

Mechanobiological control of cell phenotype and tissue development Nicholas A. Kurniawan

TUM talk, 4 July 2023

Regenerative medicine

- Huge potentials:
 - Treatment of symptoms ightarrow Cure disease
 - Regenerate damaged tissue
 - Replace entire organs
 - Restore function
- Harnesses body's own healing abilities

Slack EMBO Rep 2017

Case: cell replacement therapy

Limited outcomes:

- 4–6 % increase in cardiac function
- Very low cell retention
- Cell death due to hostile environment
- No differentiation into heart muscle cells
- Cells don't 'home' to the infarcted area

What do the cells sense in their 'new' environment? And how do they respond? Stem cell differentiation is influenced by substrate stiffness

Engler+ Cell 2006

Mechanobiological adaptability

- Cell migration
- Dynamic reciprocity \rightarrow decoupling multifactorial problem
- Curvature, geometry, and dimensionality

Cancer metastasis

Responsible for >90% deaths related to solid tumors

Cells in extracellular matrix (ECM)

HL-60 cell mCherry - utrophin FITC - collagen

Mechanical properties matter

Discher+ Science 2009

Lo+ Biophys J 2000

Marrow

Plastics

Modeling cancer invasion

Speed:

Directionality:

Sun+ Cell Mol Bioeng 2014, Kurniawan+ JoVE 2015

Cells can remodel ECM

Friedl Histochem Cell Biol 2004

Wolf+ Nat Cell Biol 2007

ECM remodeling explains history dependence

Migration front

Cells alter local ECM mechanical properties

Messing with the wheels

 ΔS : changes to migrational speed Δk : changes to migrational persistence

Cytochalasin D: F-actin polymerization *Y-27632*: ROCK inhibitor *Nocodazole*: microtubule stability *GM6001*: MMP inhibitor

Interplay between intracellular and extracellular cues

Substrate stiffness determines stem cell differentiation

Do cells sense and respond to "global" (network) or "local" (fiber) stiffness?

Influence of *local* ECM mechanical properties

hMSCs

Alkaline phosphate (osteogenic)

Fibrin + PIC: 50 Pa

30

25-20-15-10-5-

2

% Alk Phos positive cells

Stiffer in bulk, but less differentiation to osteoblasts..

.. because of lower local fiber stiffness

Peculiarities of fibrous ECM mechanobiology

Cells and fibers

Ubiquity of non-planar geometry in biology

Baptista+ *Trends Biotechnol*Callens+ *Biomaterials*Werner+ *Materials*Schamberger+ *Adv Mater*

Key challenge: understanding how cells recognize tissue and scaffold geometry

Ansgar Petersen

Cells dynamically sense geometrical cues

Distinct migration phenotypes on convex and concave structures

Cells and fibers

Contact guidance – well known but poorly understood

Dunn & Heath, Exp Cell Res 1976

Anisotropic

Isotropic Teixeira+ *J Cell Sci* 2003 Development & Morphogenesis

Reig+ Development 2014

Cancer invasion

Paul+ Nat Rev Cancer 2016

ri 2003

What drives contact-mediated cell alignment?

Length-scale-dependent contact guidance mechanism

Gaps induce alignment at small length scales

Entropy drives alignment at large length scales

Lesson learnt: Function follows form

- Physical geometry of substrate induces distinct adhesion morphologies, cell morphologies, and contractility states
 - in a length-scale-dependent manner
 - in a dimension-dependent manner
- Possibilities for mechanobiology-motivated tool to direct cell response?

Underway..

Combinations of cues

curvature + contact guidance + stiffness

Mirko D'Urso, Dylan Mostert

Dynamic manipulation & adaptation

Fundamental insight into cellular physico-sensing Ma

Maaike Bril

<u>Multicellular</u> constructs and tissues

Single cells

curvature + contact guidance + shear + strain Sarah Pragnere

Guided formation of tissues and organoids

Aref Saberi, Simone de Jong, Xinhui Wang

Acknowledgments

Aref Saberi Dylan Mostert Maaike Bril Mirko D'Urso Sarah Pragnere Simone de Jong Xinhui Wang Wouter van Katwijk Zyg Bijonowski Alumni Bart Groenen Cas van der Putten Chunling Tang Eline van Haaften Gitta Buskermolen Jules Boesveld Lisanne Kwee Maike Werner Michiel Boiten Tiago Fortunato Collaborators Albert Schenning Carlijn Bouten Mark van Turnhout Miguel Castilho Jaap den Toonder Jurgen Bulsink Patricia Dankers Tommaso Ristori Ansgar Petersen (Charité Berlin) Chwee Teck Lim (NUS) Gijsje Koenderink (TU Delft) Stefan Giselbrecht (Maastricht) Vikram Deshpande (Cambridge)

Mechanobiological control of cell phenotype and tissue development Nicholas A. Kurniawan

TUM talk, 4 July 2023