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Abstract

The resistive magnetohydrodynamics (MHD) model describes the dynamics of charged fluids
in the presence of electromagnetic fields. MHD models are used to describe important phenomena
in the natural physical world and in technological applications. This model is non-self adjoint,
strongly coupled, highly nonlinear and characterized by multiple physical phenomena that span a
very large range of length- and time-scales. These interacting, nonlinear multiple time-scale physical
mechanisms can balance to produce steady-state behavior, nearly balance to evolve a solution on
a dynamical time-scale that is long relative to the component time-scales, or can be dominated
by just a few fast modes. These characteristics make the scalable, robust, accurate, and efficient
computational solution of these systems extremely challenging. For multiple-time-scale systems,
fully-implicit methods can be an attractive choice that can often provide unconditionally-stable
time integration techniques. The stability of these methods, however, comes at a very significant
cost, as these techniques generate large and highly nonlinear sparse algebraic systems of equations
that must be solved at each time step.

This talk describes the development of a scalable fully-implicit / IMEX stabilized unstructured
finite element (FE) capability for 3D resistive MHD. The brief discussion considers the development
of the stabilized / variational multiscale (VMS) FE formulation and the underlying fully-coupled
preconditioned Newton-Krylov (NK) nonlinear iterative solver. The VMS formulation and the fully-
coupled NK solution methods allow the simulation of flow systems that range from incompressible to
low Mach number compressible flows, as well as the development of a number of solution methods
beyond forward simulation. The solution methods include parameter continuation, bifurcation,
optimization, and adjoint-based methods for sensitivity analysis, error-estimation and UQ.

To enable robust, scalable and efficient solution of the large-scale sparse linear systems gen-
erated by the Newton linearization, fully-coupled multilevel preconditioners are developed. The
multilevel preconditioners are based on two differing approaches. The first technique employs a
graph-based aggregation method applied to the nonzero block structure of the Jacobian matrix.
The second approach utilizes approximate block decomposition methods and physics-based pre-
conditioning approaches that reduce the coupled systems into a set of simplified systems to which
multilevel methods are applied. To demonstrate the capability of these approaches representative
results are presented for the solution of challenging prototype MHD problems. These include duct
flows, an unstable hydromagnetic Kelvin-Helmholtz shear layer, and an island coalescence problem
used to model magnetic reconnection. In this context robustness, efficiency, and the parallel and
algorithmic scaling of solution methods are discussed. Initial results that explore the scaling of the
MHD solution methods are also presented on up to 256K processors for problems with up to 1.8B
unknowns. (This is joint work with Roger Pawlowski, Eric Cyr, Edward Phillips, Ray Tuminaro,
Paul Lin, and Luis Chacon.)
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