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Optimization under Uncertainty

Example: Material property as random field λ (x)

• z : design variables (topology or shape)
• θ ∼ pθ (θ) : stochastic influences, e.g.

• material : discretized random field λ (x)

• temperature / load : stochastic process

• manufacturing tolerances : distributed around nominal value

Figure 1: Cross section view of stiffening rib

Introducing uncertainty to optimization problems

In many engineering applications deterministic optimization is a

simplification neglecting aleatory and epistemic uncertainty.
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Optimization under Uncertainty - Objective Function

Maximize the expected utility

z∗ = arg max
z

V (z) = arg max
z

∫
U (z ,θ) pθ (θ) dθ

• z : design variables

• θ ∼ pθ (θ) : stochastic influences on the system

Example: minimize probability of failure

U (z ,θ) = 1A (z ,θ) (where A the event of non-failure)

Example: design goal utarget

U (z ,θ) = exp
{
−1

2τQ (u (z ,θ)− utarget)
2
}

τQ : penalty parameter enforcing the design goal
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Probabilistic Formulation of Optimization under Uncertainty

Reformulation as Probabilistic Inference1

Solution is given by an auxiliary posterior distribution2 π (z ,θ)

V (z) ∝
∫
π (z ,θ)︸ ︷︷ ︸
posterior

dθ

∝
∫

U (z ,θ)︸ ︷︷ ︸
likelihood

pθ (θ)︸ ︷︷ ︸
prior

dθ

since the marginal π (z) ∝ V (z), given a flat prior pz (z).

Conducive to consistent incorporation of epistemic

uncertainty due to approximate, lower-fidelity solvers!
1Mueller (2005)
2This approach should NOT be confused with Bayesian optimization
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Probabilistic Formulation of Optimization under Uncertainty

Reformulation as Probabilistic Inference1

Solution is given by an auxiliary posterior distribution2 π (z ,θ)

V (z) ∝
∫
π (z ,θ)︸ ︷︷ ︸
posterior

dθ

∝
[∫

U (z ,θ)︸ ︷︷ ︸
likelihood

pθ (θ)︸ ︷︷ ︸
prior

dθ

]
pz (z)︸ ︷︷ ︸
flat prior

since the marginal π (z) ∝ V (z), given a flat prior pz (z).
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Example: Stochastic Poisson Equation

x2

x1

z (x2)

∇ · (−λ (x)∇u (x)) = 0

dim (z) = 21

dim (θ) = 800

Solution
Target

x2

u (x2)

u (x2)

z : Control heat influx θ : Log-Normal conductivity field

θ(2)

θ(1)

x2
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Solution via rank-1-perturbed Gaussian q∗
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Figure 2: Black-box stochastic variational inference in dimension 821

(dim (θ) = 800,dim (z) = 21)

(Hoffman et al., 2013; Ranganath et al., 2013)

Cost : O
(
103
)
forward evaluations
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• high dimension

• expensive numerical model

⇒ probabilistic inference can quickly become

prohibitive.

How can we address this issue?
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Introduction of approximate solvers

If we denote a = logU and y = [z ,θ]T we can rewrite π (y)

πa (y) ∝ U (y) py (y) = exp (a (y)) py (y)

=

∫
exp (a) δ (a− logU (y)) py (y) da

=

∫
exp (a) p (a|y) py (y) da

Approximate solvers = Epistemic uncertainty

• As long as p (a|y) is a Dirac, we recover posterior perfectly

• Introduction of cheap, approximate solvers leads to dispersion

of p (a|y) and irrevocable loss of information regarding y

• We can consistently incorporate this epistemic

uncertainty in the Bayesian framework
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Introduction of approximate solvers

If we denote a = logU and y = [z ,θ]T we can rewrite π (y)

πa (y) ∝ U (y) py (y) = exp (a (y)) py (y)

=

∫
exp (a) δ (a− logU (y)) py (y) da

=

∫
exp (a) p (a|y) py (y) da

Regression Model

We may learn p (a|y) from e.g. a Bayesian regression model or a

Gaussian process GP

a = φ (y)T w + ε

This approach is impractical for a high-dimensional

probability space y = [z ,θ]T !
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Introduction of approximate solvers

If we denote a = logU and y = [z ,θ]T we can rewrite π (y)

πa (y) ∝ U (y) py (y) = exp (a (y)) py (y)

=

∫
exp (a) δ (a− logU (y)) py (y) da

=

∫
exp (a) p (a|y) py (y) da

Suppose instead we introduce a low-fidelity log-likelihood A

p (a|y) =

∫
p (a,A|y)dA =

∫
p (a|A, y) p (A|y)dA

≈
∫

p (a|A) δ (A− logULowFi ) dA := pA (a|y)

⇒ πA (y) ∝
∫

exp (a) pA (a|y) py (y) da
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Learning p (a|y) : Probabilistic multi-fidelity approach3

Introduce low-fidelity log-likelihood A

pA (a|y) ≈
∫

p (a|A) δ (A− logULowFi. (y))dA

-106 -104 -102 -100
-106

-104

-102

-100

Low-Fidelity A

Hi
gh
-F
id
el
ity

a

Pred. density pA (a|A)

• belief of high-fidelity a

given low-fidelity A

• learn from a limited set

of forward solver

evaluations D
• D = {a (yn) ,A (yn)}Nn=1

3Ng and Willcox (2014); Perdikaris et al. (2015)
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Learn pA (a|A,D)

• Learn predictive density

• Using e.g. variational

relevance vector machine

(VRVM) or Variational

Heteroscedastic Gaussian

Process (VHGP)

• D = {a (yn) ,A (yn)}Nn=1

3Ng and Willcox (2014); Perdikaris et al. (2015)
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Learning p (a|y) : Probabilistic multi-fidelity approach3

Introduce low-fidelity log-likelihood A
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Extended Probability Space - Illustration

δ (a− logU (y)) πa(y)

1
y

a

π
A
( a
,y
)
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Extended Probability Space - Illustration

πa(y)

πA(y)

pA (a|y)
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of epist

emic un
certaint

y

y
a

π
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Extended Probability Space - Illustration
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Multi-Fidelity posterior πA (y)

Approximate πA (y)

If predictive density p (a|y) is given by a Gaussian

N
(
a
∣∣µ (A (y)) , σ2 (A (y))

)
, then we obtain

log πA (y) = µ (A (y)) +
1

2
σ2 (A (y)) + log py (y)

Place probability mass on y associated with

(A): high predictive mean µ (y)

(B): large epistemic uncertainty σ2 (y)
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Multi-Fidelity posterior πA (y)

Approximate πA (y)

If predictive density p (a|y) is given by a Gaussian

N
(
a
∣∣µ (A (y)) , σ2 (A (y))

)
, then we obtain

log πA (y) = µ (A (y))

A

+
1

2
σ2 (A (y))

B

+ log py (y)

Place probability mass on y associated with

(A): high predictive mean µ (y)

(B): large epistemic uncertainty σ2 (y)
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Example: Stochastic Poisson Equation

x2

x1

z (x2)

∇ · (−λ (x)∇u (x)) = 0

dim (z) = 1

dim (θ) = 256

Solution
Target

x2

u (x2)

u (x2)

z : Control heat influx θ : Log-Normal conductivity field

θ(2)

θ(1)

x2
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Effect of lower-fidelity solvers4
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Figure 2: dim (θ) = 256, speedup S4×4 ≈ 2, 000 , N = 200 training

data samples, density estimate obtained using MALA

4here the low-fidelity solvers are simply coarser discretizations of the stochastic

Poisson equation 12
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Effect of training data D
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Figure 3: The data restricted likelihood becomes more confident due to

the reduction of epistemic uncertainty by additional training samples.

(dim (θ) = 256, averaged for 100 random sub-samplings of the data)

.
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Figure 3: The data restricted likelihood becomes more confident due to

the reduction of epistemic uncertainty by additional training samples.

(dim (θ) = 256, averaged for 100 random sub-samplings of the data)
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Review

Summary:

• Optimization under uncertainty can be reformulated as

Bayesian inference

• Allows consistent incorporation of epistemic uncertainty

introduced by cheaper, approximate (probabilistic) models

• Inevitable loss of information, but me way obtain multi-fidelity

posterior which contains the optimal design z∗ (MAP)

• Approach applicable to any problem of Bayesian inference

Outlook:

• introduction of multiple predictors A(p)

• adaptive enrichment of training data D
• more flexible approach to learn p (a|A)
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Addendum (1): generate Training Data D = {a (yn) ,A (yn)}Nn=1

Batch: Generate D such that equal

numbers of A (yn) fall in

Ml =
{
y
∣∣∣π(l)

c ≤ πc (y) ≤ π(l+1)
c

}
• l = 1, ..., L

• π(l+1)
c = const · π(l)

c

• πc : posterior defined low-fidelity

solver.

Adaptive Refinement: Use π (y |D) as

acquisition function, corresponding to large

predictive mean and epistemic uncertainty

π
(1)
c

π
(2)
c

π
(3)
c

π
(4)
c

Figure 4: Iso-probability lines of

the coarse posterior πc (y)
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Addendum (2): is it possible to exclude the optimal design z∗

(MAP)?

This approach will, if executed correctly, never put zero

probability mass on the MAP z∗ or any other value deemed

probable under the high fidelity posterior.

Potential Errors:

• Generated D does not sufficiently encapsulate p (a|A)

• Regression model is not flexible enough to learn p (a|A,D)

correctly

• Approximation of intractable posterior πA (y |D) using e.g.

VB, MCMC or SMC.
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