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Summary

The present paper is concerned with two problems in

physical modeling for which dimensionality reduction is

of paramount importance: a) coarse-graining (CG) of

atomistic ensembles, and b) the construction of reduced-

order (RO) models for the solution of PDEs with high-

dimensional stochastic inputs. We demonstrate that both

problems can be cast in a similar formulation and pro-

pose a generative probabilistic model in which the latent

variables provide the coarse-grained or reduced-order de-

scription of the original system. A central component

is the definition of a tunable coarse-to-fine probabilistic

map (rather than fine-to-coarse maps that are generally

employed) which relates the latent variables with the out-

puts/responses of the reference model. This implicitly de-

fines the coarse-grained/reduced description and provides

a vehicle for making predictions of the fine-scale/full-order

observables. As a result, the identification of the coarse-

grained/reduced description is simultaneously performed

with the discovery of the CG/RO model. The probabilistic

formulation accounts for a significant source of uncertainty

that is often neglected in such tasks i.e. the information

loss that unavoidably takes place in the coarse-graining

process.

Additional details

Molecular dynamics simulations [1] are nowadays common-

place in physics, chemistry and engineering and represent

one of the most reliable tools in the analysis of complex

processes and the design of new materials [6]. Direct

simulations are hampered by the gigantic number of de-

grees of freedom, complex, potentially long-range and

high-order interactions, and as a result, are limited to

small spatio-temporal scales with current and foreseeable

computational resources. One approach towards making

complex simulations practicable over extended time/s-

pace scales is coarse-graining (CG) [13]. Coarse-graining

methods attempt to summarize the atomistic detail in

the fine-grained (FG) description in fewer degrees of free-

dom which in turn lead to shorter simulation times, with

potentially larger time-steps and enable the analysis of

systems that occupy larger spatial domains. Generally

the construction of coarse-grained description is based on

physical insight and localized lumping of several atoms

into larger pseudo-molecules.

Another popular set of models encountered in contin-

uum thermodynamics involve PDEs. Many problems of

significant engineering interest, such as as flow in porous

media or the mechanical properties of composite materials,

exhibit random, fine-scale heterogeneity which needs to

be resolved giving rise to very large systems of algebraic

equations upon discretization. Pertinent solution strate-

gies, at best (e.g. multigrid methods) scale linearly with

the dimension of the unknown state vector. Despite the

ongoing improvements in computer hardware, repeated

solutions of such problems, as is required in the context

of uncertainty quantification (UQ), poses insurmountable

difficulties. It is obvious that viable strategies for these

problems, as well as a host of other deterministic prob-

lems where repeated evaluations are needed such as inverse,

control/design problems etc, should focus on constructing

solvers that exhibit sublinear complexity with respect to

the dimension of the original problem [10]. In the context

of UQ a popular and general such strategy involves the

use of surrogate models or emulators which attempt to

learn the input-output map implied by the full-order (FO)

model. Such models, e.g. Gaussian Processes [2], poly-

nomial chaos expansions [4], (deep) neural nets [3] and

many more, are trained on a finite set of full-order model

runs. Nevertheless, their performance is seriously impeded

by the curse of dimensionality, i.e. they usually become

inaccurate for input dimensions larger than a few tens or

hundreds, or equivalently, the number of FO model runs

required to achieve an acceptable level of accuracy grows

exponentially fast with the input dimension.

The present work is motivated by the following, common

questions:

• What are good coarse-grained variables (how many,
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Figure 1: Visualization in two-dimensional (latent) CG-

variable space of three alanine dipeptide conformations.

how are they related to the FG/FO description)?

• Given such a set, what is the right model for them?

• Given a good such model, how much can one predict

about the evolution of the reference FG/FO system

(reconstruction)?

• How much information is lost during the coarse-

graining/reduction process and how does this affect

predictions produced by the reduced model?

• Given finite simulation data at the fine-scale, how

(un)certain can one be in their predictions?

To address these questions, we propose data-driven,

generative probabilistic graphical models that are simulta-

neously capable of identifying a set of dimension-reduced

variables as well as a CG/RO model (Figure 1). They also

obviate the definition of restriction and lifting operators

in the context of multiscale problems [8]. We demon-

strate how such models can be trained using Stochastic

Variational Inference techniques [5] in combination with

Stochastic Optimization tools [7]. Even in the context of

scarce FG/FO data, they can accurately identify CG/RO

descriptions and produce predictive probabilistic estimates

for any observables of the fine-grained (FG) or full-order

(FO) models (Figure 2).

A critical question that is simultaneously addressed

with the dimensionality reduction, is the construction of

appropriate CG/RO models. The structural form of these

models as well as the types of relations they imply, provide

critical insight into the salient physical mechanisms that
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Figure 2: Prediction of Radial Distribution Function g(r)

using proposed CG model of SPC/E water trained with

20 FG realizations (posterior mean and quantiles) [11].

control emergent behavior. In the context of atomistic

simulations, such models control the type and order of

interactions between CG variables. In the case of stochas-

tic PDEs, these relate to the microstructural features of

the underlying random medium that are predictive of the

FO response [12]. We follow two alternative strategies.

In the first, we employ a rich set of feature functions

in combination with sparsity-enforcing priors [9]. As a

result we are capable bypassing a combinatorially large

search through all possible candidate models. The second

method employs a greedy, adaptive strategy by which fea-

ture functions/filters are learned and sequentially added

in the construction of the CG/RO model.
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