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Problem Definition - Equilibrium Statistical Mechanics
Fine-Grained Model (FG)

pf (x) ∝ e−βUf (x)

• x ∈M: fine-scale DOFs
• Uf (x): atomistic potential
• Observables:
Epf (x)[a] =

∫
a(x) pf (x) dx

Coarse-Grained Model (CG)

X = R(x), dim(X ) << dim(x)

• X : coarse-scale dofs
• R: restriction operator (mapping

fine → coarse)
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Motivation

Questions

• What are good coarse-grained variables X (how
many, how are they related to the FG description?)
• What is the right CG model?
• Given a good CG model for X, how much can one

predict about the whole x (reconstruction)?
• How much information is lost during

coarse-graining and how does this affect
predictions produced by the CG model?
• Given finite simulation data at the fine-scale, how

(un)certain can one be in their predictions?
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Motivation

Two roads in CG:
1.) Variational (Mean Field, and many others)

minp̄f (x) KL(p̄f (x) ||pf (x))

2.) Data-driven (e.g. Relative Entropy [Shell (2008)]):

minp̄f (x) KL(pf (x) ||p̄f (x))

where:
• p̄f (x): approximation
• pf (x) ∝ e−βUf (x): exact
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Motivation

Existing methods

pf (x)︸ ︷︷ ︸
fine

R(x)=X−−−−−→ p̄c(X )︸ ︷︷ ︸
coarse

Coarse-Scale

X

Fine-Scale

Configuration x

Proposed (Generative model)

pc(X )︸ ︷︷ ︸
coarse

pcf (x|X )−−−−−→ p̄f (x) =

∫
pcf (x |X ) pc(X ) dX︸ ︷︷ ︸

fine

Notes
• No restriction operator (fine-to-coarse R(x) = X ).

• A probabilistic coarse-to-fine map pcf (x |X ) is prescribed

• The coarse model pc(X ) is not the marginal of X (given R(x) = X )
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Motivation

Given pc(X ) and pcf (x |X ):
1) Draw X from pc(X ) (i.e. simulate CG model)

2) Draw x from pcf (x |X )
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Learning

Proposed Probabilistic Generative model
• Parametrize: pc(X |θc)︸ ︷︷ ︸

coarse model

, pcf (x |X , θcf)︸ ︷︷ ︸
coarse→fine map

• Optimize:
min
θc,θcf

KL(pf (x) || p̄f (x |θc,θcf))

↔ min
θc,θcf

−
∫

pf (x) log
∫

pcf (x|X ,θcf) pc(X |θc) dX
pf (x) dx

↔ max
θc,θcf

∫
pf (x)

(
log
∫

pcf (x |X ,θcf) pc(X |θc) dX
)

dx

↔ max
θc,θcf

∑N
i=1 log

∫
pcf (x (i)|X ,θcf) pc(X |θc) dX

↔ max
θc,θcf

L(θc,θcf), (MLE)

• MAP estimate: max
θc,θcf

L(θc,θcf) + log p(θc,θcf)︸ ︷︷ ︸
log−prior

• Fully Bayesian i.e. posterior: p(θc,θcf|x (1:N)) ∝ exp{L(θc,θcf) p(θc,θcf)}
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Learning

Stochastic VB-Expectation-Maximization [Beal & Ghahramani 2003]

L(θc,θcf) =
∑N

i=1 log
∫

pcf (x (i)|X (i),θcf) pc(X (i)|θc) dX (i)

=
∑N

i=1 log
∫

q(X (i)) pcf (x (i)|X (i),θcf) pc(X (i)|θc)

q(X (i))
dX (i)

≥
∑N

i=1

∫
q(X (i)) log pcf (x (i)|X (i),θcf) pc(X (i)|θc)

q(X (i))
dX (i)

=
∑N

i=1 Fi (q(X (i)), θc,θcf) = F(q, θc,θcf)

• E-step: Approximate qopt
i (X (i)) using a multivariate Gaussians:

qi (X (i)) = N (µopt
i ,Σopt

i )

• M-step: Compute gradients
∑N

i=1∇θcF ,
∑N

i=1∇θcfF , (and Hessian) and
update (θc,θcf)
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• M-step: Compute gradients
∑N

i=1∇θcF ,
∑N

i=1∇θcfF , (and Hessian) and
update (θc,θcf)

Essential Ingredient: Stochastic Optimization
ADAptive Moment estimation (ADAM, [Kingma & Ba 2014])
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Learning

• Exponential-family distributions:

pc(X |θc) = exp

 θT
c φ(X )︸ ︷︷ ︸

CG potential Uc

−A(θc)

 (eA(θc) =
∫

eθ
T
c φ(X) dX )

pcf (x |X ,θcf ) = exp{θT
cfψ(x ,X )− B(X ,θcf )} (eB(X ,θcf ) =

∫
eθ

T
cfψ(x,X) dx)

• Gradients:

∇θcF =
∑N

i=1 < φ(X (i)) >qi (X (i)) −N < φ(X ) >pc(X |θc)

∇θcfF =
∑N

i=1(< ψ(x (i),X (i)) >qi (X (i)) − < ψ(x ,X (i)) >pcf (x|X (i),θcf )qi (X (i)))

• Hessian:

∇2
θc
F = −N Covpc(X |θc)[φ(X )]

∇2
θcf
F = −

∑N
i=1 Covpcf (x|X (i),θcf )qi (X (i))[ψ(x ,X (i))]

}
−→ Concave
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Learning

• MAP-estimates:
max
θc,θcf

L(θc,θcf) + log p(θc,θcf)︸ ︷︷ ︸
log−prior

• Approximate Bayesian posterior using Laplace approximation

0

0.1

0.2

0.3

0.4

0.5

0.6

exact

Gaussian

θMAP

Figure : Laplace approximation: p(θ|x (1:N)) ≈ N (µ,S)
where:
• µ = θ,MAP

• S−1 =

[
NCovpc(X |θc)[φ(X ), φl (X)] 0

0
∑N

i=1 Covpcf(q|X (i),θcf)qi (X (i))[ψ(q,X)]

]
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Adaptive feature learning

Which feature functions φ(X ) one use?

CG potential: Uc(X) = θT
c φ(X )→ pc(X) ∝ eUc(X)

• Option 1: Use as many as possible in combination with a
sparsity-enforcing prior [Schöberl et al, JCP 2017].
• Suitable when X have a clear, physical meaning.

• Option 2: Consider a parametrized family Φz = {φ(X; z)} and greedily add the
best member of this (i.e. optimize z). I.e. suppose:

Uc(X) = θT
c φ(X ) + θc,newφ(X; z)

Then, the largest expected decrease in KL(pf (x) ||p̄f (x)) is:

arg max
z

(
N∑

i=1

< φ(X; z) >qi (X) − < φ(X; z) >pc (X)

)2
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Numerical Illustrations - Alanine Dipeptide

Figure : Alanine Dipeptide [Bonomi et al,CPC , 2009]
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Numerical Illustrations - Alanine Dipeptide

Figure : Ramachandran plot for Alanine Dipeptide with respect to dihedral angles φ, ψ.
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Numerical Illustrations - Alanine Dipeptide

Proposed Global Model

• Coarse-Grained model:

pc(X) ∝ e−βUc(X), Uc(X) = θT
c φ(X )

We assume:
• X ∈ [0,1]nX , nX = dim(X)

• radial basis functions φ(X; z) = e−
∑nX

k=1 τk (Xk−X0,k )2
where

z = {τk ,X0,k}nX
j=1

• Coarse-to-Fine map:

pcf (x |X) = N (µ+ WX, S) , θcf = {µ,W ,S}
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Numerical Illustrations - Alanine Dipeptide

Figure : L = 1

Uc =
L∑

l=1

θc,l φl (X), dim(X) = 2
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Numerical Illustrations - Alanine Dipeptide

Figure : L = 2

Uc =
L∑

l=1

θc,l φl (X), dim(X) = 2

p.s.koutsourelakis@tum.de Bayesian CG 16 / 23



Numerical Illustrations - Alanine Dipeptide

Figure : L = 3

Uc =
L∑

l=1

θc,l φl (X), dim(X) = 2
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Numerical Illustrations - Alanine Dipeptide

Figure : L = 5

Uc =
L∑

l=1

θc,l φl (X), dim(X) = 2
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Numerical Illustrations - Alanine Dipeptide

Figure : L = 10

Uc =
L∑

l=1

θc,l φl (X), dim(X) = 2
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Numerical Illustrations - Alanine Dipeptide

Figure : L = 20

Uc =
L∑

l=1

θc,l φl (X), dim(X) = 2
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Numerical Illustrations - Alanine Dipeptide

Figure : L = 26

Uc =
L∑

l=1

θc,l φl (X), dim(X) = 2
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Numerical Illustrations - Alanine Dipeptide

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
X0

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

X
1

Xi ∼q(X(i) |x(i) ,θ)

α

β-1

β-2

Figure : Visualization in (Latent) CG-variable Space X
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Numerical Illustrations - Alanine Dipeptide

Probabilistic Predictions of Macroscopic Properties

Figure : Root-mean-squared (RMSD) deviation from an α-helical conformation
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Conclusions

Summary
• A generative probabilistic model is proposed
• It consists of a CG-density and a probabilistic coarse → fine map.
• Can account for information loss due to CG
• Can quantify predictive uncertainty in fine-scale observables.
• Can be used for model selection.
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• Can quantify predictive uncertainty in fine-scale observables.
• Can be used for model selection.

Outlook
• Explore alternative definitions of coarse variables X and alternative

coarse → fine maps pcf e.g.:
• Discrete states indicating Free-Energy wells
• Hierachical coarse-graining:

p̄f (x) =

∫
pcf (x |X 1) pc(X 1|X 2) pc(X 2|X 3) . . . pc(X M) dX 1 . . .X M

• Fully Bayesian or Variational Bayesian
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