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1 Introduction 2 Continuum mechanical human shoulder model

P Continuum mechanical models of the shoulder enable Finite-element model of the human shoulder including key physiological features

in-depth analysis of biomechanics, pathological conditions, v - (r ﬁ
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personalized treatments, and medical device design.
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P Model predictions are inherently uncertain due to
incomplete data, measurement errors, biological variability,
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3 Uncertainty quantification and global sensitivity analysis
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P By propagating input uncertainty through the model, PruorIDe.fme. NpUERENZes Uncertain input 5 'Model f(X) il
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Since clinical decisions are based on probabilistic data, : e : X J _
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Global sensitivity analysis with Sobol method
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4 Application examples Uncertainty of muscle material model parameters

Motivation: Experimental stress-strain data on active and passive muscle tissue shows large

Uncertainty of muscular activation patterns variability. Material model parameters calibrated based on this data are thus uncertain.

Uncertainty In muscular activation arises from neural noise, physio|0gica| Prior: Input parameter ranges determined based on 84 stress-strain curves from the literature

variability, and measurement inaccuracies and incompleteness due to (18 publications, eight load cases), with uniform distributions assumed.

indirect or imprecise measurement methods. . . _ .
Example: Influence of active muscle material parameters on subscapularis contraction

Example: Probabilistic modeling of deltoid muscle

: : . .. Input X
contraction under uncertain activation

Min. fiber stretch Ay, ~ U(0.3,1.0)
Opt. fiber stretch A\, ~ U(1.0,2.0)
Max. act. stress P,y ~ U(0,275)
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Model: Free contraction simulation of the deltoid muscle
free end node U,
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> Variability of the output deltoid contraction deformations remains > Subscapularis muscle contraction (quantified by the free end displacement magnitude) is
lower than the assumed variability in input activations. dominated by the minimal fiber stretch A _. . The optimal fiber stretch Aoy Nas no influence.

B Conclusion

P> Uncertainty quantification improves result interpretability and reliability. Sensitivity analysis helps target experimental and computational efforts.

P A metamodel-based approach enables efficient global variance-based sensitivity analysis for computationally expensive models.

P As musculoskeletal models face high input uncertainty, probabilistic approaches are particularly relevant for reliable predictions, both clinically and scientifically.




