

Hot Plume Impact on Rocket Base Flows

<u>D. KIRCHHECK</u>, D. SAILE, A. GÜLHAN, AS-HYP, DLR KÖIN J.-E. SCHUMANN, V. HANNEMANN, K. HANNEMANN, AS-RFZ, DLR Göttingen M. FERTIG, T. EGGERS, AS-RFZ, DLR Braunschweig

Highly unsteady flow-fields, dominated

by recirculation regions and flow-flow interaction

system geometries in transonic flight

- Unsteady loads due to **buffet**
- Convective heating

Aft-body flows of generic space transportation

Introduction

Introduction

GOALS

- 1. Investigate the impact of hot plumes on rocket base flows
- 2. Validate CFD and experimental methods and maximize information output on a challenging flow problem

(wtt

Additional parameter studies
 Ma_m, L/D, ...

METHODS

- Compare reference cases using cold and hot exhaust plumes
- Apply and compare WTT & CFD and make use of their specific advantages

Additional parameter studies
 *T*_w, OFR, ...

Investigate impact on wake flow dynamics and mechanical/thermal loads from different perspectives

Content

> Introduction

> Tools & Methods

- Experiments
- Numerics
- Results
 - Cold Plume Test Case
 - Hot Plume Test Case
- Conclusion & Outlook

Tools & Methods

EXPERIMENTS

EXPERIMENTS Hot Plume Testing Facility (HPTF)

- Wind Tunnel
 - Vertical Test Section Cologne (VMK)
- GH2/GO2 Supply Facility
 - Gas reservoir
 - Control station
 - Supply lines
- Test Specimen
 - Wind tunnel model incl. combustion chamber

First design loop in 2014 ^[2]

Operation since 2017

Reference condition for max, supply pressure hot plume tests (RC0): 5000 $p_{\rm cc} = 20.7 \, \rm bar$ 100

120

80

4000

 $T_{\rm cc} = 925 \, {\rm K}$

OFR = 0.7

3400-3500

3200

3000

2600 K

Ш

2200

O RC2

3600

3500

mat.

0

3400 3200 3000

EXPERIMENTS HPTF Operating Range

9000

2400

2200

7000

8000 2800-

2600

8.6868

EXPERIMENTS HPTF Operating Range

- Characterization tests performed for RC0 and off-design conditions
- Suitability of the given design at RC0 and elevated conditions proven for: ^[4]
 - □ 0.6 < OFR < 2.0
 - $p_{\rm cc} < 40$ bar
 - $\dot{m}_{tot} < 150 \text{ g/s}$

EXPERIMENTS Test Setup and Test Conditions

Cold jet

Hot jet

0.80

0.80

0.987

0.992

255.4*

255.4*

19.90

20.27

 288.0^{\star}

918.7*

459.9*

89.40

0.693

9

619.8*

2803.9*

EXPERIMENTS Measurements & Instrumentation

- Pressure (steady/unsteady) and thermocouple measurements
- High-speed Schlieren (HSS)
- Particle Image Velocimetry (PIV)
- Infrared Thermography (IRT)

Tools & Methods

NUMERICS

NUMERICS Numerical Method

- General
 - DLR flow solver TAU (2nd order, hybrid grids)
 - k-ω SST turbulence modelling
- Thermally coupled simulations
 - 2D axisymmetric RANS and coupling to ANSYS Mechanical
 - AUSMDV Upwind scheme and detailed chemistry

NUMERICS Numerical Method

- Scale resolving simulations of external flow
 - Improved Delayed Detached Eddy Simulation (IDDES)
 - Low-dissipation low-dispersion central scheme
 - Non-reacting two gas mixture (plume + ambient air)
 - ~31 Million grid points

NUMERICS IDDES Validation Studies

- Preliminary studies based on reference data from literature ^[5]
- Grid study ^[6]
 - Optimize grid resolution and design, validate implemented grid sensors and determine sensitivity of the solution to grid changes
- Parameter study
 - Optimize modelling and determine sensitivity to parameter changes
 - Very good agreement with experimental data

- [5] WEISS et al.: On the dynamics of axisymmetric turbulent separating/reattaching flows." Physics of Fluids 21.7 (2009): 075103.
- [6] SCHUMANN, J.-E., HANNEMANN, V., HANNEMANN, K.: Investigation of structured and unstructured grid topology and resolution dependence for scale-resolving simulations of axisymmetric detaching-reattaching shear layers, In: Progress in Hybrid RANS/LES methods. Springer, 2020.

NUMERICS Data Reduction Strategy

- Data reduction method for aft-body flow data ^[7]
 - Proper Orthogonal Decomposition (POD) reduces file size
 - Python script to extract the surface pressure time series in the desired format
 - Data reduction by up to a factor of 10⁶

	Spatial points	Variables	Time steps	Total data values	
Original data set	$25 \cdot 10^{6}$	10	1000	$250 \cdot 10^9$	
Wall pressure	$200 \cdot 10^{3}$	1	1000	$200 \cdot 10^{6}$	
Relevant region and freq.	$20 \cdot 10^3$	1	1000	$20 \cdot 10^6$	
					10-6
	Spatial points	Modes	Time sequence	Total data values	
POD without domin. modes	$20 \cdot 10^{3}$	200	1000	$4.2 \cdot 10^{6}$	
POD with domin. modes	$20 \cdot 10^3$	10	1000	$210 \cdot 10^3$	

[7] FERTIG, M., SCHUMANN, J.-E., HANNEMANN, V., EGGERS, T., HANNEMANN, K.: Efficient analysis of transonic base flows employing hybrid URANS/LES methods. In: SFB/TRR 40 Annual Report 2017, pp. 115–126.

Content

- > Introduction
- Tools & Methods
 - Experiments
 - Numerics

Results

- Cold Plume Test Case
- Hot Plume Test Case
- Conclusion & Outlook

Results

COLD PLUME TEST CASE

COLD PLUME TEST CASE Mean Flow Field

- Comparison of the mean flow features between HSS, PIV and CFD results
- Prominent flow features for comparison:

EXHAUST JET

FREE

STREAM

THRUST

NOZZLE

ROCKET BASE

- Shock distance from nozzle exit
- Vortex center location
- Reattachment location

 Good agreement of the basic flow structure

. . .

- Reattachment location
 - 20% farther downstream in the CFD

COLD PLUME TEST CASE **Base Pressure Data**

- RMS pressure and frequency analysis for varying Mach number from WTT results
- Significant variation during ascent, thus potentially critical Mach numbers
- RMS pressure and frequency analysis as local distribution from CFD results
- Local distribution of fluctuation level and frequency impacts load predictions

COLD PLUME TEST CASE HSS Spectral Analysis

Modal analyzes of the High-speed Schlieren recordings reveal a strong amplification of the swinging motion of the shear layer at cold plume conditions

Strong indication for resonant coupling of

 Development of a concept of dynamic mode coupling and analytical extrapolation to a real flight trajectory

COLD PLUME TEST CASE Jet–Wake Flow Coupling Hypothesis

cold plume testing ^[7]
 Strong indication for resonant coupling of near-wake and jet shear layer instabilities

Hypothesis from D.

SAILE (SFB/TRR40)

PROPAGATION OF SOUND WAVE 0 ******** 5 • vortex/turbulent structure injection in shear layer of (3) TRIGGER FOR the jet VORTEX SHEDDING upstream travelling acoustic wave front 5 [8] upstream travelling acoustic vortex shedding wave front

(1) SOUND WAVE GENERATION

5

acoustic wave

turbulent structure-

mechansim)

sound

leakage

shock cell interaction (iet screech instability

(2) UPSTREAM

COLD PLUME TEST CASE Jet–Wake Flow Coupling Hypothesis

- Hypothesis from D.
 SAILE (SFB/TRR40)
 cold plume testing ^[7]
- Strong indication for resonant coupling of near-wake and jet shear layer instabilities
- Development of a concept of dynamic mode coupling and analytical extrapolation to a real flight trajectory

[8] SAILE, D.: Experimental Analysis on Near-Wake Flows of Space Transportation Systems. Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen. Ph.D. Thesis (2019). 7) F(G

COLD PLUME TEST CASE Mach Number Variation

- Continuous variation of the ambient freestream Mach number (45s)
- Spectrogram from high-frequency base pressure measurements

Results

HOT PLUME TEST CASE

HOT PLUME TEST CASE Thermally Coupled Simulations

- Combustion chamber and structure conditions at OFR = 0.7
 - $T_{cc,max} = 3550$ K, $T_{cc,avg} = 900$ K, $p_{cc} = 21.5$ bar
 - $T_{th} = 743 \text{K}, \ T_{corner} = 730 \text{K}$
- Aft-body RANS flow field
 - □ Comparison between 2 species/no chemistry ↔ 9 species/finite rate chemistry
 - Similar results without post combustion

HOT PLUME TEST CASE Heat Flux Data (IDDES)

- Large discrepancies in heat flux prediction between RANS and IDDES
 - Partially due to mean flow field changes (e.g. earlier reattachment for SA-RANS)

HOT PLUME TEST CASE Impact on Mean Flow Field

- Comparison between PIV and CFD
 - Reattachment location about 20% farther downstream in the CFD
- Hot plume impact on the mean flow field
 - Reattachment location shifted approx. 22% downstream compared to the cold plume case

HOT PLUME TEST CASE Impact on Base Pressure

Pressure level and pressure fluctuation level reduced for the hot plume case in WTT and CFD

- Impact on the base pressure spectrum
- Additional frequency peak at 2/3 of the nozzle length
- Various effects on the pressure visible in WTT and CFD results

HOT PLUME TEST CASE Impact on Base Pressure (IDDES)

 Significant changes in flow field and pressure distribution when comparing cold/cold, hot/cold, and hot/hot cases

HOT PLUME TEST CASE Impact on Base Pressure (IDDES)

 Significant changes in flow field and pressure distribution when comparing cold/cold, hot/cold, and hot/hot cases

HOT PLUME TEST CASE Impact on Base Pressure (IDDES)

 Significant changes in flow field and pressure distribution when comparing cold/cold, hot/cold, and hot/hot cases

Pressure fluctuations on the nozzle wall are significantly reduced in the hot plume case with hot walls.

HOT PLUME TEST CASE Impact on Wake Flow Dynamics

No excitation of one of the shear layer modes in the hot plume case. The dominant movement corresponds to the case without plume

- Similar mode frequencies and mode shapes for all cases
 - Sr_D = 0.1 (symmetric, *longitudinal cross-pumping*)
 - Sr_D = 0.2 (asymmetric, *flapping*)
 - $Sr_D = 0.35$ (asymmetric, *swinging*)
- Additional mode at $Sr_D \approx 0.45$ (symmetric, *swinging*)
 - Appears related to an interaction between the shear layer movement and a nozzle flow separation

HOT PLUME TEST CASE Impact on Nozzle Forces (IDDES)

- Nozzle forces dominated by Sr_D = 0.2 and Sr_D = 0.35 peaks for the hot exhaust plume
- Reduced amplitude of forces for the hot wall case (~20%)

Conclusion

Conclusion

> INVESTIGATION OF PLUME INTERACTION WITH AMBIENT FLOW

for cases with cold and hot exhaust jets using wind tunnel tests and CFD

CHARACTERIZATION OF THE COLD PLUME INTERACTION

test case in terms of: mean flow features, base pressure, wake flow dynamics

> COMPARISON OF THE COLD AND HOT PLUME INTERACTION

test cases indicates significant impacts from hot plumes and higher wall temperatures on the near wake flow of a launcher

> RELEVANT DATA SETS ARE PROVIDED

about the experimental and numerical results of the main test cases (listed at the end of the presentation)

APPENDIX

APPENDIX **Provided Data Sets**

Experimental

Description	Mach	Plume	L/D	Tw	Stored data
No plume	0.8	No plume	1.2	N/K	$p_{\rm b}(t)$, HSS, PIV
Cold plume	0.8	Air (~288K, ~20bar)	1.2	N/K	$p_{\rm b}(t)$, HSS, PIV
Hot plume	0.8	O/F=0.7 (~900K, ~20bar)	1.2	N/K	$p_{\rm b}(t)$, HSS, PIV

*an updated list with an increased number of test cases might be available after final evaluation of all data

Numerical

Description	Mach	Plume	L/D	Tw	Stored data
Cold plume	0.8	Air (300K, 22bar)	1.2	300K	$p_{w}(x,t)$
Hot plume, cold	0.8	O/F=0.7 (~900K, 22bar)	1.2	300K	$p_{w}(x,t)$
Hot plume, hot	0.8	O/F=0.7 (~900K, 22bar)	1.2	~700K	$p_{w}(x,t) \& T_{w}(x)$
Short, cold	0.8	O/F=6 (~3000K, 22bar)	0.4	300K	$p_{w}(x,t)$
Short, hot	0.8	O/F=6 (~3000K, 22bar)	0.4	~1100K	$p_{w}(x,t) \& T_{w}(x)$