

Coarse-grained models for PDEs with Random coefficients

C. Grigo and P.-S. Koutsourelakis

Continuum Mechanics Group
Department of Mechanical Engineering
Technical University of Munich
SIAM CSE Atlanta

1 Mar 2017

Stochastic PDE with random coefficients

Stochastic PDE:

$$\mathcal{K}(\mathbf{x}, \lambda(\mathbf{x}, \xi))u(\mathbf{x}, \lambda(\mathbf{x}, \xi)) = f(\mathbf{x}),$$
 +B.C.

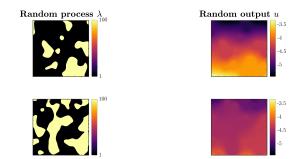


Figure: Random process $\lambda(\boldsymbol{x}, \xi)$ leads to random solutions $u(\boldsymbol{x}, \xi)$.

Outline

- The Full-Order Model
- 2 A generative Bayesian surrogate model
 - Model training
- 3 Sample problem: 2D stationary heat equation
 - Model specifications
 - Feature functions
- 4 Results
- 5 Summary

The Full-Order Model (FOM)

Discretize

$$\mathcal{K}(\boldsymbol{x}, \lambda(\boldsymbol{x}, \xi))u(\boldsymbol{x}, \lambda(\boldsymbol{x}, \xi)) = f(\boldsymbol{x}),$$
 +B.C.

to a set of algebraic equations

$$r_f(U_f, \lambda_f(\xi)) = 0$$

- Usually large ($N_{\rm equations} \sim {\rm millions}$)
- Expensive, repeated evaluations for UQ (and various deterministic tasks, e.g. optimization/control, inverse problems)

Idea: Replace FOM $U_f = U_f(\lambda_f)$ by cheaper, yet inaccurate input-output map $U_f = f(\lambda_f; \theta)$ based on training data $\mathcal{D} = \left\{ U_f^{(i)}, \lambda_f^{(i)} \right\}_{i=1}^N$

Idea: Replace FOM $U_f = U_f(\lambda_f)$ by cheaper, yet inaccurate input-output map $U_f = f(\lambda_f; \theta)$ based on training data $\mathcal{D} = \left\{ U_f^{(i)}, \lambda_f^{(i)} \right\}_{i=1}^N$

Problem: High dimensional uncertainties λ_f - learning direct functional mapping (e.g. PCE [Gahem, Spanos 1991], GP [Rasmussen 2006], neural nets [Bishop 1995]) will fail

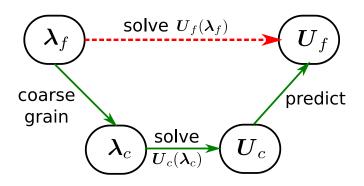
Idea: Replace FOM $U_f = U_f(\lambda_f)$ by cheaper, yet inaccurate input-output map $U_f = f(\lambda_f; \theta)$ based on training data $\mathcal{D} = \left\{ U_f^{(i)}, \lambda_f^{(i)} \right\}_{i=1}^N$

Problem: High dimensional uncertainties λ_f - learning direct functional mapping (e.g. PCE [Gahem, Spanos 1991], GP [Rasmussen 2006], neural nets [Bishop 1995]) will fail

Solution: Coarse-grained model: Use models based on coarser discretization of PDE, $\boldsymbol{U}_c = \boldsymbol{U}_c(\boldsymbol{\lambda}_c)$

- Idea: Replace FOM $U_f = U_f(\lambda_f)$ by cheaper, yet inaccurate input-output map $U_f = f(\lambda_f; \theta)$ based on training data $\mathcal{D} = \left\{ U_f^{(i)}, \lambda_f^{(i)} \right\}_{i=1}^N$
- Problem: High dimensional uncertainties λ_f learning direct functional mapping (e.g. PCE [Gahem, Spanos 1991], GP [Rasmussen 2006], neural nets [Bishop 1995]) will fail
- Solution: Coarse-grained model: Use models based on coarser discretization of PDE, $\boldsymbol{U}_c = \boldsymbol{U}_c(\boldsymbol{\lambda}_c)$
- Question: Relation between U_f and coarse output U_c , but also relation between fine/coarse inputs λ_f, λ_c

Coarse-graining of SPDE's



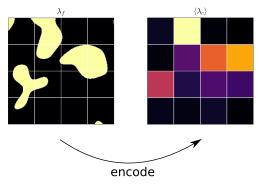
• Retain as much as possible information on U_f during coarse-graining, i.e.

Information bottleneck [Tishby, Pereira, Bialek, 1999]

$$\max_{\boldsymbol{\theta}} I(\boldsymbol{\lambda}_c, \boldsymbol{U}_f; \boldsymbol{\theta})$$
 s.t. $I(\boldsymbol{\lambda}_f, \boldsymbol{\lambda}_c; \boldsymbol{\theta}) \leq I_0$

Concept: Coarse grain random field λ, \dots

• Probabilistic mapping $\lambda_f \to \lambda_c$: $p_c(\lambda_c|\lambda_f, \theta_c)$



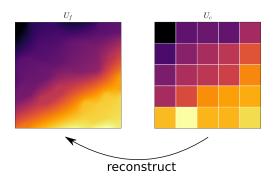
• Goal: Prediction of U_f , not reconstruction of λ_f !

...solve ROM and reconstruct $oldsymbol{U}_f$ from $oldsymbol{U}_c$

• $\lambda_c \to U_c$: solve

$$\boldsymbol{r}_c(\boldsymbol{U}_c, \boldsymbol{\lambda}_c) = \mathbf{0}$$

ullet Decode via coarse-to-fine map $oldsymbol{U}_c
ightarrow oldsymbol{U}_f: \ p_{cf}(oldsymbol{U}_f | oldsymbol{U}_c, oldsymbol{ heta}_{cf})$



Graphical Bayesian model

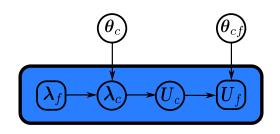


Figure: Bayesian network defining $\bar{p}(U_f|\lambda_f, \theta_c, \theta_{cf})$.

$$\bar{p}(\boldsymbol{U}_f|\boldsymbol{\lambda}_f,\boldsymbol{\theta}_c,\boldsymbol{\theta}_{cf}) = \int p_{cf}(\boldsymbol{U}_f|\boldsymbol{U}_c,\boldsymbol{\theta}_{cf})p(\boldsymbol{U}_c|\boldsymbol{\lambda}_c)p_c(\boldsymbol{\lambda}_c|\boldsymbol{\lambda}_f,\boldsymbol{\theta}_c)d\boldsymbol{U}_cd\boldsymbol{\lambda}_c$$

$$= \int p_{cf}(\boldsymbol{U}_f|\boldsymbol{U}_c(\boldsymbol{\lambda}_c),\boldsymbol{\theta}_{cf})p_c(\boldsymbol{\lambda}_c|\boldsymbol{\lambda}_f,\boldsymbol{\theta}_c)d\boldsymbol{\lambda}_c.$$

Model training

• Maximum likelihood:

$$\begin{pmatrix} \boldsymbol{\theta}_{c}^{*} \\ \boldsymbol{\theta}_{cf}^{*} \end{pmatrix} = \arg\max_{\boldsymbol{\theta}_{c}, \boldsymbol{\theta}_{cf}} \sum_{i=1}^{N} \log \bar{p}(\boldsymbol{U}_{f}^{(i)} | \boldsymbol{\lambda}_{f}^{(i)}, \boldsymbol{\theta}_{c}, \boldsymbol{\theta}_{cf})$$

• Maximum posterior:

$$\begin{pmatrix} \boldsymbol{\theta}_{c}^{*} \\ \boldsymbol{\theta}_{cf}^{*} \end{pmatrix} = \arg \max_{\boldsymbol{\theta}_{c}, \boldsymbol{\theta}_{cf}} \sum_{i=1}^{N} \log \bar{p}(\boldsymbol{U}_{f}^{(i)} | \boldsymbol{\lambda}_{f}^{(i)}, \boldsymbol{\theta}_{c}, \boldsymbol{\theta}_{cf}) + \log p(\boldsymbol{\theta}_{c}, \boldsymbol{\theta}_{cf})$$

• Data:

$$\boldsymbol{\lambda}_f^{(i)} \sim p(\boldsymbol{\lambda}_f^{(i)}), \qquad \boldsymbol{U}_f^{(i)} = \boldsymbol{U}_f(\boldsymbol{\lambda}_f^{(i)}).$$

Expectation - Maximization

$$\bar{p}(\boldsymbol{U}_f^{(i)}|\boldsymbol{\lambda}_f^{(i)},\boldsymbol{\theta}_c,\boldsymbol{\theta}_{cf}) = \int p_{cf}(\boldsymbol{U}_f^{(i)}|\boldsymbol{U}_c(\boldsymbol{\lambda}_c^{(i)}),\boldsymbol{\theta}_{cf})p_c(\boldsymbol{\lambda}_c^{(i)}|\boldsymbol{\lambda}_f^{(i)},\boldsymbol{\theta}_c)d\boldsymbol{\lambda}_c^{(i)}$$

- \rightarrow Likelihood contains N integrals over N latent variables λ_c
- → Use Expectation-Maximization algorithm [Dempster, Laird, Rubin 1977]: find lower bound

$$\begin{split} &\log(\bar{p}(\boldsymbol{U}_{f}^{(i)}|\boldsymbol{\lambda}_{f}^{(i)},\boldsymbol{\theta}_{c},\boldsymbol{\theta}_{cf})) \\ &\geq \int q^{(i)}(\boldsymbol{\lambda}_{c}^{(i)})\log\left(\frac{p_{cf}(\boldsymbol{U}_{f}^{(i)}|\boldsymbol{U}_{c}(\boldsymbol{\lambda}_{c}^{(i)}),\boldsymbol{\theta}_{cf})p_{c}(\boldsymbol{\lambda}_{c}^{(i)}|\boldsymbol{\lambda}_{f}^{(i)},\boldsymbol{\theta}_{c})}{q^{(i)}(\boldsymbol{\lambda}_{c}^{(i)})}\right)d\boldsymbol{\lambda}_{c}^{(i)} \\ &= \mathcal{F}^{(i)}(\boldsymbol{\theta};q_{t}^{(i)}(\boldsymbol{\lambda}_{c}^{(i)})), \qquad \text{where} \quad \boldsymbol{\theta} = [\boldsymbol{\theta}_{c},\boldsymbol{\theta}_{cf}]. \end{split}$$

• Maximize iteratively:

E-step: Find optimal $q_t^{(i)}(\boldsymbol{\lambda}_c^{(i)})$ given current estimate $\boldsymbol{\theta}_t$ of optimal $\boldsymbol{\theta}$ and compute expectation values (MCMC, VI, EP)

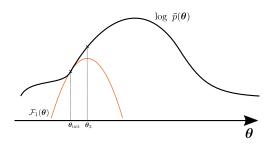


Figure: Expectation-Maximization algorithm illustration

• Maximize iteratively:

E-step: Find optimal $q_t^{(i)}(\boldsymbol{\lambda}_c^{(i)})$ given current estimate $\boldsymbol{\theta}_t$ of optimal $\boldsymbol{\theta}$ and compute expectation values (MCMC, VI, EP)

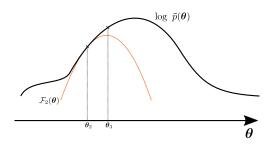


Figure: Expectation-Maximization algorithm illustration

• Maximize iteratively:

E-step: Find optimal $q_t^{(i)}(\boldsymbol{\lambda}_c^{(i)})$ given current estimate $\boldsymbol{\theta}_t$ of optimal $\boldsymbol{\theta}$ and compute expectation values (MCMC, VI, EP)

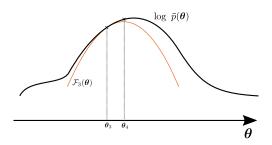


Figure: Expectation-Maximization algorithm illustration

• Maximize iteratively:

E-step: Find optimal $q_t^{(i)}(\boldsymbol{\lambda}_c^{(i)})$ given current estimate $\boldsymbol{\theta}_t$ of optimal $\boldsymbol{\theta}$ and compute expectation values (MCMC, VI, EP)

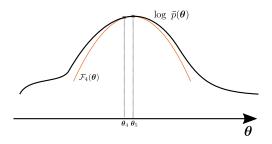


Figure: Expectation-Maximization algorithm illustration

• Maximize iteratively:

E-step: Find optimal $q_t^{(i)}(\boldsymbol{\lambda}_c^{(i)})$ given current estimate $\boldsymbol{\theta}_t$ of optimal $\boldsymbol{\theta}$ and compute expectation values (MCMC, VI, EP)

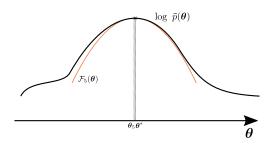


Figure: Expectation-Maximization algorithm illustration

Sample problem: 2D heat equation with random coefficients

$$\nabla_{\boldsymbol{x}}(-\lambda(\boldsymbol{x},\xi(\boldsymbol{x}))\nabla_{\boldsymbol{x}}T(\boldsymbol{x},\xi(\boldsymbol{x}))) = 0,$$
 +B.C.

where $\xi(\boldsymbol{x}) \sim GP(0, \text{cov}(\boldsymbol{x}_i, \boldsymbol{x}_j))$ with

$$\operatorname{cov}(oldsymbol{x}_i, oldsymbol{x}_j) = \exp\left\{-rac{|oldsymbol{x}_i - oldsymbol{x}_j|^2}{l^2}
ight\},$$

and

$$\lambda(\boldsymbol{x}, \xi(\boldsymbol{x})) = \begin{cases} \lambda_{\text{hi}}, & \text{if } \xi(\boldsymbol{x}) > c, \\ \lambda_{\text{lo}}, & \text{otherwise} \end{cases}$$

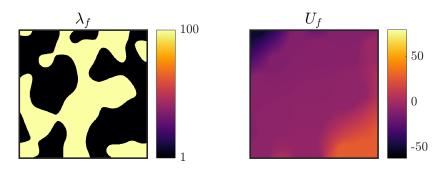


Figure: Data samples for $\phi_{\rm hi}=0.35,\,l=0.098,\,c=100$

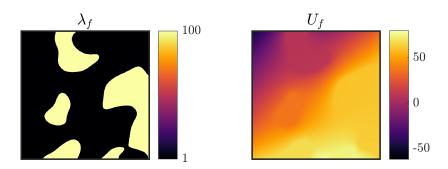


Figure: Data samples for $\phi_{\rm hi}=0.35,\,l=0.098,\,c=100$

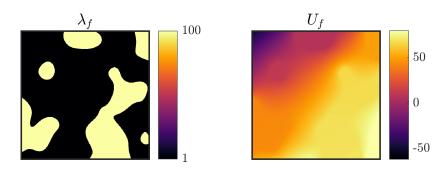


Figure: Data samples for $\phi_{\rm hi}=0.35,\,l=0.098,\,c=100$

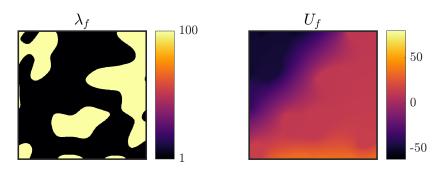


Figure: Data samples for $\phi_{\rm hi}=0.35,\,l=0.098,\,c=100$

Model specifications

$$\bullet \lambda_f \to \lambda_c = e^{z_c}$$
:

Element numbering with index k

$$z_{c,k} = \sum_{j=1}^{N_{ ext{features}}} heta_{c,j} arphi_j(oldsymbol{\lambda}_{f,k}) + \sigma_k Z_k, \,\, Z_k \sim \mathcal{N}(0,1),$$

 $ullet U_c
ightarrow U_f:$

$$p_{cf}(\boldsymbol{U}_f|\boldsymbol{U}_c(\boldsymbol{z}_c),\boldsymbol{\theta}_{cf}) = \mathcal{N}(\boldsymbol{U}_f|\boldsymbol{W}\boldsymbol{U}_c(\boldsymbol{z}_c),\boldsymbol{S})$$

with feature functions φ_i , coarse-to-fine projection W, diagonal covariance $S = \operatorname{diag}(s)$.

Feature functions $\varphi_i(\boldsymbol{\lambda}_{f,k})$

- Any function $\varphi_i : (\mathbb{R}^+)^{\dim(\lambda_{f,k})} \mapsto \mathbb{R}$ admissible
- Could/should be guided by physical insight:
 - Effective-medium approximations
 - Self-consistent approximation (SCA)[Bruggeman 1935],
 - Maxwell-Garnett approximation (MGA)[Maxwell 1873],
 - Differential effective medium approximation (DEM) [Bruggeman 1935]...
 - Morphology-describing features:
 - Lineal path function[Lu, Torquato 1992],
 - (Convex) Blob area,
 - Blob extent,
 - Distance transformations...

Left: Convex area (blue), max. extent (red), pixel-cross (green).

Right: distance transform

Sparsity priors

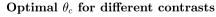
- Strategy: Include as many features φ_j as possible, employ sparsity prior for feature selection
- Laplace prior (LASSO):

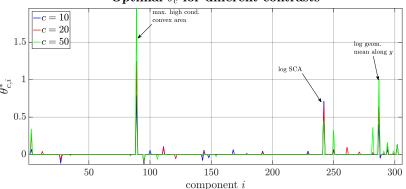
$$p(\theta_{c,i}) \propto \exp\left\{-\sqrt{\gamma} \left|\theta_{c,i}\right|\right\},$$

• ARD prior:

$$p(\theta_{c,i}) \propto \int_0^\infty \frac{1}{\tau_i} \mathcal{N}(\theta_{c,i}|0,\tau_i) d\tau_i = \frac{1}{|\theta_{c,i}|}$$

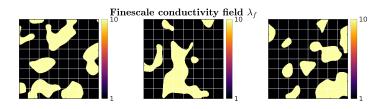
Which features are activated?

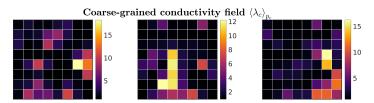




• The higher the contrast, the more geometry matters

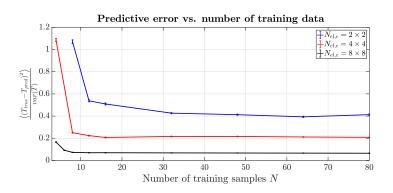
Learned effective property λ_c





• Note that $p_c(\boldsymbol{\lambda}_c|\boldsymbol{\lambda}_f,\boldsymbol{\theta}_c) = \mathcal{N}(\log \boldsymbol{\lambda}_c|\boldsymbol{\Phi}\boldsymbol{\theta}_c,\boldsymbol{\Sigma} = \operatorname{diag}(\boldsymbol{\sigma}^2))$, and we plot $\langle \boldsymbol{\lambda}_c \rangle_{p_c} = \boldsymbol{\Phi}\boldsymbol{\theta}_c + \frac{1}{2}\boldsymbol{\sigma}^2$

How many training samples do we need?



- Few data is needed, errors converge quickly
- The finer the coarse mesh, the better the predictions
- The finer the coarse mesh, the less data is needed
- **But:** the finer the coarse mesh, the more expensive the training/predictions

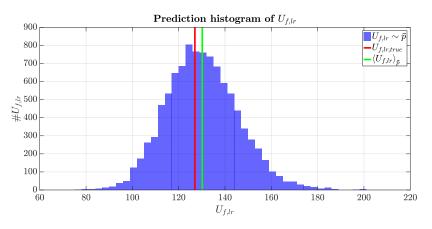


Figure: Histogrammatic predictive distribution of temperature at lower right corner, $\bar{p}(U_{f,lr}|\boldsymbol{\lambda}_f,\boldsymbol{\theta})$

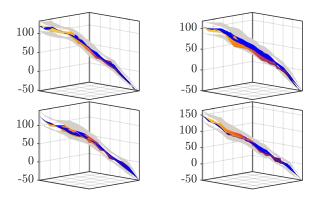


Figure: Predictions on different test data samples for $N_{\rm el,c}=8\times 8$, $\phi_{\rm hi}=0.2,\ l=0.078$ and $c=\frac{\lambda_{\rm hi}}{\lambda_{\rm lo}}=10$. Colored: \boldsymbol{U}_f , blue: $\langle \boldsymbol{U}_f \rangle_{\bar{p}}$, grey: $\pm \sigma$.

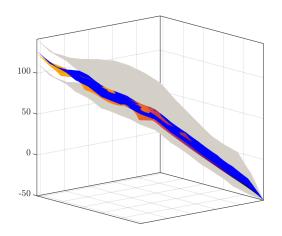


Figure: Test sample 3 from different angles

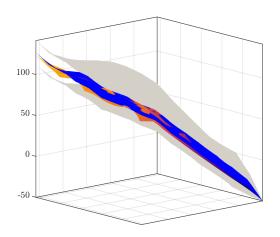


Figure: Test sample 3 from different angles

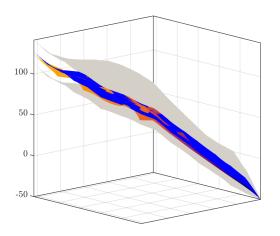


Figure: Test sample 3 from different angles

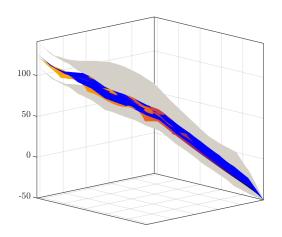


Figure: Test sample 3 from different angles

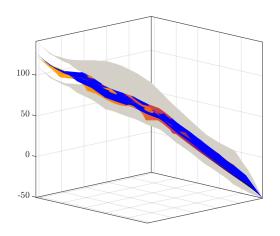


Figure: Test sample 3 from different angles

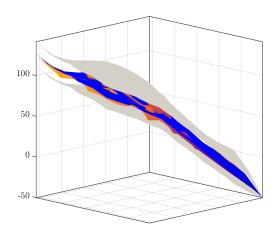


Figure: Test sample 3 from different angles

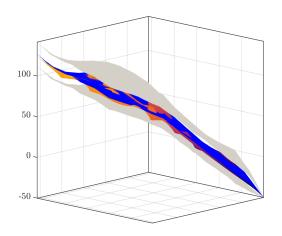


Figure: Test sample 3 from different angles

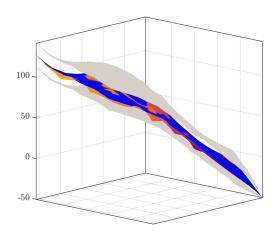


Figure: Test sample 3 from different angles

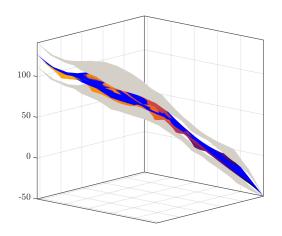


Figure: Test sample 3 from different angles

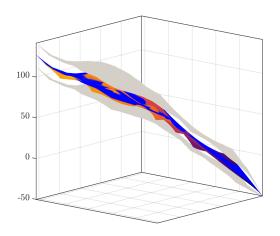


Figure: Test sample 3 from different angles

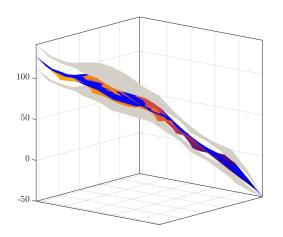


Figure: Test sample 3 from different angles

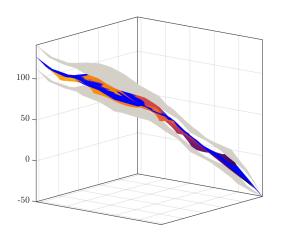


Figure: Test sample 3 from different angles

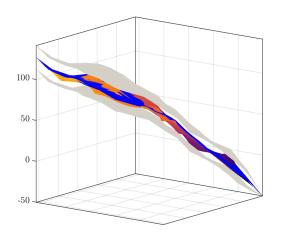


Figure: Test sample 3 from different angles

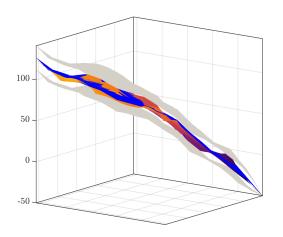


Figure: Test sample 3 from different angles

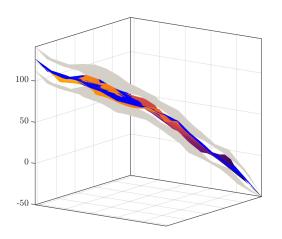


Figure: Test sample 3 from different angles

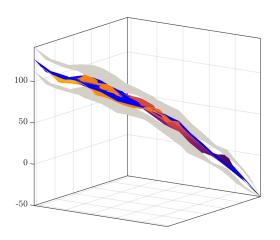


Figure: Test sample 3 from different angles

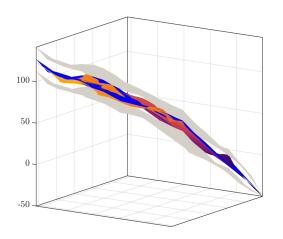


Figure: Test sample 3 from different angles

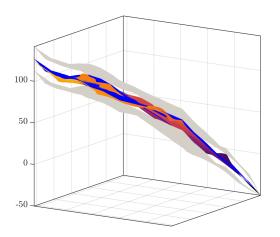


Figure: Test sample 3 from different angles

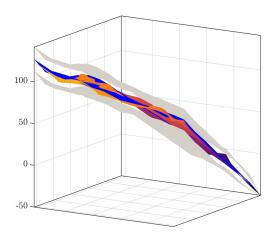


Figure: Test sample 3 from different angles

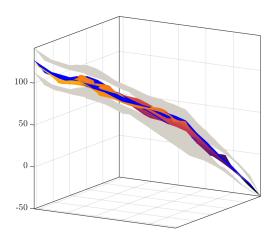


Figure: Test sample 3 from different angles

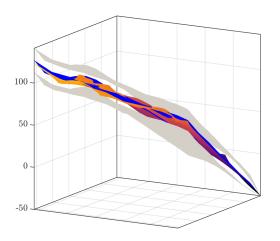


Figure: Test sample 3 from different angles

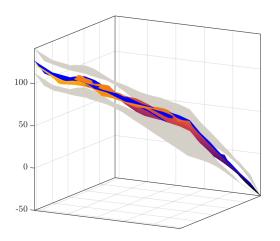


Figure: Test sample 3 from different angles

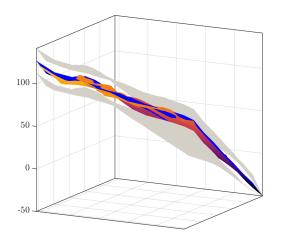


Figure: Test sample 3 from different angles

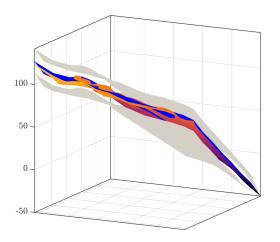


Figure: Test sample 3 from different angles

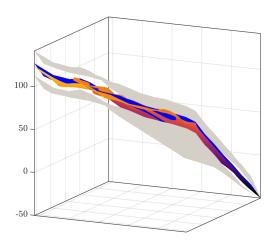


Figure: Test sample 3 from different angles

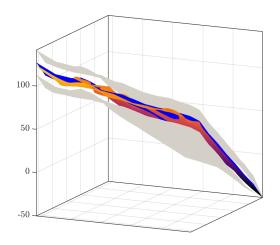


Figure: Test sample 3 from different angles

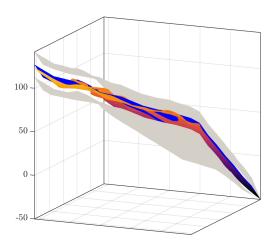


Figure: Test sample 3 from different angles

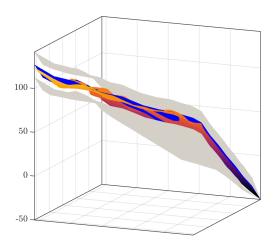


Figure: Test sample 3 from different angles

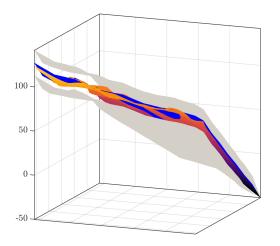


Figure: Test sample 3 from different angles

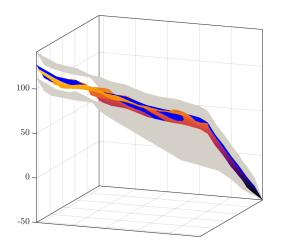


Figure: Test sample 3 from different angles

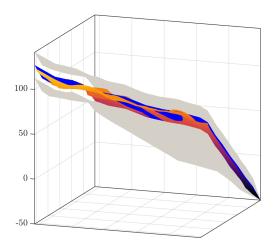


Figure: Test sample 3 from different angles

Predictive uncertainty

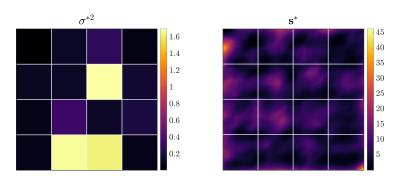


Figure: Optimal variances ${\pmb \sigma}^{*2}$ of p_c (l.) and optimal variances ${\pmb s}$ of p_{cf} .

Scaling of the algorithm

Training:

Quantity N	Scaling
#Data	$\mathcal{O}(N)$
$\dim({oldsymbol{\lambda}}_f)$?
$\dim({m U}_f)$	$\mathcal{O}(N)$
$\dim(\boldsymbol{\lambda}_c), \dim(\boldsymbol{U}c)$	$\mathcal{O}(N^3)$
$\dim(oldsymbol{ heta}_c)$	$\mathcal{O}(N^3)$

i redictions.	
Quantity N	Scaling
#Data	$\mathcal{O}(1)$
$\dim(\boldsymbol{\lambda}_f)$?
$\dim(\boldsymbol{U}_f)$	$\mathcal{O}(N)$
$\dim(\boldsymbol{\lambda}_c), \dim(\boldsymbol{U}c)$	$\mathcal{O}(N^3)$
$\dim(\boldsymbol{\theta}_c)$	$\mathcal{O}(N)$

Summary & Outlook

Summary

- Replace FOM by cheaper, but less accurate ROM
- Learn probabilistic output-output, but also input/input mappings between fine and coarse solver
- ullet Predict by sampling $oldsymbol{\lambda}_c$, solving coarse model, sampling $oldsymbol{U}_f$
- Potentially find interpretable features for effective material properties

Outlook

- Anisotropic λ_c
- Account for correlations among $\lambda_{c,k}$'s
- Adaptive coarse mesh refinement

