IGSSE International Graduate School of Science and Engineering

Andreas Maier, Maximilian Baust, Christian Reeps, Hans-Henning Eckstein, Markus Schwaiger, Nassir Navab, Wolfgang A. Wall, Michael W. Gee

Mechanics goes Hospital

25,000 AAAs diagnosed per year in Germany 12,200 AAAs repaired surgically 1,300 deaths from ruptured AAAs

> Rupture probability of untreated AAAs: (during patient's lifetime)

30-day mortality for open AAA repair:

4.7 %

25 %

Diameter criterion for surgical treatment:

	Max AAA Diameter ≥ \$				
	60 -				
a)	50 -	🔶 untreated			

Refinement of in vivo patient-specific AAA rupture risk prediction is needed to save unnecessary surgeries and costs!

Materials testing & modeling

Uni- and biaxial testing of AAA constituents

sagittal CT image

Patient-specific finite element modeling

Hexahedron-dominant hybrid meshing of the *in vivo* patient-specific AAA geometry

Biaxial tension test machine with op-

Incompressible AAA wall material model: $W = \alpha (I_1 - 3) + \beta (I_1 - 3)^2$

AAA geometry reconstruction from computed tomography or magnetic resonance imaging

Theory of finite deformation elasticity Balance equation: $\operatorname{Div}(\mathbf{FS}) + \mathbf{b}_0 = \mathbf{0} \text{ in } \Omega_0$ $\mathbf{u} = \mathbf{u}_D^0$ on Γ_D (DBC) $\mathbf{P} \mathbf{N}_{\Gamma} = \mathbf{t}_0 \quad \text{on } \Gamma_N (\mathsf{NBC})$

- CT images show a loaded state of the $AAA \rightarrow Prestressing$ (Gee et al., 2009)
- Blood pressure acting on the deformed spatial configuration of the blood lumen

Impact on society and benefit for the patient

	total	asympt	sympt/rupt
n	53	30	23
male/female	38/15	24/6	14/9
AAA family history	3	1	2
symptoms	9	0	9
patient age [years]	72.4±9.2	68.8±7.4	77.0±9.5
max Ø [mm]	64.5±16.6	56.4±11.0	75.1±16.8
55 <max [mm]<="" td="" ø=""><td>16</td><td>15</td><td>1</td></max>	16	15	1
$55 < \max \emptyset < 75$	25	13	12
$75 < \max \emptyset$ [mm]	12	2	10

REFERENCES

[1] A. Maier, M. W. Gee, C. Reeps, H.-H. Eckstein, W. A. Wall, Impact of Calcifications on Patient-Specific Wall Stress Analyses of Abdominal Aortic Aneurysms, Biomechanics and Modeling in Mechanobiology, 2010, 9, 511-521.

[2] A. Maier, M. W. Gee, C. Reeps, J. Pongratz, H.-H. Eckstein, W. A. Wall, A Comparison of Diameter, Wall Stress and Rupture Potential Index for Abdominal Aortic Aneurysm Rupture Risk Prediction, Annals of Biomedical Engineering, 2010, 38, 3124-3134.

Institute for Computational Mechanics and Mechanics & High Performance Computing Group