Curriculum Vitae

Dr.-Ing. Christoph Meier

Institute for Computational Mechanics (LNM) Technical University of Munich (TUM) 85748 Garching b. München, Germany

phone+49-171-2095128e-mail (private)christoph.meier984@gmail.come-mail (office)christoph.anton.meier@tum.dedate of birth25.02.1984nationalityGermanpersonalmarried and two children

Professional Career

02/2018 —	Lecturer, Deputy Head of Institute and Leader of AM Group Institute for Computational Mechanics (Head: Prof. W.A. Wall), TUM, Scientific co-supervision of eight full-time Ph.D. students at TUM and one full- time Ph.D. student at MIT
08/2016 – 01/2018	Postdoctoral Fellow Mechanosynthesis Group (Head: Prof. A.J. Hart), Massachusetts Institute of Technology (MIT), Research project: "Advanced physics-based modeling of metal additive manufacturing processes across length scales"
07/2010 – 07/2016	Research and Teaching Associate Institute for Computational Mechanics, TUM
Education	
07/2016	Ph.D. Mechanical Engineering (DrIng.), TUM Doctoral thesis: "Geometrically exact finite element formulations for slender beams and their contact interaction", Passed with high distinction (summa cum laude), GPA 1.0, Examination committee: Prof. Ewald Werner (chairman), Prof. Wolfgang A. Wall, Prof. Ignacio Romero (examiners)
07/2010	Diploma Mechanical Engineering (DiplIng. Univ.), TUM Diploma thesis: "Development of a finite element for non-linear beams based on the Frenet-Serret formulas", Institute for Computational Mechanics, TUM, Passed with high distinction (summa cum laude), GPA 1.0, Ranked no. 1 out of 3580 examinees in the period from summer term 2007 (begin of recordings) until winter term 2014/15
10/2007	Intermediate Examination Mechanical Engineering, TUM Passed with high distinction (summa cum laude), GPA 1.2, Ranked no. 1 out of 679 examinees within the academic year 2006/07
10/2005 – 07/2010	Diploma Studies Mechanical Engineering, TUM Specialization in "Materials Engineering" and "Fundamentals in Engineering Sciences"
07/2005	High-School Diploma (Fachgeb. Hochschulreife), BOS Landshut Passed with high distinction (summa cum laude), GPA 1.0

09/2003 – 07/2005	Upper Vocational School (BOS) Landshut Continuation education after apprenticeship
07/2003	Certificate of Apprenticeship (Gesellenbrief) Passed with high distinction (summa cum laude), GPA 1.0
09/2000 – 07/2003	Apprenticeship as Tool Mechanic at BMW AG, Dingolfing Abbreviated apprenticeship due to excellent performance Focus on tooling and manufacturing technologies
Parental Leaves	
03/2019 – 05/2020	Three-Month Parental Leave and Six-Month Part-Time Work
07/2021 – 08/2021	Two-Month Parental Leave
Honors and Awards	
07/2017	Rudolf Schmidt-Burkhardt Memorial Prize of TUM With an endowment of 10.000 Euro, this is the highest PhD award in the Department of Mechanical Engineering of TUM
04/2017	Finalist of the ECCOMAS Award for the Best PhD Thesis of 2016 on Computational Methods in Applied Sciences and Engineering The prize has been granted by the European Community on Computational Methods in Applied Sciences (ECCOMAS)
03/2017	DrKlaus-Körper Prize for the Best PhD Thesis of 2016 in the Fields of Applied Mathematics and Mechanics The prize has been granted by the international Association of Applied Mathematics and Mechanics (GAMM)
01/2017	GAMM Juniors Fellowship of the International Association of Applied Mathematics and Mechanics (GAMM) Every year, only 10 candidates are selected based on an excellent Ph.D. thesis in the fields of Applied Mathematics or Mechanics
03/2016	Postdoctoral Fellowship (18 months) of the German Academic Exchange Service (DAAD)
07/2015	Ranked as Best Diploma Graduate in Mechanical Engineering at TUM since recordings began in 2007 No. 1 out of 3580 examinees from summer term 07 - winter term 14/15
12/2012	Teaching Award of the Bavarian State Government Only one assistant lecturer out of all Bavarian universities receives this annual award
05/2012	Golden Needle and Award for Excellence in Teaching of TUM
07/2012	Teaching Award within the Annual Teaching Evaluation of the Department of Mechanical Engineering, TUM
07/2011	Teaching Award within the Annual Teaching Evaluation of the Department of Mechanical Engineering, TUM
07/2011	Award for the Best Final Degree in Mechanical Engineering in the Academic Year 2010/2011, TUM
11/2010	CADFEM and ANSYS Diploma Thesis Award Awarded for an excellent diploma thesis in engineering
10/2007 – 07/2010	Full Scholarship of the German National Academic Foundation Less than 1% of all students were granted this scholarship

Member of the BMW Mentoring Program "Fastlane" Less than 5% of BMW trainees / interns were granted this scholarship
Award for the Best High School Diploma at the Upper Vocational School (BOS) Landshut in 2005

Professional Service

11/2021 —	GAMM Fachausschuss "Moderne Lehre und Didaktik in der Mathematik und Mechanik"
06/2018 —	Organization of Scientific Events Including Minisymposia at Scientific Conferences and a CISM Advanced Course
01/2018 —	Mentor for Ph.D. Students in the TUM Graduate School
01/2017 —	GAMM Juniors Committee
08/2016 —	Reviewer for more than 20 Leading International Journals and Funding Agencies in Engineering Science
07/2010 —	Service for the Department of Mechanical Engineering (TUM) Engagement in events such as advanced training courses for high school teachers ("Lehrerfortbildung"), information days for high school students ("Schülerinfotag"), and aptitude tests ("Eignungsfeststellungsverfahren")

Memberships

01/2017 –	International Association of Applied Mathematics and Mechanics (GAMM)
11/2016 –	European Community on Computational Methods in Applied Sciences (ECCOMAS)
11/2016 —	German Association for Computational Mechanics (GACM)
11/2016 –	International Association for Computational Mechanics (IACM)

Publications

Overview and Citation Metrics

- 26 articles in peer-reviewed scientific journals (plus 8 currently submitted)
- 2 peer-reviewed proceedings and other articles
- > 30 invited and contributed presentations at international conferences / workshops
- > 1000 citations in total / h-Index of 13 (Google Scholar)
- > 600 citations in total / h-Index of 12 (Scopus)

Peer-Reviewed International Journal Articles

- [1] Proell, S.D., Munch, P., Wall, W.A., Meier, C. (2023): A High Performance Computing Model Enabling Thermal Simulations of Laser Powder Bed Fusion Processes with Resolved Heat Source Path on the Decimeter Scale, in preparation
- [2] Praegla, P.M., Mair, T., Wimmer, A., Fehn, N., Wall, W.A., Zäh, M.F., Meier, C. (2023): Towards Additively Manufactured Metamaterials with Powder Inclusions for Controllable Dissipation: The Critical Influence of Packing Density, in preparation
- [3] Satheesh, A., Schmidt, C.P., Wall, W.A., Meier, C. (2023): Structure-Preserving Invariant Interpolation Schemes for Invertable Second-Order Tensors, submitted for publication, arXiv preprint arXiv:2211.16507
- [4] Schneider, C., Schmidt, C.P., Neumann, A., Clausnitzer, M., Sadowski, M., Harm, S., Meier, C., Danner, T., Albe, K., Latz, A., Wall, W.A., Lotsch, B.V. (2023): Effect of Particle Size and Pressure on the Transport Properties of the Fast Ion Conductor t-Li7SiPS8, submitted for publication, ChemRxiv preprint 10.26434/chemrxiv-2022-tvc6l
- [5] Steinbrecher, I., Hagmeyer, N., Meier, C., Popp, A. (2023): A consistent mixed-dimensional coupling approach for 1D Cosserat beams and 2D solid surfaces, submitted for publication, arXiv preprint arXiv:2210.16010
- [6] Penny, R.W., Oropeza, D., Praegla, P.M., Weissbach, R., Meier, C., Wall, W.A., Hart, A.J. (2022): Quantitative analysis of thin metal powder layers via transmission X-ray imaging and discrete element simulation: Blade-based spreading approaches, submitted for publication, arXiv preprint arXiv:2209.04320
- [7] Penny, R.W., Oropeza, D., Praegla, P.M., Weissbach, R., Meier, C., Wall, W.A., Hart, A.J. (2022): Quantitative analysis of thin metal powder layers via transmission X-ray imaging and discrete element simulation: Roller-based spreading approaches, submitted for publication, arXiv preprint arXiv:2209.04303
- [8] Grill, M.J., Wall, W.A., Meier, C. (2022): Analytical disk-cylinder interaction potential laws for the computational modeling of adhesive, deformable (nano)fibers, submitted for publication, arXiv preprint arXiv:2208.03074
- [9] Grill, M.J., Wall, W.A., Meier, C. (2022): Asymptotically consistent and computationally efficient modeling of short-ranged molecular interactions between curved slender fibers undergoing large 3D deformations, submitted for publication, arXiv preprint arXiv:2208.03149
- [10] Meier, C., Grill, M.J., Wall, W.A. (2022): Generalized Section-Section Interaction Potentials in the Geometrically Exact Beam Theory: Modeling of Intermolecular Forces, Asymptotic Limit as Strain-Energy Function, and Formulation of Rotational Constraints, submitted for publication, arXiv preprint arXiv:2105.10032
- [11] Faraji, M., Seitz, A., Meier, C., Wall, W.A. (2022): A mortar finite element formulation for large deformation lubricated contact problems with smooth transition between mixed, elastohydrodynamic and full hydrodynamic lubrication, accepted for publication, arXiv preprint arXiv:2201.01095

- [12] Fuchs, S.L., Praegla, P.M., Cyron, C.J., Wall, W.A., Meier, C. (2022): A versatile SPH modeling framework for coupled microfluid-powder dynamics in additive manufacturing: binder jetting, material jetting, directed energy deposition and powder bed fusion, Engineering with Computers, accepted for publication, arXiv preprint arXiv:2201.01677
- [13] Proell, S.D., Wall, W.A., Meier, C. (2021): A simple yet consistent constitutive law and mortarbased layer coupling schemes for thermo-mechanical macroscale simulations of metal additive manufacturing processes, Advanced Modeling and Simulation in Engineering Sciences, 8:1-37
- [14] Steinbrecher, I., Popp, A., Meier, C. (2021): Consistent coupling of positions and rotations for embedding 1D Cosserat beams into 3D solid volumes, Computational Mechanics, 1-32
- [15] Meier, C., Fuchs, S.L., Much, N., Nitzler, J., Penny, R.W., Praegla, P.M., Proell, S.D., Sun, Y., Weissbach, R., Schreter, M., Hodge, N.E., Hart, A.J., Wall, W.A. (2021): Physics-based modeling and predictive simulation of powder bed fusion additive manufacturing across length scales, GAMM-Mitteilungen, published online, doi:https://doi.org/10.1002/gamm
- [16] Penny, R.W., Praegla, P.M., Ochsenius, M., Oropeza, D., Weissbach, R., Meier, C., Wall, W.A., Hart, A.J. (2021): Spatial mapping of powder layer density for metal additive manufacturing via transmission X-ray imaging, Additive Manufacturing, 46:102197
- [17] Nitzler*, J., Meier*, C., Müller, K.W., Wall, W.A., Hodge, N.E. (2021): A novel physics-based and data-supported microstructure model for part-scale simulation of laser powder bed fusion of Ti-6AI-4V, Advanced Modeling and Simulation in Engineering Sciences, 8:1-39 *shared first-authorship
- [18] Fuchs, S.L., Meier, C., Wall, W.A., Cyron, C.J. (2021): An SPH framework for fluid-solid and contact interaction problems including thermo-mechanical coupling and reversible phase transitions, Advanced Modeling and Simulation in Engineering Sciences, 8:15
- [19] Fuchs, S.L., Meier, C., Wall, W.A., Cyron, C.J. (2021): A novel smoothed particle hydrodynamics and finite element coupling scheme for fluid-structure interaction: the sliding boundary particle approach, Computer Methods in Applied Mechanics and Engineering, 383:113922
- [20] Grill, M.J., Eichinger, J.F., Koban, J., Meier, C., Lieleg, O., Wall, W.A. (2021): A novel modeling and simulation approach for the hindered mobility of charged particles in biological hydrogels, Proceedings of the Royal Society A, 477: 20210039
- [21] Meier, C., Fuchs, S.L., Hart, A.J., Wall, W.A. (2021): A novel smoothed particle hydrodynamics formulation for thermo-capillary phase change problems with focus on metal additive manufacturing melt pool modeling, Computer Methods in Applied Mechanics and Engineering, 381:113812
- [22] Steinbrecher, I., Mayr, M., Grill, M.J., Kremheller, J., Meier, C., Popp, A. (2020): A mortar-type finite element approach for embedding 1D beams into 3D solid volumes, Computational Mechanics, 66:1377-1398
- [23] Grill, M.J., Meier, C., Wall, W.A. (2019): Investigation of the peeling and pull-off behavior of adhesive elastic fibers via a novel computational beam interaction model, The Journal of Adhesion, 1-30
- [24] Grill, M.J., Wall, W.A., Meier, C. (2020): A computational model for molecular interactions between curved slender fibers undergoing large 3D deformations with a focus on electrostatic, van der Waals, and repulsive steric forces, International Journal for Numerical Methods in Engineering, 121:2285-2330
- [25] Proell, S.D., Wall, W.A., Meier, C. (2020): On phase change and latent heat models in metal additive manufacturing process simulation, Advanced Modeling and Simulation in Engineering Sciences, 7:1-32
- [26] Pattinson, S.W., Huber, M.E., Kim, S., Lee, J., Grunsfeld, S., Roberts, R. Dreifus, G. Meier, C.Liu, L., Hogan, N., Hart, A.J. (2019): Additive manufacturing of biomechanically tailored meshes for compliant wearable and implantable devices, Advanced Functional Materials, 29:1901815

- [27] Meier, C., Weissbach, R., Weinberg, J., Wall, W.A., Hart, A.J. (2019): Modeling and characterization of cohesion in fine metal powders with a focus on additive manufacturing process simulations, Powder Technology, 343:855-866
- [28] Meier, C., Weissbach, R., Weinberg, J., Wall, W.A., Hart, A.J. (2019): Critical influences of particle size and adhesion on the powder layer uniformity in metal additive manufacturing, Journal of Materials Processing Technology, 266:484-501
- [29] Meier, C., Popp, A., Wall, W.A. (2019): Geometrically exact finite element formulations for slender beams: Kirchhoff-Love theory versus Simo-Reissner theory, Archives of Computational Methods in Engineering, 26:163-243
- [30] Meier, C., Grill, M., Wall, W.A., Popp, A. (2018): Geometrically exact finite elements and smooth contact schemes for the modeling of fiber-based materials and structures, International Journal of Solids and Structures, 154:124-146
- [31] Meier, C., Penny, R., Zou, Y., Gibbs, J.S., Hart, A.J. (2017): Thermophysical phenomena in metal additive manufacturing by selective laser melting: Fundamentals, modeling, simulation and experimentation, Annual Review of Heat Transfer, 20:241-316
- [32] Meier, C., Wall, W.A., Popp, A.: Unified approach for beam-to-beam contact (2017), Computer Methods in Applied Mechanics and Engineering, 315:972-1010
- [33] Meier, C., Popp, A., Wall, W.A.: A finite element approach for the line-to-line contact interaction of thin beams with arbitrary orientation (2016), Computer Methods in Applied Mechanics and Engineering, 308:377-413
- [34] Müller, K.W., Meier, C., Wall, W.A. (2015): The resolution of sub-element length scales in Brownian dynamics of biopolymer networks with geometrically exact beam finite elements, Journal of Computational Physics, 303C:185-202
- [35] Meier, C., Popp, A., Wall, W.A. (2015): A locking-free finite element formulation and reduced models for geometrically exact Kirchhoff rods. Computer Methods in Applied Mechanics and Engineering, 290:314-341
- [36] Meier, C., Popp, A., Wall, W.A. (2014): An objective 3D large deformation finite element formulation for geometrically exact curved Kirchhoff rods. Computer Methods in Applied Mechanics and Engineering, 278:445-478

Peer-Reviewed Proceedings and Other Articles

- [37] Wall, W.A., Cyron, C.J., Klöppel, T., Meier, C., Müller, K.W. (2011): Coupled problems on the cellular and sub-cellular scale, 4th International Conference on Computational Methods for Coupled Problems in Science and Engineering, Kos Island, Greece
- [38] Müller, K.W., Meier, C., Wall, W.A. (2015): Brownian dynamics simulation of cellular protein networks, IACM expressions, 37:2-5

Ph.D. Thesis

[39] Meier, C. (2016): Geometrically exact finite element formulations for slender beams and their contact interaction, TUM

10 Selected Presentations at International Scientific Conferences

- Generalized section-section interaction potentials in the geometrically exact beam theory (plenary lecture), International Conference on Highly Flexible Slender Structures, Rijeka, Republic of Croatia, scheduled for September 2023
- [2] Solids (and fluids) in (inter-)action (**plenary lecture**), given by W.A. Wall, 10th International Congress on Computational Mechanics, Virtual Congress, 2021

- [3] A mesoscale powder spreading and melt pool model for metal powder bed fusion additive manufacturing process simulation, 14th World Congress in Computational Mechanics (WCCM), Virtual Congress, 2021
- [4] Critical influences of particle size and adhesion on the powder layer uniformity in metal additive manufacturing (keynote lecture), 2nd International Conference on Simulation for Additive Manufacturing (Sim-AM), Pavia, Italy, 2019
- [5] Metal additive manufacturing by selective laser melting: modeling and simulation approaches across length scales, 13th World Congress on Computational Mechanics (WCCM), New York, USA, 2018
- [6] Geometrically exact finite element formulations for highly slender beams and their interaction: Kirchhoff-Love theory vs. Simo-Reissner theory, 6th European Conference on Computational Mechanics (ECCM), Glasgow, UK, 2018
- [7] Nonlinear contact modeling for geometrically exact beam finite element formulations (plenary lecture), given by A. Popp, 4th ECCOMAS Young Investigators Conference (YIC), Milan, Italy, 2017
- [8] Geometrically exact finite element formulations for slender beams: Kirchhoff-Love theory vs. Simo-Reissner theory, 14th US National Congress on Computational Mechanics (USNCCM), Montreal, Canada, 2017
- [9] Modeling of highly slender fibers based on geometrically exact Kirchhoff beam elements and a unified contact approach, Euromech Colloquium 569 Multiscale modeling of fibrous and textile materials, Châtenay-Malabry, France, 2016
- [10] A finite element approach for contact interaction of thin beams with arbitrary orientation, 4th International Conference on Computational Contact Mechanics (ICCCM), Hannover, Germany, 2015

5 Selected Other Presentations and Events on Invitation

- [1] Modeling and simulation of powder bed fusion additive manufacturing across length scales, Vulcan Forms, Online Presentation, 2021
- [2] Cosserat continuum models for molecular and macroscale interactions of slender fibers, Leopold-Franzens-Universität Innsbruck, Österreich, 2019
- [3] Modeling of the powder recoating process in metal additive manufacturing, Desktop Metal (DM), Burlington, USA, 2018
- [4] Geometrically exact finite element formulations for slender beams: Kirchhoff-Love theory vs. Simo-Reissner theory, Fraunhofer Institute for Industrial Mathematics (ITWM), Kaiserslautern, 2017
- [5] Invitation to the priority meeting "Modeling of Powder Dynamics in Metal Additive Manufacturing"*, Austin, USA, 2017

*Only 100 researchers from industry, U.S. national laboratories, and academia have been selected to identify priority research directions with respect to powder spreading in metal additive manufacturing processes.

Research

Research Interests

Applications

- Physics-based modeling and simulation of additive manufacturing (AM) processes including
 - <u>different process technologies</u>: powder bed fusion (PBF; main focus) binder jetting (BJ), material jetting (MJ), directed energy deposition (DED).
 - <u>different length scales</u>: macroscale (part-scale thermo-solid-mechanics), mesoscale (multi-phase flow with phase change, cohesive powders), microscale (microstructure evolution).
- Physics-based modeling and simulation of microstructured materials including
 - fiber-based materials and structures with complex fiber arrangements / interactions
 - metamaterials with powder inclusions for controlled dissipation
 - microstructure-informed material models for metals

Methods

- Computer-based continuum mechanics with focus on finite element methods (FEM), discrete element methods (DEM), and smoothed particle hydrodynamics (SPH)
- Solid and structural mechanics
- Mechanics of 1D continua (e.g., geometrically exact beam theories) and their interaction
- Mechanics of granular materials (e.g., cohesive powders)
- Multi-phase flow with solid-liquid and liquid-vapor phase transitions
- Multi-scale and multi-physics modeling
- Coupled thermo-solid and thermo-fluid mechanics
- Material modeling
- Complex interface phenomena (e.g., adhesion, lubrication, surface tension)
- Contact mechanics
- Fluid-Structure Interaction
- Elastohydrodynamic lubrication
- Model order reduction / dimensional reduction
- Coupling of reduced-dimensional structures and 3D continua
- Data-based approaches
- Bayesian schemes for uncertainty quantification and inverse analysis
- Software development
- High performance computing

Projects and Funding as Principal Investigator

- Datengetriebene Methoden zur Prozessrobustifzierung von Produktionsprozessen *Teilprojekt:* Daten- und physikbasierter Multi⁴-Ansatz zur analogiegestützten Modellierung komplexer Produktionsprozessketten € 280,000 / 4 years, 2022-2026 (**under review**) SFB-TRR 328, German Research Foundation (DFG), Germany Collaboration of TUM and FAU Erlangen-Nürnberg
- Scale-up of metal AM by data-based synthesis of simulation and experiment € 18,000 / 18 months, 2022 – 2023 MIT-Germany Lockheed Martin Seed Fund (MIT), USA
- Advanced finite element modeling of selective laser melting processes € 60,000 / 18 months, 2016 - 2018
 German Academic Exchange Service (DAAD), Germany
 Postdoctoral research fellowship
- Metal additive manufacturing: fundamentals, modeling, materials and implementation € 25,000 / one-time, 2021 International Center for Mechanical Sciences (CISM), Italy CISM Advanced Course
- Highly efficient numerical model for forward and inverse problems in the physics-based simulation of metal additive manufacturing processes on part scale € 245,000 / 3 years, 2020 2023
 German Research Foundation (DFG), Germany
- Development, numerical simulation and experimental characterization of selective laser melting (SLM) microstructures with deliberately introduced dissipation
 € 470,000 / 3 years, 2020 2023
 German Research Foundation (DFG), Germany
 In collaboration with the Institute for Machine Tools and Industrial Management, TUM

Projects and Funding with Significant Contribution

- Combined phase field/DG-FEM modeling of multi-phase flow problems a modern approach for high-fidelity metal additive manufacturing process simulations
 € 55,000 / 18 months, 2021 2022
 Austrian Science Fund (FWF), Austria
 Erwin Schrödinger Fellowship of Dr. Magdalena Schreter
 Contribution: Proposal conceptualization and writing (co-author), host of fellow
- Physics-based simulation of the powder recoating process and mesoscale melt pool phenomena in metal additive manufacturing € 65,000 / 4 years, 2019 – 2023 Chinese Scholarship Council (CSC), China CSC Fellowship of Mr. Yushen Sun Contribution: Proposal conceptualization and writing, host and co-supervisor of fellow

Organization of Scientific Events

- Meier, C., Durville, D., Brüls, O., Gerstmayr, J., Linn, J.: Modeling and discretization approaches for slender continua and their interaction, Organization of minisymposium at the 6th European Conference on Computational Mechanics (ECCM), Glasgow, UK, 2018
- Eisenträger, J., Kaiser, T., Meier, C.: Organization of the YAMM (Young Academics Meet Mentors) Lunch at the 90th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), Vienna, Austria, 2019
- Meier, C., Romero, I., Linn, J., Durville, D., Gerstmayr, Zupan, D., Betsch, P.: Advances in the modeling and discretization of slender continua and their interaction, Organization of minisymposium at the 14th World Congress on Computational Mechanics (WCCM), Paris, France, 2020 [shifted to digital version in 2021 due to COVID-19 pandemic]
- Meier, C., Hodge, N., Chiumenti, M., Wall, W.A.: Modeling and simulation approaches in metal additive manufacturing, Organization of minisymposium at the 14th World Congress on Computational Mechanics (WCCM), Paris, France, 2021
- Meier**, C., Hart**, A.J., Colosimo*, B.M., Eckert*, J., Gusarov*, A., Hodge*, N.: Metal additive manufacturing: fundamentals, modeling, materials, and implementation, CISM advanced course at the International Centre for Mechanical Science (CISM), Udine, Italy, 2021 *main organizers, *lecturers
- Romero, I., Meier, C., Linn, J., Oesterle, B.: New numerical methods for slender bodies and their interactions, Organization of minisymposium at the 15th World Congress on Computational Mechanics (WCCM), Yokohama, Japan, 2022
- Meier, C., Chiumenti, M. Hodge, N., Cervera, M., Wall, W.A.: Modeling and simulation approaches of metal additive manufacturing on part scale, Organization of minisymposium at the 15th World Congress on Computational Mechanics (WCCM), Yokohama, Japan, 2022
- Meier, C., Kollmannsberger, S., Bartel, T., Auricchio, F.: Modeling and simulation of metal additive manufacturing processes, Organization of minisymposium at the 9th GACM Colloquium on Computational Mechanics (GACM), Essen, Germany, 2022
- Meier, C., Wudy, K., Bartel, T., Menzel, A., Chiumenti, M., Hodge, N.: Simulation and experimental validation of metal additive manufacturing processes on part-scale, Organization of invited session at the 4th International Conference on Simulation for Additive Manufacturing (Sim-Am), Munich, Germany, scheduled for 2023

Reviewing Activities for International Journals

- Acta Mechanica
- Additive Manufacturing
- Applied Mathematical Modelling
- Applied Physics A
- Archive of Applied Mechanics
- Computers and Structures
- Computational Mechanics
- Computer Methods in Applied Mechanics and Engineering
- GAMM-Mitteilungen
- Granular Matter
- Integrating Materials and Manufacturing Innovation
- International Journal for Numerical Methods in Engineering
- International Journal of Non-Linear Mechanics
- International Journal of Solids and Structures
- Journal of Theoretical, Computational and Applied Mechanics
- Mechanics Based Design of Structures and Machines
- Mechanical Sciences
- Metals
- Multibody System Dynamics
- Powder Technology
- Progress in Additive Manufacturing
- Zeitschrift für Angewandte Mathematik und Mechanik

Reviewing Activities for Research Agencies

- European Union: Marie Skłodowska-Curie COFUND doctoral programs
- European Research Council (ERC): ERC Consolidator Grant
- Czech Science Foundation (CSF)

Teaching

Teaching Experience as Lecturer

- Physics-Based Modeling and Simulation of Metal Additive Manufacturing, lecture, M.Sc. Department of Mechanical Engineering, TUM, winter term 2021/22^{+^}
- Nonlinear Continuum Mechanics, lecture, M.Sc. Department of Mechanical Engineering, TUM winter term 2021/22 winter term 2020/21 winter term 2019/20 winter term 2018/19
- Computational Solid and Fluid Dynamics, lecture, B.Sc. Munich School of Engineering (MSE), TUM winter term 2020/21⁺ winter term 2019/20⁺ winter term 2018/19⁺
- Research Topics in Computational Mechanics Additive Manufacturing, lecture, M.Sc. Department of Mechanical Engineering, TUM winter term 2020/21[^] winter term 2019/20
- Nonlinear Finite Element Methods, lecture, M.Sc. Department of Mechanical Engineering, TUM summer term 2022 summer term 2021 summer term 2020 summer term 2019 - selected chapters (with W.A. Wall) summer term 2018 - selected chapters (with W.A. Wall)
- Engineering Mechanics 1 Statics, lecture, B.Sc.
 Department of Mechanical Engineering, TUM winter term 2018/19* – selected chapters (with W.A. Wall)
- Engineering Mechanics 2 Elastostatics, lecture, B.Sc.
 Department of Mechanical Engineering, TUM summer term 2019* – selected chapters (with W.A. Wall)
- Engineering Mechanics 3 Dynamics, exercises and tutorials, B.Sc. Department of Mechanical Engineering, TUM winter term 2011/12*
- Engineering Mechanics 2 Elastostatics, exercises and tutorials, B.Sc. Department of Mechanical Engineering, TUM summer term 2011*
- Engineering Mechanics 1 Statics, exercises and tutorials, B.Sc. Department of Mechanical Engineering, TUM winter term 2010/11*

*Attended by up to 1000 undergraduate students *English lecture ^joint lecture for students from TUM, MIT and Polimi

Invitation as Guest Lecturer

- Summer school in Computational Mechanics of Materials and Structures, lecture, M.Sc. COMMAS program, University of Stuttgart, 2019
- Additive Manufacturing: From 3D Printing to the factory floor, short course, M.Sc. MIT, 2018 and 2017

Supervised Ph.D. Students (accountable supervision)

- Experimental and model-based characterization of AM processes on the mesoscale (Reimar Weissbach, Mechanosynthesis Group, MIT, since 2020)
- Microstructure modeling and microstructure-informed material laws for metal AM (Nils Much, Institute for Computational Mechanics, TUM, since 2020)
- Modeling of cohesive powders and coupled fluid-powder dynamics in AM (Patrick Praegla, TUM, since 2020)
- Melt pool modeling for metal AM based on smoothed particle hydrodynamics (Yushen Sun, TUM, since 2019)
- Material laws and self-contact modeling in the complex swelling process of foams (Abhiroop Satheesh, TUM, since 2018)
- Model order reduction for thermo-mechanical part-scale simulation of AM processes (Sebastian Pröll, TUM, since 2018)
- Elasto-hydrodynamic lubrication coupled to mortar formulations for frictional contact (Mostafa Faraji, TUM, since 2018)
- Two-phase flow and coupled fluid-powder dynamics based on SPH (Sebastian Fuchs, TUM, 2016 - 2021)
- Molecular interactions of slender beams in complex biophysical systems (Maximilian Grill, TUM, 2014 2020)

Mentoring of Ph.D. Students in TUM Graduate School

- Abhiroop Satheesh, Institute for Computational Mechanics, TUM
- Sebastian Pröll, Institute for Computational Mechanics, TUM
- Nils Much, Institute for Computational Mechanics, TUM
- Stefan Sinzig, Institute for Computational Mechanics, TUM
- Yushen Sun, Institute for Computational Mechanics, TUM
- Harald Willmann, Institute for Computational Mechanics, TUM
- Mostafa Faraji, Institute for Computational Mechanics, TUM
- Barbara Wirthl, Institute for Computational Mechanics, TUM
- Amadeus Gebauer, Institute for Computational Mechanics, TUM

Supervised B.Sc. Students and M.Sc. Students

- Efficient simulation of additive manufacturing processes with parallel-in-time time integration using equivalent heat sources (Fazıl Necioğlu, TUM, 2021)
- Modeling the elasto-plastic deformation of aortic stents based on the geometrically exact beam finite elements (Lea Häusel, TUM, 2021)
- Mesoscale modeling of muscle bundles based on the finite element method and the geometrically exact beam theory with deformable cross-sections (Bugrahan Temür, TUM, 2021)
- Development of a microstructure-informed elasto-plastic constitutive law for metal melting and solidification processes (Nils Much, TUM, 2020)
- Enriched finite element solution spaces for the temperature field in metal additive manufacturing process simulation (Matthias Schäffer, TUM, 2020)

- Advanced powder spreading simulations for metal additive manufacturing using the discrete element method (Patrick Praegla, TUM / MIT, 2020)
- Modelling Marangoni effects through weakly compressible smoothed particle hydrodynamics (Lennart Schulze, TUM, 2019)
- Modeling the motion of rigid bodies in fluid flows using smoothed particle hydrodynamics (Bugrahan Temür, TUM, 2019)
- Thermo-mechanical material models for the prediction of residual stresses in additive manufacturing process simulation (Maximilian Ludwig, TUM, 2019)
- Mixing behavior of cohesive metal powders modeled via the discrete element method (Andreas Unterrainer, TUM, 2019)
- Experimental characterization of cohesive metal powders for additive manufacturing applications (Marvin Ochsenius, TUM / MIT, 2019)
- Novel finite element formulations and numerical algorithms for an efficient thermo-mechanical simulation of selective laser melting processes (Sebastian Pröll, TUM, 2018)
- Development of advanced powder models for metal additive manufacturing processes based on the discrete element method (Marvin Ochsenius, TUM, 2018)
- Modeling and simulation of the powder spreading process in metal additive manufacturing processes (Reimar Weissbach, TUM / MIT, 2017)
- Development of a finite element method for short-range potential-based interactions of thin fibers (Reimar Weissbach, TUM, 2015)
- Investigation and comparison of different Kirchhoff beam formulations with weak / strong constraint enforcement (Sleiman Haddar, TUM, 2015)
- Development of a FEM beam-to-solid contact formulation (Michael Hofer, TUM, 2014)
- Development of a finite element formulation for potential-based interactions of slender continua and its application to biopolymers (Maximilian Grill, TUM, 2014)
- Implementation of a nonlinear 3D beam contact formulation based on the finite element method (Daniel Neumann, TUM, 2013)
- Development and Evaluation of Contact Formulations for Slender Structures (Anja Bestler, TUM, 2013)
- Theoretical analysis and finite element implementation of different geometrically nonlinear Euler-Bernoulli beam formulations (Dominik Suckart, TUM, 2012)
- Nonlinear 3D finite element formulation for beam contact based on Lagrange multipliers (Chong Wang, TUM, 2012)
- Visualization of smooth beam geometries and beam contact using splines (Max von Danwitz, TUM, 2012)
- Comparison of shape functions for a nonlinear Euler-Bernoulli beam element for the isotropic case (Maximilian Grill, TUM, 2011)
- Investigations on different reference triads for a nonlinear, anisotropic Euler-Bernoulli beam element (Wolfgang Hering, TUM, 2011)