynomial degree k, it can be expected that high-order methods are asymp-
totically more efficient than low-order methods. The results shown in Section 6.3 for a prob-
lem with smooth, analytical solution confirm this expected behavior. The proportionality con-
stant C(k, d, J) in equation (6.19) is difficult to model since it depends on many parameters and
is further problem dependent, so that this influence is best studied by numerical experiments.
The third case has the interesting limit that the slope approaches a constant value for large k that
depends only on the order J of the time integration scheme. The reason is that the spatial error
decreases exponentially with k, but also the number of time steps (and hence the computational
costs) increases exponentially with k in order to keep temporal discretization errors as small as
spatial errors. This is exactly the case where one would argue for the use of higher order time
stepping.

6.2.4.2 Non-smooth solutions or pre-asymptotic convergence behavior

When it comes to complex engineering applications with complex geometry and high-Reynolds-
number turbulent flow problems, it is not realistic that optimal rates of convergence in space can
be observed. Under these circumstances, the convergence behavior is better described by

εh,k = Ch,k(k)N const
DoFs , (6.23)

where the constant exponent, which is different from the optimal value −k+1
d

, expresses that
methods of different polynomial degree k show similar rates of convergence for comparable
spatial resolutions (NDoFs). The only arguments in favor of high-order methods are then better
error constants Ch,k(k), which might be motivated theoretically from dissipation and dispersion
analysis of high-order methods, see for example the ‘1% rule’ proposed in Moura et al. (2015,
2017a) characterizing the resolution capabilities of high-order methods for under-resolved turbu-
lence. The time step size criterion (6.10) does not make sense in this case, since the underlying
assumption of an optimal convergence behavior is invalid. Assuming the CFL-type time step
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criterion to be the most relevant for such practical problems (s = 1), the number of time steps
can be expressed as follows as a function of the number of unknowns

N∆t ∼ krh−1 =
kr

k + 1

k + 1

h
∼ kr

k + 1
N

1
d

DoFs . (6.24)

Inserting equation (6.24) into equation (6.14) yields the following cost estimate

c =
kr

k + 1
f−1(k)g−1(k)NDoFsN

1
d

DoFs . (6.25)

Then, elimination of NDoFs by inserting equation (6.25) into equation (6.23) yields the follow-
ing ε-c-relation

ε(c) = Ch,k(k)

(
k + 1

kr
f(k)g(k)

) d·const
d+1

c
d·const
d+1 . (6.26)

This equation reveals that the un-modeled parts in the form of unspecified proportionality con-
stants or factors showing some mild dependency on the polynomial degree are now the relevant
factors that determine the efficiency of high-order methods compared to low-order methods. Ac-
cordingly, it is difficult to draw precise quantitative conclusions. Nevertheless, some qualitative
statements can be made. On the one hand, the constant Ch,k(k) principally favors high-order
methods or, in other words, is the motivation for the use of high-order methods. On the other
hand, the three factors k+1

kr
, f(k), and g(k) render high-order methods more expensive than

low-order methods for the same number of unknowns. The influence of these three factors is
investigated in detail in Fehn et al. (2018a) by the example of the three-dimensional Taylor–
Green vortex problem. For the same number of unknowns, high-order methods typically require
more time steps under CFL-type time step restrictions with r > 1 than low-order methods (fac-
tor k+1

kr
). The efficiency of the matrix-free operator evaluation can be expected to slightly de-

crease for large k (factor f(k)) according to the results in Chapter 4. Finally, iterative solvers
often show iteration counts slightly increasing with k (factor g(k)) according to the results in
Chapter 5. Although not explicitly modeled here, high-order methods contain less elements for
the same number of unknowns and, therefore, exhibit less parallelism with potentially worse
parallel scalability. For high-order methods to be more efficient overall, they must be sufficiently
more accurate to compensate these factors, see also Brown (2010), Fehn et al. (2018a). Various
numerical examples are shown in Section 6.3.

6.3 Numerical results
This section complements the theoretical considerations and models of this chapter by numerical
experiments. A main focus is on the efficiency of high-order DG discretizations in terms of
error vs. computational costs for typical two- and three-dimensional benchmark problems in
computational fluid dynamics. Emphasis is also put on documenting the node-level performance
of the present solver for incompressible turbulent flow simulations, its parallel scalability on
large supercomputers, and performance comparisons to state-of-the-art high-order solvers from
the literature.

249



6 Efficiency of incompressible flow solvers

6.3.1 Two-dimensional Taylor–Green vortex

To verify the analytical efficiency models from Section 6.2.4, the two-dimensional Taylor–Green
vortex problem is re-investigated. The problem has a smooth solution (see Section 2.6.5.1 for a
description of the problem setup) and is therefore well-suited for these investigations. In the
following, mainly two characteristic scenarios are considered: (i) the coupled solution approach
with an implicit treatment of the convective term, where the time step size is calculated ac-
cording equation (6.10) ensuring maximum efficiency in the asymptotic regime of convergence;
and (ii) the dual splitting scheme with an explicit treatment of the convective term, where the
time step size is calculated according to the global CFL criterion (2.209). The BDF3 scheme
is used in both cases to allow large time steps and to maximize efficiency. Solver tolerance
are εabs = 10−12 and εrel = 10−6, where linearized system of equations within the Newton
solver are solved with a relative tolerance of εrel = 10−2 for improved efficiency. Polynomial
degrees in the range k = 2, 3, 4, 5, 6, 7 are considered and refinements levels from l = 1 up
to l = 8 (for the lowest polynomial degree). All simulations are performed in serial using one
core of an Intel Haswell architecture due to the small problem sizes of this two-dimensional
problem. Since the coarsest mesh consists of only 4 elements (and a few hundred degrees of
freedom overall, depending on k), it can be expected that the performance is limited by latency
effects for the coarsest mesh and low mesh refinements levels, see Figure 4.8.

For the implicit coupled solver, a Newton–Krylov solution approach is used, where the lin-
earized system of equations is solved by FGMRES(100) using a block triangular preconditioner.
Within this preconditioner, the velocity block is approximated by one multigrid V-cycle of ph-
type with a matrix-based block-Jacobi smoother with one smoothing step in pre- and post-
smoothing and a relaxation factor of ω = 0.7, and GMRES with point Jacobi preconditioner
as coarse-grid solver. The pressure convection–diffusion preconditioner is used for the Schur
complement block, where the Laplace operator is inverted approximately by one multigrid V-
cycle of cph-type with polynomial Chebyshev smoother of degree 5 and a Chebyshev coarse-
grid solver. The preconditioner is updated every time step (and every 10 Newton iterations). This
setup provides a preconditioner with robust iteration counts for the fully implicit coupled solver
and the chosen parameters in terms of time step size, mesh size, and polynomial degree. The
postprocessing step with penalty terms uses a conjugate gradient solver preconditioned by the
inverse mass matrix. The number of iterations actually decreases for high refine levels due to a
decrease of the time step size, which renders the inertial term more dominant and improves con-
ditioning. The constant C∆topt in equation (6.10) is determined individually for each polynomial
degree by trial and error.

For the semi-implicit dual splitting scheme, all system of equations are solved by the conjugate
gradient method. The pressure Poisson equation is preconditioned by a cph-multigrid method
with Chebyshev smoother of degree 5 and Chebyshev coarse-grid solver. The viscous step and
penalty step use the inverse mass matrix preconditioner. This setup again ensures robust and
efficient preconditioning for the considered range of parameters. Iteration counts of the pressure
Poisson equation and the penalty step are constant or decrease for increasing mesh refinement
level, while iteration counts of the viscous step increase for increasing mesh refinement level (but
the inverse mass matrix preconditioner is still most efficient for iteration counts below 20 to 30
observed here). The Courant number is Cr = 0.125 for all polynomial degrees. Additional results
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(a) error versus number of unknowns

(b) error versus computational costs

Figure 6.4: Vortex problem: efficiency of high-order methods for coupled solution approach with
implicit treatment of the convective term (BDF3 scheme).

shown below for the pressure-correction scheme with explicit convective term use the same
preconditioning strategies and the same time step criterion, but the BDF2 scheme for stability.

The results of these efficiency studies are shown in Figure 6.4 for the coupled solution ap-
proach and in Figure 6.5 for the dual splitting scheme. The error-vs-DoFs curves reveal that
high-order methods are more accurate per degree of freedom than low-order methods for this
smooth problem (note that spatial convergence rates for the velocity are found to be slightly
sub-optimal in case of the dual splitting scheme for the chosen set of parameters). When study-
ing the error-vs-costs curves, one observes that the behavior for larger mesh refinement levels is
described very well by the analytical efficiency model (plotted as dashed reference slopes in the
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(a) error versus number of unknowns

(b) error versus computational costs

Figure 6.5: Vortex problem: efficiency of high-order methods for dual splitting scheme with ex-
plicit treatment of the convective term (BDF3 scheme).

figures), equation (6.19) with s = (ku + 1)/J for the coupled solution approach and s = 1 for
the dual splitting scheme. This behavior is to be expected since the assumptions of Section 6.2.2
are fulfilled, i.e., robust preconditioners are used that result in constant or slightly varying itera-
tion counts, and the efficiency of the implementation is almost independent of h for sufficiently
high workload, see for example Figure 4.8. However, there is a substantial deviation from the
expected behavior for coarse meshes, where the curves in the error-vs-costs plane are shifted
towards higher costs than expected according to the efficiency model. This behavior can be ex-
plained by latency effects, i.e., the workload is too low in order to achieve a saturated throughput.
In the efficiency model, this effect can modeled as a reduced throughput of the matrix-free oper-
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(a) error versus number of unknowns

(b) error versus computational costs

Figure 6.6: Vortex problem: efficiency of high-order methods for pressure-correction scheme
with explicit treatment of the convective term (BDF2 scheme). To provide a point of
reference, the dashed reference curves are identical to those shown in Figure 6.5 for
the dual splitting scheme.

ator evaluation in equation (6.7) according to Figure 4.8, or alternatively as an additional factor η
accounting for the sub-optimal parallel scalability.3

Overall, high-order methods are found to be more efficient than low-order variants with orders-
of-magnitude improvements in costs for low error levels. Due to the simple geometry of this

3Although only a single core is used for these simulations, the effect is comparable to approaching the strong-
scaling limit where efficiency reduces due to a small workload per core.
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two-dimensional analytical test case and the related latency effects for coarse meshes, it is dif-
ficult to draw conclusion in the limit of large errors. Nevertheless, it can be summarized that
the error-vs-costs behavior is mainly driven by the error-vs-dofs behavior. When comparing the
results for the coupled solver with those for the dual splitting scheme, the improvements in effi-
ciency from low-order to high-order are significantly larger in case of the dual splitting scheme.
Moreover, while the coupled solver appears to be significantly more efficient for low polynomial
degrees, the dual splitting scheme is significantly more efficient for high polynomial degrees.
This is due to the number of time steps on the one hand, and the costs per time step on the other
hand. For example, the dual splitting scheme requires a factor of approximately 450 more time
steps for l = 8, k = 2, while it requires only a factor of 3.2 more time steps for l = 3, k = 7
compared to the coupled solver. On the contrary, the coupled solver is a factor of 11.2 more
expensive per time step for l = 8, k = 2, while it is a factor of 28.0 more expensive per time
step for l = 3, k = 7 (note that a partially matrix-based preconditioner with a complexity of
at least k4 in two dimensions is used here for the coupled solver, which was nevertheless found
to be efficient compared to other preconditioners in preliminary tests for this two-dimensional
example). Additional investigations for the coupled solution approach with an explicit treatment
of the convective term yield an efficiency similar to the dual splitting scheme, where the costs
per time step are a factor of 2 to 5 larger compared to the dual splitting scheme. For brevity, these
results are therefore not shown explicitly here.

Additional simulations have also been performed for the pressure-correction scheme, where
the BDF2 scheme is used to ensure stability. Using an explicit treatment of the convective term
and choosing the time step size according to the CFL condition, the (k, l) parameter space can be
divided into two parts. For low degrees and refinement levels, the CFL condition is restrictive and
errors are dominated by spatial errors. In this regime, the pressure-correction scheme performs
similar to the dual splitting scheme, see Figure 6.6. An implicit formulation of the convective
term could prove efficient in this regime as for the coupled solver. However, it can be expected
that the pressure-correction scheme does not reach the performance of the coupled solver in this
regime since significantly smaller time steps are necessary due to the BDF2 scheme compared
to BDF3 for the coupled solver. For high degrees and high refinement levels, the CFL condition
is not restrictive and errors are dominated by temporal errors for the pressure-correction scheme
as illustrated in Figure 6.6, i.e., time step sizes much smaller than the CFL condition would be
necessary to maximize efficiency, see Figure 6.3. It can therefore be expected that the pressure-
correction scheme (BDF2) is significantly less efficient than the dual splitting scheme (BDF3) in
this regime. Since the CFL condition is not restrictive in this regime, an implicit treatment of the
convective term is not promising. Although the time step selection is clearly non-optimal for the
pressure-correction scheme according to Figure 6.3, these results are shown here intentionally in
order to illustrate how a non-optimal choice affects efficiency.

To sum up, the implicit coupled solver using BDF3 is most efficient for low polynomial de-
grees by overcoming the CFL restriction, while the semi-implicit dual splitting scheme using
BDF3 is most efficient for high polynomial degrees due to a fast solution per time step. Note,
however, that these results should not be generalized since the observed behavior is mainly re-
lated to the fact that this example exhibits a very smooth solution that is easily resolved in space
by meshes of only a few elements, i.e., for other examples one can often observe that second-
order accuracy in time is not the limiting effect. One conclusion that can be drawn from the
present results is that it is difficult to identify a solution strategy that performs best for all types
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of examples or all spatial discretization parameters. This, in turn, motivates and justifies to put
an emphasis on the flexibility w.r.t. different time integration schemes and solution strategies as
done in this thesis.

6.3.2 Laminar flow around cylinder
This section re-investigates the laminar flow around cylinder example from Section 2.6.6 with
a focus on computational efficiency. The aim is an error-vs-costs analysis as for the previous
example. The dual splitting scheme is used, where all systems of equations are solved by the
conjugate gradient algorithm. A multigrid V-cycle of cph-type with AMG coarse-grid solver is
used for the pressure Poisson equation, and the inverse mass matrix preconditioner for the vis-
cous step and penalty step. This setup has proven very efficient for the dual splitting scheme in
many examples, especially for high Reynolds numbers. Polynomial degrees of k = 2, 4, 6, 8, 10
are considered and refine levels of l = 0, . . . , 5. The number of iterations are 3 to 7 for the
pressure Poisson equation, 10 to 100 for the viscous step (increasing for increasing refine level
due to relatively low Re), and 10 to 30 for the penalty step (decreasing for increasing refine
level due to better resolution of the flow). Although iteration counts are not constant, the chosen
preconditioners ensure a robust and highly efficient solution. The simulations are run on an In-
tel Haswell architecture and the number of cores is chosen such that simulations are performed
away from the strong-scaling limit. The throughput in terms of degrees of freedom solved per
time step and per core (the last two factorsEx=A−1b(h, k,∆t)·EAx(h, k) in equation (6.7)) is typ-
ically (2 . . . 4) · 105 DoFs/s/core for all polynomial degrees. Hence, the optimality assumptions
in terms of optimal iterative solvers and an optimal implementation are approximately fulfilled
for this example. The overall efficiency of high-order methods compared to low-order methods
is then determined by the efficiency of the spatial discretization and the temporal discretiza-
tion. Regarding the latter, high-order methods require more time steps for the same number of
unknowns due to the factor k1.5 in the CFL condition. Putting all these factors together results
in the overall efficiency shown in Figure 6.7. A superior efficiency of high degrees k = 4, 6
compared to k = 2 is evident for error levels of 10−4 and smaller. Higher polynomial degrees
of k = 8, 10 are equally efficient but can not further improve the efficiency substantially. For low
accuracy requirements with errors around 10−2, the k = 2 discretization is highly competitive to
the higher-order variants.

To investigate the potential gain in efficiency through fully implicit formulations in time, two
cases are considered examplarily: a low polynomial degree of k = 2 with refinement level l = 3,
and a high polynomial degree of k = 10 with refinement level l = 1. The pressure-correction
scheme (BDF2, incremental, rotational) is investigated with an implicit treatment of the convec-
tive term. The implicit momentum equation is solved by FGMRES with a ph-multigrid precondi-
tioner using a matrix-based block-Jacobi smoother (one pre- and postsmoothing step, relaxation
factor ω = 0.7) and a GMRES coarse-grid solver with block-Jacobi preconditioner. The pre-
conditioner is updated every 10th time step. The pressure Poisson equation and the penalty step
are solved as for the dual splitting scheme. The simulations are first run for a Courant number
of Cr = 0.35 as in the explicit case, and the Courant number is then successively increased
by a factor of two, studying the impact on both computational costs and accuracy. The results
are shown in Table 6.2. One first realizes that the implicit formulation introduces a performance
overhead when using the same Courant number as for the explicit solver. For larger Courant
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Figure 6.7: Laminar flow around cylinder: overall efficiency for various polynomial degrees k =
2, 4, 6, 8, 10. Relative errors of cD,max, cL,max, and ∆p(t = T ) are shown as a function
of the computational costs in CPUh in order to assess the computational efficiency
of high polynomial degrees.

numbers, this overhead gets amortized due to fewer time steps, and a speed-up by a factor of
approximately 4 for k = 2 and (only) 1.5 for k = 10 is achieved for the largest Courant numbers
studied here. For the low-order case k = 2, the CFL condition is obviously restrictive, so that the
Courant number can be increased by a factor of 8 without a substantial deterioration of accuracy.
Hence, an efficiency advantage is achieved for Cr = 1.4, 2.8 by the use of the implicit solver.
Finally, the accuracy deteriorates substantially for Cr = 5.6. For the high-order case k = 10,
however, choosing larger time step sizes affects accuracy already for lower Courant numbers.
Note that errors below 10−7 should be taken with care since the solution is already relatively
close to the reference solution used for the calculation of errors, and a very small error (even for
coarse spatial resolutions) might be obtained by coincidence due to the way the error norm is
defined for this example. The results clearly reveal that errors increase by a factor of approxi-
mately 4 when doubling the Courant number due to the second-order temporal accuracy of the
pressure-correction scheme. Hence, the use of an implicit solver does not prove effective for the
high-order case. The coupled solver with implicit treatment of the convective term and BDF3
time integration scheme has also been investigated, where a block-triangular preconditioner is
used that applies the block-Jacobi multigrid method described above for the velocity block and
the pressure convection–diffusion preconditioner for the Schur complement block. The overall
behavior is similar to the pressure-correction scheme, with the difference that the implicit cou-
pled solver is a factor of 1.8 to 2 slower for the k = 2 simulation, and a factor of 1.3 to 1.5 for
the k = 10 simulation. Although the implicit coupled solver is more accurate due to third-order
accuracy in time, the accuracy of the results also deteriorates for the highest Courant numbers.
It has not been possible to outperform the semi-implicit dual splitting scheme, and a detailed
discussion of results is therefore omitted here for reasons of brevity.
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Table 6.2: Laminar flow around cylinder: efficiency of fully implicit pressure-correction scheme
(iPC) compared to explicit dual splitting scheme (DS).

(a) low-order case (k = 2, l = 3)

Cr solver costs [CPUh] rel. error cD,max rel. error cL,max rel. error ∆p(t = T )

0.35 DS 0.95 1.46E–004 4.95E–003 5.18E–003
0.35 iPC 1.97 2.43E–004 6.22E–003 5.00E–003
0.7 iPC 1.18 2.42E–004 7.49E–003 4.82E–003
1.4 iPC 0.62 2.41E–004 6.09E–003 3.68E–003
2.8 iPC 0.37 2.34E–004 9.05E–003 5.30E–003
5.6 iPC 0.24 2.01E–004 6.58E–002 7.74E–002

(b) high-order case (k = 10, l = 1)

Cr solver costs [CPUh] rel. error cD,max rel. error cL,max rel. error ∆p(t = T )

0.35 DS 2.34 1.68E–007 7.06E–006 1.15E–005
0.35 iPC 15.6 8.64E–009 3.81E–005 1.32E–006
0.7 iPC 11.1 6.45E–008 1.98E–004 2.45E–005
1.4 iPC 5.00 2.76E–007 8.22E–004 1.24E–004
2.8 iPC 2.79 1.11E–006 3.28E–003 4.53E–004
5.6 iPC 1.55 5.00E–006 1.29E–002 1.35E–003

Remark 6.9 Specialized time stepping techniques with sub-stepping for the convective term as
mentioned in Remark 2.1 promise a more direct route towards reducing computational costs.
The reason behind is that a lower number of time steps directly translates into a faster solution
as long as the costs per time step do not increase significantly. This is often the case for this type
of methods since the explicit convective term has only a small share of overall computational
costs and since the type of equations to be solved does not change, which does change when
turning to implicit solvers. Put differently, this technique may relax the bottleneck related to
the solution of the pressure Poisson equation (and other systems of equations) compared to the
comparably cheap convective term (which, however, causes the restriction of the time step size).
To address this aspect, the study by Riccius (2019) has assessed the potential of these sub-
stepping techniques critically within the metric of overall efficiency in the context of the present
discretization schemes. In fact, a substantial speed-up could be achieved, but a simultaneous loss
in accuracy has been reported that did not allow to improve overall computational efficiency in
general. With a view to the current state-of-the-art (Karakus et al. 2019, Lehrenfeld and Schöberl
2016), further studies would be necessary to rigorously justify this approach according to the
study by Riccius (2019).
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Figure 6.8: Orr–Sommerfeld problem: efficiency in terms of error vs. computational costs for
coupled solver with explicit treatment of convective term and time step sizes calcu-
lated according to the global CFL condition.

6.3.3 Orr–Sommerfeld problem

This section investigates the efficiency for the two-dimensional Orr–Sommerfeld problem de-
scribed in Section 2.6.7.1. The coupled solution approach is used (BDF2 scheme, explicit treat-
ment of convective term, time step size calculated according to the global CFL condition (2.209)
with Cr = 0.2), where the coupled system of equations is solved by a flexible GMRES solver
with block-triangular preconditioner, inverse mass matrix preconditioner for the velocity block,
and Cahouet–Chabard preconditioner for the Schur complement block, where the Laplace opera-
tor is inverted approximately by one V-cycle of a cph-MG method with Chebyshev(5) smoother.
The penalty step is preconditioned by the inverse mass matrix. This setup ensures robust itera-
tion counts and a computationally efficient solution of linear systems of equations. The number
of iterations for the coupled system of equations is not larger than 17, and for the postprocessing
step with the divergence and continuity penalty terms not larger than 13 for all polynomial de-
grees and refinement levels. In particular, iteration counts do not increase significantly for higher
polynomial degrees. The simulations have been performed on an Intel Haswell architecture and
for finer meshes the number of cores is chosen such that simulations are performed away from
the strong-scaling limit.

Figure 6.8 details the overall efficiency of the high-order DG solver for the Orr–Sommerfeld
problem. Dashed lines indicate theoretically optimal complexity according to the analytical ef-
ficiency models from Section 6.2.4. For high spatial resolutions, the obtained results seem to
agree well with these theoretical estimates, and improvements in efficiency by orders of magni-
tude can be observed for high-order methods for low error levels of 10−6 to 10−4. High-order
methods are also clearly more efficient for an engineering accuracy with errors around 10−2. To-
wards low refinement levels, substantial deviations from the theoretical behavior can be observed

258



6.3 Numerical results

and improvements in efficiency for high-order methods diminish for error levels of 10−1 to 100.
On the one hand, this is due to the sub-optimal convergence behavior of high-order methods in
the pre-asymptotic regime, see Figure 2.18. On the other hand, another main factor explaining
the difference between the error-vs-unknowns curves in Figure 2.18 and error-vs-costs curves
in Figure 6.8 is the throughput, which increases by about two orders of magnitude from low to
high refinement levels for this example (characterized by a trivial geometry and a coarse mesh
consisting of only one element, similar to the two-dimensional vortex problem). Put differently,
simulations on low refinement levels are slowed down by up to two orders of magnitude as com-
pared to an imaginary problem where the coarsest mesh consists of a number of elements large
enough to saturate a core (where one might argue that this is the case for engineering problems
with non-trivial geometry). Hence, care has to be taken when trying to generalize these results.
Finally, high-order methods require more time steps for the same number of unknowns due to
the CFL condition with exponent k1.5, which further decreases the efficiency of high polynomial
degrees shown in Figure 6.8 compared to Figure 2.18.

6.3.4 Three-dimensional Taylor–Green vortex

This section details the performance of the present incompressible Navier–Stokes DG solver
for three-dimensional turbulent flow problems by the example of the Taylor–Green benchmark
problem, see Section 2.6.7.2. For the results shown here, the dual splitting scheme is used due
to its computational efficiency, using adaptive time stepping and a constant Courant number
of Cr = 0.4 for all simulations. The preconditioners used for this example are described in
Section 5.6. The efficiency of high-order methods is investigated in detail for this problem, the
node-level performance is considered with a comparison to state-of-the-art high-order solvers
from the literature, and the parallel scalability of the solver on large supercomputers is investi-
gated. Simulations have been performed on the Intel Skylake system specified in Table 4.2 and
are run in a saturated regime with sufficient workload per core unless specified otherwise (for
small problem sizes, simulations are run in serial or only on a partially-loaded node in order to
obtain a more realistic estimate of computational costs).

6.3.4.1 Efficiency of high-order methods

Figure 6.9 analyzes the efficiency of high-order discretization schemes for the Taylor–Green
vortex problem according to the proposed efficiency model. Mesh convergence studies are per-
formed for polynomial degrees k = 2, 3, 5, 7, 11, 15. The efficiency of the spatial and temporal
discretization schemes is analyzed in Figure 6.9 (a), while the overall efficiency in terms of accu-
racy versus computational costs is analyzed in Figure 6.9 (b). Recalling the spatial convergence
results from Section 2.6.7.2, a loss of optimal rates of convergence is observed for this transi-
tional/turbulent flow problem in the under-resolved regime. Nevertheless, high-order methods
tend to be systematically more accurate than low-order methods for the same number of un-
knowns. The impact of time stepping is included in the right panel of Figure 6.9 (a). Taking into
account the time step size, the curves for high polynomial degrees are shifted towards the curve
of the low polynomial degree k = 2 in agreement with the theoretical expectation according to
the k1.5 relation in the CFL condition. Including the efficiency of iterative solvers and precondi-
tioners (see Table 5.10) and the efficiency of the matrix-free evaluation (see Figure 4.10) leads
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(a) efficiency of discretization

(b) overall efficiency in terms of error versus computational costs

Figure 6.9: Taylor–Green vortex problem at Re = 1600: investigation of efficiency of high-
order methods for polynomial degrees k = 2, 3, 5, 7, 11, 15 using the dual splitting
scheme (BDF2, Cr = 0.4, εrel = 10−3). An accurate reference solution published
in Fehn et al. (2018a) with effective resolution of 10243 for polynomial degree k = 7
is used to calculate the errors.

to the overall efficiency in Figure 6.9 (b). The best efficiency is obtained for moderately large
polynomial degrees k = 5, 7, for which the efficiency is significantly improved as compared to
the lower polynomial degrees k = 2, 3. Very high polynomial degrees k = 11, 15 are not more
efficient than moderately large polynomial degrees k = 5, 7. Although the curves for different
polynomial degrees appear to be very close to each other, the improvement in overall efficiency
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is up to one order of magnitude for k = 7 as compared to k = 2. These results are in agreement
with observations made in previous examples and can be summarized as follows. The efficiency
of high-order methods with optimal-complexity implementation is mainly determined by the
spatial convergence properties of the discretization scheme. Then, an analysis of the efficiency
according to the model presented in Section 6.2 allows to identify three main components ex-
plaining a reduction in efficiency for high-order methods for the present DG solver when turning
to the more relevant metric of accuracy versus computational costs: (i) restrictions of the time
step size according to the CFL condition in case of an explicit treatment of the convective term
reduce the efficiency of high-order methods, (ii) iteration counts for solving algebraic systems of
equations increase slightly for high-order methods (see Table 5.10), (iii) the computational effi-
ciency of the matrix-free evaluation of discretized operators reduces for very high-order methods
in three space dimensions (see Figure 4.10). Put differently, high-order methods need to be sig-
nificantly more accurate in order to achieve an advantage in terms of efficiency. Note also that
the problem analyzed here is a viscous problem at moderate Reynolds number solved on a trivial
geometry. Additional complexity in terms of complicated geometries (involving singularities),
wall-bounded turbulent flows, higher Reynolds numbers or inviscid problems can be expected to
render the efficient use of very large polynomial orders even more challenging, e.g. reducing the
polynomial degree at which efficiency is optimal.

In the right panel of Figure 6.9 (b), an alternative definition of computational costs is used,
namely the minimum wall-time obtained in the strong-scaling limit. The number of compute
nodes is selected such that the number of SIMD-cells per core is approximately one (note that
the l = 8, k = 2 simulation was run on 792 nodes and a larger number of processors would have
been necessary to also reach the strong-scaling limit for this very fine mesh), the natural scaling
limit of the matrix-free implementation in deal.II with vectorization over elements (and the
domain decomposition in deal.II that does not assign fewer than 2d elements to one MPI pro-
cess), see also Figure 6.12 below. The same problem size in terms of refine level and polynomial
degree is therefore run on a different number of cores in the left and right panels of Figure 6.9 (b).
One can clearly see that lower polynomial degrees of k = 2, 3 perform best in this metric, while
the minimum wall-time is significantly larger for high polynomial degrees. This is related to the
aspect of parallel scalability and is explained in more detail in Section 6.3.4.3. It is remarkable
that grid-converged results with relative errors in the kinetic energy dissipation rate around 1%
can be obtained in wall-times of a few minutes for the 3D Taylor–Green vortex problem and
the present high-order DG solver. The overall behavior is vastly different as compared to the
left panel of Figure 6.9 (b), highlighting that the chosen metric has a substantial influence on
answering the question “What is the optimal polynomial degree?”. According to these results,
polynomial degrees of k = 2, 3 can be expected to be the first for which the problem termed
“LES crisis” (see Section 6.1.3) can be overcome in the future. Note again that the cost met-
ric twall,min assumes and requires unbounded compute resources. In practice, this implies that
such jobs require a significant fraction of the compute resources of large supercomputers, for
which the time to wait in the queue might be substantial (depending on the scheduling policy),
and substantially larger than the actual execution time. Since these wall-times would actually
have to be included in the wall-time metric (the results in Figure 6.9 (b) only show the execution
time), it is clear that this cost metric also has major deficiencies and limitations.
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6.3.4.2 Node-level performance and comparison to state-of-the-art

To quantify the efficiency of the present solver, the overall computational costs for the Taylor–
Green vortex problem at Re = 1600 (including setup costs like mesh generation and initial-
ization of data structures as well as postprocessing costs, but excluding MPI initialization) are
compared to results published recently in the literature for state-of-the-art high-order methods
and implementations. Table 6.3 lists overall computational costs for various polynomial degrees.
Compared to results published previously for the present high-order DG code, compare Table 6.3
to (Fehn et al. 2018a, Table 5), the results shown here are a factor of 4 to 5 faster. This speed-up
mainly originates from a reduction in the number of time steps by a factor of approximately 3.5.
This is realized by adaptive time stepping and a factor of ζLF = 0.5 for the Lax–Friedrichs
flux increasing the critical Courant number by up to a factor of 2 compared to ζLF = 1.0 (note,
however, that an increase in the time step size also causes an increase in iteration counts for
the chosen inverse mass matrix preconditioner). Moreover, the solver tolerances are larger in the
present work (εrel = 10−3 versus εrel = 10−6), a hybrid cph-MG method is used here compared
to a pure h-MG method in Fehn et al. (2018a), and newer hardware is used in the present work
(Intel Skylake vs. Intel Haswell).

In Table 6.4 (a) and (b), the efficiency of the present solver is compared to other CPU imple-
mentations in terms of computational costs twall ·Ncores. Compared to the high-order DG solver of
the compressible Navier–Stokes equations by Carton de Wiart et al. (2014), the present approach
is two to three orders of magnitude more efficient. The results published in Fehn et al. (2019c)
suggest that this difference mainly stems from the efficiency of the high-order DG implemen-
tation, while the incompressible vs. compressible speed-up is much lower when using the same
optimal-complexity implementation for both incompressible and compressible solvers. Com-
pared to the high-order continuous finite element discretization of the incompressible Navier–
Stokes equations in Huismann et al. (2019), a performance improvement of approximately one
order of magnitude is achieved, which is mainly due to a reduced number of time steps required
by the present solver. Both solvers achieve a similar throughput in terms of degrees of freedom
solved per time step. Since the implementation in Huismann et al. (2019) uses special optimiza-
tions restricted to Cartesian geometries and since the present solver uses a computationally more
complex DG discretization and a more general implementation also applicable to deformed hex-
ahedral meshes, the performance of the present solver appears to be remarkable. The reported
speed up can be considered conservative since the present DG solver at k = 7 is more accurate
than the results reported in Huismann et al. (2019) for k = 8 on a mesh with the same number
of elements (see Figure 6.10 for a quantitative assessment).

In Table 6.4 (c), the performance is compared to the PyFR solver (Loppi et al. 2018) based
on the flux-reconstruction approach with a high-level platform-unified Python and performance-
optimized implementation. The PyFR simulations were run on two Nvidia P100 GPUs and two
Intel KNL accelerators. For this reason and since a one-to-one comparison for these different
hardware systems is difficult, the problem has been simulated on both 1 and 2 Intel Skylake
compute nodes with 48 cores each. The present solver outperforms the GPU implementation of
PyFR run on Nvidia P100 by a factor of 2.9–5.7, and the CPU implementation run on Intel KNL
by a factor of 7.4–14.3.

The present approach is also highly competitive to other discretization schemes. Compared to
performance results published in DeBonis (2013) for finite difference methods where resolutions
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Table 6.3: Taylor–Green vortex problem: performance results for dual splitting scheme for poly-
nomial degrees k = 2, 3, 5, 7, 11, 15 and effective resolutions in the range 1923

to 5123. The time interval is 0 ≤ t ≤ T = 20. Adaptive time stepping with a Courant
number of Cr = 0.4 is used for all computations.

k l resolution NDoFs N∆t Ncores twall ·Ncores [CPUh]

2 6 1923 2.3 · 107 1.3 · 103 48 9.74 · 100

7 3843 1.9 · 108 2.7 · 103 384 1.73 · 102

3 6 2563 5.7 · 107 2.5 · 103 384 4.77 · 101

7 5123 4.6 · 108 5.0 · 103 3072 9.23 · 102

5 5 1923 2.5 · 107 2.6 · 103 48 2.63 · 101

6 3843 2.0 · 108 5.4 · 103 384 4.74 · 102

7 5 2563 6.2 · 107 4.4 · 103 48 1.30 · 102

6 5123 4.9 · 108 8.9 · 103 384 2.30 · 103

11 4 1923 2.7 · 107 4.3 · 103 48 8.98 · 101

5 3843 2.1 · 108 8.7 · 103 384 1.60 · 103

15 4 2563 6.4 · 107 6.9 · 103 96 6.06 · 102

5 5123 5.1 · 108 1.4 · 104 768 1.12 · 104

of 2563 and 5123 yield computational costs of 2.56 ·103 CPUh and 4.78 ·104 CPUh, respectively,
the present solver reduces the computational costs by a factor of approximately 50 for k = 3 and
a factor of approximately 20 for k = 7 (see Table 6.3).

For a finite volume discretization with a resolution of 643 and an end time of T = 10, a wall-
time of 63 min is specified in Schranner et al. (2016) on an Intel SandyBridge system with 16
cores resulting in computational costs of approximately 17 CPUh. For the AVM4 turbulence
model (Rasthofer and Gravemeier 2013) based on a low-order continuous finite element dis-
cretization, computational costs of 29 CPUh have been measured on an Intel Haswell system for
a resolution of 643 and an end time of T = 20. Selecting l = 4 and k = 3 (resolution 643) for
the present discretization approach with T = 20 results in costs of 0.152 CPUh when simulated
on one Skylake node with 48 cores, so that the present solver achieves an improvement in com-
putational costs as compared to the finite volume approach by Schranner et al. (2016) and the
finite element approach by Rasthofer and Gravemeier (2013) by a factor of approximately 200.

Of course, newer hardware is used in the present work that needs to be taken into account for
a one-to-one comparison. However, the large differences in performance can not be explained
solely by improvements in hardware, given that improvements in the single-core performance
have been moderate over the last decade. As a conclusion, these numbers reveal that the use of
efficient high-order DG methods allows to significantly improve the performance compared to
many state-of-the-art numerical methods for turbulent flows.

As a summary of the computational efficiency, Figure 6.10 compares the present high-order
DG solver for the most efficient degree k = 7 to state-of-the-art solvers from the literature.
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Table 6.4: Three-dimensional Taylor–Green vortex at Re = 1600: performance results for
present solver (ExaDG) using the dual splitting scheme compared to state-of-the-art
methods from the literature.

(a) comparison to compressible Navier–Stokes DG solver by Carton de Wiart et al. (2014) (where
an Intel Xeon X5675 @3.07GHz architecture has been used) in terms of computational costs twall ·
Ncores (final time T = 10).

Neff k Nel solver costs [CPUh]

2563 3 643 compressible DG solver, Carton de Wiart et al. (2014) 6.4 · 103

2563 3 643 present solver (ExaDG) 2.52 · 101

2403 4 483 compressible DG solver, Carton de Wiart et al. (2014) 1.08 · 104

2403 4 483 present solver (ExaDG) 2.53 · 101

(b) comparison to incompressible Navier–Stokes continuous spectral element solver
solver by Huismann et al. (2019) (where an Intel Xeon E5-2590 v3 @2.5GHz has
been used) in terms of computational costs twall ·Ncores (final time T = 20).

Neff k Nel solver costs [CPUh]

2563 8 323 continuous FEM, Huismann et al. (2019) 1.98 · 103

2883 8 323 present solver (ExaDG) 1.96 · 102

(c) comparison to high-order flux reconstruction solver by Loppi et al. (2018) in
terms of overall wall-time twall using a comparable amount of hardware resources
and considering both CPU and GPU hardware (final time T = 20).

Neff k Nel solver twall [h]

2603 4 523 PyFR, Loppi et al. (2018) 3.64 on 2x Nvidia P100
2603 4 523 PyFR, Loppi et al. (2018) 9.12 on 2x Intel KNL
2603 4 523 present solver (ExaDG) 1.24 on 1x Intel Skylake
2603 4 523 present solver (ExaDG) 0.64 on 2x Intel Skylake

The methods chosen for comparison are two open-source CFD solvers, namely the CFD solver
OpenFOAM 4 based on low-order finite volume methods, and the high-order DG code FLEXI 5

for the compressible Navier–Stokes equations for degree k = 7 (the three data points correspond
to the same mesh resolution but using three different dealiasing techniques, namely filtering,
split-form DG, and over-integration from left to right). The simulation results for OpenFOAM
have been obtained in Wang (2019), where the results for the laminar model are used here, but
the results are comparable in accuracy when using the Smagorinsky or WALE sub-grid scale
models. The parameters for OpenFOAM have been investigated and chosen carefully with the
aim to allow a fair comparison, and the reader is referred to Wang (2019) for detailed infor-
mation on the chosen setup. A comparison is also made against results published in Huismann

4see https://openfoam.org/
5see https://www.flexi-project.org/
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Figure 6.10: Taylor–Green vortex problem at Re = 1600: comparison of computational effi-
ciency for polynomial degree k = 7 to state-of-the-art solvers from the literature.

et al. (2019) for degree k = 8 using a continuous spectral element solver for the incompressible
Navier–Stokes equations. Also shown are previous results obtained with the present DG solver
and published in Fehn et al. (2018a), where the performance optimizations described above have
not been used. These reference results have all been performed on comparable Intel Haswell
architectures (while the present results have been run on an Intel Skylake architecture). The
present solver is clearly most efficient overall, with orders of magnitude improvements in over-
all efficiency. In Fehn et al. (2018a), a reduction in computational costs by a factor of at least 10
to 100 has been reported for a given level of accuracy compared to previous results for various
CFD solvers shown in (Wang et al. 2013, Figure 25). Therefore, the present work only com-
pares against most recent results from the literature. The symmetry of the Taylor–Green vortex
can be exploited by simulating the problem only on 1/8 of the domain with symmetry bound-
ary conditions (the setup used in Chapter 7 and denoted as symmetric box as compared to the
periodic box used most often), which can be expected to yield a performance gain by another
factor of 8. Of course, similar optimizations could be implemented or used for the other solvers
as well to achieve a similar speed-up. Figure 6.10 plots two vertical lines to illustrate the amount
of computational costs required to obtain grid-converged results with errors in the range 10−3

to 10−2 for the present solver. Using one compute node with 48 cores, grid converged results can
be obtained in wall-time limits of “over lunch” (1 hour) or “over night” (12 hours). To the best
of the author’s knowledge, this is clearly the most efficient solution of this benchmark problem
shown to date for a general-purpose PDE solver.

6.3.4.3 Parallel scalability

This section details the results of parallel scaling studies performed on the SuperMUC-NG su-
percomputer (see Table 4.2), where scaling studies up to the full machine with approximately
300k cores have been performed. The considered test case is the three-dimensional Taylor–Green
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vortex problem at Re = 1600 as described in Section 2.6.7.2 (note that an h-MG method is used
for the pressure Poisson equation for these scaling studies since the cph-MG has not been im-
plemented at that time). The periodic box is considered here since this is the standard setup
used most often in the literature. Mainly a polynomial degree of k = 3 is chosen as the “work-
ing horse” high-order DG solver for incompressible turbulent flows. Further investigations run
on a smaller scale show the parallel scalability of high-order methods compared to lower-order
methods.

Strong scalability is here exclusively analyzed in terms of absolute runs times for the whole
application (including setup costs like mesh generation and initialization of data structures as
well as postprocessing costs, but excluding MPI initialization). This follows the credo that the
aim of strong scalability is not parallel speed-up, but a minimization of the time-to-solution
metric. Figure 6.11 shows results of a parallel scalability study for polynomial degree k = 3
and effective resolutions of 1283, 2563, 5123, 10243, 20483. The results of this scaling study have
already been published in Arndt et al. (2020b). The figure shows both strong and weak scaling,
where the weak scaling curves (which can be obtained by combining points of different strong-
scaling curves horizontally in the right panel of the figure) are somewhat interrupted since one
island of the machine contains 792 nodes (which is not a power of two). Figure 6.11 shows
both the overall wall-time as well as the wall-time per time step. The minimum overall wall-
time achieved in the strong-scaling limit increases with increasing spatial resolution. This is due
to the fact that a solver with an explicit treatment of the convective term is used and that the
time step size is restricted according to the CFL condition, ∆t ∼ h, so that the number of time
steps increases by a factor of two when doubling the resolution (note that the time step size
would, of course, also be reduced for implicit solvers when refining the spatial resolution). The
minimum wall-time per time step reached in the strong-scaling limit is almost independent of
the spatial resolution, which can be expected theoretically under certain optimality assumptions
but is, nevertheless, a remarkable result when observed in practice.

To give a point of reference, the “realtime limit” is also plotted. Realtime refers to the fact that
the physical time interval of the Taylor–Green vortex problem is t = 20 s with the parameters of
the flow problem specified in SI units, i.e., a numerical simulation requiring a wall-time of twall ≤
20 s is able to simulate the problem in “realtime”. Figure 6.11 reveals that the present solver
is able to solve the three-dimensional Taylor–Green vortex problem in realtime for effective
resolutions up to 1283 for degree k = 3, a result that can be considered outstanding when
compared to state-of-the-art high-order DG solvers.

The results also demonstrate that parallel scalability can be achieved up to the full machine
with hundreds of thousands of CPU cores. A maximum speed-up factor of 424 is achieved for the
intermediate 5123 resolution, where the 1-node simulation has been run on a fat memory node (a
manifestation of the memory limit in Figure 6.1). The 20483 resolution is too large a problem
size to reach the strong-scaling limit on SuperMUC-NG with 300k cores. A parallel efficiency
of 80.6% is achieved with a speed-up factor of 79.8 when scaling from 3072 to 304,128 cores.
Note that being able to perform scalability studies for a given problem size over such a broad
range of CPU cores is a result of a memory efficient software design that allows great flexibility
in terms of problem sizes being solved on a given system (the strong-scaling limit and memory
limit from Figure 6.1 are well-separated).

The results in Figure 6.11 reveal that scale resolving simulations for increasingly large Rey-
nolds numbers (requiring increasing problem sizes and an increasing number of time steps) can
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Figure 6.11: Taylor–Green vortex problem at Re = 1600: combined strong and weak scaling
study for polynomial degree k = 3 and various effective resolutions from 1283

to 20483.

not be realized by just using larger supercomputers (weak scaling) if not substantial progress
is also made in reducing the wall-times in the strong-scaling limit, see the discussion in Sec-
tion 6.1.3. To address the “LES crisis” problem described above, the minimum wall-time per
time step reached in the strong-scaling limit allows extrapolations regarding how many time
steps can be solved within a given wall-time limit. This can be considered a typical use case for
industrial large-eddy simulation and direct numerical simulation of turbulent flows. A wall-time
of 0.03 s per time step as shown in Figure 6.11 would allow to solve almost 3 million time
steps per day of wall-time. Note, however, that these scaling studies have been performed for a
structured grid and a Chebyshev coarse-grid solver, while complex geometries can be expected
to require an AMG coarse-grid solver (see Chapter 5) that might have a strong impact on the
strong-scaling limit (an aspect not addressed in the present work).

When increasing the polynomial degree k, scalability is reduced due to a coarser granularity.
This is shown in Figure 6.12, where parallel scalability is compared for the degrees k = 3, 7, 15.
In the left panel, strong scalability is shown for the 2563 resolution. The minimum wall-time
reached for high polynomial degrees is significantly larger than for lower degrees when con-
sidering the same effective resolution, which is a clear performance disadvantage of high-order
methods that is not reflected in the computational costs metric when running simulations away
from the strong-scaling limit. A question of practical interest is to quantify the strong-scaling
limit in terms of how many unknowns or degrees of freedom should be used per core to make
sure that the code is operating away from the strong-scaling limit. This is addressed in the right
panel of Figure 6.12, which shows the wall-time per time step as a function of the number
of SIMD-cells per core (see Section 4.4.4.3), i.e., the workload per core. Since the curves for
different problem sizes overlap almost perfectly for sufficiently large workload per core, weak
scalability of the overall turbulent flow solver is demonstrated. Note that this analysis does not
only demonstrate weak scalability of the matrix-free operator evaluation, but also optimal al-
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Figure 6.12: Taylor–Green vortex problem at Re = 1600: scalability for varying polynomial
degree k for effective resolution of 2563 in left panel, and wall-time per time step
versus workload per core in right panel.

gorithmic complexity of solvers and preconditioners resulting in mesh-independent convergence
rates. Furthermore, this analysis includes the strong-scaling limit and reveals how many cells per
core should be used before approaching the strong-scaling limit with the theoretical scalability
limit being one SIMD-cell per core. The wall-time levels off in the range of 1–10 SIMD-cells
per core for k = 3, and scalability down to 1–2 SIMD-cells per core is observed for the higher
polynomial degrees of k = 7, 15. Since high polynomial degrees involve more work for the same
number of elements, the wall-time per time step increases with increasing polynomial degree.
The range of workloads investigated for k = 15 is smaller than for the lower degrees. This is
a manifestation of the “balanced regime” in Figure 6.1, where the workload is limited by the
requirement that the simulation completes within a wall-time limit. Hence, for more complex
problems requiring more time steps than the TGV problem considered here, the large polyno-
mial degree k = 15 will be affected more strongly by the “LES crisis” problem in the sense that
the maximum number of time steps (and hence the problem size) is limited more severely than
for lower polynomial degrees in order for the simulation to stay within a wall-time limit. This is
an aspect where the present matrix-free implementation could be improved, e.g. by changing the
vectorization strategy (from vectorization over elements to vectorization within elements) and
the mesh partitioning algorithm used by deal.II. This would imply a finer granularity and
promise improved parallel scalability. Of course, this needs careful investigations given that it is
unclear to which extent the node-level performance will deteriorate.

Remark 6.10 Figures 6.11 and 6.12 present parallel scalability results in different ways. Inten-
tionally, none of these plots shows normalized speed-up factors as this would remove important
information from the plots. While improved parallel scalability is often reported in the liter-
ature for higher degrees and the same number of elements in terms of normalized speed-up
factors (Altmann et al. 2013, Hindenlang et al. 2012), it would be a wrong conclusion to inter-
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pret such results as an advantage of high-order methods. The aim of using high-order methods
is to obtain more accurate results for the same problem size (degrees of freedom, not elements),
or to reduce the problem size for which a certain error level can be realized. In such a setting,
the mesh consists of significantly less elements for the high-order variant, which makes it more
challenging to reach a desired minimum wall-time in the strong-scaling limit for conventional
parallelization strategies. A recent study by Houba et al. (2019) advertises high-order methods
for reasons of better parallel scalability, but the aspect of computational costs remains elusive
given that only normalized speed-up factors are shown.

6.4 Conclusion and outlook

This chapter has addressed the interdisciplinary topic of the computational efficiency of PDE
solvers. The theoretical scaling of the problem size and the number of time steps with the
Reynolds number for accurate simulations of incompressible turbulent flows emphasizes the
need for computationally efficient techniques. Defining computational efficiency as the ratio
of accuracy and computational costs, an evaluation of the efficiency of high-order discretiza-
tion methods should distinguish between smooth or non-smooth problems on the one hand, and
matrix-free or matrix-based implementation techniques on the other hand. The importance of
parallel scalability has been discussed as well as the role of different hardware characteristics
as limiting resources for PDE solvers. Further, possible definitions of computational costs have
been discussed in detail, where the metric CPUh is the most common choice that is also mainly
considered in this work. Regarding these theoretical considerations, a number of remarks shed
light on different perspectives and highlighted common pitfalls. The complexity related to the
interdisciplinary nature of the topics discussed in this chapter might explain why some of these
topics often cause heated discussions in the CFD community. For this reason, an attempt has
been made in providing a methodology according to which numerical methods for PDE solvers
can be analyzed more systematically in terms of computational efficiency. A very simple effi-
ciency model has been proposed that identifies the temporal and spatial discretization, iterative
solvers and preconditioners, and the implementation as the main contributors to efficiency. Un-
der certain optimality assumptions and an optimal selection of the time step size, analytical
efficiency models have been derived that describe the error-vs-costs relation as a function of the
polynomial degree for both smooth problems and those operating in the pre-asymptotic regime
of convergence typically encountered when dealing with the simulation of turbulent flows.

Detailed numerical investigations have been presented for a set of examples spanning the
range from smooth to non-smooth problems as well as from computationally cheap two-dimen-
sional examples to computationally more demanding three-dimensional transitional and turbu-
lent flow problems. For these examples, the efficiency of high-order methods compared to low-
order methods has been assessed critically. The results have been verified by the use of ana-
lytical efficiency models. The results demonstrate that high-order methods are superior in the
asymptotic regime. For more complex problems involving geometric complexities or operating
in the regime of under-resolved turbulence, the asymptotic convergence behavior of high-order
methods is lost. Across the range of examples considered here, it becomes clear that the spa-
tial convergence behavior might be considered the key factor that decides about the efficiency
of high-order methods. According to the efficiency model, the error-vs-DoFs relation then trans-
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lates into the error-vs-costs relation by taking into account additional factors that tend to increase
the computational costs for high-order methods compared to low-order methods. These factors
are an increased number of time steps, a slight increase in iteration counts, and a reduction in
the throughput of matrix-free operator evaluation in three space dimensions for high polynomial
degrees. Aspects of parallel scalability further reduce the efficiency of high-order methods for
the current implementation. A detailed investigation of the efficiency for the 3D TGV problem
leads to the conclusion that a clear accuracy advantage of high-order methods appears to be nec-
essary in order for high-order methods to be also more efficient overall. Despite the fact that
algorithms and implementations with the best-known complexity are used, the efficiency tends
to stagnate or even deteriorate for very high-order methods. Overall, polynomial degrees in the
range k = 5, . . . , 7 are found to be most efficient, and it is expected that the optimal degree will
further decrease in case of geometrically complex problems or problems with very high Reynolds
numbers. If the wall-time is used as an alternative cost metric, the present results indicate that
lower degrees of k = 2, 3 perform best since these polynomial degrees show improved parallel
scalability. It should be noted, though, that all polynomial degrees k ≥ 2 considered here are
denoted as high-order methods in the CFD community (Wang et al. 2013). In terms of absolute
performance numbers, excellent node-level performance is demonstrated, significantly outper-
forming state-of-the-art approaches from the literature. Parallel scalability results are shown with
excellent scalability down to the granularity limit of the present matrix-free implementation with
vectorization over elements. In the strong-scaling limit, the 1283 resolution for degree k = 3 can
be simulated in realtime for the 3D TGV problem, and grid-converged results with relative errors
in the kinetic energy dissipation rate of approximately 1% for the Re = 1600 case are obtained
in wall-times of approximately 5 minutes. These results demonstrate the HPC capability of the
proposed incompressible Navier–Stokes DG solver and render this method highly attractive for
future studies.

As part of future work, an in-depth investigation of the parallel scalability and the strong-
scaling limit with a focus on the present hybrid multigrid methods could be addressed, in par-
ticular the role of AMG coarse-grid solvers that can be expected to be necessary for complex
engineering applications. Alternative vectorization strategies of the matrix-free implementation
could prove more efficient overall for very high polynomial degrees due to better parallel scal-
ability, given that the serial performance might not necessarily become worse for vectorization
within elements due to smaller working sets with less pressure on caches according to the results
in Chapter 4. Moreover, an interesting research direction appears to be the question whether
and to which extent fully implicit formulations can be realized with matrix-free algorithms of
improved or optimal computational complexity, and whether these implicit solvers prove more
efficient overall. First steps in this direction have been made in Bastian et al. (2019), Pazner and
Persson (2018). Implicit matrix-based solvers with a complexity of at least O(k2d) are widely
used in the literature for high-order DG discretizations of the incompressible Navier–Stokes
equations, see Franciolini et al. (2017, 2020), but their efficiency relative to the matrix-free
solvers presented here is unclear. The results in this chapter have shown that computational
costs might easily vary by one or two orders of magnitude between different realizations of sim-
ilar high-order flow solvers. This implies that conclusions of comparative studies w.r.t. different
formulations of a method (for example implicit vs. semi-implicit vs. explicit) have to be taken
with care if competitiveness to leading solvers has not been demonstrated. For example, the con-
clusions drawn in Yan et al. (2021) for implicit vs. explicit compressible DG solvers (favoring
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implicit schemes) might be somewhat different if the most efficient explicit solver was used for
comparison, e.g., compare the results in Yan et al. (2021) for the 3D TGV with the much faster
explicit simulations shown in Fehn et al. (2019c). One might argue that both implicit and ex-
plicit formulations would benefit similarily from a faster implementation, but this is not to be
expected since the matrix-based implicit solver is memory-bound so that there is typically only
minor potential for performance optimizations. This points to another important aspect: Accord-
ing to the author’s opinion, significant progress in the field of high-order DG discretizations of
the incompressible Navier–Stokes equations could be achieved by cross-comparisons between
different methods and implementations in terms of benchmarking (error-vs-costs analysis) in the
spirit of Wang et al. (2013), where mainly DG discretizations of the compressible Navier–Stokes
equations have been considered and where a comparison of implicit vs. explicit formulations or
matrix-based vs. matrix-free formulations has not been of primary interest. Consider the mul-
titude of DG approaches for incompressible flows (the HDG solver presented in Lehrenfeld
and Schöberl (2016), the fully-explicit DG solver presented in Fu (2019), the staggered semi-
implicit and space-time DG solver presented in Fambri and Dumbser (2016), the DG-Fourier
solver presented in Ferrer (2017), the SIMPLE-based un-stabilized DG solver presented in Klein
et al. (2015), the stabilized DG solvers presented in Fehn et al. (2018a,b) and Piatkowski et al.
(2018), the hp-adaptive, unstabilized DG solver presented in Chalmers et al. (2019), the com-
bined CG-DG solver presented in Gao et al. (2017), and the implicit, matrix-based, artificial-
compressibility-flux DG solver presented in Franciolini et al. (2017, 2020)), which have been
developed independently and for which often only limited information is publicly available re-
garding their computational efficiency.

271
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incompressible Euler flows

Turbulence has fascinated researchers over decades, and still, many fundamental questions are
unanswered. Two of these questions are: Is it possible that the incompressible Euler equations de-
velop singularities in three space dimensions in finite time? Do turbulent flows dissipate kinetic
energy in the inviscid limit, or is the kinetic energy preserved if no viscous effects are present?
There is empirical evidence that the dissipation rate does not tend to zero in the limit Re→∞,
which is known as the zeroth law of turbulence or energy dissipation anomaly. Onsager hypoth-
esized that anomalous energy dissipation is linked to the occurrence of velocity singularities in
the absence of viscosity. Numerical evidence is still outstanding.

This chapter addresses this topic by high-resolution numerical simulations of the inviscid
three-dimensional Taylor–Green vortex problem. Many prerequisities are required for such a
numerical study to be successful. First and foremost, a robust discretization scheme is required
that remains stable in the inviscid limit and exhibits suitable mechanisms of dissipation, see
Chapter 2. Next, advanced numerical methods and implementations are required that are able to
efficiently solve algebraic systems of equations of around O(1012) unknowns and beyond. This
requires optimal-complexity multigrid algorithms that scale linearly in the number of unknowns
and an optimal-complexity implementation with a minimum of memory transfer and arithmetic
operations, see Chapters 4 and 5. Finally, a massively parallel implementation is needed to con-
duct such a study on high-performance computing facilities, see Chapter 6. One aim of this
chapter is to demonstrate that the methodology developed in this thesis can be successfully used
to conduct numerical studies with an unprecedented level of resolution and accuracy, and to po-
tentially gain new physical insights into the underlying mechanisms of turbulence. The content
of this chapter has already been published in Fehn et al. (2021b).

In Section 7.1, a detailed introduction is given with an explanation of basic terminologies, a
review of the state-of-the-art is provided, and a new technique to explore finite-time singularities
and anomalous energy dissipation is proposed. Section 7.2 briefly describes the numerical meth-
ods used for this study and summarizes the quantities of interests. Section 7.3 shows results for
the one-dimensional Burgers equation with formation of a shock, a two-dimensional shear layer
problem that can be expected to be energy-conserving in the limit ν → 0, and finally the three-
dimensional inviscid Taylor–Green vortex problem that has been suspected to exhibit finite-time
singularities. In Section 7.4, the results of this study are summarized and conclusions are drawn
based on the present observations.
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7.1 Motivation
Singularities play a key role in fluid mechanics (Eggers 2018). While singularities in the form
of shocks are well-understood for the compressible Euler equations and the inviscid Burgers
equation (Burgers 1948) as a simplified model, the occurrence of singularities that develop in fi-
nite time is discussed controversially for the three-dimensional incompressible Euler equations.
The occurrence of finite-time singularities is strongly related to anomalous dissipation of ki-
netic energy in three-dimensional incompressible Euler flows according to the pioneering work
by Onsager (1949), which is well-documented in the review articles by Eyink (2008), Eyink and
Sreenivasan (2006), and in the recent essay by Dubrulle (2019). Due to the relation between
singularities and dissipation, one can distinguish between

(i) a direct approach to identify finite-time singularities for incompressible Euler flows, e.g.,
by showing that the vorticity blows up in finite time through different methods (e.g.,
an analysis of the kind ‖ω‖∞ ∼ (t∗ − t)−γ according to the Beale–Kato–Majda theo-
rem (Beale et al. 1984) trying to identify t∗ and γ from numerical results), and

(ii) an indirect approach proposed in the present work that provides indications of finite-time
singularities by observing an “anomalous” dissipative behavior in the kinetic energy evo-
lution.

While most approaches in the literature can be identified as belonging to the first category, the
focus is on a new technique related to the second category in this chapter. To complement these
results, additional numerical results related to the direct identification approach such as the tem-
poral evolution of the maximum vorticity ‖ω‖∞ and the enstrophy E are shown.

7.1.1 State-of-the-art and limitations in tracing finite-time
singularities

A strategy to identify potential singularities directly are time series expansions shown in Brachet
et al. (1983), Morf et al. (1980), Pelz and Gulak (1997), Taylor and Green (1937), but it was
found that numerical inaccuracies prevent a definite answer when using this technique. Numeri-
cal investigations by means of PDE solvers have therefore played the most dominant role in the
exploration of finite-time singularities.

A difficulty in identifying singularities with the direct approach by numerical simulations is
the inherent conflict that arbitrarily small structures can not be resolved with a numerical sim-
ulation of finite resolution, which renders this problem one of the most challenging topics in
computational fluid dynamics. Much work has been done in this field. In the 1980s and 1990s,
several early works on direct numerical simulation of both inviscid and high-Reynolds-number
viscous incompressible flows reported indications of finite-time singularities for the incompress-
ible Euler equations (Boratav and Pelz 1994, Brachet et al. 1992, 1983, Kerr 1993, Kerr and Hus-
sain 1989). Symmetry in the initial conditions plays an important role as specifically mentioned
and addressed by some works (Boratav and Pelz 1994, Pelz and Gulak 1997, Pelz 2001), raising
the question whether singularities are possible for problems that are not perfectly symmetric.
However, these works do not allow a definite answer to the question of finite-time singulari-
ties, see also the review articles by Gibbon (2008), Hou and Li (2008) on this topic. One of the
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main reasons why the results of these studies have been inconclusive is that the spatial resolution
has been limited due to the computational power and computational approaches available at the
time. Numerical results shown in Hou and Li (2008) suggest that dynamic depletion of vortex
stretching could be a mechanism that prevents a finite-time blow-up, but the same authors report
evidence for a finite-time singularity for a different flow configuration with solid boundaries in
a later work by Luo and Hou (2014).

In terms of the flow configuration being studied, numerical investigations on finite-time sin-
gularities can be categorized as follows: The Taylor–Green vortex has been analyzed in Brachet
et al. (1992, 1983), Brachet (1991), Bustamante and Brachet (2012), Cichowlas and Brachet
(2005), Shu et al. (2005) and for a regularized problem considering the Euler–Voigt equations
in Larios et al. (2018), the high-symmetry Kida–Pelz initial condition in Cichowlas and Brachet
(2005), Grafke et al. (2008), Hou and Li (2008), colliding Lamb dipoles in Orlandi et al. (2012),
and other perturbed cylindrical vortex tubes in Grauer et al. (1998), Hou and Li (2008), Kerr
(1993, 2013), Kerr and Hussain (1989). Most studies used spectral methods as discretization
schemes.

For the direct numerical simulations, common approaches to trace singularities are monitoring
the maximum vorticity ‖ω‖∞ over time, see the Beale–Kato–Majda theorem (Beale et al. 1984),
and the “analyticity strip” method (Sulem et al. 1983), which aims at capturing the smallest
scales of the flow. The width of the analyticity strip δ(t), obtained from fitting the energy spec-
trum to E(k, t) = C(t)k−n(t) exp(−2kδ(t)), is monitored over time for successively finer spatial
resolutions up to a resolution for which extrapolations of δ(t) allow conclusions whether δ(t)
reaches 0 in a finite time (finite-time singularity) or whether δ(t) decreases only exponentially
in time (regularity at all times).

Numerical results for the three-dimensional inviscid Taylor–Green vortex shown in Brachet
et al. (1983), Cichowlas and Brachet (2005) indicate only an exponential decay, but this might be
due to the limited spatial resolution and also due to the fact that only small times of the TGV flow
have been considered, so that a finite-time singularity can not be excluded from these results. In
a later work by Bustamante and Brachet (2012), a change in regime indicating potentially faster
than exponential decay is reported and the results are “not inconsistent with the occurrence of
a singularity”, but again resolutions higher than the maximum one of 40963 would be required
for definite answers. In Cichowlas and Brachet (2005) it is estimated that conclusions regard-
ing finite-time singularities using the analyticity strip method would require spatial resolutions
of (16k)3 to (32k)3 for the Kida–Pelz initial data. A recent study by Campolina and Mailybaev
(2018) suggests that the resolution available via classical DNS is not sufficient to investigate
blow-up.

The development of pancake-like structures with exponentially growing vorticity during the
early development of turbulence from smooth initial data is studied in Agafontsev et al. (2015).
In Kerr (2013), a new kind of analysis based on rescaled vorticity moments is proposed study-
ing anti-parallel vortex tubes, and only double-exponential growth in vorticity is observed as
opposed to the singular behavior suspected in a previous work by Kerr (1993). A model describ-
ing a cascade of transformations between vortex filaments and sheets potentially explaining the
mechanism of singularity formation in the Euler equations is proposed in Brenner et al. (2016).
Another model has been described recently in Moffatt (2019). In McKeown et al. (2018), an
iterative cascade of instabilities for head-on collisions of vortex rings is investigated both exper-
imentally and numerically.
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7.1.2 Energy dissipation anomaly
The focus is now put on the evolution of kinetic energy in incompressible Euler flows. Of par-
ticular interest is the question whether inviscid flows are able to dissipate energy, and if so, by
which mechanism such a behavior can be explained, given that no viscous effects are present.
The kinetic energy dissipation equation – valid for incompressible viscous (ν > 0) flows with
continuously differentiable solution on a domain with periodic boundaries – reads (Eyink and
Sreenivasan 2006, Onsager 1949)

∂E(t, ν)

∂t
= −

∫
Ω

ν∇uν : ∇uν dΩ , (7.1)

which implies conservation of energy in the inviscid limit ν = 0 provided that the solution is suf-
ficiently regular. However, from phenomenological descriptions of turbulence, there is empirical
evidence that the dissipation rate does not tend to zero in the limit Re→∞ or ν → 0 but takes
a positive value independent of ν, which is known as dissipation anomaly or the zeroth law of
turbulence (Dubrulle 2019, Eyink 2008). As noted in Eyink (2008), this has first been observed
by Taylor (1935), and also Kolmogorov’s similarity theory of turbulence (Kolmogorov 1991) is
based on the assumption of a non-vanishing energy dissipation rate in the inviscid limit. Nu-
merical evidence that the dissipation rate is independent of ν for large Re is for example given
in Kaneda et al. (2003), Orlandi et al. (2012), Sreenivasan (1998), and experimental evidence
for example in Dubrulle (2019), Pearson et al. (2002). Under certain regularity or smoothness
assumptions (existence of a strong L3-limit; see Drivas and Eyink (2019), Drivas and Nguyen
(2019), Duchon and Robert (2000) for a precise discussion), weak Euler solutions are the ν → 0
limit of Leray–Hopf weak solutions uν of the Navier–Stokes equations, so that the dissipation
rate in the inviscid limit equals the viscous dissipation rate in the limit ν → 0

∂Eν=0(t)

∂t
= lim

ν→0

∂E(t, ν)

∂t
= lim

ν→0
−ν
∫

Ω

∇uν : ∇uν dΩ = −D(t) ≤ 0 , (7.2)

where anomalous energy dissipation means that D(t) > 0 for some (or all) t > t∗.1 In general,
weak Euler solutions may neither be unique nor the zero-viscosity-limit of weak Navier–Stokes
solutions, which might themselves be non-unique (Buckmaster and Vicol 2019, 2020, Buck-
master et al. 2021, Daneri et al. 2021, Isett 2017). In this sense, note that the first equality in
equation (7.2) is a conditional one. The reader is also referred to Brenier et al. (2011), Wiede-
mann (2017) regarding the topic of weak–strong uniqueness of Euler solutions.

The above argumentation already indicates that the theory explaining dissipation of energy in
the absence of viscosity is related to the spatial regularity of the solution. According to Onsager
(1949), energy dissipation in three-dimensional incompressible flows can take place in the ab-
sence of viscosity by the formation of singularities,2 with the cascade from large to (arbitrarily)

1As a consequence, the enstrophy is inversely proportional to the viscosity for large Reynolds numbers in the case
of anomalous dissipation with D(t) > 0.

2Hence, the mechanism explaining the occurrence of kinetic energy dissipation in the limit ν → 0 is that the
velocity gradient might tend to infinity in this limit. Literally, Onsager (1949) wrote: “In the absence of viscosity,
the standard proof of the conservation of energy does not apply, because the velocity field does not remain
differentiable!”. Interestingly, Onsager did not consider the energy-dissipating behavior of inviscid flows (“ideal
turbulence”) an anomalous behavior but rather a matter of fact.
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small scales taking place in finite time, see also Eyink and Sreenivasan (2006). According to
Onsager’s conjecture, dissipation of energy may occur if the velocity is Hölder continuous with
exponent ≤ 1/3 (while Onsager’s assertion says that energy is conserved for exponents > 1/3,
see Cheskidov et al. (2008), Constantin et al. (1994), Duchon and Robert (2000), Eyink (1994)
for proofs). For mathematical literature dealing with proofs of Onsager’s conjecture, the reader
is referred to Buckmaster et al. (2018, 2016), De Lellis and Székelyhidi Jr. (2013, 2014), Isett
(2018) and references therein, where dissipative weak Euler solutions up to Onsager’s critical
regularity have been constructed using convex integration techniques. Newest insights from these
works thus confirm that the Hölder exponent of 1/3 is indeed the critical one in terms of energy
dissipation. As noted in Dubrulle (2019), the original Kolmogorov cascade picture implies irreg-
ularities of the velocity field (at least locally) with Hölder exponent ≤ 1/3, but it was Onsager
who established the link between energy dissipation and irregularities of the velocity field for
the Euler equations.

The above considerations might explain why this phenomenon is denoted as “kinetic energy
dissipation anomaly”, an alternative term used e.g. in Dubrulle (2019) is “inertial dissipation” (as
opposed to viscous dissipation). The one-dimensional inviscid Burgers equation (Burgers 1948)
with formation of a shock and the associated dissipation of energy serves as a prominent and
well-understood example, and is for example discussed in Sulem et al. (1983) in the context
of finite-time singularities and in Dubrulle (2019) in the context of inertial energy dissipation.
In Josserand et al. (2020), the phenomenon of energy dissipation through finite-time singularities
is illustrated for another one-dimensional model problem, the nonlinear Schrödinger equation.
For the two-dimensional incompressible Euler equations, it is known that singularities can not
develop in finite time from smooth initial data (Eyink and Sreenivasan 2006). This fundamentally
different behavior is attributed to the vortex stretching term in the vorticity form of the Euler
equations (Gibbon 2008)

Dω

Dt
= (ω · ∇)u , (7.3)

where the vortex stretching term on the right-hand side vanishes in two dimensions since the
vorticity ω is perpendicular to the velocity u in that case. It can be expected that this mecha-
nism makes up the nature of turbulence such as the energy transfer to small scales according to a
turbulence cascade in three dimensions (Onsager 1949). Regarding three-dimensional turbulent
flows, Onsager’s conjecture appears to be widely accepted by now with the occurrence of singu-
larities representing a building block of modern understandings of turbulence (Dubrulle 2019).
Whether numerical methods for turbulent flows are able to reflect the phenomenon of anomalous
dissipation in the inviscid limit is discussed below.

7.1.3 Interplay between physics and numerics
Having a closer look at numerical simulations of the inviscid Taylor–Green vortex, it can be ob-
served that many of these simulations have been performed mainly for small times up to t ≈ 5
(up to t = 4 in Brachet et al. (1992, 1983), Bustamante and Brachet (2012), Cichowlas and Bra-
chet (2005) and up to t ≤ 6 in Chapelier et al. (2012), Shu et al. (2005)), but not beyond the time
at which finite-time singularities have been suspected, especially not up to the time at which the
transition to a fully turbulent state takes place, with maximum kinetic energy dissipation rate at
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time t ≈ 8 − 9 (expected from high-Reynolds number viscous simulations (see Brachet et al.
1983)) and subsequent decaying turbulence. As mentioned by some of these works, one reason
for this is that the results for a specific resolution are no longer reliable at later times once the
flow becomes under-resolved (note that the spatial resolution is severely limited by computa-
tional resources even for large supercomputers available today). The key aspect, however, is that
numerical simulations of the incompressible Euler equations are very challenging in terms of
energy stability and numerical blow-up of the discretization scheme. Often, a lack of robustness
of the numerical discretization scheme is reported for this challenging inviscid Taylor–Green
vortex problem (see for example Chapelier et al. 2012, Winters et al. 2018).

The lack of understanding of what is to be expected in terms of kinetic energy dissipation
from a physical perspective (energy dissipation anomaly discussed above) manifests itself in an
uncertainty regarding the optimal design of discretization schemes from a numerical perspec-
tive. In Moura et al. (2017a,b), Piatkowski (2019), it is argued that a fundamentally different
behavior in terms of energy dissipation and time reversibility is expected between viscous flows
in the limit Re → ∞ and inviscid flows at Re = ∞. Especially in numerical studies, it is often
assumed that energy conservation holds for an exact solution of the Euler equations not only in
two space dimensions but also in three space dimensions, see for example Bustamante and Bra-
chet (2012), Chapelier et al. (2012), Grauer et al. (1998), Krais et al. (2020b), Schroeder (2019),
Shu et al. (2005), Winters et al. (2018) and the recent review article by Coppola et al. (2019) to
mention just a few. Numerical schemes that are exactly energy-conserving can indeed be con-
structed and have the advantage that non-linear blow-up of the numerical discretization scheme
can be avoided in the challenging inviscid limit. For these reasons, energy-conserving schemes
appear to be the current gold standard for the simulation of this type of problems in turbulence
research. Inviscid TGV simulations performed in Schroeder (2019) using exactly divergence-
free, energy-conserving discretization methods result in an exact conservation of energy, and
the results are considered superior as compared to simulations with upwind fluxes that show a
dissipative behavior.

However, the use of energy-conserving schemes is accompanied by a major limitation, namely
that it excludes – by construction – the occurrence of anomalous energy dissipation. Onsager’s
conjecture dictates to rethink whether it is really a desirable quality criterion that a numerical
method preserves the kinetic energy exactly in the inviscid limit ν = 0. If anomalous dissipation
occurs, there is an inconsistency between the physical dissipation behavior and the numerical dis-
sipation behavior of energy-conserving discretization methods. Then, energy-conserving numer-
ical methods would result in an O(1) error in the case of inviscid flows with anomalous/inertial
energy dissipation. Since no energy can leave the system, energy accumulates in small scales,
a well-known phenomenon called thermalization. In terms of the kinetic energy spectrum, an
energy-conserving numerical scheme can be expected to lead to an unphysical equipartitioning
of energy when simulating beyond the time of the finite-time singularity (Orlandi 2009, Orlandi
et al. 2012, Ray et al. 2011). The energy-conserving results of Schroeder (2019) indeed show
such a behavior. One may conclude that the application of energy-conserving numerical methods
is only reasonable for times t < t∗ before a potential singularity forms, since anomalous dissipa-
tion might occur afterwards. Further, one may formulate that a numerical scheme must contain
mechanisms of dissipation as a minimal requirement in order to address the topic of anomalous
energy dissipation. To describe discretization schemes suitable for investigating anomalous dis-
sipation more precisely, it is considered a prerequisite to use consistent and stable discretization
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schemes whose dissipation mechanisms are coupled to under-resolution effects in the numerical
approximation of the solution, i.e., the dissipation mechanisms act on the finest resolved scales
and shift to smaller scales under mesh refinement. As discussed in more detail below, it appears
to be unclear mathematically whether such a scheme is able to find a dissipative weak solution
of the Euler equations.

By studying Galerkin-truncated, energy-conserving simulations of the one-dimensional Burg-
ers equation, the work by Ray et al. (2011) describes an interesting phenomenon, called “tyger
phenomenon” in that work, where short-wavelength oscillations occur out-of-the-blue in the
presence of singularities, that finally lead to thermalization. The importance of numerical dissi-
pation to avoid the effect of thermalization for this one-dimensional Burgers problem is empha-
sized in a recent study by Murugan et al. (2020), which can therefore be seen in close analogy
to the present work focusing on 3D Euler.

The situation is less complicated for two-dimensional Euler flows that are non dissipative. In
that case, it can be expected that the kinetic energy dissipation rate converges to zero under mesh
refinement for a consistent and energy-stable discretization scheme, and that there is per se no
conflict with physics if an energy-conserving scheme is applied.

7.1.4 An indirect approach to identify finite-time singularities by
energy considerations

The indirect approach to identify finite-time singularities relies on the physical intuition that the
appearance of anomalous energy dissipation in free decay from smooth initial data requires a
finite-time singularity. The basic idea is to capture the temporal evolution of the kinetic energy
by a numerical method with appropriate inbuilt dissipation mechanisms as described in Sec-
tion 7.1.3. If grid-convergence to a dissipative solution with non-zero kinetic energy dissipation
rate can be demonstrated numerically, indirect evidence of a finite-time singularity is provided
by the following line of arguments:

(i) Assume convergence of a sequence of numerical solutions to a dissipative weak Euler
solution for h→ 0.

(ii) Weak–strong uniqueness holds for dissipative weak Euler solutions (Brenier et al. 2011,
Lions 1996, Wiedemann 2017).

(iii) Supposing that an energy dissipation anomaly with non-zero kinetic energy dissipation
rate is observed, it follows from items (i) and (ii) that a strong solution cannot exist but
must have become singular.

The conclusion in item (iii) is based on an indirect proof. Assume that a strong solution exists.
This strong solution is energy-conserving. By weak–strong uniqueness, the weak solution must
be identical and, therefore, energy-conserving. By contradiction it follows that a strong solution
cannot exist.

Note that assumption (i) could be weakened. Rather than (i), only convergence to a dissipative
generalized weak solution in the sense of Lions (1996) or DiPerna and Majda (1987) is required.
Interestingly, this weaker assumption might be provable for the limit h → 0, as it has in fact
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Figure 7.1: Temporal evolution of kinetic energy and kinetic energy dissipation rate for the
three-dimensional Taylor–Green vortex problem for increasing Reynolds number
of Re = 100, 200, 400, 800, 1600, 3200,∞. For each Re, results are shown for
two mesh resolutions (fine mesh as solid line, coarse mesh as dashed-dotted line).
The effective resolutions (see Section 7.3 for a definition) are 643, 1283 for Re =
100, 1283, 2563 for Re = 200, 400, 2563, 5123 for Re = 800, 10243, 20483 for Re =
1600, 20483, 40963 for Re = 3200, and 40963, 81923 for Re = ∞. The results
suggest that the kinetic energy reduces to a value as low as approximately 0.02 at
time t = 20 for large Reynolds numbers, and that a similar amount of energy dissi-
pation takes place also in the inviscid limit.

been proven for the limit ν → 0 (at least along sub-sequences). Since the existence of gener-
alized weak Euler solutions as limits along sub-sequences relies on very general compactness
arguments that require only L2 (kinetic energy) bounds for both the Lions and DiPerna and Ma-
jda theories, a proof for the limit h→ 0 for a DG Euler discretization scheme as used here might
be conceivable in analogy to what has been shown for the limit ν → 0. To the best of the author’s
knowledge, such a proof is still outstanding.

Note that a similar idea to identify singularities experimentally based on energy arguments
has been used in Kuzzay et al. (2017), Saw et al. (2016) by calculating the inertial dissipation at
scale l from PIV measurements. To the best of the author’s knowledge, the present work makes
first attempts in using energy arguments for singularity detection in numerical simulations of
three-dimensional Euler flows.

From numerical simulations of viscous problems at finite Reynolds number, there are indica-
tions that the zeroth law of turbulence holds for the Taylor–Green vortex problem. Numerical
results for the kinetic energy dissipation rate for increasing Reynolds numbers up to Re = 3000
shown in Brachet et al. (1983), additional results for a higher Reynolds number of Re = 5000
shown in Brachet (1991), Re = 10000 in Arndt et al. (2020b), and Re = 20000 in Lamballais
et al. (2019) strongly suggest that the functionD(t) does not tend to zero in the limit ν → 0. This
argument is summarized in Figure 7.1 showing results for viscous and inviscid simulations of the
TGV obtained with the present discretization approach. For each Reynolds number, results are
shown for two resolutions of the numerical discretization approach to judge whether the results
are mesh-independent. Converged results are achieved for all finite Reynolds numbers shown
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in Figure 7.1. In the inviscid limit, the temporal evolution of the kinetic energy is almost indis-
tinguishable for the two finest resolutions, while small differences are still visible in the energy
dissipation rate that slightly differs between the two resolutions 40963 and 81923 at later times
around the dissipation maximum and beyond. However, the onset of dissipation around t ≈ 6
appears to be converged also for this challenging inviscid simulation. These results are consis-
tent with grid-convergence to a dissipative solution of the incompressible Euler equations for the
three-dimensional Taylor–Green problem.

While the accumulation of energy in small scales in case of energy-preserving schemes is
unphysical, it can be exploited under certain circumstances in order to gain insights into the
physical dissipation behavior. In Cichowlas et al. (2005), an effective dissipation is estimated
from the small-scale thermalized energy of energy-conserving, spectrally truncated Euler simu-
lations and it is found that the large-scale Euler dynamics are similar to high-Reynolds number
Navier–Stokes dynamics. Although the underlying numerical methods in that work are different
from the present work,3 there are interesting parallels. The onset of dissipation around t = 5− 6
and the dissipation maximum around t = 8 − 9 appear to be very similar to the present results,
so that both studies can be seen to complement and verify each other. From this perspective, the
study by Cichowlas et al. (2005) supports the main conclusions of the present work.

Instead of considering a two-parameter limit problem h → 0, ν → 0 as illustrated in Fig-
ure 7.1, this chapter focuses on the one-parameter limit h→ 0 for the inviscid limit ν = 0. This
decision can be explained as follows: A two-parameter study h → 0, ν → 0 would technically
not be realizable due to the large amount of computational costs required for such simulations.
Already for moderate Reynolds numbers of Re = O(104) as considered for example in Arndt
et al. (2020b), Lamballais et al. (2019), the spatial resolutions required for grid-convergence
are comparable to the highest resolution simulations realized in the present work for the invis-
cid limit. These highest resolution simulations require computational costs of tens of millions
of CPUh, despite the fact that a highly efficient implementation (which is well-optimized for
the hardware under consideration) is used in the present work. With the goal to realize spatial
resolutions as high as those shown here, computational costs would allow to only consider a
single finite Reynolds number beyond what is shown in Figure 7.1, explaining why this work
immediately addresses the inviscid limit ν = 0.

7.2 Numerical methods and analysis tools

This chapter seeks (weak) numerical solutions to the incompressible Euler equations solved on
a domain Ω ⊂ Rd in d = 2, 3 space dimensions. As introduced in Chapter 2, the Euler equations
are obtained from the Navier–Stokes equations in the limit Re→∞ or ν = 0. The conservative
formulation of the convective term is considered in this chapter

∂u

∂t
+∇ · (u⊗ u) +∇p = 0 , (7.4)

∇ · u = 0 . (7.5)

3While the energy dissipation rate is derived by a postprocessing of results in Cichowlas et al. (2005), it is simu-
lated directly in the present work.
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Discretization in time is based on projection methods that solve for velocity and pressure un-
knowns in different sub-steps of a time step. In particular, the high-order dual splitting scheme
in its second-order formulation J = 2 is used in this chapter, along with adaptive time stepping
for reasons of computational efficiency. The reader is referred to Chapter 2.3 for an introduction
and a discussion of temporal discretization schemes.

Discretization in space is based on high-order discontinuous Galerkin methods with suit-
able stabilization techniques that render the method robust for under-resolved, high-Reynolds-
number flows. This chapter makes use of the DG discretization developed in Chapter 2.4. The
conservative formulation of the convective term with Lax–Friedrichs flux and parameter ζLF = 1

2

is used here. For viscous flow simulations, additionally shown in this chapter to complement
inviscid results, the Laplace formulation of the viscous term is used. The velocity-pressure cou-
pling terms are discretized in weak formulation. The divergence and continuity penalty terms
are crucial for the robustness of the scheme when applied to turbulent flows in general, and in
particular for the inviscid limit studied here, for which the spatial resolution will never be suffi-
cient to resolve the smallest scales of the flow and for which the spatial discretization is always
under-resolved. Default parameters of the penalty terms are used unless specified otherwise. In
terms of the occurrence of finite-time singularities and anomalous energy dissipation, the present
work makes use of the argument that – due to the weighted residual formulation – the present
discretization can be applied to problems which lack regularity and for which the differential
form of the equations is no longer an appropriate description.

The system of partial differential equations (7.4) and (7.5) does not extend to d = 1 in a
meaningful way, since the incompressibility constraint ∂u/∂x = 0 would imply u = const.
However, the one-dimensional inviscid Burgers equation (Burgers 1948)

∂u

∂t
+

∂

∂x

u2

2
= 0 , (7.6)

serves as a simplified mathematical model for more complex higher-dimensional problems. This
model problem is used in this chapter in order to study the proposed methodology of identifying
finite-time singularities by energy arguments for a well-understood one-dimensional problem,
before applying this technique to two and three-dimensional problems. The spatial discretization
of the inviscid Burgers equation is based on a discontinuous Galerkin scheme very similar to
the one described above for the two- and three-dimensional case, i.e., the convective term is
discretized with a local Lax–Friedrichs flux. Gaussian quadrature with a 3/2-overintegration
rule is used as in the higher-dimensional case due to the quadratic nonlinearity of the convective
term, but intentionally no additional measures such as limiting, filtering, or other Riemann fluxes
are taken to specifically address the occurrence of jumps that might form in the solution. It
should also be emphasized that no artificial viscosity approach is used to deal with a potential
singularity. For time integration, the classical explicit fourth-order Runge–Kutta method is used.

As a preparation for the numerical results shown below, important quantities of interest are
summarized. Since turbulent flows in three space dimensions are the primary interest of this
chapter, the following discussion is restricted to the three-dimensional case implying extensions
of certain relations to one- and two-dimensional problems only where possible. Of primary im-
portance for the present study is the temporal evolution of the kinetic energy

E(t) =
1

VΩ

∫
Ω

1

2
u(x, t) · u(x, t) dΩ , (7.7)
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and its dissipation rate dE/dt. The kinetic energy is normalized by the volume VΩ =
∫

Ω
1dΩ

of the computational domain. The integrals are evaluated numerically by means of Gaussian
quadrature with k+1 quadrature points in each coordinate direction. The time derivative used to
obtain the dissipation rate is computed numerically from the kinetic energy at discrete instants
of time via a second-order finite difference formula for variable time step sizes with first-order
approximations at the end points. If anomalous dissipation (dE/dt < 0) occurs, the temporal
evolution of the enstrophy E ,

E(t) =
1

VΩ

∫
Ω

1

2
ω(x, t) · ω(x, t) dΩ , (7.8)

is expected to exhibit a singularity E → ∞ in finite time. Integrals are computed by Gaussian
quadrature, which is exact down to round-off errors due to polynomial integrands and Cartesian
meshes. A related local quantity is the maximum vorticity

‖ω‖∞(t) , (7.9)

where the maximum is taken over all quadrature points over all elements in the discrete case.
The evolution of the maximum vorticity is monitored over time with the interest in a detection
of potentially singular behavior in finite time. Although the maximum vorticity will remain fi-
nite for every numerical simulation of finite resolution, a mesh refinement study may give hints
on the expected behavior if the resolution was further increased. Finally, kinetic energy spec-
tra are considered by transformation into wavenumber space k (Bustamante and Brachet 2012,
Cichowlas and Brachet 2005)

E(k, t) =
1

2
lim

∆k→0

∫ ‖k‖=k+∆k

‖k‖=k ‖û(k, t)‖2dk

∆k

DFT
≈

∑
k∈Z3

k− 1
2
≤‖k‖<k+ 1

2

1

2
‖ûDFT(k, t)‖2 , (7.10)

where û(k, t) denotes the Fourier transform of the velocity, which only exists at discrete wave-
number vectors k in case of a discrete Fourier transformation (DFT) obtained from sampled
data of a discrete velocity field. The solution is first interpolated onto N equidistant points per
element and per coordinate direction4 to which the discrete Fourier transformation is then ap-
plied. For this purpose, the library FFTW is used in the present work (Frigo and Johnson 2005).
Note that considering E(k, t) as a function of a scalar wavenumber k as well as the summation
over spheres of radius k introduces the assumptions of homogeneity and isotropy. In case of
anomalous energy dissipation, the enstrophy is expected to become infinite. Hence, exploiting
the relation E(k, t) = k2E(k, t) between the enstrophy and energy spectra and further assum-
ing a power law behavior for the kinetic energy spectrum of the form E(k, t) = C(t)k−n(t),
a singularity at time t = t∗ with E(t∗) =

∫∞
0
E(k, t∗)dk = ∞ would correspond to a decay

4The number of sampling points is chosen as N = k + 1 in the present work, i.e., equal to the number of nodal
points of the discontinuous Galerkin discretization, where k is the polynomial degree of the shape functions and
should not be mixed up with the wavenumber k typically used in the context of energy spectra. The equidistant
interpolation points all lie within the element away from the boundaries where the solution is discontinuous. If
interpolation points on the boundary are used, one typically takes the average of the solution from neighboring
elements.
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7 Anomalous energy dissipation in incompressible Euler flows

with slope n(t∗) = 3 in the energy spectrum, see also Orlandi (2009), Orlandi et al. (2012).
This criterion is used as a further validation of the results in case other quantities give hints of a
potentially singular behavior. Apart from that, energy spectra are typically investigated to assess
the well-known k−5/3 Kolmogorov spectrum for fully-developed, homogeneous isotropic turbu-
lence. This property is used to investigate whether the numerical results match expected physical
behavior obtained from classical cascade pictures in case of inviscid flows and beyond the time
of potential singularities, t > t∗.

7.3 Numerical results

This section presents numerical results for three test cases in d = 1, 2, and 3 space dimensions.
The one-dimensional problem is the well-known inviscid Burgers equation developing a singu-
larity in finite-time for appropriate initial conditions. The two-dimensional example is a shear
layer roll-up problem. The particular example used for the d = 2 investigations is not of primary
importance as it is known theoretically that regularity is expected for two-dimensional Euler
flows when starting from regular initial data. Instead, the aim of these one- and two-dimensional
examples is an investigation to which extent the numerical discretization scheme is able to mimic
physical behavior with potentially singular solutions. Having validated the numerical method
for these well-understood problems, it is applied to the three-dimensional inviscid Taylor–Green
problem, for which the physical understanding in terms of the occurrence of finite-time singu-
larities and the related aspect of anomalous energy dissipation is speculative at present.

7.3.1 One-dimensional inviscid Burgers equation

As a simplified model for the incompressible Euler equations, the one-dimensional inviscid
Burgers equation (7.6) is studied in a first step. It is well known that this equation develops
singularities in finite time, see for example Dubrulle (2019), Sulem et al. (1983), and that this
singularity is accompanied by the occurrence of energy dissipation. Previous works demonstrate
that the use of energy-conserving discretization schemes leads to thermalization for this type
of problems, see for example Murugan et al. (2020), Ray et al. (2011). Hence, it is particularly
interesting to study the behavior of a DG discretization scheme for this simple 1D problem and
investigate whether the numerical dissipation is able to predict the physical dissipation correctly.
For the results shown below, a Courant number of Cr = 0.4 is used for the explicit Runge–Kutta
time integrator.

Figure 7.2 shows the numerical solution uh(x) at various instants of time and the formation
of a shock. The problem is solved on the domain Ω = [−1, 1] with Dirichlet boundary con-
ditions prescribed at both boundary points of the one-dimensional domain. Exemplarily, two
different initial solutions are selected, a sine function, uh(x, t = 0) = − sin(πx), and a hat func-
tion, uh(x, t = 0) = −2|x + 0.5| + 1 for x < 0 and uh(x, t = 0) = 2|x − 0.5| − 1 for x ≥ 0.
Due to the chosen initial conditions with u > 0 for x < 0 and vice versa, the solution piles
up in the middle of the domain and a singularity (∂u/∂x → ∞) forms at x = 0 in both cases.
An equidistant grid with 2l elements is used where l denotes the level of refinement. For poly-
nomial approximations of degree k, the effective resolution becomes (k + 1)2l. The oscillating
behavior of the numerical solution around the singularity could be improved by more advanced
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Figure 7.2: One-dimensional inviscid Burgers equations for two different initial solutions that
form a singularity: On the left, the initial condition is a sine function, while it is
a simple hat function that is piecewise linear on the right. The spatial resolution
used for the computations corresponds to refinement level l = 6 and polynomial
degree k = 3, resulting in an effective resolution of 2561.

discretization techniques briefly mentioned in Section 7.2. From the results shown in Figure 7.2
it is plausible that the kinetic energy is conserved until the formation of the shock and that energy
will be dissipated at later times. For the hat function chosen as initial condition, it is straight-
forward to derive an analytical expression for the temporal evolution of the kinetic energy as
well as its dissipation rate, which is why this setup is considered in more detail in the following.
According to the method of characteristics it follows that the shock forms at time t∗ = 0.5. From
that time on, the solution can be written as

u(x, t) = f(t) (x− sign(x)) , (7.11)

where sign(x) takes values of±1 depending on the sign of the argument. The temporal evolution
part f(t), which describes the absolute value of u taken to the left and right of the origin of the
coordinate system at x = 0, can be obtained from the following consideration

f(t+ dt) = f(t)− ∂u(x, t)

∂x

∣∣∣∣
x=0−︸ ︷︷ ︸

=f(t)

dx︸︷︷︸
=u(x=0−,t)dt

=f(t)dt

= f(t) (1− f(t)dt) , (7.12)

i.e., the solution at x = 0− at time t+ dt equals the solution at position−dx = −u(x = 0−, t)dt
at time t. Separation of variables and integration yields the result f(t) = 1/(t+ t∗). The kinetic
energy E(t) =

∫
Ω

1
2
u2(x, t)dx is therefore given as

E(t) =

∫ 1

−1

1

2
f 2(t) (x− sign(x))2 dx =

f 2(t)

3
. (7.13)

The kinetic energy dissipation rate is obtained by differentation which yields a (t+ t∗)
−3 decay

for times t ≥ t∗. The dissipation rate is ∆u3/12 when expressed in terms of the jump ∆u of
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Figure 7.3: One-dimensional inviscid Burgers equations with hat function as initial condition:
temporal evolution of kinetic energy as well as dissipation rate and convergence to-
wards analytical profile for a mesh refinement study with refine levels l = 2, . . . , 5
and polynomial degree k = 3, resulting in effective resolutions of 161, . . . , 1281.

the solution, in agreement with the result in Dubrulle (2019) where it is noted that this inviscid
dissipation is identical to the dissipation of the viscosity solution in the limit ν → 0. In Fig-
ure 7.3, results are shown for both the kinetic energy and the dissipation rate for a sequence
of mesh refinement levels of l = 2, . . . , 5 with degree k = 3, resulting in effective resolutions
of 161, . . . , 1281. For increasing spatial resolution, the numerical results converge to the analyti-
cal profiles. It can be seen that achieving grid-convergence for the dissipation rate requires higher
spatial resolutions as compared to the temporal evolution of the kinetic energy itself. This is ex-
pected since the dissipation rate contains a temporal derivative that results in a higher sensitivity
with respect to deviations (here numerical discretization error) from the exact solution.

Figure 7.4 shows the same results for the problem with sine function as initial condition. It can
be observed that the onset of energy dissipation is smooth as opposed to the hat function where
the kinetic energy exhibits a kink and the dissipation rate a jump at the time of the singularity.
In other words, the occurrence of a finite-time singularity does not imply an instantaneous onset
of dissipation. This should be kept in mind when considering the three-dimensional inviscid
Taylor–Green problem, which is a problem that also starts from sine-like initial data.

The point to make here is that a discretization scheme involving purely numerical mecha-
nisms of dissipation can provide the physically correct amount of dissipation for a sufficiently
fine spatial resolution, see also the discussion in the introduction. Note that this is fundamen-
tally different from viscosity solutions uν for small ν > 0, for which the required dissipation is
realized by the additional viscous term in the equations and for which the dissipation stemming
from the numerical discretization scheme tends to zero if the mesh resolves the viscosity solu-
tion uν exhibiting steep but finite gradients. Although the one-dimensional Burgers equation can
not reflect the complexity of three-dimensional turbulent flows, these results put confidence in
numerical discretization schemes to also predict the solution in a physically correct way for the
higher-dimensional problems studied below.
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Figure 7.4: One-dimensional inviscid Burgers equations with sine function as initial condition:
temporal evolution of kinetic energy as well as dissipation rate and mesh refinement
study with refine levels l = 2, . . . , 5 and polynomial degree k = 3, resulting in
effective resolutions of 161, . . . , 1281.

7.3.2 Two-dimensional shear layer problem
Next, the two-dimensional shear layer roll-up problem (Brown 1995) is considered, for which
the initial velocity is given as

u(x, t = 0) = (tanh (ρ(0.25− |x2 − 0.5|)) , δ sin (2πx1))T . (7.14)

Following Brown (1995), the two parameters ρ, δ are set to ρ = 30 and δ = 0.05. The problem is
solved on the domain Ω = [0, 1]2 with periodic boundaries in both directions. In the following,
different viscous simulations with viscosities ν = 2.5·10−3, 10−3, 10−4 are considered, as well as
the inviscid limit with ν = 0. The mesh is uniform Cartesian with (2l)2 elements for refinement
level l, the polynomial degree of the shape functions is k = 7, resulting in the effective resolution
of
(
(k + 1)2l

)2. The simulations are run for the time interval 0 ≤ t ≤ 4. The time step size is
adapted dynamically with a Courant number of Cr = 0.25.

The aim of this example is to verify the robustness and accuracy of the present high-order dis-
continuous Galerkin discretization for a simple two-dimensional example. As mentioned in the
introduction, the energy is conserved for the two-dimensional incompressible Euler equations,
and this property should be preserved by a consistent discretization scheme for sufficiently fine
spatial resolutions. Figure 7.5 shows contour plots of velocity magnitude and vorticity magni-
tude at time t = 1.2 for a mesh with 162 elements (refinement level l = 4) for different values of
the viscosity. In Figure 7.6, the temporal evolution of the kinetic energy and the kinetic energy
dissipation rate is shown for the different viscosity values. For each viscosity, results obtained
on three meshes of increasing resolution with 42, 82, and 162 elements are shown. For large vis-
cosities, ν = 2.5 · 10−3 and 10−3, the results for the temporal evolution of the kinetic energy
and dissipation rate coincide for all meshes. Also for the smallest viscosity of ν = 10−4 and
the inviscid limit ν = 0 the results obtained on the two finest meshes coincide and only mi-
nor deviations can be observed for the coarsest mesh. This is in qualitative agreement with the
contour plots of the velocity magnitude in Figure 7.5, which demonstrate that the velocity field
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(a) velocity magnitude for ν = 2.5 · 10−3, 10−3, 10−4, 0 (from left to right)

(b) vorticity magnitude for ν = 2.5 · 10−3, 10−3, 10−4, 0 (from left to right)

Figure 7.5: Two-dimensional shear layer roll-up problem: contour plots of velocity magnitude
and vorticity magnitude at time t = 1.2 for four different values of the viscosity (blue
indicates low value and red high value). The results shown correspond to a mesh
with 162 elements with a polynomial degree of the shape functions of k = 7 (effective
resolution 1282).

is smooth and well-resolved on the finest mesh for all viscosities. The resolution requirements
are higher for the vorticity containing spatial derivatives of the velocity field. As already noted
in Brown (1995), the vorticity field is still not well-resolved even if convergence has already
been achieved for the velocity or kinetic energy. It can be seen from Figure 7.5 that the vorticity
field is well-resolved for the viscous cases ν = 2.5·10−3, 10−3, 10−4, but shows grid-dependence
with numerical artefacts in the form of elevations of the vorticity at the element corners espe-
cially in the thin shear layer that is most difficult to resolve. In agreement with what is expected
physically, the kinetic energy dissipation rate tends to zero for ν → 0 and the kinetic energy is
conserved in the inviscid limit ν = 0. Of particular importance w.r.t. the interpretation of results
shown in Section 7.3.3 for the three-dimensional Taylor–Green problem is the observation that
the numerical dissipation occurring in the inviscid limit ν = 0 for coarse spatial resolutions
decreases to zero under mesh refinement for this two-dimensional problem.

An important aspect concerns the numerical robustness of the discretization scheme. For ex-
ample, the work by Chalmers et al. (2019) reports instabilities for the same shear layer problem
with viscosity ν = 0 for a discontinuous Galerkin discretization with polynomial degree k = 7
and refinement level l = 4. This originates from the fact that the stabilized discretization tech-
niques developed in Chapter 2 that render the discretization robust in under-resolved scenar-
ios (divergence and continuity penalty terms) have not been applied in that study. No robust-
ness problems have been observed for the present discretization scheme even for the coarsest
resolutions, and also for refinement levels of l = 0, 1 not explicitly shown here, which is a
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Figure 7.6: Two-dimensional shear layer roll-up problem: temporal evolution of kinetic en-
ergy and kinetic energy dissipation rate for decreasing viscosity values of ν =
2.5 · 10−3, 10−3, 10−4, and 0. For each visosity, results are shown for three differ-
ent effective resolutions of 322 (dotted lines), 642 (dashed lines), and 1282 (solid
lines) corresponding to meshes with 42, 82, and 162 elements with polynomial de-
gree k = 7.

prerequisite to obtain a feasible incompressible flow solver for three-dimensional turbulent flow
problems that appear to be even more challenging in terms of numerical stability. Instabilities
have also been reported for continuous spectral element discretizations for this two-dimensional
shear layer problem, where filtering techniques can be used to recover stability (Fischer and
Mullen 2001). A discretization technique with properties similar to the present stabilized DG dis-
cretization in terms of robustness and accuracy are exactly divergence-free H(div)-conforming
discretizations, see for example the studies by Fu (2019), Guzmán et al. (2016) analyzing this
shear-layer problem, the study by Schroeder and Lube (2018) discussing other two-dimensional
examples such as the Kelvin–Helmholtz instability problem, and the study by Fehn et al. (2019a)
comparingH(div)- and stabilized L2-conforming discretizations for three-dimensional turbulent
flow problems in under-resolved scenarios.

7.3.3 Three-dimensional Taylor–Green vortex problem
Finally, the 3D Taylor–Green vortex problem (Taylor and Green 1937) is considered, which is
defined by the following initial velocity field

u(x, t = 0) = (sinx1 cosx2 cosx3,− cosx1 sinx2 cosx3, 0)T . (7.15)

The reader is also referred to Section 2.6.7.2 for a more detailed description of this test case. Re-
sults of viscous simulations for increasing Reynolds number Re = 1

ν
have already been shown

in Figure 7.1. In the following, the focus in entirely on the inviscid limit ν = 0. The simulations
are run over the time interval 0 ≤ t ≤ T = 20 to cover the different flow regimes of laminar
flow, transition to turbulence, and decaying turbulence. To reduce computational costs for fixed
resolution of the flow (or to increase the effective resolution for a given amount of computa-
tional costs), it is common practice to exploit the symmetry of the Taylor–Green problem and
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simulate the flow on the impermeable box Ω = [0, π]3 with symmetry boundary conditions on
all boundaries (Brachet et al. 1983), i.e.,

u · n = 0 ,
∂u

∂n
= 0 , (7.16)

as opposed to the periodic box Ω = [−π, π]3 that is also used in computational studies. This opti-
mization allows to reduce computational costs by a factor of 8 for the present DG discretization.
Further symmetries can be exploited by spectral methods leading to the so-called fundamental
box (Brachet et al. 1983, Kida 1985).

The computational domain Ω = [0, π]3 is discretized using a uniform Cartesian grid consist-
ing of (2l)d elements, where l denotes the level of refinement. The number of unknowns is given
as NDoFs = (2l)d(d(ku + 1)d + (kp + 1)d) = (2l)d(d(k + 1)d + kd). It is common practice in
the literature to express the effective mesh resolution in terms of the periodic box to obtain com-
parability between different discretization techniques that exploit different levels of symmetry.
Hence, the effective spatial resolution is defined as (2l+1(k + 1))d, e.g., the effective resolution
is 643 for refine level l = 3 and polynomial degree k = 3. Absolute tolerances of 10−12 and rel-
ative tolerances of 10−6 are used for the iterative linear solvers, where relative tolerance means
that the residual is reduced by a factor of 10−6 compared to the initial residual that uses as ini-
tial guess a high-order extrapolation of the solution from previous time steps. The polynomial
degree used for the TGV simulations is k = 3 and adaptive time stepping with Cr = 0.25 is
used for all simulations. The default value ζ = 1 is used for the penalty factors of the diver-
gence and continuity penalty terms, except for the finest resolution of 81923 where the penalty
factors have been increased by a factor ζ = 2 compared to the standard definition. For this
fine resolution, the simulation remained stable also for the default value of ζ = 1, but oscil-
lations in the maximum vorticity have been observed at early times, indicating the need for a
slightly larger penalization of the divergence-free constraint and normal continuity of the ve-
locity field. Since these oscillations disappeared when increasing the penalty factors by a factor
of 2, this value has finally been used for this highest resolution simulation. The highest resolution
of 81923 has NDoFs = 2.35 · 1011 unknown degrees of freedom, and 2.27 · 105 time steps have
been solved during this simulation. The computations have been performed on the SuperMUC-
NG supercomputer using almost 100k cores for the highest resolution, requiring a run time of
approximately 8.4 days.

7.3.3.1 Recapitulating the state-of-the-art

This section briefly summarizes the type of discretization, the maximal effective resolutions,
and the final time T of the simulations considered in previous numerical studies for the three-
dimensional inviscid Taylor–Green vortex problem. In Brachet et al. (1983), a spectral method
with maximum resolution of 2563 (exploiting symmetry) has been used and a direct simulation
has been performed up to times t ≤ 4. In a subsequent work by Brachet et al. (1992), a maxi-
mum resolution of 8643 (exploiting symmetry) has been reached, and again a direct simulation
has been performed up to times t ≤ 4. A comparsion of a spectral method and WENO finite
difference method can be found in Shu et al. (2005), where a maximum resolution of 3683 (ex-
ploiting symmetry) and a simulation up to times t ≤ 6 has been considered. A modal discontinu-
ous Galerkin method has been studied in Chapelier et al. (2012), with the simulations performed
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(a) velocity magnitude on plane x = π at times t = 0, 1, 2, 3, 4 (from left to right)

(b) vorticity magnitude on plane x = π at times t = 0, 1, 2, 3, 4 (from left to right)

Figure 7.7: Three-dimensional inviscid Taylor–Green problem: contour plots of velocity mag-
nitude and vorticity magnitude (blue indicates low value and red high value) on
plane x = π of impermeable box. The results correspond to a mesh with 323 elements
with a polynomial degree of the shape functions of k = 3 (effective resolution 2563).

up to times t ≈ 5 − 7 until the simulations became unstable, with the maximum resolution of
around 963 for different polynomial degrees from k = 1 to k = 5. DG discretizations used to
study the inviscid TGV problem have also been analyzed in Fernandez et al. (2018), Manzanero
et al. (2020), Moura et al. (2017a,b), Schroeder (2019), but with a focus on LES modeling.
The study by Cichowlas and Brachet (2005) used a spectral method with maximum resolution
of 20483 with simulations performed up to times t ≤ 4. The highest resolution of 40963 has been
achieved in Bustamante and Brachet (2012) using a spectral method, and the simulations have
been performed up to times t ≤ 4.

In these works, indications of finite-time singularities are mentioned. In Morf et al. (1980), t∗ =
5.2 is obtained from power series expansions. A more accurate variant using power series expan-
sions presented in Brachet et al. (1983) leads to t∗ = 4.4±0.2. Furthermore, the study by Brachet
et al. (1983) reports indirect evidence for a finite-time singularity according to the direct numer-
ical simulation results, but the authors conclude that the resolution of 2563 is not sufficient to
investigate the occurrence of finite-time singularities for times t ≥ 4. The more recent study
by Bustamante and Brachet (2012) estimates a blow-up time of t∗ ≈ 4 and concludes that the
results are not inconsistent with the occurrence of a singularity. The work by Larios et al. (2018)
obtains a blow-up time of t∗ ≈ 4.2 similar to the blow-up time in Brachet et al. (1983).

7.3.3.2 Results in physical space

The early stage of the Taylor–Green vortex evolution with the formation of thin flow structures
is visualized in Figure 7.7. Similar results have been shown and discussed in detail already

291



7 Anomalous energy dissipation in incompressible Euler flows

(a) t = 4 (b) t = 5 (c) t = 6

(d) t = 7 (e) t = 8 (f) t = 9

Figure 7.8: Three-dimensional inviscid Taylor–Green problem: iso-surfaces of Q-criterion at
times t = 4, 5, 6, 7, 8, 9, where the blue surface corresponds to a value of −0.5 and
the orange surface to a value of 0.5. The results correspond to a mesh with 2563

elements with a polynomial degree of the shape functions of k = 3 (effective resolu-
tion 20483). Visualization by Nisarg Patel @LRZ in Garching, Germany.

in Brachet et al. (1983) for the same effective resolution of 2563 using a spectral method. In
agreement with the results for the two-dimensional shear layer problem, one can observe that
the velocity field is resolved at all times, while under-resolution effects are clearly visible in
the contour plots of the vorticity magnitude at later times t = 3 and t = 4 for the chosen
resolution. A high-resolution visualization of the thin vortex sheet shown in Figure 7.7 with a
volume rendering of the vorticity magnitude has been shown in Bustamante and Brachet (2012)
for an effective resolution of 40963. Figure 7.8 shows visualization results for a high-resolution
simulation (effective resolution 20483) at later times t = 4, 5, 6, 7, 8, 9, around which small-scale
features occur and transition to turbulence takes place. These results illustrate that the present
discretization scheme does not lead to thermalization, which appears to be a prerequisite to
obtain physically meaningful results, compare for example the present results to the thermalized
results shown in (Schroeder 2019, Figure 9.14). To the best of the author’s knowledge, numerical
results and visualizations of this quality have not been shown to date in the literature for the
inviscid TGV problem. Flow visualization is discussed in the literature as one possibility to trace
finite-time singularities, but appears to be impractical due to the difficulties in handling large data
sets for high-resolution simulations necessary for such investigations, and due to the difficulties
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Figure 7.9: Three-dimensional inviscid Taylor–Green problem: temporal evolution of kinetic en-
ergy (left) and kinetic energy dissipation rate (right) for increasing effective spatial
resolution.

in visualizing singularities (that do not show up as singularities for a finite-resolution numerical
simulation). Hence, the attention is turned to other techniques in the following.

Numerical results of a mesh convergence study for refinement levels l = 3, ..., 10 and poly-
nomial degree k = 3 are presented in the following. Figure 7.9 shows the temporal evolution of
the kinetic energy and the kinetic energy dissipation rate. At small times t, the energy is constant
and the energy dissipation rate is zero. This agrees with the expected theoretical behavior stating
energy conservation as long as the solution remains smooth and has also been shown in previ-
ous works in a similar way. As mentioned above, the simulations are not terminated once the
simulation can be expected to become under-resolved, but the simulations are instead continued
until t = 20. Depending on the effective mesh resolution, an onset of energy dissipation can be
observed that shifts towards later times for increasing spatial resolutions. However, this time of
onset of dissipation does not seem to be pushed beyond t ≈ 5 even for the finest spatial resolu-
tions. This is illustrated more clearly in Figure 7.10, which plots the kinetic energy dissipation
rate in logarithmic scaling as well as the error against the fine-resolution simulation (ref). The
fact that the dissipation rate of the simulations with 20483, 40963 resolution “converges” to that
of the finest resolution at a time t ≈ 5 for 20483 and t < 5 for 40963 is consistent with a poten-
tial blow-up time t∗ < 5. Overall, the interesting phenomenological observation is made that the
kinetic energy evolution and its dissipation rate tend to converge to a dissipative solution rather
than an energy-conserving solution with vanishing dissipation rate. As in high-Reynolds num-
ber viscous simulations of this problem, the kinetic energy dissipation rate reaches a maximum
at t = 8 − 9 and decreases afterwards. In Section 7.3.3.5, grid-convergence of the sequence of
discrete solutions to a dissipative reference solution is investigated in more detail. Note that the
present results for the dissipation rate agree well with those shown in Cichowlas et al. (2005)
for an energy-conserving scheme, where an effective dissipation rate is deduced from the ther-
malized energy Eth(t), the energy associated to the small scales with wavenumber k > kth,
where kth is the wavenumber at which the energy spectrum exhibits a local minimum.

It is now examined whether this behavior is consistent with what is observed for the temporal
evolution of the maximum vorticity and the enstrophy shown in Figure 7.11. For both quantities,
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Figure 7.10: Three-dimensional inviscid Taylor–Green problem: temporal evolution of kinetic
energy dissipation rate in logarithmic scaling (left) and error against fine-resolution
simulation (right).

one can immediately identify three phases: (i) a first phase up to approximately t ≈ 3 in which
the flow is well resolved for all spatial resolutions so that the results essentially overlap for all
simulations, (ii) an intermediate phase 3 < t < 5 in which the different simulations start to
deviate from each other due to under-resolution effects depending on the spatial resolution of
each simulation, and (iii) a final phase t > 5 in which the results of all simulations deviate
substantially due to the different resolution capabilities of the different simulations. In the first
phase, the vorticity first decreases, reaches a minimum, and then begins to grow exponentially in
agreement with the results shown in (Bustamante and Brachet 2012, Figure 1 (b)). In Figure 7.11,
a reference curve with exp

(
2
3
t
)

growth is added, describing the growth of the maximum vorticity
very well in this regime. In the second phase at around t ≈ 3.5, the maximum vorticity begins to
grow substantially faster, and the growth of vorticity essentially depends on the spatial resolution
that is directly linked to the maximum velocity gradient that can be represented on a given mesh.
As already mentioned in the introduction, for every simulation that does not blow up due to
numerical instabilities of a discretization scheme, the maximum vorticity will remain finite no
matter how fine the spatial resolution is. Therefore, the occurrence of a finite-time singularity
with limt→t∗ ‖ω‖∞ = ∞ remains speculative. While the present results might be considered
consistent with such a vorticity blow-up scenario, a concrete blow-up time t = t∗ can not be
identified. It can rather be observed that the time of maximum vorticity reached in this second
phase is shifted to later times also for the finest spatial resolutions. At the same time, one might
argue that a finite-time blow-up at a time t = t∗ with t∗ ≈ 4.5− 5 would produce results similar
to those shown here, with the maximum vorticity following the exact profile until the curve
of a specific spatial resolution branches off due to under-resolution of the simulation. In such
a scenario, one would expect the maximium vorticity to grow by a factor of 2 for refinement
level l→ l+ 1 due to the mesh size being reduced by a factor of 2, allowing numerical gradients
becoming twice as large. While such an increase in maximum vorticity is observed from one
refinement level to the next, it is not clear whether this suspected blow-up would happen in finite
time. In the third phase, the maximum vorticity reaches a global maximum between t = 6 − 7
for each resolution before it starts to decrease slowly. In this phase, the maximum vorticity is
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Figure 7.11: Three-dimensional inviscid Taylor–Green problem: temporal evolution of maxi-
mum vorticity (left) and enstrophy (right) for increasing effective spatial resolution.

offset by a factor of approximately 2 from one refine level to the next. This is a clear indication
that none of the simulations is able to resolve the finest structures, and it is plausible that a factor
of 2 in mesh size also gives a factor of 2 in maximum vorticity. Finally, the maximum vorticity
shows a strongly fluctuating behavior in the third phase. Note that the maximum vorticity is
determined numerically by taking the maximum over all quadrature points, i.e., the vorticity
field is sampled in discrete points. This effect is negligible for well-resolved scenarios but might
explain an oscillatory behavior in case a local maximum travels through the domain.

The temporal evolution of the enstrophy is overall similar to that of the maximum vorticity. An
important difference is that the enstrophy does not reach a local minimum at early times as ob-
served for the maximum vorticity. In the second phase, the growth of enstrophy is more moderate
compared to the maximum vorticity. In the third phase, the enstrophy curves can be described
essentially as smoothed variants of the maximum vorticity from which the high-frequency con-
tent has been removed. A possible explanation for the enstrophy behavior in the second and third
phase is that the enstrophy is not a local quantity, but an average in space over the computational
domain. Again, a growth in enstrophy by a factor of 2 from one mesh level to the next is ob-
served at later times, which is consistent with an enstrophy evolution theoretically taking infinite
values, or taking finite values but much larger than those obtained numerically in Figure 7.11.
Considering Onsager’s conjecture as valid, it is clear that one can not expect convergence for
the temporal evolution of the maximum vorticity and the enstrophy. Theoretically, convergence
can then only be expected for the kinetic energy evolution and to some extent for kinetic energy
spectra up to the resolution limits of the discretization scheme, as discussed in the following.

7.3.3.3 Results in spectral space

Figure 7.12 shows kinetic energy spectra for increasing spatial resolution at various instants of
time, namely at t = 1, . . . , 9 in steps of width 1. Results are shown for resolutions of 1283

to 20483. High computational costs and memory requirements of the FFT part of the simulations
did not allow to perform the spectral analysis for the highest resolutions of 40963 and 81923.
For a discussion of the general behavior of energy spectra as a function of time regarding the
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(a) effective resolution of 1283

(b) effective resolution of 2563

(c) effective resolution of 5123

Figure 7.12: Three-dimensional inviscid Taylor–Green problem: kinetic energy spectra for ef-
fective resolutions of 1283, 2563, 5123 at times t = 1, 2, ..., 9.
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(d) effective resolution of 10243

(e) effective resolution of 20483

Figure 7.12: Three-dimensional inviscid Taylor–Green problem: kinetic energy spectra for ef-
fective resolutions of 10243, 20483 at times t = 1, 2, ..., 9.

early time behavior t ≤ 4, the reader is referred to the works by Brachet et al. (1983), Busta-
mante and Brachet (2012), Cichowlas and Brachet (2005), where it is shown how the energy
spectra can be fitted to functions of the form E(k, t) = C(t)k−n(t) exp (−2kδ(t)) and where
values obtained for n(t) and δ(t) are discussed in detail. To verify the present results, references
curves of slope n = 3 (blow-up of enstrophy) and n = 5/3 (Kolmogorov’s inertial scaling law)
or n = 7/3 (motivated by results obtained in Piatkowski (2019) for viscous Taylor–Green sim-
ulations) are included in the figures. The energy spectra are compared against the slope n = 3
as a means to investigate the plausibility of a potentially singular behavior and to identify a
time t = t∗ at which such a blow-up could occur, as motivated in Section 7.2. Once the flow has
transitioned to a fully turbulent state, it can be expected that the energy spectrum exhibits some
form of Kolmogorov scaling. For this purpose, the energy spectra are considered at times t = 8
and 9 where the maximum dissipation rate occurs, even though the flow might not be fully homo-
geneous isotropic at that time and the results might deviate from Kolmogorov’s k−5/3 scaling. To
quantify the resolution capabilities of the present discretization, the Nyquist wavenumber kNyquist

is also plotted as well as the wavenumber k1% according to the 1%-rule by Moura et al. (2017a)
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that aims at obtaining an accurate resolution limit for upwind-like DG discretizations for a spe-
cific polynomial degree of the function space.

Figure 7.12 shows that the range of scales resolved by the numerical method increases with in-
creasing spatial resolution as expected theoretically, and that the resolution limit for polynomial
degree 3 is described very well by the 1%-rule corresponding to this degree. The energy spectra
reach a slope of −3 between t = 4 and t = 5, so that the results are consistent with the occur-
rence of singular behavior around that time (4 < t∗ < 5), in agreement with the rapid growth of
the maximum vorticity observed in the same time interval, see Figure 7.11. The spectra in the
inertial range show a decay slightly stronger than k−5/3 and better agreement is achieved when
compared to a k−7/3 scaling that is also shown in Figure 7.12. This behavior has already been
observed in Piatkowski (2019) for viscous Taylor–Green vortex simulations, where it was found
that Kolmogorov’s k−5/3 scaling can only be observed at later times, e.g., t ≈ 20. Regarding the
inertial scaling, the present results are therefore in agreement with results shown in the literature.
Towards the Nyquist wavenumber, a moderate pile-up of energy can be observed by comparison
against the−5/3 and−7/3 references slopes before the energy falls off very rapidly. The energy
pile up is characteristic of this type of high-order discontinuous Galerkin approach and becomes
stronger for higher polynomial degrees, see Moura et al. (2017a,b) and references therein. This
particular behavior is often the primary target when optimizing discretization schemes, see for
example the recent studies by Flad and Gassner (2017), Manzanero et al. (2020), Winters et al.
(2018) and references therein, where it is suggested to counteract this energy bump behavior by
explicit sub-grid scale modeling. However, the recent study by Fernandez et al. (2018) shows that
this topic is delicate and improvements in some quantities by the use of explicit sub-grid models
cause deviations in other quantities such as the temporal evolution of the kinetic energy dissipa-
tion rate. The challenge therefore lies in improving the spectral behavior and at the same time not
giving up the improved resolution capabilities (per degrees of freedom) of high-order discretiza-
tions. The overall goal can be formulated as achieving a discretization method that is accurate
w.r.t. both the spectral behavior and the behavior in physical space, e.g., the temporal evolution
of kinetic energy and its dissipation rate. From such a holistic view it appears to be unclear
whether an explicit sub-grid scale model optimizing the energy spectrum according to the iner-
tial k−5/3 law is advantageous overall. This point is taken up again in the outlook in Section 7.4
discussing possible directions of future research. The energy spectra shown in (Schroeder 2019,
figure 9.15) for an exactly energy-conserving discretization scheme illustrate that such a scheme
leads to physical inconsistencies for the E(k)-curves in the inertial range.

7.3.3.4 Does the numerical dissipation have artificial or predictive character?

The dissipation of kinetic energy observed for the inviscid Taylor–Green simulations originates
from the numerical method. At first sight, one might argue that changing the discretization
scheme by choosing another numerical flux or varying certain parameters leads to results that
are more or less dissipative, i.e., that the amount of dissipation is artificial and is determined by
the discretization parameters. The results of the mesh convergence study shown above do not
support this point of view, and this section provides further results that might allow insights into
the predictive character of these dissipative numerical solutions. In this context, it is illustrative
to study the temporal evolution of the kinetic energy and its dissipation rate under a variation
of parameters of the discretization scheme. Figure 7.13 shows a parameters study of the penalty
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Figure 7.13: Three-dimensional inviscid Taylor–Green problem: variation of penalty factor ζ and
its influence on the temporal evolution of the kinetic energy (left) and the kinetic
energy dissipation rate (right) for effective resolution of 10243.

factor ζ of the divergence and continuity penalty terms of the present discretization, considering
values of ζ = 1, 2, 4, 8 by the example of the 10243 spatial resolution. Note that this parame-
ter is the crucial one in stabilizing the method in the under-resolved and high-Reynolds regime,
see Fehn et al. (2018b, 2019a). The overall amount of dissipation as well as the dissipation max-
imum are essentially unaltered by a variation of this parameter. It is worth noting that the time
of onset of dissipation is also not affected by the value of ζ . This has important implications.
Assuming that a non-dissipative (energy-conserving) solution is the correct physical behavior
and that the numerical dissipation is artificial, one might expect that an increase of the penalty
parameter affects the numerical solution more strongly, e.g., changes the amount of overall dissi-
pation or leads to a delayed onset of dissipation due to a better fulfillment of the divergence-free
constraint for example. Since such a behavior is not observed, these results are an indication that
the obtained dissipative solutions have a predictive character. It is clear that the results can not
be expected to be identical for different penalty factors, since the results are not grid-converged
for the chosen 10243 resolution, meaning that discretization scheme and its parameters affect the
numerical solution.

7.3.3.5 Are the results grid-converged?

Finally, the question is addressed whether and to which extent the inviscid Taylor–Green simu-
lation results can be considered as grid-converged. For this purpose, relative L2-errors are com-
puted for the kinetic energy evolution and the kinetic energy dissipation rate

ε2
E =

∫ T
t=0

(E(t)− Eref(t))
2 dt∫ T

t=0
(Eref(t))

2 dt
, ε2

dE/dt =

∫ T
t=0

(
dE(t)

dt
− dEref(t)

dt

)2

dt∫ T
t=0

(
dEref(t)

dt

)2

dt
. (7.17)

Since no analytical solution is available, the errors are measured using the finest resolution
of 81923 as a reference (ref). This implies that the error can not be computed for the 81923
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Figure 7.14: Three-dimensional inviscid Taylor–Green problem: relative L2-errors of the tem-
poral evolution of the kinetic energy (left) and the kinetic energy dissipation
rate (right) for effective resolutions ranging from 83 to 40963.

resolution. The error of this simulation can only be roughly estimated by extrapolating the con-
vergence trend observed for the coarser resolutions and assuming that this convergence behavior
continues for the finest resolution. Defining a simulation with a relative error of 1% or less as
grid-converged, the results in Figure 7.14 reveal that grid-convergence is indeed achieved in
the kinetic energy evolution with errors below 1%. For the second finest resolution (the last
data point in Figure 7.14), the measured error is 0.27%. For the kinetic energy dissipation rate,
the error is significantly larger, demonstrating that this quantity is more sensitive, in agreement
with what has been observed in Figure 7.1. For the second finest resolution, the measured er-
ror is 3.52%. While the errors can be expected to be smaller for the finest resolution 81923

that is used as a reference solution here, even finer resolutions would be required to achieve
grid-convergence also for the kinetic energy dissipation rate in terms of the 1% error level. Fig-
ure 7.14 also shows linear least-squares fits (e.g., log(E) ≈ a log(NDoFs) + b for the kinetic
energy) to the data obtained from the numerical experiments, where a mean converge rate of
approximately h3/4 is obtained for the kinetic energy and h1/2 for the dissipation rate. This result
– seemingly providing numerical evidence of grid-convergence to a dissipative solution of the
three-dimensional incompressible Euler equations under Taylor–Green initial conditions – is the
main result of this chapter. While one might conjecture that this solution could be a weak Euler
solution, there is currently no rigorous mathematical theory guaranteeing convergence to a weak
solution. Moreover, even if convergence to a weak Euler solution was in fact obtained, it might
not be the viscosity solution for ν → 0. Finally, from the results in Figure 7.14 it can not be
excluded that the dissipation rate would (slowly) tend to zero in the limit h → 0 if finer spa-
tial resolutions were realized. This decisive aspect is explained in more detail in the following:
For a solution that is non-dissipative (i.e., energy-conserving) from a physical perspective, one
might argue that dissipation in the numerical simulation can only originate from under-resolution
and can be expected to tend to zero when increasing the resolution. However, a dissipation rate
decreasing extremely slowly under mesh refinement, e.g. as 1/ log log(1/h), might then (erro-
neously) indicate grid-convergence to a dissipative solution, although the true solution is actually
energy-conserving. Against this background, the present numerical investigations according to
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the indirect approach are consistent with or suggestive of finite-time singularities, but do not
conclusively provide evidence of finite-time singularities.

7.4 Conclusion and outlook

Hunting for finite-time singularities in incompressible Euler flows is a challenging discipline.
Searching for singular behavior in visualizations of three-dimensional simulation results evokes
the picture of finding a needle in a haystack, as it can be expected that singularities are very
localized, will never be resolved by a numerical scheme, and the amount of data for large-scale
three-dimensional simulations soon becomes cumbersome. For this reason, most previous stud-
ies focused on local quantities such as the maximum vorticity, the analyticity strip width, fitting
energy spectra to power law behavior, and related blow-up criteria. The present work focuses
on global quantities such as the temporal evolution of the kinetic energy, avoiding geometrical
complexities in visualization and striving for a clearer indication of singular behavior given that
it might be computationally less demanding to resolve the kinetic energy than the vorticity in
numerical simulations. This approach is called indirect since it exploits the connection between
singular behavior and anomalous energy dissipation according to Onsager’s conjecture. A deci-
sive point is that this technique requires suitable discretization schemes that remain robust in the
presence of singularities and provide mechanisms of dissipation in case no viscous dissipation
is present, which is a challenge in itself. Then, the idea is that observing an energy dissipating
behavior for a sequence of mesh refinement levels provides insight into the physical dissipation
behavior of the problem under investigation.

This technique has been applied to one-, two-, and three-dimensional problems. Results con-
sistent with theory have been obtained in one and two space dimensions. For the complex three-
dimensional inviscid Taylor–Green problem, an energy dissipating behavior consistent with the
high Reynolds number limit of viscous simulations available in the literature has been observed.
The present work measures grid-convergence to a dissipative, fine-resolution numerical solu-
tion for the three-dimensional inviscid Taylor–Green problem with a measured relative L2-error
of 0.27% for the kinetic energy and 3.52% for the kinetic energy dissipation rate. The results
for the temporal evolution of the kinetic energy might therefore be considered as grid-converged
and serve as a reference solution for future studies. Regarding the temporal evolution of the
maximum vorticity and the enstrophy, an increase of almost four orders of magnitude could be
resolved for both quantities. Confidence is put into the reliability of the numerical results for
this challenging problem by the circumstance that the numerical method applied here is a robust
discretization scheme that remains numerically stable in the inviscid limit for all spatial resolu-
tions that have been investigated. This is an important prerequisite to draw conclusions about a
potential physical blow-up. In contrast, a numerical simulation that blows up in finite time does
not allow any conclusions, since the observed blow-up is due to numerical instabilities. In other
words, a physical blow-up does not imply a numerical blow-up for a finite-resolution numerical
simulation.

In summary, this work wants to raise the questions (i) to which extent these results are related
to weak dissipative solutions of the incompressible Euler equations, (ii) to which extent these
results can then be interpreted as a numerical confirmation of the energy dissipation anomaly,
and (iii) whether these results would imply finite-time singularities according to Onsager’s con-
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jecture. It should be emphasized that the present results do not formally prove convergence of the
discrete velocity fields uh to a weak Euler solution u. Even if convergence to a weak Euler so-
lution was obtained for a subsequence hj , another subsequence hk might converge to a different
weak Euler solution. Moreover, it can not be excluded that the observed “dissipation anomaly” is
of numerical origin in the sense that the spatial resolutions considered here might be too coarse to
adequately resolve an energy-conserving Euler solution. Nevertheless, the present study might
complement theoretical and experimental works on anomalous energy dissipation and the re-
lated implications on finite-time singularities for three-dimensional incompressible Euler flows
according to Onsager’s conjecture. As part of future work, the so-called 4/5th-law (Duchon and
Robert 2000) should be investigated numerically in order to substantiate the hypothesis of hav-
ing found a dissipative anomaly. Finally, the present work would gain further theoretical support
by a proof of convergence to generalized weak Euler solutions for DG discretization schemes of
the Euler equations in the limit h→ 0 (along subsequences).

Given the challenges of the proposed indirect approach, it appears to be natural to raise the
question whether this technique has advantages over well-known direct techniques. Below, some
ideas are shared why the indirect approach might be an attractive technique for the exploration
of finite-time singularities. A key motivation for the indirect approach is that it might not be
necessary to resolve the smallest scales of the flow in order to resolve the temporal evolution
of the kinetic energy. This is based on the observation that resolving the vorticity field (direct
approach) typically requires significantly finer resolutions than resolving the kinetic energy (in-
direct approach). When studying singularities by the direct approach, one needs to realize that
resolving the smallest scales is not possible for finite spatial resolutions. The vorticity will take
finite5 values at all times for a stable discretization scheme, so that results of a single simulation
do not serve as numerical evidence of a finite-time singularity. A key element of the indirect
approach is a mesh refinement study where the quantities of interest (kinetic energy and its dis-
sipation rate) do not blow up. This circumstance is expected to support cross-solver validation
very naturally. Assume for example that different spatial discretization schemes would converge
to the same dissipative, numerical solution (measured by some error norms as done in the present
work). A cross-solver validation of the kinetic energy evolution or dissipation rate (indirect ap-
proach) might give confidence that the obtained dissipative behavior is not artificial (why should
entirely different PDE solvers produce “the same” artificial result with artificial dissipation?).
On the contrary, it would be difficult for each of these simulations to demonstrate a blow-up of
vorticity in order to provide evidence of finite-time singularities by direct techniques. All these
solvers might show an increase in vorticity by a large factor, but it is still not clear whether a
finite-time singularity ‖ω‖∞ →∞ occurs. Of course, there is currently not sufficient data avail-
able in the literature to substantiate this assumption regarding a cross-solver validation of the
present results. One aspect that the present work wants to initiate is exactly such a cross-solver
validation based on space-averaged results or other suitable statistical results. In summary, the
argument in favor of the indirect approach would then be a clearer indication of finite-time sin-
gularities due to relaxed resolution requirements as compared to the direct approach.

Applicability of high-order DG discretizations to large-scale problems in turbulence research,
for which spectral methods are currently the state-of-the-art due to their accuracy and computa-

5In this context, the term finite means that the quantity of interest takes values much smaller than the “infinite”
value defined by the maximum floating point number that can be represented on a computer.

302



7.4 Conclusion and outlook

tional efficiency, has been demonstrated. Finally, the present work gives indications in terms of
what a promising large-eddy simulation strategy might be, and contributes to the long-lasting and
difficult discussion on explicit versus implicit sub-grid scale models. High-order discretizations
that can be described as implicit LES have shown very promising results for moderate Reynolds
number flows, but it is often argued that such techniques can be expected to finally need ex-
plicit sub-grid scale modeling once they are applied in the limit Re → ∞. The present work
contributes to this discussion by investigating a high-order discontinuous Galerkin discretiza-
tion without explicit model in the inviscid limit. Assuming that such an implicit approach gives
physical results in the inviscid limit, e.g., consistent with Onsager’s conjecture on anomalous en-
ergy dissipation, it makes one more confident that such a method is able to naturally account for
more complex physical mechanisms in turbulence beyond K41 theory (Dubrulle 2019). Taking
as an alternative an energy-conserving numerical method with explicit sub-grid scale model, the
anomalous energy dissipation has to be realized by the sub-grid model. It could therefore be an
interesting future research direction to take the results shown here for the inviscid Taylor–Green
problem as a reference for further validation or to perform comparative studies between explicit
and implicit LES techniques for the highest Reynolds number case, the inviscid limit.
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8 Extension to moving meshes:
arbitrary Lagrangian–Eulerian
techniques

Chapter 2 dealing with discretization methods for the incompressible Navier–Stokes equations
has assumed that the computational domain does not change over time. However, many problems
of practical interest involve time-varying domains such as free-surface, multiphase, and fluid–
structure interaction problems. A variety of numerical methods has been proposed to deal with
moving domains, which can be classified into fitted and non-fitted methods. Another nomen-
clature widely used distinguishes between interface-tracking and interface-capturing methods.
This chapter discusses discretization methods for the incompressible Navier–Stokes equations
based on the arbitrary Lagrangian–Eulerian technique, an approach belonging to the first cate-
gory of methods mentioned above. Representatives of the second category would be immersed
boundary, cut, and level-set methods. In the context of fluid–structure interaction problems, an
overview is given in the inter-methodological article by Wall et al. (2006). Hybrid techniques
combining fitted and non-fitted methods have also been proposed, see for example Schott et al.
(2019) and references therein. The goal of this chapter is to extend the methodology presented
in Chapter 2 towards moving domains as a preparation for FSI problems that are the subject of
Chapter 9. The content of this chapter is based on work that has already been published in Fehn
et al. (2021a). First steps towards moving meshes for the present DG discretization have been
made in Heinz (2019).

The outline of this chapter is as follows. Section 8.1 provides a short review of literature on
ALE methods, summarizes previous contributions in the field of ALE-DG methods, and ex-
plains novel contributions of the present work. Section 8.2 briefly presents the model problem
of the incompressible Navier–Stokes equations in ALE form. Aspects related to the temporal
discretization are discussed in Section 8.3, where important peculiarities related to the imposi-
tion of boundary conditions for projection-type Navier–Stokes solvers are addressed in detail.
The spatial discretization is subject of Section 8.4, where fulfillment of the so-called geometric
conservation law is discussed as well as energy stability of the present stabilized DG formula-
tion. The goal is not only to maintain optimal rates of convergence as well as appealing stability
properties in the ALE case, but also to provide a comprehensive and simple formulation that
can easily be included in existing flow solvers and yields computationally efficient solution al-
gorithms. Detailed numerical results are presented in Section 8.5, and a summary is provided in
Section 8.6.
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8.1 Introduction

The arbitrary Lagrangian–Eulerian (ALE) continuum mechanics description is the basis of many
methods to capture flow problems on deforming domains. A very prominent class of applica-
tions are fluid–structure interaction problems with moderate deformations of the structure, where
moderate means that a mesh moving or mesh smoothing algorithm is able to handle the mesh de-
formation of the fluid mesh following the deformations imposed at the fluid–structure interface,
as opposed to very large deformations and topological changes that require other, geometrically
more flexible techniques.

ALE methods have a long tradition and have first been developed for finite difference meth-
ods in Hirt et al. (1974), see also Donea et al. (1982) for a review on the early development
of this methodology and Donea et al. (2017) for a survey of ALE methods. They have later
been developed for finite element discretizations of the compressible Navier–Stokes equations
in Donea et al. (1977, 1982), of the incompressible Navier–Stokes equations using linear el-
ements in Hughes et al. (1981) and spectral element discretizations in Beskok and Warbur-
ton (2001), Ho and Patera (1990), and also for finite volume discretizations, see for exam-
ple Lesoinne and Farhat (1996). In the context of discontinuous Galerkin (DG) discretizations,
this technique has first been applied to the compressible Navier–Stokes equations, being solved
on the deforming domain (Lomtev et al. 1999, Mavriplis and Nastase 2011, Nguyen 2010),
or solving transformed equations on a reference domain (Persson et al. 2009, Schnücke et al.
2018). For the incompressible Navier–Stokes equations, ALE-DG methods have first been pre-
sented in Ferrer and Willden (2012) and later in Wang et al. (2018). Since ALE-DG methods
for incompressible flows are the central topic of this chapter, the state-of-the-art is discussed in
more detail below.

An ALE method satisfying the geometric conservation law (GCL) (Thomas and Lombard
1979) is able to preserve a constant flow state on moving meshes. The GCL has been extensively
discussed in the context of finite volume discretizations of the compressible Navier–Stokes equa-
tions, see for example the review article by Farhat and Geuzaine (2004) and references therein.
Here, the reader is especially referred to the works by Étienne et al. (2009), Förster et al. (2006)
addressing the solution of incompressible flow problems and being particularly relevant for the
present work. Following the design described in Förster et al. (2006) one can easily construct
incompressible flow solvers that automatically fulfill the geometric conservation law.

8.1.1 State-of-the-art

ALE formulations for the incompressible Navier–Stokes equations using DG discretizations
have been presented in Ferrer and Willden (2012), Wang et al. (2018). Both methods are based
on the dual splitting projection scheme proposed by Karniadakis et al. (1991), Orszag et al.
(1986) and use a discontinuous Galerkin discretization of the velocity–pressure coupling terms
without integration by parts as originally proposed in Hesthaven and Warburton (2007), that has
been shown to be unstable for small time step sizes, see Fehn et al. (2017). Both works (Ferrer
and Willden 2012, Wang et al. 2018) use equal-order polynomials for velocity and pressure, but
it was shown in Fehn et al. (2017) that the dual splitting scheme per se is not inf–sup stable as
is sometimes believed. Moreover, the works by Ferrer and Willden (2012), Wang et al. (2018)
enforce the important aspect of mass conservation and energy stability discussed in Chapter 2.4
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neither exactly nor weakly, so that the robustness of these methods remains unclear. Fulfillment
of the geometric conservation law has neither been demonstrated theoretically nor by numerical
experiments. Second-order convergence in time is shown in Ferrer and Willden (2012) for a ro-
tating, non-deforming mesh, and a temporal convergence test revealing second-order accuracy
is shown in Wang et al. (2018) for a FSI problem by comparing the error against the solution
for the smallest time step size. It still needs to be investigated whether third-order accuracy can
be achieved for the dual splitting scheme in the ALE case, which has for example been shown
in Krank et al. (2017) for a DG method solving the Eulerian form of the equations.

In the field of hybridizable discontinuous Galerkin discretizations, ALE-based monolithic FSI
solvers are presented in Sheldon et al. (2016) using an HDG discretization and in Neunteufel and
Schöberl (2021) using an H(div)-conforming HDG discretization. An ALE-HDG scheme for
moving meshes and two-phase flows is presented in Fu (2020). These works do also not demon-
strate optimal convergence in time (and space) of the ALE formulation and fulfillment of the
geometric conservation law. Since two-dimensional problems are solved, robustness for under-
resolved turbulent flow problems remains unclear, even though robustness may be expected the-
oretically for the approach in Neunteufel and Schöberl (2021) due to H(div)-conformity and an
exactly divergence-free velocity via a Piola transformation.

More sophisticated convergence tests are presented in Rhebergen and Cockburn (2012) for a
space–time HDG method on deforming domains, which satisfies the geometric conservation law
and achieves high-order accuracy in space and time. An energy-stable version of such a space–
time HDG approach has been proposed recently in Horváth and Rhebergen (2019) achieved
through a velocity field that is H(div)-conforming and exactly divergence-free.

8.1.2 Novel contributions of the present work

Open questions remain from previous works on ALE-(H)DG methods for the incompressible
Navier–Stokes equations regarding their numerical properties in terms of stability (small time
steps, inf–sup problem, and under-resolved turbulence or energy stability), fulfillment of the
geometric conservation law, and temporal convergence rates. Schemes fulfilling these proper-
ties have so far only been presented for (space–time) HDG discretizations. However, the use of
matrix-based implementations renders these methods computationally expensive, especially for
three-dimensional problems. A recent study by Kronbichler and Wall (2018) has shown that the
computational efficiency of matrix-based HDG solvers significantly trails behind fast matrix-free
DG implementations for tensor-product elements (Kronbichler and Kormann 2019) on modern
CPU hardware, due to the large amount of data that needs to be transferred through the memory
hierarchy of the CPU, see also Chapter 4. It has long been internalized by the HPC commu-
nity that matrix-free algorithms are the method of choice for performant PDE solvers, indepen-
dently of the type of discretization used. In the context of ALE formulations, the geometry of the
problem and, hence, the metric terms in the weak form change continuously over time, so that
the expensive step of assembling the local matrices and subsequently removing inner degrees
of freedom by condensation in case of HDG methods has to be done in each time step. The
use of space–time approaches can be expected to increase computational costs compared to fast
projection-type solution techniques for incompressible flows. With a view to the current state-of-
the-art, these reasons manifest themselves in a lack of fast solvers for HDG-type discretizations
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for incompressible flows achieving a performance similar to matrix-free DG implementations
published in Fehn et al. (2018a) and discussed in Chapter 6.

The main novelty of this chapter is to develop ALE-DG methods that combine (i) fast Navier–
Stokes solution algorithms based on the method-of-lines approach (Fehn et al. 2017, 2018b), (ii)
desirable discretization properties in terms of optimal convergence rates in time and space, the
geometric conservation law, and robustness for turbulent flows, with (iii) computationally ef-
ficient matrix-free DG implementations (Kronbichler and Kormann 2019). As an alternative to
space–time formulations, fulfillment of the GCL and discretization methods that formally exhibit
arbitrarily high order of accuracy in space can also be achieved with a classical method-of-lines
approach. Although high-order accuracy can be observed for simple analytical test cases with
smooth solution, it should be emphasized that such a theoretically optimal convergence behav-
ior is rarely observed in complex applications. Many engineering problems of practical interest
are turbulent in nature, and in this field most applications are operating in the pre-asymptotic
regime where resolving spatial scales of the flow prior to entering the asymptotic regime is al-
ready a challenge from the point of view of computational costs. In such a setting, it would
be unrealistic to expect an improvement by orders of magnitude from high-order discretiza-
tions. Instead, a main motivation for the use of high-order DG discretizations actually stems
from their dissipation/dispersion properties, where improved resolution capabilities per degree
of freedom have been reported for high-order methods (Gassner and Beck 2013, Moura et al.
2017a). Furthermore, such an approach is also attractive since robustness and good accuracy can
be achieved for under-resolved turbulence without the use of explicit, often parameter-dependent
turbulence models (Fehn et al. 2018b, 2019a). This motivates to apply this type of discretiza-
tion also to problems on moving domains. Following the methodology in Chapter 2, this work
does not strive for arbitrarily high order of accuracy in time, but relies on the pragmatism that
second or third-order time integration schemes are sufficient in terms of accuracy for practi-
cal problems, especially if the time step size is restricted according to the CFL condition when
treating the convective term explicitly in time. This solution technique is for example used by
some of the most sophisticated and computationally efficient high-order CFD solvers, such as
Nektar++(Cantwell et al. 2015) and Nek5000 (Fischer et al. 2020a).

The ALE-DG methodology proposed here is characterized by the following design choices:
The ALE equations are solved on the deformed geometry, storing one instance of the mesh that
is updated from one time step to the next. Since high-order parametric mappings are consid-
ered, this implies updating the coordinates of all nodal points. The ALE equations are intro-
duced on the level of differential equations, subsequently discretized in time and space. This
way, it is straight-forward to satisfy the geometric conservation law automatically (Förster et al.
2006), independently of the mesh motion and its numerical approximation. Although this chapter
considers analytical mesh motions, the methods are formulated with fluid–structure interaction
problems in mind, i.e., the ALE formulations are implemented in a way that they only require
knowledge about the coordinates of all grid nodes at discrete instants of time. Then, the grid
velocity is computed from these grid coordinates in a way that the formal order of accuracy of
the time integration schemes is maintained on moving meshes. The fact that metric terms in the
weak form change over time does not introduce additional complexity, since this is an aspect
that a generic finite element library (such as deal.II (Arndt et al. 2020a) used here) can take
care of automatically. Hence, the present design allows to reuse existing DG implementations
for static meshes with modifications stemming only from the additional ALE transport term.
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This is in contrast to other ALE-DG formulations that transform the equations to a reference
frame accounting for metric terms prior to discretization. The ALE-DG methods discussed here
are embedded into the unified framework of Navier–Stokes solvers presented in Chapter 2, sup-
porting both monolithic solvers and widely used projection-type solvers, implicit and explicit
formulations of the convective term, as well as the option for adaptive time-stepping.

8.2 Incompressible Navier–Stokes equations in ALE
formulation

This section briefly derives the ALE form of the incompressible Navier–Stokes equations and
the reader is referred to Donea and Huerta (2003) for more detailed information. To derive the
incompressible Navier–Stokes equation in arbitrary Lagrangian–Eulerian form, consider the Eu-
lerian formulation of the incompressible Navier–Stokes equations in a domain Ω ⊂ Rd

∂u

∂t

∣∣∣∣
x

+ (u · ∇)u−∇ · Fv(u) +∇p = f , (8.1)

∇ · u = 0 . (8.2)

As introduced in Chapter 2, u = (u1, ..., ud)
T is the velocity vector, p the kinematic pressure,

and f = (f1, ..., fd)
T the body force vector. Spatial derivatives are defined w.r.t. the Eulerian

coordinates x = (x1, ..., xd)
T, ∇(·) = ∂(·)

∂x
, and |x denotes the time derivative at a fixed point x

in Eulerian coordinates. The convective term is written in convective formulation (u·∇)u instead
of the conservative formulation ∇ · (u⊗ u), since the convective formulation is a natural form
in the context of ALE, see Remark 8.2.

To obtain the ALE form of the above equations, the Eulerian time derivative is replaced by
a time derivative with respect to a fixed point of the mesh (denoted as ALE time derivative in
the following), which gives rise to an additional transport term with transport by the grid ve-
locity uG. The convective term then has the same structure as the convective term in Eulerian
description (using the convective formulation), but with transport velocity w = u− uG instead
of the fluid velocity u. The motivation behind is to apply the time integration scheme with an
update of the solution vectors just as in the Eulerian case, thereby automatically obtaining the
solution coefficients on the new mesh. By this technique, expensive transformations of the solu-
tion vector (containing the degrees of freedom of the finite element expansion) from one mesh at
a previous time instant onto another one at the current time instant is avoided. Apart from the Eu-
lerian coordinates x describing an (arbitrary) point in Euclidean space, the mesh coordinates χ
are introduced describing a fixed point of the mesh. For transient problems, x(χ, t) describes the
trajectory of a fixed point of the mesh in the Eulerian coordinates x as a function of time. The
grid velocity is therefore given as

uG =
∂x

∂t

∣∣∣∣
χ

. (8.3)
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The time derivative of an arbitrary quantity φ w.r.t. the mesh reference frame χ gives the desired
relation between the Eulerian and ALE time derivatives

∂φ (x(χ, t), t)

∂t

∣∣∣∣
χ

=
∂φ

∂t

∣∣∣∣
x

+
∂φ

∂x
· ∂x
∂t

∣∣∣∣
χ︸ ︷︷ ︸

=uG

=
∂φ

∂t

∣∣∣∣
x

+ (uG · ∇)φ . (8.4)

Using equation (8.4) to substitute the Eulerian time derivative in equation (8.1), one arrives at
the incompressible Navier–Stokes equations in ALE formulation

∂u

∂t

∣∣∣∣
χ

+ ((u− uG) · ∇)u−∇ · Fv(u) +∇p = f in Ω(t)× [0, T ] , (8.5)

∇ · u = 0 in Ω(t)× [0, T ] . (8.6)

As described in detail in Section 2.2, initial conditions are prescribed in Ω(t = 0) and boundary
conditions on Γ(t) = ΓD(t)∪ΓN(t) with ΓD(t)∩ΓN(t) = ∅, with the difference that ΓD(t),ΓN(t)
are time dependent in general.

Remark 8.1 The term arbitrary Lagrangian–Eulerian can be explained by the fact that the
Lagrangian description is recovered for χ = X (material coordinates) yielding uG = u, and
the Eulerian description for χ = x yielding uG = 0.

Remark 8.2 Note that the formulation chosen as a starting point for discretization in time
and space has important implications regarding compliance with the geometric conserva-
tion law. Using the above differential formulation with the convective term written in non-
conservative form to derive temporal and spatial discretizations allows to satisfy the GCL au-
tomatically (Förster et al. 2006). Alternative conservative formulations with time derivative in
front of the integral over a temporally changing domain contain an additional term in which
the divergence of the mesh velocity occurs, and fulfilling the GCL is more complicated in this
case (Étienne et al. 2009, Förster et al. 2006). The study by Étienne et al. (2009) is inconclusive
in the sense that the non-conservative formulation is not restricted to first-order accuracy in
time as implied in that work. As demonstrated in Förster et al. (2006) and in the present work,
high-order accuracy in time can be achieved with the non-conservative formulation.

The motion of the domain Ω(t) is described by a function fG = fG(χ, t)

fG :

{
Ω0 × [0, T ]→ Ω(t), Ω0,Ω(t) ⊂ Rd ,

(χ, t) 7→ x (χ, t) .
(8.7)

With respect to the argument χ, the map fG is a homeomorphism for all times, and the argu-
ment t describes a continuous deformation over time. In this chapter, fG will be an analytically
defined, smooth function in space and time. An illustration is shown in Figure 8.1. Without loss
of generality, assume that x (χ, t = 0) = χ, and therefore Ω(t = 0) = Ω0. To demonstrate high
order of accuracy of the multistep BDF time integration schemes that are used in this work and
that require a starting procedure to demonstrate the formal order of accuracy, it is essential that
the mesh motion is continuously differentiable in time. In the context of fluid–structure interac-
tion, the mesh motion is defined by the deformation of the fluid–structure interface according to
the structural displacements and a mesh smoothing algorithm calculating the mesh deformation
in the interior of the fluid domain.
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ξ

χ

x

fG(χ, t)

fm(ξ, t)

fm(ξ, t = 0)

Ω̃e

Ωe(t = 0)

Ωe(t)

Ω0

Ω(t)

Figure 8.1: Illustration of coordinate systems χ and x with mesh deformation fG, and reference
coordinates ξ with finite element mapping fm of polynomial degree km = 2.

8.3 Discretization in time

This section builds upon Section 2.3, where different solution techniques are discussed for the
incompressible Navier–Stokes equations in Eulerian form, including monolithic solvers and op-
erator splitting techniques. The goal is to derive consistent ALE formulations maintaining the
high-order accuracy of these schemes also on moving meshes. Hence, the focus of this section is
on the aspects relevant to ALE and in particular boundary conditions, while the reader is referred
to Section 2.3 for an introduction of these time integration schemes and the related notation.

8.3.1 Coupled solution approach

Applying the BDF time integration scheme to equations (8.5) and (8.6) and using a fully implicit
formulation yields

γn0u
n+1 −

∑J−1
i=0 α

n
i u

n−i

∆tn

∣∣∣∣∣
χ

+
((
un+1 − un+1

G

)
· ∇
)
un+1

−∇ · Fv(un+1) +∇pn+1 = f (tn+1) ,

(8.8)

∇ · un+1 = 0 , (8.9)

where |χ means that all terms of the BDF sum are evaluated at constant χ, i.e., an ALE-type
time derivative has to be considered. The boundary conditions are

un+1 = gn+1
u on ΓD , (8.10)(

Fv(un+1)− pn+1I
)
· n = hn+1 on ΓN . (8.11)
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As an alternative formulation, an explicit formulation of convective term is considered, dis-
cretized in time via an extrapolation scheme of order J

γn0u
n+1 −

∑J−1
i=0 α

n
i u

n−i

∆tn

∣∣∣∣∣
χ

+
J−1∑
i=0

βni
((
un−i − un+1

G

)
· ∇
)
un−i

−∇ · Fv(un+1) +∇pn+1 = f (tn+1) ,

(8.12)

where the following boundary condition is used in the convective term

un−i = gn+1
u on ΓD . (8.13)

For an explicit treatment of the convective term, the time step size is restricted according to the
CFL condition, equations (2.209) and (2.210), with the difference that the velocity uh has to be
replaced by the transport velocity uh − uG,h in the ALE case.

Remark 8.3 While the boundary condition un−i = gn−iu might be considered a natural for-
mulation as well, it is interesting to study whether equation (8.13) also preserves optimal rates
of convergence. The advantage of this formulation is that only one version of the boundary
condition is required at any one time of the solution of the transient problem, therefore easing
implementation without the need to store and keep track of previous versions of the boundary
condition for fluid–structure interaction problems. For the projection methods discussed below,
one can not fully maintain this goal as these methods are more involved regarding the formula-
tion of boundary conditions.

8.3.2 Dual splitting scheme

In ALE formulation, the high-order dual splitting scheme (Karniadakis et al. 1991) consists of
the following four sub-steps to be solved in each time step

γn0 û−
∑J−1

i=0 α
n
i u

n−i

∆tn

∣∣∣∣∣
χ

=

−
J−1∑
i=0

βni
((
un−i − un+1

G

)
· ∇
)
un−i + f (tn+1) ,

un−i = gn+1
u on ΓD,

(8.14)

−∇2pn+1 = − γn0
∆tn
∇ · û,

∇pn+1 · n = hn+1
p on ΓD,

pn+1 = gn+1
p on ΓN,

û = gn+1
û on ΓD,

(8.15)
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ˆ̂u = û− ∆tn
γn0
∇pn+1,

pn+1 = gn+1
p on ΓN,

(8.16)

γn0
∆tn

un+1 −∇ · Fv

(
un+1

)
=

γn0
∆tn

ˆ̂u,

un+1 = gn+1
u on ΓD,

Fv(un+1) · n = hn+1
u on ΓN.

(8.17)

The pressure Neumann boundary condition hp and the Dirichlet boundary condition gû for the
intermediate velocity need to be described in ALE formulation as well. For a derivation of these
boundary conditions, the reader is referred to Section 2.3.3. In case of the ALE form of the
incompressible Navier–Stokes equations, the consistent Neumann boundary condition hp for the
pressure reads

hp (tn+1) =−

 γn0 gn+1
u −

∑J−1
i=0 α

n
i g

n−i
u

∆tn

∣∣∣∣∣
χ

− f (tn+1)

 · nn+1

−

[
Jp−1∑
i=0

βni
(((
un−i − un+1

G

)
· ∇
)
un−i + ν∇× ωn−i

)]
· nn+1 .

(8.18)

As already noted in Section 2.3.3, the acceleration term with exact derivative ∂gu/∂t is replaced
by a discrete BDF time derivative in the ALE or fluid–structure interaction case where the bound-
ary condition is only known at discrete times. Hence, one has to record the history of Dirichlet
boundary values gu in case of the dual splitting scheme. Since the time derivative is of ALE-type
at constant χ, the convective term needs to be formulated in ALE form as well.

The velocity Dirichlet boundary condition for the intermediate velocity û, equation (2.42) for
the Eulerian case, reads in ALE form

gû (χ, tn+1) =
J−1∑
i=0

αni
γn0
gu(χ, tn−i)−

∆tn
γn0

J−1∑
i=0

βni
((
un−i − un+1

G

)
· ∇
)
un−i +

∆tn
γn0
f (tn+1) .

(8.19)

As indicated in the above equation, the history of the boundary condition gu is evaluated in grid
coordinatesχ following the moving mesh from one time instant to the next, so that the ALE form
of the convective term is required in this boundary condition similar to the pressure Neumann
boundary condition (8.18).

8.3.3 Pressure-correction scheme

Extending the formulation of pressure-correction schemes from Section 2.3.4 to the ALE for-
mulation of the incompressible Navier–Stokes equations, the pressure-correction schemes can
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be summarized as follows

γn0 û−
∑J−1

i=0 α
n
i u

n−i

∆tn

∣∣∣∣∣
χ

+
((
û− un+1

G

)
· ∇
)
û−∇ · Fv (û) =

−
Jp−1∑
i=0

βni ∇pn−i + f (tn+1) ,

û = gn+1
u on ΓD,

Fv(û) · n = hn+1
u on ΓN,

pn−i = gn−ip on ΓN,

(8.20)

−∇2φn+1 = − γn0
∆tn
∇ · û,

∇φn+1 · n = hn+1
φ = 0 on ΓD,

φn+1 = gn+1
φ on ΓN,

û = gn+1
u on ΓD,

(8.21)

pn+1 = φn+1 +

Jp−1∑
i=0

βni p
n−i − χν∇ · û,

û = gn+1
u on ΓD,

(8.22)

un+1 = û− ∆tn
γn0
∇φn+1,

φn+1 = gn+1
φ on ΓN.

(8.23)

In the above equations, the convective term is formulated implicitly. As for the monolithic solver,
an alternative formulation with explicit treatment of the convective term can be used, resulting
in the following momentum equation in the first sub-step

γn0 û−
∑J−1

i=0 α
n
i u

n−i

∆tn

∣∣∣∣∣
χ

−∇ · Fv (û) =−
J−1∑
i=0

βni
((
un−i − un+1

G

)
· ∇
)
un−i

−
Jp−1∑
i=0

βni ∇pn−i + f (tn+1) ,

(8.24)

where the following boundary condition is imposed for the convective term

un−i = gn+1
u on ΓD . (8.25)

The pressure Poisson equation (8.21) is subject to the pressure Dirichlet boundary condition

gφ(χ, tn+1) = gp (χ, tn+1)−
Jp−1∑
i=0

βni gp (χ, tn−i) . (8.26)
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Remark 8.4 Note that pn−i = gn−ip is prescribed in equation (8.20) to be consistent with bound-
ary condition (8.26). Otherwise, sub-optimal rates of convergence have been observed when pre-
scribing pn−i = gn+1

p . Hence, a history of pressure Dirichlet boundary values on ΓN has to be
stored for the pressure-correction scheme for higher-order schemes with Jp ≥ 1, which can be
seen as a consequence of the operator splitting as compared to the monolithic solver described
in Section 8.3.1.

Remark 8.5 ALE formulations as described here for the incompressible Navier–Stokes equa-
tions have also been implemented for the scalar transport solver and the coupled flow–transport
problems described in Chapter 3. A detailed description is omitted here since the procedure is
very similar to the incompressible Navier–Stokes solvers described above. In the ALE case, the
convective term in the scalar transport equation is written in convective form. Then, the convec-
tive term in equations (3.8) and (3.9) becomes (wn+1 · ∇) θn+1 and

∑J−1
i=0 β

n
i (wn+1 · ∇) θn−i

with w = u− uG, respectively, if an arbitrary Lagrangian–Eulerian formulation is used.

8.4 Discretization in space

8.4.1 Time-dependent mapping and grid velocity

This work chooses a formulation of ALE-DG methods that solves the equations on the deformed
geometry. In the finite element context, the deformation of the geometry is described by the high-
order mapping xe(ξ, t) : Ω̃e × [0, T ]→ Ωe(t) from reference space to physical space

f em :

{
Ω̃e × [0, T ]→ Ωe(t), Ω̃e = [0, 1]d ,Ωe(t) ⊂ Rd ,

(ξ, t) 7→ xe (ξ, t) .
(8.27)

Introducing this time dependency into equation (2.71) yields

xe(ξ, t) =
km∑

i1,...,id=0

`km
i1...id

(ξ)xei1...id(t) . (8.28)

The mapping can be seen in analogy to the function fG describing the topological changes of
the domain Ω. While fG is defined globally for the whole domain and in a spatially continuous
way, the finite element mapping describes the mesh motion for each element of the mesh in the
discrete setting and is of finite dimension. For the following derivations, it is important to realize
that a point with constant χ can be thought of as a point with fixed ξ coordinates within one
element, i.e., there exists a bijective map between χ and ξ for each element. An illustration is
given in Figure 8.1. The present work is restricted to problems for which the topology of the
mesh does not change, i.e., that do not require remeshing. Hence, the data structures do not
have to be adjusted dynamically when moving the mesh. Updating the mesh means updating
the d(km + 1)d mapping degrees of freedom per element, i.e.,

xei1...id(tn+1) = fG(xei1...id(t = 0), tn+1) . (8.29)
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Moderately large deformations are possible as long as fG remains invertible, and invalid ele-
ments with invalid mapping or Jacobian will otherwise occur in the discrete setting. The numer-
ical examples shown in this chapter use a high-order mapping with km = ku.

Due to the ansatz (2.68) with a separation of space and time, applying the temporal discretiza-
tion to the spatially discretized equations in ALE form becomes trivial in the sense that the
structure of the equations is equivalent to the Eulerian case. Consider the time derivative term in
equation (8.5) multiplied by test functions vh, integrated over element Ωe(t = tn+1), and to be
discretized in time(

vh,
∂uh(t)

∂t

∣∣∣∣
χ

)
Ωn+1
e

=

vh, ∂∑ku
i1,...,id=0 `

ku
i1...id

(ξ)uei1...id(t)

∂t

∣∣∣∣∣
ξ


Ωn+1
e

=

(
vh,

ku∑
i1,...,id=0

`kui1...id(ξ)
∂uei1...id(t)

∂t

)
Ωn+1
e

≈

(
vh,

ku∑
i1,...,id=0

`kui1...id(ξ)
γn0u

e,n+1
i1...id

−
∑J−1

i=0 α
n
i u

e,n−i
i1...id

∆tn

)
Ωn+1
e

=

vh, γn0un+1
h −

∑J−1
i=0 α

n
i u

n−i
h

∆tn

∣∣∣∣∣
ξ


Ωn+1
e

.

(8.30)

The BDF rule introduced in the third row of the above equation approximates the acceleration at
time tn+1 consistently with the integral over Ωe taken at the same instant of time. In the following,
the label |ξ is skipped for simplicity, as it is clear from the above derivation that the BDF rule is
simply applied to the global solution vector containing the unknown degrees of freedom and that
all terms of the BDF sum use the same mass matrix at time tn+1. As explained in more detail
in Section 8.4.5, using the same mass matrix for all solution vectors is important in order to
satisfy the geometric conservation law (Förster et al. 2006). The above equation highlights that
discretization in space and time commute, meaning that the last term of the above equation would
have also been obtained by discretizing equation (8.8) in space. The projection-type solution
methods considered in this work are already formulated in a time-discrete manner, since the
splitting is performed on the level of differential operators. For this reason, the derivation of DG
formulations shown in the following starts from the time-discrete problems stated in Section 8.3.

Following Förster et al. (2006), the grid velocity is computed in the same way via a BDF
time derivative of the nodal grid coordinates xei1...id in the time discrete case in order to achieve
high-order temporal convergence on moving meshes

un+1
G,h =

∂xh
∂t

(tn+1)

∣∣∣∣
χ

≈ γn0x
n+1
h −

∑J−1
i=0 α

n
i x

n−i
h

∆tn

∣∣∣∣∣
ξ

. (8.31)

This procedure is different from Beskok and Warburton (2001), Ho and Patera (1990), Hughes
et al. (1981) where the grid coordinates are updated by integrating the mesh velocity forward in
time.
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8.4.2 Coupled solution approach

Beginning with the monolithic solution approach, the weak discontinuous Galerkin formulation
of the fully discrete problem with implicit formulation of the convective term can be summarized
as follows: Find un+1

h ∈ Vuh , pn+1
h ∈ Vph such that

me,n+1
h,u

(
vh,

γn0u
n+1
h −

∑J−1
i=0 α

n
i u

n−i
h

∆tn

)
+ ce,n+1

h

(
vh,u

n+1
h ,un+1

G,h ; gn+1
u

)
+ve,n+1

h

(
vh,u

n+1
h ; gn+1

u ,hn+1
u

)
+ ge,n+1

h

(
vh, p

n+1
h ; gn+1

p

)
+ae,n+1

D,h

(
vh,u

n+1
h

)
+ ae,n+1

C,h

(
vh,u

n+1
h ; gn+1

u

)
− be,n+1

h (vh,f(tn+1)) = 0 , (8.32)

−de,n+1
h

(
qh,u

n+1
h ; gn+1

u

)
= 0 , (8.33)

for all (vh, qh) ∈ Vuh,e × V
p
h,e and for all elements e = 1, ..., Nel. The time label n + 1, e.g.

in me,n+1
h,u , indicates that the integral is evaluated on the domain Ωn+1

e . When formulating the
convective term explicitly, the convective term in the discretized momentum equation (8.32) is
replaced by

ce,n+1
h

(
vh,u

n+1
h ,un+1

G,h ; gn+1
u

)
→

J−1∑
i=0

βni c
e,n+1
h

(
vh,u

n−i
h ,un+1

G,h ; gn+1
u

)
. (8.34)

As discussed in Section 2.5.1, a computational efficient variant is to apply the divergence and
continuity penalty terms in a postprocessing step, see equation (2.191). For the numerical results
studied in this chapter, the formulation shown in equations (8.32) and (8.33) is used with penalty
terms added to the momentum equation.

The individual terms in the weak form have been derived in Section 2.4. Only the convective
term, equation (2.94), needs to be adapted due to the ALE transport term

ceh (vh,uh,uG,h; gu) = (vh, (∇uh) · (uh − uG,h))Ωe
− (vh, (({{uh}} − uG,h) · n)uh)∂Ωe

+
(
vh, (({{uh}} − uG,h) · n) {{uh}}+

1

2
| ({{uh}} − uG,h) · n| [uh]︸ ︷︷ ︸

upwind flux

)
∂Ωe

.

(8.35)

Finally, the linearization of the convective term is specified. Following the procedure in Sec-
tion 2.4.2 yields

ceh,lin(vh,uh,lin,uG,h,∆uh) = (vh, (∇uh,lin) ·∆uh)Ωe
+ (vh, (∇(∆uh)) · (uh,lin − uG,h))Ωe

− (vh, (({{uh,lin}} − uG,h) · n) ∆uh)∂Ωe
− (vh, ({{∆uh}} · n)uh,lin)∂Ωe

+ (vh, (({{uh,lin}} − uG,h) · n) {{∆uh}}+ ({{∆uh}} · n) {{uh,lin}})∂Ωe

+

(
vh,

1

2
| ({{uh,lin}} − uG,h) · n| [∆uh]

)
∂Ωe

.

(8.36)
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8.4.3 Dual splitting scheme

For the dual splitting projection scheme, the variational formulation can be summarized as fol-

lows: Find ûh, ˆ̂uh,
ˆ̂
ûh,u

n+1
h ∈ Vuh and pn+1

h ∈ Vph such that for all vh ∈ Vuh,e, qh ∈ V
p
h,e and for

all elements e = 1, ..., Nel

me,n+1
h,u

(
vh,

γn0 ûh −
∑J−1

i=0 α
n
i u

n−i
h

∆tn

)
=

−
J−1∑
i=0

βni c
e,n+1
h

(
vh,u

n−i
h ,un+1

G,h ; gn+1
u

)
+ be,n+1

h (vh,f(tn+1)) ,

(8.37)

le,n+1
h,hom

(
qh, p

n+1
h

)
= − γn0

∆tn
de,n+1
h

(
qh, ûh; g

n+1
û

)
− le,n+1

h,inhom

(
qh; g

n+1
p , hn+1

p

)
, (8.38)

me,n+1
h,u

(
vh, ˆ̂uh

)
= me,n+1

h,u (vh, ûh)−
∆tn
γn0

ge,n+1
h

(
vh, p

n+1
h ; gn+1

p

)
, (8.39)

me,n+1
h,u

(
vh,

γn0
∆tn

ˆ̂
ûh

)
+ ve,n+1

h,hom

(
vh,

ˆ̂
ûh

)
=

me,n+1
h,u

(
vh,

γn0
∆tn

ˆ̂uh

)
− ve,n+1

h,inhom

(
vh; g

n+1
u ,hn+1

u

)
,

(8.40)

me,n+1
h,u

(
vh,u

n+1
h

)
+ ae,n+1

D,h

(
vh,u

n+1
h

)
∆tn + ae,n+1

C,h,hom

(
vh,u

n+1
h

)
∆tn =

me,n+1
h,u

(
vh,

ˆ̂
ûh

)
− ae,n+1

C,h,inhom

(
vh; g

n+1
u

)
∆tn .

(8.41)

8.4.4 Pressure-correction scheme

For the class of pressure-correction methods, the variational formulation can be summarized as
follows: Find ûh, ˆ̂uh, un+1

h ∈ Vuh and φn+1
h , pn+1

h ∈ Vph such that for all vh ∈ Vuh,e, qh ∈ V
p
h,e and

for all elements e = 1, ..., Nel

me,n+1
h,u

(
vh,

γn0 ûh −
∑J−1

i=0 α
n
i u

n−i
h

∆tn

)
+ce,n+1

h

(
vh, ûh,u

n+1
G,h ; gn+1

u

)
+ ve,n+1

h

(
vh, ûh; g

n+1
u ,hn+1

u

)
=

−
Jp−1∑
i=0

βni g
e,n+1
h

(
vh, p

n−i
h ; gn−ip

)
+ be,n+1

h (vh,f(tn+1)) ,

(8.42)

le,n+1
h,hom

(
qh, φ

n+1
h

)
= − γn0

∆tn
de,n+1
h

(
qh, ûh; g

n+1
u

)
− le,n+1

h,inhom

(
qh; g

n+1
φ , hn+1

φ

)
, (8.43)

me,n+1
h,p

(
qh, p

n+1
h

)
= me,n+1

h,p

(
qh, φ

n+1
h +

Jp−1∑
i=0

βni p
n−i
h

)
− χν de,n+1

h

(
qh, ûh; g

n+1
u

)
, (8.44)

me,n+1
h,u

(
vh, ˆ̂uh

)
= me,n+1

h,u (vh, ûh)−
∆tn
γn0

ge,n+1
h

(
vh, φ

n+1
h ; gn+1

φ

)
, (8.45)
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me,n+1
h,u

(
vh,u

n+1
h

)
+ ae,n+1

D,h

(
vh,u

n+1
h

)
∆tn + ae,n+1

C,h,hom

(
vh,u

n+1
h

)
∆tn =

me,n+1
h,u

(
vh, ˆ̂uh

)
− ae,n+1

C,h,inhom

(
vh, g

n+1
u

)
∆tn .

(8.46)

As for the monolithic solver, an alternative formulation treating the convective term explicitly is
obtained by replacing

ce,n+1
h

(
vh, ûh,u

n+1
G,h ; gn+1

u

)
→

J−1∑
i=0

βni c
e,n+1
h

(
vh,u

n−i
h ,un+1

G,h ; gn+1
u

)
. (8.47)

8.4.5 Geometric conservation law
It can be proven that the fully discrete ALE-DG methods derived above satisfy the geometric
conservation law, i.e., they are able to preserve a constant flow field (Thomas and Lombard
1979). In other words, the constant solution u(x, t) = u0, p(x, t) = p0 is a solution of the fully
discrete formulations for vanishing body forces, f = 0.

Theorem 8.1 Assume the solution at time instant tn is given as unh = u0, pnh = p0 where ui,0 =
Ci, i = 1, ..., d, and p0 = C (and similarly for previous time instants in case of high-order
schemes), and further assume f = 0 and exact numerical integration of the velocity diver-
gence term and pressure gradient term. Then, the fully discrete ALE-DG incompressible Navier–
Stokes solvers introduced in Sections 8.4.2, 8.4.3, and 8.4.4 preserve a constant solution and
yield un+1

h = u0, pn+1
h = p0 at time tn+1 = tn + ∆tn, independently of the order of the time

integration and extrapolation schemes, and for arbitrary mesh velocities.

Proof For the monolithic solver, insert the assumptions of Theorem 8.1 along with un+1
h =

u0, pn+1
h = p0 into equations (8.32) and (8.33) and show that the weak forms of all individ-

ual terms evaluate to zero in order to complete the proof. Obviously, the time derivative term
becomes zero since it holds γn0 =

∑J−1
i=0 α

n
i . For the other terms, it holds

ceh (vh,u0,uG,h) = 0 , veh(vh,u0) = 0 , deh,strong (qh,u0) = 0 , geh,strong (vh, p0) = 0 ,

aeD,h(vh,u0) = 0 , aeC,h(vh,u0) = 0 .
(8.48)

The volume term of the convective operator contains the gradient, and the face terms vanish
due to the consistency of the numerical flux. Note that it is enough to consider interior faces in
this context, as boundary faces behave the same when evaluating the boundary values according
to Table 2.3 for a constant solution. The SIPG discretization of the viscous term also vanishes,
as each form either contains gradients or jumps of the solution. The strong formulations of the
velocity divergence term, equation (2.98), and pressure gradient term, equation (2.103), vanish
for constant solutions, since the volume integrals contain derivatives of the solution and the face
integrals contain jumps. These terms do not vanish exactly for the weak formulations of the
velocity–pressure coupling terms, equations (2.97) and (2.102), when applying the quadrature
rules from Section 2.5.5 and for arbitrarily deformed elements. The divergence and continuity
penalty terms vanish for a constant solution, since they evaluate the divergence inside the element
or the jump over faces. The GCL is also fulfilled when applying these terms in a postprocessing
step, equation (2.191), since the remaining mass matrix system implies an identity.
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Regarding the dual splitting scheme, it follows from the above argumentation that the first sub-
step in equation (8.37) yields ûh = u0. Particular attention has to be paid to the boundary condi-
tions hp in equation (8.18) and gû in equation (8.19). The pressure Neumann boundary condition
vanishes for f = 0, as it contains derivatives in either space or time, and one obtains gû = gu
in the case of a constant solution. Hence, the divergence operator on the right-hand side of the
pressure Poisson equation (8.38) vanishes, and the pressure Poisson equation is satisfied for a
constant solution p0. It immediately follows from the argumentation for the monolithic solver

that the remaining sub-steps, equations (8.39), (8.40), and (8.41), yield ˆ̂uh = u0, ˆ̂
ûh = u0,

and un+1
h = u0. Thus, a constant flow state is preserved.

Turning to the pressure-correction scheme, the momentum equation (8.42) results in ûh = u0

for reasons explained above. The pressure boundary condition gφ becomes zero due to
∑Jp−1

i=0 βni =
1, so that φn+1

h = 0 is a solution of the pressure Poisson equation (8.43). The pressure up-
date equation (8.44) results in pn+1

h = p0, since the divergence term on the right-hand side
becomes zero. The same holds for the pressure gradient term in equation (8.45), since its ar-
guments are φn+1

h = 0, gn+1
φ = 0, so that the constant solution ˆ̂uh = u0 and un+1

h = u0 is
recovered in the last sub-steps (8.45) and (8.46). �

Remark 8.6 Note that no assumption has been made regarding the mesh velocity or how it is
computed numerically to show compliance with the GCL. This is a direct consequence of the fact
that the differential form of the ALE equations in convective formulation, equation (8.5), is dis-
cretized, where the time derivative is applied to the velocity only, as opposed to formulations that
apply the time derivative to an integral quantity, see also Förster et al. (2006). In Section 8.5,
it is demonstrated numerically that the geometric conservation law is fulfilled exactly for the
strong formulations, and that it is not fulfilled exactly down to rounding errors for the weak
formulations of the velocity–pressure coupling terms in general. However, since the temporal
discretization and spatial discretization are designed to satisfy the GCL, no relevant difference
is expected for practical problems with non-constant solution due to this variational crime. For
example, fulfilling discrete energy stability exactly with respect to the velocity–pressure coupling
terms requires that one term is formulated in weak form and the other one in strong form, so
that the formulation becomes symmetric independently of integration errors, see Section 2.4.5.
Previous works have shown that fulfilling the GCL is neither a necessary nor a sufficient condi-
tion for the time integrator to preserve its high-order accuracy on moving meshes (Étienne et al.
2009, Geuzaine et al. 2003). Therefore, the temporal convergence behavior of the present ALE
schemes is carefully investigated in Section 8.5, where it is demonstrated that the high-order ac-
curacy of the Navier–Stokes solvers on fixed meshes is preserved on moving meshes when using
definition (8.31) to calculate the mesh velocity.

8.4.6 Energy stability
This section extends Section 2.4.5 to the case of moving meshes. The aim is to investigate the
energy stability of the semi-discrete formulation for moving meshes and the influence that the
additional ALE transport term has on energy stability. Hence, the assumption of a time-invariant
domain from Section 2.4.5 is dropped here, while the additional assumption of a periodic motion
of the domain with a periodic grid velocity is introduced. Moreover, the viscous term is omitted
for this analysis since it has a dissipative character and since the critical case is to investigate

320



8.4 Discretization in space

whether a numerical method is energy stable in the absence of viscous dissipation, see also
Section 2.4.5. In a first step, the spatially continuous problem is studied in order to derive an
equation describing energy-conservation for moving domains. In a second step, energy stability
is investigated for the spatially discretized problem. For the continuous-in-space problem, begin
with ∫

Ω(t)

∂ 1
2
u · u
∂t

∣∣∣∣
χ

dΩ =

∫
Ω(t)

u · ∂u
∂t

∣∣∣∣
χ

dΩ

= −
∫

Ω(t)

u · (((u− uG) · ∇)u+∇p) dΩ ,

(8.49)

where the momentum equation in ALE form, equation (8.5), has been inserted in the second
step. Next, the convective term is reformulated by making use of the identity u · ∇u · w =
−1

2
(u · u)∇ · w + 1

2
∇ · (w (u · u)) with w = u − uG, and by applying Gauss’ divergence

theorem for the second term∫
Ω(t)

u · ∇u · (u− uG) dΩ =− 1

2

∫
Ω(t)

(u · u)∇ · (u− uG) dΩ

+
1

2

∫
∂Ω(t)

(u · u) (u− uG) · n dΓ

= +
1

2

∫
Ω(t)

(u · u)∇ · uG dΩ .

(8.50)

In the second step, it has been exploited that the surface integral vanishes due to the assumption
of periodicity, and that ∇ · u = 0 holds in the continuous case. For the pressure gradient term,
integration by parts yields∫

Ω(t)

u∇p dΩ = −
∫

Ω(t)

∇ · u︸ ︷︷ ︸
=0

p dΩ +

∫
∂Ω(t)

p u · n dΓ = 0 , (8.51)

where the volume integral vanished due to ∇ · u = 0 and the surface integral due to periodic
boundaries. Inserting equations (8.50) and (8.51) into equation (8.49) yields an equation describ-
ing energy-conservation on moving domains∫

Ω(t)

∂ 1
2
u · u
∂t

∣∣∣∣
χ

dΩ +

∫
Ω(t)

1

2
(u · u)∇ · uG dΩ = 0 . (8.52)

Then, the spatially discretized ALE-DG formulation

me
h

(
vh,

∂uh
∂t

∣∣∣∣
χ

)
+ ceh (vh,uh,uG,h)

+aeD,h(vh,uh) + aeC,h(vh,uh) + geh (vh, ph) = 0 ,

(8.53)

−deh(qh,uh) = 0 , (8.54)

is called energy-stable if it fulfills the following discrete analogy∫
Ωh(t)

∂ 1
2
uh · uh
∂t

∣∣∣∣
χ

dΩ +

Nel∑
e=1

∫
Ωe(t)

1

2
(uh · uh)∇ · uG,hdΩ ≤ 0 . (8.55)
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To begin with, the left term in equation (8.55) is reformulated so that the semi-discrete momen-
tum equation (8.53) can be inserted∫

Ωh(t)

∂ 1
2
uh · uh
∂t

∣∣∣∣
χ

dΩ =

∫
Ωh(t)

uh ·
∂uh
∂t

∣∣∣∣
χ

dΩ =

Nel∑
e=1

me
h

(
uh,

∂uh
∂t
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χ

)

= −
Nel∑
e=1

(
ceh (uh,uh,uG,h) + geh (uh, ph) + aeD,h(uh,uh) + aeC,h(uh,uh)

)
.

(8.56)

As explained in Section 2.4.5, the pressure gradient term drops out due to its symmetry with
the velocity divergence term (under the assumption of exact integration) and due to the discrete
continuity equation. The divergence and continuity penalty terms are symmetric positive semi-
definite, so that it remains to investigate the convective term, which differs from the analysis on
static meshes due to an additional ALE transport term. Inserting the identity

uh · ∇uh ·wh = −1

2
∇ ·wh (uh · uh) +

1

2
∇ · (wh (uh · uh)) , (8.57)

with wh = uh − uG,h into equation (8.35), and applying Gauss’ divergence theorem yields

ceh (uh,uh,uG,h) =− 1

2
(∇ · (uh − uG,h),uh · uh)Ωe

+
1

2
(uh · uh, (uh − uG,h) · n)∂Ωe

−
(
uh, (({{uh}} − uG,h) · n)

1

2
[uh]

)
∂Ωe

+

(
uh,

1

2
| ({{uh}} − uG,h) · n| [uh]

)
∂Ωe

.

(8.58)

Next, summation over all elements is performed and the face integrals with the grid velocity are
written separately

ch (uh,uh,uG,h) =− 1

2
(∇ · (uh − uG,h),uh · uh)Ωh

−1

2
([uh · uh],uG,h · n)Γint

h
+ ([uh] · {{uh}},uG,h · n)Γint

h︸ ︷︷ ︸
=0 (linear transport)

+
1

2

(
u−h · u

−
h ,u

−
h · n

−)
Γint
h

+
1

2

(
u+
h · u

+
h ,u

+
h · n

+
)

Γint
h

− ([uh] · {{uh}}, {{uh}} · n)Γint
h

+

(
[uh],

1

2
| ({{uh}} − uG,h) · n| [uh]

)
Γint
h

.

(8.59)

The first term on the right-hand side contains the divergence of the velocity, i.e., a residual of the
incompressible Navier–Stokes equations, and the divergence of the grid velocity. The volume in-
tegral of the ALE transport term does not drop out since the grid velocity is not divergence-free.
However, one can see that this is exactly the second term in equation (8.55). The key point is
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that the face integrals related to the moving mesh drop out, since the ALE term describes a linear
transport term. Other terms of the above equation can be further simplified as shown in equa-
tion (2.185) for the case with static meshes. Then, inserting equation (8.59) into equation (8.56)
yields the result

∫
Ωh(t)

∂ 1
2
uh · uh
∂t

∣∣∣∣
χ

dΩ +

Nel∑
e=1

∫
Ωe(t)

1

2
(uh · uh)∇ · uG,hdΩ =

= +
1

2
(∇ · uh,uh · uh)Ωh

− aD,h(uh,uh)

− 1

2
([uh] · n, {{uh · uh}})Γint

h
− aC,h(uh,uh)

−
(

[uh],
1

2
| ({{uh}} − uG,h) · n| [uh]

)
Γint
h

.

(8.60)

It is interesting to realize that the ALE formulation does not introduce new terms on the right-
hand side as compared to the Eulerian case, equation (2.186), a consequence of the fact that the
additional ALE term is a linear transport term. One might therefore argue that energy stability
for the Eulerian case translates into energy stability for the ALE case with moving meshes.
The reader is referred to Section 2.4.5 for a general discussion of the above energy estimate.
An aspect not reflected by the above energy estimate is that of inexact integration, e.g. due
to deformed elements, which can be expected to be negligible for smooth problems but might
have an influence for under-resolved problems and strongly-deformed elements. Another aspect
concerns the assumption of a smooth solution implying energy-conservation in the absence of
viscosity in the continuous case, which might not be fulfilled due to singularities developing
in finite time for the incompressible Euler equations with the occurrence of anomalous energy
dissipation, see Chapter 7 for a detailed discussion of this phenomenon.

8.5 Numerical results

The aim of this section is to display the numerical discretization properties of the proposed ALE-
DG incompressible Navier–Stokes solvers. A set of academic test cases that address different
aspects of ALE solvers is selected, with the goal to obtain a picture as complete as possible. In
detail, the geometric conservation property is studied by the example of the free stream preserva-
tion test in Section 8.5.1. The convergence behavior in terms of temporal and spatial convergence
rates is investigated in Section 8.5.2 by the example of a two-dimensional vortex problem with
moving Dirichlet and Neumann boundaries. In this section, also the robustness of the different
incompressible Navier–Stokes solvers is tested in the limit of large grid deformations. Finally,
the robustness of the proposed discretization methods for under-resolved turbulent flows is stud-
ied in Section 8.5.3 by considering the three-dimensional Taylor–Green vortex problem.

The Laplace formulation of the viscous term is used for the results shown in this chapter.
Convergence rates and relative L2-errors for problems with known analytical solution are com-
puted as defined in Fehn et al. (2017). Solver tolerances are selected to not spoil accuracy, e.g.,
by choosing relative solver tolerances of 10−6 and absolute solver tolerances of 10−12. In case
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of pure Dirichlet boundary conditions, the pressure level is undefined and can be fixed, e.g., by
setting the mean value of the pressure DoF vector to zero.

8.5.1 Geometric conservation law – free stream preservation test
The free stream preservation test is studied to investigate whether the ALE formulations derived
above fulfill the geometric conservation law. Satisfying the geometric conservation law means
that a constant flow field is not disturbed by a moving mesh, i.e., the solver is able to preserve the
free stream flow conditions exactly and independently of the mesh deformation. The analytical
solution of the free stream preservation test is therefore the constant flow state

u(x, t) = (1, . . . , 1)T , p(x, t) = 1 , (8.61)

where pure Dirichlet boundary conditions are prescribed, u(x, t) = gu(x, t) on ΓD
h (t) = Γh(t).

The computational domain at initial time is Ω0 = Ω(t = 0) = [−L/2, L/2]2 with L = 1.
The simulation is run over a time interval of 0 ≤ t ≤ T = 10. The following analytical mesh
movement with sine functions in both time and space is prescribed in two space dimensions

x(χ, t) = χ+ A sin

(
2π

t

TG

)sin
(

2π χ2+L/2
L

)
sin
(

2π χ1+L/2
L

) , (8.62)

and in three space dimensions

x(χ, t) = χ+ A sin

(
2π

t

TG

)
sin
(

2π χ2+L/2
L

)
sin
(

2π χ3+L/2
L

)
sin
(

2π χ1+L/2
L

)
sin
(

2π χ3+L/2
L

)
sin
(

2π χ1+L/2
L

)
sin
(

2π χ2+L/2
L

)
 , (8.63)

where the amplitude is set to A = 0.08 resulting in a strongly deformed mesh. The period length
of the grid motion is set to TG = T/10 and the wavenumber in space is chosen such that the
length and height of the domain are exactly one period. In Figure 8.2(b), the mesh deformation is
illustrated for d = 2, where the initial, undeformed mesh is a uniform Cartesian grid. The mesh
reaches its maximum deformation at times t = TG/4+ i TG/2, i = 0, 1, 2, .... The viscosity is set
to ν = 0.025. Adaptive time-stepping is used where the time step size is adjusted dynamically
according to the CFL condition (2.210) using Cr = 0.25. A mesh with 8d elements is used as in
Figure 8.2 and the polynomial degree is k = 3. Both absolute and relative solver tolerances are
set to a small value of 10−14. Table 8.1 reports relative errors for velocity and pressure for BDF
schemes of order 1 to 3 and the three different incompressible Navier–Stokes solvers considered
in this work. For the dual splitting scheme, Jp = min(2, J) is used but the simulations have
also been stable for the choice Jp = J for the high-order BDF scheme J = 3. For the pressure-
correction scheme, Jp = min(2, J)−1 is used for all J and the rotational formulation with χ = 1.
Here, the choice Jp = J − 1 leads to instabilities for the high-order scheme J = 3 in agreement
with theory.

The results in Table 8.1 reveal that all schemes fulfill the geometric conservation law for d =
2, and in particular also for the weak formulation of the velocity–pressure coupling terms.
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(a) undeformed mesh (b) deformed mesh (A/L = 0.08) (c) theoretical limit Amax/L = 1
2π

Figure 8.2: Illustration of sine-like mesh motion in two space dimensions according to equa-
tion (8.62).

For d = 3, the geometric conservation law is fulfilled exactly only when using the strong formu-
lations deh,strong and geh,strong as expected theoretically, see Section 8.4.5. Errors larger than the
solver tolerances are observed for the weak formulations for d = 3. For all variants studied here,
similar results are obtained when using an implicit formulation of the convective term for the
coupled solver and the pressure-correction scheme, where the solver tolerances had to be relaxed
slightly to 10−12 to ensure convergence of the Newton solver. Hence, it remains to explain why
the weak formulation of velocity–pressure coupling terms fulfills the GCL exactly for d = 2. As
the relevant aspect in this context is the exact evaluation of integrals, see Section 8.4.5, it can be
conjectured that integrals of the velocity–pressure coupling terms are indeed evaluated exactly
for d = 2 for constant solutions on deformed elements. However, this is a special case that only
occurs for the free stream preservation test due to a solution of lowest polynomial degree, and
this does not hold for general non-constant solutions and arbitrarily deformed elements. Hence,
no further attention is paid to this point. In a similar direction, the results show that the weak
formulations are very accurate as well, and will therefore be used for the subsequent examples.
The reason for this choice is that the conclusion is even stronger when being able to demonstrate
optimal convergence behavior for a formulation that appears to be sub-optimal regarding the free
stream preservation test.

8.5.2 Temporal and spatial convergence behavior

Next, the convergence behavior of the ALE-DG methods is analyzed to study whether optimal
rates of convergence observed in the Eulerian case carry over to moving meshes. For this pur-
pose, the two-dimensional Taylor–Green vortex problem is considered, which has already been
analyzed in Chapter 2 for the case of non-moving meshes. A description of the test case includ-
ing the analytical solution is given in Section 2.6.5.1. The viscosity is set to ν = 0.025, and the
problem is simulated over the time interval 0 ≤ t ≤ T = 1. The computational domain at start
time is Ω0 = [−L/2, L/2]2 with lengthL = 1, and is deformed according to the two-dimensional
mesh movement function (8.62) with parameters A = 0.08 and TG = 4T (maximum deforma-
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Table 8.1: Numerical results for free stream preservation test for both strong and weak formu-
lations of velocity–pressure coupling terms and two- and three-dimensional prob-
lems: Jp = min(2, J) is used for the dual splitting scheme, and Jp = min(2, J) − 1
for the pressure-correction scheme in rotational formulation. An explicit formulation
of the convective term is used for all three solvers.

(a) two-dimensional problem (d = 2), weak formulations deh,weak and geh,weak

relative L2-error uh relative L2-error ph
BDF1 BDF2 BDF3 BDF1 BDF2 BDF3

coupled 1.8E–16 1.8E–15 2.1E–15 1.3E–16 6.0E–13 2.9E–13
dual splitting 1.2E–15 1.6E–15 1.8E–15 2.5E–13 7.5E–14 6.1E–13
pressure-correction 1.6E–15 2.7E–15 3.0E–15 1.8E–13 9.5E–14 4.6E–13

(b) two-dimensional problem (d = 2), strong formulations deh,strong and geh,strong

relative L2-error uh relative L2-error ph
BDF1 BDF2 BDF3 BDF1 BDF2 BDF3

coupled 1.8E–16 1.1E–15 1.8E–15 1.3E–16 2.1E–13 2.4E–13
dual splitting 1.0E–15 1.3E–15 1.4E–15 1.5E–13 3.8E–13 6.5E–13
pressure-correction 1.0E–15 1.6E–15 1.8E–15 2.3E–13 2.3E–13 4.7E–13

(c) three-dimensional problem (d = 3), weak formulations deh,weak and geh,weak

relative L2-error uh relative L2-error ph
BDF1 BDF2 BDF3 BDF1 BDF2 BDF3

coupled 1.3E–08 1.3E–08 1.3E–08 8.7E–09 8.2E–09 8.2E–09
dual splitting 1.1E–08 1.2E–08 1.2E–08 6.4E–09 6.6E–09 6.8E–09
pressure-correction 1.2E–08 1.3E–08 1.3E–08 7.0E–09 7.1E–08 6.1E–08

(d) three-dimensional problem (d = 3), strong formulations deh,strong and geh,strong

relative L2-error uh relative L2-error ph
BDF1 BDF2 BDF3 BDF1 BDF2 BDF3

coupled 3.5E–16 1.4E–14 1.2E–14 1.7E–16 8.5E–13 8.4E–13
dual splitting 3.5E–16 1.8E–15 1.1E–15 1.4E–13 7.3E–13 1.3E–12
pressure-correction 1.9E–15 1.9E–15 2.3E–15 3.3E–13 7.8E–13 1.1E–12

tion reached at end time t = T is shown in Figure 8.2(b)) unless specified otherwise. Again, a
mesh as depicted in Figure 8.2 with refinement level l is used. Sine-like mesh deformations are
commonly used to verify high-order ALE-DG implementations, see for example Mavriplis and
Nastase (2011), Nguyen (2010), Schnücke et al. (2018). In these works, however, the sine func-
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(a) p(x, T ) (l = 1) (b) p(x, T ) (l = 2) (c) ‖u(x, T )‖ (l = 1) (d) ‖u(x, T )‖ (l = 2)

Figure 8.3: Vortex problem: visualization of solution at final time t = T for two different mesh
resolutions, l = 1 and l = 2, with polynomial degree k = 3 for the velocity and 2 for
the pressure (red indicates high values and blue low values). The amplitude of the
mesh deformation is A = 0.08.

tions are defined in a way that the boundaries are not moving. Instead, a setup is chosen here for
which the boundaries are moving since the goal is to test all parts of the algorithm relevant for
FSI. The verification of boundary conditions is particularly relevant for the splitting-type solvers
and some effects might not be visible if the boundaries are fixed. For example, if the boundaries
are non-moving, the normal vector in equation (8.18) would not change over time and the ALE
transport term would simply drop out since uG = 0 on the boundary. According to the setup
in Hesthaven and Warburton (2007), each of the four sides of the square is split into a Dirichlet
boundary and a Neumann boundary according to the inflow and outflow sections, respectively.
Note also that the chosen mesh deformation is in compliance with these boundary conditions.

Figure 8.3 shows a visualization of the solution at the time of maximal mesh deformation t =
T using polynomial shape functions of degree k = 3 and considering the two lowest refinement
levels of l = 1, 2 (the grid has to consist of at least 22 elements due to the type of boundary
conditions prescribed with each face of the rectangular domain cut into a Dirichlet part and a
Neumann part). While the velocity field is already well resolved on the coarsest mesh with l = 1,
the pressure field of polynomial degree 2 is approximated poorly for refinement level l = 1
with distinct discontinuities between the elements. For l = 2, the pressure solution appears to
be visually converged with only minor differences as compared to the solution on even finer
meshes. In the following, the convergence is studied quantitatively in terms of errors against the
analytical solution as well as convergence rates measured in space and time.

A first set of experiments tests the temporal convergence behavior for both constant and adap-
tive time step sizes. The chosen spatial resolution is fine, l = 3 and k = 8, to make sure that
errors are dominated by temporal discretization errors. Recalling from Section 2.6.5 that the
CFL condition did not show up in this example for the chosen parameters, this test case is very
interesting since it allows to measure temporal convergence rates of an incompressible Navier–
Stokes solver with explicit formulation of the convective term. Note that in the regular case
with Cr < Crcrit this could be very difficult, since one is often operating in a regime where
temporal discretization errors are already negligible as compared to spatial errors for higher-
order time integration schemes. Figure 8.4 shows results of a temporal convergence study for
BDF schemes of order J = 1, 2, 3 using constant and adaptive time step sizes. All types of
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(a) constant ∆t

(b) adaptive ∆tn

Figure 8.4: Vortex problem: temporal convergence tests for ALE incompressible Navier–Stokes
solvers for BDF schemes of order J = 1, ..., 3 with Jp = min(2, J) for the dual
splitting scheme and Jp = min(2, J)− 1, J ≤ 2 for the pressure-correction scheme.

solvers converge with optimal rates of convergence on the moving mesh. Compared to addi-
tional simulations performed for a static Cartesian mesh, the errors are almost the same and
only slightly larger. The lowest errors are obtained for the coupled solver with implicit formu-
lation of the convective term. The dual splitting scheme and the coupled solver with explicit
convective term yield similar errors, and the errors are again slightly larger for both explicit and
implicit pressure-correction formulations. For very small time step sizes and the BDF3 scheme,
the spatial error becomes dominant at some point. Note that BDF3 schemes are not considered
for the pressure-correction scheme since Jp = 1 (required for stability) limits convergence rates
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Figure 8.5: Vortex problem: spatial convergence tests for ALE incompressible Navier–Stokes
solvers for polynomial degrees k = 2, 3, 4, 5 and comparison to static Cartesian
mesh.

Figure 8.6: Vortex problem: robustness test of ALE incompressible Navier–Stokes solvers on a
mesh with 42 elements and polynomial degree k = 3.

to second-order in that case. For the dual splitting scheme, large errors occur for Courant num-
bers Cr > 1. This effect does not show up for the non-moving mesh and it is conjectured that this
effect originates from the CFL condition. For a regular Navier–Stokes problem with explicit for-
mulation of the convective term, no stability can be expected in this range of Courant numbers.
While a sharp CFL bound is not visible for the chosen parameters, all solvers become unstable
for Cr > 1 (for J = 2) when using a smaller viscosity of ν = 10−3 (higher Reynolds number),
showing the usual sharp CFL bound.
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8 Extension to moving meshes: arbitrary Lagrangian–Eulerian techniques

A second set of experiments studies the spatial convergence behavior for polynomial de-
grees k = 2, 3, 4, 5 by a mesh refinement study, considering refine levels l = 1, ..., 6. The BDF2
time integration scheme with a small, constant time step of ∆t = 5 · 10−5 is used to obtain small
temporal errors. Figure 8.5 shows results for the three different solver types with an explicit
formulation of the convective term. Since this is a spatial convergence test, the results would be
indistinguishable when using an implicit formulation of the convective term and are therefore
not shown explicitly. For comparison, results are also shown for a static Cartesian mesh for the
coupled solution approach. Overall, all variants converge with optimal rates of convergence for
all polynomial degrees until the temporal discretization error is reached. Compared to the static
mesh, the errors are slightly larger on the moving mesh, and the gap between moving and static
meshes increases for increasing polynomial degree.

Finally, the robustness w.r.t. large mesh deformations is tested by increasing the amplitude A
of the mesh movement function to its theoretical limit, i.e., the value at which the aspect ratio
tends to infinity or at which inverted elements occur, in order to characterize the point where the
proposed ALE-DG methods will break down. This theoretical limit is reached when the lower
left corner of the domain becomes an arbitrarily thin needle, see Figure 8.2(c). Mathematically,
this limit is reached when the slope of the lower domain boundary reaches a value of 1 in the
lower left corner at the time of maximum deformation, i.e.,

∂x2(χ1, χ2 = −L/2, t = TG/4)

∂χ1

∣∣∣∣
χ1=−L/2

= A cos

(
2π
χ1 + L/2

L

)∣∣∣∣
χ1=−L/2

2π

L
!

= 1 , (8.64)

from which it follows thatAmax = L
2π

. Figure 8.6 plots the relative errors of velocity and pressure
for a coarse mesh with 42 elements and polynomial degree k = 3 as a function of A/Amax.
Adaptive time-stepping, equation (2.210), with Cr = 0.2 is used. The error increases moderately
for small amplitudes of the mesh deformation, and a rapid increase in errors can be observed
around 85% of the theoretically maximum amplitude for this problem.

8.5.3 Robustness for under-resolved turbulent flows

In a last example, applicability of the present ALE-DG solvers to transitional and turbulent flows
is studied by the example of the three-dimensional Taylor–Green vortex (TGV) problem (Taylor
and Green 1937). The reader is referred to Section 2.6.7.2 for a description of the test case and the
initial conditions. Both the standard setting Re = 1600 and the inviscid limit Re→∞ have been
investigated for this test case. The simulated time interval is 0 ≤ t ≤ T = 20. At start time, the
domain Ω0 = [−L/2, L/2]3 = [−π, π]3 is a Cartesian box that deforms over time according to
the mesh motion described in equation (8.63), with an amplitude of A = π/6 and varying mesh
velocities characterized by period times decreasing from TG = 20 to TG = 1. The standard setup
with periodic boundaries in all coordinate directions is used. The domain boundaries are moving
for the given mesh motion, but the mesh deformation is defined periodically in order to ensure
consistency with the periodic boundary conditions. An illustration of the mesh deformation for
the above parameters is given in Figure 8.7. The mesh is originally Cartesian with Nel = (2l)3

elements, where l denotes the level of refinement, and the effective mesh resolution follows
the definition from Section 2.6.7.2. A BDF2 time integration scheme along with an explicit
treatment of the convective term is used for all solver types, with Jp = 2 for the dual splitting
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(a) ‖u(x, t = 0)‖ (b) ‖u(x, t = 5)‖ (c) ‖u(x, t = 10)‖ (d) ‖u(x, t = 15)‖ (e) ‖u(x, t = 20)‖

Figure 8.7: Taylor–Green vortex problem at Re = 1600: visualization of velocity magnitude at
different times for a spatial resolution with l = 3 and polynomial degree k = 7. The
parameters of the mesh deformation are A = π/6 and TG = 20. The color map has
been rescaled for each time instant, where red indicates high velocity and blue low
velocity. The results shown have been simulated with the dual splitting scheme.

scheme and Jp = 1 for the pressure-correction scheme unless specified otherwise. Moreover,
adaptive time-stepping, equation (2.210), with a Courant number of Cr = 0.2 is used.

In a first set of experiments, the viscous case at Re = 1600 is investigated. In Figure 8.8,
results for the kinetic energyEk =

∫
Ωh

1
2
uh ·uhdΩ/

∫
Ωh

dΩ and the dissipation rate of the kinetic
energy obtained on the moving mesh are compared to results on a static Cartesian mesh. A mesh
refinement study for degree k = 3 is performed using a rather slow mesh motion with a period
time of TG = T . The results converge towards the accurate DNS reference solution under mesh
refinement, and the solution quality is comparable for static and moving meshes. Repeating this
experiment for the strong formulation of the velocity–pressure coupling terms yields virtually
the same results. In Figure 8.9, robustness w.r.t. the grid velocity is tested for the 643 mesh
resolution by decreasing the period of the mesh motion down to TG = T/20 = 1, resulting in a
very fast mesh motion. With increasing mesh velocity, an oscillating behavior can be observed
in the kinetic energy dissipation rate where the frequency of these oscillations follows the mesh
motion. However, the temporal evolution of the kinetic energy is almost indistinguishable for the
different mesh velocities. It can be observed that the oscillations in the dissipation rate are very
small in the beginning of the simulation where the solution is smooth, while the oscillations grow
once the transition to a turbulent state took place. In Section 8.4.6, it was noted that the ALE
transport term does not contribute to the energy evolution apart from the upwind stabilization
term. However, this only holds under the assumption of exact numerical integration, which is not
fulfilled on generally deformed geometries. A possible explanation for the results in Figure 8.9
could therefore be that integration errors (which are larger for non-smooth solutions or under-
resolved scenarios) are amplified if the period of the mesh motion TG tends to zero and the mesh
velocity tends to infinity. This is supported by the observation that the oscillations are larger
on coarser meshes. It should be mentioned that this experiment is performed here to test the
robustness of the solver and that such a scenario (increasing the mesh velocity for a fixed fluid
velocity) is not representative of a fluid–structure interaction problem for which the fluid has to
follow the motion of the fluid–structure interface due to no-slip conditions.

In a second set of experiments, the inviscid Taylor–Green vortex problem is studied, which
is considered one of the most challenging benchmark examples to test the robustness of a flow
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(a) Kinetic energy.

(b) Kinetic energy dissipation rate.

Figure 8.8: Taylor–Green vortex problem at Re = 1600: comparison between static and mov-
ing meshes for polynomial degree k = 3 for increasing effective mesh resolution
of 323, 643, and 1283. The results shown have been simulated with the dual splitting
scheme.

solver for turbulent flows due to the absence of viscous dissipation as discussed in Chapter 7.
Although the test case is academic, it can be expected that if a numerical method is robust for
the inviscid Taylor–Green problem, it can also be successfully applied to practical, engineer-
ing problems. The results of detailed robustness tests for the inviscid TGV problem on moving
meshes are reported in Fehn et al. (2021a), where it is found that the present stabilized DG ap-
proach achieves robustness also on moving meshes. These results are encouraging in the sense
that the stabilized DG approach developed in Chapter 2 appears to be well designed, meaning
that robustness carries over from static to moving meshes without having to adjust discretization
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(a) Kinetic energy.

(b) Kinetic energy dissipation rate.

Figure 8.9: Taylor–Green vortex problem at Re = 1600: comparison between static and moving
meshes for polynomial degree k = 3 and effective resolution of 643 for increasing
mesh velocity (decreasing period times of TG = 20, 4, 2, 1). The results shown have
been simulated with the dual splitting scheme.

parameters. At the same time, it is emphasized again that it is unclear to which extent energy
stability can be guaranteed theoretically for the present stabilized DG approach.

8.6 Conclusion and outlook

This chapter has presented ALE-DG methods for the incompressible Navier–Stokes equations
that are up to third-order accurate in time and arbitrarily high-order accurate in space for suffi-
ciently smooth problems. Moving mesh formulations are derived for both monolithic and split-
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ting approaches based on a method-of-lines approach, considering both implicit and explicit
formulations of the convective term. The time integration framework relies on BDF and extrap-
olation schemes and extends naturally to adaptive time-stepping. Stable and high-order accurate
boundary conditions are derived for the splitting-type approaches. The ALE methods are de-
signed to automatically fulfill the geometric conservation law. A key ingredient is the use of
consistent divergence and continuity penalty terms to stabilize the method for under-resolved
turbulent flows. Numerical results demonstrate optimality in terms of convergence rates and the
geometric conservation law. Robustness and accuracy of the proposed methods have been in-
vestigated for under-resolved turbulent flows showing convincing properties for high-Reynolds-
number flows. An important aspect is that the proposed methods are simple to implement since
the equations are solved on the deformed geometry, i.e., the generic finite element software takes
care of the mapping and the geometry terms, and only one instance of the mesh is stored at a
time. To obtain computationally efficient algorithms, fast matrix-free evaluation techniques are
applied for all parts of the Navier–Stokes solvers as in the Eulerian case. Even though not dis-
cussed here, ALE formulations have been implemented for the coupled flow–transport problem
that has been the subject of Chapter 3. Chapter 9 shows applicability of the moving mesh ap-
proach developed here to problems of fluid–structure interaction. Another prominent field of
applications that could be studied as part of future work are free surface flows.
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9 Multiphysics application:
fluid–structure interaction

This chapter develops a novel matrix-free partitioned FSI solver based on a three-field formula-
tion, using an ALE-DG method for the fluid sub-problem modeled as an incompressible New-
tonian fluid and a standard H1-conforming finite element method for the structural problem in
Lagrangian description modeled as a d-dimensional continuum with large deformations and hy-
perelastic material behavior. A standard Poisson-type or elasticity-type approach is used for the
mesh deformation problem of the fluid domain. The main novelity of this approach is (i) the
use of efficient matrix-free implementation techniques for all fields involved in the FSI problem,
and (ii) the flexibility of this new formulation supporting non-matching meshes at the fluid–
structure interface and the use of polynomial degrees that can be chosen independently for the
fluid, solid, and mesh motion problems. The primary aim of this chapter is to demonstrate appli-
cability of the incompressible Navier–Stokes DG solver developed in this thesis to multiphysics
problems such as fluid–structure interaction, rather than a holistic discussion of fluid–structure
interaction solvers. For this reason, the focus is on so-called black-box partitioned FSI solvers in
the present work, in a fashion similar to how other external libraries for multiphysics problems
would apply the incompressible fluid solver developed in the course of this thesis. In a similar
direction, the aim of this chapter is to outline the algorithmic and computational properties of
the FSI solver rather than extensive validation.

9.1 Motivation

9.1.1 State-of-the-art

Methods for the numerical solution of fluid–structure interaction problems can be categorized
into monolithic and partitioned approaches. Monolithic approaches solve one global system of
nonlinear equations for all involved unknowns, typically by a Newton–Krylov approach with
suitable preconditioner for the linearized problem, e.g., by exploiting the structure of the equa-
tions and using multigrid preconditioners for the diagonal blocks, which then form the building
blocks of the preconditioner for the monolithic system. Different multigrid variants and block
preconditioners are possible, and the reader is referred to Aulisa et al. (2018), Barker and Cai
(2010), Forti et al. (2017), Gee et al. (2011), Heil (2004), Hron and Turek (2006), Jodlbauer et al.
(2019), Kong and Cai (2018), Langer and Yang (2016), Mayr et al. (2015, 2020), Muddle et al.
(2012), Richter (2015) and references therein for a discussion of monolithic solution approaches.

A competing approach is the partitioned solution of fluid–structure interaction problems,
where the fluid and solid sub-problems are solved separately and where the equilibrium (in-
terface coupling conditions) between the fluid and solid domains is realized by appropriate
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boundary conditions on the fluid–structure interface. The partitioned technique is attractive for
several reasons, most importantly the natural support for modular code development, the re-
duction of complexity through a separation of concerns, flexibility of plugging together those
software tools most efficient for a specific sub-task through the black-box principle, and the
associated agility in adapting to new developments (discretization techniques, numerical linear
algebra, hardware and implementation techniques). The most common partitioned strategy is
the Dirichlet–Neumann partitioning scheme that imposes Dirichlet boundary conditions for the
fluid and Neumann boundary conditions for the solid at the fluid–structure interface. From an
algebraic point of view, this solution technique can be interpreted as a block Gauss–Seidel itera-
tion. Due to the well-known artificial added-mass effect (Causin et al. 2005, Förster et al. 2007,
van Brummelen 2009) and its associated instabilities for incompressible flows, it is necessary to
drive the coupled FSI problem into a converged state by an (outer) iterative procedure around
the single-field solvers. A simple Gauss–Seidel iteration without relaxation or other techniques
for convergence-acceleration may not converge, so that several different techniques have been
formulated as a result of major research efforts over the last two decades. One can distinguish
between fixed-point iterations with constant relaxation (Le Tallec and Mouro 2001) or dynamic
relaxation (Küttler and Wall 2008, Mok and Wall 2001), vector-extrapolation methods (Küttler
and Wall 2009), block-Newton methods (Matthies and Steindorf 2002), interface Newton meth-
ods with exact Jacobian (Fernández and Moubachir 2005), interface Jacobians approximated by
finite-differences or by simplified physical models (Gerbeau and Vidrascu 2003, Gerbeau et al.
2005), and the category of black-box quasi-Newton methods (Bogaers et al. 2014, Degroote et al.
2009, Haelterman et al. 2016, Lindner et al. 2015, Spenke et al. 2020) primarily motivated from
a numerical linear algebra perspective. In the present work, the focus is on relaxation-type and
quasi-Newton partitioned black-box FSI solvers. While the above approaches are used most of-
ten, other techniques for convergence acceleration of strongly-coupled partitioned FSI problems
have been examined as well in the literature. From a structural perspective, fictitious mass and
damping has been used in Baek and Karniadakis (2012) in combination with Aitken relaxation.
From a fluid perspective, the beneficial effect of (weak) compressibility on iteration counts in
combination with Aitken relexation has been shown in La Spina et al. (2020a).

A class of methods that share characteristics of both monolithic schemes and partitioned
schemes are so called semi-implicit (or projection/splitting) schemes. The idea is to solve only
those terms of the equations in a strongly-coupled way that are relevant to prevent artificial
added-mass instabilities, and to solve other terms (preferably expensive nonlinear terms) only
once per time step. In this context, a projection scheme has been proposed in Fernández et al.
(2007) that treats the mesh motion problem and the momentum equation of the fluid explicitly
and the pressure-structure coupling implicitly. The splitting is introduced on the level of differ-
ential equations in Fernández et al. (2007), and similar algebraic splitting schemes are presented
in Badia et al. (2008b). While the method of Fernández et al. (2007) naturally includes non-
linearities of the structure, the work by Badia et al. (2008b) assumes a linear structural problem
and an extension to the non-linear case remains unclear. The pressure-structure problem can be
solved in a monolithic way or in a strongly-coupled partitioned way. However, these schemes
can not be realized in a black-box environment, and are therefore not considered here.

To overcome convergence problems of the classical Dirichlet–Neumann partitioning for prob-
lems with strong artificial added-mass effect, alternative Robin–Neumann and Robin–Robin par-
titioning schemes have been developed (Badia et al. 2008a, Nobile and Vergara 2008), which
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have been reported to converge without under-relaxation and to be robust w.r.t. the density ratio.
These works also discuss the use of semi-implicit versus implicit schemes mentioned above. The
Robin–Neumann method is applied in Wang et al. (2018) in the context of discontinous Galerkin
discretizations. In Serino et al. (2019), a partitioned scheme for incompressible flows interacting
with a linear structure (integrated explicitly in time) is constructed by the use of special Robin-
type boundary conditions and it is stated that this solver is stable without sub-iterations and
independently of the density ratio. While these methods exhibit interesting stability properties,
the required boundary conditions are in general not available for black-box field solvers, which
is why this approach is also not considered in the present work.

9.1.2 Partitioned versus monolithic approaches

The aspects of robustness and computational efficiency of partitioned approaches when com-
pared to the monolithic approach are discussed controversially in the literature. Several previous
works already aimed at comparative studies (Badia et al. 2008c, Degroote et al. 2009, Gee et al.
2011, Heil et al. 2008, Küttler et al. 2010, Sheldon et al. 2014), mostly with the outcome that
monolithic solvers are not only more robust in general, but also computationally more efficient
especially in the strongly-coupled regime of large density ratios ρF/ρS . However, it should be
emphasized that a conclusion regarding computational efficiency is still not within reach to the
best of the author’s knowledge. On the one hand, this is due to the continuous developments
made in various fields in combination with the snapshot character of comparative studies. On
the other hand, these comparative studies usually apply the same (potentially computationally
expensive, matrix-based) preconditioners or linear solvers for the single-field problems in par-
titioned solvers that also form the building blocks of the preconditioner or linear solver for the
monolithic approach. However, this understanding of a “fair comparison” leads to a conservative
selection of solvers dictated by the most complex algebraic system of equations (in this case the
monolithic system that is highly ill-conditioned, see Richter (2015)). Some comparative studies
even use direct solvers. Note that this strategy might render comparative studies inconclusive
since it does not exploit the full optimization potential of partitioned schemes. In fact, a main
motivation for the use of partitioned approaches is that they can exploit those techniques most
suitable and efficient for a certain sub-task. This includes the use of fast preconditioners tailored
to the different single-field problems. Furthermore, partitioned approaches naturally allow to
apply the partitioned paradigm in a nested way, e.g., by solving the fluid sub-problem with fast
projection-type solvers and mixed implicit/explicit time-stepping, an approach that is considered
computationally efficient especially for high-Reynolds-number turbulent flows. Partitioned FSI
solvers currently appear to be the predominant solution strategy in the application field of turbu-
lent flows, see e.g. Breuer et al. (2012), Lorentzon and Revstedt (2020). In this context, different
iteration procedures have been proposed (Badia et al. 2008b, Breuer et al. 2012, Fernández et al.
2007) with the goal to solve expensive parts such as the ALE mesh motion or the fluid con-
vective and viscous terms only once per time step. As already introduced above, these methods
are known as semi-implicit schemes, originally proposed by Fernández et al. (2007). They solve
some terms of the equations in a weakly-coupled (or explicit) sense and others, which are rel-
evant for the added-mass effect, in a strongly-coupled (or implicit) sense, involving partitioned
solvers not only on the FSI coupling level but also on the fluid level.
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Table 9.1: Performance of state-of-the-art monolithic fluid–structure interaction solvers in terms
of throughput per time step in DoF

s·core
measured for the 3D pressure wave benchmark

problem (see Section 9.7.2) and published within the last decade. The table addition-
ally lists the range of problem sizes (in total number of degrees of freedom) and the
time step size considered in each study. All studies used low-order finite element dis-
cretizations of degree one or two and matrix-based preconditioners.

Study NDoFs ∆t in s Throughput in DoF
s·core

(Gee et al. 2011, Table 5) 0.024M–3.1M 10−4 350− 700

(Langer and Yang 2016, Figures 4–7) 0.023M–0.11M {1.25, 2.5} · 10−4 25− 100

(Forti et al. 2017, Figure 5.3) 12M–48M 10−4 600− 700

(Kong and Cai 2018, Tables 1–2) 7.8M–480M 10−3 800− 1400

(Mayr et al. 2020, Table 4) 0.12M–1.9M 10−4 350− 1500

In the following, an attempt is made to get an impression of the computational efficiency of
state-of-the-art matrix-based monolithic FSI solvers. For this purpose, data is collected from
the literature and summarized in Table 9.1. The efficiency metric is the throughput in degrees
of freedom solved per second of wall-time and per compute core in one time step. To ensure
comparability of the results published for different FSI solvers, all throughput numbers listed
in Table 9.1 refer to the pressure wave benchmark which is also studied in the present work
in Section 9.7.2. It should be emphasized that the throughput further depends on discretization
parameters such as the mesh size h (or problem size in degrees of freedom) and the time step
size ∆t. Moreover, the hardware under consideration and the chosen solver tolerances have an
impact on throughput. Nevertheless, it might be possible to extract some trends from these num-
bers. In particular, these numbers suggest that state-of-the-art monolithic solvers are currently
not able to significantly exceed a throughput of approximately 103 DoF

s·core
per time step for the

considered benchmark problem.

Given the multitude of partitioned schemes, numerous comparative studies on the relative
performance of partitioned schemes can be found in the literature, see Bogaers et al. (2014), De-
groote et al. (2010), Küttler and Wall (2008, 2009), Küttler et al. (2010), Lindner et al. (2015),
Spenke et al. (2020). Unfortunately, it has not been possible to extract numbers from the lit-
erature with a similar level of detail as for the monolithic schemes listed in Table 9.1. Many
works only report normalized or relative costs, see for example Bogaers et al. (2014), Degroote
et al. (2010), Spenke et al. (2020), or only report iteration counts, see for example Lindner et al.
(2015), Mehl et al. (2016). Hence, the performance of partitioned schemes is estimated from a
different perspective in the following. For single-field problems, previous chapters have shown
that a throughput of 105 − 106 DoF

s·core
can be reached for high-order DG discretizations on modern

hardware, see also Fehn et al. (2020) for a Poisson-type model problem and Arndt et al. (2020b)
for an incompressible, turbulent flow problem. The most effective partitioned FSI solvers are
reported to typically converge in 5− 10 outer iterations for strongly-coupled FSI problems (Bo-
gaers et al. 2014, Spenke et al. 2020) and lower iteration counts for weakly-coupled problems
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with ρF/ρS � 1. Assuming that partitioned schemes require O(10) outer FSI iterations with
single-field solvers called in each of them, one might expect a throughput of 104 − 105 DoF

s·core
for

the FSI problem. This would imply a huge gap in throughput of at least one order of magnitude
when comparing these estimated values for partitioned schemes to the performance of monolithic
solvers listed in Table 9.1.1 Based on these considerations, one might expect that it is possible
to implement partitioned FSI solvers that significantly improve the throughput compared to the
monolithic solvers listed in Table 9.1, e.g., by the use of fast matrix-free solvers. These consider-
ations serve as a main motivation for the present work, which aims at overcoming the seemingly
stagnating performance of state-of-the-art monolithic solvers. While the present work exclu-
sively considers partitioned solvers, it should be mentioned that alternative optimal-complexity
matrix-free implementations of monolithic solvers might also improve the performance signifi-
cantly. The development of fast matrix-free preconditioners for the monolithic system appears to
be the key ingredient in this context, but this aspect is beyond the scope of the present work. The
above performance numbers and estimates should therefore not be misunderstood as claiming
a superior performance of partitioned over monolithic schemes. Instead, these numbers point to
potential performance gains by the use of an efficient implementation, which are first explored
for partitioned schemes in the present thesis, and could also be explored for monolithic schemes
in the future. Of course, a discussion regarding computational efficiency becomes obsolete if a
partitioned scheme is not robust enough to converge for a given problem.

9.1.3 Mesh movement techniques
For ALE-based FSI, a key ingredient is the technique used for the ALE mesh motion of the
fluid domain, where various formulations can be used. The most simple technique is an explicit
mapping or interpolation of the moving domain boundary at the fluid–structure interface into the
interior of the fluid domain, e.g., by radial basis function interpolation (de Boer et al. 2007) or
transfinite interpolation (Wang and Przekwas 1994), see also Froehle and Persson (2014), Heil
(2004), Persson et al. (2007) for applications in the context of FSI. Another class of mesh mo-
tion techniques are spring models, see for example Batina (1991), Farhat et al. (1998). The most
widely used approach for general fluid–structure interaction problems, however, is the solution
of a PDE-type model problem for the mesh deformation, where the solution of a Laplace prob-
lem (harmonic extension) (Kanchi and Masud 2007, Löhner and Yang 1996), a linear elasticity
problem (Johnson and Tezduyar 1994, Sackinger et al. 1996, Stein et al. 2003), a non-linear
elasticity problem (Froehle and Persson 2015, Neunteufel and Schöberl 2021), or a biharmonic
equation (Helenbrook 2003) form the main categories of such an approach. Comparative studies
are for example conducted in Wick (2011), Yang and Mavriplis (2005), Yigit et al. (2008).

In order to obtain a generic and versatile FSI solver, the present work exclusively considers the
PDE-type approach for mesh movement. The solution of a constant-coefficient Laplace equation
is typically used in hemodynamics (with the simulation of pressure waves as the most prominent
benchmark scenario), where the deformations are moderate and good-natured in the sense that
the domain is mainly enlarged in the direction normal to the blood vessels without significantly

1Although a partitioned FSI solver involves several single-field problems, this does not necessarily imply a reduc-
tion in throughput, since the degrees of freedom of the single-field problems sum up to the overall number of
unknowns of the FSI problem. A single-field problem with a very low throughput does not deteriorate overall
throughput significantly as long as this single-field problem has a low share of the overall computational costs.
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distorting the topology. However, for problems with large deformations of the structure, it is well
known that the solution of a Laplace problem mainly introduces mesh deformation close to the
interface and soon leads to inverted elements. As a means to smear the deformation imposed
at the fluid–structure interface over a wider part of the domain, the common strategy to tackle
this problem is the use of spatially varying coefficients with a diffusivity (in case of the heat
equation model problem) or stiffness (in case of the elasticity model problem) that increases
with decreasing distance to the structure. The spatial variation of the variable coefficient can
be prescribed analytically based on the reference configuration or in a more generic way by
determining the distance to the moving interface and using a purely distance-based description
of the variable coefficient. Another option is to select the coefficient inversely proportional to the
element volume, as used in Johnson and Tezduyar (1994), Stein et al. (2003) in the context of
low-order finite element methods, assuming that elements are smaller close to the fluid–structure
interface. However, there are scenarios conceivable where this assumption might not be satisfied
or might be too restrictive. Especially for high-order spectral element methods, element size is
no longer a good measure.

Remark 9.1 Given that the use of a variable coefficient or stiffness appears to be the essential
ingredient enabling large mesh deformations, it remains unclear from previous works whether
and to which extent the more complex elasticity (pseudo-solid) model problems give an advan-
tage over the more simple Laplacian (harmonic) model. It remains also unclear how the bihar-
monic model performs when compared to a second-order PDE with variable coefficient. These
aspects could be part of future investigations.

9.1.4 Discontinuous Galerkin methods for fluid–structure
interaction

Application of discontinuous Galerkin discretization techniques to fluid–structure interaction
problems with compressible fluid formulations have already been proposed in Froehle and Pers-
son (2014), Persson et al. (2007), where explicit time stepping is used in Persson et al. (2007)
and semi-implicit time stepping in Froehle and Persson (2014). An FSI formulation for weakly
compressible flows with HDG discretization for the fluid problem and continuous Galerkin dis-
cretization for the structural problem is presented in La Spina et al. (2020b). In the context of the
incompressible Navier–Stokes equations, the development of DG-FSI methods is still in an early
stage, explainable by the fact that the single-field fluid problem required a lot of attention in pro-
viding robust and efficient numerical methods, where significant progress has been made over
the last two decades, as discussed in Chapter 2. ALE-based monolithic FSI solvers are proposed
in Neunteufel and Schöberl (2021), Sheldon et al. (2016), where hybridizable discontinuous
Galerkin methods are used. While the work by Sheldon et al. (2016) uses an HDG formulation
for all three fields, the work by Neunteufel and Schöberl (2021) uses an H(div)-conforming
HDG discretization for the fluid and a standard H1-conforming discretization for the nonlinear
elasticity problems of the solid domain and the mesh deformation of the fluid domain. A parti-
tioned FSI solver using L2-conforming discontinuous Galerkin discretizations for the fluid and
the harmonic mesh motion equation is presented in Wang et al. (2018). For the structure, shell
models are considered which are again discretized by DG methods. The FSI coupling is realized
by a strongly-coupled partitioned approach and the dual splitting projection scheme is used as
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solution technique for the incompressible Navier–Stokes sub-problem. All of these methods use
conforming meshes at the fluid–structure interface. Another major limitation of these previous
works is that they all rely on matrix-based implementations, rendering the numerical method
memory intensive and computationally expensive, especially for three-dimensional problems
and high polynomial degrees.

9.1.5 Novel contributions and scope of this work

The FSI solvers developed in this work build upon the ALE-DG formulations for incompressible
flows on moving domains developed in Chapter 8. The structure is modeled as d-dimensional
non-linear elasticity problem with hyperelastic material model. PDE-type model problems are
considered for the mesh movement problem on the fluid domain, allowing the use of a harmonic
or (non-)linear elasticity mesh motion problem. The solid problem and mesh movement problem
are discretized by standard H1-conforming discretizations. The fluid–structure coupling is real-
ized by strongly-coupled partitioned solution techniques with the goal to obtain computationally
efficient solution techniques. The present work exclusively considers black-box coupling tech-
niques that do not require access to individual field solvers apart from controlling the time step
size (for adaptive time stepping) and querying or relaxing solution vectors. In this context, the
present work relies on state-of-the-art methods such as a fixed-point iteration with Aitken re-
laxation or quasi-Newton algorithms for convergence acceleration. All fields of the three-field
formulation are implemented with the intention to be able to use fast matrix-free evaluation
techniques, but the FSI solver should of course make use of matrix-based techniques where
reasonable. For reasons of flexibility, the FSI solvers developed in this work are designed to al-
low non-conforming meshes at the fluid–structure interface and polynomial degrees that can be
selected independently for the fluid, mesh motion, and solid problems. This design naturally en-
ables the use of different incompressible Navier–Stokes solution techniques and time integration
schemes developed in Chapter 2 as well as adaptive time stepping. As discussed in Section 9.1.4,
many state-of-the-art FSI approaches using DG formulations for the fluid problem do not provide
this flexibility. To the best of the author’s knowledge, the present work is the first that applies
fast matrix-free DG implementations for incompressible flows in an FSI context. Performance
comparisons to a state-of-the-art matrix-based monolithic FSI solver based on low-order con-
tinuous finite element discretizations (see Mayr et al. (2020)) indicate substantial performance
improvements by the ingredients proposed in this thesis. The present implementation does cur-
rently not support hp-adaptivity in the individual fields or remeshing of the fluid mesh, where
the latter might in general be necessary in case of large deformations of the structure.

9.2 Mathematical model in strong formulation

The domain Ω(t) consists of a fluid part ΩF(t) and a structure part ΩS(t) with Ω(t) = ΩF(t) ∪
ΩS(t) and ΩF(t) ∩ ΩS(t) = ∅. Both domains evolve as a function of time, and for ease of
notation the time argument will also be skipped in the following. Both domains share a com-
mon interface ΓI(t) = ∂ΩF(t)∩ ∂ΩS(t), the fluid–structure interface. The boundary of the fluid
domain ∂ΩF(t) can then be written as ΓF(t) = ΓD,F(t) ∪ ΓN,F(t) ∪ ΓI(t) (with no intersec-
tion between the Dirichlet, Neumann, and fluid–structure interface parts), and likewise for the
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ΩF(t)
ΩS(t)

ΓI(t)

ΓD,F(t) ∪ ΓN,F(t)
ΓD,S(t) ∪ ΓN,S(t)

Figure 9.1: Illustration of domains and boundaries for fluid–structure interaction problems.

structure ΓS(t) = ΓD,S(t) ∪ ΓN,S(t) ∪ ΓI(t). An illustration is given in Figure 9.1. The FSI
problem can be formulated as the balance equations for the fluid and structure sub-problems,
along with coupling conditions at the interface. The description below is restricted to an arbi-
trary Lagrangian–Eulerian formulation for the fluid (F), and a Lagrangian formulation for the
structure (S). Due to the use of an ALE formulation for the fluid, an additional equation has
to be solved for the mesh motion (M) on the fluid domain, leading to a so-called three-field
formulation (M,F ,S).

9.2.1 Fluid
The governing equations for the fluid domain are the incompressible Navier–Stokes equations in
ALE formulation for a Newtonian fluid (see also Chapter 8)

∂uF

∂t

∣∣∣∣
χ

+ ((uF − uM) · ∇)uF −∇ · Fv(uF) +∇pF = fF in ΩF × [0, T ] , (9.1)

∇ · uF = 0 in ΩF × [0, T ] , (9.2)

where uF denotes the fluid velocity, uM the mesh velocity, pF the kinematic pressure, fF the
body force vector, Fv(uF) the viscous term written in Laplace or divergence formulation (see
Chapter 2), and χ the coordinates of the moving ALE frame as introduced in Chapter 8. The
strong formulation is completed by the initial condition

uF(x, t = 0) = uF0 (x) in ΩF0 , (9.3)

and the boundary conditions

uF = gFu on ΓD,F(t) , (9.4)(
Fv(uF)− pFI

)
· n = hF on ΓN,F(t) , (9.5)

where n is the outward pointing unit normal vector and I the identity matrix. Dirichlet and
Neumann boundary values are denoted by gFu and hF , respectively. The initial condition uF0 (x)
is divergence-free and fulfills the velocity Dirichlet boundary condition.

9.2.2 Structure
For a general description of nonlinear solid mechanics the reader is referred to Holzapfel (2000).
The structural problem is governed by the equations of non-linear elasticity in Lagrangian for-
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mulation

ρS0
d2dS

dt2
−∇0 · P = bS0 in ΩS0 × [0, T ] , (9.6)

where ρS0 denotes the density in the initial/reference configuration ΩS0 = ΩS(t = 0), bS0 the body
force per unit undeformed volume, and P the first Piola–Kirchhoff stress tensor

P = F · S , (9.7)

with deformation gradient F

F =
∂x

∂X
= 1 +∇0d

S , (9.8)

and second Piola–Kirchhoff stress tensorS. In the above equations,∇0 denotes the gradient with
respect to the material coordinatesX , and xS(X, t) = X + dS(X, t) the location of a material
point in deformed configuration where dS(X, t) is the displacement vector. The present work
considers hyperelastic materials, for which the second Piola–Kirchhoff stress is given as S =
∂Ψ/∂E as a function of the strain energy function Ψ and the Green–Lagrange strain tensor E.
From this class of materials, the isotropic St. Venant–Kirchhoff constitutive relation is considered
here, which is often used for problems with small strains

S = λS tr (E) I + 2µSE , (9.9)

where the Green–Lagrange strain tensor E is

E =
1

2

(
F T · F − I

)
, (9.10)

and where the Lamé coefficients λS and µS are given as

λS =
νSES

(1 + νS) (1− 2νS)
, µS =

ES

2 (1 + νS)
, (9.11)

with Young’s modulus ES and Poisson’s ratio νS < 1
2
. The St. Venant–Kirchhoff material law

can be alternatively formulated as S = C : E with a fourth-order material tensor C, high-
lighting the linear relationship between the second Piola–Kirchhoff stress tensor and the Green–
Lagrange strain tensor. The strong formulation for the solid domain is completed by initial con-
ditions for the displacement dS and the velocity vS = ddS/dt

dS(x, t = 0) = dS0 (x) in ΩS0 , (9.12)

vS(x, t = 0) = vS0 (x) in ΩS0 , (9.13)

and boundary conditions

dS = gS on ΓD,S(t) , (9.14)

P ·N = tS0 on ΓN,S(t) , (9.15)
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where gS denotes the displacement prescribed at the Dirichlet boundary,N the outward-pointing
unit normal vector in reference configuration, and tS0 the traction force per unit undeformed
area. The traction tS0 in Lagrangian description is related to the traction tS in the deformed
configuration via

tS0 =
da

dA
tS ,

da

dA
= ‖ det(F ) F−T ·N‖ . (9.16)

Similarly, it holds for the body force bS0

bS0 =
dv

dV
bS ,

dv

dV
= det(F ) , (9.17)

where bS is the body force per deformed volume. For example, one obtains bS0 = ρS0 g for the
gravitational force.

9.2.3 Coupling conditions
Assuming no-slip conditions at the fluid–structure interface leads to the kinematic coupling con-
dition

uF =
ddS

dt
on ΓI(t) , (9.18)

i.e., material points of the fluid and structure continua are glued together at the interface for all
times. The kinetic (or dynamic) coupling condition enforces a balance of traction forces at the
interface

σF · nF + σS · nS = 0 on ΓI(t) , (9.19)

where σ denotes the Cauchy stress tensor and where the outward pointing unit normal vectors
fulfill the relation nF = −nS .

9.2.4 Mesh motion
In Chapter 8, the mesh motion has been prescribed analytically by a map fG(χ, t) that can be
described mathematically as a homeomorphism. In the context of FSI, the mesh motion prob-
lem can be formulated as an extension of the displacement prescribed at the fluid–structure
interface into the interior of the fluid domain. This extension is in principle arbitrary, but must
prevent mesh-folding in the fluid domain. Introducing an extension operator Ext : ΓI

0 7→ ΩF0 as
in Fernández and Moubachir (2005), the fluid mesh displacement can be written in an abstract
way as

dM = Ext
(
dS |ΓI

0

)
. (9.20)

An alternative formulation used in Gerbeau et al. (2005) is dM = tr−1
(
dS |ΓI

0

)
, where tr−1 is

an inverse trace operator. The present work considers harmonic and pseudo-solid extensions de-
scribed by a Laplace problem and a linear or nonlinear elasticity problem, respectively, which is
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solved for the fluid mesh displacement dM. The fluid mesh position is then given as xM(χ, t) =
χ + dM(χ, t). The mesh coordinates χ are introduced in Chapter 8 and can be seen as the ma-
terial coordinates X of the mesh field in terms of the pseudo-solid analogy. For the harmonic
extension, the mesh motion problem is described by the following Laplace problem with spa-
tially varying coefficient α(χ) formulated w.r.t. the undeformed fluid mesh

−∇χ ·
(
α(χ)∇χdM

)
= 0 in ΩF0 × [0, T ] . (9.21)

The description of boundary conditions is postponed to the end of this section. The pseudo-solid
problem described by the equations of linear elasticity reads

−∇χ ·
(
λM(χ) tr

(
εM
)
I + 2µM(χ)εM

)
= 0 in ΩF0 × [0, T ] , (9.22)

where the strain tensor is defined as

εM =
1

2

(
∇χdM +

(
∇χdM

)T)
, (9.23)

and where λM, µM are pseudo material parameters related to Young’s modulus EM and Pois-
son’s ratio νM through equation (9.11). The notation with a distinction between x and χ is used
here for clarity, indicating that the displacements might indeed be large for the fluid mesh de-
formation despite the use of a linear elasticity approach. In case of using a non-linear elasticity
model for the mesh motion problem, the formulation follows immediately from Section 9.2.2
by dropping the body force term and time derivative term in equation (9.6) and by replacing the
material coordinatesX by the mesh coordinates χ

−∇χ ·
(
FM · SM

)
= 0 in ΩF0 × [0, T ] , (9.24)

where the second Piola–Kirchhoff stress tensor is described in Section 9.2.2, using for example
the St. Venant–Kirchhoff material law.

The fluid mesh movement is described as a PDE-type model problem, and therefore requires
suitable boundary conditions. Note that the PDE for the mesh deformation is most often for-
mulated as steady-state problem (as introduced above) with boundary conditions changing over
time, while some works also consider dynamic formulations. At the fluid–structure interface, the
fluid mesh follows the motion of the structure, which leads to the geometric coupling condition

dM = dS on ΓI
0 . (9.25)

The other boundaries, ΓD,F(t) ∪ ΓN,F(t), are typically non-moving and a common choice is the
use of homogeneous Dirichlet boundary conditions for the mesh motion, dM = 0. As a means
to keep fluid mesh deformations small, an alternative is to allow a sliding of the fluid mesh along
the boundary and only prescribe the motion normal to the boundary dM · n = 0 in order to
adhere to the physical boundaries of the problem.

9.3 Discretization in space and time
This section discusses the discretization of the fluid–structure interaction problem in space and
time. The discretization of the fluid problem relies on the high-order discontinuous Galerkin
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solver with matrix-free implementation that has been introduced in previous chapters. Hence,
the new ingredient in this section is the description of a structural mechanics solver based on
a (potentially high-order) continuous finite element method for discretization in space, and the
generalized-α method for discretization in time. Similarly, the mesh motion problem is also
discretized by a high-order continuous finite element discretization and uses ingredients of the
structural mechanics solver due to the pseudo-solid analogy of the mesh motion problem.

9.3.1 Fluid
The fluid solver is based on the methodology introduced in Chapter 2 for non-moving meshes,
and extended to moving meshes via arbitrary Lagrangian–Eulerian techniques in Chapter 8. The
fluid solver uses BDF time integration and high-order discontinuous Galerkin methods for dis-
cretization in space. The black-box design of the FSI solver followed in this chapter allows to
take advantage of the flexibility of the fluid solver with respect to different Navier–Stokes so-
lution techniques (coupled or monolithic solution versus projection methods), fully-implicit or
mixed implicit/explicit time integration, and adaptive time stepping. As motivated in the intro-
duction of this chapter, this is a key ingredient in order to obtain a versatile and computationally
efficient FSI solver.

9.3.2 Structure
This section describes the spatial discretization and temporal discretization for the structural
field. For ease of notation, this section omits the superscript S indicating the structural field.

9.3.2.1 Spatial discretization

The spatial discretization of the solid field is based on a standard displacement-based continuous
Galerkin finite element discretization, where high-order polynomial shape functions can be used
as a means to mitigate locking. The space of solution functions for tensor-product elements Qk
of degree k is given as

Vh =
{
dh ∈

[
H1(Ωh,0)

]d
: dh (Xe(ξ)) |Ωe,0 = d̃eh(ξ)|Ω̃e ∈ [Qk(Ω̃e)]

d ∀e, dh|ΓD
h,0

= Ih (g)
}
,

(9.26)

where H1(Ωh,0) is the space of functions in L2(Ωh,0) with first derivative also in L2(Ωh,0), and
where Ih is an operator interpolating the prescribed Dirichlet boundary data. Due to the strong
imposition of Dirichlet boundary conditions, the space of test functions is given as

Vh,0 =
{
dh ∈ Vh : dh|ΓD

h,0
= 0

}
. (9.27)

The usual shorthand notation (·, ·)Ωh
is used to denote the L2-product. Then, the weak formula-

tion can be stated as follows: Find dh ∈ Vh such that it holds for all vh ∈ Vh,0(
vh, ρh

d2dh
dt2

)
Ωh,0

+ (∇0vh,Ph)Ωh,0
− (vh, t0)ΓN

h,0
= (vh, b0)Ωh,0

, (9.28)
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with the first Piola–Kirchhoff stress tensor Ph(dh) as defined in Section 9.2.2. The above vari-
ational form is obtained by integration-by-parts of the nonlinear elasticity operator, exploiting
that the test function vanishes on the Dirichlet part of the boundary, and replacing the traction
in the Neumann boundary integral by the prescribed Neumann boundary condition t0. Here,
the Neumann boundary ΓN

h,0 also includes the fluid–structure interface ΓI
h, which will become

clear from Section 9.5 discussing the Dirichlet–Neumann partitioning scheme that imposes a
Neumann boundary condition for the structure on ΓI

h. Note that due to the continuity of shape
functions between elements, the variational form is not stated in an elementwise manner as done
in the case of discontinuous Galerkin discretizations in previous chapters.

A solution of this nonlinear system of equations (after discretization in time) by Newton’s
method requires the linearization of the nonlinear terms. The Neumann boundary integral and
body force term also depend nonlinearly on the displacement vector (see equation (9.16) and
equation (9.17)), but these terms are neglected in the linearization. Hence, it remains to linearize
the term (∇0vh,Ph)Ωh,0

. Denoting by dh,lin the point of linearization and by ∆dh the solution
increment, the linearization is given as

Lin
(

(∇0vh,Ph)Ωh,0

)
= + (∇0vh,P (dh,lin))Ωh,0

+ (∇0vh,∇0 (∆dh) · S(dh,lin))Ωh,0

+
(
∇0vh,F (dh,lin) ·

(
C :

(
F (dh,lin)T · ∇0 (∆dh)

)))
Ωh,0

,

(9.29)

where the minor symmetries of the material tensor C have been exploited. As a result of the
discretization in space, the following semi-discrete problem is obtained

M
d2d(t)

dt2
+ e (d(t), t)− b (d(t), t) = 0 . (9.30)

where M denotes the mass matrix (scaled by density), e the discrete nonlinear elasticity operator,
and b the discrete body force operator.

9.3.2.2 Temporal discretization

Discretization in time is based on the generalized-α time integration scheme (Chung and Hulbert
1993). The basic idea is to introduce two generalized mid-points tn+1−αm = αmtn+(1−αm)tn+1

and tn+1−αf
= αftn + (1− αf)tn+1 at which to simultaneously satisfy the equations of motion

Man+1−αm + e
(
dn+1−αf , tn+1−αf

)
− b

(
dn+1−αf , tn+1−αf

)
= 0 , (9.31)

where the mid-point displacement and acceleration are

dn+1−αf = αfd
n + (1− αf)d

n+1 , (9.32)
an+1−αm = αma

n + (1− αm) an+1 . (9.33)

Using the following relations for the Newmark time integration scheme with parameters β, γ

dn+1 − dn

∆tn
= vn +

∆tn
2

(
2βan+1 + (1− 2β) an

)
, (9.34)

vn+1 − vn

∆tn
= γan+1 + (1− γ) an , (9.35)
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equation (9.31) can be formulated as an equation for the unknown displacements dn+1−αf only.
This is done by inserting equations (9.32) and (9.34) into equation (9.33), and the resulting
equation into equation (9.31) to replace an+1−αm

1− αm

(1− αf)β∆t2n
Mdn+1−αf + e

(
dn+1−αf , tn+1−αf

)
− b

(
dn+1−αf , tn+1−αf

)
=

M

[
1− αm

(1− αf)β∆t2n
dn +

1− αm

β∆tn
vn +

1− αm − 2β

2β
an
]
.

(9.36)

In the first time step n = 0, the displacement d0 and velocity v0 are given by interpolation of
the initial conditions. The initial acceleration a0 is obtained as the solution of the mass matrix
problem

Ma0 + e
(
d0, t0

)
− b

(
d0, t0

)
= 0 . (9.37)

Equation (9.36) can be solved for the displacement dn+1−αf . Then the displacement, velocity,
and acceleration at time tn+1 are obtained from equations (9.32), (9.34), (9.35) as follows

dn+1 =
dn+1−αf − αfd

n

1− αf

, (9.38)

vn+1 =
γ

β∆tn

(
dn+1 − dn

)
− γ − β

β
vn − γ − 2β

2β
∆tna

n , (9.39)

an+1 =
1

β∆t2n

(
dn+1 − dn

)
− 1

β∆tn
vn − 1− 2β

2β
an . (9.40)

9.3.2.3 Implementation and iterative solution of discrete problem

The nonlinear system of equations (9.36) is solved by a Newton–Krylov approach. The nonlinear
residual evaluation as well as the linearized operator can immediately be evaluated by matrix-
free techniques with sum-factorization on tensor-product elements as discussed in Chapter 4.
A matrix-free implementation for nonlinear elasticity problems with Neo-Hookean constitutive
law has recently been proposed in Davydov et al. (2020), which uses the same implementation
of matrix-free evaluation techniques, provided by the deal.II library, as the present work.
For problems with complex constitutive law that does not result in a constant material tensor but
instead depends on the current state of deformation, the decisive factor in achieving high perfor-
mance concerns the question whether all quantities should be recomputed in every iteration of
the linear solver or whether certain quantities should be stored2 and then streamed from memory
for every application of the matrix-vector product. The reason behind is that for simple consti-
tutive laws the arithmetic work per quadrature point can often be hidden behind the transfer of
the solution vectors and geometry data (on deformed meshes) from main memory. However, for
constitutive laws that are more expensive to evaluate with significantly increased arithmetic work
per quadrature point, precomputing certain information and storing this data for all quadrature

2Here, the term “cached” used in Davydov et al. (2020) is avoided to prevent misunderstandings in the sense that
the data needs to be “cached” for all quadrature points for all elements and, therefore, can not reside in the cache
but needs to be streamed from main memory.

348



9.3 Discretization in space and time

points can be a better compromise with increased performance in the sense of a higher through-
put, i.e., a faster evaluation of the matrix-vector product. These aspects are discussed in detail
in Davydov et al. (2020). Here, all quantities are computed on-the-fly given the simplicity of the
St. Venant–Kirchhoff constitutive behavior considered in this work.

To solve the linearized system of equations, the hybrid geometric multigrid preconditioner
with AMG coarse grid solver as discussed in Chapter 5 can be used. To evaluate the operator on
coarser multigrid levels, the displacement vector dh,lin describing the current point of lineariza-
tion is restricted to coarser levels (using matrix-free techniques) in addition to the restriction
of the solution vector. As a smoother on each level, Chebyshev smoothing is applied. It has
been shown in Davydov et al. (2020) that such a setup significantly outperforms a matrix-based
AMG solver especially for higher polynomial degrees, and achieves a throughput in terms of
degrees of freedom solved per second that depends only mildly on the polynomial degree. For
this reason, the present work follows the same strategy in order to obtain an FSI solver that ex-
ploits fast matrix-free techniques for all fields. Due to the fundamentally different complexity of
matrix-based and matrix-free implementations, it can be expected that the use of a matrix-based
approach in combination with a large polynomial degree k for one of the fields would other-
wise limit the performance of the overall FSI solver. For low polynomial degrees, the use of an
algebraic multigrid preconditioner might be an efficient alternative.

Remark 9.2 An open question in the context of matrix-free solvers for high-order discretizations
of elasticity problems as discussed in Davydov et al. (2020) appears to be the robustness of
Chebyshev smoothing for large polynomial degrees k. While Chebyshev smoothing has been
investigated in detail for simple Poisson-type model problems in Fehn et al. (2020), Kronbichler
and Wall (2018), Sundar et al. (2015) for high-order (dis-)continuous Galerkin discretizations,
it is unclear whether this robust behavior translates to elasticity problems that are characterized
by a linearized operator which might be less diagonally-dominant as compared to the Laplace
operator and which introduces a coupling of degrees of freedom associated to displacements in
different coordinate directions due to the symmetric gradient occurring in the elasticity operator.
This topic appears to be rarely explored in the literature in the context of Chebyshev smoothing
for high-order methods. While an in-depth investigation of this aspect is beyond the scope of the
present work, this aspect should be considered as part of future work.

9.3.3 Mesh motion

For the mesh deformation problem, an approximation by a continuous finite element space of
tensor degree kM is used as for the structural field, with a strong imposition of Dirichlet boundary
conditions. For brevity, the definition of finite element function spaces is therefore omitted here.
In case of a harmonic extension, the weak form reads: Find dMh ∈ Vh such that it holds for
all vh ∈ Vh,0 (

∇χvh, α(χ)∇χdM
)

ΩFh,0
= 0 , (9.41)

where only the volume term remains due to the fact that Dirichlet boundaries are prescribed
on the whole boundary. Analogously, the linear elasticity mesh deformation problem, equa-
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tion (9.22), is given in variational form as follows(
∇χvh, λM(χ) tr

(
εMh
)
I + 2µM(χ)εMh

)
ΩFh,0

= 0 , (9.42)

with εMh (dMh ) as given in equation (9.23). The weak form for the mesh deformation described
by a nonlinear elasticity problem, equation (9.24), is omitted here, as it is a simplified version
of the problem described in Section 9.3.2.1 for the solid domain. The solution of the algebraic
system of equations resulting from the mesh motion problem follows the multigrid techniques
used for the fluid and solid problems, see also Chapter 5.

9.3.4 Time step calculation
The partitioned FSI solvers discussed here require the individual fields to be advanced with the
same time step size. Hence, the minimum of the time step size from the fluid field and structure
field is taken as a global time step size. In case of adaptive time stepping, the implementation
allows the fluid field to update the time step size adaptively after each time step (for example
when using an explicit treatment of the convective term with a time step restriction according
to the CFL condition), while no time step adaptation is implemented for the structure. In case
of adaptive time stepping, the new time step size then needs to be synchronized between the
fluid domain and solid domain after each time step. This strategy originates from the fact that a
fully implicit formulation is used for the structure, while mixed explicit/implicit formulations are
supported for the fluid domain for reasons of flexibility and computational efficiency. Hence, this
type of time step adaptation assumes that the optimal time step size is driven by stability rather
than accuracy considerations, see also Chapter 6. A different philosophy is for example followed
in Mayr et al. (2015, 2020), where the time step size is selected by accuracy considerations in
the context of a fully implicit monolithic solution approach.

9.4 Interface coupling
For fluid–structure interaction problems, information needs to be exchanged at the fluid–structure
interface. For partitioned FSI schemes, this information exchange has an explicit and direc-
tional (from-to) character, as opposed to monolithic solvers where the coupling is contained
implicitly in the monolithic system of equations. The present work does not want to make any
assumptions regarding the conformity of meshes at the interface, or the type of discretization
used for the individual fields (continuous versus discontinuous, modal versus nodal basis, low-
order versus high-order). Instead, the information exchange is realized by generic routines using
a consistent and high-order interpolation of the respective solution fields. Due to the directional
character of the information exchange, there is a destination (dst) side (the field for which the
boundary condition has to be prescribed), and a source (src) side (the field on the other side
of the interface from which the information for evaluating the boundary condition needs to be
queried). The destination side defines a set of points x in physical space at which to evaluate
the boundary condition (an illustration is given in Figure 9.2). These points can be the nodes of
a discretization, with a typical use case being continuous finite element discretizations with a
strong imposition of Dirichlet boundary conditions. However, these points can also be quadra-
ture points, for example in case of Neumann boundary conditions for a continuous finite element
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src

dst
ξ

ξ

rank 0 (src)

rank 1 (src)
q-points `i(ξq,e1), i = 1, . . . , N src

DoFs,e1

`i(ξq,e0), i = 1, . . . , N src
DoFs,e0

e0

e1

xq

Figure 9.2: Illustration of interface coupling algorithm for the special case that two elements are
found on the src-side corresponding to point xq on the dst-side. In case of domain
decomposition used in parallel computations, the two elements might belong to the
same rank or to two different ranks on the src-side (the latter case is illustrated in the
figure).

discretization, where the Neumann boundary condition appears in the weak form as an integral
over the respective part of the boundary which is calculated by numerical quadrature. In case of
discontinuous Galerkin discretizations with a weak imposition of boundary conditions, points
defined by the destination side are generally quadrature points. The algorithm for interface cou-
pling by consistent interpolation then consists of two steps:

1. Setup phase: For all points xq, q = 1, . . . , Ndst
I , on ΓI, find all elements Ωsrc

e on the src-
side containing point xq within a given tolerance. Multiple elements might be found, e.g.,
if the point is located at the interface between elements on the src-side. Then, transform
point xq into reference coordinates ξq for each of these elements, evaluate all shape func-
tions `i(ξq,e), i = 1, . . . , N src

DoFs,e, of element e, and determine the dof-indices needed to
extract the local degrees of freedom di,e of element e from the global dof-vector dsrc. Fill
data structures storing this information (shape function values and dof-indices) in vectors
with Ndst

I entries for all the points xq.

2. Interpolation phase: Given the global dof-vector dsrc, read the shape function values and
dof-indices corresponding to point xq from the data structures filled in the setup phase,
extract the local degrees of freedom di,e associated to the stored dof-indices, and perform
the interpolation for all neighboring elements e associated to point xq

dq,e =

Nsrc
DoFs,e∑
i=1

`i(ξq,e)di,e . (9.43)

To obtain the final result dq, take the arithmetic mean of dq,e over all neighboring ele-
ments e. The interpolation phase is done whenever the boundary condition needs to be
evaluated, e.g., in each iteration of the partitioned FSI scheme.

In the context of parallel simulations with a distribution of the mesh and global dof-vectors
over the different processors for the individual field solvers, the distribution of points xq on the
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(a) fluid domain (gray) and solid domain (cyan) with quadrilateral meshes

(b) parallel partitioning of fluid and solid meshes for Ncores = 4

(c) parallel partitioning of fluid and solid meshes for Ncores = 8

Figure 9.3: Illustration of non-conforming meshes at FSI interface and independent partitioning
of fluid and solid domains in parallel computations for the cylinder-with-flag FSI
benchmark problem (refine level l = 1 for fluid domain and l = 0 for solid domain).
The implementation of the interface coupling is flexible in the sense that it allows
continuous or discontinuous finite element spaces with independent polynomial de-
grees (or quadrature rules) for the fluid and solid domains.

dst-side directly follows the decomposition of the mesh on the dst-side. However, since the parti-
tioning of the domain on the src-side is done independently from the dst-side, the corresponding
processor on the src-side will be a different one in general. A communication pattern needs to
be constructed in terms of which processors on the src-side hold data relevant for the interpo-
lation in point xq on the dst-side. In particular, it might happen that different processors on the
src-side contribute to the same point xq on the dst-side, see also Figure 9.2. This part of the al-
gorithm has been implemented by Peter Munch, PhD student at the Institute for Computational
Mechanics. Figure 9.3 illustrates the flexibility of the implementation in terms of non-matching
discretizations and an independent domain decomposition for fluid and solid domains for a prac-
tical example.

Remark 9.3 A separation of the algorithm into a setup phase (called lookup phase in Lind-
ner et al. (2020)) and an interpolation phase is done for two reasons. On the one hand, the
individual field solvers do not have access to the mesh on the other side of the interface when
implemented in a black-box fashion, which would be required if setup (geometric search of neigh-
boring elements in the src-mesh) and interpolation were done all at once whenever evaluating
the boundary condition within a single-field solver call. On the other hand, the geometric search
of elements surrounding a point is computationally the most expensive step, so that it makes
sense to perform this step only once in the setup phase instead of repeating this step within every
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iteration of the partitioned FSI scheme in each time step. Note that this is possible since there is
no relative motion between the solid and the fluid mesh at the interface. Of course, the data struc-
tures constructed in the setup phase need to be updated in case of hp-adaptivity whenever the
discretization changes on either side of the interface or when (re)partitioning the computational
domain.

Remark 9.4 To speed up the geometric search of neighboring elements, the search can be re-
stricted to elements located at the fluid–structure interface. Moreover, for high-order elements
with many degrees of freedom or quadrature points on each element, it is likely that several
points have the same neighboring elements on the src-side, i.e., the result of the search for a
previous point can be used as initial guess for the next point. Finally, a space-tree can be used to
obtain algorithms of optimal computational complexity in terms of the number of elements that
need to be tested to find a neighboring element (logarithmic versus linear complexity). Espe-
cially the latter aspect speeds up the search considerably, see also Lindner et al. (2020). These
types of algorithms are provided by the deal.II library and are not discussed in detail here.
Since the solution is in general discontinuous between elements, all neighboring elements have
to be identified (instead of just one element) as a means to make the result of the overall solver
independent of the specific algorithm used for the interface coupling.

Remark 9.5 For matching grids at the fluid–structure interface and homogeneous polynomial
degree k on both sides of the interface, the interpolation part of the above algorithm has com-
plexity O(k2d−1) for tensor-product elements in d space dimensions, which is a complexity in k
that is higher than the memory requirements of O(kd) and operation counts of O(kd+1) for the
matrix-free evaluation of weak forms for the individual field solvers. Since these operations have
to be performed only on a d − 1 dimensional surface in d space dimensions, the computational
costs can be expected to be negligibly small for serial computations, and also for parallel com-
putations provided that a reasonable load balancing can be achieved.

Remark 9.6 The explicit coupling algorithm described above is applied to the surface-coupling
of different fields at the fluid–structure interface. However, due to the formulation in terms of
an arbitrary set of points {xq}N

dst

q=1 on the dst-side, the algorithm could be applied to volume-
coupling as well. It should be noted that such an algorithm would have increased complexity
of O(k2d) as compared to O(kd+1) for the sum-factorization algorithms and the matrix-free
evaluation of weak forms, see Chapter 4. This is due to the fact that the generic coupling al-
gorithm does not have information about a tensor-product structure of all the points xq within
an element. It can be expected that these operations are still inexpensive if only done once per
time step (or per outer iteration of a partitioned solver) and for moderately large polynomial de-
grees, but might form a bottleneck in terms of memory requirements or compute time especially
for very large polynomial degrees due to the complexity of O(k2d) for a volume-coupling in d
space dimensions.

9.5 Dirichlet–Neumann partitioning scheme
Within each time step of the transient problem, partitioned FSI schemes solve the sub-fields
sequentially with appropriate boundary conditions at the fluid–structure interface. One sweep
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9 Multiphysics application: fluid–structure interaction

Algorithm 9.1 Dirichlet–Neumann partitioning d̃
S

= fFSI(d
S)

1: function fFSI(dS)
2: M: Coupling structure→ mesh: use dS to interpolate mesh DBC at ΓI

3: M: Solve mesh motion problem on fluid domain for displacement dM

4: M: Compute fluid mesh velocity uM and update metric terms on fluid domain
5: F : Coupling structure→ fluid: use vS to interpolate velocity DBC at ΓI

6: F : Solve fluid problem for velocity uF and kinematic pressure pF

7: F : Compute fluid traction vector tF at ΓI

8: S: Coupling fluid→ structure: use tF to interpolate structure NBC at ΓI

9: S: Solve structural problem for new displacements d̃
S

10: S: Update velocity vS and acceleration aS using new displacements d̃
S

11: return d̃
S

12: end function

through all field solvers is called FSI-cycle, and the FSI solver is called strongly-coupled if the
FSI-cycle is applied iteratively until convergence is achieved in an appropriate norm. The con-
verged solution then forms the solution of the current time step. Strongly-coupled schemes are in
general required for FSI problems involving incompressible flows due to the added-mass effect.
The present work considers the widely used Dirichlet–Neumann FSI partitioning scheme with
Dirichlet boundary conditions for the fluid and Neumann boundary conditions for the struc-
ture on ΓI. Following the methodology in Gerbeau et al. (2005), Küttler and Wall (2008), the
Dirichlet–Neumann scheme can be formulated in abstract notation as follows

d̃
S ← S ◦ F ◦M(dS) = fFSI(d

S) , dS ∈ Rm , (9.44)

where dM =M(dS) denotes the mesh motion problem resulting in the fluid mesh deformation,
from which the mesh velocity can be derived. Subsequently, tF = F(dM) denotes the fluid
sub-problem mapping displacements and velocity Dirichlet boundary conditions at the fluid–
structure interface to traction forces on the fluid–structure interface. Finally, dS = S(tF) denotes
the structure sub-problem mapping interface forces to displacements of the structural problem.
The Dirichlet–Neumann partitioning scheme is described in detail in Algorithm 9.1. The solution
of each field consists of three sub-steps, (i) a coupling step interpolating boundary conditions
from data provided by other fields (see Section 9.4), (ii) the actual solution step solving for the
unknown degrees of freedom of this field, and (iii) a postprocessing step preparing data required
by other fields. Since the overall problem is formulated in terms of the structural displacements,
the notation is simplified by using dS = d in the following. The notation d̃ indicates that the
obtained displacement field is a preliminary solution that can be used for the next FSI-cycle until
convergence is achieved for the fixed-point equation

d = fFSI(d) . (9.45)

The alternative residual formulation reads

r(d) = d̃− d = fFSI(d)− d = 0 . (9.46)
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It can be expected that a simple fixed-point iteration using the Dirichlet–Neumann partitioning
scheme does not converge without further measures, especially if the density ratio ρF/ρS is
large. Techniques for convergence acceleration are discussed in Section 9.6.

Remark 9.7 Many works restrict the fixed-point equation or residual equation to the degrees of
freedom on the fluid–structure interface, dΓI = d|ΓI , see for example Küttler and Wall (2008).
In the present work, all degrees of freedom of the structural problem contribute to the residual,
see for example Fernández and Moubachir (2005), Sheldon et al. (2014). This design choice
is made for ease of implementation, only requiring generic finite element functionality already
including the parallel partitioning of the dof-vector. The implementation could be extended by
problem-specific routines extracting certain degrees of freedom from a dof-vector and taking
care of the parallel partitioning of the interface dof-vector dΓI . Note, however, that the notion
of interface degrees of freedom implies a nodal basis, so that the formulation is restricted to
a certain type of discretization approach that is no longer applicable to a modal expansion of
shape functions. Hence, the present design can also be considered more generic, again follow-
ing the goal of black-box FSI solvers that do not introduce knowledge about the individual field
solvers. Of course, operating on the full dof-vector d increases storage requirements and po-
tentially also computational costs. However, the partitioned FSI schemes discussed below are
formulated in terms of dof-vectors only and do not require the storage of a matrix related to
the dof-vector d (such as the Jacobian matrix for the residual equation), so that the overhead
related to the full dof-vector design is small. In case of a d− 1 dimensional model for the struc-
ture (beams and shells), all structural degrees of freedom are located at the interface and there
is no difference between both approaches.

Remark 9.8 In the present work, the parallel partitioning is done independently for the differ-
ent fields, with all parallel resources contributing to the solution of each single-field. This is
reasonable, given that the partitioned FSI schemes considered here solve the single-field prob-
lems sequentially. Altering the iteration order of the partitioned FSI scheme for the purpose of
better parallel efficiency – with one group of processors working on the structural field and the
remaining processors simultaneously working on the fluid field – can be expected to deteriorate
the convergence of the FSI iteration, rendering an overall performance advantage unclear (Mehl
et al. 2016).

In the first iteration k = 0 of the fixed-point scheme, the displacement
(
dS
)n+1

0
and veloc-

ity
(
vS
)n+1

0
at the end of the current time step tn+1 are not known, but are required for the

solution of the mesh and fluid problems. Hence, the following extrapolation schemes are used to
predict these quantities in the first iteration(

dS
)n+1

0
=
(
dS
)n

+ ∆tn
(
vS
)n

, (9.47)(
vS
)n+1

0
=
(
vS
)n

. (9.48)

Note that the type of extrapolation is tied to the type of time integration used for the structural
problem (generalized-α in the present work), using only those vectors that are provided by the
structural solver as a means to sustain the black-box design. For example, extrapolations involv-
ing the solution at previous instants of time would be used in case of BDF time integration for
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the structure. The type of extrapolation does not affect the final solution of the time step, but a
more accurate extrapolation might allow coarser solver tolerances to achieve the same solution
quality at reduced computational costs. The mesh velocity in the fluid domain is calculated as

(
uM
)n+1

=
γn0
(
dM
)n+1 −

∑J−1
i=0 α

n
i

(
dM
)n−i

∆tn
, (9.49)

using a BDF-type time derivative in accordance with the time integration scheme for the fluid do-
main, see Chapters 2 and 8 for more detailed information. The evaluation of the Cauchy stresses
in the fluid domain at the fluid–structure interface ΓI is calculated as follows

tF = σF · nF = ρF
(
−pFI + νF

(
∇uF +

(
∇uF

)T)) · nF , (9.50)

so that the Neumann boundary condition for the structural problem is tS = −tF . It is again
emphasized that pF is the kinematic fluid pressure. While the Cauchy stresses are typically
formulated using the dynamic pressure and the dynamic viscosity, the above formulation with
multiplication by the fluid density is chosen in order to highlight that the incompressible flow
solver is implemented in kinematic formulation.

9.6 Acceleration schemes
This section discusses techniques for accelerating the convergence of the partitioned FSI itera-
tion. The methods considered in this work are state-of-the-art methods from the literature that
can be realized in a black-box fashion. Section 9.6.1 presents the fixed-point iteration scheme
with dynamic Aitken relaxation (Küttler and Wall 2008, Mok and Wall 2001), Section 9.6.2 the
IQN-ILS method (Degroote et al. 2009), and Section 9.6.3 the IQN-IMVLS method (Spenke
et al. 2020).

9.6.1 Fixed-point iteration with dynamic relaxation (Aitken
relaxation)

The first partitioned FSI solver considered here is the fixed-point iteration scheme with dynamic
Aitken relaxation developed by Mok and Wall (2001) and published later in Küttler and Wall
(2008)

d̃k = fFSI(dk) , (9.51)

rk = d̃k − dk , (9.52)

ωk = −ωk−1

rTk−1 (rk − rk−1)

‖rk − rk−1‖2
, (9.53)

dk+1 = dk + ωkrk , (9.54)

Due to the recursion in the update formula for the Aitken relaxation parameter, this equation can
only be used for k ≥ 1, making the initial relaxation parameter ω0 in iteration k = 0 a parameter
that has to be specified by the user (0 < ω0 < 1). The same value is used at the beginning of
each time step in this work, slightly differing from the version used in Küttler and Wall (2008).
The Aitken relaxation scheme is summarized in Algorithm 9.2.
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Algorithm 9.2 Fixed-point scheme with Aitken relaxation
1: function AITKEN(d0, ω0)
2: k = 0
3: while not converged do
4: d̃k = fFSI(dk)
5: rk = d̃k − dk
6: if not converged then
7: if k > 0 then
8: ωk = −ωk−1

rTk−1(rk−rk−1)

‖rk−rk−1‖2

9: end if
10: dk+1 = dk + ωkrk
11: end if
12: k ← k + 1
13: end while
14: end function

Remark 9.9 Note that updating the displacement vector in the relaxation step overwrites the
solution of the structural time integrator, which invokes an update of the velocity and accelera-
tion vectors according to equations (9.39) and (9.40) using the relaxed displacement vector. For
ease of notation, this is not written explicitly in the above equations, and without further mention
this also holds for other partitioned FSI schemes presented below.

9.6.2 IQN-ILS method
The IQN-ILS (interface quasi-Newton with inverse Jacobian by least squares approximation)
approach has been proposed by Degroote et al. (2009). The derivation shown below follows the
lines of presentation in Lindner et al. (2015). The residual equation is reformulated with the
intermediate displacement d̃ as unknown

r(d̃) = d̃− d = d̃− f−1
FSI(d̃) = 0 . (9.55)

To obtain a Newton update step, consider the linearization

rk+1 = rk +
∂r

∂d̃

∣∣∣∣
d̃k

∆d̃k = rk + Jk∆d̃k
!

= 0 . (9.56)

For black-box solvers, no information is available for the Jacobian. The idea of the IQN-ILS
approach is to approximate the inverse Jacobian from the residuals and solutions obtained from
previous iterations. The above linearization is rewritten as a secant equation, i.e., the Jacobian is
approximated by the slope of a secant

∆d̃ = J−1
k ∆r . (9.57)

Arranging previous residuals and intermediate solutions into matrices as in Spenke et al. (2020)

Dk = [∆d̃
1

0, . . . ,∆d̃
k

k−1] ∈ Rm×k , ∆d̃
j

i = d̃j − d̃i , (9.58)

Rk = [∆r1
0, . . . ,∆rkk−1] ∈ Rm×k , ∆rji = rj − ri . (9.59)
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Algorithm 9.3 QR-decomposition V = QR
1: function QR(V, ε)
2: initialize Q = [q0, . . . ,qk−1]← V,R = [rij] with rij = 0
3: for i = 0, . . . , k − 1 do
4: compute r0

ii = ‖qi‖
5: for j = 0, . . . , i− 1 do
6: rji = qT

j qi
7: qi = qi − rjiqj
8: end for
9: rii = ‖qi‖

10: if rii < ε r0
ii then

11: Set qi = 0, rji = 0 ∀j < i, rii = 1
12: else
13: qi = qi/rii
14: end if
15: end for
16: return Q,R
17: end function

and requiring the secant equation to be fulfilled for all pairs of vectors, yields the following set
of equations for the approximate inverse Jacobian

Dk = J−1
k Rk . (9.60)

Since typically k � m, this system of equations is under-determined. The IQN-ILS approach
approximates the inverse Jacobian by the least squares minimization

J−1
k = Dk

(
RT
kRk

)−1
RT
k . (9.61)

For reasons of computational efficiency, assembly and storage of the inverse Jacobian should
be avoided due to the quadratic complexity m2. As shown below, this is easy to realize since
the only use of the inverse Jacobian is its application to a vector. Further, for reasons of sta-
bility and robustness of the algorithm, a QR-decomposition of Rk = QkUk is computed by
transforming Rk into the product of an orthonormal basis Qk ∈ Rm×k with an upper triangular
matrix Uk ∈ Rk×k (small k×k matrix) via (modified) Gram–Schmidt orthogonalization. For the
QR-decomposition the improved algorithm proposed in Haelterman et al. (2016) is used, and is
summarized in Algorithm 9.3. The algorithm includes a mechanism to detect linear dependency
of the vectors, where a tolerance of ε = 10−2 is used unless specified otherwise. If a vector is
close to linear dependency, it is set to zero with rii = 1 on the diagonal to ensure invertibility
of Uk, but one could alternatively remove this column and restart the procedure as in Haelter-
man et al. (2016). With these ingredients, the following update procedure is obtained for the
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Algorithm 9.4 IQN-ILS (interface quasi-Newton inverse least-squares) method
1: function IQN-ILS(d0, ω0)
2: k = 0
3: while not converged do
4: d̃k = fFSI(dk)
5: rk = d̃k − dk
6: if not converged then
7: if k = 0 then
8: d1 = d0 + ω0r0

9: else
10: Dk = [d̃k−1 − d̃k, . . . , d̃0 − d̃k]
11: Rk = [rk−1 − rk, . . . , r0 − rk]
12: Qk,Uk ← QR(Rk)
13: Solve Ukαk = QT

k (−rk) via backward substitution
14: ∆d̃k = Dkαk
15: dk+1 = d̃k + ∆d̃k
16: end if
17: end if
18: k ← k + 1
19: end while
20: end function

displacements

dk+1 = d̃k + ∆d̃k = d̃k + J−1
k (0− rk)

= d̃k + Dk

(
RT
kRk

)−1
RT
k (−rk)

= d̃k + DkU
−1
k QT

k (−rk)
= d̃k + Dkαk .

(9.62)

The inverse U−1
k in the second line of the above equation can be applied by backward substitu-

tion. The last line with coefficients αk highlights that the IQN-ILS method uses a linear com-
bination of previous solutions as relaxation. This method may therefore also be interpreted as a
vector extrapolation method according to the vector extrapolation methodology for partitioned
FSI problems introduced in Küttler and Wall (2009). The IQN-ILS scheme is summarized in
Algorithm 9.4. Since at least two previous vectors are necessary, a relaxation d1 = d0 + ω0r0

with parameter ω0 is used in the first iteration of each time step.
The IQN-ILS method allows to include information from q previous time steps, which can

improve the convergence. In that case, the Dk,Rk matrices are appended as follows

D(q)
k =

[
Dn
k ,D

n−1
kn−1

, . . . ,Dn−q
kn−q

]
, (9.63)

R(q)
k =

[
Rnk ,R

n−1
kn−1

, . . . ,Rn−qkn−q

]
, (9.64)

which are then used for the QR-decomposition and the displacement update. In case of reuse
with q > 0, the relaxation with ω0 in the first iteration k = 0 is only required in the first time

359



9 Multiphysics application: fluid–structure interaction

Algorithm 9.5 Algorithm used to aproximate (Jn)−1 r in IQN-IMVLS method.
1: function INVJXR(Dn−q,Rn−q,Zn−q, . . . ,Dn−1,Rn−1,Zn−1, r)
2: initialize a = r,b = 0
3: for i = n− 1, . . . , n− q do
4: b← b + DiZia
5: a← a− RiZia
6: end for
7: return b
8: end function

step n = 0. However, it was found that the optimal number of reused time steps minimizing the
number of partitioned iterations is problem dependent, see for example Degroote et al. (2009)
and Haelterman et al. (2016). In particular, the convergence speed does not monotonously im-
prove for increasing q. A method that aims at overcoming this disadvantage is presented in the
next section. In summary, the IQN-ILS method as used here has three user defined parameters,
namely ε, ω0, q.

9.6.3 IQN-IMVLS method

An alternative quasi-Newton method is obtained by replacing the inverse Jacobian in (9.60) by
an update formula for the inverse Jacobian from time step n to n+ 1

Dk =
(
Jn+1
k

)−1
Rk =

(
(Jn)−1 + (∆J)−1)Rk . (9.65)

Solving equation (9.65) for the Jacobian increment via a least squares minimization as in equa-
tion (9.61) yields the IQN-IMVJ (interface quasi-Newton inverse multiple vector update Jaco-
bian) method introduced by Bogaers et al. (2014)(

Jn+1
k

)−1
= (Jn)−1 + (∆J)−1 = (Jn)−1 +

(
Dk − (Jn)−1 Rk

) (
RT
kRk

)−1
RT
k︸ ︷︷ ︸

=Zk∈Rk×m

. (9.66)

This method implicitly includes information of all previous time steps, successively updated by
newer information as a means to overcome the parameter dependency of the IQN-ILS method
regarding the number of reused time steps q. However, this quasi-Newton method updates and
stores the inverse Jacobian explicitly. The main disadvantage of the IQN-IMVJ method is, there-
fore, its quadratic complexity O(m2). Even if the method operates only on the interface de-
grees of freedom on the d− 1 dimensional fluid–structure interface, the quasi-Newton accelera-
tion scheme of the partitioned FSI problem can be expected to become prohibitively expensive
in d = 3 space dimensions for increasing problem sizes.

For this reason, the work by Spenke et al. (2020) proposed a method to circumvent this dis-
advantage by systematically removing all operations of quadratic complexity and formulating
the algorithm only in terms of matrix-vector products without explicit storage of an (inverse)
Jacobian. The presentation shown here follows Spenke et al. (2020), and the reader is referred to
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the original work for more detailed information.3 Using equation (9.66), the update formula for
the displacements can be written as

dk+1 = d̃k +
(
Jn+1
k

)−1
(−rk) = d̃k − (Jn)−1 rk︸ ︷︷ ︸

=bk

+
(
Dk − (Jn)−1 Rk

)︸ ︷︷ ︸
=Bk

(
RT
kRk

)−1
RT
k (−rk)︸ ︷︷ ︸

=αk

.

(9.67)

Recalling that the matrices Dk = [Dk−1,∆d̃
k

k−1],Rk = [Rk−1,∆rkk−1] are appended by one
column per iteration, carrying out this induction step yields for the matrix Bk

Bk =
[
Bk−1,∆d̃

k

k−1 + bk−1 − bk
]
. (9.68)

Hence, storage of a Jacobian matrix can be avoided as for the IQN-ILS method described in
Section 9.6.2 if it is possible to perform the matrix-vector product bk = (Jn)−1 rk using vector-
updates only. As shown in Spenke et al. (2020), it holds

(Jn)−1 rk =
n−1∑
i=0

Di
kZ

i
k

n−1∏
j=i+1

(
Ik − RjkZ

j
k

)
rk . (9.69)

Since this update would involve information from all previous time steps, it is suggested in Spenke
et al. (2020) to limit the update to information from q previous time steps. As a result, the IQN-
IMVLS method uses the approximation

bk = (Jn)−1 rk ≈
n−1∑
i=n−q

Di
kZ

i
k

n−1∏
j=i+1

(
Ik − RjkZ

j
k

)
rk , (9.70)

where the corresponding algorithm is shown in Algorithm 9.5.

3Note that the original publication contained two bugs (private communication with the authors) in the summary
of the method in (Spenke et al. 2020, Algorithm 1 and Algorithm 2), which is why – apart from changes of
nomenclature – the presentation shown here differs from the original publication of the IQN-IMVLS method.
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Algorithm 9.6 IQN-IMVLS (interface quasi-Newton implicit multi-vector least-squares)
method

1: function IQN-IMVLS(d0, ω0, n, q)
2: k = 0
3: Initialize Dn = [],Rn = [],B = [], declare Q,U,Zn

4: while not converged do
5: d̃k = fFSI(dk)
6: rk = d̃k − dk
7: if not converged then
8: bk = INVJXR(Dn−q,Rn−q,Zn−q, . . . ,Dn−1,Rn−1,Zn−1, rk)
9: if k = 0 and (q = 0 or n = 0) then

10: d1 = d0 + ω0r0

11: else
12: dk+1 = d̃k − bk
13: if k ≥ 1 then
14: Dn

k = [Dn
k−1,∆d̃

k

k−1] with ∆d̃
j

i = d̃j − d̃i
15: Rnk = [Rnk−1,∆rkk−1] with ∆rji = rj − ri

16: Bk = [Bk−1,∆d̃
k

k−1 + bk−1 − bk]
17: Qk,Uk ← QR(Rnk )
18: Solve Ukαk = QT

k (−rk) via backward substitution
19: dk+1 ← dk+1 + Bkαk
20: end if
21: end if
22: end if
23: k ← k + 1
24: end while
25: Solve UZn = QT via backward substitution with m right-hand side vectors
26: Store Dn,Rn,Zn

27: end function

Hence, the IQN-IMVLS method also introduces the number of reused time steps q as a param-
eter. However, it is argued in Spenke et al. (2020) that – due to the implicit reuse of previous data
– the IQN-IMVLS method nevertheless overcomes the disadvantage of the IQN-ILS method
regarding parameter dependency. For q = 0, the IQN-ILS and IQN-IMVLS methods are equiva-
lent. The overall algorithm is summarized in Algorithm 9.6. In the first iteration, a relaxation with
relaxation parameter ω0 is used, which is required only in the first time step if q > 0. In summary,
the method has three user defined parameters, namely ε, ω0, q. The multiplication of the inverse
Jacobian with a vector in line 8 has complexityO(mkq), while the QR-decomposition and back-
ward substitution in lines 17, 18, and 25 have complexity O(mk2). Assuming that k � m and
q � m and k, q being problem-independent small numbers, the algorithm has therefore O(m)
complexity.
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9.6.4 Convergence criterion
As convergence criterion for the partitioned FSI problem, a combination of an absolute criterion
with tolerance εabs and a relative criterion with tolerance εrel is used

‖rk‖2 < εabs

√
m ,

‖rk‖2 < εrel ‖∆t ḋ‖2 ,

where the results are considered to be converged as soon as one criterion is fulfilled. The absolute
criterion is used in Küttler and Wall (2008). However, it might be fulfilled just because the time
step size is very small and might therefore not conclusively report the convergence status of the
partitioned FSI scheme. For this reason, the absolute criterion is supplemented by the relative
one, where ∆t ḋ estimates the change in displacements occurring in one time step due to the
motion of the structure with velocity ḋ. Hence, the FSI iteration is considered to be converged if
the change in displacements after one FSI iteration is small in an absolute sense, or relative as
compared to the motion of the structure in the current time step.

Remark 9.10 It has been remarked in (Küttler and Wall 2008, Remark 7) that strongly-coupled
partitioned FSI schemes with multiple iterations per time step require field solvers that can
be reset in order to calculate the same time step several times. Here, this is complemented by
another important aspect which is motivated from the point of view of computational costs. Due
to the nested nature of solvers for partitioned FSI problems, it is important to not “oversolve”
the single-field problems. The single-field problems only have to be solved as accurately as
necessary, i.e., to not deteriorate the convergence of the partitioned FSI solver. Assuming that
the single-field solvers have the highest share of the overall computational costs, a more efficient
solution of the single-field problems will directly translate into a more efficient partitioned FSI
solver. To enable single-field solvers with coarse relative solver tolerances (reducing residuals
by just one or a few orders of magnitude within each partitioned FSI iteration), the single-field
solvers must be able to memorize the solution obtained in the previous iteration of the outer
partitioned FSI scheme. This is particularly relevant when using splitting methods as single-
field solvers, because these then also need to store the solution obtained in intermediate steps of
the splitting scheme. If the single-field solvers instead use the same initial guess again and again
for each iteration k of the outer partitioned FSI scheme, convergence of the outer FSI iteration
can only be guaranteed if the inner single-field problems are solved very accurately. This can
be seen in analogy to a Newton–Krylov solver used for a single-field problem, where it is often
sufficient to reduce the residual of the linearized problem by one or two orders of magnitude.
Another example would be the block-preconditioning of an incompressible flow solver with both
velocity and pressure unknowns solved in a monolithic way. In that case, it would also be very
expensive to solve the velocity block and pressure block exactly by an iterative method within the
preconditioner of the outer Krylov solver. Instead, a single multigrid cycle is sufficient for the
purpose of preconditioning and in order to not deteriorate the convergence of the outer solver,
being significantly more efficient in terms of computational costs.

Remark 9.11 Due to the analogy between block Gauss–Seidel preconditioning of a monolithic
system and partitioned Gauss–Seidel iteration schemes (such as the Dirichlet–Neumann parti-
tioning) with iterative solvers for the individual fields, it can be expected that the aspect of not

363



9 Multiphysics application: fluid–structure interaction

oversolving the single-field problems is important to render partitioned FSI solvers competitive
to monolithic FSI solvers, e.g. with multigrid block-preconditioning, where the sub-blocks are
not solved exactly by an inner solver within the preconditioner but only approximately by one
multigrid cycle. However, this aspect has so far barely been discussed in literature addressing
comparative studies of monolithic versus partitioned solvers. Note also that the question regard-
ing the computational efficiency of monolithic versus partitioned solvers is difficult to answer for
another reason: A main motivation for partitioned solvers is to exploit the most efficient solution
techniques available for the individual single-field problems (such as fast projection-type solvers
instead of monolithic solvers for the incompressible flow problem), and computationally more
efficient preconditioners due to the simpler structure of the algebraic equations.

9.7 Numerical results
This section presents numerical results for classical FSI benchmark problems. As mentioned in
the introduction, the aim is to illustrate the flexibility of the proposed FSI framework in term of
the interface coupling enabling the use of different discretization techniques for the single-field
problems, as well as an investigation of the computational properties of this new FSI solver
in terms of the effectiveness of well-known black-box strongly-coupled partitioned iteration
schemes that lead to a fast FSI algorithm when combined with efficient single-field solvers.4

The first example considers the two-dimensional flow around a cylinder with a flexible flag
and studies the convergence behavior of different partitioned FSI schemes. The second example
simulates a pressure wave in a three-dimensional flexible tube and reports the computational
efficiency of the proposed FSI solver compared to a state-of-the-art monolithic FSI solver.

9.7.1 Cylinder-with-flag example
This section considers a well-known FSI benchmark problem proposed in Turek and Hron
(2006), flow past a cylindrical obstacle with periodic vortex shedding that amplifies a bend-
ing motion of a thin structure attached to the leeward side of the cylinder. The focus of this
section is on the convergence behavior of different FSI black-box coupling schemes. The geom-
etry, material parameters, boundary and initial conditions are defined by the benchmark and are
not reproduced here, see for example Figure 9.3 for an illustration of the geometry.

The benchmark configurations FSI-2 and FSI-3 from Turek and Hron (2006) are studied in the
following, in particular the benchmark problem FSI-3, since this test case exhibits the highest
density ratio (ρF/ρS = 1) between fluid and structure and is therefore expected to be most chal-
lenging from an FSI coupling point of view (artificial added-mass effect). The FSI-2 benchmark
has a lower density ratio (ρF/ρS = 0.1) but leads to larger deformations of the structure (see
also Wick (2011)), so that this benchmark is most interesting to test the robustness of mesh
moving algorithms.

Due to the large deformations of the structure in combination with the geometric constraint of
a comparably thin channel, it was found that this example is comparably challenging for the mesh
deformation solver for the fluid domain, in particular when using coarse meshes with high-order

4Since every PhD project has to come to an end, an extensive validation of the proposed FSI solver is left for future
studies.
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(a) affine mapping kM = 1

(b) quadratic mapping kM = 2

(c) cubic mapping kM = 3

(d) “isoparametric” mapping kM = kF = 6

Figure 9.4: FSI-2 benchmark: illustration of polynomial degree used for the mapping of the fluid
domain for the cylinder-with-flag benchmark problem considering a coarse mesh of
refinement level l = 0 with polynomial degrees kF = 6 and kS = 2. The magnitude
of the fluid velocity is visualized, where blue indicates a low velocity and red a high
velocity.

spectral element like discretizations for the fluid. The key ingredient is to use a spatially varying
stiffness for the mesh deformation problem, while the question whether a linear or nonlinear
elasticity problem is considered was found to be of sub-ordinate importance. For this reason, a
linear elasticity problem is solved for the mesh deformation problem with the following spatially
varying stiffness

EM (χ) =

{
1 + 100 cos2 (4πχ2/H) if |χ2 −H/2| ≤ H/8 ,

1 else .
(9.71)

and νM = 0.3 (and using the plane strain assumption for two-dimensional problems). Here,H is
the height of the channel as specified in Turek and Hron (2006). The stiffness is maximal along
the centerline of the channel and decreases smoothly to a value of 1 with increasing distance
from the centerline.

365



9 Multiphysics application: fluid–structure interaction

An illustration of the flow field for benchmark problem FSI-2 is shown in Figure 9.4. A very
coarse mesh with refinement level l = 0 is chosen in order to visualize the individual elements
in the structural domain and the ALE mesh deformation in the fluid domain according to the
pseudo-solid elasticity approach. The time snapshots are selected so that the different simula-
tions show a similar state of deformation. The polynomial degrees are kF = 6 for the incom-
pressible flow problem and kS = 2 for the nonlinear elasticity problem. Figure 9.4 compares
different polynomial degrees kM chosen for the ALE mesh deformation problem, considering
affine, quadratic, cubic, and isoparametric mappings. Due to the coarse fluid mesh, the cylinder
surface and also the deformation of the flexible flag are approximated inaccurately, but the pro-
posed FSI solver and in particular the interface coupling are able to handle such cases, where
the rather large gaps between the structural domain and the fluid domain are considered a dis-
cretization error. The approximation of the cylinder surface and the bending deformation mode
of the flexible structure is significantly improved when using a quadratic mapping. The deformed
edges between elements within the fluid domain are also due to the quadratic mapping. Choos-
ing a cubic mapping further improves the approximation quality of the bending mode at the
fluid–structure interface, while the results are otherwise similar to the case with quadratic map-
ping. Finally, the isoparametric mapping illustrates that the high-order mapping may lead to an
oscillation-like deformation of edges between elements.

In the following, the convergence behavior of the three partitioned FSI schemes Aitken,
IQN-ILS, IQN-IMVLS is studied. The solver tolerances chosen for this example are εabs,FSI =
10−8, εrel,FSI = 10−3 for the partitioned FSI schemes and εabs,single = 10−8, εrel,single = 10−6 for
the single-field solvers (in some cases an absolute tolerance of εabs,single = 10−7 was necessary
to ensure convergence of the Netwon solver for the nonlinear elasticity problem). The maximum
number of partitioned iterations is set to 100 for all acceleration schemes. If the solver tolerances
might not be reached within this maximum number of iterations, the time step is considered
converged and the solver continues with the next time step. The end time is not defined by the
benchmark proposed in Turek and Hron (2006) and an end time of T = 4L/Umean is chosen here,
i.e., 4 flow-through times based on the mean velocity at the inflow and the length of the channel.
The dual splitting scheme is used as incompressible Navier–Stokes solver, using adaptive time
stepping with Cr = 0.5. Table 9.2 reports the number of partitioned iterations for different ac-
celeration schemes for the FSI-3 benchmark. The Aitken scheme converges in a robust manner
with around 5-10 iterations for initial relaxation parameters in the range 0.1 ≤ ω0 ≤ 1.0. For
the quasi-Newton algorithms, the initial relaxation parameter is set to ω0 = 0.3 and the number
of iterations depends significantly on the number of reused time steps q. For q = 0, the perfor-
mance is comparable to the Aitken scheme, while the quasi-Newton algorithms outperform the
Aitken scheme significantly for large values of q. The IQN-ILS scheme is able to reduce the
number of partitioned iterations by a factor of 2–3 compared to the Aitken scheme. The number
of iterations for the IQN-IMVLS scheme is identical to those of the IQN-ILS scheme for q = 0
as expected theoretically, and slightly larger compared to the IQN-ILS scheme for q ≥ 1. Hence,
the IQN-ILS scheme appears to be the most effective acceleration scheme in this example.

The above experiment has been repeated for high-order polynomial degrees with kF = 6 for
the fluid (velocity), kS = 2 for the structure, and again kM = 3 for the ALE mesh deforma-
tion problem. The number of iterations is slightly larger compared to the lower-order case, but
the convergence behavior of the different acceleration schemes w.r.t. the parameters studied in
Table 9.2 is very similar overall. However, it has been observed that the simulations did not
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Table 9.2: FSI-3 benchmark: number of partitioned iterations (averaged over all time steps) for
different acceleration schemes and a sequence of mesh refinement levels l = 0, 1, 2 us-
ing polynomial degrees of kF = 3, kM = 3, kS = 1.

(a) Aitken relaxation scheme

l Initial relaxation parameter ω0

0.1 0.3 0.6 0.9 1.0

0 5.48 4.78 5.62 6.43 6.68
1 7.75 8.36 7.94 9.06 9.34
2 9.31 9.34 10.5 12.0 12.5

(b) IQN-ILS scheme (ω0 = 0.3)

l Number of reused time steps q
0 1 2 4 8 16 32

0 4.80 3.84 3.43 3.02 2.72 2.54 2.66
1 7.62 4.85 4.23 3.64 3.13 2.86 2.98
2 8.34 5.44 4.70 4.07 3.58 3.27 3.25

(c) IQN-IMVLS scheme (ω0 = 0.3)

l Number of reused time steps q
0 1 2 4 8 16 32

0 4.80 4.17 3.97 3.72 3.42 3.14 2.93
1 7.62 5.40 5.12 4.78 4.36 4.01 3.66
2 8.34 6.28 6.02 5.66 5.22 4.78 4.42

converge in a robust manner for all parameters, which might be due to the non-robust conver-
gence behavior w.r.t. higher polynomial degrees of the multigrid preconditioner with Chebyshev
smoothing used for the elasticity problem, as mentioned in Remark 9.2. To draw precise con-
clusions and to correctly identify the origin of this lack of robustness, this aspect needs further
investigation and should be addressed in the future.

Table 9.3 investigates the impact of the solver tolerance used for the single-field problems
within the partitioned FSI scheme by the example of the IQN-ILS acceleration scheme. Relative
solver tolerances of εrel,single = 10−6, 10−3, 10−2, 10−1 are tested. The number of partitioned FSI
iterations degrades only very moderately when using increasingly coarse solver tolerances for
the single-field problems. For εrel,single = 10−2, 10−1, the simulation did not converge for q = 0
with otherwise identical parameters in this example. It requires further investigations to cor-
rectly identify where this lack of robustness originates from. Overall, these results suggest that
the solver tolerances chosen for the single-field problems are an important parameter w.r.t. the
overall efficiency of the partitioned FSI scheme. Note again that this requires an implementation
of single-field problems that can memorize the solution obtained in previous iterations of the
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Table 9.3: FSI-3 benchmark: number of partitioned iterations for IQN-ILS schemes (ω0 = 0.3)
for different relative solver tolerances used for the single-field problems (considering
mesh refinement level l = 1 and polynomial degrees of kF = 3, kM = 3, kS = 1).
The symbol ‘-’ indicates that the simulation did not converge.

εrel,single Number of reused time steps q
0 1 2 4 8 16 32

10−6 7.62 4.85 4.23 3.64 3.13 2.86 2.98
10−3 7.58 4.86 4.24 3.63 3.13 2.88 3.02
10−2 - 5.68 4.90 4.18 3.86 3.41 3.52
10−1 - 5.97 5.24 4.60 3.96 3.71 3.84

coupled FSI scheme in order to guarantee convergence of the outer FSI iteration. While not all
black-box solvers for the single-field problems might provide such a functionality, this appears
to be a very important design criterion for computationally efficient partitioned FSI schemes, as
explained in Remark 9.10.

9.7.2 Pressure wave example

In this section, a widely studied FSI benchmark problem is simulated, the pressure wave ex-
ample from Fernández et al. (2007), Gerbeau and Vidrascu (2003). In order to mimic hemo-
dynamic conditions, this example exhibits a density ratio of ρF/ρS ≈ 1, and, therefore, poses
a challenge for many classical FSI coupling schemes. The present work follows the problem
setup used in the recent work by Mayr et al. (2020) in order to allow a direct comparison
of results on computational efficiency. The domain is a cylindrical tube of length L = 5 cm
with inner radius r = 0.5 cm and outer radius R = 0.6 cm where the inner cylinder is
filled with fluid. Material parameters are µF = 0.03 g/ (cm · s) , ρF = 1 g/cm3 for the fluid,
and ES = 3.0 · 106 g/ (cm · s2) , νS = 0.3, ρS = 1.2 g/cm3 for the structure (St. Venant–
Kirchhoff material). The structure is clamped at both ends of the tube. Regarding the fluid,
the pressure is prescribed at one end of the tube and a homogeneous velocity Dirichlet bound-
ary condition is prescribed at the other end. The fluid is at rest initially. A dynamic pressure
of 1.3332 · 104 g/ (cm · s2) is prescribed at one end of the tube and is imposed over a time inter-
val of 0.003 s, causing a pressure wave traveling through the domain. The end time is T = 0.02 s
and a fixed time step size of ∆t = 10−4 s is used. Since the deformations are small for this
example, a simple Poisson smoothing is sufficient as mesh smoothing algorithm.

The dual splitting scheme is used for the fluid sub-problem. The focus is on computational
costs for this three dimensional example. Since linear finite elements are used in Mayr et al.
(2020), the lowest possible polynomial degrees are chosen for the present discretization frame-
work, where the pressure shape functions have to be at least linear and the velocity quadratic (inf–
sup stability), leading to polynomial degrees of kF = 2, kM = 1, kS = 1. Figure 9.5 illus-
trates the pressure wave traveling through the tube from left to right and the resulting defor-
mations of the structure for three mesh refinement levels l = 0, 1, 2. The solver tolerances
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(a) t = 0 s

(b) t = 0.005 s

(c) t = 0.01 s

Figure 9.5: 3D pressure wave example: illustration of traveling pressure wave for coarse mesh
with refinement level l = 0 (left), intermediate mesh with l = 1 (middle), and fine
mesh with l = 2 (right). Displacements are enlarged by a factor of 10.

chosen for this example are εabs,FSI = 10−9, εrel,FSI = 10−3 for the partitioned FSI iteration
and εabs,single = 10−12, εrel,single = 10−3 for the single-field solvers. The IQN-ILS acceleration
scheme is used with ω0 = 0.3 and q = 10 due to the convincing performance of this scheme
observed for the two-dimensional example investigated above. For the nonlinear elasticity prob-
lem, it was found that an AMG preconditioner performs better than the matrix-free geometric
multigrid preconditioner with Chebyshev smoothing and with AMG coarse grid solver, and is
therefore used in the following. The simulations have been performed on Intel Haswell hardware.

Numerical results are shown in Table 9.4 for three different meshes with refinement levels
of l = 0, 1, 2. The table lists the total number of unknowns, the number of cores used for each
of the simulations, the average number of partitioned FSI iterations, the wall-time per time step,
and the throughput per time step. Refinement levels of l = 0, 1 yield problem sizes that ap-
proximately match those for meshes pw1, pw4 in Mayr et al. (2020). The number of partitioned
iterations increases only moderately with increasing mesh refinement level. A throughput of up
to 105 DoF/s/core is achieved, which is orders of magnitude beyond the numbers collected in
Table 9.1 for state-of-the-art monolithic FSI solvers. Compared to results published recently
in Mayr et al. (2020) for a monolithic FSI solver, the present solver achieves a throughput that
is a factor of 70 higher for the coarse mesh (l = 0), and a factor of 110 for the intermediate
mesh (l = 1). When running the simulation for the intermediate mesh (l = 1) on one core,
one time step requires a wall-time of 11 seconds, which is lower than the wall-time of 15.8
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Table 9.4: 3D pressure wave example: computational efficiency of present FSI solver applied
in a low-order regime (kF = 2, kM = 1, kS = 1) with performance comparisons
to a state-of-the-art monolithic FSI solver that uses continuous linear finite elements.
Notation: NDoFs is the total number of unknowns of the three fields (fluid, mesh,
structure) and throughput is the number of unknowns solved per time step per core in
one second of wall-time.

(a) monolithic FSI solver proposed in Mayr et al. (2020)

mesh NDoFs [MDoF] Ncores twall/N∆t [s] Throughput [DoF/s/core]

pw1 0.121 16 5.0 1.52 · 103

pw4 0.979 128 15.8 4.84 · 102

(b) present partitioned FSI solver

l NDoFs [MDoF] Ncores Niter,FSI twall/N∆t [s] Throughput [DoF/s/core]

0 0.120 1 6.84 1.13 1.06 · 105

1 0.954 8 7.70 2.22 5.37 · 104

2 7.61 48 8.20 5.67 2.80 · 104

seconds reported in Mayr et al. (2020) for a problem with a similar number of unknowns run
on 128 cores (AMD Opteron). Previous works state a superior performance of monolithic over
partitioned FSI solvers for this class of problems, see for example Gee et al. (2011), Küttler et al.
(2010), Mayr et al. (2015). While these studies put an emphasis on a fair comparison in the sense
of using the same solution components for both monolithic and partitioned solvers, this aspect
might indeed introduce a bias towards monolithic solvers, since this assumption contradicts a
main motivation for partitioned schemes, i.e., exploiting the most efficient solution techniques
available for the single-field problems. While an in-depth discussion of monolithic versus par-
titioned FSI schemes is beyond the scope of this work, the present results clearly suggest to
re-examine such conclusions from previous works. Given that a performance comparable to the
results shown here for a partitioned FSI scheme have not been reported for a monolithic scheme
so far to the best of the author’s knowledge, the monolithic-vs.-partitioned question appears to
be open.

As emphasized in Chapter 6, comparisons in terms of efficiency should consider both accu-
racy and computational costs. In general, strongly-coupled partitioned FSI solvers can be ex-
pected to be comparable in accuracy to monolithic FSI solvers, see for example La Spina et al.
(2020b). Assuming that the discretizations used for the single-field problems achieve a similar
level of accuracy, the advantage in terms of computational costs reported above can be expected
to translate also into a significant advantage in terms of overall efficiency of the FSI solver. The
present DG discretization for the fluid appears to be competitive in accuracy (per degree of free-
dom) to the linear stabilized finite element approach used in Mayr et al. (2020), see for example
the results shown in Chapter 2 comparing the accuracy of the present DG fluid discretization
to the discretization scheme by Rasthofer and Gravemeier (2013), which is the same type of
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fluid discretization as used in Mayr et al. (2020). Finally, the present FSI solver uses a continu-
ous finite element approach for the structure with linear shape functions in this example, which
aims at a fair comparison. Note that the speed-up achieved for the present FSI solver compared
to Mayr et al. (2020) is consistent with the speed-up achieved in Chapter 6 for a pure fluid prob-
lem compared to Rasthofer and Gravemeier (2013). This underlines the above statement that
addressing the question regarding the computational efficiency of monolithic vs. partitioned FSI
solvers should allow optimizations to be performed independently for monolithic and partitioned
solvers.

9.8 Conclusion and outlook
This chapter has proposed a new FSI solver for incompressible flow problems coupled to a non-
linear structure with large deformations. This new framework relies on the design principles of
black-box FSI coupling schemes as well as a flexible interface coupling enabling non-matching
meshes at the fluid–structure interface and supporting discretization schemes to be selected in-
dependently for the fluid and solid problems. Due to the black-box design, this FSI solver allows
the use of partitioned schemes in a nested way, i.e., for both the fluid–structure coupling and the
velocity–pressure coupling within the fluid sub-problem. Different acceleration schemes have
been implemented and a first comparison has been shown, clearly motivating to further investi-
gate and improve partitioned FSI schemes in the future. Given that the examples considered here
are academic, it remains for example unclear whether the acceleration schemes studied here
are robust FSI coupling schemes for complex engineering examples. All parts of the algorithm
have been designed and implemented according to the design principle of fast matrix-free eval-
uation techniques as a key towards a computationally efficient method. Of course, matrix-based
components can and should be used if these prove more efficient for certain parameters (e.g., low
polynomial degrees) or a certain type of equations, for which robust efficient matrix-free precon-
ditioners are (currently) not available. A main emphasis of this thesis has been on accurate and
efficient computational techniques for the fluid sub-problem, but it is by now unclear to which
extent this FSI solver makes use of optimal discretization techniques, implementations, and pre-
conditioners for the solid sub-problem. In particular, it was found that multigrid with Chebyshev
smoothing extensively used for the fluid problem does not appear to extend straightforwardly
to a robust solver for elasticity problems when using higher polynomial degrees. It appears to
be highly relevant to invest dedicated effort into this topic. Performance comparisons to a so-
phisticated monolithic FSI solver based on linear finite element discretizations have resulted
in a significant advantage in computational costs for the proposed matrix-free partitioned FSI
scheme. These results are potentially leading the way towards a new generation of FSI solvers
and, therefore, motivate to invest further research efforts in the future according to the author’s
opinion. While convincing single-core or node-level performance has been demonstrated in the
present work, the large-scale capabilities of the proposed FSI solver and its parallel scalability
should also be investigated in the future. Given that a main focus of this work has been on the
simulation of turbulent flows for the fluid sub-problem, an application to turbulent fluid–structure
interaction problems could be part of future endeavors.
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10 Perspectives
Over the last decade, substantial progress has been made in finite element discretization methods
for the incompressible Navier–Stokes equations. In this context, the present work has contributed
to the development of stabilized discontinuous Galerkin methods. The L2-conforming approach
is attractive due to its simplicity (compared to tailored finite element spaces), given that it is
readily available in most finite element libraries. This approach aims at fulfilling the design prin-
ciple “Everything should be made as simple as possible, but not simpler.” (quote attributed to
Albert Einstein) and might prove valuable as a generic turbulent flow solver. Numerical results
have demonstrated convincing properties in terms of robustness and accuracy in under-resolved
scenarios. The present thesis has put a focus on a holistic view of discretization methods in time
and space, iterative solvers and preconditioners, and implementation techniques, with the goal
to optimize overall computational efficiency. A fast matrix-free implementation in combination
with efficient multigrid methods for preconditioning and efficient Navier–Stokes solution algo-
rithms result in a highly competitive incompressible flow solver. Applications to turbulent flows,
natural convection flows, and fluid–structure interaction have been shown. Numerical results
have demonstrated that an advantageous combination of these ingredients allows improvements
in computational efficiency by one or two orders of magnitude compared to classical state-of-
the-art solvers.

The mathematical community currently argues that this type of L2-conforming discretization
approach is not optimal, but that the development of exactly divergence-free and pressure-robust
discretizations might be considered the long-standing goal. Not only do these discretization
methods provide pressure-independent and visosity-independent error estimates for the veloc-
ity, these methods might also pave the way towards generic turbulent flow solvers. While the
stabilized L2-conforming methods investigated in the present thesis have shown a robust be-
havior, exactly divergence-free approaches have the additional advantage of guaranteed energy
stability. These novel discretization methods would render the divergence and normal-continuity
penalty terms proposed in the present thesis superfluous. Although the penalty step does not
form a bottleneck for the present solver, it might nevertheless cause up to around 50% of the
computational costs depending on the problem, indicating some potential for performance im-
provements. At the same time, the present L2-conforming approach highly benefits from the fast
inversion of mass operators in case of DG formulations, an aspect that is more difficult to realize
efficiently for non-DG methods. Against this background and irrespective of the approximation
properties of different finite element spaces in the asymptotic regime, it is all but clear which of
the two factors will be decisive in terms of computational costs in the end.

The type of matrix-free implementation techniques for tensor-product elements – which has
been applied in this thesis to discontinuous Galerkin fluid dynamics solvers – is expected to find
widespread use in computational fluid dynamics, and is expected to become a standard ingre-
dient of finite element software over the next decade. While PDE solvers have seen continuous
speed-up year-on-year over the last decades due to steady improvements in computer hardware,
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it can be expected that Moore’s law will enter some form of flattening in the future. Will there
be a stagnation at some point in the future, or will new technologies emerge? The CFD commu-
nity calls for memory bandwidth and reduced network latency. Compute clusters of intermediate
size, which improve on these metrics, might be more relevant for the CFD community than striv-
ing for ever-increasing Flop rates as known from the race for the world’s fastest supercomputer.
Energy consumption can be expected to become an increasingly important topic. Due to the
trends in computer hardware described above, scientists might feel a stronger pressure in the
future in arguing that a particular approach is efficient. Therefore, the importance of benchmark-
ing and a rigorous quantification and documentation of computational costs is expected to grow.
According to the author’s opinion and as discussed at length in this thesis, the decisive factors
that will decide about the success of high-order DG methods as a standard design tool in an
industrial context appear to be robustness and accuracy in under-resolved scenarios, node-level
performance, and parallel scalability (in terms of minimal wall-time per time step). In the past,
the DG community might not have been convincing enough regarding a rigorous quantification
of these aspects.

The debate about optimal LES modeling has been lasting over decades. Recent developments
and insights into new discretization methods might indeed form some perception that the under-
lying difficulties are not of physical nature or related to turbulence modeling, but rather of numer-
ical/mathematical origin. This is to be understood in the sense that sophisticated discretization
schemes with inbuilt dissipation mechanisms appear to be highly competitive. In this context, a
main advantage of robust discretization schemes used as generic turbulent flow solvers appears
to be their reduced dependency on parameters, especially in a blinded setup when it comes to
predicting rather than reproducing results. The review process of many of the publications related
to this thesis has shown that the above perspective is not a fundamental conviction, but rather
reflects one part of the scientific spectrum that is currently finding more and more acceptance ac-
cording to the author’s opinion. Common concerns are that LES modeling can not be addressed
by moderate-Reynolds-number and academic turbulent flow problems. In order to contribute to
this discussion, the present thesis has faced the challenge of trying to obtain grid-converged re-
sults for the inviscid Taylor–Green problem with infinite Reynolds number. Yet being academic
in nature, it is a stress test for discretization methods in terms of robustness, and a challenge
for CFD software in terms of computational costs. The underlying question related to the occur-
rence of anomalous energy dissipation is also of high physical and mathematical relevance. In
the course of this thesis, the author has been most fascinated by this debate, a very interesting
topic that currently seems to divide the scientific community.

Future research topics have already been pointed out in previous chapters, of which the most
important ones are summarized in the following. Efforts should be made in extending the present
matrix-free DG framework for incompressible flows to h-adaptivity in order to improve compu-
tational efficiency, and to simplicial elements in order to improve geometric flexibility. Matrix-
free preconditioners for general PDE operators such as those arising from fully implicit dis-
cretizations in time are another important field of research, in particular when it comes to an
application of this matrix-free DG framework in a multi-physics context beyond single-field
incompressible flow problems. Ongoing research efforts will be made by the community not
only to further optimize matrix-free implementation techniques, but also to keep up with re-
cent hardware developments and increasingly heterogeneous systems. It will also be a future re-
search effort to develop computationally efficient implementations and solvers for novel exactly
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divergence-free Hdiv-conforming finite element spaces, algorithms that are by now available for
standard H1-conforming and L2-conforming methods. Aspects of high-order mesh generation
and visualization are currently gaining increasing attention as further ingredients towards an
industrialization of high-order discretization methods. A first extension of the present discretiza-
tion and implementation methodology towards compressible flows has been made in Fehn et al.
(2019c). Developing fast solvers for multiphase flows and combustion based on discontinuous
Galerkin discretizations with matrix-free implementation techniques could also be an interest-
ing topic. Encouraging performance results have been obtained for fluid–structure interaction
solvers that motivate to invest further efforts into this topic.
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U. Küttler and W. A. Wall, Fixed-point fluid–structure interaction solvers with dynamic relax-
ation, Computational Mechanics 43, 61–72, 2008.
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G. Schnücke, N. Krais, T. Bolemann, and G. J. Gassner, Entropy stable discontinuous Galerkin
schemes on moving meshes with summation-by-parts property for hyperbolic conservation
laws, arXiv preprint arXiv:1812.09093, 2018.

B. Schott, C. Ager, and W. Wall, A monolithic approach to fluid-structure interaction based
on a hybrid Eulerian-ALE fluid domain decomposition involving cut elements, International
Journal for Numerical Methods in Engineering 119, 208–237, 2019.

F. S. Schranner, V. Rozov, and N. A. Adams, Optimization of an implicit large-eddy simulation
method for underresolved incompressible flow simulations, AIAA Journal 54, 1567–1577,
2016.

P. W. Schroeder, Robustness of High-Order Divergence-Free Finite Element Methods for Incom-
pressible Computational Fluid Dynamics, PhD thesis, Georg-August-Universität Göttingen,
2019.

P. W. Schroeder and G. Lube, Stabilised dG-FEM for incompressible natural convection flows
with boundary and moving interior layers on non-adapted meshes, Journal of Computational
Physics 335, 760 – 779, 2017.

P. W. Schroeder and G. Lube, Divergence-free H(div)-FEM for time-dependent incompressible
flows with applications to high Reynolds number vortex dynamics, Journal of Scientific Com-
puting 75, 830–858, 2018.

K. Sengupta, F. Mashayek, and G. Jacobs, Large-eddy simulation using a discontinuous Galerkin
spectral element method, In 45th AIAA Aerospace Sciences Meeting and Exhibit, pages 8–11.
AIAA-2007-402. AIAA Reno, NV, 2007.

D. Serino, J. Banks, W. Henshaw, and D. Schwendeman, A stable added-mass partitioned (AMP)
algorithm for elastic solids and incompressible flow, Journal of Computational Physics 399,
108923, 2019.

K. Shahbazi, An explicit expression for the penalty parameter of the interior penalty method,
Journal of Computational Physics 205, 401 – 407, 2005.

K. Shahbazi, P. F. Fischer, and C. R. Ethier, A high-order discontinuous Galerkin method for the
unsteady incompressible Navier–Stokes equations, Journal of Computational Physics 222,
391 – 407, 2007.

410



Bibliography

K. Shahbazi, D. J. Mavriplis, and N. K. Burgess, Multigrid algorithms for high-order discontin-
uous Galerkin discretizations of the compressible Navier–Stokes equations, Journal of Com-
putational Physics 228, 7917 – 7940, 2009.

J. P. Sheldon, S. T. Miller, J. S. Pitt, et al., Methodology for comparing coupling algorithms for
fluid-structure interaction problems, World Journal of Mechanics 4, 54, 2014.

J. P. Sheldon, S. T. Miller, and J. S. Pitt, A hybridizable discontinuous Galerkin method for
modeling fluid–structure interaction, Journal of Computational Physics 326, 91 – 114, 2016.

C.-W. Shu, W.-S. Don, D. Gottlieb, O. Schilling, and L. Jameson, Numerical convergence study
of nearly incompressible, inviscid Taylor–Green vortex flow, Journal of Scientific Computing
24, 1–27, 2005.

C. Siefert, R. Tuminaro, A. Gerstenberger, G. Scovazzi, and S. S. Collis, Algebraic multigrid
techniques for discontinuous Galerkin methods with varying polynomial order, Computational
Geosciences 18, 597–612, 2014.

D. Silvester, H. Elman, D. Kay, and A. Wathen, Efficient preconditioning of the linearized
Navier–Stokes equations for incompressible flow, Journal of Computational and Applied
Mathematics 128, 261–279, 2001.

T. Spenke, N. Hosters, and M. Behr, A multi-vector interface quasi-Newton method with linear
complexity for partitioned fluid–structure interaction, Computer Methods in Applied Mechan-
ics and Engineering 361, 112810, 2020.

K. R. Sreenivasan, An update on the energy dissipation rate in isotropic turbulence, Physics of
Fluids 10, 528–529, 1998.

K. Stein, T. Tezduyar, and R. Benney, Mesh Moving Techniques for Fluid-Structure Interactions
With Large Displacements, Journal of Applied Mechanics 70, 58–63, 2003.

D. T. Steinmoeller, M. Stastna, and K. G. Lamb, A short note on the discontinuous Galerkin
discretization of the pressure projection operator in incompressible flow, Journal of Compu-
tational Physics 251, 480 – 486, 2013.

J. Stiller, Robust multigrid for high-order discontinuous Galerkin methods: A fast Poisson solver
suitable for high-aspect ratio Cartesian grids, Journal of Computational Physics 327, 317 –
336, 2016.

J. Stiller, Nonuniformly Weighted Schwarz Smoothers for Spectral Element Multigrid, Journal
of Scientific Computing 72, 81–96, 2017a.

J. Stiller, Robust Multigrid for Cartesian Interior Penalty DG Formulations of the Poisson Equa-
tion in 3D, In M. L. Bittencourt, N. A. Dumont, and J. S. Hesthaven (eds.), Spectral and High
Order Methods for Partial Differential Equations ICOSAHOM 2016, pages 189–201, Cham,
2017b, Springer International Publishing.

411



Bibliography

C. Sulem, P. L. Sulem, and H. Frisch, Tracing complex singularities with spectral methods,
Journal of Computational Physics 50, 138 – 161, 1983.

T. Sun, L. Mitchell, K. Kulkarni, A. Klöckner, D. A. Ham, and P. H. Kelly, A study of vectoriza-
tion for matrix-free finite element methods, The International Journal of High Performance
Computing Applications 34, 629–644, 2020.

H. Sundar, G. Biros, C. Burstedde, J. Rudi, O. Ghattas, and G. Stadler, Parallel geometric-
algebraic multigrid on unstructured forests of octrees, In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, page 43.
IEEE Computer Society Press, 2012.

H. Sundar, G. Stadler, and G. Biros, Comparison of multigrid algorithms for high-order contin-
uous finite element discretizations, Numerical Linear Algebra with Applications 22, 664–680,
2015.
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comparative study on polynomial dealiasing and split form discontinuous Galerkin schemes
for under-resolved turbulence computations, Journal of Computational Physics 372, 1 – 21,
2018.

F. Witherden, A. Farrington, and P. Vincent, PyFR: An open source framework for solving
advection–diffusion type problems on streaming architectures using the flux reconstruction
approach, Computer Physics Communications 185, 3028 – 3040, 2014.

J. Witte, D. Arndt, and G. Kanschat, Fast tensor product Schwarz smoothers for high-
order discontinuous Galerkin methods, Computational Methods in Applied Mathematics,
000010151520200078, 2020.

L. Xu, X. Xu, X. Ren, Y. Guo, Y. Feng, and X. Yang, Stability evaluation of high-order splitting
method for incompressible flow based on discontinuous velocity and continuous pressure,
Advances in Mechanical Engineering 11, 1687814019855586, 2019.

414



Bibliography

S. Yakovlev, D. Moxey, R. M. Kirby, and S. J. Sherwin, To CG or to HDG: A comparative study
in 3D, Journal of Scientific Computing 67, 192–220, 2016.

Z.-G. Yan, Y. Pan, G. Castiglioni, K. Hillewaert, J. Peir, D. Moxey, and S. J. Sherwin, Nektar++:
Design and implementation of an implicit, spectral/hp element, compressible flow solver using
a Jacobian-free Newton Krylov approach, Computers & Mathematics with Applications 81,
351 – 372, 2021.

Z. Yang and D. Mavriplis, Unstructured dynamic meshes with higher-order time integration
schemes for the unsteady Navier-Stokes equations, In 43rd AIAA Aerospace Sciences Meeting
and Exhibit, page 1222, 2005.
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