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Section 1

Theory
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Problem description

o Given: inputs x; € R%, i =1...N and outputs y; € R% of some
unknown function f : x — y

@ Goal: Find a surrogate model which predicts y = f(x) for a new x

@ Major Assumption: The output data y; lies on a lower-dimensional
manifold

input space . output space

Figure : One example of in- and output data
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Basic Idea

@ Deal with the non-linearity of the manifold by locally approximating it
by affine/linear sub-spaces (i.e. a reduced order basis)

@ Associate each data point with the corresponding sub-space

@ Learn a rule for the input space, which associates a new point with

the "best” subspace

output space

input & = 6 output y, = cos(c)

Figure : 4 sub-spaces and the resulting classification of the data points
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Probabilistic Formulation

@ The model considered can be thought of as a mixture model in the
output space with the mixing coefficients depending on x

distribution for component m

———
o P(ylx) =Xy P (c = m|x) P (ylc =m)
mixing coefficient for component m
o To fit the model to data, i.e. train, we first parametrize it
(parameters )

o Fitting the model is done by maximizing the complete data likelihood
(or posterior) using the Expectation Maximization (EM) algorithm
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Probabilistic Formulation 2

Complete data log posterior: log P (0|c,y;x) =

ZZl m) [log P (yn|ch = m, 8)log P (c, = m|0; x,)]

n=1m=1

+ logP (6]x) + C (1)

For the expectation of the log posterior w.r.t. the distribution of ¢ given
some fixed values 8* of the parameters this yields:

Q(016") = Ec[log P (6lc,y; x) |y; 07] (2)
= Q(6y16%) + Q(6c]67) (3)

6, are the parameters of P (y|c = m) and 6. of P (c = m|x)
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Probabilistic Principal Component Analysis

@ Probabilistic extension of the well known Principal Component
Analysis (PCA)

o PCA finds the g dimensional subspace with the least squared

projection error

Sub-space is represented by the middle ;1 and the g vectors in

W € R%9

P(ylc =m) =N (itm, Xm) and X, = 021 + W, W]
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Obstacles in the way

© The number of mixture components M is hard to determine a priori
@ Finding initial values for the parameters 6 is hard (local minima)
© Multi-class Classification (for M > 3) is not easy
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Proposed Algorithmic solution

@ Start with only one mixing component and iteratively refine the
model by adding new components

@ The "worst” mixing component is replaced by two new components

@ Each point that "belonged” to the original component is "assigned”
to one of the two succeeding components

@ This leads to a binary tree structure with mixture components on all
terminal leafs and binary classification at each internal node
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lllustrating Example: Initial configuration

= (cos (\/2) .=\ /2sin (\/2))

Tree Input space Output space

~—

o (y1,)2) = f(x1, %
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Theory

lllustrating Example: After first split

Input space

Output space
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lllustrating Example: Upper left leaf after split
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lllustrating Example: Whole tree after two splits

Tree Input space Output space

s 2 4 0 1 2 3 4 o 0z 04 06 08 1
1
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Obstacles no longer in the way

@ The iterative refinement stops at a prescribed level of accuracy

@ At each split initial values for only two PPCAs have to be found. This
could be done via e.g. k-means or the responsibility split

© At each Split only a binary classification problem has to be solved
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Classification

@ Because of the Tree structure only a binary classifier is needed

e Tipping: Relevance Vector Machine (RVM) is a probabilistic and
mostly sparser version of the support vector machine (SVM)

o Llnklng fUnCtion: P(C/aSS = ].‘X) =0 (WT¢ (X)) = l-‘rexp{—l—WT(ﬁ(X)}
° ¢(x)=(d1(x),...,0n(x)) are called the basis functions
@ Class labels: ¢; = 1 if point i belongs to class 1 and ¢; = 0 otherwise

@ Bernoulli-likelihood:

L=P(clw;x)= H,N:I o (WT¢ (x,-))ci [1 —0 (WTgZ) (x,-))}l_ci
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Basis functions

bias term: ¢ (x) =1
linear: ¢ (x) = x

polynomial: e.g. ¢ (x) = x1x2

Kernels: ¢ (x) = K (x,xU)) and xU) is mostly another data point
o linear: K (X,XU)) = xTx0)
e Polynomial: K (x,x1)) = (yxTxW + C>d
o Gaussian/RBF: K (x,xY)) = exp (7—21 |x — XU)HE)

K (x,xY)) represents a dot product in a possibly infinite dimensional
feature space
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RVM: example: Ripley Synthetic Data

@ Gaussian Kernels centered at each data point as basis functions
o Color = class posterior
@ White line = decision boundary i.e.

P (class = 1|x) = P (class = 2|x) = 0.5

taining data

15

o8 o5

96 04 02 0 0z 04 06 08

[m] (=) = =
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Algorithm: Overview

Input: X, Y, q

v

gl Search the tree for all leafs suitable for splitting

v

Possibly in parallel:
Split all suitable leafs

v

For each leaf attempted to split:
(a) Split was correct: Integrate new sub-leafs into tree structure
(b) Split didn't work: the leaf-int | splits counter

\

— Still splitable leafs? -
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MCR bound

@ The experiments show that the Missclassification Rate (MCR) of each
split is a parameter very well describing the overall performance of the
algorithm

@ Goal: establish a formula for the maximum MCR s.t. the split does
decrease the Predicted Squared Error

o Assume y ~ pN (1, o2l + WiWLT) + (1 = p)N (p2, 031 + WoW,T)
@ Formula for the simplified case g = q1 = g» = 1,

|wi|l3 = |[wal|5 = A% and the o belonging to the PPCA for all points
one has:

2 2
0° — o]

I = pal3 + (1 = cos?(Z(wa, wa)))A2

MCR pax = (n — 1)
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Sharpness-Increase

Problem: Sometimes the classifier assigns probabilities close to 0.5 to
most of the points = the difficulty of the problem is not (notably)
decreased by the split

Solution: After training increase the magnitude of w
Multiply the likelihood by a heuristic
Let a; = o (w' ¢ (x;)), then L= P(c|lw;x)h(w)
similar to the inverse of the Gini impurity define:
R.
— TN 1 !
h(w) =11i= [(af(l—a;)k} A0

| showed that for wpew = awgyg and X < Apax = F (x R, W) the
maximizer as is existent and unique

For A = 0.9\ max: ax is about 2 to 10 depending on the problem
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Adapted Gaussian Kernels

For this application it would be best to have:
K () = e (3 1 () = £ (9)113)
Taylor expansion around x;: f (x) ~ f (x;) + Df (x;) (x — x;)

K (x,35) ~ exp (—% (x = )T (DF ()T DF (x9) (x = )

Example: Let f(x) = b x then K (x,x;) = exp (—r% (b7 (x — xj))2>

Challenge: Estimate Df (x;) in an appropriate way, e.g. when
f(x) €{0,1}
@ Some more details in my thesis, but still more work to do
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Examples and Discussion

Section 2

Examples and Discussion
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Kraichnan Orszag three mode problem (KO-3)

d

—z1 =212

dt 1 143

d

2= TRn (4)
d

&23 = —212 + 222

Initial Conditions:
e 71(0) =1 (fixed)
e z3(0) = 1 (fixed)
e 7(0) € [-0.04,0.04] s.t. z(0) = 0.08x; — 0.04
e T €[10,12] s.t. T =2x+ 10

Problem setup:
@ input: x1, x> ~ unif(0,1)
e output: y; = z(T)
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KO-3: Parameters

@ Parameters used: N = 50to750 and 5000, g = 1, and max. depth =
3, 7and 11

o Different o (0.005 and 0.00025) were used and | cross validated with
different data-sets

@ A very detailed analysis can be found in the thesis

o | used radial basis functions, i.e.:
o(x) = (1, Kg(x, x1), ..., Kg(x, x(M))

e m = min(N,500) and the centers x( . x(m) are randomly drawn
without replacement from all training data points in each split

Lukas Kostler Bachelor Thesis Presentation 25 /40 February 12, 2016 25 / 40



KO-3: Results: training points
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Examples and Discussion

KO-3: Results: segmentation
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Examples and Discussion

KO-3: Results:

RMSE: test data

small trees

Mean of the RMSE for 15 runs each. Ntest = 2000

—
[[| === ppca i
e tree, depth = 3
tree, depth = 7
| | |
N T 7
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KO-3: Results: large tree

@ max depth = 11 — max number nodes = 2047
@ Tree grew 503 nodes
@ Root Mean Squared Test Error (N7es: = 10000)
o Tree: RMSEtes: =~ 0.025 =~ 0.041my
o PPCA: RMSEtes: =~ 0.327 ~ 0.542my
° my = N%,y PO ZZyzl abs (y,-(")> ~ 0.604

@ For max depth = 7 and N = 750 one already achieves
RMSEtes: =~ 0.030
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Heat Conduction in 2-D Plate: Setup

Steady state temperature distribution in a two dimensional plate
The plate is discretized using 10 x 10 = 100 elements
The temperatures along each of the four boundaries is constant

The conductivity of each element is chosen at random

Finite Element Solver written by Constantin

Problem setup:

@ inpUt: X = (Tlowera Trighta 7—uppera Tlefta Cla sy ClOO)
e T ~unif(—1,1) and C; ~ max (N (1, 0.4),0.1)

@ output: y; = T; the temperatures of the solution at the element
midpoints

Lukas Kostler Bachelor Thesis Presentation 30 /40 February 12, 2016

30 / 40



Heat Conduction in 2-D Plate: Result

Parameters used: N = 20000, g = 2, o max = 0.0025 ~ 0.010ppca
and max. depth = 9

| used linear basis functions, i.e.: ¢(x) = (1, x)

Tree grew to full size possible with max. depth = 9 — 255 internal
nodes and 256 leafs

@ Root Mean Squared Test Error (N7es: = 10000)

o Tree: RMSEtes: =~ 0.035 = 0.100my
o PPCA: RMSEtes: ~ 0.236 ~ 0.680my

d n
my = N%/y >t 2 _gly abs (y,( ))
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Heat Conduction in 2-D Plate: Some Examples 1

Original Temperature Field Tree Approximation PPCA Approximation

Tree Error: 0.032 PPCA Error: 0.214
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Examples and Discussion

Heat Conduction in 2-D Plate: Some Examples 2

Original Temperature Field Tree Approximation PPCA Approximation
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Examples and Discussion

Heat Conduction in 2-D Plate: Some Examples 3

Original Temperature Field

22 z1

kas Kostler

PPCA Approximation

Tree Approximation

29 21 22 21

Tree Error: 0.018

Z2 21

0
E2) ° 21
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Examples and Discussion

Heat Conduction in 2-D Plate: Discussion

@ Fraction of weights acting on the conductivity:

fconductivity = 22&} ) WH_Z;O% w;
1= 1=

nodes
o] | ===mean

i=

Scatter feonductivity

° 8

Lukas Kostler

depth of the node
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Examples and Discussion

Heat Conduction in 2-D Plate: Discussion

@ Relative improvement in standard deviation:
£ weighted mean(a/eft,a,;ght)
=

O before

Scatter f, vs f,

T T T

o5

i R

ST
e
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Section 3

Results
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Advantages of the Algorithm

@ The algorithm deals well with high dimensional output in terms of
needed data points

@ The algorithm deals well with discontinuities

@ For low dimensional input non-linearity is well handled

o (P)PCA is well understood and easily interpretable

@ The algorithm is fully probabilistic

@ Maybe the method represents some generic principle that is applicable

to a wide range of problems
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Main Challenge

@ The main challenge is finding the basis functions / classifier that well
suits the structure of the unknown function f

@ Possible solution could be:

o Develop basis functions for common problems (FEM etc.)
o Try to find basis functions that adapt to the data (Adapted Gaussian

Kernels)
o Rigorously analyze the general structure of the problem and find

structure | did not think of
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Possible Future Steps

@ Tackle the challenge from the slide before
@ Use classifiers that optimize some impurity/entropy criterion

@ The algorithm is inherently parallel — implement a parallel version
that can handle large data sets and large (possibly sparse) trees =
possibility to compute high dimensional examples with complex basis
functions
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