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➢ Aft-body flows of generic space transportation 

system geometries in transonic flight

➢ Highly unsteady flow-fields, dominated

by recirculation regions and

flow-flow interaction

➢ Unsteady loads

due to buffet

➢ Convective

heating

2

Introduction

Aft-body Flow

Ariane 5

[1] ESA/CNES/Arianespace: Optique vidéo du CSG, 2009.

Published: 07.03.2009, ID: 238930
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Introduction

1. Investigate the impact of hot plumes 

on rocket base flows

2. Validate CFD and experimental 

methods and maximize information

output on a challenging flow problem

➢ Compare reference cases using 

cold and hot exhaust plumes

➢ Apply and compare WTT & CFD 

and make use of their

specific advantages

GOALS METHODS

CFD

▪ Additional parameter studies

▫ Tw, OFR, …

WTT

▪ Additional parameter studies

▫ Ma∞, L/D, …

Investigate impact on wake flow dynamics and 

mechanical/thermal loads from different perspectives
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[2] SAILE, D., KIRCHHECK, D., GÜLHAN, A., BANUTI, D.: Design of a hot plume interaction facility at DLR Cologne.

In: 8th European Symposium on Aerothermodynamics for Space Vehicles (ATD). Lisbon, Portugal (2015) 

▪ Wind Tunnel

▫ Vertical Test Section

Cologne (VMK)

▪ GH2/GO2 Supply Facility

▫ Gas reservoir

▫ Control station

▫ Supply lines

▪ Test Specimen

▫ Wind tunnel model incl.

combustion chamber
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EXPERIMENTS

Hot Plume Testing Facility (HPTF)

Hot Plume Testing Facility (HPTF)

N2

H2

O2

GH2/GO2 supply

GH2/GO2

control station

300bar

288K

130bar

288K

V
e

n
t

➢ First design loop in 2014 [2]

➢ Operation since 2017

Testkammer

Silencer

Storage heater

Medium 

pressure 

air vessel

VMK test chamber

Wind tunnel

nozzle/support

VMK

Press. air

Air/exhaust

35bar

288K

35bar

288-750K

1atm

288-3000K

Press. airP
u

rg
e

 a
ir

Wind tunnel model

+ combustor

N2

H2

O2

115bar

397g/s O2

66g/s H2



C01

▪ Reference condition for 

hot plume tests (RC0):

▫ pcc = 20.7 bar

▫ Tcc = 925 K

▫ OFR = 0.7
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EXPERIMENTS

HPTF Operating Range

[3] KIRCHHECK, D., GÜLHAN, A.: Interaktionsteststand für realistische Raketentreibstrahlen mit umströmender Atmosphäre.

In: Deutscher Luft- und Raumfahrtkongress, Munich, Germany, 5–8 Sep 2017.

[3]



▪ Characterization tests 

performed for RC0 and

off-design conditions

➢ Suitability of the given 

design at RC0 and 

elevated conditions

proven for: [4]

▫ 0.6 < OFR < 2.0

▫ pcc < 40 bar

▫ ሶmtot < 150 g/s
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EXPERIMENTS

HPTF Operating Range

[4] KIRCHHECK, D., GÜLHAN, A.: Characterization of a GH2/GO2 Combustor for Hot Plume Wind Tunnel Testing. In: SFB/TRR40 Annual Report 2018.



9

EXPERIMENTS

Test Setup and Test Conditions

… for the Cold and Hot Exhaust Jet



▪ Pressure (steady/unsteady) and 

thermocouple measurements

▪ High-speed Schlieren (HSS)

▪ Particle Image Velocimetry (PIV)

▪ Infrared Thermography (IRT)
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EXPERIMENTS

Measurements & Instrumentation
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▪ General

▫ DLR flow solver TAU (2nd order, hybrid grids)

▫ k-ω SST turbulence modelling

▪ Thermally coupled simulations

▫ 2D axisymmetric RANS and coupling to ANSYS Mechanical

▫ AUSMDV Upwind scheme and detailed chemistry
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NUMERICS

Numerical Method



▪ Scale resolving simulations of external flow

▫ Improved Delayed Detached Eddy Simulation (IDDES)

▫ Low-dissipation low-dispersion central scheme

▫ Non-reacting two gas mixture (plume + ambient air)

▫ ~31 Million grid points
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NUMERICS

Numerical Method

RANS RANS+DES



➢ Preliminary studies based on reference data from literature [5]

▪ Grid study [6]

▫ Optimize grid resolution and design, validate implemented grid sensors

and determine sensitivity of the solution to grid changes

▪ Parameter study

▫ Optimize modelling and determine sensitivity to parameter changes

▫ Very good agreement with experimental data
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NUMERICS

IDDES Validation Studies

[5] WEISS et al.: On the dynamics of axisymmetric turbulent separating/reattaching flows." Physics of Fluids 21.7 (2009): 075103.

[6] SCHUMANN, J.-E., HANNEMANN, V., HANNEMANN, K.: Investigation of structured and unstructured grid topology and resolution dependence

for  scale-resolving simulations of axisymmetric detaching-reattaching shear layers, In: Progress in Hybrid RANS/LES methods. Springer, 2020.



▪ Data reduction method

for aft-body flow data [7]

▫ Proper Orthogonal Decomposition 

(POD) reduces file size

▫ Python script to extract the surface 

pressure time series in

the desired format

➢ Data reduction by up to a

factor of 106
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NUMERICS

Data Reduction Strategy

[7] FERTIG, M., SCHUMANN, J.-E., HANNEMANN, V., EGGERS, T., HANNEMANN, K.: Efficient analysis of transonic base flows

employing hybrid URANS/LES methods. In: SFB/TRR 40 Annual Report 2017, pp. 115–126.
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Experiment CFD

▪ Comparison of the mean flow features 

between HSS, PIV and CFD results

▪ Prominent flow features for comparison:

▫ Shock distance from nozzle exit

▫ Vortex center location

▫ Reattachment location

▫ …

➢ Good agreement of the

basic flow structure

➢ Reattachment location

▫ 20% farther downstream

in the CFD

COLD PLUME TEST CASE

Mean Flow Field

xr, Exp.

xr, Num.
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COLD PLUME TEST CASE

Base Pressure Data

▪ RMS pressure and 

frequency analysis 

for varying Mach 

number from WTT

results

➢ Significant variation 

during ascent, thus 

potentially critical 

Mach numbers

▪ RMS pressure and 

frequency analysis 

as local distribution 

from CFD results

➢ Local distribution of 

fluctuation level and 

frequency impacts 

load predictions

Experiment CFD



➢ Modal analyzes of the High-speed Schlieren recordings reveal a strong

amplification of the swinging motion of the shear layer at cold plume conditions 20

COLD PLUME TEST CASE

HSS Spectral Analysis

Cold jet

No jet
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▪ Hypothesis from D. 

SAILE (SFB/TRR40) 

cold plume testing [7]

▪ Strong indication for 

resonant coupling of 

near-wake and jet 

shear layer instabilities

▪ Development of a 

concept of dynamic 

mode coupling and 

analytical extrapolation 

to a real flight 

trajectory
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COLD PLUME TEST CASE

Jet–Wake Flow Coupling Hypothesis

[8] SAILE, D.: Experimental Analysis on Near-Wake Flows of Space Transportation Systems.

Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen. Ph.D. Thesis (2019).

[8]



▪ Hypothesis from D. 

SAILE (SFB/TRR40) 

cold plume testing [7]

▪ Strong indication for 

resonant coupling of 

near-wake and jet 

shear layer instabilities

▪ Development of a 

concept of dynamic 

mode coupling and 

analytical extrapolation 
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COLD PLUME TEST CASE

Jet–Wake Flow Coupling Hypothesis

[8] SAILE, D.: Experimental Analysis on Near-Wake Flows of Space Transportation Systems.

Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen. Ph.D. Thesis (2019).
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Mach Number Variation
COLD PLUME TEST CASE

▪ Estimated screeching 

and shear layer 

frequencies intersect 

at excited frequency 

bands

➢ Verification for 

SAILE’s hypothesis

➢ Found locking 

mechanism for 

coupling with different 

flow motions

▪ Continuous variation of the ambient freestream Mach number (45s)

➢ Spectrogram from high-frequency base pressure measurements



HOT PLUME TEST CASE

Results
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▪ Combustion chamber and structure conditions at OFR = 0.7

▫ Tcc,max = 3550K,  Tcc,avg = 900K,  pcc = 21.5bar

▫ Tth = 743K,  Tcorner = 730K

▪ Aft-body RANS flow field

▫ Comparison between 2 species/no chemistry ↔ 9 species/finite rate chemistry

▫ Similar results without post combustion
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HOT PLUME TEST CASE

Thermally Coupled Simulations

Step

27

r (m)

x (m)

9 species

2 species



▪ Large discrepancies in heat flux prediction between RANS and IDDES

▫ Partially due to mean flow field changes

(e.g. earlier reattachment for SA-RANS)
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HOT PLUME TEST CASE

Heat Flux Data (IDDES)



▪ Comparison between PIV and CFD

▫ Reattachment location about 20% farther 

downstream in the CFD

▪ Hot plume impact on the mean flow field

▫ Reattachment location shifted approx. 22% 

downstream compared to the cold plume case
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HOT PLUME TEST CASE

Impact on Mean Flow Field

Experiment CFD

Cold Hot

∆xr

xr, Exp.

xr, Num.
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HOT PLUME TEST CASE

Impact on Base Pressure

Experiment CFD

▪ Pressure level and 

pressure fluctuation 

level reduced for the 

hot plume case in 

WTT and CFD

▪ Impact on the base 

pressure spectrum

▪ Additional frequency 

peak at 2/3 of the 

nozzle length

➢ Various effects on 

the pressure visible 

in WTT and CFD 

results



▪ Significant changes in flow field and pressure distribution

when comparing cold/cold, hot/cold, and hot/hot cases
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HOT PLUME TEST CASE

Impact on Base Pressure (IDDES)

Cold plume, cold wall



▪ Significant changes in flow field and pressure distribution

when comparing cold/cold, hot/cold, and hot/hot cases
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HOT PLUME TEST CASE

Impact on Base Pressure (IDDES)

Hot plume, cold wall



▪ Significant changes in flow field and pressure distribution

when comparing cold/cold, hot/cold, and hot/hot cases
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HOT PLUME TEST CASE

Impact on Base Pressure (IDDES)

➢ Pressure fluctuations on the nozzle wall are significantly reduced

in the hot plume case with hot walls.

Hot plume, hot wall
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HOT PLUME TEST CASE

Impact on Wake Flow Dynamics

➢ No excitation of one of the shear layer modes in the hot plume case.

The dominant movement corresponds to the case without plume

SrD = 0.19 SrD = 0.35

Swinging



▪ Similar mode frequencies and mode shapes for all cases

▫ SrD = 0.1 (symmetric, longitudinal cross-pumping)

▫ SrD = 0.2 (asymmetric, flapping)

▫ SrD = 0.35 (asymmetric, swinging)

▪ Additional mode at SrD ≈ 0.45 (symmetric, swinging)

▫ Appears related to an interaction between the shear layer movement

and a nozzle flow separation
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HOT PLUME TEST CASE

Dynamic Mode Decomposition (IDDES)

SrD = 0.1 SrD = 0.2 SrD = 0.35 SrD = 0.45



▪ Nozzle forces dominated by SrD = 0.2 

and SrD = 0.35 peaks for the hot

exhaust plume

▪ Reduced amplitude of forces for

the hot wall case (~20%)
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HOT PLUME TEST CASE

Impact on Nozzle Forces (IDDES)

Cold plume, cold wall Hot plume, cold wall Hot plume, hot wall
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Conclusion

➢ INVESTIGATION OF PLUME INTERACTION WITH AMBIENT FLOW

for cases with cold and hot exhaust jets using wind tunnel tests and CFD

➢ CHARACTERIZATION OF THE COLD PLUME INTERACTION 

test case in terms of: mean flow features, base pressure, wake flow dynamics

➢ COMPARISON OF THE COLD AND HOT PLUME INTERACTION

test cases indicates significant impacts from hot plumes and higher

wall temperatures on the near wake flow of a launcher

➢ RELEVANT DATA SETS ARE PROVIDED

about the experimental and numerical results of the main test cases

(listed at the end of the presentation)
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Provided Data Sets
APPENDIX

Description Mach Plume L/D Tw Stored data

Cold plume 0.8 Air (300K, 22bar) 1.2 300K pw(x,t)

Hot plume, cold 0.8 O/F=0.7 (~900K, 22bar) 1.2 300K pw(x,t)

Hot plume, hot 0.8 O/F=0.7 (~900K, 22bar) 1.2 ~700K pw(x,t) & Tw(x)

Short, cold 0.8 O/F=6 (~3000K, 22bar) 0.4 300K pw(x,t)

Short, hot 0.8 O/F=6 (~3000K, 22bar) 0.4 ~1100K pw(x,t) & Tw(x)

Description Mach Plume L/D Tw Stored data

No plume 0.8 No plume 1.2 N/K pb(t), HSS, PIV

Cold plume 0.8 Air (~288K, ~20bar) 1.2 N/K pb(t), HSS, PIV

Hot plume 0.8 O/F=0.7 (~900K, ~20bar) 1.2 N/K pb(t), HSS, PIV

*an updated list with an increased number of test cases might be available after final evaluation of all data

Numerical

Experimental


